
UC Berkeley
UC Berkeley Previously Published Works

Title
Subsemble: an ensemble method for combining subset-specific algorithm fits

Permalink
https://escholarship.org/uc/item/53k4t784

Journal
Journal of Applied Statistics, 41(6)

ISSN
0266-4763

Authors
Sapp, Stephanie
van der Laan, Mark J
Canny, John

Publication Date
2014-06-03

DOI
10.1080/02664763.2013.864263

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/53k4t784
https://escholarship.org
http://www.cdlib.org/

Subsemble: an ensemble method for combining subset-specific
algorithm fits

Stephanie Sappa,*, Mark J. van der Laanb, and John Cannyc

aDepartment of Statistics, University of California at Berkeley, Berkeley, CA, USA

bDivision of Biostatistics, University of California at Berkeley, Berkeley, CA, USA

cDivision of Computer Science, University of California at Berkeley, Berkeley, CA, USA

Abstract

Ensemble methods using the same underlying algorithm trained on different subsets of

observations have recently received increased attention as practical prediction tools for massive

datasets. We propose Subsemble: a general subset ensemble prediction method, which can be used

for small, moderate, or large datasets. Subsemble partitions the full dataset into subsets of

observations, fits a specified underlying algorithm on each subset, and uses a clever form of V-

fold cross-validation to output a prediction function that combines the subset-specific fits. We give

an oracle result that provides a theoretical performance guarantee for Subsemble. Through

simulations, we demonstrate that Subsemble can be a beneficial tool for small to moderate sized

datasets, and often has better prediction performance than the underlying algorithm fit just once on

the full dataset. We also describe how to include Subsemble as a candidate in a SuperLearner

library, providing a practical way to evaluate the performance of Subsemlbe relative to the

underlying algorithm fit just once on the full dataset.

Keywords

ensemble methods; prediction; cross-validation; machine learning; big data

1. Introduction

As massive datasets become increasingly common, new scalable approaches to prediction

are needed. Recently, there has been increased interest in the performance of various

subsetting prediction procedures. Subsetting procedures obtain subsets of the full available

dataset, train the same underlying algorithm on each subset, and finally combine the results

across the subsets. The method used to obtain the subsets, and the method used to combine

the subset-specific results, differ depending on the procedure. Prediction methods using

subsets of the full available dataset are promising tools for large-scale datasets, since

computation on subsets can be parallelized, taking advantage of modern computational

resources.

© 2013 Taylor & Francis
*Corresponding author. sapp@stat.berkeley.edu.

NIH Public Access
Author Manuscript
J Appl Stat. Author manuscript; available in PMC 2015 January 01.

Published in final edited form as:
J Appl Stat. 2014 January 1; 41(6): 1247–1259. doi:10.1080/02664763.2013.864263.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Bagging, developed in [2], is a classic example of a subsampling prediction procedure.

Bagging, or bootstrap aggregating, involves drawing many bootstrap samples of a fixed size,

fitting the same underlying algorithm on each bootstrap sample, and obtaining the final

prediction by simply averaging the results across the subset fits. This approach has several

drawbacks. First, some observations will never be used, while others will be selected

multiple times. Second, taking a simple average of the subset fits does not differentiate

between the quality of each fit.

An average mixture (AVGM) procedure for fitting the parameter of a parametric model has

been studied by [10]. AVGM partitions the full available dataset into disjoint subsets,

estimates the parameter within each subset, and finally combines the estimates by simple

averaging. [10] also propose a bootstrap average mixture (BAVGM) procedure, which

extends AVGM. As with AVGM, BAVGM partitions the full data, and estimates the

parameter within each subset. However, BAVGM also takes a single bootstrap sample from

each partition, re-estimates the parameter on the bootstrap sample, and combines the two

estimates into a so-called bootstrap bias corrected estimate. The final parameter estimate is

obtained by simple averaging of the bootstrap bias-corrected estimates from each partition.

The AVGM and BAVGM procedures have shortcomings. The approaches are only designed

for parametric models, and the theoretical results provided rely on using parametric models.

AVGM does not account for fit quality differences at all, since it simple averages the subset

fits. BAVGM’s approach to bias correction estimates the bias of a partition’s parameter

estimate by reusing data that was already used in the fit of that parameter. Finally, both

methods are only proposed for use with large datasets. That is, the methods are proposed due

to their computational attractiveness, rather than their statistical performance.

An ensemble method for classification with large-scale datasets, using subsets of

observations to train algorithms, and combining the classifiers linearly, was discussed in the

case study of [6]. Although [6] mention the possibility of weighting each classifier if

different underlying algorithms are used, they indicate that simple averaging is preferred

when using different subsets of observations to train the same underlying algorithm. As their

work is a case study, no theoretical performance guarantees are provided. Furthermore, the

approach is only evaluated for a single algorithm (logistic regression), with a single dataset,

using very large subsets. Finally, the method is again only proposed by the authors for use

with large datasets.

While not a subset method, boosting, formulated by [5], is an example of an ensemble

method that differentiates between the quality of each fit. Boosting iterates the process of

training a weak learner on the full dataset, then re-weighting observations, with higher

weights given to poorly classified observations from the previous iteration. However,

boosting is not a subset method because all observations are iteratively re-weighted, and

thus all observations are needed at each iteration. Another drawback of boosting is that it is a

sequential algorithm, and hence cannot be parallelized.

Motivated to create an improved subset ensemble method by accounting for the quality of

each subset fit, we propose a novel method, Subsemble, for combining results from fitting

the same underlying algorithm on different subsets of observations. Our approach has many

Sapp et al. Page 2

J Appl Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

benefits and differs from existing methods in a variety of ways. Any type of underlying

algorithm, parametric or nonparametric, can be used. Instead of simply averaging subset-

specific fits, Subsemble differentiates fit quality across the subsets and learns a weighted

combination of the subset-specific fits. To evaluate fit quality and determine the weighted

combination, Subsemble uses cross-validation, thus using independent data to train and learn

the weighted combination. Finally, Subsemble has desirable statistical performance and can

improve prediction quality on both small and large datasets.

This paper focuses on the statistical performance of Subsemble. We provide an oracle result

for Subsemble, showing that Subsemble performs as well as the best possible combination

of the subset-specific fits. We describe how to choose between Subsemble and the

underlying algorithm fit just once on the full dataset, resulting in a weighted combination of

the procedures. Through simulation studies, we demonstrate the desirable performance of

Subsemble as a prediction procedure for moderate sized datasets. We show that Subsemble

often provides better prediction performance than fitting the underlying algorithm only once

on the full available dataset, and that including both the usual and Subsemble versions of

algorithms in a SuperLearner library provides superior results to including only the usual

versions of algorithms.

The remainder of our paper is organized as follows. Subsemble is presented in Section 2.

We describe how to choose between fitting an algorithm just once on the full dataset versus

various Subsemble fits, through including both the Subsemble and usual versions of the

algorithm as candidates in a SuperLearner library, in Section 3. Simulation study and real

data analysis results appear in Section 4. We conclude and discuss future research directions

in Section 5.

2. Subsemble

2.1 The Subsemble algorithm

Assume the full dataset consists of n independent and identically distributed observations Oi

= (Xi,Yi) of O ~ P0. Our goal is to predict the outcome Yi given the covariate vector Xi.

Given an algorithm , which is a mapping from an empirical probability distribution Pn into

the parameter space space Ψ of functions of X, the usual approach to prediction using

applies to the empirical distribution Pn, resulting in the estimator .

The Subsemble procedure takes a different approach to forming a prediction function using

. Instead of using the entire dataset to obtain a single fit of , Subsemble applies to

multiple empirical distributions, each consisting of a subset of the available observations,

created from a partitioning of the entire dataset into J disjoint subsets. We refer to these J

subsets of the entire dataset at the final subsets. Subsemble then obtains the optimal

combination of the final subset-specific fits by minimizing cross-validated risk through V-

fold cross-validation.

Note that the cross-validation within Subsemble is used as an estimator selection tool. It is

used to find the best combination of subset-specific fits by minimizing cross-validated risk.

Risk estimates are based on obtaining subset-specific fits on cross-validation training sets,

Sapp et al. Page 3

J Appl Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

and estimating risk using the corresponding test sets. For this procedure to yield accurate

risk estimates, the jth subset-specific estimator in the cross-validation training sets needs to

be similar to the final jth subset-specific estimator of the full dataset. Otherwise, the risk

estimate of the jth estimator does not reflect its true risk, and the resulting combination of the

J estimators is also meaningless.

The jth estimator is defined as applying the underlying algorithm to the jth final subset. In

fact, the only difference between the J estimators is the particular data used to train the

underlying algorithm. We thus need to define the jth estimator in the cross-validation

training sets to be very similar to the jth final estimator. This is accomplished by using very

similar data in the jth cross-validation and final subsets.

To motivate the construction of the V folds used in Subsemble, consider randomly splitting

the entire dataset into V folds. Now, suppose that at each cross-validation step, the training

data were randomly assigned to the J subsets. With this approach, the data used in subset j in

a cross-validation training set has no relationship to the data used in the final subset j. A

partial solution would be, at each cross-validation step, to assign the training data to subsets

based on each observation’s assignment in the final subsets. This construction guarantees

that each observation used in the subset-specific fit j during cross-validation is contained in

the data used in the final subset-specific fit j. However, undefined estimates could occur if

all data in the final subset j happened to fall in the same fold v.

Subsemble instead selects the V folds to preserve the subset structure: we first partition each

subset j into V folds, and then create the overall vth fold by combining the vth folds from all

the J subsets. This approach has several benefits. First, very similar data is used in the cross-

validation subset assignments and the final subset assignments. Second, since only 1/V of

each final subset is left out at each cross-validation step, the potential problem of undefined

estimates in the cross-validation steps is avoided. Finally, creating the cross-validation

training sets does not require combining data across the subsets. This is due to the fact that,

since the final subsets are partitioned into V folds, and the subset assignments in the cross-

validation steps are the same as the final subset assignments, leaving a fold v out of subset j

produces all the data assigned to the jth subset in the cross-validation training set. See

(Figure 1) for an illustration.

Subsemble also requires specifying a second algorithm to be used for combining the

subset-specific fits. For example, the combination algorithm could be a linear regression,

random forest, or support vector machine. (Figure 1) shows the Subsemble procedure when

 is specified as linear regression.

More formally, Subsemble proceeds as follows. Given the user-specified number of subsets

J, the n observations are partitioned into J disjoint subsets. Define the algorithm as

applied to the jth subset. Each of the J algorithms are applied to Pn, resulting in J subset-

specific estimators . V-fold cross-validation is then used to select the optimal

combination of the subset-specific fits based on minimizing the cross-validated risk. The V

folds are selected as follows. Each subset j = 1,…,J is first partitioned into V folds. Each full

Sapp et al. Page 4

J Appl Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

fold v is then obtained by combining the vth folds across the J subsets. Define Pn,v as the

empirical distribution of the observations not in the vth fold. For each observation i, define

Pn,v(i) to be the empirical distribution of the observations not in the fold containing

observation i. The optimal combination is selected by applying the combination algorithm

to the following redefined set of n observations: , where

. That is, for each i, the redefined input vector consists of the

J predicted values obtained by evaluating the J subset-specific estimators trained on the data

excluding the v(i)th fold, at Xi. As an example, specifying as linear regression would result

in selecting the best linear combination of the subset-specific fits, by regressing Yi

onto the J values of .

2.2 Oracle result for Subsemble

The following oracle result, following directly from the work of [8], gives a theoretical

guarantee of Subsemble’s performance.

Theorem 2.1—Assume the combination algorithm is indexed by a finite

dimensional parameter β ∈ B. Let Bn be a finite set of values in B, with the number of

values growing at most polynomial rate in n. Assume there exist bounded sets and

Euclidean X such that P((Y,X) ∈ Y × X) = 1 and .

Define the cross-validation selector of β as

and define the oracle selector of β as

Then, for every δ > 0, there exists a constant C(δ) < ∞ (defined in [7]) such that

As a result, if none of the subset-specific learners converge at a parametric rate, then the

oracle selector does not converge at a parametric rate, and the cross-validation estimator

is asymptotically equivalent with the oracle estimator :

Sapp et al. Page 5

J Appl Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Otherwise, the cross-validation estimator achieves a near parametric rate:

The results of this Theorem hold even if the number of subsets J grows at up to a

polynomial rate in n.

Theorem 2.1 tells us that the risk difference, based on squared-error loss, of the Subsemble

from the true E0[Y|X] can be bounded from above by a function of the risk difference of the

oracle procedure. Note that the oracle procedure results in the best possible combination of

the subset-specific fits, since the oracle procedure selects β to minimize the true risk

difference. As a result, the main lesson from this Theorem is, since usually the underlying

algorithm used wont convergence at parametric rate, Subsemble performs as well as the best

possible combination of subset-specific fits. That is, since their ratio of risk differences

converges to one, the Subsemble not only has the same rate of convergence as the oracle

procedure, as well as the same constant. Our result is even stronger: the risk difference of

the Subsemble is literally asymptotically indistinguishable from that of the oracle procedure.

Note that Theorem 2.1 doesn’t tell us how many subsets are best, or how Subsemble’s

combination of many subset-specific fits will perform relative to fitting the single algorithm

 just once on the full available dataset. In Section 3, we provide a practical way to select

between Subsemble and a single fit on the full dataset, as well as to select among different

types of Subsembles. We also show through simulations in Section 4 that there is often a

range of subsets which are better than the full fit.

3. Deciding when to use Subsembles

3.1 Including Subsembles as candidates in SuperLearner

While the oracle result for Subsemble given in Section 2.2 provides a theoretical basis for

the performance of Subsemble, it doesn’t tell us whether or not Subsemble will outperform

the standard single fit of an algorithm only once on the entire dataset. The oracle result also

provides no guidance about the best number of partitions to use in Subsemble. Here, we

provide a practical approach to select between these options, describing how to include

Subsembles with different numbers of subsets, as well as the usual version of the specified

algorithm, as candidate algorithms in a SuperLearner library.

SuperLearner, developed in [8], is a powerful prediction algorithm that finds the optimal

weighted combination of a set of candidate prediction algorithms by minimizing cross-

Sapp et al. Page 6

J Appl Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

validated risk. SuperLearner generalizes stacking algorithms developed by [9] and extended

by [3], and was named based on the theoretical performance results discussed in [8].

The SuperLearner algorithm proceeds as follows. Propose a library of K candidate

prediction algorithms. Split the dataset into V blocks of equal size. For each block v = 1,

…,V, fit each of the K candidate algorithms on the observations not in the vth block, and

obtain K predictions for each observation in the vth block using these fits. Select the optimal

combination by applying the user-specified minimum cross-validated risk predictor

algorithm : regressing the true outcome of the n observations on the K predictions to obtain

a combination of the K algorithms. Finally, fit the K algorithms on the complete dataset.

Predictions are then obtained by using these final fits combined as specified by obtained

in the previous step. For additional details, we refer the reader to [8].

SuperLearner can be used to evaluate between Subsembles using different number of

subsets, and underlying algorithms fit just once on entire dataset. Simply include

Subsembles as candidates in SuperLearner library, and the underlying algorithms fit once on

all data as another candidate. The SuperLearner will then learn the optimal weighted

combination of these candidates.

3.2 Oracle result for SuperLearner

The SuperLearner algorithm has its own oracle result. As developed in [8], we have the

following Theorem.

Theorem 3.1—Assume the minimum cross-validated risk predictor algorithm is

indexed by a finite dimensional parameter α ∈ A. Let K be the total number of algorithms

included in the SuperLearner library, including both full and Subsemble versions. Let An be

a finite set of values in A, with the number of values growing at most polynomial rate in n.

Assume there exist bounded sets and Euclidean X such that P((Y,X) ∈ Y×X) = 1 and

.

Define the cross-validation selector of α as

and define the oracle selector of α as

Then, for every δ > 0, there exists a constant C(δ) < ∞ (defined in [7]) such that

Sapp et al. Page 7

J Appl Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

As a result, if none of the learners included in the library converge at a parametric rate, then

the oracle selector does not converge at a parametric rate, and the cross-validation estimator

 is asymptotically equivalent with the oracle estimator :

Otherwise, the cross-validation estimator achieves a near parametric rate.

The results of this Theorem hold even if the number of algorithms K grows at up to a

polynomial rate in n.

Similar to the oracle result for Subsemble, Theorem 3.1 tells us that the risk difference,

based on squared-error loss, of the SuperLearner from the true E0[Y|X] can be bounded from

above by a function of the risk difference of the oracle procedure. The oracle procedure

results in the best possible combination of the candidate algorithms, since the oracle

procedure chooses α to minimize the true risk difference. Typically, none of the candidate

algorithms will converge at a parametric rate. As a result, SuperLearner will perform as well

as best possible combination of candidates. That is, since their ratio of risk differences

converges to one, the risk difference of the SuperLearner is literally asymptotically

indistinguishable from that of the oracle procedure.

4. Data analysis

4.1 Description of datasets

The oracle results of Theorems 2.1 and 3.1 show the benefits of Subsemble for large sized

datasets. In this section, we investigate Subsemble’s statistical performance for small to

moderate sized samples.

In the studies that follow, we used four small to moderate sized datasets (Sim 1, Sim 2,

Yacht, Diamond) to evaluate the practical performance of Subsemble. All datasets have one

real-valued output variable, and no missing values.

Sapp et al. Page 8

J Appl Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

The first two datasets are simulated, and generated as below. The Sim 1 dataset has 20 input

variables. The sim 2 dataset has 200 input variables.

Sim 1:

Sim 2:

The second two datasets are publicly available real-world data. The yacht dataset, available

from [1], has 308 observations and 6 input variables. The diamond dataset, described by [4],

has 308 observations and 17 input variables.

4.2 Subsemble performance comparison

In this study, we compare the performance of Subsemble with two alternatives: fitting the

underlying algorithm just once on all data, and a naive subset method which simply averages

the same subset-specific fits used in the Subsemble instead of learning a weighted

combination.

We used four underlying algorithms: linear regression, lasso, regression tree, and random

forest. We selected these algorithms because they are well-known and commonly used

methods, and examples that cover a range of algorithm properties: both adaptive (regression

tree) and non-adaptive (linear regression) methods, as well as regularized (lasso) and

ensemble (random forest) versions. Note that these algorithms merely serve for the purpose

of demonstration, as the oracle results given in Theorems 2.1 and 3.1 show that using more

algorithms, and particularly more diverse algorithms, will result in even better statistical

performance.

For each of the four algorithms, we first fit the algorithm just once on the training set (the

‘Full’ fit). We then divided the training set into 2, 3, 4, and 5 subsets. For each subset

division, we fit each of the four algorithms on the subsets, and combined the results across

the subsets in two ways: naive simple averaging across the subset-specific fits, and the

Subsemble procedure.

For the simulated datasets, we simulated training sets of 1,000 observations and test sets of

10,000 observations, and repeated the experiment 10 times. For the real datasets, we split the

Sapp et al. Page 9

J Appl Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

datasets into 10 folds, and let each fold serve as the test set. Mean Squared Prediction Error

(MSPE) results were averaged across the 10 trials for both simulated and real datasets. We

also performed a t-test for the difference in means between each subset method (naive and

Subsemble, for each number of subsets) and the ‘Full’ fit. Results are presented in (Table 1).

With simulated dataset 1, for both linear regression and lasso, the full algorithm fit,

Subsembles, and naive versions have essentially the same performance. For regression tree

and random forest, all the Subsembles significantly outperform the full fit. For regression

tree, the naive versions have essentially the same performance as the corresponding

Subsembles, and also significantly outperform the full fit. However, for random forest, the

naive versions are much worse than the Subsembles, and the naive versions perform

significantly worse than the full fit.

For simulated dataset 2, the lasso once again has essentially the same performance across the

full fit, Subsembles, and naive versions. With linear regression, regression tree, and random

forest, the Subsembles significantly outperform the full fit. The naive version has poorer

performance. With linear regression and random forest, the naive version is significantly

worse than the full fit. With regression tree, the naive version does significantly improve on

the full fit, but still has much worse performance than the Subsembles. In this simulation, we

also see an important problem with the naive version: there is no way to account for a poor

subset-specific fit. This is likely the reason why the MSPE results for the naive versions

with linear regression are so high.

With the yacht dataset, the full fit of the regression tree fit was significantly better than both

the Subsembles and the naive versions. For the other three underlying algorithms, at least

one Subsemble significantly outperformed the full fit, while the naive versions were either

not significantly different, or had significantly worse performance than the full fit.

For the diamond dataset, with linear regression and lasso, most Subsembles and naive

versions has significantly better performance than the full fit, with the Subsembles being

more significantly better. With regression tree, one Subsemble was significantly better than

the full fit, while all naive versions were not significantly different. With random forest,

both Subsembles and naive versions were significantly worse than the full fit.

Across all the datasets, we see that the Subsembles can often significantly outperform the

full algorithm. Note that performance of the Subsemble depends on both the underlying

algorithm and the distribution generating the data. None of the underlying algorithms always

had the best performance by using the full fit, or by using Subsembles. As a result, for real

datasets in which the generating distribution is unknown, we cannot predict ahead of time

whether the full fit or Subsembles of a given underlying algorithm will have better

performance.

Subsembles also perform at least as well as, and usually better than, the corresponding naive

averaging versions. This result is not only practical: it is also predicted by the theoretical

oracle inequality in Section 2.2. The oracle result tells us that Subsemble performs as well as

the best possible combination of subset-specific fits. Since naive averaging is a possible

combination of subset-specific fits, it follows that Subsemble is asymptotically superior.

Sapp et al. Page 10

J Appl Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

4.3 SuperLearner performance comparison

In this study, we compare the performance of the SuperLearner using two different libraries

of candidate algorithms: a library including only algorithms fit on the full dataset, and a

library including both Subsembles and algorithms fit on the full dataset. We again used the

following algorithms: linear regression, lasso, regression tree, and random forest. In the

library with Subsembles versions, we included Subsembles with 2 and 5 subsets for each of

the 4 algorithms, as well as the full algorithms.

For the simulated datasets, we simulated training sets of 1,000 observations and test sets of

10,000 observations, and repeated the experiment 10 times. For the real datasets, we split the

datasets into 10 folds, and let each fold serve as the test set. Mean Squared Prediction Error

(MSPE) results were averaged across the 10 trials for both simulated and real datasets. We

also performed a t-test for the difference in means between the two SuperLearner library

results. Results are presented in (Table 2).

Across all datasets, the SuperLearner whose library included Subsembles outperformed the

SuperLearner whose library used only full algorithm versions.

5. Discussion

In this paper, we introduced the Subsemble procedure for fitting the same underlying

algorithm on different subsets of observations, and learning the optimal weighted

combination using V-fold cross-validation. We provided a theoretical statistical result,

showing that Subsemble performs as well as the best possible combination of the subset-

specific fits. Through simulation studies and real data analysis, we illustrated that

Subsemble can provide practical performance improvements on moderate sized datasets.

While this paper primarily discusses Subsembles which combine different subset fits from a

single underlying algorithm, the procedure can also readily accommodate multiple

underlying algorithms. To illustrate this point, instead of a single underlying algorithm ,

consider L underlying algorithms . Then, instead of finding the optimal

, for example, the Subsemble procedure can be used to find the optimal

, where denotes the fit of the lth algorithm on the jth subset.

Applying Subsemble to large-scale datasets is a promising direction for future research.

There are a variety of details that need to be considered. For example, Subsemble’s

computations on each subset are independent, even in the cross-validation training steps, and

thus can be easily parallelized. However, minimizing the cross-validated risk to learn the

optimal combination of the subset-specific fits requires access to all the data. Single-split

cross-validation, where a separate set of reserved observations is used instead of V-fold

cross-validation, is one option. Selecting the number of subsets to use in a computationally

friendly way is another research challenge, since using SuperLearner may not be feasible

with big data. We plan to follow the work presented in this paper with future study to

address these practical challenges for using Subsemble with big data.

Sapp et al. Page 11

J Appl Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Investigating the performance of Subsemble for very small datasets (e.g. 30 or fewer

observations) is also an interesting topic for future work. While we showed in this paper that

Subsemble can improve performance for small datasets, further work is required to

determine whether Subsemble can also provide improvements for extremely small datasets.

Another topic we plan to explore in future work is the selection of subsets in Subsemble. In

this paper, Subsemble’s subsets were selected randomly, but other methods of obtaining the

subsets are possible. For example, the data could first be clustered into J clusters, and these

would also form the J subsets. Forcing the subsets to be more similar internally and/or more

different from each other should result in more varied subset-specific fits. We plan to study

whether doing so would improve prediction performance.

Acknowledgments

This work was supported by the National Science Foundation [Graduate Research Fellowship], and the National
Institutes of Health [R01 AI074345-06].

References

[1]. Bache, K.; Lichman, M. UCI machine learning repository. 2013. URL http://archive.ics.uci.edu/ml

[2]. Breiman L. Bagging predictors. Machine Learning. 1996; 24:123–140.

[3]. Breiman L. Stacked regressions. Machine Learning. 1996; 24:49–64.

[4]. Chu S. Pricing the Cs of diamond stones. Journal of Statistical Education. 2001; 9

[5]. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application
to boosting. Journal of Computer and System Sciences. 1997; 55:119–139.

[6]. Lin, J.; Kolcz, A. Large-scale machine learning at twitter. Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, SIGMOD ‘12; Scottsdale, Arizona,
USA, ACM, New York, NY, USA. 2012. p. 793-804.

[7]. van der Laan MJ, Dudoit S, van der Vaart AW. The cross-validated adaptive epsilon-net estimator.
Statistics and Decisions. 2006; 24:373–395.

[8]. van der Laan MJ, Polley EC, Hubbard AE. Super learner. Statistical Applications in Genetics and
Molecular Biology. 2007; 6

[9]. Wolpert DH. Stacked generalization. Neural Networks. 1992; 5:241–259.

[10]. Zhang Y, Duchi JC, Wainwright M. Comunication-efficient algorithms for statistical
optimization. 2012 Tech. rep., arXiv:1209.4129 [stat.ML].

Sapp et al. Page 12

J Appl Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://archive.ics.uci.edu/ml

Figure 1.
Diagram of the Subsemble procedure using linear regression to combine the subset-specific fits. The full dataset, consisting of n

observations is partitioned into J disjoint subsets. The same underlying algorithm is applied to each subset, resulting in J

subset-specific fits . V-fold cross-validation, where the V folds are constructed to preserve the subset structure, is

used to learn the best weighted linear combination of the subset-specific fits.

Sapp et al. Page 13

J Appl Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Sapp et al. Page 14

Table 1

MSPE comparison results for the same underlying algorithm fit in three different ways: the ‘Full’ fit from

fitting the algorithm only once on the entire dataset, Subsembles with two through five subsets, and a naive

average of the subsets used in the Subsembles. The underlying algorithm used in each row appears in the

Algorithm column. J indicates the number of subsets. The method with lowest MSPE for each underlying

algorithm is in bold. The number of symbols in the superscript indicates the significance level of a t-test for

the difference in means between the subset method and the full fit: 0.10 (1 symbol), 0.05 (2 symbols), 0.01 (3

symbols). Asterisks (*) are used when the subset method MSPE is significantly lower, and tick marks (’) are

used when the subset method MSPE is significantly higher.

Dataset Algorithm Full Method J = 2 J = 3 J = 4 J = 5

Sim 1

Linear 347.6
Subsemble 347.6 347.8 347.7 348.1

Naive 347.6 348.0 347.7 348.2

Lasso 341.4
Subsemble 341.6 342.0 342.2 343.1

Naive 342.7 343.6 345.5 347.6′

Tree 265.6
Subsemble 254.7** 253.6*** 253.6*** 249.9***

Naive 254.9** 253.2*** 254.4*** 251.7***

Forest 229.3
Subsemble 195.1*** 195.6*** 196.5*** 198.5***

Naive 246.5″′ 258.4″′ 270.3″′ 279.6″′

Sim 2

Linear 340.8
Subsemble 271.7*** 271.7*** 271.4*** 277.6***

Naive 362.9″′ 408.5″′ 549.2″′ 3.10 e6″′

Lasso 274.0
Subsemble 274.1 273.8 274.2 275.1

Naive 273.8 274.1 273.9 274.1

Tree 349.9
Subsemble 271.1*** 270.9*** 270.9*** 271.7***

Naive 334.4*** 316.8*** 302.3*** 295.1***

Forest 263.0
Subsemble 252.6*** 253.3*** 253.7*** 255.1***

Naive 264.4 265.4″ 266.2″′ 267.0″′

Yacht

Linear 83.42
Subsemble 57.95* 58.18* 57.38* 55.66**

Naive 72.44 72.17 71.49 72.17

Lasso 80.82
Subsemble 57.34 58.94 58.01 55.71*

Naive 74.17 74.74 75.15 75.16

Tree 4.296
Subsemble 6.866 15.60″′ 22.39″′ 17.52″′

Naive 7.349 18.75″′ 24.30″′ 20.41″′

J Appl Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Sapp et al. Page 15

Dataset Algorithm Full Method J = 2 J = 3 J = 4 J = 5

Forest 14.54
Subsemble 7.213* 8.460 8.760 8.977

Naive 21.13 28.28 35.35″ 43.29″

Diamond

Linear 3.07 e5
Subsemble 2.61 e5** 2.73 e5* 2.67 e5* 2.72 e5*

Naive 2.74 e5* 2.75 e5* 2.94 e5 2.76 e5

Lasso 3.13 e5
Subsemble 2.73 e5*** 2.75 e5** 2.74 e5*** 2.96 e5

Naive 2.78 e5** 2.91 e5** 3.05 e5 2.90 e5

Tree 1.15 e6
Subsemble 1.10 e6 1.01 e6* 1.10 e6 1.07 e6

Naive 1.11 e6 1.06 e6 1.18 e6 1.13 e6

Forest 5.05 e5
Subsemble 6.00 e5″ 6.81 e5″′ 7.80 e5″′ 8.26 e5″′

Naive 6.54 e5″′ 7.50 e5″′ 8.04 e5″′ 8.60 e5″′

J Appl Stat. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Sapp et al. Page 16

Table 2

MSPE comparison results for SuperLearners with two different libraries: one using only algorithms fit once on

the entire dataset, and the other using both algorithms fit once on the entire dataset and two Subsemble

versions of each algorithm. Underlying algorithms used were: linear regression, lasso, regression tree, and

random forest. The method with lowest MSPE for each each dataset is in bold. The Significance column

indicates the significance level of a t-test for the difference in means between the two methods.

Dataset No Subsembles Subsembles Significance

Sim 1 228.4 194.7 < 0.01

Sim 2 263.9 250.7 < 0.01

Yacht 4.827 4.046 0.07

Diamond 284171 248882 0.02

J Appl Stat. Author manuscript; available in PMC 2015 January 01.

