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Abstract.—Phylogenetic and discrete‑trait evolutionary inference depend heavily on an appropriate characterization of
the underlying character substitution process. In this paper, we present random‑effects substitution models that extend
common continuous‑time Markov chain models into a richer class of processes capable of capturing a wider variety of
substitution dynamics. As these random‑effects substitution models often require many more parameters than their usual
counterparts, inference can be both statistically and computationally challenging. Thus, we also propose an efficient ap‑
proach to compute an approximation to the gradient of the data likelihood with respect to all unknown substitution model
parameters. We demonstrate that this approximate gradient enables scaling of sampling‑based inference, namely Bayesian
inference via Hamiltonian Monte Carlo, under random‑effects substitution models across large trees and state‑spaces.
Applied to a dataset of 583 SARS‑CoV‑2 sequences, an HKY model with random‑effects shows strong signals of non‑
reversibility in the substitution process, and posterior predictive model checks clearly show that it is a more adequate
model than a reversible model. When analyzing the pattern of phylogeographic spread of 1441 influenza A virus (H3N2)
sequences between 14 regions, a random‑effects phylogeographic substitution model infers that air travel volume ade‑
quately predicts almost all dispersal rates. A random‑effects state‑dependent substitution model reveals no evidence for
an effect of arboreality on the swimming mode in the tree frog subfamily Hylinae. Simulations reveal that random‑effects
substitution models can accommodate both negligible and radical departures from the underlying base substitution model.
We show that our gradient‑based inference approach is over an order of magnitude more time efficient than conventional
approaches. [Bayesian inference, Hamiltonian Monte Carlo, phylogeography.]

Along the branches of a phylogenetic tree, discrete
characters such as nucleotides, amino acids, or mor‑
phologic traits evolve according to some (typically un‑
known) substitution process. Substitution models are
probabilistic representations of the substitution process
and are central quantities in phylogenetic and phylo‑
dynamic models. Broadly, substitution models describe
the relative rates of discrete change from one character
state to another.

When inferring phylogenies from character data, the
nature of the substitution process is generally not the
subject of primary biological interest. Nevertheless, be‑
cause substitution models stand as the key link between

the phylogenetic tree and the observed discrete charac‑
ter data, appropriate modeling remains of paramount
importance to avoid bias and their specification has
received considerable attention (see, e.g., Tavaré 1986;
Suchard et al. 2001, 2003; Woodhams et al. 2015; Abadi
et al. 2019; Fabreti and Höhna 2022). There are also
cases in which the substitution process is itself of di‑
rect interest. In phylogeographic modeling of rapidly
evolving pathogens, character states may represent the
geographic locations of sampled pathogen sequences
and the substitution process describes the spread of the
pathogens through geographic space. In this case, infer‑
ring an appropriately parameterized substitution model
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can deliver insight into the factors driving the spread
of disease (Lemey et al. 2014, 2020; Dudas et al. 2017).
Questions regarding potentially coevolving traits can
also be addressed with substitution models by expand‑
ing their state‑space, such as to pairs of binary characters
(Pagel and Meade 2006).

Popular phylogenetic substitution models are
continuous‑time Markov chain (CTMC) models param‑
eterized in terms of one or more infinitesimal rate ma‑
trices and branch lengths that measure the expected
number of substitutions along each branch in the phy‑
logeny. As the number of possible characters 𝑆 in the
data state‑space grows, the number of potential param‑
eters in each rate matrix 𝑆×(𝑆−1) quickly becomes large.
When inferring a phylogeny from nucleotide sequences,
the rate matrix is small, and relatively parameter‑
rich models have been considered (Tavaré 1986; Yang
1994a). But rate matrices for other data types can eas‑
ily grow large: there are 20 amino acids, 64 codons, and
phylogeographic analyses can easily encompass many
dozens of locations (Lemey et al. 2014; Dudas et al.
2017; Gao et al. 2022). Models which account for het‑
erogeneity of the substitution process along branches,
such as Markov‑modulated models (Baele et al. 2021)
may involve hundreds of parameters. In such cases, in‑
ferring the unconstrained model, in which all 𝒪(𝑆2)
non‑diagonal elements are free parameters, has been
historically prohibitive. One reason is because the typi‑
cal approach to Bayesian inference of substitution mod‑
els is to use random‑walk Metropolis–Hastings‑based
Markov chain Monte Carlo (MCMC) (Metropolis et al.
1953; Hastings 1970). Such large rate matrices have
many parameters which are (potentially) strongly cor‑
related and often only weakly identifiable, rendering
random‑walk MCMC burdensome.

When confronted with substitution models for large
state‑spaces, the historical approach has been to find
ways to reduce the number of free parameters in the
model. Amino acid models are often parameterized
empirically (Dayhoff et al. 1978; Whelan and Gold‑
man 2001), requiring no free parameters for inference.
Codon models are often represented as combinations of
site‑level nucleotide models and codon‑level processes
(Yang et al. 2000), some of which may be measured em‑
pirically (Hilton and Bloom 2018). Such approaches re‑
duce the number of parameters that must be inferred to
𝒪(𝑆). Another approach is to parameterize the rate ma‑
trix in terms of log‑linear functions of observed covari‑
ates. This generalized linear model (GLM) approach has
been successful in phylogeographic inference, where
observed covariates include factors like the distance be‑
tween locations and air travel volumes (Lemey et al.
2014; Dudas et al. 2017). In addition to making inference
tractable, the GLM approach can be used to quantify the
strength of evidence for which factors do or do not affect
the spread of infectious diseases.

In this paper, we demonstrate the utility of random‑
effects substitution models. These models extend a wide

class of CTMC models to incorporate additional rate
variation by representing the original (base) model as
fixed‑effect model parameters and allowing the addi‑
tional random‑effects to capture deviations from the
simpler process. We demonstrate the utility of these
models in Bayesian inference on a variety of exemplar
evolutionary problems. On a dataset of 583 SARS‑CoV‑2
genomes, an HKY model with random‑effects captures
known mutational biases in SARS‑CoV‑2 and is shown
to be superior to the richest, general‑time reversible
(GTR) model. Applied to a phylogeographic analysis of
influenza A subtype H3N2, a GLM substitution model
with random‑effects provides evidence that air travel
volume captures the geographic process of dispersal for
all except a small set of pairs for which it underpredicts
dispersal. As a test for ecologically dependent trait evo‑
lution, a random‑effects pairwise‑dependent substitu‑
tion model finds no evidence for an effect of arboreality
on the swimming mode in hylid tree frogs. We quantify
the performance of random‑effects substitution models
using simulations.

Before we can perform inference under these mod‑
els, however, there stand two obstacles that must be
overcome. First and foremost, the parameter‑space of
the random effects models can be very large, and these
parameters may be strongly correlated. To overcome
the dimensionality, we derive an efficient‑to‑compute
approximation of the gradient of the phylogenetic
(log‑)likelihood with respect to (wrt) all parameters of
an arbitrary CTMC substitution model simultaneously.
Notably, the exact gradient is often computationally
prohibitive. We implement our approximate gradient
in the phylogenetic inference software package BEAST
1.10 (Suchard et al. 2018) and the high‑performance
computational library BEAGLE 3 (Ayres et al. 2019),
enabling the use of Hamiltonian Monte Carlo (HMC),
a gradient‑based alternative to random‑walk MCMC
(Neal 2011), for efficient parameter inference. HMC
leverages gradients to take bold steps through even
highly correlated parameter spaces and can greatly in‑
crease MCMC efficiency. Second, to avoid identifiabil‑
ity issues with potentially overparameterized models
(such as inferring a 14 × 14 rate matrix based on a sin‑
gle observed character), we make use of the Bayesian
bridge prior (Polson et al. 2014) that is strongly regular‑
izing and allows the data to decide which parameters
are important to capture their variability.

The rest of this paper is structured as follows. In the
Methods section, we formally introduce the random‑
effects substitution model and the Bayesian bridge prior
distribution. Then we derive our approximate gradi‑
ent of the phylogenetic log‑likelihood with respect to
parameters of the substitution model. We also provide
an introduction to gradient‑based inference. In the Re‑
sults section, we first investigate the increase in ef‑
ficiency from using our approximate gradients com‑
pared to alternative approaches, both for optimization
tasks and full Bayesian inference. Then we apply our
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random‑effects substitution model to a number of real‑
world examples and to simulated data. We conclude
by contemplating future approaches for improving
inference efficiency and additional application areas
where random‑effects substitution models are likely to
be useful.

METHODS
In this paper, we assume that there is a (possibly un‑

known) rooted phylogeny ℱ with 𝑁 tips that links the
observed character sites and 𝑁 − 1 internal nodes. We
index the branch lengths and nodes such that the edge
connecting node 𝑣 to its parent 𝑢 has length 𝑡𝑣. Along
each branch of the tree, we assume that characters arise
from an alphabet of size 𝑆 and evolve under a CTMC
model with instantaneous rate matrix Q = {𝜆𝑖𝑗}, where
𝜆𝑖𝑗 ≥ 0 for 𝑖 ≠ 𝑗 and the diagonal elements are fixed such
that row‑sums of Q equal 0. We measure branch length
𝑡𝑣 in expected number of substitutions per site accord‑
ing to a probability mass vector 𝜋𝜋𝜋 = (𝜋1, … , 𝜋𝑆) over
the characters. Often, 𝜋𝜋𝜋 is taken as the stationary distri‑
bution ofQ, but this need not be the case. To account for
variation in evolutionary rates across sites in the charac‑
ter alignment, finite mixture models (e.g., the discrete‑
gamma model of Yang 1994b) modulate the expected
number of substitutions along all branches at a specific
site. Consider that there are 𝑅 rate categories, the rate
scalar in the 𝑟th category is 𝛾𝑟, and the prior probabil‑
ity of being in any particular mixture category is ℙ(𝛾𝑟).
Then, the finite‑time transition probability matrix along
branch 𝑣 in category 𝑟 is given by P𝑣𝑟 = exp(𝛾𝑟 ×Q×𝑡𝑣),
where we assume that Q is normalized wrt 𝜋𝜋𝜋. The ma‑
trix P𝑣𝑟 governs the probability of change from state 𝑖
to state 𝑗 along branch 𝑣 in category 𝑟. Note that the
subscripts on P do not denote elements of the matrix
but rather which of the 𝑅 × (2𝑁 − 2) distinct transi‑
tion probability matrices—one for each branch and rate
category—is under consideration. In truth, the rate ma‑
trixQ is a function of a vector of estimable parameters 𝜃𝜃𝜃,
specificallyQ(𝜃𝜃𝜃), but we suppress this notation for ease
of presentation.

Random‑effects substitution models
Random‑effects substitution models are extensions of

simpler CTMC substitution models. We start with a base
model, which could be as simple as Jukes‑Cantor (Jukes
and Cantor 1969), as complex as a GLM substitution
model (Lemey et al. 2014) or anything in between. This
base model carries a rate matrix B = {𝑏𝑖𝑗} and proba‑
bility mass vector 𝜋𝜋𝜋B over the characters. We define the
random‑effects substitution model rate matrix Q using
the following log‑linear formulation,

log 𝜆𝑖𝑗 = log 𝑏𝑖𝑗 + 𝜖𝑖𝑗 for 𝑖 ≠ 𝑗, (1)

and set 𝜋𝜋𝜋 = 𝜋𝜋𝜋B. Intuitively, the random‑effects 𝜖𝑖𝑗
are multiplicative real‑valued parameters which enable

each non‑diagonal element to deviate from the values
specified by the base model. For example, 𝜖𝑖𝑗 = log(2)
doubles the rate implied by the base model, 𝜆𝑖𝑗 = 2𝑏𝑖𝑗.

Random‑effects substitution models retain the ba‑
sic structure of the base model that may be biologi‑
cally or epidemiologically motivated, while allowing
for potentially large deviations from this base pro‑
cess. In our phylogeographic example, we start with
an epidemiologically motivated model for the spread
of rapidly evolving pathogens parameterized using air
travel volume between countries with a GLM substitu‑
tion model (although we could potentially use many
more covariates) and allow the random‑effects to cap‑
ture shortcomings of this description. For convenience,
we shorthand the random‑effects version of a substi‑
tution model ℳ + RE, where ℳ is the base model
(e.g., Hasegawa, Kishino, and Yano model [HKY];
Hasegawa et al. 1985).

Bayesian regularization
Random‑effects substitution models are in general

overparameterized and as such not identifiable by the
likelihood alone. In a Bayesian setting, a prior will pro‑
vide relief from this and allow for a posterior to be in‑
ferred. Nevertheless, such circumstances demand care‑
ful thought about the choice of prior, as it will play
a key role in determining the posterior. An attractive
class of priors for these situations are shrinkage pri‑
ors such as the Bayesian bridge (Polson et al. 2014)
or the horseshoe (Carvalho et al. 2010). Originally de‑
veloped for handling regression models when there
are more parameters than observations, shrinkage pri‑
ors regularize coefficients (often strongly) pulling them
to be near or equal to 0 when the data provide little
or no information to the contrary and, otherwise, at‑
tempting to impart little bias into the posterior. Shrink‑
age priors often (though not always) induce sparsity in
the model, pulling many coefficients to be effectively 0.
Shrinkage priors have also found success in phyloge‑
netic contexts, including models for the rate of evolution
of the rate of evolution (Fisher, Ji, Nishimura et al. 2021;
Fisher, Ji, Zhang et al. 2021), population sizes over time
(Faulkner et al. 2020), and rates of speciation and extinc‑
tion (Magee et al. 2020). In these cases, the prior pull is
toward no change, either from a branch to its descen‑
dants or from one time interval to the next. In the con‑
text of random‑effects substitution models, shrinkage is
imposed by pulling the random‑effects toward the null
value of 0 (at 0, there is no deviation from the base model
in the 𝑖 → 𝑗 direction and 𝜆𝑖𝑗 = 𝑏𝑖𝑗).

Shrinkage priors also permit us to perform model se‑
lection, with the data and prior reconciling which pa‑
rameters belong in or out of the model. For the random‑
effects substitution model, a particular random‑effect
𝜖𝑖𝑗 is excluded from the model if it is approximately
0. Where discrete mixture models, such as those used
in Bayesian stochastic search variable selection (BSSVS,
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Lemey et al. 2009), carry a finite probability that a
parameter achieves exactly 0, shrinkage priors instead
have a large spike of prior density near 0. While this
occasionally makes it more difficult to declare if a pa‑
rameter belongs in the model or not, the use of purely
continuous priors usually yields Markov chains that
mix more efficiently and, importantly, permits the use
of gradient‑based inference.

The Bayesian bridge prior on random‑effect 𝜖 has
density,

Pr(𝜖 ∣ 𝜏, 𝛼) ∝ exp (− ∣ 𝜖𝜏 ∣
𝛼
) , (2)

where the global scale 𝜏 controls the overall spread of
the distribution and the exponent 𝛼 controls the shape.
The Bayesian bridge is perhaps best thought of as family
of distributions, modulated by 𝛼, some of which fall into
the class of sparsity‑inducing priors (𝛼 < 1) and some of
which do not. At 𝛼 = 2, the density coincides with a stan‑
dard normal distribution, while at 𝛼 = 1 it is the density
of the Laplace distribution. At lower exponent values,
the distribution becomes increasingly peaked around 0
and induces sparsity. We use 𝛼 = 1/4, which in practice
imposes a useful level of sparsity without compromis‑
ing MCMC convergence. The global scale 𝜏 also plays
an important role in determining the degree of regular‑
ization. To both permit the data to inform the strength
of regularization and efficient Gibbs sampling proce‑
dures, we place a Gamma(shape=1, scale=2) prior on
𝜏−𝛼 (Nishimura and Suchard 2022).

The Bayesian bridge distribution has particularly fat
tails for lower 𝛼. This can hamper sampling, and it
can allow parameter values which are, a priori, unre‑
alistically large (or small). Particularly, large random‑
effects can also cause numerical instability when
exponentiating the substitution‑rate matrix. These ef‑
fects can be ameliorated by the use of the shrunken‑
shoulder Bayesian bridge (Nishimura and Suchard
2022). This formulation includes a “slab” parameter 𝜁
that controls the tails of the distribution. Specifically,
outside of [−𝜁, 𝜁], the tails of the shrunken‑shoulder
Bayesian bridge become Normal(0,𝜁2). We set 𝜁 = 2,
which a priori specifies that it is unlikely for a partic‑
ular element of the rate matrix to be more than 𝑒2 ≈ 7
times larger or smaller than specified by the base model.

The gradient of the phylogenetic log‑likelihood
In this paper, we are interested in the gradient of the

phylogenetic log‑likelihood with respect to the parame‑
ters of the substitution model. The dataY are a collection
of homologous sites (columns in a multiple sequence
alignment), Y = (Y1, … ,Y𝐶). We will write the likeli‑
hood ℙ(Y ∣ 𝜃𝜃𝜃), and its gradient ∇ℙ(Y ∣ 𝜃𝜃𝜃). The gradient
is the collection of derivatives wrt all substitution model
parameters,

∇ℙ(Y ∣ 𝜃𝜃𝜃) = ( 𝜕
𝜕𝜃1

ℙ(Y ∣ 𝜃𝜃𝜃) , … , 𝜕
𝜕𝜃𝑘

ℙ(Y ∣ 𝜃𝜃𝜃) )
′
, (3)

where ′ denotes the transpose operator.
Under the common assumption that sites evolve in‑

dependently and identically, we can express the log‑
likelihood as a sum across all 𝐶 sites, and hence deriva‑
tives of it as well. We have

𝜕
𝜕𝜃𝑘

log ℙ(Y ∣ 𝜃𝜃𝜃) =
𝐶

∑
𝑐=1

𝜕
𝜕𝜃𝑘

log ⎛⎜
⎝

𝑅
∑
𝑟=1

ℙ(Y𝑐 ∣ 𝜃𝜃𝜃, 𝑟) ℙ(𝛾𝑟)⎞⎟
⎠

=
𝐶

∑
𝑐=1

∑𝑅
𝑟=1

𝜕
𝜕𝜃𝑘

ℙ(Y𝑐 ∣ 𝜃𝜃𝜃, 𝑟) ℙ(𝛾𝑟)

∑𝑅
𝑟=1 ℙ(Y𝑐 ∣ 𝜃𝜃𝜃, 𝑟) ℙ(𝛾𝑟)

(4)

The denominator is simply the likelihood of a site
ℙ(Y𝑐 ∣ 𝜃𝜃𝜃). For simplicity, we will focus on the compu‑
tation of 𝜕

𝜕𝜃𝑘
ℙ(Y𝑐 ∣ 𝜃𝜃𝜃, 𝑟) for site 𝑐 under rate category

𝑟.

Partial likelihood vectors and the phylogenetic likelihood We
can, at any node 𝑣 in the tree, compute the likelihood as

ℙ(Y𝑐 ∣ 𝜃𝜃𝜃) =
𝑅

∑
𝑟=1

[p′
𝑣𝑟𝑐q𝑣𝑟𝑐] ℙ(𝛾𝑟) . (5)

The post‑order partial likelihood vector p𝑣𝑟𝑐 describes
the probability, at node 𝑣, in rate category 𝑟, at the 𝑐th
site, of observing the tip‑states in all tips which descend
from the node, conditioned on the state at the node. The
pre‑order partial likelihood vector, q𝑣𝑟𝑐, describes the
joint probability of observing the tip‑states in all tips not
descended from the node and the state at the node.

The post‑order partial likelihood vectors are com‑
puted via pruning from the tip to the roots (a post‑order
traversal), for the tree in Fig. 1, via

p𝑢𝑟𝑐 = P𝑣𝑟p𝑣𝑟𝑐 ∘ P𝑤𝑟p𝑤𝑟𝑐, (6)

FIGURE 1. A phylogenetic tree highlighting three key nodes. We
will take node 𝑣 as our focal node, which here has parent 𝑢 and sister
𝑤. We index branch lengths by the node which subtends them, such
that the branch with length 𝑡𝑣 is the branch leading to node 𝑣.
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where ∘ denotes the Hadamard (element‑wise) product.
The pre‑order partial likelihood vectors are then com‑
puted in a root‑to‑tip pass through the tree (a pre‑order
traversal) using the relation

q𝑣𝑟𝑐 = P′
𝑣𝑟[q𝑢𝑟𝑐 ∘ P𝑤𝑟p𝑤𝑟𝑐]. (7)

We note that p𝑣𝑟𝑐 is independent of P𝑣𝑟, while q𝑣𝑟𝑐 is de‑
pendent on P𝑣𝑟. At the root 𝑣 = 2𝑁 − 1, the pre‑order
partial likelihood vector is simply the root‑frequency
vector 𝜋𝜋𝜋root, which may or may not be the same as the
frequency vector 𝜋𝜋𝜋 used to normalize the rate matrix.

A naïve derivative We can use the multivariable chain
rule to obtain the total derivative of the likelihood wrt
𝜃𝑘. To do this, we first envision a simple parameter ex‑
pansion with branch‑ and root‑specific variables 𝜂𝑣𝑘. By
setting 𝜂𝑣𝑘 = 𝜃𝑘, we can frame the derivative wrt 𝜃𝑘 in
terms of a sum across the all the per‑branch contribu‑
tions from the derivatives wrt 𝜂𝑣𝑘. First we rewrite the
differential as

𝜕
𝜕𝜃𝑘

=
2𝑁−1
∑
𝑣=1

( 𝜕
𝜕𝜂𝑣𝑘

) (𝜕𝜂𝑣𝑘
𝜕𝜃𝑘

) =
2𝑁−1
∑
𝑣=1

𝜕
𝜕𝜂𝑣𝑘

. (8)

Then, the partial likelihood vector representation of the
phylogenetic likelihood allows us to isolate the contri‑
bution of each branch and 𝜋𝜋𝜋root to this total derivative.
In doing so, we also recall that p𝑣𝑟𝑐 is independent of
P𝑣𝑟 and 𝜋𝜋𝜋root, such that (𝜕/𝜕𝜂𝑣𝑘)p𝑣𝑟𝑐 = 0 for all 𝑣. By
summing over all branches and the root, we obtain the
total derivative as

𝜕
𝜕𝜃𝑘

ℙ(Y𝑐 ∣ 𝜃𝜃𝜃, 𝑟) =
2𝑁−1
∑
𝑣=1

𝜕
𝜕𝜂𝑣𝑘

p′
𝑣𝑟𝑐q𝑣𝑟𝑐

=
2𝑁−1
∑
𝑣=1

p′
𝑣𝑟𝑐

𝜕
𝜕𝜂𝑣𝑘

q𝑣𝑟𝑐

=
2𝑁−2
∑
𝑣=1

p′
𝑣𝑟𝑐 ( 𝜕

𝜕𝜂𝑣𝑘
P𝑣𝑟)

′

[q𝑢 ∘ P𝑤𝑟p𝑤] + 𝑅(𝜃𝑘)

=
2𝑁−2
∑
𝑣=1

p′
𝑣𝑟𝑐 ( 𝜕

𝜕𝜂𝑣𝑘
P𝑣𝑟)

′

q̃𝑣𝑟𝑐 + 𝑅(𝜃𝑘)

=
2𝑁−2
∑
𝑣=1

p′
𝑣𝑟𝑐 ( 𝜕

𝜕𝜂𝑣𝑘
𝑒Q×𝑡𝑣×𝛾𝑟)

′

q̃𝑣𝑟𝑐 + 𝑅(𝜃𝑘)

=
2𝑁−2
∑
𝑣=1

p′
𝑣𝑟𝑐

⎛⎜⎜
⎝

𝑆
∑
𝑖=1

𝑆
∑
𝑗=1

𝜕𝑒Q×𝑡𝑣×𝛾𝑟

𝜕𝜆𝑖𝑗

𝜕𝜆𝑖𝑗
𝜕𝜂𝑣𝑘

⎞⎟⎟
⎠

′

q̃𝑣𝑟𝑐 + 𝑅(𝜃𝑘) , (9)

where the contribution from root‑frequency vector is

𝑅(𝜃𝑘) = p′
2𝑁−1,𝑟𝑐

𝜕
𝜕𝜃𝑘

𝜋𝜋𝜋root. (10)

In the third‑to‑last step, we defined q̃𝑣𝑟𝑐 = [q𝑢 ∘P(𝑤)p𝑤]
to simplify the notation and focus on the part of the
equation which depends on 𝜂𝑣𝑘 (𝜃𝑘). In the last step, we
employed the matrix chain rule (Petersen et al. 2008).
The term 𝜕 exp(Q × 𝑡𝑣 × 𝛾𝑟)/𝜕𝜆𝑖𝑗 is the derivative of the
matrix exponential with respect to one of the elements
of the rate matrix, which we discuss in more detail in
the Section “Efficiently approximating the derivative of
the matrix exponential.” We note that the rate matrix Q
is sometimes defined to be unnormalized, such that the
transition probability matrix along a branch is instead
given by P𝑣𝑟 = exp(𝛾𝑟 × (−1/(diag(Q)′ 𝜋𝜋𝜋)) × Q × 𝑡𝑣).
For simplicity of notation, when normalization is de‑
sired we take the rate matrix Q to be normalized, and
allow the 𝜕𝜆𝑖𝑗/𝜕𝜂𝑣𝑘 term to capture the effect of the nor‑
malizing constant on the elements of the rate matrix.
We discuss the computation of the gradient of the rate
matrix with respect to its parameters and the root con‑
tribution in Supplementary Material, “More details on
the form of the gradient” section.

As we discuss in Supplementary Material, “Compu‑
tational complexity of alternative approaches to com‑
puting the gradient of a matrix exponential” section, the
computational cost of obtaining 𝜕 exp(Q×𝑡𝑣×𝛾𝑟)/𝜕𝜆𝑖𝑗 is
𝒪(𝑆3). The sum in Equation 9 requires this quantity for
all 𝑆2 elements inQ and for each of the 2𝑁 −2 branches,
making the cost to compute the derivative 𝒪(𝑁𝑆5). Ob‑
taining the gradient requires using Equation 9 for all
𝐾 substitution model parameters, making the cost of
the gradient 𝒪(𝐾𝑁𝑆5). For random effects models, this
is 𝒪(𝑁𝑆7). Such costs are prohibitive for even moder‑
ate 𝑆, so we turn our attention now to improving the
computational efficiency of gradient computations.

Reducing the computational complexity We can reformu‑
late the naïve approach of Equation 9 to produce a more
efficient gradient computation. By rearranging the or‑
der of summation, we can disentangle the derivative of
the rate matrix wrt its elements from the derivative of
its elements wrt model parameters. Specifically,

𝜕
𝜕𝜃𝑘

ℙ(Y𝑐 ∣ 𝜃𝜃𝜃, 𝑟) =
2𝑁−2
∑
𝑣=1

p′
𝑣𝑟𝑐

⎛⎜⎜
⎝

𝑆
∑
𝑖=1

𝑆
∑
𝑗=1

𝜕𝑒Q×𝑡𝑣×𝛾𝑟

𝜕𝜆𝑖𝑗

𝜕𝜆𝑖𝑗
𝜕𝜂𝑣𝑘

⎞⎟⎟
⎠

′

q̃𝑣𝑟𝑐 + 𝑅(𝜃𝑘)

=
2𝑁−2
∑
𝑣=1

𝑆
∑
𝑖=1

𝑆
∑
𝑗=1

p′
𝑣𝑟𝑐 ⎛⎜

⎝
𝜕𝑒Q×𝑡𝑣×𝛾𝑟

𝜕𝜆𝑖𝑗
⎞⎟
⎠

′

q̃𝑣𝑟𝑐
𝜕𝜆𝑖𝑗
𝜕𝜂𝑣𝑘

+ 𝑅(𝜃𝑘)

=
2𝑁−2
∑
𝑣=1

M𝑘 vec(D𝑣) + 𝑅(𝜃𝑘) , (11)

where the vec operator makes the matrix D𝑣 into a col‑
umn vector by stacking the columns on top of each
other, and we obtain the last line by defining two new
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quantities which we will now discuss. The matrix M is
a 𝐾 × 𝑆2 mapping matrix, which stores in each row 𝑘 a
vector of the partial derivatives of all elements of Q wrt
𝜃𝑘,

M𝑘⋅ = (𝜕𝜆11
𝜕𝜃𝑘

, … , 𝜕𝜆𝑆𝑆
𝜕𝜃𝑘

) . (12)

The matrix D𝑣𝑟 = {𝑑𝑣𝑟𝑖𝑗} contains the contribution of
branch 𝑣 to the derivative of the phylogenetic likelihood
wrt the 𝑖𝑗th entry of Q in rate category 𝑟. Specifically,

𝑑𝑣𝑟𝑖𝑗 = p′
𝑣𝑟𝑐 ⎛⎜

⎝
𝜕

𝜕𝜆𝑖𝑗
𝑒Q×𝑡𝑣×𝛾𝑟⎞⎟

⎠

′
q̃𝑣𝑟𝑐. (13)

We arrive at the entire gradient (as opposed to a
single entry) and increase computational efficiency by
replacing M𝑘⋅ with M in Equation 11 and rearranging,

∇ℙ(Y𝑐 ∣ 𝜃𝜃𝜃, 𝑟) = ∑
𝑣
Mvec(D𝑣) + 𝑅(𝜃𝑘)

= M∑
𝑣

vec(D𝑣) + 𝑅(𝜃𝑘) . (14)

This approach separates the gradient of the phyloge‑
netic likelihood wrt model parameters into two pieces,
a gradient of the phylogenetic likelihood wrt elements
of the rate matrix, and a gradient of the elements of
the rate matrix wrt the model parameters. The result
is the intermediate quantity D𝑣 that can be obtained
with only a single computation of the derivative of a
matrix exponential per branch. As this quantity can be
summed across the tree prior to mapping it to the substi‑
tution model parameters, 𝒪(𝑁) matrix multiplications
are avoided. The result is that this approach is 𝒪(𝐾𝑆2 +
𝑁𝑆5) rather than 𝒪(𝐾𝑁𝑆5). For random‑effects substi‑
tution models, this is the difference between a 𝒪(𝑁𝑆7)
computation and a 𝒪(𝑆4 + 𝑁𝑆5) = 𝒪(𝑁𝑆5) computa‑
tion. Note that this approach works for branch‑specific
models as well, by specifying the mapping matrix M
appropriately.

Efficiently approximating the derivative of the matrix expo‑
nential We now turn our attention to an efficient approx‑
imation to the derivative of a matrix exponential. The
derivative of a matrix exponential can be represented as
a power‑series (Najfeld and Havel 1995, equation 103),

𝜕
𝜕𝜆𝑖𝑗

𝑒Q𝑡 = 𝑒Q𝑡
∞
∑
𝑥=0

𝑡𝑥+1

(𝑥 + 1)! {E𝑖𝑗,Q𝑥}, (15)

where E𝑖𝑗 is a matrix which is 0 for all but the (𝑖𝑗)th en‑
try, which is 1. The matrix commutator power {E𝑖𝑗,Q𝑥}
for non‑negative integer 𝑥 is defined recursively (Na‑
jfeld and Havel 1995), such that {E𝑖𝑗,Q0} = E𝑖𝑗 and
{E𝑖𝑗,Q𝑥} = [{E𝑖𝑗,Q𝑥−1},Q], where [A,B] is the matrix
commutator AB − BA.

The first‑order approximation to Equation 15 is taken
by keeping only the 𝑥 = 0 term, yielding

𝜕
𝜕𝜆𝑖𝑗

𝑒Q𝑡 ≈ 𝑡𝑒Q𝑡E𝑖𝑗. (16)

We can use this first‑order approximation to approxi‑
mate D𝑣 on each branch. Specifically,

𝑑𝑣𝑖𝑗 ≈ p′
𝑣𝑟𝑐[(𝑡𝑣 × 𝛾𝑟 × 𝑒Q×𝑡𝑣×𝛾𝑟E𝑖𝑗)′[q𝑢 ∘ (𝑒Q𝑡𝑤×𝛾𝑟p𝑤)]]

= 𝑡𝑣 × 𝛾𝑟 × p′
𝑣𝑟𝑐[E𝑗𝑖(𝑒Q×𝑡𝑣×𝛾𝑟)′[q𝑢 ∘ (𝑒Q×𝑡𝑣×𝛾𝑟p𝑤)]]

= 𝑡𝑣 × 𝛾𝑟 × p′
𝑣𝑟𝑐E𝑗𝑖q𝑣𝑟𝑐

= 𝑡𝑣 × 𝛾𝑟 × 𝑞𝑣𝑖𝑝𝑣𝑗, (17)

where we get from line 3 to line 4 by noting that
(𝑒Q×𝑡𝑣×𝛾𝑟)′ = P′

𝑣𝑟 and applying Equation 7. Intuitively,
we have the (approximate) derivative with respect to an
𝑖 → 𝑗 transition depending on the pre‑order partial like‑
lihood in state 𝑖 and the post‑order partial likelihood in
state 𝑗.

Equation 17 means that we can write our approximate
D𝑣 as an outer product,

D𝑣𝑟𝑐 ≈ 𝑡𝑣 × 𝛾𝑟 × q𝑣𝑟𝑐 ⊗ p𝑣𝑟𝑐. (18)

This means that we can obtain all 𝑆2 entries of D𝑣𝑟𝑐
in 𝒪(𝑆2), which is much more efficient than the 𝒪(𝑆5)
cost of the non‑approximate computation. Thus, with
this approximation and the mapping approach out‑
lined in the previous section, the (approximate) sub‑
stitution gradient can be obtained in 𝒪(𝐾𝑆2 + 𝑁𝑆3),
rather than the 𝒪(𝐾𝑆2 + 𝑁𝑆5) cost suggested by Equa‑
tion 14 or the 𝒪(𝐾𝑁𝑆5) cost suggested by Equation 9.
We will denote the approximate gradient that comes
from using this approximation to D𝑣𝑟𝑐 in Equation 14
as ∇̃ log ℙ(Y ∣ 𝜃𝜃𝜃).

Hamiltonian Monte Carlo with surrogate trajectories
HMC (Duane et al. 1987; Neal 2011) is an ad‑

vanced MCMC algorithm that falls broadly within the
well‑known class of Metropolis–Hastings MCMC (MH‑
MCMC) algorithms (Metropolis et al. 1953; Hastings
1970). By allowing samples to be drawn (sequentially)
from arbitrary target distributions, MH‑MCMC algo‑
rithms like HMC allow users to approximate distri‑
butions that do not have known closed‑form densi‑
ties. Unlike many commonly employed random‑walk
Metropolis–Hastings proposals, however, HMC uses
information captured by the log‑posterior gradient to
traverse a model’s parameter space much more effi‑
ciently by proposing (and accepting) states which are
farther apart.

HMC constructs an artificial Hamiltonian system by
augmenting the parameter space to include an auxil‑
iary Gaussian “momentum” variable 𝜉𝜉𝜉 ∼ MVN𝐾(0,M)
that is independent from the target variable 𝜃𝜃𝜃 by con‑
struction. Letting 𝑓 (⋅) denote the posterior density, the
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resulting Hamiltonian energy function is the negative
logarithm of the joint distribution over𝜃𝜃𝜃 and 𝜉𝜉𝜉 . Ignoring
normalizing constants we obtain

𝐻(𝜃𝜃𝜃,𝜉𝜉𝜉) = − log 𝑓 (𝜃𝜃𝜃) + 1
2𝜉𝜉𝜉TM−1𝜉𝜉𝜉 ,

and Hamilton’s equations are

̇𝜃𝜃𝜃 = +𝜕𝐻
𝜕𝜉𝜉𝜉 = M−1𝜉𝜉𝜉

̇𝜉𝜉𝜉 = −𝜕𝐻
𝜕𝜃𝜃𝜃 = ∇ log 𝑓 (𝜃𝜃𝜃) .

On the one hand, one may show that the action of
the dynamical system that satisfies these equations
leaves the target 𝑓 (⋅) invariant thanks to the reversibil‑
ity, volume preservation and energy conservation of
Hamiltonian dynamics. On the other hand, closed‑form
descriptions of these dynamics are rarely available for
arbitrary target distributions, leading to the need for
computer intensive approximations. In particular, the
Störmer–Verlet (velocity Verlet) or leapfrog method
(Leimkuhler and Reich 2004) has become the numer‑
ical integrator of choice for obtaining discretized tra‑
jectories within HMC. Beginning at time 𝜏 and letting
𝜖 > 0 be small, a single leapfrog iteration proceeds
thus:

𝜉𝜉𝜉 (𝜏 + 𝜖
2) = 𝜉𝜉𝜉(𝜏) + 𝜖

2∇ log 𝑓 (𝜃𝜃𝜃(𝜏)) (19)

𝜃𝜃𝜃(𝜏 + 𝜖) = 𝜃𝜃𝜃(𝜏) + 𝜖M−1𝜉𝜉𝜉 (𝜏 + 𝜖
2)

𝜉𝜉𝜉(𝜏 + 𝜖) = 𝜉𝜉𝜉 (𝜏 + 𝜖
2) + 𝜖

2∇ log 𝑓 (𝜃𝜃𝜃(𝜏 + 𝜖)) .

Trajectories arising from concatenated leapfrog iter‑
ations maintain some of the desirable qualities of
the exact Hamiltonian dynamics (reversibility, volume
preservation) but no longer conserve energy.

A single iteration of the HMC algorithm features three
distinct steps. It starts at the current parameter values𝜃𝜃𝜃𝑡,
setting 𝜃𝜃𝜃(𝜏) = 𝜃𝜃𝜃𝑡, and draws an initial momentum 𝜉𝜉𝜉 𝑡 ∼
MVN𝐾(0,M) from the given Gaussian distribution, set‑
ting 𝜉𝜉𝜉(𝜏) = 𝜉𝜉𝜉 𝑡. Then, it uses 𝐿 steps of the leapfrog in‑
tegrator for some given step‑size 𝜖, repeatedly applying
Equation 19 to generate a proposed parameter state𝜃𝜃𝜃⋆ =
𝜃𝜃𝜃(𝐿𝜖), as well as a final momentum 𝜉𝜉𝜉⋆ = 𝜉𝜉𝜉(𝐿𝜖). Lastly, it
either accepts or rejects this new value according to the
usual Metropolis–Hastings acceptance rule (Metropo‑
lis et al. 1953; Hastings 1970) with acceptance probabil‑
ity min [1, 𝑓 (𝜃𝜃𝜃⋆)/𝑓 (𝜃𝜃𝜃𝑡) × MVN𝐾(−𝜉𝜉𝜉⋆; 0,M)/MVN𝐾(𝜉𝜉𝜉 𝑡;
0,M))], where MVN𝐾(𝑥; 0,M) indicates the density of
the Gaussian momentum distribution evaluated at 𝑥.
(The final momentum is negated to ensure the proposal
is a symmetric (Neal 2011; Vats 2023).) The accept/reject
step accounts for integration error and leaves the target
distribution invariant.

Indeed, HMC’s Metropolis correction allows for ad‑
ditional deviations from Hamiltonian dynamics over

and beyond numerical discretization schemes such as
Equation 19. Surrogate HMC methods seek to improve
computational performance of HMC by approximating
the log‑posterior gradient with less expensive surro‑
gate models including, e.g., piecewise‑approximations
(Zhang et al. 2017b), Gaussian processes (Rasmussen
2003; Lan et al. 2016) or neural networks (Zhang et al.
2017a; Li et al. 2019). Directly relevant to the present
work, Li et al. (2019) show the validity of replacing
the log‑posterior gradient ∇ log 𝑓 (⋅) within the leapfrog
method (Equation 19) with anyvector function g ∶ ℝ𝐾 →
ℝ𝐾 . In particular, such an approach maintains the re‑
versibility and volume preservation of Hamiltonian dy‑
namics and, when paired with Metropolis corrections,
leaves the target posterior distribution invariant. In the
present work, we select g = ∇̃ log ℙ(Y ∣ 𝜃𝜃𝜃) + ∇ log ℙ(𝜃𝜃𝜃),
the approximate posterior gradient obtained by using
our approximation to the gradient of the phylogenetic
log‑likelihood and the true gradient for the prior. In
the supplementary Materials, we discuss an alternative
justification.

RESULTS

C to T bias in SARS‑CoV‑2 evolution
The mutational profile of SARS‑CoV‑2 has been in‑

tensely scrutinized, one feature in particular which has
been noted is a strongly increased rate of C→T sub‑
stitutions over the reverse T→C substitutions. We note
that while RNA viruses like SARS‑CoV‑2 use uracil
(U) in place of thymine (T), it is generally coded as
thymine–the coding of adenosine (A), cytosine (C), and
guanine (G) are unchanged. The elevation of one di‑
rection of substitution over its reverse is a violation of
the common phylogenetic assumption of reversibility
made by the GTR (Tavaré 1986) family of substitution
models. Random‑effects substitution models are suit‑
able for addressing this model violation, in particular
we consider an HKY+RE substitution model. In prin‑
ciple, we could choose any GTR‑family model. HKY
represents a balance between the simplicity of JC+RE
(where the random‑effects would also have to account
for uneven nucleotide frequencies) and the complex‑
ity of GTR+RE (where the random‑effects only capture
nonreversibilities). The rate matrix is

log 𝜆𝑖𝑗 = log 𝜅 × 𝕀(𝑖𝑗 ∈ 𝒯) + log 𝜋𝑗 + 𝜖𝑖𝑗, (20)

where 𝜅 is the HKY parameter governing relative rate of
transitions to transversions, 𝕀(𝑖𝑗 ∈ 𝒯) indicates that the
𝑖 to 𝑗 change is a transition, and𝜋𝜋𝜋 are the HKY stationary
frequencies.

We apply this HKY+RE model to infer both the dy‑
namics of molecular substitution and the phylogeny
for 583 SARS‑CoV‑2 sequences from Pekar et al. (2021).
(More information about the model and dataset is
in Supplementary Table S1.) Consistent with previous
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FIGURE 2. Posterior distributions of the 12 non‑diagonal elements of the inferred rate matrices for the dataset of Pekar et al. (2021). The solid
line is the posterior median, the shaded region the 50% CI. The whiskers extend to the posterior samples farthest from the median but within
1.5× the interquartile range. By comparing HKY+RE (which is not constrained by the assumption of reversibility) to GTR, we can see that the
assumption of reversibility leads to the overestimation of the T→C (and T→G) rates and the underestimation of the C→T (and G→T) rates.

studies (e.g. Matyášek and Kovařík 2020; Tonkin‑Hill
et al. 2021), we find evidence for a greatly elevated rate
of C→T substitutions, as well as an elevated G→T rate
(Figure 2). We can test the support for nonreversibilities,
for example the difference between the C→T and T→C
rates, with Bayes factors. The fact that a model with
the C→T and T→C rates equal (reversible wrt C↔T) is
nested within the random‑effects model allows us to use
the Savage‑Dickey ratio (e.g. Wagenmakers et al. 2010)
to compute the Bayes factor from the posterior distri‑
bution of the random‑effects model, as we discuss in
the Supplemental Section “Assessing the strength of ev‑
idence for nonreversibilities.” (There is no need to fit
any additional models or estimate marginal likelihoods
directly, though for models like these where analyti‑
cal posterior distributions are unavailable, the results
are still not entirely free from the numerical difficulties
common in Bayes factor estimation.) The Bayes factor
provides “very strong” (Kass and Raftery 1995) support
for the nonreversibility of C→T and G→T rates (over
the reversible model). We can also assess the strength
of evidence for nonreversibilities via the posterior sign
probability. This is the posterior probability that the sign
of a variable is the same as the sign of the posterior

median (this is one minus the tail probability used by
Zhang et al. 2021). The estimated sign probability ranges
from 0.5 to 1.0, with larger values indicating increas‑
ingly strong support that the parameter is non‑zero.
Here, as with Bayes factors, we are interested in the sign
probabilities of the differences in random‑effects rather
than the random‑effects directly. The sign probabilities
agree with the Bayes factors that there is strong evidence
for the nonreversibility of C→T and G→T rates, with
both estimated sign probabilities above 0.99.

Given the strong evidence for nonreversibilities, we
sought to investigate the issue of the adequacy of re‑
versible models (namely GTR) using posterior predic‑
tive model checks. In a posterior predictive framework,
a summary of the observed dataset is compared with
the distribution of summaries of datasets produced by
drawing from the posterior distribution on model pa‑
rameters. Broadly, if the model fits the data well, we
expect that the predicted summaries will match the ob‑
served values, while if the fit is poor there will be a
mismatch. As our test statistics, we consider all pairwise
covariances of the proportion of each nucleotide (A, C,
G, and T) across the alignment (we discuss this in more
detail in Supplementary Material, “Posterior predictive

https://doi.org/10.5068/D1709N
https://doi.org/10.5068/D1709N


570 SYSTEMATIC BIOLOGY VOL. 73

FIGURE 3. Posterior predictive distributions of the covariances of the proportions of each nucleotide (denoted 𝑝𝐴, 𝑝𝐶, 𝑝𝐺, and 𝑝𝑇) across
sites in the alignment (histograms) compared with the true values (vertical black lines). The HKY+RE predictive distributions all closely align
with the observed values while all but one of the GTR predictive distributions are discordant.

p‑values for proportions” section). These test statis‑
tics clearly demonstrate that the HKY+RE model bet‑
ter captures the evolutionary processes at hand (Fig. 3).
Compared with inference using GTR, the analysis with
HKY+RE produces notably higher support for the root‑
most divergence (the 95% credible set includes 67 possi‑
ble resolutions for GTR and 1 for HKY+RE, Supplemen‑
tary Fig. S8) and infers a root time approximately 5 days
earlier.

Phylogeography of influenza from 2002 to 2007
For a larger state‑space example of random‑effects

substitution models, we consider the global spread of
human influenza A virus (subtype H3N2) from 2002 to
2007. Lemey et al. (2014) examined the movement pat‑
terns between 14 distinct air travel communities using
1529 viral genomes. The authors used a GLM to param‑
eterize the spread of the virus between these commu‑
nities as a function of a number of covariates, and dis‑
covered that the most consistently supported predictor
of spread between communities was the volume of air
traffic.

We re‑analyze this dataset using a GLM substitution
model with random‑effects. We now briefly review the
setup of a GLM substitution model, and our random‑
effects extension. For each pair of locations 𝑖 and 𝑗, let
X𝑖𝑗 be a vector of 𝑃 predictors of the rate of movement
from 𝑖 to 𝑗 (these may depend on the source 𝑖, the desti‑
nation 𝑗, or both) with associated coefficients 𝛽𝛽𝛽. A GLM
substitution model with random‑effects defines the rate
matrix through

log 𝜆𝑖𝑗 = X′
𝑖𝑗𝛽𝛽𝛽 + 𝜖𝑖𝑗. (21)

This is a log‑linear model, in which the GLM defines a
substitution rate based on predictors and the estimated
coefficients, and the random‑effects allow for deviations
from the model’s predictions.

In particular, we employ a simple GLM with only air
traffic included as a predictor. This approach allows us
to determine how well air traffic volume predicts the
spread of influenza A virus in the mid‑2000s. If most
random‑effects are negligible, then air traffic volume
alone is perhaps adequate for modeling the spread of
influenza in this time frame. On the other hand, if many
or most random‑effects are not negligible, although air
traffic volume may be an important model component,
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it is not sufficient to explain spread, absent random‑
effects. While Lemey et al. (2014) used spike‑and‑slab
priors on 𝛽𝛽𝛽 in a Bayesian model averaging approach,
since we are using only predictors identified previously
to be important, we use a Normal prior instead (cor‑
responding to the slab in the original study). We ap‑
ply Bayesian bridge priors for the random‑effects. To
account for phylogenetic uncertainty, we marginalize
our inference over the same empirical distribution of
phylogenetic trees used by Lemey et al. (2014).

We find that air traffic volume sufficiently explains
the viral spread between most communities. That is,
for most community pairs, the posterior distribution of
the random‑effect indicates that the parameter has been
declared “insignificant,” and is a spike centered at 0
(Fig. 4). However, for five pairs of communities (from
the United States to Japan and South America; from
China to the United States and Japan; from Oceania to

the United States), the inferred random‑effect is clearly
significant (all sign probabilities > 0.99) and strongly
positive, indicating 6‑ to 12‑fold higher dispersal than
predicted by travel. There is support for an additional
six random‑effects (from the United States to Oceania,
Russia, and Southeast Asia; from China to Oceania;
from Japan to Oceania; from Southeast Asia to Ocea‑
nia) which have sign probabilities between 0.87 and
0.97 and correspond to 2‑ to 5‑fold higher dispersal
than predicted by travel. All other area pairs of sign
probabilities are less than 0.78. Given the offset sea‑
sons between hemispheres, some of these connections
likely do not represent biologically meaningful connec‑
tions, and may potentially be attributed to sampling
biases. A comparison of the number of samples in the
dataset to the population sizes of the regions (a rough
proxy for the number of infections in the regions) re‑
veals that the United States, Oceania, and Japan are

FIGURE 4. Summary of all 182 random‑effects for the influenza A virus (subtype H3N2), shown in the format of the rate matrix, with the
source in rows and destination in columns. The circle in each square is colored by the posterior median random‑effect. The size of the circle
denotes how strong the posterior support is that a random‑effect is in the model. Specifically, the radius corresponds to the posterior sign
probability. When the prior dominates the posterior distribution, a random‑effect gains a larger posterior mass at 0 and becomes increasingly
symmetric, the median approaches 0, and the posterior sign probability approaches 0.5. When the data are strongly informative, the posterior
distribution moves away from 0 and the posterior sign probability gets larger. The random‑effects which are most strongly supported are all
positive, indicating that air travel underpredicts dispersal for those pairs of locations.
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strongly oversampled. Thus, sampling biases likely ex‑
plains many of the significant random‑effects, including
the between‑hemisphere connections. As China is not
particularly oversampled, the elevated rates of trans‑
mission from China may represent source‑sink dynam‑
ics which are not captured by air travel alone, rather
than sampling bias.

Analysis of paired macroevolutionary traits
Random‑effects substitution models can also be used

to test for dependent substitution processes between
multiple characters as follows. Let us assume that we
have two characters of interest, Y1 and Y2. These char‑
acters could be morphological, behavioral, or even eco‑
logical traits. If these characters evolved independently
along the phylogeny ℱ, we could model this with two
rate matrices, Q1 and Q2, a (strict) clock rate which de‑
fines the rate of change (in substitutions per year or
million years) for Y2, and a relative rate parameter 𝜇
which defines how much faster (or slower) Y1 evolves
compared with Y2. We can define a composite charac‑
ter from Y1 and Y2 by considering both states simul‑
taneously. This yields a new character Y which is the
Cartesian product of the two state‑spaces, with the com‑
bined state‑space size 𝑆 = 𝑆1 × 𝑆2. The rate matrixQ for
the combined character is 0 for any double substitution
and for any single substitution is defined by Q1 or Q2

depending on which character changes. Written on the
log‑scale, the (unnormalized) rate matrix is given by

log 𝜆𝑖𝑗 =
⎧{{
⎨{{⎩

log 𝜆1
𝑖𝑗 if i→j substitution in 𝑌1

log 𝜇 + log 𝜆2
𝑖𝑗 if i→j substitution in 𝑌2

−∞ for all double substitutions.

We can test for departures from independent evolution
by allowing the state of one character to modulate the
rates of change between states in the other through the
addition of random‑effects.

We employ this random‑effects dependent morpho‑
logical evolution model on a dataset of 29 species of
frogs in the family Hylidae (subfamily Hylinae). Taking
the phylogeny inferred by Caviedes‑Solis et al. (2020) to
be fixed, we focus on two traits described in Caviedes‑
Solis (2019), one ecological and one behavioral. The
ecological trait is the habitat, which is characterized as
either arboreal or understory. The behavioral trait is the
swimming mode, which is characterized by whether the
back legs move in an alternating or simultaneous fash‑
ion or whether both types are observed. To determine
the structure of the underlying independent‑trait mod‑
els, we first fit the independent model using asymmetric
rates for both traits. Bayes factors show no evidence for
any model more complex than the Mk (Jukes‑Cantor‑
like) model (Lewis 2001).

In particular, we are interested in whether the degree
of arboreality, defined as habitat preference, impacts the
swimming mode, as canopy‑dwelling species move the

back legs in an alternating fashion while climbing. Thus,
we place random‑effects only in the direction of arbore‑
ality affecting swimming mode. Letting Y1 be arboreal‑
ity and Y2 be swimming mode, the unnormalized rate
matrix for our random‑effects substitution model is,

log 𝜆𝑖𝑗 =

⎧{{{{{{
⎨{{{{{{⎩

0 if i→j substitution in 𝑌1
log 𝜇 + 𝜖𝑖𝑗 if i→j substitution in 𝑌2 and

𝑌1 indicates canopy‑dwelling
log 𝜇 if i→j substitution in 𝑌2 and

𝑌1 indicates understory‑dwelling
−∞ for all double substitutions.

We infer no effect of arboreal habitat on the swimming
mode, all posterior sign probabilities are between 0.5
and 0.57, indicating that all random‑effects have clearly
been deemed insignificant (Fig. 5). We also infer that
the rate of habitat evolution is roughly twice that of
swimming‑mode evolution (𝜇 ≈ 0.5, 95% CI 0.23–1.16).
There are two important caveats to these results. First,
with only 29 species, the power to detect dependent evo‑
lution is likely low unless the effect is quite large. Sec‑
ondly, by only modeling two traits, we are missing out
on possible interactions between other aspects of ecol‑
ogy (such as the aquatic environments the species make
use of) and morphology (such as the lengths of limbs
and digits) which might modulate this relationship.

Performance gains from gradients
For inferring random‑effects in nucleotide substitu‑

tion models, we find a notable improvement in effi‑
ciency using HMC with our approximate gradients over
using standard random‑walk MH‑MCMC. For our mea‑
sure of efficiency, we consider the number of effec‑
tively independent samples taken per second (ESS/s).
This measure incorporates both the increased ability of
HMC to move through parameter space, as well as the
increased cost per MCMC move required for repeated
evaluation of the gradient. We track the efficiency sepa‑
rately for each random‑effect (that is, we use the univari‑
ate ESS), and we consider two summaries of efficiency
gains from HMC. As an overall measure of efficiency in‑
crease, we consider the parameterwise average increase
in the efficiency. However, as analyses are constrained
by waiting for the slowest‑mixing parameter to achieve
a sufficiently large ESS, we also consider the improve‑
ment in the minimum ESS (regardless of which parame‑
ter is slowest‑mixing). When applied to nucleotide mod‑
els (HKY+RE) to infer the tree from sequence data, we
observe an average parameterwise increase in efficiency
of 6.6‑fold, and an increase in the minimum efficiency
of 14.8‑fold (Fig. 6). For the larger state‑space of the flu
phylogeographic example (14 discrete areas), where we
average across a set of posterior samples of the tree from
the original study, we find an average parameterwise
increase in efficiency of 20.2‑fold and an increase in min‑
imum efficiency of 33.6‑fold (Fig. 6). Timing was done
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FIGURE 5. Posterior distributions of the six random‑effects which capture the effect of arboreality on swimming mode. Abbreviations are
“alt” for back legs moving in an alternating fashion, “sim” for back legs moving in a simultaneous fashion, and “both” for both types of move‑
ments. Each row groups forward and reverse transitions. The shape of the posterior distributions is strongly indicative of parameters which
have been shrunk out of the model via the Bayesian bridge prior, and all posterior sign probabilities are less than 0.57.

on a MacBook Pro with an 8‑core CPU M1 Pro chip and
32GB of memory.

Analyses of simulated data
To assess the performance of random‑effects substi‑

tution models in estimation of model parameters, we
performed a simulation study. We based the simula‑
tion setup on our analysis of the SARS‑CoV‑2 data. In
particular, we used the posterior distribution of trees,
the HKY 𝜅 parameter, and the shape parameter gov‑
erning the Gamma‑distributed among‑site rate varia‑
tion. For the random‑effects, we simulated from three
groups: null effects, moderate effects, and strong effects.
For each of these we drew values from Normal distri‑
butions (Supplementary Fig. S3) chosen to reflect the
values observed in the real‑data posterior distributions.
The strong effects were C→T and G→T, which were
simulated from a Normal(1.50,0.18) distribution. The

moderate effects were A→T and G→A, which were sim‑
ulated from Normal(−0.68,0.37) and Normal(0.68,0.37)
distributions, respectively. The remaining 8 random‑
effects were classified as null and simulated from Nor‑
mal(0.0,0.11) distributions. We simulated 100 datasets
under this model.

Analyses of simulated datasets were conducted fol‑
lowing the analysis of the SARS‑CoV‑2 dataset, with
two exceptions. First, we treated the tree as known.
Second, we considered several values for the exponent
parameter, each simulated dataset was analyzed four
times with 𝛼 = 1/8, 1/4, 1/2, 1. These values range from
strongly regularizing priors (small 𝛼) to the weakly
regularizing Laplace prior (𝛼 = 1).

Overall, we find that random‑effects are well‑
estimated and that random‑effects which imply strong
deviations from the base model (HKY) can be con‑
fidently identified using the posterior sign probabil‑
ity. Overall the posterior means are strongly correlated
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FIGURE 6. Efficiency, in effective samples per second (ESS/s), of HMC versus MH‑MCMC for inferring the random‑effects substitution mod‑
els for both the 12 random‑effects in an HKY+RE model and the 182 random‑effects in the flu discrete phylogeographic analysis. Both datasets
show markedly improved estimation efficiency as a result of employing HMC with approximate gradients.

with the true simulating value, (𝜌 = 0.95), although it
appears that null and strong effects are generally better‑
estimated than moderate effects (Fig. 7 and Supplemen‑
tary Fig. S5). To determine whether a random‑effect is
significant, one can use a threshold on the sign proba‑
bility, declaring larger sign probabilities to be evidence
for significant effects. Particularly notable deviations
from the base model are easy to detect at any cho‑
sen threshold. Lower thresholds declare many negligi‑
ble deviations to be significant, while higher thresholds
are somewhat underpowered to detect smaller, but po‑
tentially important, deviations. A threshold of around
0.8 (0.75–0.85) provides a good balance between these
forces (Supplementary Fig. S4).

Examining the choice of exponent 𝛼, we find that val‑
ues on the order of 1/4 provide a reasonable trade‑off
between estimation performance and MCMC behavior.
The smaller exponents, 1/8 and 1/4, in general pro‑
duce posteriors which are notably closer to the true
values than the larger values (Supplementary Fig. S5).
The difference in performance is less notable for the ev‑
idence for significance provided by sign probabilities.
The smaller exponents perform better for identifying
null effects as null, while the larger exponents produce
more confident support that moderate effects belong in
the model, and all coefficients do well with strong ef‑
fects (Supplementary Fig. S6). We investigated MCMC
efficiency by examining the minimum effective sample
size per sample. This efficiency is higher at 𝛼 = 1/4 than
any other exponent (Supplementary Fig. S7).

FIGURE 7. Estimation performance of HKY+RE on simulated data.
Posterior mean parameter value versus true value simulated, colored
by whether the true value was drawn from the distribution on null,
moderate, or strong effects. As most posterior means are near the true
value (close to the solid black line), parameter estimation is generally
good. The solid grey lines display locally smoothed estimates of the
standard deviation of the error ̂𝜃 − 𝜃true, showing that null and strong
effects are better‑estimated than moderate ones.
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DISCUSSION
In this paper, we demonstrated the versatility and

usefulness of random‑effects substitution models. By
wrapping around a simpler base substitution model,
random‑effects substitution models enable increased
flexibility while retaining the useful structure of the
base model. Applied to a dataset of 583 SARS‑CoV‑
2 sequences, an HKY+RE model picks up strong C→T
and G→T mutational biases and is shown by posterior
predictive model checks to be an adequate substitu‑
tion model where reversible models like GTR fail. Used
with a GLM substitution model to analyze the phylo‑
geographic pattern of spread of influenza in humans,
the random‑effects suggest the air traffic volume alone
is a powerful explanation for the spread of influenza
from 2002 to 2007. In examination of the evolution of
ecological and behavioral characters in hylid tree frogs,
a random‑effects model shows no evidence for an ef‑
fect of arboreality on the mode of swimming. Simula‑
tions show that random‑effects can be accurately esti‑
mated and provide guidelines for interpreting whether
a random‑effect is significant or not.

To enable efficient inference of random‑effects substi‑
tution models, we derived an approximate substitution
gradient. The time‑complexity of our approximate
approach is cubic in the size of the state‑space,
while “exact” analytical techniques are quintic. For
parameter‑rich random‑effects substitution models, nu‑
merical gradients are also quintic, and our approxi‑
mate gradients enable maximum a posteriori inference
of the parameters of an amino‑acid substitution model
over 50 times faster than numerical gradients (“Infer‑
ring the dynamics of amino acid substitution in Meta‑
zoa” section in the Supplementary Material available
on Dryad). Used in Bayesian inference, we find that
HMC using our approximate gradients is 6.6 to 20.2
times more efficient than standard Metropolis–Hastings
moves, with yet more substantial gains when compar‑
ing the dimension with the most difficult sampling
(where the efficiency gains are 14.8‑ and 33.6‑fold). In
particular, it appears that the efficiency of HMC with
the approximate gradients is roughly invariant to the
dimension (Fig. 6). For our SARS‑CoV‑2 example, with
a 4 × 4 rate matrix, the average efficiency of HMC is
6.3 effective samples per second, while for the influenza
A virus phylogeographic example, with a 14 × 14 rate
matrix, it is 7.6 effective samples per second. However,
the efficiency of Metropolis–Hastings moves decreases
from 1.5 effective samplers per second to 0.41. We ex‑
pect this trend to continue as the size of the state‑space
increases, and that for sufficiently large models (such as
codon models or Markov‑modulated amino acid mod‑
els), HMC will be the only approach capable of inferring
random‑effects substitution models in any reasonable
timeframe.

Although the approximate substitution gradient we
derived performed very well in our applications, it can‑
not be expected to perform ideally in every circum‑
stance. Mathematical analysis and in silico experiments

suggest that the error in our approximation grows with
the branch length measured in genetic distance (“Er‑
ror in the approximate gradient” section in the Supple‑
mentary Material available on Dryad). Thus, we should
expect performance to be best where the tree has few
substitutions per site. Wertheim et al. (2022) refer to this
as the near‑perfect regime, and it is common in viral
phylodynamic applications. However, we note reasons
for optimism in applying our approximate gradients in
regimes with larger numbers of substitutions. The in‑
fluenza phylogeographic example falls outside the near‑
perfect regime, and the efficiency of HMC using our ap‑
proximate gradients is still quite good. Similarly, good
inference efficiency is observed in maximum a posteriori
inference of an amino acid model on a Metazoan tree
which has over 5.5 substitutions per site on average (“In‑
ferring the dynamics of amino acid substitution in Meta‑
zoa” section in the Supplementary Material available on
Dryad). It is also important to note that when used for
HMC, the accept–reject step ensures correctness even
in regimes where the approximation gets poor. It is
likely the error bound we have obtained is quite con‑
servative. Furthermore, Didier et al. (2023) establish a
more rigorous error bound and show that the error de‑
creases with increasingly large state‑spaces, suggesting
that phylogeographic analyses are well suited to this
approximation.

An open question is to define the regimes where the
approximation becomes poor enough that inference be‑
comes inefficient such that other techniques would be
preferable. We note two such alternative approaches
which could be considered and compared with the ef‑
ficiency of our approximation in future work. An exact
gradient can be obtained from a data‑augmentation pro‑
cedure which jointly samples the complete mutational
history along the tree, such as the approach adopted
by Lartillot (2006). Within the framework of approx‑
imate gradients, an affine correction, as Didier et al.
(2023) suggest, may yield smaller approximation error
when the expected number of substitutions per branch
is relatively large.

There are a number of important extensions of this
work. Currently, we have implemented the gradient
computations (in BEAST 1.10 (Suchard et al. 2018)
and BEAGLE 3 (Ayres et al. 2019)) for use on CPUs;
however, GPU‑based likelihood computations have
proven incredibly efficient in many phylogenetic con‑
texts (Suchard and Rambaut 2009; Dudas et al. 2017;
Ayres et al. 2019; Baele et al. 2021; Lemey et al. 2021).
In particular, Gangavarapu et al. (2023) recently showed
minimum increases of 8‑fold and 128‑fold for nucleotide
and codon models, respectively, when computing gra‑
dients with respect to branch rate parameters. A GPU
implementation of our approximate gradients would
likely produce notable speedups in inference, especially
for large state‑space models. Mathematically, our ap‑
proximation holds for any case in which there is a single
substitution rate matrix on any edge of the phylogeny
(although we have currently only implemented the case
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for a single rate matrix across the whole tree). However,
the process of geographic spread may be temporally
inhomogeneous while applying consistently across all
lineages alive at any given time. In such cases, epoch
models (Bielejec et al. 2014; Gao et al. 2022) are needed.
The epoch times break branches into multiple regimes,
which requires matrix convolutions for likelihood com‑
putation and thus an extension of our approach.

Random‑effects substitution models are a flexible ap‑
proach for creating more realistic substitution mod‑
els, but they are not a panacea. They cannot, for
example, address gross violations of the underlying
assumptions of the CTMC model, such as memory‑
lessness. Nor can they address dependence between
characters without carefully predefining the set of (po‑
tentially) coevolving characters and expanding the state
space of the model. The Bayesian bridge provides a ro‑
bust framework for regularization, and HMC an effi‑
cient framework for inference. However, the additional
complexity of random‑effects models may occasionally
cause challenges for MCMC which require more active
user intervention. Consider, for example, the (likely)
APOBEC‑induced C→T bias observed in our SARS‑
CoV‑2 example, which, in a double‑stranded virus, will
also lead to a G→A bias (Gigante et al. 2022; O’Toole
et al. 2023). Application of HKY+RE to such a dataset
will lead to multimodality (caused by ridges in the like‑
lihood) jointly involving five substitution model pa‑
rameters, 𝜅 and the pairs of random‑effects 𝜖𝐺→𝐴, 𝜖𝐶→𝑇
and 𝜖𝐴→𝐺, 𝜖𝑇→𝐶. Such multimodality does not invali‑
date the model, and it could be mitigated by the use of
TN93+RE or avoided entirely by using a simpler model
like F81+RE.
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