
UC San Diego
UC San Diego Previously Published Works

Title
Abnormal White Matter Blood-Oxygen-Level–Dependent Signals in Chronic Mild Traumatic 
Brain Injury

Permalink
https://escholarship.org/uc/item/53m901vr

Journal
Journal of Neurotrauma, 32(16)

ISSN
0897-7151

Authors
Astafiev, Serguei V
Shulman, Gordon L
Metcalf, Nicholas V
et al.

Publication Date
2015-08-15

DOI
10.1089/neu.2014.3547
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/53m901vr
https://escholarship.org/uc/item/53m901vr#author
https://escholarship.org
http://www.cdlib.org/


Abnormal White Matter Blood-Oxygen-Level–Dependent
Signals in Chronic Mild Traumatic Brain Injury

Serguei V. Astafiev,1 Gordon L. Shulman,1 Nicholas V. Metcalf,1 Jennifer Rengachary,1

Christine L. MacDonald,1,* Deborah L. Harrington,2 Jun Maruta,3 Joshua S. Shimony,5 Jamshid Ghajar,3,4

Mithun Diwakar,2 Ming-Xiong Huang,2 Roland R. Lee,2 and Maurizio Corbetta1

Abstract

Concussion, or mild traumatic brain injury (mTBI), can cause persistent behavioral symptoms and cognitive impairment,

but it is unclear if this condition is associated with detectable structural or functional brain changes. At two sites, chronic

mTBI human subjects with persistent post-concussive symptoms (three months to five years after injury) and age- and

education-matched healthy human control subjects underwent extensive neuropsychological and visual tracking eye

movement tests. At one site, patients and controls also performed the visual tracking tasks while blood-oxygen-level–

dependent (BOLD) signals were measured with functional magnetic resonance imaging. Although neither neu-

ropsychological nor visual tracking measures distinguished patients from controls at the level of individual subjects,

abnormal BOLD signals were reliably detected in patients. The most consistent changes were localized in white matter

regions: anterior internal capsule and superior longitudinal fasciculus. In contrast, BOLD signals were normal in cortical

regions, such as the frontal eye field and intraparietal sulcus, that mediate oculomotor and attention functions necessary for

visual tracking. The abnormal BOLD signals accurately differentiated chronic mTBI patients from healthy controls at the

single-subject level, although they did not correlate with symptoms or neuropsychological performance. We conclude that

subjects with persistent post-concussive symptoms can be identified years after their TBI using fMRI and an eye move-

ment task despite showing normal structural MRI and DTI.
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Introduction

The Centers for Disease Control and Prevention esti-

mates that each year approximately 3.5 million Americans

sustain a traumatic brain injury.1 Traumatic brain injuries can be

classified into mild, moderate, and severe categories, and about

90% of all TBI cases in the U.S. are classified as mild TBI (mTBI).2

Mild TBI is associated with a host of symptoms and signs:

headache, confusion, lightheadedness, dizziness, blurred vision or

tired eyes, ringing in the ears, fatigue or lethargy, a change in sleep

patterns, behavioral or mood changes (including post-traumatic

stress disorder [PTSD] and depression), and problems with mem-

ory, concentration, attention and thinking.3–8 It is unknown why a

percentage of mTBI individuals (*10–15% of adults but up to 40%

of children)9–11 continue to manifest symptoms at the chronic

stage. Conventional structural imaging scans are typically normal.

A key goal of current research is to identify a biomarker of

mTBI. While this condition may involve predominantly the white

matter, the sensitivity and specificity of diffusion tensor imaging

(DTI) methods in mTBI remains relatively low,12,13 although re-

cent DTI studies14–16 have demonstrated promising results. A re-

cent magneto-encephalography (MEG) study reported high

accuracy in identifying individual patients with mTBI (96% for

blast and 77% for non-blast mTBI),17 suggesting that analyses of

functional connectivity may provide a sensitive indicator of white

matter injury. However, the literature is mixed concerning func-

tional magnetic resonance imaging (fMRI); task-evoked blood-

oxygen-level–dependent (BOLD) responses may be increased or

decreased in mTBI patients, with only relatively small group dif-

ferences, compared with controls.18

One of the most commonly reported symptoms of mTBI is the

inability to focus and sustain attention in the presence of distracting
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information.19,20 Fluctuations in attention may increase perfor-

mance variability, possibly due to deficits of anticipatory (top-

down) prediction21 or an imbalance between goal-driven (top-

down) and stimulus-driven (bottom up) attention.22

Here, we utilized a battery of neurocognitive and visual tracking

tasks to examine anticipatory and/or goal- versus stimulus-driven

attention deficits in chronic mTBI individuals with persistent post-

concussive symptoms. The ‘‘prediction’’ hypothesis was tested by

measuring the accuracy and variability of visual tracking eye move-

ments to a target moving at constant speed in a circular trajectory

(‘‘Tracking Alone’’ condition, TA; Fig. 1A) or when the target dis-

appeared for a short period of time (‘‘Tracking with Gaps,’’ Gap),

tasks that require predictive signals.23–25 The alternative hypothesis of

an ‘‘imbalance’’ between goal- versus stimulus-driven attention22 was

examined by presenting unexpected distracter stimuli at random lo-

cations moving either clockwise or counterclockwise to the target

while subjects continued to track the primary visual target. This task

required participants to maintain accurate predictive ‘‘goal-driven’’

tracking in the presence of distracting ‘‘sensory-driven’’ input

(‘‘Tracking with Distracters,’’ TD; Fig. 1B).

We also used fMRI to measure BOLD signals across the brain in

order to identify regions responsive to eye movements and in-

creased metabolic demands. Our results indicate that eye move-

ment measures, BOLD responses in attention-oculomotor regions,

and neurocognitive measures do not reliably separate chronic

mTBI patients from controls; in contrast, the shape of the BOLD

signal during continuous visual tracking tasks in a distinct set of

subcortical gray and white matter regions reliably separates chronic

mTBI subjects from controls at the individual level.

Methods

Subjects

The data in this report were collected at two sites: Washington
University in St. Louis, Missouri, School of Medicine (Wash. U.)
and University of California, San Diego (UCSD). Informed consent
was obtained in accordance with procedures approved by the local
human studies committees.

Based on the literature,26–30 we defined ‘‘chronic’’ mTBI as
three months post-injury. The inclusion criteria at both sites were as

FIG. 1. A schematic illustration of eye movement tasks and dependent measures. (A) Tracking Alone task. The red dot indicates the target
dot the subject was instructed to follow. The white circle (not visible in actual display) indicates the target path while the white arrow (not
visible in actual display) indicates the direction of target motion. The red dot at the center of the Fixation frame indicates the dot on which the
subject was instructed to fixate between trials of smooth pursuit tracking. (B) Tracking with Distracters task. The red dot inside the white circle
indicates the distracter dot, which in this example moves in the direction opposite to that of the target dot. (C) Sample eye traces (blue lines) for
a mild traumatic brain injury patient and schematic display of dependent measures computed from the eye data. Yellow directional lines mark
saccades. Red lines mark a blink. (1) The red target that the subject was instructed to track; (2) eye position; (3) radial (4) and tangential
vectorial components of eye position error (distance between target position and eye position); and (5) phase error (phase difference between
the eye and target positions). (D) Sample eye traces for matched control subject. Color image is available online at www.liebertpub.com/neu
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follows: isolated traumatic brain injury with or without loss of
consciousness (LOC) three months to 5.5 years prior to testing; any
persistent post-concussive symptoms; any length of post-traumatic
amnesia (PTA); Glasgow Coma Scale (GCS) score of 13–15 at time
of injury (if available); and age 18–60. Exclusion criteria for both
controls and mTBI patients were as follows: neurological or pre-
morbid psychiatric disorder (including attention-deficit/hyperactivity
disorder [ADHD] and seizure disorder); alcohol/substance abuse;
and gross visual (worse than 20/30 corrected) or hearing problems.

Wash. U. site. Twenty chronic mTBI patients (nine males)
and twenty-two healthy control subjects (10 males) were enrolled
to complete two sessions—one involving psychometric testing
and eye movement recordings during visual tracking tasks, and one
involving structural and functional MRI. All mTBI patients
were enrolled from the Wash. U. Concussion Clinic. As a group
(Supplementary Table S1; see online supplementary material at
www.liebertpub.com) this sample included a high proportion of
professionals with a low incidence of premorbid psychological or
psychiatric problems. All patients but one experienced LOC, and
all experienced PTA. In three patients, the duration of anterograde
PTA (aPTA) was longer than 24 h. Four patients had positive MRI
findings, of which only three clearly related to TBI. Two patients
with positive radiological findings related to TBI also had > 24 h
PTA. The great majority of patients returned to work (80%).

Exclusion criteria for MRI included: metal objects in body
(except objects proven to be safe for 3 Tesla MRI), pregnancy, and
severe claustrophobia. Behavioral data for one chronic mTBI pa-
tient were incomplete. Two mTBI patients withdrew from the
imaging study, one with > 24 h aPTA; one patient with both > 24 h
aPTA and positive radiology was removed from the imaging study
due to excessive movement during scanning.

Therefore, while the group of patients who completed neu-
ropsychological and visual tracking studies included three subjects
with prolonged aPTA and three subjects with abnormal radiology
(two subjects with both findings, for a total of four subjects), the
group that completed the fMRI experiments included only one
subject with prolonged aPTA and positive radiology (subject p17)
and one subject with positive radiology only (p10). One healthy
subject did not participate in the imaging session due to claustro-
phobia, and one was removed because of excessive movement.
Overall, 17 chronic mTBI patients and 20 control subjects were
included in the final analysis of the fMRI scans of the visual
tracking task. All subjects were compensated for their time ($25/h
for MRI sessions and $10/h for the behavioral session).

UCSD site. Twenty-five mTBI (21 males) patients and 25
age- and education-matched healthy control subjects (17 males)
were enrolled. Patients were recruited mostly from TBI clinics at
UCSD, referrals from neurologists, and other mTBI studies con-
ducted at UCSD. Some patients were recruited from community
advertisements. Subjects participated in a neuropsychological
testing session, and one session in which eye movements were
recorded during visual tracking while subject underwent MEG. In
this second sample, 95% of patients reported PTA, and 70% of
patients reported LOC. Patients were excluded if they were hos-
pitalized for their injury, had an abnormal computed tomography
(CT) or MRI (only for patients who went to the emergency de-
partment), were intubated, had multiple TBIs, had loss of job due to
the injury, had confirmed use of psychotropic or cognitive en-
hancing medication, or showed evidence of malingering (Test of
Memory Malingering). Admission GCS scores and MRI/CT re-
ports at time of injury were unavailable.

Therefore, the two groups slightly differed in terms of enroll-
ment and severity of mTBI. However, they were similar in terms of
level of function (as most patients returned to their original work)
and low levels of psychopathology.

Healthy control subjects at both sites were recruited from the
universities’ research volunteer databases, while some controls
subjects at UCSD were recruited from community advertisements.
Control subjects were not related to the mTBI patients and were
matched with patients for age and education. Control subjects were
required to have no history of TBI, closed head injury, or concus-
sion, as confirmed by Brain Injury Screening Questionnaire
(BISQ). Control subjects also were required to have no history of
depression or PTSD.

Supplementary Table S1 presents information about demo-
graphics, socio-economic status, injury variables, and return to
work. To insure that the behavioral testing procedure was stan-
dardized, the staff performing the measurements at both sites un-
derwent training sessions. The coordinating center (Brain Trauma
Foundation) also made a video demonstration of the behavioral
battery, which was reviewed by the neuropsychologist at each of
the participating sites.

Neuropsychological testing

The following neuropsychological tests were administered at
both sites: Head Injury Symptom Checklist (HISC), BISQ, Center
for Epidemiologic Studies Depression Scale (CES-D), Conners’
Adult ADHD Rating Scales (CAARS), PTSD Checklist (PCL-C),
California Verbal Learning Test, Second Edition (CVLT-II), At-
tention Network Test (ANT), Controlled Oral Word Association
Test (COWAT), the Spatial Span subtest of the Wechsler Memory
Scale-III, and the Wechsler Test of Adult Reading (WTAR). The
Java version of the ANT31 was administered on Windows XP
personal computer (Microsoft, Redmond, WA). All other tests
were administered using a paper version. Post-concussive symp-
toms were measured using the HISC and BISQ. The results of
several tests—HISC, BISQ, CES-D, PCL-C, and ANT—are re-
ported as raw scores as these measures lack normative scores.
CVLT test results were converted into Z-scores based on test norms
(except the Immediate Recall subtest, which was converted into
T-values). CAARS and COWAT scores are reported as T-scores
based on norms. The Spatial Span subtest of the Wechsler Memory
Scale-III, and WTAR are reported as standard scores based on the
test norms. Test scores not available as standard Z-scores or
T-scores (i.e., raw scores for tests without norms) were converted
into Z-scores by subtracting our sample mean and dividing the
result by the standard deviation of our sample.

Visual tracking tasks

During the Wash. U. behavioral session and UCSD MEG ses-
sion, subjects were seated in a darkened room, given instructions,
and then asked to perform a shortened practice version of each task
before testing. The pursuit target was a red disk moving clockwise
in a circular trajectory of 10� against a black background (Wash. U.
behavioral session and UCSD MEG session) or 6� radius (Wash. U.
MRI session) at 0.4 Hz. The eye movement analyses presented in
this paper are based on the data collected during the behavioral
session. We did not observe any practice effect between the be-
havioral session and MRI session in the Wash. U. sample.

Three different smooth pursuit tracking tasks were used at both
sites (Fig. 1A and 1B). During a TA task, only the target (red circle
of 0.5� in Wash. U. behavioral session; supplementary Movie 1; see
online supplementary material at www.liebertpub.com) and 0.9� in
UCSD MEG session was presented on screen.32 UCSD changed the
dot size to achieve a smoother dot motion for the MEG display
settings.

During a TD task, a distracter disk (a red disk identical to the
target but moving with a slightly different circular trajectory) was
occasionally presented for 800–1200 msec with a random inter-
stimulus interval (ISI) of 800–1500 msec (supplementary Movie 2;
see online supplementary material at www.liebertpub.com). The
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distracter phase angle always crossed the target phase angle (i.e.,
the path of the distracter either fell behind or moved ahead of the
target), although the target and distracter stimuli always remained
distinct throughout the trajectory because of their different radial
distances or eccentricities. There were four types of distracter
paths, averaged over eccentricities (inside [9.25�] or outside
[10.75�] of target trajectory): 1) Initial position (ahead; + 2.5� of
phase angle), speed (slower; 0.34 Hz), direction (clockwise); 2)
Initial position (behind; - 2.5� of phase angle), speed (faster;
0.46 Hz), direction (clockwise); 3) Initial position (ahead; + 2.5� of
phase angle), speed (slower; 0.34Hz), direction (counterclock-
wise); 4) Initial position (ahead; + 2.5� of phase angle), speed
(faster; 0.46 Hz), direction (counterclockwise). This task was de-
signed to measure the subject’s ability to suppress distracting in-
formation, a frequent complaint of mTBI patients.

During a Gap task, the target sometimes disappeared. The sub-
ject was instructed to follow the target’s movement as closely
as possible and anticipate the target’s movement if it was not vis-
ible. Three gap durations were randomly presented (short, 30�
[208 msec]; medium, 45� [312 msec]; and long, 60� [416 msec]),
with a random ISI of 1250–3250 msec. This task was designed to
measure the subject’s ability to maintain predictive signals, which
are necessary for accurate tracking, in the absence of sensory input.
The behavioral data from the gap task and MEG data will be re-
ported in a separate paper.

During all three tasks, a central red dot was presented when the
target was not moving (fixation-only periods). During the Wash. U.
behavioral session, the central dot blinked before the target started
to move and turned green before the block ended (supplementary
Movie 1). During the Wash. U. behavioral session, eight blocks of
the eye movement tasks were presented: two blocks of the TA task,
three blocks of the TD task, and three blocks of the Gap task. Each
block contained three trials, where each trial consisted of six
complete cycles around the circle (2.5 sec duration for each cycle,
yielding a trial duration of 15 sec). The three tasks were presented
in a different random order for each subject for the first set of blocks
(1–3). The random task order for the first set of three blocks was
reversed for the second set of three blocks (4–6). Blocks 7 and 8,
which involved the TD task and Gap task, were presented in ran-
dom order. About 29 visual distracters were presented per block in
the TD task (not counting the distracter presented during the first
cycle of each trial), and three blocks were run in each subject; thus,
a total of 87 distracters were presented for each subject.

During the Wash. U. MRI session, each eye movement task was
performed in three separate scans, where each scan lasted for
2.8 min. The order of scans was determined using a Latin square.
Each trial of tracking lasted 15 sec, consisting of six 2.5-sec cycles,
and was followed by a fixation period (only central red fixation dot
presented) of 9 sec, 11 sec, or 13 sec, randomly determined. A
random fixation interval allowed us to estimate the BOLD signal
during the visual tracking task without assuming a hemodynamic
response function.33,34 Six trials were presented within each scan.
Before each MRI scan started, the name of the task was visually
presented on screen for several seconds, disappearing with the start
of first MRI frame and replaced by the central red fixation dot,
which was presented for 8 sec. Eye movements were recorded in all
subjects. Eye position signal was of lower quality in two mTBI
patients and two controls subjects.

In the UCSD session, all three tasks were presented in the same
block. Two orders were used: TA, Gap, TD; or TD, Gap, TA. The
order of the tasks was counterbalanced across subjects. Each block
consisted of 11 complete cycles of the circle (27.5 sec) and was
presented three times with the same task order. About 11 visual
distracters were presented per block (not counting the distracter
presented during the first cycle), and three blocks were run in each
subject; thus, 33 distracters were presented to each subject. A nine-
point eye position calibration was performed before each block on
both sites in all sessions.

An example recording for an mTBI (Fig. 1C) and a healthy
control (Fig. 1D) subject is shown. Eye data were analyzed simi-
larly to previously published data.32 We analyzed the mean and
standard deviation (SD) of radial error (RE), mean and SD of
tangential error (TE), mean phase error, and saccade parameters,
including the number of saccades and the mean saccade duration
(Fig. 1C). Calculation of tracking parameters during the TA task
was based on the entire period of target motion after the first cycle.
In the analysis of the TD task, the 500 msec interval preceding
distracter onset was separately analyzed from the 1000 msec in-
terval following the distracter onset. In the Wash. U. behavioral
session, the software controlling the TA task was identical to the
TD task but distracters were not visible. Therefore, the 500 msec
interval before distracter ‘‘onset’’ in the TA task could be processed
as in the TD task. Due to technical problems, only 19 mTBI patients
and 20 matched controls were included in the analysis comparing
the 500 msec interval before distracter presentation in the TA and TD
tasks. In the Wash. U. behavioral session, for each block, the eye
analysis software analyzed eye movement traces from the eye with
the smaller SD of radial error. This procedure minimized the influ-
ence of noise on the data and is justified because ocular dominance
should have little influence on visual tracking performance35,36; a
detailed rationale is described by Maruta and colleagues.36

Apparatus

An infrared eye-tracker (EyeLink 1000; SR Research Ltd, On-
tario, Canada) was used to record eye movements binocularly in the
Wash. U. behavioral session (sampling at 500 Hz), and monocu-
larly during the Wash. U. MRI (sampling at 500 Hz) and the UCSD
MEG sessions (sampling at 1000 Hz). A desktop mount with chin
rest was used in the Wash. U. behavioral session, and a long-range
mount with head stabilization was used in the Wash. U. MRI and
UCSD MEG sessions.

Stimuli were generated on a PC running Windows XP and using
Experiment Builder (SR Research Ltd, Ontario, Canada), which
allowed online integration with the EyeLink 1000 (SR Research
Ltd, Ontario, Canada) eye tracker. Visual stimuli were presented
during the Wash. U. behavioral session on a Samsung SyncMaster
2233RZ (Samsung, Ridgefield Park, NJ) LCD monitor (1680 · 1050
at 120 Hz)37 during the Wash. U. imaging session on a Boxlight
CD715X (Boxlight Corporation, WA, USA) digital light processing
(DLP) projector (1024 · 768 at 75 Hz) and rear projection screen, and
during the UCSD MEG session on a Panasonic PT-D7700 (Panasonic
Corporation of North America, Newark, NJ) DLP projector
(1024 · 768 at 60 Hz).

Eye movement data analysis

Analysis of eye movement data was performed using in-house
software (C ++ and scripts based on Matlab (The MathWorks,
Natick, MA). The first cycle from each trial was always discarded.
Samples that were marked as blinks or saccades were excluded
from analysis. We used the EyeLink 1000 saccade and blink de-
tector. Saccades were detected based on the following criteria:
saccade motion threshold = 0.1�; saccade velocity threshold = 30�/
sec; saccade acceleration threshold = 8000�/sec2. A sample was
marked as a blink when the pupil size was either very small, or the
pupil either was not detected or was severely distorted by eyelid
occlusion (SR Research Ltd manual). All blocks with more than
15% of frames marked as blinks were excluded from the analysis
(nine blocks [6%] in mTBI patients and four [2.6%] blocks in
controls were excluded from the UCSD data, while no blocks were
excluded from the Wash. U. data). Eye data were corrected for
hardware delays. Delays were measured by a photodiode that was
connected to an amplifier that also received transistor-transistor
logic pulses linked to the onset of stimulus generation. The hard-
ware delay was 10 msec for the Wash. U. behavioral session and
36 msec for the UCSD session.
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Imaging sessions at Wash. U. site

All MRI scans were collected on a Siemens (Siemens Cor-
poration, New York, NY) 3T Tim-Trio scanner using standard
sequences. The first imaging session consisted of structural MRI
and DTI scans and roughly 30 min of resting state fMRI scans. The
second imaging session consisted of nine (three TA, three TD, three
Gap) 5-min scans during which subjects performed the eye
movement tasks in a blocked design, with 15-sec visual tracking
task periods alternating with variable fixation periods (9, 11, or
13 sec, randomly determined). Structural scans included a sagittal
magnetization prepared gradient-echo (MP-RAGE) T1-weighted
image (repetition time [TR] = 1950 msec; echo time [TE] = 2.26
msec; flip angle = 9�; voxel size = 1.0 · 1.0 · 1.0 mm) and a trans-
verse turbo spin-echo T2-weighted image (TR = 2500 msec; TE =
435 msec; voxel-size = 1.0 · 1.0 · 1.0 mm). BOLD contrast was
measured with a gradient echo echo planar (EPI) sequence (TR =
2000 msec; TE = 27 msec; 32 contiguous 4 mm slices; 4 · 4 mm in-
plane resolution).

DTI scans consisted of two averages of a 64-direction diffusion
tensor imaging sequence (voxel size = 2 · 2 · 2 mm; TR = 9200
msec; TE = 92 msec; 9 · b-value = 0 sec/mm2; the rest b-value =
1000 sec/mm2). Because this report does not include results from
the resting state scans, we only describe the processing of the task
scans and DTI. Functional MRI data were preprocessed using
standard methods described previously.38,39 Preprocessing con-
sisted of the following steps: 1) asynchronous slice acquisition was
compensated by sinc interpolation to align all slices; 2) elimination
of odd/even slice intensity differences resulting from interleaved
acquisition; 3) a whole–brain normalization corrected for changes
in signal intensity across scans; 4) data were realigned within and
across scans to correct for head movement; 5) EPI data were co-
registered to the subject’s T2-weighted anatomical image, which in
turn was co-registered with the T1-weighted MP-RAGE, in both
cases using a cross-modal procedure based on alignment of image
gradients.40 The MP-RAGE was then transformed to an atlas-
space41 representative target using a 12-parameter affine transfor-
mation. Movement correction and atlas transformation were ac-
complished in one resampling step (resulting in an isotropic 3 mm
voxel size) to minimize blur and noise. The first four frames of each
scan were eliminated to allow steady-state magnetization, and the
remaining frames were concatenated.

Similar to the BOLD data, DTI data was preprocessed and
transformed into standardized Talairach atlas space. Co-registra-
tion of each DTI image set was performed using vector gradient
measure maximization.40 The first acquired, unsensitized
(b =*0 sec/mm2) DTI volume was registered to the T2 image;
stretch and shear was enabled (9-parameter affine transform) to
partially compensate for subject motion and eddy current distor-
tion. For the initial DTI analyses, white matter was segmented
using a fractional anisotropy (FA) threshold of 0.2 or higher.
Voxelwise statistical analysis of the FA data was performed using
Tract-Based Spatial Statistics (TBSS).42 TBSS projects all sub-
jects’ FA data onto a mean FA tract skeleton, and measures dif-
ferences between groups using voxelwise statistics.

The second imaging session consisted of nine scans (83 frames
per scan; 2.8 min duration) during which subjects performed the
ocular pursuit tasks inside the MRI scanner. fMRI data from the
second imaging session were co-registered with the data from
the first imaging session. All functional MR frames in the second
imaging session (the task imaging session) with a total head
movement score of 0.9 mm or higher, including the frame imme-
diately after the frame that exceeded the movement threshold, were
removed from analysis. Head movement values were calculated by
differentiating head realignment parameters across frames (which
yielded a six-dimensional time series that represents instantaneous
head motion) and converting them to a single number using a
previously-published method.43

The blocked-design task scans were analyzed using an assumed
hemodynamic response function (HRF) time-locked to the start of
each 15-sec task block33 within a general linear model (GLM). The
GLM included separate regressors for task (TA, TD, or Gap), linear
trend, and baseline, and provided an estimate of the magnitude of
the BOLD response at each voxel for each task. An additional set of
GLMs was computed using a finite impulse response model that did
not assume a shape for the HRF. This GLM was used to extract
time-courses of the BOLD signal.

fMRI classification analyses

To classify healthy controls versus chronic mTBI patients, a
leave-one-subject-out (LOSO) analysis was employed in which the
BOLD signal magnitude was extracted for each patient or control
from a region of interest (ROI) that was determined in a completely
separate group of patients and controls.44 To determine the ROIs,
we ran 37 voxelwise (17 mTBI, 20 controls) analysis of variance
(ANOVA) procedures on the BOLD magnitudes with Task (TA,
TD, Gap) and Group (mTBI, controls) as factors, where in each
ANOVA one patient or one control subject was excluded. Each of
the 37 statistical maps corresponded to the main effect of Group in
an ANOVA after correction for multiple comparisons using a high
Z-score/low cluster size threshold corresponding to p = 0.05
(z value of 4.0 or above, cluster size of 4 voxels). The peak in each
ANOVA map with the highest Z-score was selected and used as the
ROI in which to measure the BOLD signal magnitude in the patient
or control subject that was left out of the ANOVA. This procedure
ensures that the classification based on BOLD accuracy was based
on an ROI that was created using data that were completely sepa-
rate from the data for the patient or control subject.

A second analysis evaluated the accuracy of classification ob-
tained from examining individual differences in BOLD signal re-
sponse of mTBI patients and controls. The BOLD response during
visual tracking in each patient (with respect to a fixation baseline)
was compared with the BOLD response in a group of healthy
controls (17 t-tests; each patient vs. 20 controls); the variability of
the response in each control was assessed against the remaining
controls (20 t-tests; each control subject vs. the remaining control
subjects) following the procedure developed in.45 The resulting z-
maps were corrected for multiple comparisons (Monte Carlo cor-
rection). We counted the number of positive or negative voxels
with a z value ‡ 2.25 for each patient and control subject within the
‘‘abnormal’’ group ROI (i.e., the ROI in which we find group dif-
ferences). A binary logistic regression was then computed sepa-
rately on positive, negative, or both negative and positive voxels.

Statistical analysis

All statistical analysis, except for voxel-wise and regional ANO-
VAs and t-tests of fMRI data, was performed using IBM SPSS Sta-
tistics, v.20 (IBM Corporation, Armonk, NY). We used in-house
software to analyze the fMRI data, and results of voxel-wise statistical
tests were corrected for multiple comparisons (Monte Carlo correc-
tion). Comparisons of eye data parameters and fMRI data were con-
ducted with repeated-measures mixed model ANOVA. A sphericity
correction was applied if necessary. The independent samples Mann–
Whitney U test was used to compare means for non-normally dis-
tributed data, and the independent samples t-test was used to compare
normally distributed data. Tests of normality were performed using the
Shapiro-Wilk test. Statistical significance was preset at p < 0.05.

Results

Neuropsychological tests reveal multiple deficits
in mTBI patients

Two separate groups of chronic mTBI patients with persistent

post-concussive symptoms (see Methods for inclusion/exclusion

1258 ASTAFIEV ET AL.



criteria) and healthy controls matched for age and education were

studied at Wash. U. and UCSD. Patients were on average 14 months

(Wash. U.) and 32 months (UCSD) post-injury (Supplementary

Table S1). Although months post-injury (MPI) was significantly

different between Wash. U. and UCSD, none of the behavioral

variables (neuropsychological data and symptoms) correlated with

MPI. Supplementary Table S1 presents demographic data, a list

of symptoms, and a summary of radiological findings for each

mTBI patient.

Mild TBI patients typically suffer from somatic problems (e.g.

headaches), affective problems (e.g. mood), and cognitive prob-

lems (e.g. attention and memory). In our study, 68% of patients

reported headache, 18% reported depression, 66% reported trouble

concentrating, and 77% reported memory problems. Patients

scored higher for depression (CES-D; independent samples Mann–

Whitney U test, p < 0.008, mTBI [n = 45] vs. healthy controls

[n = 47]; Fig. 2A) and PTSD (PCL-C total; p < 0.000; Fig. 2B).

Patients also manifested memory deficits on the CVLT-II across

multiple sub-scales (Fig. 2C; all, p < 0.05). Patients were slower to

respond to visual targets (overall reaction time) on the ANT

( p = 0.005; Fig. 2D), and generated fewer words to a letter

(COWAT, p < 0.01). Finally, patients demonstrated significantly

lower performance on a test of pre-morbid IQ (WTAR; p = 0.005).

In general, neuropsychological profiles were similar across sites

(Fig. 2; Table 1) with a few exceptions (lower scores for WTAR

and ANT in the Wash. U. group; all, p < 0.05).

Importantly, inspection of the scatter plots for individual tests in

which significant group differences were detected (Fig. 2A-D)

showed considerable overlap in the distributions of scores for

mTBI and control subjects, indicating that the neuropsychological

tests did not reliably differentiate control subjects from chronic

mTBI patients at the individual subject level.

To examine whether it was possible to differentiate mTBI from

healthy controls based on the most informative neuropsychological

tests, we averaged the Z-scores for the five variables that showed

the strongest significant differences between mTBI patients and

controls (CES-D, PCL-C total, overall reaction time on the ANT,

letter scale of the COWAT, CVLT-II long delay cued recall stan-

dard score; Table 1). A discriminant analysis with ‘‘leave-one-out

classification’’ as a cross-validation method was used to quantify

the degree to which neuropsychological tests separated mTBI pa-

tients from controls. The accuracy of classification was relatively

low (62.2%).

No significant group differences in visual
tracking performance

Supplementary Movie 3 (see online supplementary material at

www.liebertpub.com) presents the actual eye position (left eye:

purple dot; right eye: green dot) during the TA task superimposed

on eye position traces (blue line) for a chronic mTBI patient.

To test for changes in performance variability during predictive

tracking, we compared mean eye position error and the variability

of the position error averaged over the whole task period in the TA

task. Inspection of the scatter plots for mTBI patients and control

subjects (separately for Wash. U. and UCSD) for TA (Fig. 3A and

3B) revealed a non-significant trend for increased variability of

tracking errors in the mTBI groups, with more variability for par-

ticipants (both control subjects and mTBI patients) at the UCSD

site. These impressions were quantified with separate ANOVAs on

the variability of radial error (RE) and tangential error (TE) using as

factors Site (Wash. U./UCSD) and Group (mTBI/Control).

There was greater RE variability at the UCSD than Wash. U. site

(UCSD = 1.19 – 0.07 [mean – standard error of the mean], Wash.

U. = 0.75 – 0.08; main effect of Site, F[1,88] = 16.2; p < 0.001).

There was only a non-significant trend for overall greater vari-

ability in the mTBI group (SD of RE: mTBI = 1.05 – 0.08; con-

trol = 0.89 – 0.08; main effect of Group, F[1,88] = 1.9; Fig. 3A). No

other interactions were significant.

FIG. 2. Neuropsychological test scores in mild traumatic brain
injury (mTBI) patients and controls. (A-D) Distribution of test scores
(converted into Z-scores) for depression (Center for Epidemiologic
Studies Depression scale: A) post-traumatic stress disorder (PTSD;
PTSD Checklist scale total); (B) working verbal memory (California
Verbal Learning Test-Second Edition long delay free recall score;
and (C) and reaction time (Attention Network Test, overall reaction
time); (D) Red diamonds display the scores from Washington Uni-
versity (Wash. U.). Mild TBI patients, red circles display the scores
from University of California, San Diego (UCSD) mTBI patients;
blue diamonds and blue circles display the scores from Wash. U. and
UCSD matched control subjects, respectively. Red and blue bars
indicate the mean scores for mTBI patients and control subjects,
respectively. Error bars represent standard error of the mean. Color
image is available online at www.liebertpub.com/neu
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Similar results were obtained for variability of the tangential

error (SD of TE; Fig. 3B). There was greater variability at the

UCSD site (UCSD = 1.55 – 0.13, Wash. U. = 1.11 – 0.14; main ef-

fect of Site, F[1,88] = 5.4; p = 0.023), and a non-significant trend for

overall greater variability in the mTBI patients (mTBI = 1.45 –
0.14; control = 1.21 – 0.13; main effect of Group, F[1,88] = 1.6). No

other interactions were significant. Null differences between the

patients and controls also were obtained for mean eye position

errors (radial and phase error). Finally, there were no significant

differences between chronic mTBI patients and controls for either

average number of saccades per cycle (each cycle lasted 2.5 sec) or

for mean saccade duration during the TA task.

To summarize this first set of results, there were only non-

significant increases in variability in mTBI patients, against the

hypothesis of impaired anticipation of sensory stimuli21 at the

chronic stage of injury.

The second hypothesis predicted that mTBI patients would show

reduced filtering of irrelevant distracting stimuli, potentially re-

flecting a deficit in stimulus-driven attention. Therefore, we ana-

lyzed the effect of visual distracters on performance by computing

effects on eye position error time-locked to the presentation of the

distracters.

Tracking performance in the TD and TA tasks differed in two

ways. First, the potential presence of a distracter changed how the

subjects performed the task, even when a distracter was not present

on the screen. We compared the variability of tracking during the

500 msec period prior to the onset of a distracter with a matched

500-msec period in the TA task (the analysis was based on 19

chronic mTBI patients and 20 matched controls collected in Wash.

U.; see Methods for details). Both the SD of RE (TA = 0.41 – 0.02;

TD = 0.37 – 0.01; main effect of Task, F[1,37] = 16.8; p < 0.001)

and the SD of TE (TA = 0.60 – 0.04, TD = 0.52 – 0.03; main effect

of Task, F[1,37] = 11.3; p < 0.005) were significantly lower in the

TD task. Neither the main effect of Group nor the Task · Group

interaction were significant for either parameter. The reduction of

variability during the pre-distracter baseline in the TD task, relative

to the TA task, likely reflected a tonic increase in top-down con-

trol in order to prevent interference from the distracters. However,

apparently both groups were able to exert stronger attention

control.

The second effect of the distracters concerned the eye movement

trajectory following distracter onset. Figure 3C (Wash. U.) and

Figure 3D (UCSD) present average time-courses of the mean phase

error before and after the onset of a distracter that initially appeared

ahead of the target and then moved in a direction opposite to the

target. Eye movement in both chronic mTBI and healthy subjects

was clearly influenced by the onset of the distracter, as their

tracking fell behind the target around 100 msec after distracter

onset, reaching a maximum deviation at about 250 msec before

returning to baseline at around 500 msec after distracter onset.

To quantify the effects of distracters on tracking performance,

we compared the mean phase error during the 500 msec pre-

distracter baseline period to the same measures during the 50- to

FIG. 3. Visual tracking errors analysis. Distributions of the vari-
ability of visual tracking errors and average time-courses of mean
phase error. (A) Standard deviation (SD) of radial error (SD of RE; in
degrees of visual angle) during Tracking Alone task. (B) SD of tan-
gential error (SD of TE; in degrees of visual angle) during Tracking
Alone task. (C and D) Average time-courses of mean phase error
during the Tracking with Distracters task. Data are shown for the
distracter type with Initial position ahead ( + 2.5�), speed slower than
target (0.34 Hz) and counterclockwise direction, based on the data
collected at Washington University (C) and University of California,
San Diego (D). The black arrow indicates the time of distracter onset.
Green line represents the difference between the distracter phase and
target phase. Red and blue lines represent mean phase error for mild
traumatic brain injury (mTBI) patients and control subjects, respec-
tively. Red and blue shaded areas represent standard error of the mean
for mTBI patients and control subjects, respectively. Color image is
available online at www.liebertpub.com/neu
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500-msec period following the onset of a distracter. ANOVAs with

the factors Distracter type (four distracter types), Site (Wash. U./

UCSD), and Group (mTBI/Control), revealed only a main effect of

Distracter type (F[2,177] = 3.3; p = 0.038) due to reduced interfer-

ence from distracters that initially appeared behind the target and

then moved ahead. There was no main effect of Group and no

interactions were significant. Thus, the effect of distracters on vi-

sual tracking was equivalent for patients and controls, contrary to

our hypothesis that patients were more susceptible to distraction.

Therefore, neither neuropsychological nor eye movement mea-

sures could be used to accurately determine whether an individual

subject was a chronic mTBI patient according to the inclusion

criteria for the study. These measures may be more accurate at

identifying mTBI patients at the acute stage.

Abnormal BOLD signals in chronic mTBI using visual
tracking task

The blocked-design task scans were analyzed using an assumed

HRF33 within the GLM. Analysis of the fMRI data for controls

from all three visual tracking tasks (TA, TD, and Gap) relative to

the fixation baseline (Fig. 4A) revealed strong activation in the

dorsal attention system (frontal eye field [FEF], posterior in-

traparietal sulcus [IPS], ventral IPS, medial temporal complex

[MT + ]), visual cortex, cerebellum, putamen, and thalamus.22,46–48

In chronic mTBI patients, we observed similar cortical and cere-

bellar responses, along with decreased activity in different cortical,

subcortical, and white matter regions (Fig. 4B). A two-factor voxel-

wise ANOVA on BOLD response magnitude with Task (TA, TD,

Gap) and Group (mTBI patients, controls) as factors, with correc-

tion for multiple comparisons (Monte Carlo correction with a

z value of 3.0 or above, with a cluster size of 13 voxels), showed

large differences between chronic mTBI patients and controls in

right inferior frontal gyrus and underlying white matter, basal

ganglia, and several white matter regions (Fig. 4C).

To examine in greater detail the source of this difference, we

created a large ‘‘abnormal’’ ROIs containing all voxels demon-

strating significant differences between patients and controls (Fig.

5A). In controls, the BOLD response is positive, while in the

mTBI group the response is negative (Fig. 5B). The abnormal re-

sponse in mTBI was not dependent on the task (ANOVA, Task and

Group · Task; p > 0.10). Since each task was run in different scans,

this result indicates that group differences were robust and reliable.

The difference in response magnitude (Fig. 5B) reflected a dif-

ference in the shape of the BOLD signal time-course evoked by the

eye movement task. In healthy controls, the response approximated

the standard HRF, while in mTBI the BOLD time-course showed

large departures from the canonical HRF with a weak sustained

response during the task period and a delayed ‘‘off’’ response at the

end of the 15 sec tracking period (Fig. 5C). Signal time-course

analysis performed separately for each task (TA, TD, Gap), con-

firmed that the abnormal BOLD response in chronic mTBI was

independent of task. A similar pattern was observed when looking

at signals from individual regions contributing to the large ROI,

FIG. 4. Functional magnetic resonance imaging activation during tracking tasks in mild traumatic brain injury (mTBI) patients and
matched controls. (A and B) Selected brain slices with overlapping statistical map representing z values of one sample voxelwise t-test
that compared tracking (collapsed over tasks) vs. fixation for matched control subjects (A) and for mTBI patients (B). Warm colors
indicate activations that are stronger during tracking than during fixation. Cold colors represent activations that are stronger during
fixation than during tracking. (C) The same brain slices with overlapping statistical map show z values for the main effect of group from
a voxelwise analysis of variance. (Controls vs. mTBI patients, collapsed over task). Color scales indicate z-statistic. WM, white matter;
Put, putamen, IC, internal capsule; vCBL, cerebellar vermis; vIPS, ventral IPS; MT + , middle temporal complex; L, left; R, right; A,
anterior; P, posterior. Color image is available online at www.liebertpub.com/neu
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with a decreased sustained response and delayed ‘‘off’’ response

(not shown).

Next, we examined individual differences in the abnormal

BOLD response between chronic mTBI and control subjects. Fig-

ure 5D shows a scatter plot of magnitude values for mTBI and

control subjects from the large ‘‘abnormal’’ ROI (the ROI con-

taining all voxels with significantly different magnitudes between

patients and controls). A remarkable separation was observed be-

tween mTBI and healthy controls. Similar results were obtained for

each task separately, or by dividing the data in odd versus even runs

(not shown). These control analyses suggest that these results are

reliable within this group of subjects.

To examine the accuracy of classification (mTBI vs. healthy)

without a bias in ROI selection, we first conducted a LOSO anal-

ysis, in which the magnitude of the BOLD signal in a control

subject or mTBI patient was determined from an ROI that showed

the most reliable group difference between the remaining control

subjects and mTBI patients—that is, the LOSO ROI was deter-

mined in a group analysis with the patient or control subject ‘‘left

out’’44 (see Methods). Because there were 17 mTBI patients and 20

control subjects, 37 separate ANOVAs were conducted to identify

the appropriate unbiased ROI for the 37 participants. Overall, the

accuracy of the classification as determined by linear discriminant

analysis after the LOSO analysis was 78.4%.

Two locations in the white matter appeared as the most reliable

foci in the 37 ANOVAs used to identify the ROIs (i.e., the focus

with the highest Z-score for the mTBI vs. control difference in the

group ANOVA). Those foci are shown in Figure 5A with arrows.

One focus was in the right anterior internal capsule (IC), which had

the highest Z-score in 34 of the 37 ANOVAs. A second focus was in

FIG. 5. Magnitudes and time-courses from large region of interest (ROI). Magnitudes and time-courses extracted from voxels demonstrating
significant differences between patients and controls. (A) Selected brain slices showing voxels with a significantly reduced blood-oxygen-
level–dependent BOLD signal in mild traumatic brain injury (mTBI) patients relative to controls. The set of all voxels showing significant
differences formed an ‘‘abnormal’’ ROI. L, left; R, right; A, anterior; P, posterior. (B) BOLD magnitudes from the abnormal ROI, averaged
across tasks. Error bars represent standard error of the mean. (C) The time-course of the BOLD signal in the abnormal ROI. The canonical
hemodynamic response function (HRF) used in the analysis to compute the BOLD magnitudes also is shown (labeled ‘‘canonical response’’).
(D) Scatter plot of BOLD magnitude values from the abnormal ROI for mTBI patients (red diamond) and controls (blue circles) vs. PCL-C
(Post-traumatic Stress Disorder Checklist) total score. ‘‘Complex mTBI’’ (mTBI patients with positive radiological findings and/or antegrade
post-traumatic amnesia longer than 24 h are indicated by open diamonds. Color image is available online at www.liebertpub.com/neu
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the right superior longitudinal fasciculus (SLF), which had the

highest Z-score in the remaining three ANOVAs. Similar regions

(IC [atlas x,y,z = + 21, + 08, + 16]) and SLF [atlas x,y,z = + 31,-22,

+ 36]) were the top two peaks in the group ANOVA map (Fig. 4C

and Fig. 5A). BOLD magnitudes extracted from these two regions

were significantly correlated (r = 0.59; p = 0.012) with MPI (i.e.,

time interval between mTBI injury and testing the subject in

months). A similar but non-significant trend was observed for

BOLD magnitudes from our larger ‘‘abnormal’’ ROI.

Since BOLD signal decrements were detected only in relatively

small ‘‘common’’ regions across subjects, and since TBI may affect

different white matter regions depending on the direction of the

physical forces applied, a second analysis examined whether

BOLD signal abnormalities consistently occurred in the white

matter, although their precise location may have differed across

subjects. Individual t-tests were run between each patient and the

group of healthy controls, and were corrected for multiple com-

parisons using a Monte Carlo threshold (z = 2.25; cluster size,

n = 53; p < 0.05). Figure 6A-C shows three representative subjects

in which consistently negative BOLD responses were identified in

the white matter, even though their location and extent were vari-

able. This result is consistent with the earlier analysis indicating

that only two white matter regions (IC, SLF) showed highly sig-

nificant and consistent BOLD decreases across subjects.

Next, for each individual we counted the number of voxels

within the original abnormal group ROI (both gray and white

matter) with a positive or negative BOLD signal magnitude (with

respect to a fixation baseline) corresponding to a z value ‡ 2.25. For

each patient, this Z-score was calculated with respect to the re-

maining control subjects. (See Methods and Chang and col-

leagues).45 Figure 6D shows that individual healthy control values

were concentrated near zero. In contrast, mTBI subjects showed

predominantly negative responses (compared with healthy con-

trols). The number of both positive and negative voxels was sig-

nificantly different between patients and controls (independent

samples Mann–Whitney U test; p < 0.002).

In summary, these findings indicate that during visual tracking

tasks, BOLD responses in the white matter are abnormally de-

creased in chronic mTBI. While the location of these decreases

varies across subjects, two small regions in the white matter in the

IC and SLF seem to be consistently affected. These decreases are

moderately predictive of mTBI status.

Abnormal BOLD signals versus fractional anisotropy
in white matter

To examine whether BOLD signal decrements corresponded to

regions of altered white matter integrity, we compared BOLD

magnitude and FA from the same voxels in each subject. The FA

map was thresholded at a value of FA = 0.2, then masked by the IC

and SLF ROIs (i.e., the two top peaks in the group ANOVA map

[Fig. 4C and Fig. 5A], and most consistent regions in the LOSO

analysis). As a result, for each subject we obtained a region con-

taining only white matter voxels in which the BOLD response was

FIG. 6. (A-C) Selected transversal slices showing significant ( p < 0.05; z ‡ 2.25, cluster size of 53 voxels) voxelwise statistical z-maps
for three mild traumatic brain injury (mTBI) patients superimposed on the patients’ magnetization prepared gradient-echo. Negative
values represent a significantly smaller BOLD magnitude in the mTBI patient, compared with 20 control subjects. L, left; R, right; A,
anterior; P, posterior. (D) The total volume (mm3) of significantly (z ‡ 2.25 without multiple comparison correction) positive (X axis)
and negative voxels (Y axis) inside the abnormal region of interest for each patient and control subject. (E) Scatter plots of magnitude
values for mTBI patients and controls (X axis) vs. FA values (Y axis) for the same white matter voxels inside right anterior IC. Color image
is available online at www.liebertpub.com/neu
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abnormally decreased in mTBI patients. The average volume (SD) of

white matter inside the IC ROI was 1474 ( – 103) mm3 in mTBI

patients and 1493 ( – 132) mm3 for control subjects. The average

volume for the SLF ROI was 1817 ( – 73) mm3 for mTBI patients,

and 1796 ( – 85) mm3 for control subjects. Importantly, the same FA

threshold (0.2) yielded ROIs of similar volume in the two groups,

indicating that there were no gross FA differences between groups.

Also, importantly, even though the voxels were selected based

on the presence of BOLD signals decrements in mTBI, the reported

DTI measurements are completely independent and unbiased.

Figure 6E shows a scatter plots of magnitude values for mTBI

patients and controls (X axis) versus FA values (Y axis) for the

same white matter voxels inside the right anterior IC. No significant

group differences were found for DTI parameters. A Mann-Whit-

ney U test on FA, axial diffusivity (AD), radial diffusivity (RD),

mean diffusivity (MD) values and volume of white matter inside

ROIs did not reveal significant group difference. There was no

correlation between BOLD magnitudes and DTI values (FA, AD,

RD, MD) in either region, except for the correlation of AD with

BOLD magnitude in the IC (r = 0.7; p = 0.002 in mTBI patients

only). We also performed a TBSS analysis of FA, AD, RD, and

MD. TBSS is a method that allows for a voxel-wise comparison in

parts of the white matter that are common across subjects.42 Again

no difference was detected. Overall, these analyses indicate that

differences of the BOLD signal in IC and SLF during visual

tracking were not due to differences in DTI parameters, at least

within the limits of our standard acquisition protocol.

Correlation between abnormal BOLD signals
and behavior

The BOLD response during the eye movement tasks in the ab-

normal ROI was not correlated with neuropsychological test scores,

behavioral performance, mTBI symptoms (measured by HISQ and

BISQ), or mTBI severity (aPTA, etc.). As an example, Figure 5D

shows no correlation between BOLD response magnitudes from the

abnormal ROI with PCL-C (a test of post-traumatic stress) scores in

both patients and controls.

The only neuropsychological variable to show a (weak) corre-

lation with BOLD signal magnitude in the abnormal ROI was the

WTAR-estimated premorbid IQ (Pearson r = 0.34; p = 0.04; n = 37).

The WTAR-estimated premorbid IQ is often different between

healthy controls and chronic mTBI.49,50 While this difference could

reflect pre-morbid differences, it is as likely or more likely to reflect

reduced verbal memory and fluency in chronic mTBI patients.49

The regression of depression scores (CES-D) or WTAR-esti-

mated premorbid IQ from BOLD magnitudes in LOSO ROI did not

reduce the accuracy of discrimination (78.4%; measured by binary

logistic regression). Regressing out the PTSD scores (PCL_C)

slightly reduced the classification accuracy to 75.7%. Regressing

out CES-D and PCL_C, or CES-D, PCL_C and WTAR-estimated

premorbid IQ has not changed the accuracy of logistic regression

on BOLD magnitudes from LOSO ROI. It is important to note that

depression and PTSD are frequent co-morbid factors in mTBI,51 so

our sample is comparable to samples in other studies.

One important consideration when comparing BOLD imaging

data in clinical populations with healthy subjects is that group

differences may be artifactual, reflecting lower SNR or higher

movement in the clinical population.43 Statistical analysis (inde-

pendent samples Mann–Whitney U test) did not reveal any sig-

nificant differences between patients and controls, based either on

total head movements or on percent of BOLD frames skipped.

Moreover, there was no significant correlation between magnitude

values and total movement or percent of frames skipped.

Normal BOLD signals in eye movement and attention
regions for chronic mTBI patients

In strong contrast to the abnormal BOLD response in the white

matter, the response of oculomotor and attention-related regions

was normal in chronic mTBI. A comparison of the response in the

right anterior IC versus left cerebellar vermis (Fig. 4A and 4B) in

mTBI patients and control subjects is shown in Figure 7A. Both

healthy subjects and mTBI patients had a normal-looking BOLD

response in the cerebellar vermis (-9, - 73, - 21), a region involved

in oculomotor control. Controls subjects had a much weaker re-

sponse in the right anterior IC (*1/4 of the cortical response as

reported in a previous study),52 but with a similar time-course to the

cortical response. In contrast, mTBI patients had an even more

decreased response, with an abnormal time-course in the right

anterior IC. The time-course of the BOLD signal from the right

anterior IC voxels was similar to both the time-course in our ab-

normal ROI (Fig. 5C) and in right SLF (Fig. 7B). Similar responses

between control and mTBI subjects were observed across many

cortical regions involved in visual analysis and oculomotor plan-

ning (Fig. 7C, D, F, G). Group-averaged magnitude, response

shape, and individual subject magnitude in cortical regions (e.g.,

right visual cortex; Talairach x, y, z coordinates = + 39, - 75, - 08;

Fig. 7 C-E) and left FEF (-38,-06, + 53; Fig. 7 F-H) was similar in

mTBI patients and controls. The BOLD signals in these regions did

not distinguish between chronic mTBI and controls and were not

correlated with PTSD scores (Fig. 7E and 7H) or visual tracking

performance (not shown).

Based on previous work in normal subjects, a re-orienting re-

sponse to the distracters should produce greater activity in dorsal

frontoparietal regions (IPS, FEF, MT) and the recruitment of a

right-lateralized network including right supramarginal gyrus

(SMG) and inferior frontal cortex.22 In agreement with this pre-

diction, voxel-wise ANOVAs on the BOLD magnitudes with

Task (TA vs. TD) and Group (mTBI patients, controls) showed a

stronger response bilaterally in dorsal frontoparietal cortex, and

right lateralized in ventral frontoparietal cortex during the pre-

sentation of distracters (TD) but this modulation occurred equally

in both groups (Supplementary Fig. 1A; see online supplementary

material at www.liebertpub.com). These results are in line with

the visual tracking results showing a robust effect of distractors

on eye movement but no difference between mTBI and control

subjects.

Similar results were obtained for the Gap task, in which the

disappearance of the target was an infrequent, unexpected transient

event that should also drive fronto-parietal regions involved in at-

tention. Voxel-wise ANOVAs on the BOLD magnitudes with Task

(TA vs. Gap) and Group (mTBI patients, controls) as factors

yielded a significant Task effect (Supplementary Fig. 1B), with

stronger responses in right dorsal and ventral frontoparietal regions

during the Gap task than TA task.

Overall, the fMRI results indicate differences between chronic

mTBI patients and control subjects primarily due to an abnormal

BOLD time-course in specific white matter regions. The magnitude

of the BOLD response accurately classified individual chronic

mTBI patients. Group differences in BOLD signals were observed

despite equivalent behavioral performance on the visual tracking

tasks and equivalent head stability during the scans. On the other

hand, similarities in BOLD activity in oculomotor and attention
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circuitries in the two groups were in line with the equivalent per-

formance on the visual tracking movement tasks.

Discussion

This study shows that BOLD signals in the white matter of

chronic mTBI patients with persistent post-concussive symptoms,

obtained during a continuous visual tracking task, are abnormal and

could be used to distinguish individual patients from control sub-

jects. Importantly, differences in BOLD signals in white matter

were detected in the absence of differences in DTI FA values.

Further, the high accuracy of the BOLD signals in discriminating

individual patients from controls stands in contrast to the poor

accuracy of neuropsychological measures and measures of visual

tracking performance.

Shape of BOLD time-course accurately classifies
chronic mTBI subjects

Although there was between-subject variability in the location of

tissue with decreased BOLD magnitudes in mTBI patients, two

regions in the right anterior IC and right SLF showed highly con-

sistent differences between patients and controls. We observed

accurate discrimination of chronic mTBI patients from healthy

controls when BOLD signals were extracted from the entire ab-

normal ROI or only from the regions in the IC and SLF. The dis-

crimination of patients from controls was not an artifact of

differences between groups in head movement or signal quality. It

remained significant when tested on smaller (*30%) subsets of

data created from the separate task conditions (i.e., TA, TD, Gap).

Although we found highly significant group differences in our

data, the accuracy of single subject classification using a leave-one-

out method was 78.4%. Single-subject analysis revealed individual

variability in the location of brain tissue with decreased BOLD

magnitudes, along with consistent BOLD abnormalities in a much

smaller set of regions (IC, SLF). Therefore, our data indicate the

importance of single-subject analyses for properly localizing the

entire set of abnormal tissue in an mTBI patient. Consistent with

our conclusion, most studies have failed to find mTBI-related

damage in consistent regions across all patients.12,16,53 It is im-

portant to note that since the prediction values obtained in our study

may be sample dependent, our results require replication and val-

idation in a separate sample.

The discrimination of chronic mTBI patients from healthy

controls was unrelated to symptoms, neuropsychological, or visual

tracking measures. This result is important since group differences

in imaging modalities often co-occur with behavioral differences

that confound the interpretation of brain signals. The classifier was

based on the BOLD response magnitude in the abnormal ROI

during the visual tracking tasks, which was obtained by convolving

the BOLD signal time series with a canonical HRF based on a

FIG. 7. Magnitudes and time-courses extracted from visual and attention regions in patients and controls. (A) The time-courses of the
blood-oxygen-level–dependent (BOLD) signal from left cerebellar vermis (vCBL; solid lines) and right anterior IC (dotted lines) in mild
traumatic brain injury (mTBI) patients (red lines) and control subjects (blue lines). (B) The time-courses of the BOLD signal from right
superior longitudinal fasciculus (SLF; solid lines) and right anterior internal capsule (IC; dotted lines) in mTBI patients (red lines) and control
subjects (blue lines). (C, F) BOLD magnitudes averaged across tasks from right visual cortex (C), and left frontal eye field (FEF; F). Error bars
represent standard error of the mean. (D, G) BOLD time-courses averaged across tasks from right visual cortex (D) and left FEF (G). (E, H)
Scatter plots of BOLD magnitude values for mTBI patients (red diamond) and controls (blue circles) vs. Post-Traumatic Stress Disorder
Checklist (PCL) total score from right visual cortex (E) and left FEF (H). Color image is available online at www.liebertpub.com/neu
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model of the task (on for 15 sec, off for a variable interval). The

onset of the response in the time-course corresponded to the onset

of tracking the target, while the offset corresponded to the disap-

pearance of the target. Figure 5C shows that that the BOLD time-

courses in healthy subjects closely approximated the shape of the

canonical HRF.

In contrast, chronic mTBI subjects manifested an abnormal

shape with an attenuated sustained component and a delayed offset.

Importantly, these abnormalities in BOLD response shape did not

reflect a generalized problem with neurovascular coupling across

the brain, as the shape and magnitude of BOLD signals in most

cortical and subcortical regions involved in visual attention and eye

movements (visual occipital, cerebellar, and frontoparietal cortex)

were normal, both at the group (Fig. 5C and Fig. 7C, 7D, 7F, and

7G) and individual level (Fig.7 E and 7H).

BOLD signals, white matter, and other imaging
modalities

Our results are noteworthy in relation to other imaging modal-

ities, such as diffusion imaging, task fMRI studies, and magnetic

resonance spectroscopy, which have reported group differences

between mTBI and healthy subjects12,13,18,54 but limited success in

discriminating individual patients. White matter studies of mTBI

using diffusion imaging have shown fairly circumscribed anoma-

lies in subdivisions of the corpus callosum, anterior corona radiata,

SLF, and internal capsule.55–59 This distribution generally matched

the distribution of BOLD signal anomalies observed in the present

study. However, the most recent diffusion imaging studies have

shown a widespread loss of white matter integrity in mild

TBI12,53,60–65 that is more extensive than the topography of ab-

normal BOLD signals reported here.

The presence of BOLD signal responses in the white matter is well

established in the literature. In general, evoked signals in the white

matter are lower in magnitude than cortical responses but have a

similar response shape,52,66–74 consistent with our data (Fig. 7A and

7B). The white matter regions that distinguished chronic mTBI pa-

tients from controls were part of two of the major white matter tracts

frequently damaged in mTBI (IC and SLF).12,55,58–60,63,75 They also

matched regions that in simulation studies of head concussion

models were strongly affected by physical distortion.76 In addition,

these regions are close to a core of damaged tissue, including white

matter tracts, basal ganglia, and upper brainstem, that has been found

in severe TBI.77 Interestingly, a recent paper78 found that white

matter hyper-intensity burden was associated with a BOLD signal

decrease in white matter during a finger-tapping task. Therefore, our

interpretation is that these regions show an abnormal BOLD signal

due to a pathological process caused by the damage inflicted by TBI.

Surprisingly, we did not observe significant differences based on

FA values in IC and SLF, while we did observe strong differences

between mTBI patients and controls based on BOLD magnitudes

from the same white matter voxels. Importantly, we also failed to

find a correlation between BOLD magnitudes and FA values. Re-

cent advanced studies of DTI in mTBI suggest that decreases and

increases in FA values may reflect different aspects of the mTBI

injury53,65,79; therefore, it is logical to suggest that BOLD and DTI

may measure different aspects of mTBI and should be used in

conjunction to evaluate the full extent of injury after mTBI.80 Fu-

ture studies will be necessary to evaluate the overlap between ab-

normalities detected by BOLD signals and DTI.

Unfortunately, only a handful of studies have compared BOLD

signals and DTI in humans and animals that have experienced

traumatic brain injury.80,81 A study by Niskanen and colleagues in

rats with focal TBI showed that decrements of the BOLD response

to sensory stimuli are a sensitive physiological marker of behav-

ioral recovery and correlate with loss of myelinated fibers.82 After

focal cortical contusion, the shape of the BOLD signal in the af-

fected cortex showed, similarly to our study, a normal onset but a

suppressed sustained component (although no offset delay). Criti-

cally, BOLD response abnormalities were correlated with de-

creases in local field potentials but not with changes in cerebral

blood volume, a result consistent with alteration of neural activity

at the site of damage rather than neurovascular coupling. Finally,

the BOLD signals were correlated with a loss of myelinated fibers

but not with tissue loss or neurodegeneration. Therefore, the find-

ings of Niskanen and colleagues are consistent with our interpre-

tation that abnormal BOLD responses in our study tracked a

pathological process in white matter.

The reduced BOLD response during task performance is con-

sistent with some fMRI studies in chronic mTBI patients.18 How-

ever, increased BOLD responses in acute and chronic mTBI

patients relative to healthy controls also have been reported. For

example, in studies of working memory using the ‘‘n-back’’ task,

acute mTBI patients showed greater and less focal activation in

prefrontal cortex than controls as memory load increased.18,83,84

Overall, the fMRI literature is mixed concerning whether BOLD

activity during task performance is increased or decreased in mTBI

patients. Of the roughly 20 studies that have been reported in the

literature (the majority involving acute or mixed acute/chronic

patients, and only two studies clearly at the chronic stage), about

half reported relatively increased or less focal BOLD responses

than controls, while about one third reported decreased BOLD re-

sponses. The conditions under which mTBI patients show either

increased or decreased BOLD activations relative to controls is not

well understood.

This is the first fMRI study to report good discrimination at the

level of individual subjects, as opposed to group differences. The

sensitive results of our study could be due to the continuous nature

of the task, which engages both predictive and sensory-driven

processes without loading working memory.18 In addition, a recent

MEG study at rest17 showed that periods of transiently increased

delta power (or abnormal low-frequency magnetic activity, 1–4 Hz)

occurred more frequently in chronic mTBI patients than in controls.

This measure successfully separated chronic mTBI patients from

control subjects with an impressive average accuracy of 87% (96%

for the blast and 77% for non-blast injuries).

We can only speculate about the cellular mechanisms under-

lying BOLD signal decrements. TBI at the acute stage is associ-

ated with metabolic changes that involve disturbances of

potassium, sodium, and calcium ion balances, as well as hy-

perglycolysis, glutamate alterations, decreased oxygen, hypo-

metabolism, and apoptosis, as well as altered level of amyloid-b
peptide.85–89 Relative alterations in the excitation/inhibition

balance of neuronal populations could be responsible at the

chronic stage for BOLD signal and neuronal decrements.82

Healthy subjects with higher gamma-aminobutyric acid (GABA)

concentration at rest tend to produce BOLD responses of smaller

magnitude and longer duration.90 Because the GABAergic com-

plex is very sensitive to damage of the neuronal membrane,91 and

GABA signaling is important for axonal remodeling after trau-

matic brain injury,92 it is possible that relative alterations in

GABA content in mTBI patients could affect BOLD signals.

Plasticity following TBI6,65,87 may underlie recovery, leaving at

the chronic stage reduced or no behavioral deficits, possibly some
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symptoms, but permanent neural metabolic changes detected as

an abnormal BOLD response in selected brain regions.

Poor accuracy of behavioral tests in identifying
individual chronic mTBI patients

In contrast to our original hypotheses, we found no significant

abnormality in neurocognitive tests, nor in eye movement vari-

ability or accuracy during tasks that were strongly dependent on the

application of predictive signals (TA task) or that required an in-

teraction between goal-driven and stimulus-driven attention (TD

task).21,22 The distracter task induced a reduction of variability prior

to distracter onset, which we interpret as an increase in top-down

control to limit interference from distracting information, as well as

reduced accuracy of tracking following the onset of the distracter.

Notwithstanding the high sensitivity in measuring these dynamic

tracking processes, and the effective manipulation of the attentional

state of the subjects, tracking behavior was equivalent in chronic

mTBI patients and controls. This negative result was validated in

two independent samples (UCSD and Wash. U.). Therefore, we

conclude that classical measurements of visual tracking and neu-

rocognitive tests did not accurately discriminate symptomatic

mTBI patients from controls at the chronic stage. However, they

may be helpful in detecting impairments at the acute stage.93

Our chronic mTBI patients showed some affective problems

(higher depression and PTSD scores) and cognitive problems

(slower reaction time, poorer memory performance, reduced verbal

fluency) in the neuropsychological tests, consistent with previously

published studies.32,51,75 Analysis of the scatter plots of the neu-

ropsychological scores, however, indicated that the distributions

for chronic mTBI patients and matched controls showed consid-

erable overlap, even on tests that revealed significant group dif-

ferences between patients and controls. Further, there was no

correlation (except for WTAR scores) between neuropsychological

measures or affective disorders and BOLD signal magnitudes. This

result indicates that the focal abnormalities in the white matter were

not related to these deficits or disorders. In addition, these disorders

do not produce BOLD signal abnormalities comparable to those

reported here.78,94–98

Therefore, our results indicate that neither neuropsychological

measures nor measures of predictive visual tracking eye move-

ments accurately discriminated individual symptomatic chronic

mTBI subjects from controls. These negative results were obtained

concurrently with the promising accuracy of classification of

chronic mTBI subjects observed using BOLD-fMRI measures in

regions of the white matter. The disparity in neurocognitive mea-

sures and the BOLD fMRI measures could be explained by the

latter being a better marker of the original injury rather than a

functional marker. This interpretation would be consistent with the

lack of BOLD fMRI correlation with symptoms, which along with

the prior history of TBI, completely separates the controls from the

chronic mTBI group.

Study limitations

The main limitation of this study is the relatively small sample

size. Even though our sample was comparable to that of many

studies in the literature, and the level of significance in the voxel-

wise statistical maps was corrected for multiple comparisons at the

whole–brain level following a random effect statistical model that

allowed for generalization at the population level, we consider this

study a proof-of-concept that will require replication and validation

in a separate and larger independent sample.

The second limitation is the relative heterogeneity between

Wash.U. and UCSD samples. There were some differences in en-

rollment, relative severity of TBI, and exclusion criteria that made

the Wash.U. cohort likely to be more severe. This is reflected in the

slightly higher scores for depression and PTSD at the group level.

There also were differences in the accuracy of eye movement re-

cordings, with more variability in the UCSD subjects, who were

recorded within an MEG scanner. These differences would be more

problematic if the results and conclusions based on the two cohorts

were different, since it would be unclear if the differing results

reflected the composition of the two cohorts or inconsistency in the

dependent measures. However, the conclusions from the UCSD

sample replicated those from the Wash. U. sample in all important

respects regarding the poor association of mTBI status with eye

movement and neuropsychological measures. Therefore, the sim-

ilarity of the results from the two cohorts indicates that our con-

clusions are fairly robust with respect to modest variations in

sample composition.

The Wash. U. sample contained three patients with aPTA longer

than 24 h, and three patients with radiological abnormalities (of

whom two possessed both characteristics; i.e., four more severe

patients overall). These patients are defined today as ‘‘complex

mTBI.’’99,100 Their enrollment was due to the use of inclusion

criteria, when the research consortium of the Brain Trauma

Foundation, UCSD, and Wash. U. became operative in 2009, that

are more liberal than current standards. However, even though all

four complex mTBI subjects participated in psychometric/visual

tracking testing, only two of these patients underwent task fMRI

(those patients are indicated by open diamonds on Fig. 5D).

Therefore, it is unlikely that the individual differences found in

white matter BOLD signals, but not in neuropsychological or visual

tracking measures, was related to this factor.

Finally, our extensive analyses using standard DTI did not yield

any significant difference. However, it is possible that our differ-

ences in white matter BOLD signals might be related to white

matter changes as measured with DTI if more advanced methods

were employed.101

We conclude that at standard imaging resolutions, BOLD signal

changes in the white matter during movement tracking appear to be

a promising biomarker for chronic mTBI.
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