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Executive Summary 

This project aims to develop a machine-learning-based framework that can predict crash modification factors 

(CMFs) for different safety countermeasures. The framework will mine the data available in the CMF 

Clearinghouse to uncover hidden CMF relationships and provide a cost-effective solution to estimating CMFs 

not covered by the CMF Clearinghouse. 

Road safety is a top priority for national and state transportation agencies in the United States. To make 

transportation infrastructure systems safer and reduce fatalities, different countermeasures can be applied to 

crash-prone locations. However, prioritizing different safety projects can be challenging given the different 

effectiveness, costs, and benefit-cost ratios of each project, and the limited budget available. CMFs play an 

essential role in this process, as they quantify the effectiveness of safety countermeasures under different 

scenarios. 

While the CMF Clearinghouse provides practitioners with a list of reliable CMFs developed from individual 

studies, available CMFs are still not enough to cover all potential countermeasure scenarios of interest to state 

Departments of Transportation, because of the special infrastructure types or countermeasures to consider. 

Experimental or observational studies are the dominant approaches for estimating CMFs, but these approaches 

have limitations, such as requiring years of effort to collect data or adequate amounts of crash data. 

To address these challenges, we proposed and implemented a machine-learning-based framework that will 

mine the data available in the CMF Clearinghouse to uncover hidden CMF relationships and provide a cost-

effective solution to estimating CMFs not covered by the CMF Clearinghouse. The proposed framework is cost-

effective, time efficient, and fully explores the existing CMF data. We train and test the proposed approach on 

the CMF Clearinghouse data using extensive experiments. The results show that the framework can predict 

CMFs with reasonable accuracy. The proposed framework flexibly tackles the heterogeneous data from the 

CMF Clearinghouse, including capturing the semantic contexts of different countermeasures and maintaining 

compatibility with the high-cardinality categories, missing rates, and noises. 

The proposed approach is unique in that it will make the best use of available knowledge within the CMF 

Clearinghouse, reducing the data and time burden of estimating CMFs not covered by the CMF Clearinghouse. 

We also identify factors that limit the performance of our model and its future extensions and data needs. 

Additionally, we would like to make it clear that it does not replace the traditional cross-sectional or time 

series-based methods. Rather, it complements the other two when a quick first estimate is needed for a 

countermeasure scenario with no CMFs backed by these methods. 
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Introduction 

In the United States, road safety is among the top priorities of national and state transportation agencies. To 

make transportation infrastructure systems safer and reduce fatalities, different countermeasures can be 

applied to crash-prone locations. This raises the question of how to prioritize different safety projects, given 

that each project may have different effectiveness, costs, and benefit-cost ratios, and the total budget available 

is limited. In this process, the crash modification factor (CMF) plays an essential role, as it quantifies the 

effectiveness of each safety countermeasure under different scenarios. This makes the decision process more 

data-informed and tractable. Roughly speaking, a CMF is a multiplicative factor or function used for computing 

the expected number of crashes after the implementation of a given countermeasure at a specific site. In 

conjunction with safety performance functions (SPFs), CMFs can be applied to estimate crash numbers after a 

countermeasure is applied when the past crash number is known. 

Several sources provide archives of existing CMFs developed in previous studies. The Highway Safety Manual 

published by the American Association of State Highway and Transportation Officials provides practitioners 

with a list of reliable CMFs developed from individual studies, together with the quantitative methods for 

safety evaluation of facility decisions (1). While the HSM provides only the best available CMFs, the CMF 

Clearinghouse maintained by Federal Highway Administration (FHWA) serves as a comprehensive online 

repository and search engine for CMFs (2). This repository summarizes the published work for developing 

CMFs throughout the world and houses thousands of categorized CMFs and details of their methodologies. In 

addition to the efforts at the national level, many state Departments of Transportation develop state-specific 

CMFs to meet their own needs, e.g., evaluating the effectiveness of safety countermeasures with special 

infrastructure types (e.g., six-lane freeways) or specific driving conditions (e.g., long winters), which are not 

covered by the Highway Safety Manual or FHWA Clearinghouse. Several state practices have implemented 

CMF variation studies to narrow and reorganize their CMF lists (3, 4) or safety improvement projects to update 

CMF data based on jurisdiction-specific crash data (5). 

Nevertheless, available CMFs are still not enough to cover all potential countermeasure scenarios of interest to 

state Departments of Transportation, because of the special infrastructure types or countermeasures to 

consider. For instance, a CMF for roundabouts may be available from the CMF Clearinghouse, but if that CMF is 

only applicable to the roundabout conversion of rural, stop-controlled intersections, then there are clear gaps 

in CMF coverage (e.g., a CMF applicable to the conversion of rural, signalized intersections is missing). 

Therefore, there is a constant demand for developing additional CMFs for different scenarios of applications. 

There are two dominant approaches for estimating CMFs, namely experimental or observational studies, both 

of which can be based on before-after or cross-sectional data (6). In experimental studies, control-test 

experiments for the treatment of interest are designed. Studies based on this approach are more rigorous, but 

it usually takes years of effort to collect data. This long study-cycle hinders its wide applications. Observational 

studies, in contrast, have two advantages. One is that they bring fewer ethical concerns than experimentation; 
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another is they can leverage data collected retrospectively from sites with the already implemented treatment 

to estimate CMFs (7). There are also differences, for observational and experimental studies, between before-

after and cross-sectional data requirements. Before-after studies normally require multi-year crash data before 

and after treatment to make a comparison of the safety performance and estimate CMFs (8–12). Cross-section 

studies mostly require crash inventory data collected from multiple sites with and without the treatment in a 

single period (13–15). Both types of studies are only applicable under conditions where an adequate amount of 

crash data is available. 

To address the challenge of limited data, the alternative approaches that are often used for CMF estimation 

focus on the use of expert knowledge of CMFs. Methods adopted by these studies typically include meta-

analysis, expert panels, and surrogate measures (6). The meta-analysis studies estimated an overall CMF by 

statistically combining CMFs from multiple previous studies (16, 17). Less formally, the expert panel studies 

leveraged expert knowledge in meetings to derive CMFs (18). The surrogate measure studies mainly focused 

on developing CMFs by establishing the relationship between changes in surrogates (e.g., vehicle speed) with 

changes in crashes (19, 20). However, these methods are not cost-effective, because deriving CMF for every 

single scenario would take a significant amount of expert time. In addition, the potential relevance between 

similar scenarios is not considered. More advanced approaches to deriving CMFs through knowledge mining 

are still needed. 

Considering the above review, we propose to develop a machine-learning-based framework to mine the CMF 

Clearinghouse data and uncover hidden CMF relationships in the data. As a one-stop repository with 

considerable information on CMFs, the CMF Clearinghouse has long been used as a search database, providing 

safety practitioners with a good start in compiling the safety effectiveness of infrastructure decisions. With 

thousands of CMF records and future expansions, the CMF Clearinghouse has great potential as a knowledge 

base worth mining for deriving additional CMFs. However, no knowledge-mining scheme has been developed. 

Therefore, we sought to develop a knowledge-mining approach for deriving additional CMFs without requiring 

excess data or time. Furthermore, we illuminate the challenges and gaps this approach faces. 

Machine learning (ML) advances have found broad applications in various fields, including safety analysis (21–

25). However, studies have applied machine learning models only to predict CMFs under specific crash types, 

and such models usually require a large amount of crash data. For instance, Wen et al. applied the light gradient 

boosting machine (LightGBM) and the shapley additive explanation (SHAP) to derive explainable CMFs for run-

off-road (ROR) crashes based on more than 28,000 crash records in Washington State (26). Meanwhile, the 

relations of existing CMF records in the FHWA CMF Clearinghouse are not yet fully understood and explored. 

The CMF Clearinghouse contains around 9,000 detailed CMF records. Many of these records are explicitly or 

implicitly related. For example, ‘Widen paved shoulder from 6 ft to 8 ft’ adds to, and could be related to, an 

initial description that states ‘Widen paved shoulder from 4 ft to 6 ft.’ As another example, ‘Install chevron 

signs on horizontal curves’ and ‘Provide highway lighting’ are both intended to improve roadway visibility 

conditions. Even though descriptions of these countermeasures are different, one may reasonably guess that 

they have similar effects, and their CMFs are close. Besides countermeasure descriptions, the relationships of 

different countermeasure scenarios may also be captured by one or more factors in the Clearinghouse (e.g., the 
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countermeasure categories, site conditions, crash types, and others). Thus, the proposed knowledge-mining 

scheme can formulate the predictive modeling of CMFs into a data-driven framework. This framework can 

capture the complex underlying relationships among different countermeasure scenarios, which makes it able 

to predict CMFs for new scenarios. 

In short, the main outcomes of this study are as follows: 

● We formulate the CMF estimation problem as a knowledge-mining problem, which is new to the 

literature. A novel data-driven framework is proposed, which is cost-effective, time efficient, tailors to, 

and fully explores the existing CMF data. 

● We train and test the proposed approach on the CMF Clearinghouse data using extensive experiments. 

The results show that the framework can predict CMFs with reasonable accuracy. 

● The proposed framework flexibly tackles the heterogeneous data from the CMF Clearinghouse, 

including capturing the semantic contexts of different countermeasures and maintaining compatibility 

with the high-cardinality categories, missing rates, and noise. 

● As an extension, we propose an enhanced approach that can predict CMFs with better accuracy by 

leveraging structured information in certain countermeasures. 

We identify factors that limit the performance of our model and its future extensions and data needs. 

Additionally, this approach does not replace the traditional cross-sectional or time series-based methods, 

rather it complements the other two when a quick first estimate is needed for a countermeasure scenario with 

no CMFs backed by these methods. 

  



 

 

Developing a Safety Effectiveness Evaluation Tool for California  6 

 

 

Methodology 

In this section, the data-driven CMF prediction framework is formulated. First, the data source is explored. Then, 

the machine-learning problem is defined with model input/output, data encoding approach, and regressive 
methodology introduced. 

Data Description 

The FHWA CMF Clearinghouse is an open-source and regularly updated repository. As of the completion of 

this report, this repository houses 8993 records of CMFs and corresponding countermeasures and site 

conditions. In the native spreadsheet downloaded, there are 59 data fields indicating the applicability of the 

CMFs (e.g., countermeasure names and categories, intersection types, area types, crash types, and crash 

severity types), the developing details (e.g., method type, study title, and publish year), and the statistical 

properties (e.g., standard error rating). Due to the intrinsic data characteristics and other limitations, this data 

collection consists of structured and unstructured data with missing values. 

Data Exploration 

In this database, two main types of countermeasures, namely roadway segment and intersection, can be 

differentiated by an existing indicator. Countermeasures belonging to one of these two types were thereby 

reorganized into two separate groups. Such reorganization helps to reduce the deviation caused by missing 

items on unnecessary data fields (e.g., the intersection type of a roadway segment countermeasure tends to be 

missing). Meanwhile, it helps to avoid unnecessary input demands when applying the model. Based on this 

reorganization process, the models for countermeasures in the roadway segment type and the intersection 

type are developed independently. The results of these two facility types will also be discussed separately. 

Nonetheless, the proposed scheme is a general framework and works for both types of facilities in the same 

way. 

Countermeasure structure. The countermeasure descriptions are worth further exploration since they carry 

the semantic contexts of the road safety treatment. As illustrated in Table 1, there are countermeasures that 

textually contain the quantitative changes due to the treatment (e.g., the structured examples listed in Table 1 

and Table 3), which are thereby categorized as structured countermeasures. However, the structured 

countermeasures are the minority, and such countermeasures from different categories are still incomparable 

due to the semantic differences (e.g., the quantitative changes of road slope angles and shoulder widths are 

different metrics and therefore not comparable). By contrast, nearly 90 percent of the total countermeasures 

are textual descriptions without explicit quantitative indications, thus categorized as unstructured 

countermeasures (illustrated by the unstructured examples in Table 1). The structured countermeasures are 

only special subsets of the unstructured countermeasures, and all countermeasures can be regarded as 

unstructured if no further sub-feature extraction is implemented. 
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Table 1. Statistics of the structured and unstructured countermeasures categorized by the roadway 
segment type and the intersection type 

Facility Type Countermeasure Type Countermeasure Example Count Percentage 

Roadway Structured Widen paved shoulder from 4 ft to 6 ft 1045 11.62% 

Unstructured Reduce lane width from 12 ft to less 

than 12 ft 

4851 53.95% 

Intersection Structured Change left turn phasing consistency 

from 61.9% to 31.6% 

13 0.14% 

Unstructured Implement systemic signing and 

marking improvements at stop-

controlled intersections 

3084 34.29% 

Countermeasure diversity. For the data-driven approach, predictive modeling on homogeneous 

countermeasures may encounter failure in its generalization to new scenarios. Therefore, the diversity of 

countermeasures is checked. Figure 1 shows the frequency distribution of CMF values over different 

countermeasure categories. Among all the categories under the intersection type, intersection geometry and 

intersection traffic control are the two most studied categories in the literature, characterized by the highest 

proportions of CMF cases in the Clearinghouse. Similarly, the countermeasures under the roadway and 

shoulder width categories make up of most of the countermeasure cases for the roadway segment. While the 

absolute count of countermeasures in each category varies, the CMFs for most countermeasures approach 1.0. 

Specifically, the countermeasure frequencies of most categories reach the top at CMF values around 1.0 and 

gradually decrease to the left and right sides. Meanwhile, over 99% of the countermeasures reach CMF values 

within the range of [0, 2.0]. Such diversity in the countermeasure categories potentially provides good support 

for our knowledge-mining approach. Also, very few countermeasures have CMFs exceeding 2.0. These extreme 

values are treated as statistical outliers and therefore are not included in this study. 
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(a) Roadway segment                (b) Intersection 

Figure 1. The CMF frequency distribution over different countermeasure categories for the roadway 
segment (a) and intersection (b) types in the FHWA CMF Clearinghouse 

Input Feature Selection 

The data fields defined for countermeasures, site conditions, and crashes available in the CMF Clearinghouse 

were selected as the input features for the predictive analysis. As summarized in Table 2, the collected data 

fields are classified into five categories. The first three feature types demonstrate the characteristics of 

different countermeasures, crashes, and area types, which are generic influential factors for CMFs. The latter 

two feature categories indicate the sub-attributes of specific facility types (intersection and roadway segment). 

These two types of facility-related variables will be used separately when developing specific models for 

intersections and roadway segments since much less relevance exists across facility types. 

Most of the data fields in Table 2 are categorical variables characterized by many unique values and high 

missing rates. As an exception, the countermeasure names are sentences with textual meanings. Moreover, 

there are semantic relationships between countermeasures. The CMF Clearinghouse holds data with obvious 

heterogeneity, which is the major barrier to using it for knowledge-gathering that could lead to an in-depth 

understanding. In this study, the proposed data-driven framework will introduce interdisciplinary techniques to 

address these problems. 
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Table 2. Summary of the selected data fields for CMF prediction 

Feature 
Category 

Variable Missing Rate  
-Intersection 

Missing 
Rate 

-Roadway 

Variable 
Type 

Number of 
Categories 

Countermeasure Countermeasure 
name 

0.00% 0.00% Text 
sentence 

- 

Countermeasure 
category 

0.00% 0.00% 

Categorica
l  
 Variable 

19 

Countermeasure 
subcategory 

0.00% 0.00% 40 

Crash Crash type 9.10% 15.40% 100 

Crash time-of-
day 

17.70% 21.30% 5 

Crash severity 0.40% 16.50% 19 

Local area Area type 14.70% 23.20% 7 

Intersection Intersection type 6.80% - 8 

Intersection 
geometry 

12.80% - 9 

Traffic control 
type 

7.60% - 8 

Roadway Roadway type - 51.30% 13 

Road division 
type 

- 16.50% 7 

Data-Driven Predictive Modeling 

System Overview 

In this section, the machine-learning based CMF prediction framework is formulated, as shown in Figure 2. This 
framework consists of three main parts: the feature-embedding part, the regressive learning part, and the 
output part. First, we selected the variables most relevant to the CMFs from the CMF Clearinghouse (Table 2). 
In the following section, we explain how to tackle these unstructured non-numerical variables to generate the 
embedded model inputs and then explain the regressive modeling for CMF prediction. 
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Figure 2. The architecture of the proposed data-driven framework for CMF prediction 

Input Feature Encoding Processing Pipeline 

Countermeasure embedding. The countermeasure embedding process is to capture the semantic contexts 

depicted by the countermeasure texts and embed them into the machine-processable features. As mentioned, 

most of the recorded countermeasures are in an unstructured format. However, the underlying semantic 

contexts among these textual descriptions are much less intuitive to capture. Drawing on the achievement in 

the natural language processing area, we introduce the Sentence-BERT model proposed by Reimers and 

Gurevych in 2019 (27), which is a deep-learning-based sentence-embedding model, to compute the 

semantically meaningful embeddings of each countermeasure. Furthermore, the pre-training process has been 

shown effective in improving model performance for diverse natural language processing tasks, including 

sentence embedding (28). Leveraging the models pre-trained on the large-scale corpora online, we can draw 

support from the state-of-the-art technology for the embedding computation of our limited countermeasure 

names. Therefore, rather than working from scratch, we adopted one of the pre-trained Sentence-BERT models, 

all-mpnet-base-v2, to be the embedding encoder in this study, given its overall best encoding quality. 

A fine-tuning on our countermeasure descriptions was further implemented to fit into the specific context of 

this work, which is illustrated in Figure 3(a). To achieve this, a small sequence of countermeasure pairs with 

their semantic similarity is defined via expert domain knowledge. These countermeasure pairs are then used as 

fine-tuning inputs to slightly adjust the model parameters. For fine-tuning, the definition of the loss function is 

critical. The cosine similarity between different countermeasures is selected as the cost function and defined 

by Equation 1: 

𝑐𝑜𝑠𝜃 =
𝑣𝑖 ∙ 𝑣𝑗

‖𝑣𝑖‖‖𝑣𝑗‖
= ∑

𝑚

𝑘=1

𝑣𝑖,𝑘𝑣𝑗,𝑘

√∑𝑚
𝑘=1 𝑣𝑖,𝑘

2 √∑𝑚
𝑘=1 𝑣𝑗,𝑘

2

#(1)  
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where 𝑣𝑖 and 𝑣𝑗 are the embeddings yielded by the model from countermeasure pair of 𝑐𝑖 and 𝑐𝑗 , respectively. 

The similarity of these embeddings is evaluated using cosine similarity and compared with the gold similarity 

score. This fine-tuning process can benefit the similarity recognition of different countermeasures. 

This process aligns with our aim that countermeasures with similar safety effects should be semantically close, 

and dissimilar countermeasures should be semantically far away. After fine-tuning, the pre-trained sentence-

BERT model is finally capable of mapping individual countermeasures into a vector space such that 

semantically similar countermeasure descriptions are close. Through countermeasure embedding, each 

countermeasure can be transformed from a sentence 𝑐 into a fixed-size dense vector 𝑣 ∈  𝑅𝑚×1, which is 

illustrated in Figure 3(b). 

 

Figure 3. Sentence-BERT framework architecture at fine-tuning (a) and for computing countermeasure 
embedding (b) 

Sub-feature extraction. The sub-feature extraction is an auxiliary method of the feature embedding approach 

for certain structured countermeasures. As shown in Table 3 (a), these structured countermeasures 

consistently include five types of sub-features about the shoulder-width treatments, despite the slight 

differences in their textual expressions. Considering this, the transformation and replacement of the 

countermeasure 𝑐𝑖 →  𝑣𝑖 ∈  𝑅𝑚′×1 with 𝑚′ as the number of sub-features can be performed. Then the sub-

features, as shown in Table 3 (b), can also be part of the model inputs without using the sentence-embedding 

approach, either as numerical or categorical variables. The sentence-embedding strategy can be adopted as a 

general approach that works for both structured and unstructured countermeasures. The sub-feature 

extraction for structured countermeasures will only be used when customized predictive modeling is 

recommended, but not included in the main prediction framework of this work. This approach will be later 

discussed in conjunction with the complementary models for result analysis. 
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Table 3. Sub-feature extraction from structured countermeasure descriptions (an exemplary illustration) 

(a) Structured countermeasures 

Countermeasure Examples (Shoulder 
width) 

Widen paved shoulder from 3 ft to 4 ft 

Widen shoulder (paved) (from 0 ft to 4 ft) 

Widen shoulder (unpaved) (from 0 ft to 4 
ft) 

Pave deteriorated shoulder (2 ft) 

Reduce paved shoulder from 3 ft to 1 ft 

(b) Sub-features extracted from structured countermeasures 

Action Prior Shoulder 
Type 

Post Shoulder 
Type 

Prior Shoulder Width 
(ft) 

Post Shoulder Width 
(ft) 

Widen Paved Paved 3 4 

Widen No shoulder Paved 0 4 

Widen No shoulder Unpaved 0 2 

Pave Deteriorated Paved 2 2 

Reduce Paved Paved 3 1 

 

Categorical variable encoding and missing data handling. The high cardinality feature and considerable missing 

values make it difficult for the categorical data to be efficiently handled by the model. Therefore, the target 

encoding method is introduced for categorical variable encoding in this study (29). This method targets 

mapping the high-cardinality categorical attributes to continuous scalar variables. The encoding scheme is to 

map each high-cardinality categorical item to the probability estimate of the target variable. For the regressive 

purpose in this study, the numerical encoding corresponds to the expected value of the CMF values (𝑦) 

pertaining to a specific category cell 𝐾𝑖. It should be noted that only the records in the training set are used in 

generating the encoder so that data leakage is avoided. That is, for each individual categorical value 𝑢𝑖 of a 

high-cardinality categorical attribute 𝑢 ∈  𝑅𝑁𝑇𝑅×1 with 𝑁𝑇𝑅 as the size of the training set, the scalar encoding 

value 𝑠𝑖 is calculated as the mixture of two probabilities: the posterior probability of y given 𝑢 =  𝑢𝑖 and the 

prior probability of 𝑦, which is calculated as Equation 2 
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𝑠𝑖 = 𝜆(𝑛𝑖) =
∑𝑘𝜖𝑘𝑖

𝑦𝑘

𝑛𝑖
+ (1 − 𝜆(𝑛𝑖))

∑𝑁𝑇𝑅
𝑘=1 𝑦𝑘

𝑛𝑖
#(2) 

where 𝑦𝑘 is the CMF value at the observation cell 𝑘𝑖 for which 𝑢 =  𝑢𝑖 with size 𝑛𝑖, and 𝜆 (𝑛𝑖)  ∈  [0, 1] is the 

weight factor monotonically increasing with 𝑛𝑖. In this study, 𝜆 (𝑛𝑖) is defined by a single parameter function as 

Equation 3 with the empirical control factor 𝑙 =  100, the details of which can be found in (29).  

𝜆(𝑛𝑖) =
𝑛𝑖

𝑛𝑖 + 𝑙
#(3)  

As for the missing values, the target encoding method treats them as any other value like 𝑢 =  𝑢0 and applies 

Equation 2 to them. Without additional treatment, this method maintains compatibility and advantages with 

these missing values. That is, if the occurrence of a missing value 𝑢0 for the categorical attribute u potentially 

has relevance for the CMF value, then its scalar encoding s0 will capture that information. If not, then 𝑠0 will 

correspond to a "neutral" representation of the missing value (no extra benefits). 

Input feature integration. Once the countermeasure descriptions and the other categorical variables are 

embedded or encoded, these input variables will be integrated as the input matrix 𝑋. Then the embedded 

numerical model input matrix 𝑋 ∈  𝑅𝑛×𝑟 with n as the sample size and r as the number of predictor variables in 

𝑋, is suited for use in the subsequent regressive model. 

Regressive Modeling 

The relationships between the CMF values and the explanatory variables are complex and prone to be non-

linear in practice. The machine learning algorithms can fit in well with such pattern mining problems. To 

improve the predicting performance, we tested out several most-used models in machine learning and used the 

ensemble learning approach to form an integrated model for the CMF prediction problem. 

Regression models. For this study, the input feature dimension is relatively high, and the number of data 

samples is limited. Meanwhile, there is a large proportion of missing values in the data. The machine learning 

models are selected based on these properties, which include: 

● Random forest regression (RF Regression). Random forest (30) is one of the most effective learning 

algorithms available for classification and regression problems when a considerable proportion of data 

are missing. The ensemble learning of a multitude of decision trees native to this algorithm enables it 

not to rely too heavily on any individual feature and therefore prevents over-fitting. 

● Support vector machine regression (SVM Regression). SVM is a popular machine learning method 

proposed by Vladimir Vapnik and his colleagues (31, 32), which is especially effective for regression 

and classification with data in high dimensional spaces. The implementation in this study is based on 

LIBSVM (33), with the default kernel as linear and regularization parameter as 1.0. 

● Multi-layer perception (MLP). MLP is one of the most used artificial neural networks (ANNs) with 

ability to solve problems stochastically (34). The MLP method suits well for our complex non-linear 



 

 

Developing a Safety Effectiveness Evaluation Tool for California  14 

 

 

regression problems, while not as prone to overfitting as other neural networks with deeper layers, like 

the deep learning models. 

Ensemble learning. An ensemble technique is to combine multiple machine learning algorithms to obtain 

better predictive performance than any individual constituent model (35, 36). In this study, multiple machine-

learning models are tested out for CMF predictions. However, the performance of these models fluctuated 

slightly, which introduces difficulties in selecting the best model. To simplify the model selection and stabilize 

the model performance, we introduce the simple bagging-based ensemble technique that uses the average 

CMF predictions of the three models as the final model prediction of CMF values which is 

𝑦𝑖̂ =
1

𝑅
∑

𝑅

𝑟=1

𝑦𝑖,𝑟̂#(4) , 

where 𝑦𝑖,𝑟̂ is the prediction given by each base regression learner and 𝑅 is the total number of base learners. 

Experimental Setting and Model Evaluation 

Train-Test Split 

We use the train-test split to evaluate the proposed machine-learning algorithm for CMF predictions on the 

FHWA CMF Clearinghouse dataset. With this open-source dataset, we randomly selected 80 percent of the 

data as the training set and assigned the remaining 20 percent to the test set. 

Evaluation Metrics 

Once the model has been trained to learn the mapping pattern from the inputs to CMFs, the model 

performance will be evaluated on the test set and reported as an error in the predictions. Two commonly used 

metrics—the mean absolute error (MAE) and the root mean square error (RMSE)—are used to evaluate and 

report the overall performance of the proposed model. In practice, a CMF value smaller than 1.0 indicates an 

expected reduction in crashes, while a CMF larger than 1.0 represents an expected increase in crashes after the 

implementation of the target countermeasure. Therefore, setting 1.0 as the benchmark, we consider the 

consistency rate (CR) that calculates how many CMF predictions fall on the same side with the investigated 

CMFs as the third evaluation metric. The definitions of them are given by Equation 5–7: 

𝑀𝐴𝐸 =
1

𝑛
∑

𝑛

𝑖=1

|𝑦𝑖 − 𝑦𝑖̂|#(5)  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑

𝑛

𝑖=1

(𝑦𝑖 − 𝑦𝑖̂)2#(6)  
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𝐶𝑅 =
∑𝑛

𝑖=1 𝑐𝑖

𝑛
#(7) , 

where 𝑦𝑖 and 𝑦𝑖̂ are the true CMF values listed in the CMF Clearinghouse and the predicted values respectively, 

n is the sample size of test data, and 𝑐𝑖 =  1 𝑖𝑓 (𝑦𝑖–  1)(𝑦𝑖̂ –  1) ≥  0, otherwise 0 is the consistency indicator 

with the true CMF value at countermeasure scenario 𝑖. 
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Result Analysis 

Unstructured Countermeasure Scenarios 

The relation of the CMF predictions and the investigated CMFs is shown in Figure 4. To demonstrate the model 

performance at different levels, the testing samples with different absolute residual levels are indicated by 

different colors. Whereas some outliers exist, the scatter plots show that the data points in general are 

symmetrically distributed and concentrated around the upward diagonal line. As summarized in Table 4, 

around 45% to 50% of the tested countermeasures have their predictions deviating less than 0.1 from the 

investigated CMFs. These results demonstrate the overall good consistency between the CMF predictions and 

the investigated CMFs in the test set. The RMSE, MAE errors and CR values under evaluation are further 

summarized in Table 4. As indicated, the MAEs (value range 0.1–0.2) and RMSEs (value range 0.2–0.3) for both 

types of countermeasures tend to be within a reasonable range, since our main objective is to provide a first 

guess of CMF values for additional countermeasures. The statistics in Table 4 also show that around 80% of the 

CMF predictions correctly reflect the positive or negative safety effects of the tested countermeasures. In 

addition, the model for the roadway segment subset outperformed the model for the intersection subset. This 

may be due to two reasons: first, the number of roadway-related countermeasures is nearly twice that of the 

intersection type, which provides a better knowledge source for data mining; second, the countermeasure 

descriptions in the roadway segment type are on average longer and therefore potentially more informative for 

the capture of semantic contexts. 

 

Figure 4. The scatter plots of the CMF predictions and the CMF true values on the test set for 
countermeasures under the roadway segment type (a) and the intersection type (b) 
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Table 4. Statistics of the model performance evaluation on the test dataset 

Facility Type Evaluation Metric 

 MAE  RMSE CR Absolute Residual ≤ 0.1 

Roadway 0.15 0.22 83.3% 49.3% 

Intersection 0.18 0.26 79.3%  44.4% 

We further grouped the test samples into subsets based on different site-condition types and countermeasure 

categories. This helps to evaluate the model performance on a more detailed scale. The MAE value of each 

subgroup is calculated and shown in Figure 5. The distribution of the subgroup MAEs shows that the MAEs for 

most subgroups are close to the overall test MAE, for both intersection and roadway segment types. The 

subgroup MAE values also shows that the developed model performs stably in different scenarios. Admittedly, 

there also exist some abnormal MAE values in these subgroups, which indicates significant deviations from the 

previously investigated CMF values. These abnormal MAEs have also elevated the overall MAE and RMSE 

values. 
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Figure 5. MAE distributions for subgroups based on different site-condition types and countermeasure 
categories for the roadway segment type (a) and the intersection type (b), respectively, with lighter 
colors indicating smaller MAEs and darker colors, the opposite. 

To explore the inherent reasons for these abnormal CMF predictions, we count the training and testing sample 

sizes of each subgroup and analyze their relationships with subgroup test MAE values. The pairwise 

relationships among the test MAE value, training sample size, and the testing sample size for each subgroup 

(a) 

(b) 
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are shown in Figure 6. As demonstrated, subgroups with larger training sample sizes generally have smaller 

MAEs and therefore more accuracy in CMF predictions. Subgroups with larger MAEs, which correspond to the 

cells with darker colors in Figure 5, are some of the subgroups with few or even no countermeasures on the 

training dataset. Without enough countermeasures for data mining, such subgroups have a greater chance to 

have poor MAEs and therefore less accurate CMF predictions. This is reasonable considering the basic data-

mining rule: although our model is designed to provide reasonably quick predictions for new scenarios, there 

should be enough other similar countermeasures (like belonging to the same general category) for the model 

to learn from. This data gap will be reduced as CMF values for additional countermeasures that belong to such 

subgroups become available. 

 

Figure 6. The corresponding relationships of the test MAE values, the training sample sizes (blue points), 
and testing sample sizes (orange points) 

Table 5. Statistics of model performance evaluation on the test dataset 

Model Evaluation Metric 

 MAE RMSE CR Absolute Residual ≤ 0.1 

Piecewise MLR for 

shoulder width 

0.05 0.07 100.0% 86.3% 

The generic CMF 

prediction model 

0.09 0.11 78.7% 63.6% 

Structured Countermeasure Scenarios 

While we propose the above main framework to provide CMF predictions for more generic scenarios, we also 

seek to boost the framework with a complementary approach. The complementary model is customized for the 



 

 

Developing a Safety Effectiveness Evaluation Tool for California  20 

 

 

structured countermeasures, based on leveraging the sub-feature extraction process. As illustrated in Table 3 

countermeasures that resemble the demonstrated structures can be transformed into several subfeatures. 

These subfeatures are more explicit and informative; therefore, a customized prediction model can be 

developed accordingly. Tailored to countermeasures under a specific structure, such a complementary model 

can be applied only to each individual type of structure independently. Furthermore, there should be enough 

countermeasure cases that share the same structure to support the customized regressive modeling. 

To illustrate how this complementary scheme works, we use the structured countermeasures under the 

shoulder width subcategory as a case study. To develop the complementary model, 330 structured 

countermeasures under the shoulder width were collected from the CMF Clearinghouse repository. Given the 

reduced complexity in data and context, subfeatures extracted from these countermeasures are directly 

integrated with other categorical variables listed in Table 2. No further processing is involved. Given the limited 

sample data, a simple piece-wise multiple linear regression model (MLR) with a breakpoint at 1.0 is adopted. To 

test the model performance, the train-split rule is followed in the same way. Finally, there are 264 CMF cases 

on the training set with the rest 66 cases as the test set. 

To evaluate the model performance, the distribution of data points characterized by CMFs for testing and 

corresponding CMF predictions by the customized model are shown in Figure 7 (a). For comparison, the 

relation of CMFs and corresponding predictions by the proposed generic model on the same test are shown in 

Figure 7 (b). In Figure 7 (a), the CMF predictions and investigated CMF values are closely distributed along the 

upward diagonal line, corresponding to the MAE and RMSE values (both less than 0.1) for piece-wise MLR in 

Table 5. Compared with the performance of the generic CMF prediction model, the customized model for the 

shoulder width type obtained better performance from all aspects. This is expected since the model for a 

general prediction purpose needs to adapt to various circumstances and provides overall reasonable 

predictions for multiple categories. The better performance and simpler structure of the customized model also 

enlighten us that a more accurate representation of countermeasure details, e.g., through subfeature 

extraction, would help to improve the prediction accuracy on CMFs under our knowledge-mining framework. 
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Figure 7. The true CMFs vs the predictions from the piecewise MLR model (a) and the general prediction 
model (b) on the test set for the shoulder width category 
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Discussion and Conclusions 

CMF is an important measure of the effectiveness of safety countermeasures. However, developing CMFs 

through traditional approaches is usually costly and time consuming, but there is often a need to obtain a quick 

CMF estimate for new safety improvement scenarios. The proposed framework is intended to fill this gap. 

This study developed a data-driven framework for CMF prediction by mining the FHWA’s CMF Clearinghouse 

data. To our knowledge, this is the first work that enables predicting CMFs in a cost-effective, time efficient, 

and reproducible way. Aimed at making full use of the knowledge on CMFs from previous studies, our 

knowledge-mining scheme is less dependent on detailed crash inventory data and more extendable for a 

general prediction purpose. The technical novelties of this approach include the following. First, the proposed 

framework handled the heterogeneity of CMF Clearinghouse data in a flexible way, including the unstructured 

descriptions of countermeasures, high-cardinality categories, missing rates, and noise. This is achieved through 

introducing the cutting-edge natural language processing techniques and the target encoding method. Second, 

the proposed framework combined multiple machine learning methods to make predictive modeling of CMFs 

on different countermeasure scenarios. We trained and evaluated the model against FHWA Clearinghouse 

data, and the results show that there is a good consistency of tested model predictions and the publicly known 

CMFs with reasonable overall accuracy reported. 

Still, several aspects of the current framework can be strengthened and a word of caution on its applicability 

should be noted. First, our approach is meant to provide a preliminary estimate of CMFs and is not to replace 

the traditional methods for developing CMF for specific scenarios. Second, the accuracy can be further 

improved if structured or domain knowledge is leveraged. In this research, we developed another model 

handling structured countermeasure descriptions and this model obtained a better accuracy. Third, in the 

current framework, the values of CMFs are predicted, but the confidence levels of these predictions are not 

provided. Such confidence levels would be helpful in determining the fidelity of CMF predictions. 

We envision several possible extensions of the current work. First, combining the proposed approach with 

traditional approaches may help to further improve CMF estimation accuracy and reduce the cost. Second, 

domain knowledge may enhance the model’s prediction capacity. One example is that different 

countermeasures may have similar effects but fall into different categories. For instance, ‘highway lighting’ and 

‘signs’ are different categories in the Clearinghouse, but they both increase roadway visibility, and this 

information may be more explicitly incorporated in the model. Third, based on the pattern of existing CMFs 

(such as the clusters of countermeasures in high-dimensional vector space), we think it is possible to include 

the confidence level of predictions. Lastly, when CMF Clearinghouse includes more case-specific CMF records, 

our model can take advantage of the additional information and potentially achieve better performance.
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