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Modulating the local microenvironment around type 1 diabetes implants 

Gauree S. Chendke 

Abstract 

Type 1 diabetes (T1D) is an autoimmune disease characterized by destroying 

insulin-producing beta cells within the pancreas, leading to high blood glucose levels and 

various complications. Cell encapsulation devices offer a promising approach to treating 

T1D by protecting insulin-producing cells from immune attack while restoring endogenous 

insulin production. However, their effectiveness is limited by inadequate cell survival due 

to the foreign body response that results in insufficient vasculature and inflammation at 

the implantation site. This thesis aims to improve the performance of cell encapsulation 

devices by addressing these challenges. 

Chapter 1 discusses the foreign body response and fibrosis in response to 

implantable devices for diabetes treatment, providing insights into molecular 

mechanisms, cellular interactions, and strategies for long-term success. The thesis then 

examines techniques to optimize cell encapsulation devices for T1D. Chapter 2 focuses 

on developing an innovative encapsulation device designed to improve the survival of 

encapsulated stem cell-derived insulin-producing cells within the poorly vascularized 

subcutaneous space. The device features an internal compartment that steadily releases 

the essential nutrients alanine and glutamine over several weeks, increasing post-

transplantation cell survival by 30% in the subcutaneous space. 

Chapter 3 presents a novel, replenishable, pre-vascularized implantation 

methodology (RPVIM) aimed at promoting vascular integration around the implant and 

enhancing nutrient supply to encapsulated cells. The findings reveal that over 75% of 
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RPVIM devices containing insulin-producing cells survive after 28 days of implantation in 

the subcutaneous space. Importantly, RPVIM devices outperform other implantation 

methodologies in terms of survivability and maintain the functionality of encapsulated 

insulin-producing beta cell clusters, which is a critical factor in successful T1D 

management. 

Lastly, Chapter 4 explores the impact of surface topography on macrophage 

polarization in response to biomaterials used for cell encapsulation in T1D. Adjusting the 

surface topography of polycaprolactone (PCL)-based biomaterials can polarize 

macrophages towards the reparative phenotype, thus modulating the immune response 

and accelerating device engraftment. This study evaluates gene expression of the M1 

inflammatory phenotype and M2 reparative phenotype in macrophages cultured on 

mineralized PCL thin films with nanoscale topography and micron-scaled topographic 

PCL thin films. These results offer valuable insights into tailoring biomaterial properties to 

improve cell encapsulation device success in treating T1D. 

In conclusion, this thesis delves into the challenges cell encapsulation devices face 

for T1D treatment due to the foreign body response. Through the development of nutrient-

supplementing devices, pre-vascularization techniques, and tailoring of biomaterial 

properties, this body of work aims to enhance the performance and long-term success of 

cell encapsulation devices in treating T1D. 
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Chapter 1. Modulating the Foreign Body Response of Implants for Diabetes 

Treatment 

1.1 Introduction 

Diabetes mellitus (DM) is a group of common metabolic syndromes with a typical 

hyperglycemic phenotype, caused by decreased insulin sensitivity, reduced insulin 

secretion, increased glucose production, and decreased glucose utilization.1–9 The two 

most common categories of DM are type 1 diabetes mellitus (T1D) and type 2 diabetes 

mellitus (T2D). T1D is the result of insulin deficiency due to immune-mediated or 

idiopathic β-cell destruction. Although the precise mechanism of β-cell directed 

autoimmunity is still ambiguous, it has been shown that β-cells are more susceptible to 

cytokines, such as tumor necrosis factor-α (TNFα), interleukin 1-β (IL-1β) and interferon-

γ (INFγ).10–14 T2D, on the other hand, results from varying degrees of insulin resistance, 

impaired insulin secretion, and relative insulin deficiency. In the early stages of T2D, β-

cells become hyperinsulinemic to compensate for insulin resistance and maintain 

standard glucose tolerance. However, as the disease progresses, islets are unable to 

sustain the hyperinsulinemic state, leading to development of overt diabetes, which 

further causes a decline in insulin secretion. Over time, an increase in hepatic glucose 

and lipid production can lead to the failure of β-cells.5–7,15–17 

Although the exact causes for both T1D and T2D are unknown, numerous factors 

have been implicated, including metabolic disorders of late pregnancy, genetic defects of 

β-cells, genetic defects in insulin action, diseases of exocrine and endocrine pancreas, 

specific drugs/chemicals, infections, and other idiopathic syndromes.11,17–20  DM is 

diagnosed with tests of fasting plasma glucose level and oral glucose tolerance, as 
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determined  by the American Diabetes Association. The diagnostic criteria for DM vary 

depending on the type of diabetes. For Type 1 diabetes, the diagnosis is made if the 

patient has symptoms of hyperglycemia along with a random plasma glucose level of 200 

mg/dL (11.1 mmol/L) or higher, or a fasting plasma glucose level of 126 mg/dL (7.0 

mmol/L) or higher, or a 2-hour plasma glucose level of 200 mg/dL (11.1 mmol/L) or higher 

during an oral glucose tolerance test (OGTT). For Type 2 diabetes, the diagnosis is made 

if the patient has a fasting plasma glucose level of 126 mg/dL (7.0 mmol/L) or higher, or 

a 2-hour plasma glucose level of 200 mg/dL (11.1 mmol/L) or higher during an OGTT, or 

a hemoglobin A1c (HbA1c) level of 6.5% (48 mmol/mol) or higher, or in a patient with 

classic symptoms of hyperglycemia or hyperglycemic crisis, a random plasma glucose 

level of 200 mg/dL (11.1 mmol/L) or higher is sufficient for diagnosis.1–11, 14–24 The 2020 

National Diabetes Statistics Report, released by the Center for Disease Control and 

Prevention (CDC), has identified that 34.2 million (10.5% of the US population) have 

DM.21 According to the International Diabetes Federation in 2019, the global prevalence 

of DM was 463 million (9.3% of the world population), and this number is expected to rise 

to 700 million by 2040.22–24  

Despite the high prevalence of this disease, currently there is no cure for DM.3,6,26–

29 The cornerstone for management of diabetes is rigorous monitoring of blood glucose 

levels using finger pricking and administrating exogenous insulin to help regulate blood 

glucose levels. Current technologies used for insulin administration include syringes, 

injection aids such as pens or injection ports, and insulin pumps for continuous open-loop 

subcutaneous infusion or intraperitoneal infusion. Despite technological advances, these 

strategies are expensive, painful, require high patient compliance, entailing insulin 
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dependence, and do not provide accurate glycemic control, resulting in frequent 

hypoglycemic episodes.30–35 

Many groups have been developing alternative strategies to achieve effective 

blood glucose homeostasis that require low patient attention. The two broad categories 

for these therapies are closed-loop insulin delivery systems and pancreas or β-cell 

replacement therapies (Table 1).36–45  

Also known as artificial pancreases, closed-loop insulin delivery systems offer 

great promise as these systems can detect transient hyper and hypoglycemic events and 

project future blood glucose dynamics. Continuous blood glucose monitoring (CGM) is 

one such example of a closed-loop insulin delivery system that has brought a monumental 

change in exogenous insulin administration. CGM is considered the ideal tool for self-

management of diabetes as it can permit measurement of interstitial glucose using a 

subcutaneous sensor and continuous reporting of real-time glucose levels and trends, 

while also detecting and predicting the hypo- and hyper-glycemic events. The closed loop 

insulin delivery system integrates a CGM with an insulin delivery pump to administer the 

right amount of insulin based on CGM-predicted real-time blood glucose levels. This 

intelligent sensor-augmented insulin pump uses CGM with a feedback loop to implement 

timely and optimal insulin dosing, maintaining long-term euglycemia.32,34,36–38,40,41,46–53  

Pancreas or β-cell replacement is another promising therapy, especially for T1D, 

that has progressed immensely in the last decade. Islet transplantation has shown great 

potential in achieving insulin independence in more than 50% – 85% of patients for 

approximately 2 – 5 years.54–59 Unfortunately, the limited supply of donor tissue and need 

for life-long immunosuppression severely limit the application of this therapy.60–62 To 
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address the issue of donor tissue shortage, efforts have been directed at developing stem 

cell-derived insulin-producing cells or a xenogeneic source of islets.60,62–70 Other groups 

have been focusing on eliminating the need for immunosuppressive drugs by developing 

an immuno-isolation technology that will allow for successful encapsulation and 

transplantation of islets or insulin-producing cells.60,61,65,71–78 The success of these 

devices depends primarily on the ability of a semipermeable yet immuno-isolating 

membrane to allow sufficient exchange of nutrients, oxygen, and insulin, while preventing 

immune cell infiltration. The two broad categories of immune-isolation modalities that are 

under investigation are extravascular devices and intravascular devices.74,79 

Extravascular micro- or macro-capsules containing islets are transplanted in 

extravascular spaces, such as peritoneal cavity or subcutaneous cavity.74–76,79–83 On the 

other hand, intravascular devices are directly anastomosed to blood vessels.79,84–86 Such 

immune-isolation technologies, combined with a replenishable islet source, have 

enormous potential in the successful treatment of DM.87–90 

Despite advances, these state-of-the-art technologies remain in their experimental 

stage. The limitations are not inherent to the sensors or immuno-isolation devices but 

rather to their performance in vivo. The technologies have demonstrated excellent 

performance in vitro in terms of graft survival and function, but in the in vivo environment, 

there is a drastic decline in the performance of the glucose sensors and immuno-isolation 

devices.71–73,79,81–83,88,91–93 The decline in function is largely attributed to the multifaceted 

and dynamic foreign body response (FBR) that occurs upon activation of the host immune 

response.79,88,94–101 The various stages of FBR include inflammation, degradation, 
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biofouling, loss of host microvasculature, and complete fibrous encapsulation and 

isolation of the implant, which leads to implant failure.97,102–109  

Continuous glucose monitors (CGMs) and vascular perfusion devices rely on 

glucose and oxygen diffusion through a membrane for sensor function and cell survival. 

However, fibrotic capsule formation around these implants creates a barrier, hindering 

the diffusion of oxygen, glucose, and nutrients. This obstruction severely reduces CGM 

sensor performance and can lead to graft loss in immuno-isolation devices due to β-cell 

starvation and hypoxia.74,79,103,110–113 Moreover, fibrous tissue around the implant can also 

prevent diffusion of insulin out of the implant, rendering the implant ineffective.114–119 

Therefore, it is imperative to develop efficient strategies that can target and modulate the 

FBR. 

In this chapter, we will detail the host-material immune and foreign body responses 

that occur post-implant, particularly in the context of implants used for the management 

and treatment of DM. Next, we will discuss the various biomaterial properties and cellular 

microenvironment that are at play and dictate the progression of FBR. We also discuss 

general strategies that have traditionally been used to mitigate fibrosis. Lastly, we 

highlight different modification techniques that have been applied to suppress fibrotic 

overgrowth and enhance the subsequent function of diabetes implants. 

 

1.2 Activation of Immune Cascade and Subsequent Cellular Interactions at the 

Implant – Tissue Interface 

The immune system is comprised of both the innate and adaptive arms. The innate 

immune system elicits a non-specific immune response immediately after recognition of 
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foreign material, while the adaptive immune system, typically activated by the innate 

immune response, elicits an antigen-specific immune response. Cross-talk between both 

of these systems, mediated through soluble factors, determines the host response to 

implants.14,107  

During implantation, nicked blood vessels around the implant cause accumulation 

of platelets and biomolecules that initiate the coagulation cascade, leading to the 

formation of a  provisional matrix. This fibrin-dominant provisional matrix is linked with 

protein adsorption that occurs on the implant's surface and is considered key in 

subsequent leukocyte adhesion interactions.120,121 Moreover, activation of the 

complement system synergistically supports matrix formation and activation of the 

immune system (Figure 1.1a). There are separate pathways in the complement system 

that lead to the production of anaphylatoxins, C3a and C5a.  The released C3a and C5a 

induce the innate inflammatory response around implants by increasing vascular 

permeability, activating monocytes and neutrophils through the release of chemokines 

and chemo-attractants, and stimulating the release of reactive oxygen species (ROS) 

from granulocytes. Other pathways that also initiate the cellular inflammatory response 

include recognition and uptake of biomaterial associated pathogen-associated molecular 

patterns (PAMPs) or injured host tissue associated damage-associated molecular 

patterns (DAMPs) and alarmins. PAMPs and DAMPs are recognized by pattern 

recognition receptors (PRRs) such as Toll-like receptors (TLRs) and C-type lectins that 

are present on the surface of innate immune cells.102,120–127 (Figure 1.1b)  



 

 

 

7 

1.2.1 Innate immune response  

Nicked blood vessels lead to focal hemorrhage and edema at the implant site, 

causing migration and adsorption of biomolecules on to the surface of the implant and the 

formation of plasma protein-enriched interstitial matrix around the implant. Immune cells 

such as neutrophils, monocytes, and macrophages recognize proteins with damaged 

conformations and are activated to release a barrage of cytokines and chemokines. 

These cells govern the acute inflammatory response and release proteolytic enzymes 

that degrade the implant while clearing cellular debris. Additionally, the phagocytes 

(macrophages) engulf and present the antigens to the thymocytes or T cells.  

1.2.2 Adaptive immune response  

Macrophage and dendritic cells are antigen-presenting cells (APCs) that can internalize 

foreign antigens, i.e. ions from CGMs and antigens from encapsulated islets, and present 

them to T cells via major histocompatibility complex (MHC) molecules. The allogenic and 

xenogenic antigen or cell debris exacerbate the T cell response. CD4+ helper T cells get 

activated to display pro-inflammatory Th 1 mode and secrete pro-inflammatory cytokines 

and chemokines such as Interleukin-1β (IL-1β), IL-6, TNFα, and iNOS. An excessive pro-

inflammatory response can lead to uncontrolled damage and loss of implanted islets. 

Over time, inflammation resolves, and the reparative macrophages dominate the 

environment around the implant. These macrophages mediate the anti-inflammatory Th2 

secretory profile, including IL-4, IL-5, IL-13, and IL-10, which increases tolerance of 

implants and delays FBR. The reparative macrophages extenuate a pro-inflammatory 

state with parallel immune-regulation and positive remodeling to achieve tissue 

homeostasis. 
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Successful remodeling at the implant site happens when the innate immune 

response shifts from pro-inflammatory to the reparative environment and facilitates the 

development of site-specific functional tissue and tolerates the implant (Figure 1.2a).128–

131 Due to the intricate nature of this immune cascade, slight variations could lead to the 

development of a foreign body response, as seen with diabetes implants (Figure 1.2b). 

141–145 Next, we will outline the activation of FBR and key determinants of fibrosis. 

 

1.2.3 Dysfunctional immune system, autoimmunity crossover and implants in T1 

and T2D 

Immune system activation is a common predisposition for T1D and T2D.  Independent of 

etiopathogenetic causes, inflammation seems to be a common mechanism among 

different types of diabetes.17–19,132–134 The central and peripheral immune tolerance failure 

contribute to the presence (or activation) of auto reactive T cells. Regulatory T cells 

(Tregs) are defective in phenotypic autoimmune T1D, while several islet auto-antigens 

and peptide epitopes are targeted by effector T cells (Teffs).10,19 During DM progression 

the immune cells such as B cells, macrophages, dendritic cells, and natural killer cells 

mediate the inflammation. The disruption in regulation and control of local inflammatory 

cytokines production are also a critical factor in progression of DM.135,136 T2D is mostly 

considered as metabolic disorder characterized by dyslipidemia, hyperinsulinemia, and 

obesity, but with the credible hypothesis that pathogenesis and progression of T2D is 

credibly linked with inflammation.137–139 Inflammation contributes to the promotion of 

metabolic abnormalities such as dyslipidemia, hyperinsulinemia and obesity, which in turn 

regulate immune cell functions to establish systemic low-grade inflammation (LGI).16,137 
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The metabolism and immune system share a bidirectional relationship. Chronic low-grade 

inflammation (LGI), immune cell infiltration, and oxidative stress exacerbate metabolic 

impairments in insulin-sensitive tissues, promoting insulin resistance. Stressed islets 

further stimulate local inflammation, resulting in abnormal innate and adaptive immunity. 

This involves alterations in the proliferation and function of T cells, macrophages, B cells, 

and NK cells, as well as the release of inflammatory mediators that contribute to systemic 

insulin resistance, β-cell damage, and the significant role of autoimmunity in type 2 

diabetes (T2D) pathogenesis.138,140,141 Consequently, both type 1 and T2D are 

characterized by the coexistence of insulin resistance and auto- and allo-reactivity against 

islet antigens, creating a vicious cycle where initial cytokine stress leads to further 

metabolic stress and additional loss of β-cell function.18,142  

The overlapping etiology and pathophysiology of type 1 and type 2 diabetes lead 

to comparable immunological reactions to the implants utilized for monitoring and treating 

diabetes. The active or memory autoimmune response to islets is presented to the islet 

implants. The fast-tracked inflammatory islet infiltrations and selective toxicity to the β-

cells in transplanted implants lowers the success of allo-islet transplants in autoimmune 

patients compared with non-autoimmune patients. Despite the use of 

immunosuppressive drugs, many transplant recipients have shown marked increases in 

antibodies to glutamic acid decarboxylase (GAD) and islet antigen 2 (IA-2), representing 

indirect or direct re-exposure to autoantibodies.143 The likelihood of graft rejection is 

closely linked to differences in pre-transplant islet autoantibody levels, autoantibody titer, 

and post-transplant cytotoxic T cell responses. The relative contribution of islet 

autoimmunity to graft survival, however, remains unclear. Presence of HLA class and I 
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class II specific antibodies in addition to GAD, IA-2 autoantibodies also indicated the 

autoreactive may be independent of allo-rejection.143,144 Growing evidence shows that 

regardless of the use of immunosuppression to enhance islet graft survival, chronic islet 

autoimmunity may eventually lead to graft rejection and recurrent diabetes. The 

autoimmunity may accelerate the inflammatory response toward implants but follows 

similar mechanistic processes towards regeneration or fibrosis depending on the cue 

presented at the implant-tissue interface.143,145–148  

Alongside the progression of diabetes mellitus (DM), a decline in cellular response 

leads to a decrease in overall immunity against opportunistic infections. This decline is 

characterized by low complement factors and a diminished cytokine response upon 

stimulation, which results in progressively dysfunctional humoral immunity. Additionally, 

long-term DM patients exhibit reduced functional efficiency of polymorphonuclear cells 

and macrophages.132,149,150 Though this aspect is out of the scope for this chapter, it is a 

crucial aspect of immune dysfunction leading to increased prevalence of infectious and 

non-infectious diseases in patients with T1 and T2D. 

 

1.3 Development of Foreign Body Response and Fibrosis – A Multifront War  

Fibrosis is defined as the formation of fibrotic capsule around the implant and 

occurs due to the activation of the immune cascade. If the innate immune response is not 

resolved (marked by the unsuccessful elimination of the foreign material and transition 

into the reparative environment), macrophages fuse together to form foreign body giant 

cells (FBGCs). FBGCs, considered the hallmark of chronic inflammation and FBR, are 

multi-nucleated cells that adhere onto the surface of the implant and have increased 
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inflammatory and phagocytic capacity, further amplifying the immune response. The 

inflammatory signals produced further promote proliferation of vascular endothelial cells 

and fibroblasts, which secrete proteoglycans and collagen for the organization of 

extracellular matrix. Due to excess inflammatory signals, there is superfluous 

secretion/production of collagen III, resulting in the formation of granulated tissue and 

fibrous tissue around the implant. This process eventually leads to implant isolation from 

host tissue, rendering it ineffective. Additionally, fibrous encapsulation formation also 

depends on the regenerative capacity of the tissue surrounding the implant. When 

composed primarily of the dormant cells, the tissue usually experiences greater 

inflammatory cascade and leads to fibrosis. 

The root of the FBR lies in the first step – the nature of protein interaction with the 

implant’s surface. The protein-surface interaction is a complex phenomenon influenced 

by the protein quantity, composition, conformational changes, diffusion coefficient, size, 

and surface affinity. Protein characteristics are dictated by the physicochemical properties 

of the implant such as surface chemistry, energy, charge, geometry, porosity, 

topography.120,151–154 Additionally, implant-tissue biomechanics is another crucial factor 

that heavily contributes to the FBR. The implants impose chronic mechanical loading and 

disrupt the tissue, which induces tissue remodeling and elicits FBR. Lastly, the immune 

cascade is an orchestra of cells, with each cell type interacting through soluble factors or 

direct activation. It is widely accepted that sequential transition between cell activation 

states and cell types is crucial in resolving the immune response. The next section will 

describe these three components and factors of these components that can alter the 

implant – tissue response.  
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1.4 Areas for control at the implant – tissue Interface 

1.4.1 Protein adsorption and interaction 

Protein adsorption on the implant’s surface is based on concentration gradient and 

surface affinity of the proteins, as many proteins are competing for surface binding sites. 

Protein adsorption is principally driven by the accumulation of considerable noncovalent 

bonds, protein conformations, and the redistribution of charged groups at the 

interface.154,155 However, the hydrophobic interactions, the composition of biomaterial, 

charge, and topography at the tissue-implant interface are also of vital importance.  

1.4.1.1 Hydrophobic interactions  

Protein adsorption is a thermodynamically driven interaction between proteins and 

implant surfaces. The strong interactions between a hydrophobic implant surface and 

neighboring polar water molecules lower the overall entropy. Unfolding of proteins 

compensates for the energetically unfavorable loss in entropy at the hydrophobic surface. 

The hydrophobic moieties on proteins form weak noncovalent interactions with the 

surface to exclude water molecules and favorably increase the entropy of water while 

driving protein adsorption. These weak noncovalent interactions collectively contribute to 

proteins’ total adsorption on the implants with hydrophobic and weak hydrophilic surfaces. 

The displacement of water on hydrophilic surfaces present a large energy barrier, making 

it unfavorable for protein adsorption.154–158 For instance, fibrinogen loses its compact 

secondary structure and expose sequestered moieties for enhance cellular binding on the 

residential biomaterial surface based on its hydrophobicity. 
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1.4.1.2. Charge-charge interactions and protein conformational change  

The favorable charge interactions and conformational changes in protein structure 

help overcome the energy barrier and displace the water molecules that drive protein 

adsorption on the hydrophilic and hydrophobic surfaces. The pH around implant alters 

the electrostatically driven charge-charge interaction between implant surface and 

proteins. In aqueous environments, pH alters the charges on the material surface and 

proteins. Especially at the isoelectric point of protein, small ionic interactions and 

formation of hydration bonds can favor adsorption. Conformational changes of proteins 

increase the overall entropy and enhance adsorption kinetics. Proteins with favored 

structure overcome comprehensive charge barriers to form noncovalent bonds with the 

implant surface irrespective of hydrophobicity. The variability in the structural 

conformation of proteins across implant interface varies with the quantity of protein 

present and the surface chemistry of implant. Depending on concentration and extent of 

conformational changes, these proteins may expose the integral binding motifs that are 

usually unavailable in their native state.152,153,155,156,159 For example, fibrinogen at very low 

concentration preferentially adopts a β-sheet conformation while unraveling integral 

platelet binding motif, which favors high concentration of platelet adsorption on the 

hydrophobic surface. Fibrinogen forms a spectrum of conformations while adsorbing at 

different rates based on concentration and surface chemistry. Bioactivity of exhibited 

motifs preferentially enhances pro-inflammatory cell phenotype, contributing to FBR. 

1.4.1.3. Surface energy and charge  

Hydrophobicity or hydrophilicity of the implant’s biomaterial defines the surface 

energy, which is critical in adsorption of proteins. Conformational change in proteins 
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allows greater protein adsorption on hydrophilic implant surfaces, whereas proteins 

adsorbed on hydrophobic surfaces that did not undergo structural modification preserve 

their native biological activity. The protein’s flexibility, reversibility, and the extent of 

conformational modification play a vital role in a subsequent inflammatory cascade 

involving immune cells and surface interactions. The overall high binding strength of 

noncovalent interactions at the hydrophobic implant surface interface impairs the anti-

inflammatory cellular interaction and reorganization. Different ratios of fibronectin and 

vitronectins are observed with increases in positive charge surface.152,153,156,160–163  

Additionally, the polarity of implant surface also plays a role in protein adsorption 

and subsequent cellular interactions. Surface charge modulates the distribution and 

composition of adsorbed proteins, and differential and preferential protein binding to the 

polar region on a charged implant surface interface influences downstream inflammatory 

cellular responses, leading to FBR. 

1.4.1.4. Surface topographies 

Topographic features on ECM modulate cell behavior, and imprinting these ECM 

patterns on surface of implants may mimic the ECM topography induced changes in cell 

behavior. Surface topography modulates protein adsorption, which sequentially alters 

macrophage adhesion, proliferation, cytokine secretion, and FBR. Changing the scale, 

shape, and spatial arrangement of topographical features also alters protein adsorption 

and subsequent cellular response. Nano-scaled topographies offer relatively higher 

surface area than micron-scaled topographies, thus allowing more protein adsorption. 

Addition of topography also alters surface energy and charge density of the material, 
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further influencing the variable protein adsorption profile, conformational change, and 

cellular response.  

Topographical structures induce complex physical stresses at the cellular level, 

generating differential cytoskeletal tensions, which activate mechanotransduction and 

gene expression cascades. Fibroblast and macrophages, which play a vital role in FBR, 

are sensitive to topographical features, and the downstream cellular response of these 

cells is the result of topographically induced cell behavior, which include contact 

guidance, cell selection, cell differentiation, and cell-mediated matrix organization. 

Discontinuous features and topographical roughness lead to preferential cell selection, 

accumulation, and interaction around the implant, while in some cases, selective cell 

proliferation and differentiation are also achieved.102,103,107,127,164–174 The degree of spatial 

arrangement of topographies also regulates cell behavior. Ordered topographic features 

reduce cell adhesion compared to random arrangement of the topographic features or 

planar surface.103,107,174–180 However, the multiple responses to topographical features 

makes it challenging to isolate the effectors. 

1.4.1.5 Surface chemistry  

Modulating surface properties of biomaterials to make them nonimmunogenic or 

hypoimmunogenic can limit macrophage adhesion, activation, and formation of FBGCs. 

The terminal chemistry on implant surface commands the conformation of adsorbed 

protein, which provides a binding site for protein-specific receptors on leukocytes and 

phagocytes. For example, ionic chemistry on the surface affects protein composition and 

conformation as counterions in the local microenvironment can stabilize the protein 

structure, altering protein adsorption dynamics.106,108,155,164,171,181–184 
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1.4.1.6. Surface coating  

The implant surface can be coated to generate a barrier that masks the nonspecific 

protein adsorption and subsequent leukocyte adhesion. A pre-adsorbed coating of known 

noninflammatory or less inflammatory protein can alter the receptor-ligand binding, 

leading to minimal fibrosis. Coating the implant surface with lower immunogenic 

biomaterial also masks the immune reaction leading to FBR with a similar 

mechanism.107,118,156,170,180 

1.4.2 Cellular and tissue level biomechanics 

Biomechanics and cell interaction with the material plays an important role in the 

development of fibrotic overgrowth.104,108,185,186 Cells interact with ECM and implants 

through proteins known as integrins that physically couple the ECM or implant surface to 

the cell cytoskeleton. Integrins act as mechanotransducers that transmit signals across 

the membrane through cytoplasmic-domain-associated focal adhesion molecules. Force-

dependent focal adhesion complexes grow larger and mature as integrin clustering 

increases, leading to force-dependent cytoskeletal changes that ultimately lead to 

activation of transcription factors.187–191 Mechanical cues provided by the ECM or implant 

surface, along with chemical and topographical cues, dictate cellular processes such as 

cell adhesion, migration, proliferation, gene expression, and apoptosis. Other mediators 

that function similarly to integrins and alter cellular activity are G proteins, receptor 

tyrosine kinase (RTK), mitogen-activated protein kinase (MAPK), c-Jun N-terminal 

kinases (JNK), extracellular signal-regulated kinases (ERK), and calcium ions.192–196 

Mechanical changes in the cell cytoskeleton ultimately change the biochemical 

molecules secreted by cells. The cytoskeleton is made up of microfilaments (α-actinin, 
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filamin A, talin, vinculin), microtubules, and intermediate filaments, and all these 

components work together to provide mechanical properties that maintain cell shape and 

tensegrity in the presence of external stress. The external mechanical forces can lead to 

gene regulation and protein synthesis through pathways such as MAPK phosphorylation 

by activating the transcription regulatory proteins in the cytoplasm and nucleus. Moreover, 

mechanosensitive ion channels can also control cellular processes through intracellular 

calcium ion levels that are altered by mechanical force on the cells.   

In terms of tissue-level biomechanics, the external mechanical forces generate 

motion and pressure at the tissue implant interface. The magnitude, duration, and 

transmission of each force varies based on the implants’ apparent relative motion and 

source of each force. These forces are widely classified as normal forces, transverse 

force, torsional force, hydrostatic pressure, stiffness, elasticity, and 

viscoelasticity.192,195,197–200 Normal forces, i.e., tensile force, arise from pushing or pulling 

the implant, while compressive force is the force the implant and tissue apply to each 

other. Shear stress occurs due to transverse and torsional loading and determines 

implant sliding. Acute shear stress arises from pulling and brushing against the implant, 

while chronic shear stress results from repeated abuse due to walking, running, or any 

cyclical activity. Fluid surrounding the implant exerts nondeforming, random hydrostatic 

pressure, which thermodynamically affects stability of the implant. Once external force 

has been applied, this resistance to deformation depends on the inherent stiffness, 

elasticity, and viscoelastic properties of implant biomaterial or ECM.201  

Thus, biomechanics play a crucial role at the macroscale level (where implant and 

tissue interact), microscale level (cells are affected), and nanoscale level (protein 
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adsorption is affected). Mechanical properties of biomaterial affects all cell types, 

especially immune cells and fibroblasts, and cyclic mechanical loading on these cells 

promotes secretion of the autocrine and paracrine soluble factors that regulate ECM 

protein production along with inflammatory cytokines such as  IL-1β, IL-6, TNFα, and 

oxidative stress markers such as cyclooxygenase-2, nitric oxide, prostaglandins 

E2.187,202–206 The cellular response to the biomechanical forces has a self-perpetuating 

and deleterious response leading to FBR and fibrous capsule formation. 

1.4.3 Cellular interactions 

Immune cells and their interaction with the environment and with each other play 

a key role in determining the resolution of the immune response. 

1.4.3.1 Innate immune response  

Polymorphonuclear leukocytes (PMNs) such as neutrophils, eosinophils, and 

basophils provide the first line of host defense as they migrate quickly to the implantation 

site. TGF-β, platelet-derived growth factor (PDGF), and histamine are chemoattractants 

that guide PMNs to activate enzymatic degradation of implanted material by stimulating 

release of proteolytic enzymes and ROS. These cells also secrete cytokines including 

TNFα, IL-1β, IFNγ along with other signals such as monocyte chemotactic protein-1, 

chemokines, and macrophage inflammatory protein-1β. Together these cytokines and 

proteins help PMNs remove cellular debris around the implant while also further 

amplifying the immune response by activating monocytes, tissue-resident macrophages, 

immature dendritic cells, and lymphocytes. Neutrophils, in particular, release neutrophil 

extracellular traps (NETs) to trap pathogens in place, and sustained release of these traps 

have been linked with fibrosis and excessive production of the dense fibrotic matrix. 



 

 

 

19 

Chemoattractants such as CCL2, CCL3, and CCL4 have been implicated in 

recruiting monocytes to the implantation site. The β2 integrin receptors of recruited 

monocytes bind to IgG, fibronectin, fibrinogen, and complement fragment iC3b on the 

implant surface, causing monocyte to differentiate into inflammatory macrophages 

(typically known as classically activated M1 macrophages).102,120–127 These macrophages 

secrete pro-inflammatory cytokines such as IL-1β, IL-6, TNFα that recruit other immune 

cells, along with chemokines, ROS, and proteolytic enzymes that help phagocytose 

apoptotic PMNs, clear debris, and attempt to degrade the implanted biomaterial. The 

accumulation of cytokines and chemokines also activates tissue-resident macrophages 

near the implant. Within 48 to 96 hours of implantation, macrophages are considered the 

predominant cell type that orchestrates and determines the subsequent immune 

response based on the chemical and physical properties of the biomaterial. Since most 

implants, especially for the treatment of diabetes, are larger than macrophages, adherent 

macrophages will be unable to phagocytose the material, at which point they enter the 

“frustrated phagocytosis” zone. However, specific cues or properties of the biomaterial 

can promote macrophages to shift to other activation states (typically known as 

alternatively activated M2 macrophages), in which they produce anti-inflammatory 

cytokines that promote tissue remodeling and angiogenesis. Together, the soluble factors 

released by M2 macrophages lead to recruitment of fibroblasts and endothelial cells, 

promoting angiogenesis and the integration of the implant.103,128,131,207–209   

1.4.3.2 Adaptive immune response   

The adaptive immune system can be activated through antigen presentation by 

macrophages and dendritic cells (DCs) (Figure 1.3). These antigen-presenting cells 
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(APCs) activate T cells by presenting MHC and costimulatory molecules that activate 

naïve T cells. Some examples of DAMPs in diabetes implants include ions from CGMs 

and antigens from encapsulated islets. The DAMPs are recognized by PRRs, and 

depending on which PRRs, DCs can mature and upregulate specific T cell activation. 

Local cytokines and growth factors such as IL-10, TGF-β, hepatocyte growth factor, and 

granulocyte colony stimulating factor produced by other immune cells around the implant 

have been shown to inhibit DC maturation, demonstrating the importance of biomaterial 

properties in directing maturation of DCs.  

Maturation of DC has been associated with activation of various T cells, including 

CD 4 helper Th1, Th2, Th17, and regulatory T cells (Tregs). Typically, especially in cases 

of chronic inflammation, Th1 and Th2 cells are primarily responsible in modulating the 

local inflammatory response around the implant as these cells produce large quantities 

of cytokines that activate local macrophages to their different phenotypes. The role of 

these T lymphocytes has also been linked with innate lymphoid cells (ILCs), which lack T 

and B cell receptors. ILC2, especially, have been associated with inhibiting Th1 and 

promoting Th2 polarization of CD4 helper T cells, indicating the potential role of ILCs in 

regulating implant induced fibrosis as well. Additionally, activation of Tregs could 

influence wound healing as these cells regulate the activation of CD8 cytotoxic T cells 

and produced IL-10, a cytokine that can activate the anti-inflammatory responses of 

macrophages and CD4 helper T cells. Tregs also produce growth factors that promote 

differentiation of local stem cells along with fibroblasts. Recently, a different T lymphocyte 

subset, Th17 cells, has been linked with fibrosis due to their ability to produce IL-17, a 

cytokine that promotes the pro-fibrotic phenotype of macrophages and fibroblasts. 
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Depletion of γδ T cells can also prevent wound healing, suggesting their possible 

involvement in implant induced fibrosis. Despite this information, the role and activation 

of T cells by implants has not been fully elucidated, and research on the crosstalk between 

T lymphocytes and macrophages could serve as a powerful and unique tool in modulating 

local inflammation and subsequent fibrosis of implants.102,125,179,180,208,210–214 

1.4.3.3 Other cell types  

Apart from immune cells, other cell types, including fibroblasts and mesenchymal 

stem cells (MSCs), play a critical role in biomaterial-mediated fibrosis.211,215–217 

Fibroblasts are highly dynamic, extracellular matrix depositing mesenchymal cells that 

are recruited by macrophages during inflammation. Once recruited, local cytokines such 

as PDGF, VEGF, and TGF-β activate the fibrotic phenotype of fibroblasts. These cells 

are typically known as myofibroblasts, which deposit type I and III collagen around the 

implant until there are no local inflammatory cytokines present or until the ECM provides 

physical cues that promote release of the weak focal adhesions formed between 

myofibroblasts and the ECM. If the myofibroblasts cannot detect these local changes and 

continue secreting excessive collagen, fibrotic tissue can encapsulate the implant, cause 

a fibrotic scar formation, and prevent implant function.211–217 

MSCs are also present at the implant site and have regenerative and 

immunomodulatory properties that can activate the innate and adaptive system and 

determine the fate of the implant. MSCs activate macrophage polarization to its anti-

inflammatory by secreting factors such as prostaglandin E2, which increases the 

production of IL-10 while reducing the secretion of TNFα and IL-12. Since anti-

inflammatory macrophages are associated with Tregs, it is assumed that MSCs also lead 
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to the induction of Tregs. Moreover, secretion of these factors leads to a decrease in 

dendritic cell maturation and a decrease in T lymphocyte and natural killer cell 

proliferation. Due to these multi-functional properties, MSCs are typically used for wound-

healing purposes; however, their exact role and mechanism in preventing biomaterial 

induced fibrosis has not been fully explored.103,183,211,215–218  

Knowing the three critical determinants of fibrosis, we can apply various strategies 

to biomaterials to modulate either protein adsorption, biomechanics of material and 

tissue, and manipulate surrounding immune cells to control the local microenvironment 

post-implant (Figure 1.4). In the next section, we have outlined the general strategies 

that have been used to regulate FBR and fibrosis.  

 

1.5 Biomaterial Strategies to Regulate the FBR and fibrosis 

FBR and fibrous encapsulation are common problems associated with implantable 

CGMs or islet encapsulation devices. At the implant – tissue interface, the adverse host 

immune response leading to FBR/fibrosis can be minimized with two practical 

approaches: immune evasive strategies and immune-interactive strategies.190,219,220 

Immune evasive strategies involve use of intrinsically inert biomaterials that are 

recognized as foreign material but do not directly activate a specific immune response. 

Immune-interactive strategies, on the other hand, engage and elicit the controlled cellular 

responses, favorably modulating it to minimize the FBR.190,219,221 
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1.5.1 Immune evasive strategies 

Immune evasive biomaterials used for implants are inert and elicit minimal host 

response. An extensive array of biomaterials has been investigated, including natural 

biomaterials and synthetic biomaterials.  

1.5.1.1. Natural biomaterials  

A wide range of natural biomaterials with boundless functionalities is available. 

These materials are usually derived from materials present in the living system through 

the process of physical, chemical, or enzymatic decellularization.104,107,130,222,223 These 

biomaterials are usually biocompatible and may display specific protein binding sites and 

biochemical signals, driving downstream cellular response towards regeneration and 

away from FBR and fibrosis. The downsides of natural biomaterials are premature 

biodegradation and unpredictable mechanical failure. Moreover, xenogeneic natural 

biomaterials have very high immunogenicity. Examples include gelatin, which is one of 

the commonly used natural biomaterials in pancreatic islet encapsulation. It has a triple 

helical structure with a repetitive sequence of glycine–proline/hydroxyproline–

proline/hydroxyproline. Due to the structure, gelatin can immobilize water and make the 

implant surface hydrophilic, leading to low binding of FBR specific 

proteins.127,164,184,222,224–226 Another natural polymer, chitosan, is obtained by the alkaline 

hydrolysis of chitin derived from the fungal cell wall, insects, and shrimp’s exoskeleton. It 

is a polysaccharide with repeated D-glucosamine and N-acetyl-D-glucosamine units and 

carries a positive charge due to the cationic amine group. It exhibits, both, pro- and anti-

inflammatory responses, depending on the degree of deacetylation of chitin, molecular 

weight, ionic charge, and solubility. Lower molecular weight chitosan shows upregulation 
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of pro-inflammatory cytokines such as TNFα, IL-6, IFNγ, while higher molecular weight 

shows downregulation of these cytokines. Moreover, downregulation of pro-inflammatory 

cytokines is also observed at increased polymer solubility and in its zwitterionic 

state.110,211,225,227–229 Hyaluronic acid is also a non-immunogenic biopolymer derived from 

the ECM of connective and epithelial tissues. It is a negatively charged polysaccharide 

with repeated units of D-glucuronic acids and N-acetyl glucosamine. At lower molecular 

weight, it is pro-inflammatory as it induces upregulation of TNFα and IL-1β, but at higher 

molecular weight, it becomes less immunogenic as it increases secretion of IL-10, an anti-

inflammatory cytokine.103,222,225,228,229 Heparin, used widely for intravascular implants in 

DM, is a linear glycosaminoglycan with a negative charge due to the high content of 

sulfonic and carboxyl groups in its D-glucuronic and D-glucosamine repeating units. 

Heparin and its derivative inhibit inflammatory cytokines such as TNFα, IL-6, IL-8, IL-1β 

at lower molecular weight in a dose-dependent manner.81,170,211,229,230 Agarose is another 

natural polysaccharide composed of linear chains of D-galactose and 3,6-anhydro-L-

galactopyranose. It is a thermosetting polymer with very low immunogenicity as it can 

locally inhibit the complement system, thus reducing the immune response leading to 

FBR.230–233 Alginate is a widely used biopolymer, especially for islet encapsulation for the 

treatment of T1D. It is a negatively charged biopolymer with the repeated units of 

mannuronic and guluronic acids and has excellent gelation property in the presence of 

divalent cations. Its immunogenic property depends on the ratio of mannuronic and 

guluronic acid. Unsaturated oligomers upregulate TNFα and induce a greater pro-

inflammatory response as compared to saturated oligomers.222,230,234–236 Another polymer 

that has extensively improved islet transplantation outcomes is collagen. It has numerous 
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subtypes that are present in connective tissues, with the most prominent subtypes being 

collagen type I, II, and III. It has a triple helical structure with a repeated unit of glycine, 

proline, and hydroxyproline sequence, and the immunological profile of collagen depends 

on this helical structure as well as the fibril’s amino acid sequence.167,180,186,237–240 Lastly, 

silk is a natural polymer with a core structural protein, fibroin, that is surrounded by sericin, 

which is responsible for the immunogenicity of silk.107,230,232,241,242 Isolated fibroin has very 

low immunogenicity, controllable biodegradability, and excellent mechanical properties, 

making it an excellent candidate for improving islet encapsulation efficiency and long-

term graft function with limited FBR.  

1.5.1.2. Synthetic biomaterials  

Synthetic biomaterials are easy to synthesize, inexpensive to produce, and have 

predictable and tunable functional properties. Though they have excellent 

physicochemical, mechanical, and degradation properties, they are more prone to induce 

a pro-inflammatory response, causing difficulty in integrating with host tissues.221,223,243 

An example of synthetic biomaterial is polycaprolactone (PCL), which is used widely with 

implants as it is an inert, biodegradable, linear aliphatic polyester. It is a hydrophobic, 

biocompatible polymer with a prolonged degradation rate that can be easily modified by 

changing the molecular weight.106,107,202,219,230,244 Polyethylene glycol (PEG) is another 

inert, non-immunogenic, flexible, biocompatible hydrophilic polymer of ethylene oxide. It 

is resistant to protein adsorption and is known to minimize the protein corona formation. 

It has a linear and branched structure that can be easily modified to covalently attach a 

variety of functional groups.81,126,229,233,245–247 Polyvinyl alcohol (PVA) is yet another 

synthetic polymer that has been successfully used as a biomaterial for implants. It is 
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derived from hydroxylation of polyvinyl acetate and has varying chemical properties 

based on the percentage of hydrolysis. It is highly non-immunogenic due to its 

hydrophilicity, low protein adsorption, and high-water solubility.110,167,211,248,249 

Polyurethane (PU) is composed of aliphatic or aromatic units derived from polyether or 

polyester monomers. Its immunogenicity mostly depends on the ratio of polyoxyethylene 

(PEO) to polytetramethylene oxide (PTMO). Water absorption and hydrophilicity of PU 

depends on the quantity of PEO present as PEO has low interfacial free energy with water 

and high surface mobility.126,170,184,223,229,250,251 Polytetrafluoroethylene (PTFE), commonly 

known as Teflon, is a highly crystalline fluoropolymer of tetrafluoroethylene. It has a 

hydrophobic, electronegative, and low-friction surface that is suitable for most blood-

contacting implants but does induce a mild inflammatory response.217,223,229,248,252 

Polyglycolic acid (PGA) is a polyester with a high degradation rate and a linear aliphatic 

structure that is synthesized using ring-opening polymerization of glycolic acid. There is 

no standard agreement on the immunological profile of PGA as it prevents initiation of 

lymphocyte DNA synthesis but also promotes the pro-inflammatory response by 

activating MHC-II and IL-2 receptor.180,223,229,253 Polylactic acid (PLA) is a linear, aliphatic 

polymer of lactic acid with slow degradation rate and excellent mechanical properties. It 

is used in blood-contacting implants and causes no thrombosis and minimum stenosis. 

However, acidic degradation products of the polymer are reported to provoke a pro-

inflammatory response.230,254–256 Lastly, polylactic-co-glycolic acid (PLGA) is a blend of 

PLA to PGA, with varying ratios resulting in different immune responses in terms of 

immune cell infiltration and FBR.228,249,257–259  
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1.5.2 Immune engaging strategies  

Biomaterials can also provide structural, biochemical, and biomechanical cues that 

will activate the immune system at the implant-tissue interface. Some properties of 

biomaterials make them inherently immune-engaging;190,219,223,260,261 one such example 

is decellularized extracellular matrices.216,229,239,262–264 These large, structural, protein-

based matrices derived from native tissue are lipid and cell-free, making them highly 

immune-privileged biomaterial that can modulate and downregulate a myriad of immune 

responses. Another example of an inherently immune engaging material is fibrin,204,225,254 

a filament-forming soft network formed by an enzymatic reaction between fibrinogen and 

thrombin. Presence of fibrin ligands in several integrin receptors downregulates pro-

inflammatory cellular response leading to FBR.  

Other immune engaging strategies include local delivery of pro-inflammatory and 

anti-inflammatory molecules. Examples of these molecules include antibodies, cytokines, 

chemokines, prostaglandins, leukotrienes, proteolytic enzymes, free oxygen radicals, and 

nitric oxide.82,107,130,211,212,215,219,228,265 Pro-inflammatory molecules such as heat shock 

protein 70 (HSP-70), lipopeptide-2, cytosine-phosphorothioate-guanine 

oligodeoxynucleotides (CpG) target the immune system through TLR pathways to help 

initiate acute inflammation that eventually leads to the reparative response.14,126–128,211,266 

A significant acute and chronic anti-inflammatory response with inhibition of FBGC and 

fibrosis is obtained using glucocorticoids, superoxide dismutase, and nonsteroidal anti-

inflammatory molecules. Other anti-inflammatory factors such as IL-4, IL-10, anti-TNFα  

also play a significant role in promoting tissue repair and regeneration.126,211–213,228,267–269 

Local delivery of these pro-resolvin mediators end the acute inflammatory response by 
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inducing macrophage polarization to its reparative M2 phenotype, which begins the 

process of tissue granulation and regeneration.126,179,270 Promoting integrin clustering, 

activating immune cells, and providing growth factors can also induce tissue regeneration 

while suppressing FBR. Immune cells, such as macrophages and MSCs can be used as 

a biological source to produce immune-modulatory molecules.211,215,271 Epidermal growth 

factor (EGF),103,106,272 vascular endothelial growth factor (VEGF),108,211,273 fibroblast 

growth factor (FGF),81,211,274,275 granulocyte-macrophage colony-stimulating factor (GM-

CSF), PDGF, and TGF-β  together form a complex signaling network, which helps guide 

cross-talk between the immune cells, tissue cells, and leukocytes to successfully 

modulate the reparative immune response.103,126,211,228,276–278 Additionally, hydrophilic 

biomaterials156,157,186 induce a lower local immune response as compared to hydrophobic 

polymers167,202,279 as hydrophilic polymers have significantly lower monocyte adhesion 

and formation of FBGCs. Surface topographies on commonly used biomaterials for 

implants, such as polycaprolactone (PCL),106,178,280 polylactic acid (PLA),183,186,224 poly-

dimethyl-siloxane (PDMS),80,107,224 promote macrophage polarization and also reduce 

FBR. Lastly, surface coating reduces non-specific adhesion of proteins on the implant-

tissue interface and prevents biofouling. Polymer coatings of PEG, PAA, 

polyethyleneglycol-block-poly l-lysine hydrochloride (PEG-b-PLL),81,233,281 polyethylene 

glycol diacrylate (PEGDA),282,283 poly N-isopropyl acrylamide, and poly 2-hydroxyethyl 

methacrylate (PHEMA)80,107,211 have demonstrated minimal protein adsorption.  
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1.6 Engineering Immune Engaging Biomaterials 

Immune-engaging biomaterials have shown great potential in modulating FBR and 

fibrosis, as these materials can induce specific immune cell response that promotes 

implant integration and function. Essential strategies for designing such biomaterials 

include altering surface chemistry through biofunctionalization, changing surface 

topography, and emphasizing the role of biomechanics in implant design. 

1.6.1 Surface chemistry 

The bio-functionality of the material depends on how surface chemistry influences 

protein adsorption.155,178,284 Immune-modulating surface chemistries are engineered by 

modifying the original implant surface through non-covalent deposition and adsorption of 

biomolecules and through covalent cross-linking of functional groups such as thiols,183 

silanes,166,233 or biomolecules110,207,211 on the material surface. Ion-beam 

implantation,285,286 chemical conjugation, silanization,166,233,284 self-assembly of 

monomers,80,110,252,287,288 and plasma-assisted techniques164,289,290 are a few of the most 

critical processes used to modify surface chemistry. Ion-beam implantation injects 

accelerated ions (cations and anions) into a material to alter its surface charge, energy, 

and chemistry, directly affecting implant-protein interaction. Surface coating can also be 

added to materials containing functional groups, such as -OH, -COOH, -NH2, via electron 

beams as high energy ionizing radiations, upon exposure to the reactive groups, can react 

to form a functional coating on the biomaterial surface. Silanization is another technique 

in which silane molecule reacts with a hydroxylated substrate, which, upon 

polymerization, produces a covalently linked surface coating. This technique is commonly 

used on implant surfaces to alter chemical properties such as surface energy. Self-
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assembly monolayers  (SAMs)166,272 are highly ordered surfactants that spontaneously 

assemble by covalently anchoring on the biomaterial surface. Alkanethiols291 is a well-

known SAM facilitating in hydrophilic, hydrophobic, non-fouling short chain, and 

polysaccharide terminal modification. Some of the molecules with no functional alkyl 

groups such as proteins, porphyrins, nucleotide bases, and hydrocarbons with aromatic 

rings can also form SAMs. Plasma assisted techniques, such as radiofrequency glow 

discharge plasma-induced surface ablation, etching, and coating using low pressure 

suitable ionized gas, are used to modulate the cell-material interactions by tuning the 

density of the functional group deposition on biomaterials.106,166,275,292 

1.6.2 Biofunctionalization, coating, and patterning 

Bioactive molecules can be covalently coupled to functional groups on the surface 

of a biomaterial. Favorable modulation of downstream immune response is proportional 

to the density of immobilized ligands, spatial distribution, colocalization with agonistic or 

synergistic ligands, and steric hindrance. The practical approach is to mimic properties of 

the ECM onto biomaterial surface to accelerate tissue regeneration. Material surface can 

be functionalized with peptides, proteins, growth factors, and endothelial cells to alter 

protein adhesion, improve blood compatibility, inhibit foreign body response, and increase 

the patency of implants. Small oligopeptide sequences such as arginine-glycine-aspartic 

acid (RGD)106,257,293 and proline-histidine-serine-arginine-asparagine (PHSRN)127,294 

contain receptor binding domains for macrophage-specific adhesive proteins that can 

regulate macrophage phenotype. PEGylation (PEG coating or brush layers on the implant 

surface) prevents protein adsorption, and its non-biofouling activity depends on its 

molecular weight, chain length, chain density, and conformation and is directly 
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proportional to the degree of polymerization and the density of surface brush 

bristles.110,127,295–297 To further contain the pro-inflammatory immune response, 

rapamycin and other active biomolecules can be doped in the PEG coating and slowly 

released into the microenvironment to inhibit non-specific binding and proliferation of 

inflammatory macrophages.107,298,299 Di block PEG copolymer, such as PEG-b-PLL and 

VEGF/bFGF linked PEGDA, support neovascularization with minimal fibroblast adhesion 

while simultaneously masking pro-inflammatory entity with an outer anti-fouling layer to 

ameliorate the FBR. Examples of notable anticoagulants and anti-fouling agents that 

successfully prevent the pro-inflammatory response are warfarin,167,233 heparin,170,211,300 

hirudin,272,301 argatroban,301 chlorothalonil,302 phosphorylcholine-PDMS,303–305 PEG-

fluoropolymer,166 ethisorb,229,306 zwitterionic polymers such as phosphorylcholine, 

sulfobetaine (SB), carboxybetaine (CB),110,166,233,307 and many more. Materials can also 

be modified using biochemical patterning to spatially control cell organization,  

attachment, and differentiation. These well-defined and ordered colocalization of 

synergist, agonist, or even antagonist molecules can be achieved using microcontact 

printing and other Lithographie, Galvanoformung, Abformung (LIGA) processes.308–312  

1.6.3 Surface topography 

Topographies are precisely engineered geometric features that can be nano- or 

micron-scaled. The size of the features, shape, geometry, spatial arrangement, 

frequency, geometry, randomness, and roughness can influence protein adsorption, cell 

differentiation, and the overall FBR.107,174,180,182 Several techniques can be used to install 

surface topography. For example, photolithography, limited to the sub-micron scale, uses 

ultraviolet exposure to transfer topographical features on photosensitive material through 
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a patterned mask. For nanoscale features ranging above 4 nm, electron beam lithography 

(EBL) uses high energy focused electron beam, in the range of 15 – 30 kV, to transfer 

nanotopography on substrate coated with photosensitive material.178,290,313 Additionally, 

soft lithography can used to replicate and transfer these features on the biomaterial 

substrate. Similar to EBL, high energy reactive focused ion beam (FIB) can also be used 

to fabricate nanoscale topographies using etch masks consisting of self-assembled nano 

colloids.178,290 This technique, known as colloidal lithography, is used to make 

nanocolumns, nanosphere, and nanocones on material surface. Polymer demixing uses 

spontaneous phase separation of blended polymer to fabricate random, disordered, sub-

micrometric to micrometric scale, co-localized features, such as pores, pits, islands, and 

ribbons.164,172,183,290 Electrospinning can also be used to fabricate nanoscale, fiber-like 

topography. In this method, high voltage, typically in the range of 25 – 50 kV, is used to 

draw charged polymer solution or eject polymer melt at a controlled rate to yield 

nanoscale fibers. The topographical arrangement of these fibers depends on the 

collection methods used; aligned fibers are obtained if collected on the rotating drum 

collector while random fibers are obtained if collected on the planar collector.184,282,314–317 

Similarly, electrospraying uses electrohydrodynamic process and high voltage electric 

field to spray a charged polymer solution at low concentration to obtain self-dispersed 

nanoscale particle topography on substrates.313,318,319 Additionally, techniques such as 

dip coating,108,183,265 laser machining, embossing,170,178,183,291 acid etching,170,287,320 dry 

etching,256,287,321,322 sandblasting,164,203 grinding,287,323 etc., can also be used to 

successfully install surface topography. 
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1.6.4 Biomechanics at the implant level 

Mechanical properties of implant that can induce FBR include several metrics such 

as implant location, relative motion, force intensity, shape, size, thickness, and bulk 

material mechanical properties of the biomaterial.104,108,206,324 Implant location affects 

biomechanics of the implant as different external forces are at play, which, ultimately, 

limits the functionality, performance, and lifetime of the implant. For example, 

percutaneous implants are subjected to micromotions, exterior pressures, and forces that 

propagate along the implant and impact cells at the interface.108,206,324 On the contrary, 

subcutaneous or intravascular devices experience less direct forces.80,206,233,325 

Moreover, implant shape significantly affects the distribution of the interfacial forces as 

well. Higher stress concentrates at sharp angles, curves, and edges, inducing strong FBR 

with thicker fibrous encapsulation.104,199,206,326 Implant size is also another crucial factor 

in determining development of fibrotic overgrowth, as it has been demonstrated that 

smaller implants cause less tissue trauma, with reduced acute inflammatory response, 

and can sometimes evade the FBR completely. The induced pro-inflammatory response 

is less dependent on the length of the implant, as compared to the height, as there is 

lower disruption in collagen fibers that are parallel to the implant. On the other hand, 

thicker implants (higher heights) create a separation between the parallel running 

collagen fibers, triggering the ECM to fill the voids, resulting in a thicker fibrous capsule. 

For example, paper-thin polyvinyl chloride/polyacrylonitrile (PVC/PAN)227,253,281 and 

silicone-coated PVC/PAN107,127,174,265,327 implants showed lower fibrosis as compared to 

thicker implants. Lastly, differences in the modulus of the material and surrounding tissue 

can lead to accumulation of stress at the implant interface, resulting in fibrosis.102,104,186,206 
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In fact, it has been demonstrated that implants with modulus similar to that of the 

surrounding have reduced interfacial stress, which downregulates the pro-inflammatory 

response leading to FBR.  

In the next section, the application of these aforementioned strategies in the 

development of implants for DM will be evaluated.  

 

1.7 Strategies Used to Modulate Fibrosis for Diabetes Implants 

Treatments for DM include closed-loop insulin delivery systems, also known as 

artificial pancreas, along with glucose sensors that detect blood glucose levels and 

secrete the appropriate amount of insulin based on the detected glucose 

levels.38,247,328,329 Islets or β cell replacement using intravascular or extravascular 

encapsulation devices can also serve as long-term treatment for DM, specifically for 

T1D.91,248,314 Though these technologies have their own inherent challenges, the issue of 

FBR and fibrosis remains unresolved.81,91,230,330 

1.7.1 Continuous glucose monitoring systems  

The implantable glucose sensor is a highly valuable, clinical technology that 

improves the quality of life of DM patients through real-time monitoring of glycemic 

variability. It notifies the user of hypoglycemic and hyperglycemic events with early 

predictions and makes maintaining euglycemia an achievable goal when combined with 

closed-loop insulin administration technologies.52,247,328 However, contemporary CGMs 

lose their lifespan, reliability, and accuracy approximately one week after implantation. 

This loss occurs due to FBR  that results in avascular collagenous tissue encapsulation 
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of the CGM and due to the metabolically active inflammatory cells around the implant that 

change local pH and glucose concentration.47,52,247,331  

Numerous strategies for improving longevity of CGMs have been evaluated. 

Traditionally, platinum-iridium (Pt/Ir)332,333, silver/silver chloride (Ag/AgCl)184,224,334 based 

amperometric electrode, isotonic fluid perfused microdialysis fibers, and other enzyme-

based electrochemical sensors were used for glucose sensing.335–337 However, these 

materials have limited biocompatibility, which is why tremendous progress has been 

made in developing new materials, such as carbon nanomaterials,338,339 polymer 

microgels,340–342 and semiconductor quantum dots (QDs),343,344 that enhance the 

glucose-sensing capabilities and biocompatibility of the sensors. Carbon nanotubes 

(CNTs),247,338 graphene-based electrodes,247,338,345 PAA hydrogel with reduced graphene 

and lutetium phthalocyanine,346 and other non-enzymatic sensors,336,338,345 have shown 

excellent glucose sensitivity with relatively greater biocompatibility in vitro. Moreover, 

boronic acid-functionalized glucose-responsive polymer gels, metal nanoparticles infused 

with phenylboronic acid (PBA)342 functionalized microgels, poly(amidoamine) 

(PAMAM)342 functionalized microgel, photoluminescent cadmium selenide/zinc sulfide 

(CdS/ZnS)342, have also shown great promise in providing excellent glucose sensitivity 

and higher biocompatibility.  

Though the new materials have outstanding glucose sensitivity, their 

biocompatibility and success as implantable CGMs rely heavily on favorable 

immunological response at the interface. Polymer coatings can be applied as they can 

potentially mitigate fibrosis without changing implant function. Several inorganic, organic, 

and bio-functional polymers with anti-fouling properties have been assessed. For 
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example, a nafion-coated CGM probe showed greater function for more than a week, 

even though it eventually failed due to mineralization.347–349 Polyether-based aliphatic PU, 

PU with silicone, and polyethylene oxide (PU-S-PEO) coated sensors significantly inhibit 

leukocyte adhesion, FBGC formation, and reduce downstream inflammatory cascade up 

to 2 months.350–352 PEG-modified hydrogels,339,351,352 copolymers of 2-hydroxyethyl 

methacrylate (HEMA),353–355 and ethylene di-methacrylate356,357 coated implants have 

also shown lesser fibrous encapsulation compared to PU control. Zwitterionic polymer 

coating can also be used as an anti-fouling coating for CGMs as its net neutral charge 

and high hydrophilicity can resist protein adsorption and subsequent cell 

adhesion.107,166,351,358 In fact, zwitterionic pSBAA359–361 and pCBAA362,363 coated surfaces 

suppress leukocyte attachment significantly better than PEG-coated surfaces.  Moreover, 

inorganic composites, such as sol-gel derived silicates and silica-based material, and 

naturally occurring materials, such as alginate and collagen, have shown minimal 

inflammatory response when coated on biosensors.   

Topographical and biomechanical properties of the CGMs can also influence the 

inflammatory response. For example, PLLA foam coated implantable glucose sensor 

reduced the thickness of the fibrous capsule with a better capillary density.352,364 Glucose 

sensor with a porous expanded PTFE membrane demonstrated better integration of 

implant with the surrounding tissue for more than 5 months.184,365 High precision PMMA 

templated porous PHEMA hydrogel, silicone, and fibrin coated implant developed only a 

very thin fibrous capsule, increased vascularization, and reduced pro-inflammatory 

macrophage phenotype.365,366 Electrospun, aligned, single and coaxial PU and gelatin 

fibers of different diameters have also been used to coat glucose sensors, in which 
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monodispersed fiber diameter, permeability, and orientation influences the host 

response. The coaxial PU-gelatin electrospun fibers effectively prevent formation of 

fibrous capsule as compared to their counterpart.366–368 Also, since mechanical properties 

of fibers or other coating materials play a crucial role in modulating FBR, coating materials 

with modulus that is similar to that of the surrounding tissue induces lower pro-

inflammatory response.369,370 An implants’ perceived modulus can also be modulated with 

a brush-like coating of an interpenetrating polymer network that can reduce the FBR. 

Additionally, polymer coating of double network N-isopropyl acrylamide and 2-

methylpropane sulfonic acid membrane (NIPAAm: AMPS) with characteristic 

thermoresponsive cyclic swelling-deswelling inhibits protein adsorption and subsequent 

leukocyte attachment.369–373 

To enhance the sensor integration capability further, the delivery of active small or 

large molecules can be downregulated. Sensors coated with dexamethasone, a 

glucocorticoid, have decreased vascular permeability and leukocyte extravasation. It also 

prevents leukocyte adhesion and recruitment by reducing the production of proteolytic 

enzymes and cytokines.374–377 PLGA particles releasing tyrosine kinase inhibitor 

(masitinib) from CGMs modulate macrophage polarization and decrease the FBR.378–381 

Extended local delivery of VEGF from HEMA, PEG hydrogels, and PLGA microspheres 

can also modulate the pro-inflammatory response. PLGA particle coated on the sensor 

has been used for dual delivery of dexamethasone and VEGF with no significant 

synergistic effect. Nitric oxide (NO) has also been used to mitigate fibrotic overgrowth as 

it upregulates VEGF production and vascularization while downregulating pro-

inflammatory cytokine secretion.382–384 A variety of delivery systems are developed for 
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localized long-term NO delivery from CGMs sensors. S-nitrosothiol and N-diazonium 

diolates are used as a source for NO generation and are incorporated in various polymer-

based delivery vehicles coated on glucose sensors. S-nitrosothiol surface-functionalized 

silica nanoparticle and xerogels doped surface coating led to NO release from the sensor 

surface, resulting in decreased inflammatory cells, thin fibrous capsule formation, and 

long-term sensor function.350,351  

1.7.2 Microencapsulation and PEGylation of islets 

Microencapsulation for islet transplantation is a widely used strategy in which islets 

are entrapped within a polymeric membrane that provides three-dimensional architecture 

to the cells while also providing a high surface area to volume ratio for increased access 

to nutrients and oxygen. Despite normalizing blood glucose levels in diabetic animals, 

microcapsules have not achieved clinical outcomes due to the formation of fibrosis around 

the capsules. This section of the review outlines strategies used for commonly used T1D 

microencapsulation materials to prevent fibrotic overgrowth. 

1.7.2.1 Alginate microcapsules  

Microencapsulation of islets in alginate hydrogel is a conventional approach for 

treatment of T1D. Alginate is a natural, hydrophilic copolymer that exists as calcium, 

magnesium, or sodium salts of alginic acid in cell walls of brown seaweed. It is a non-

toxic, low-cost unbranched polysaccharide composed of D-mannuronic and L-guluronic 

acid residues joined by glycoside linkages. The monomeric composition of alginate 

hydrogels affects the biodegradability, porosity, and mechanical integrity, making it an 

easily modifiable hydrogel. Moreover, divalent cations such as calcium (Ca2+) are typically 

used to gel the hydrogel under mild conditions. Despite the success of these 
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microcapsules in T1D, due to batch-to-batch variability as well as the presence of 

endotoxins, cellular fibrotic overgrowth is still an issue that has prevented successful 

clinical advances of the material. Approaches to preventing the fibrotic overgrowth for 

alginate hydrogel include changes in monomeric composition, increasing size of 

microcapsules, surface modification, co-delivery of anti-inflammatory drugs, and co-

encapsulation.385,386 

One of the major components that can be controlled to prevent fibrosis in alginate 

microcapsules is material purity. Although alginate is a natural polymer, it contains 

endotoxins such as liposaccharides that can activate host inflammatory response through 

TLRs. Many studies have been conducted that show that alginate purity is a key 

component in reducing capsular overgrowth.385,386 Moreover, alginate composition as well 

as its molecular weight can also affect the biocompatibility of the microcapsules. 

However, there are many conflicting reports regarding what ratio of repeating units of 

guluronic (G) and mannuronic (M) acid in alginate leads to higher biocompatibility.387,388 

Also, using a low molecular weight, lower viscosity alginate induce a greater fibrotic 

response as compared to intermediate and high molecular weight alginate capsules.389 

Size of the microcapsules can also determine activation of FBR. Typically, 

microencapsulation spheres are 0.8-1.5 mm in diameter, however, this size range creates 

a large diffusion barrier for encapsulated cells, leading to necrosis and accelerated fibrotic 

encapsulation. Smaller, 0.25-0.35 mm in diameter alginate-polylysine-alginate 

microcapsules, on the other hand, were more biocompatible and showed prolong graft 

survival.390 However, a recent study has shown contradictory results and also 

demonstrated that device geometry also plays a key role in modulating FBR and fibrosis 
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in rodents and non-human primates. The study showed that spherical materials of 1.5 

mm diameter or greater caused lower fibrosis than smaller spheres or disc shaped 

hydrogels. This remains true across materials of different stiffnesses such as alginate, 

glass, polycaprolactone, polystyrene and stainless steel. Moreover, encapsulation of rat 

pancreatic islet cells in 1.5-mm alginate capsules were able to control blood-glucose 

levels for up to 180 days in a diabetic mouse. This was particularly significant as the 

widely accepted 0.5-mm alginate capsules have shown control of blood-glucose levels 

for approximately only 30 days. The increased graft survival and functionality was largely 

dictated by the reduced cellular deposition and fibrosis formation observed on alginate 

spheres of larger diameters.307 

Additionally, many groups have modified the surface of alginate microcapsules to 

increase the biocompatibility. Alginate beads with alternating layers of polyethyleneimine, 

polyacrylacid, or carboxymethylcellulose were tested, and the use of any of these 

multilayer-membrane had no adverse fibrotic effects on the grafts. Results also showed 

high insulin secretion, indicating increased survival of islets.391 Additionally, coating 

rapamycin-containing polyethylene glycol significantly reduced fibrosis around the 

implant by decreasing macrophage cell proliferation.102,228,299,392,393 However, this 

biocompatibility of PEG coated alginate microspheres depends greatly on the transplant 

site.81,388 Chemical conjugation of triazole-thiomorpholine dioxide to alginate 

demonstrated lower fibrosis around empty alginate microspheres transplanted in rodents 

and non-human primates.211,394–396 Encapsulation of islet stem cell clusters in these 

chemically modified microspheres also showed little evidence of fibrotic overgrowth after 

6 months and excellent glucose control when transplanted into diabetic rodents.395,397–399 
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Similarly, chemically modified alginate using corline heparin conjugate had no negative 

effects on the encapsulated islets and helped reduce fibrotic overgrowth in syngeneic and 

allogeneic rat transplantation model by ~65% and 43%, respectively.102,400 Coating 

alginate microcapsules with chitosan also had significantly lower fibrosis around the 

implant after 1 year of, both, xenogeneic and allogeneic transplant.81,236,401,402  

Moreover, a large library of amines, alcohols, azides, and alkynes have been 

covalently conjugated to alginate to modify the latent functionalities and properties of the 

polymeric alginate backbone. Barium alginate microspheres of 300-350 µm size modified 

with Z2-Y12, Z1-Y15, and Z1-Y19 showed lower fibrotic overgrowth after 28 days of 

implantation in the subcutaneous space and almost no fibrous deposition after 14 days 

of implantation in the intraperitoneal space of C57BL/6J mice. These modified materials 

contained triazole functionality and showed little to no presence of macrophages, 

myofibroblasts, or general cellular deposition around the microcapsules. Although the 

mechanism of how triazole-containing materials mitigate foreign body responses is still 

unknown, there is strong evidence that triazole derivatives may prevent activation of 

macrophages and other immune cells, thus, disrupting the process of fibrosis.403 Allogenic 

transplantation of islets encapsulated Z1-Y15 modified alginate microspheres in non-

human primate animal model showed no pericapsular fibrotic capsule in 6 out of 7 animals 

and 90.0% islet cell viability was retained after 4-months of implant. Additionally, when 

glucose-stimulated insulin secretion of the encapsulated islets was measured, these islets 

secreted significantly higher levels of insulin compared to non-modified alginate 

microspheres.404 
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More recently, zwitterionic polymers bearing CB, SB, and phosphorylcholine have 

shown ultra-low-fouling properties due to their high resistance to nonspecific protein 

adsorption and cell attachment. SB-conjugated alginate microcapsules were implanted in 

the intraperitoneal space of C57BL/6J mice, intraperitoneal space of dogs, and omental 

pouch of pigs for up to 6 months. SB-alginate microcapsules in mice showed significantly 

less cellular overgrowth than unmodified alginate microspheres. Similar results were also 

seen in large animals, including dogs and pigs, indicating the effectiveness of this strategy 

in various species. Moreover, after encapsulating rat islets, SB-coated microcapsules 

also showed significantly better long-term glycemic control for up to 200 days in 

streptozotocin (STZ)-induced diabetic mice.405 Although zwitterionic hydrogels have great 

anti-fouling properties, these hydrogels lack mechanical properties. Therefore, triazole 

moieties have been integrated into a hydrogel monomer to create a more mechanically 

robust hydrogel that has greater compressive strain and tensile strain. Despite the 

addition of triazole, the biocompatibility of the hydrogel was unaffected. In fact, 

encapsulation of islets in triazole-zwitterionic alginate hydrogels showed correction of 

glycemic levels in diabetic mice and subcutaneous implantation of the hydrogels also 

showed significantly lower foreign body response as compared to control.406 

Instead of surface conjugation, co-encapsulation of anti-fibrotic drugs is also a 

possible strategy for mitigating fibrosis. Co-encapsulated GW2580, a colony stimulating 

factor 1 receptor (CSIF1R) inhibitor, with β cells in diabetic mice showed lower fibrosis in 

microcapsules containing the drug. GW2580 targets CSIF1R, which is has been shown 

to play a key role in targeting monocyte/macrophage phenotype polarization and 

mediating the FBR against implants. Moreover, subcutaneous and intraperitoneal 
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transplantation of rat islets in 0.5 mm alginate microcapsules with and without drug in 

STZ-induced diabetic C57BL/6 mice showed promising results. After 72 days in the 

subcutaneous space, control capsules had a collagen-encapsulated sack around the graft 

while the drug loaded capsules were fibrosis free. Moreover, there was also a difference 

between encapsulating amorphous and crystalline GW2580-loaded capsules. The study 

showed that, after ~1.3 years, crystalline drug capsules had higher islet viability, as 

indicated by ~30-fold higher Pdx1 expression, and lower myofibroblast and fibrosis 

response, as indicated by 74% lower α-smooth muscle actin expression.393 Additionally, 

incorporation of CXCL12, an immunomodulatory cytokine, in sodium alginate 

microcapsules containing stem cell derived β cells prevented pericapsular fibrotic 

response, leading to long-term (>150 day) glycemic correction in mice. The presence of 

CXCL12 also enhanced the glucose-stimulated insulin secretion of the stem cell derived 

β cells, which helped the treated mice correct hyperglycemia faster than the control 

group.107,398 Co-delivery of other drugs, such as dexamethasone and curcumin, can 

effectively minimize fibrotic cellular overgrowth as these drugs inhibit activities of 

inflammatory proteases and reactive oxygen species. When curcumin was co-

encapsulated with rat islets in alginate microcapsules, there was reduced fibrosis around 

the implant and promoted greater glycemic control in the diabetic mice.102,307,407 

Lastly, co-encapsulation of different cell types with islets can help mitigate fibrotic 

overgrowth induced by alginate microcapsules as well. Co-encapsulation and co-

transplantation of mesenchymal stem cells (MSCs) with islets resulted in significantly 

lower perivascular fibrotic overgrowth along with improved graft survival and functionality. 

Additionally, MSCs pre-stimulated with IFN-γ and TNF-α secreted higher quantity of 
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immunomodulatory cytokines and showed slightly lower fibrosis around the graft. Data 

also suggested that the observed decrease in fibrosis could be attributed to the 

upregulation of IL-10 and G-CSF, which directly inhibit TNF-α.408 Sertoli cells are another 

set of companion cells that have shown higher engraftment and function of islets when 

co-encapsulated in alginate microcapsules as these cells inhibit T-cell and B-cell 

proliferation while increasing local IL-12 production. Co-microencapsulation of these 

Sertoli cells with islets increased local immunosuppressive factors and showed higher 

islet β cell mitotic function that produced significantly higher insulin release upon glucose 

stimulation. However, the effect of these cells in directly preventing fibrosis has not been 

studied yet.248,409  

1.7.2.2 Other microcapsules 

Microcapsules fabricated from other natural and synthetic polymers have also 

shown promise in preventing fibrosis of grafts fabricated for T1D. For example, islets 

encapsulated in 5% agarose hydrogels were able to maintain euglycemia in diabetic mice 

for more than 100 days.410–412 Moreover, histological analysis showed that implantation 

of these hydrogels for 100, 150, 200, 300, and 400 days induced little to no immune 

response.211,410–412 Collagen microcapsules have also shown minimal fibrosis, however, 

their high degradation and low mechanical stability limit their application for long-term 

treatment of T1D.413 Additionally, bio-composite silica ceramic microcapsules did not 

induce fibrosis and the encapsulated islets demonstrated high insulin secretion after one 

month of implantation in the subcutaneous space of diabetic mice.414 Hyaluronic acid 

hydrogel have also been used to encapsulate islets, and after 80 days in vivo, not only 

were the mice non-diabetic due to the functioning encapsulated islets, histological 
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analysis showed little to no cellular overgrowth around the implant.415 Lastly, although 

various polymers can also be combined to modulate the immune response, there is a 

narrow window in chemistry and capsule processing that may limit successful use of 

multi-polymer microcapsules. One study showed that subtle changes in the concentration 

of any of the components in a multi-component polymer capsule fabricated from the 

combination of sodium alginate, cellulose sulfate, poly (methylene-co-guanidine) 

hydrochloride, calcium chloride, and sodium chloride can lead to severe biocompatibility 

issues.314,416  

1.7.2.3 PEGylation 

Polyethylene glycol (PEG) is used for a variety of drug delivery and 

nanotechnology applications due to its high biocompatibility. Coating the surface of 

proteins or drugs with PEG molecules, or “PEGylation” is a widely used technique that 

allows particles to evade the immune system and prolong their circulation time. Addition 

of the PEG brush layer creates an impermeable layer on the surface of the attached 

polymer, causing steric hindrance that prevents protein adsorption along with the 

subsequent immune cell response. This protein resistance depends on PEG brush layer 

density, length, and conformation.417–419 Recently, there have been many advances in 

using this technique for nanoencapsulation of cells, particularly islets.  

Successful covalent attachment of PEG to primary rat islets has been 

demonstrated by several groups, demonstrating that single polymer grafting approach 

can be used with islets to successful modulate local transplant environment without 

adversely affecting cell survival or function.82,420 PEGylated islets have also showed a 

90% decrease in antibody binding, making them antigenically silent. Moreover, these 
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islets decreased lymphocyte proliferation when cultured in the presence of lymphocytes 

in vitro. Thin conformal coating of islets with PEG-alginate using microfluidics is also 

another PEGylation that can be used to minimize graft size and volume, while preventing 

fibrosis.82,233,421,422 However, in most cases, results showed that PEGylation only delays 

the rejection of allogeneic and xenogeneic grafts in rodent models, indicating that further 

enhancement of this therapy is necessary to completely prevent the post-transplant 

immune reaction.423 A study showed that transplantation of PEGylated islets led to  60% 

normoglycemia in diabetic mice for more than 100 days, while local delivery of anti-LFA-

1 antibody alone resulted in 50% euglycemia in diabetic mice. The combination of these 

two strategies, in which PEGylated islets were transplanted along with anti-LFA-1 

antibody, however, showed synergistic effects, with 78% of the grafts exhibiting 

euglycemia at 100 days.418 Co-transplantation of PEGylated islets with combination 

therapy of cyclosporine A (CsA) and anti-CD4 monoclonal antibody (OX-38), also again 

showed synergistic effects after 30 days in vivo.417,424 In fact, the combinatorial approach 

of sub-therapeutic dosage of CsA and PEGylated islets provided a semi-permanent 

effective therapy for at least 1 year. The non-fasting blood glucose levels of mice treated 

with the combinatorial approach showed no significant change at day 100, day 200, and 

1 year. Although the insulin production levels decreased after 1-year, further refinement 

of this therapy can offer great promise in long-term protection of islets.417 Moreover, a 

recently published study included rapamycin monotherapy alongside allotransplantation 

of PEGylated islets in non-human primate model. Even at the lowest islet dosage (4160 

IEQ/kg), animals with PEGylated islets had significantly higher glycemic function, higher 
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fasting C-peptide levels, and required no exogenous insulin supply as compared to the 

untreated controls.419  

A potential method to enhance islet protection through PEGylation is by increasing 

PEGylation layers. Increasing the amount of PEG conjugated to islet surfaces through 

multiple PEGylation or by amplifying PEGylation using poly-l-lysine, poly(allylamine), or 

poly(ethyleneimne) can completely shield islets. Although increased PEGylation with 

these molecules caused greater islet cell toxicity, the overall cell viability and function 

were unaffected. In fact, 100 days after allotransplant, 3 out of the 7 mice showed survival 

of triple PEGylated islets in diabetic mice. The 4 transplants that were rejected still 

showed immune cell protection at day 20, while the control, naked islet grafts, did not 

even survive 1 week.425 Another method to enhance PEGylation involves attaching 

nanoparticles to PEGylated islets. A group showed that long-term (>100 days) 

euglycemia in 30% of PEGylated grafts, 43% of PEGylated grafts with empty 

nanoparticles, and 57% of PEGylated grafts with leukemia inhibitory factor (a factor that 

promotes adaptive immune tolerance and regulated pancreatic β cell mass). The addition 

of nanoparticles on the PEGylated islets expand the potential of this therapy as they allow 

for local, sustained delivery of immunomodulatory drugs.82,426 

1.7.3. Macroencapsulation 

Macroencapsulation is another promising strategy for islet replacement as it allows 

encapsulation of large number of islets in a retrievable and replenishable device. These 

larger, micron-scaled, semi-permeable devices may allow greater selectivity through 

manipulation of membrane properties. However, due to larger device size, 

macroencapsulation devices tend to be limited by oxygen and nutrient diffusion that leads 
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a greater loss in cell mass. Currently, there is not a universally accepted 

macroencaspulation device design, size, or material that has shown to provide maximum 

cell viability and function while preventing immune cell infiltration. Therefore, many 

research groups have developed their own encapsulation devices, with carefully chosen 

materials, pore sizes, and surface coatings to increase the device’s function as a cell 

encapsulation technology for T1D. However, regardless of these differences, an issue 

that still remains  chemical and mechanical properties of the device can induce a foreign 

body response post-implant, which eventually leads to implant failure.74,427,428 

The need to modulate fibrosis for macroencapsulation devices was demonstrated 

through the outcomes of the commercially available TheraCyte device produced by 

Baxter Healthcare. The device was a planar pouch fabricated from PTFE, designed to 

promote vasculature around the device while still isolating the encapsulated cells. This 

was done through the double membranes, in which the outer membrane was 15 µm thick 

with 5 µm pore size that allowed for angiogenesis and the inner membrane was 30 µm 

thick with 0.4 µm pore size that allowed for immune protection. After 6 months of implant 

in rats, severe fibrosis had developed inside the device, although no inflammatory cells 

were observed in close proximity to the outer membranes of the device. However, due to 

the likelihood of fibrosis, graft survival time post-transplant was shortened and limits the 

use of this device for clinical applications. This result of fibrosis is attributed to the material 

itself (PTFE), which has been associated with inducing inflammatory reactions that 

activate FBR and fibrosis.427,429 

To avoid the results seen from the TheraCyte device, inert synthetic polymers such 

as polycaprolactone (PCL) can be used to fabricate islet macroencapsulation devices. 
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Indeed, porous, thin-film PCL devices can support the survival and function of stem-cell 

derived insulin producing cells for 6 months in vivo. One of the key factors that contributes 

to the success of these devices is the material itself. PCL is a nontoxic polymer that has 

been used in numerous FDA-approved medical devices. Compared to other polyesters, 

it has a lower ratio of esters to carbon, allowing it to have longer degradation times. 

Moreover, when the ester bonds are degraded through hydrolytic cleavage, the resulting 

byproduct is caproic acid, which is well tolerated by the body. Histological results show 

that when implanted in the subcutaneous space for four months, porous PCL shows no 

deposition of fibrotic tissue along the graft. This contrasts greatly from polypropylene 

films, which showed collagen deposition around the graft and greater immune cell 

infiltration. Immunostaining after one month of implant also showed that, overall, porous 

PCL had increased blood vessel formation and reduced fibrosis and macrophage 

recruitment when the device was transplanted near the liver and the subcutaneous 

space.430–433  

A recently published study also reported a new retrievable and scalable cell 

encapsulation device that can be used for islet transplantation.434 The body of the device 

was made of PDMS, and the internal structure, fabricated using photolithography, 

contained chambers designed specifically for holding encapsulated cells along with an 

injection port for loading cells. Porous PCTE membrane was chemically bonded to the 

PDMS chips, allowing for controlled release of small molecules while protecting 

encapsulated cells from immune attack.434 To address the issue of biocompatibility, 

zwitterionic polymers were coated onto the surface of the PCTE membranes through 

surface-initiated atom transfer radical polymerization, allowing growth of dense brush 
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layers on the surface of the membrane. Their studies found that membranes coated with 

small molecule tetrahydropyran phenyl triazole (THPT) showed 70% reduction in collagen 

buildup after 4 weeks of implantation. Gene expression analysis showed that THPT 

coating suppressed expression of CD146, a marker for neovascularization, as well as 

TNFα and IL-1β, which are inflammatory cytokines.434 Overall, there was significantly 

lower cellular overgrowth and total DNA content around the device compared to non-

coated membranes. Moreover, rat islets in alginate solution were loaded in the uncoated 

and THPT-coated devices, and results showed that, upon implantation in diabetic mice, 

the encapsulated device was able to restore euglycemia in mice for over 75 days.434 

Although the devices failed during the late phase of the study, this failure in devices was 

not due to fibrosis as minimal fibrotic deposition was observed around the device. 

Additionally, human embryonic kidney cells were also encapsulated in these THPT-

coated devices, and even after 130 days, the coated devices provided protection against 

fibrosis.434 

Instead of using a sturdy, polymeric encapsulation device, efforts have also been 

focused on increasing the mechanical properties of hydrogels so that they can serve as 

retrievable encapsulation devices. A group has developed a technique to fabricate 

nanofiber-enabled encapsulation devices (NEEDs) by impregnating Nylon 6 tubular or 

planar electrospun nanofiber membranes with hydrogel precursor solution using capillary 

action.435 After the hydrogel had completely infiltrated the electrospun nanofiber 

membranes, the hydrogel precursor solution was crosslinked, resulting in hydrogels of 

various sizes, porosities, and greater mechanical properties. Not only were these devices 

able to encapsulate various cell types, but they also retained the biocompatible properties 
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of the hydrogels. Moreover, primary islets suspended in Matrigel were encapsulated into 

NEEDs and transplanted into the peritoneal cavity of diabetic mice. After 8 weeks, the 

mice showed corrected blood glucose levels with minimal fibrosis around the graft. This 

strategy allows for the use of versatile polymers such as polycaprolactone (PCL) and 

polyacrylonitrile (PAN) that can be electrospun into various shapes and sizes as well as 

various hydrogels such as PEG and collagen that can be impregnated with cells to provide 

greater survival.435 

Some groups have also shown that natural polymers can be used to enhance islet 

transplantation as well as mitigate fibrosis in macroencapsulation devices. Engagement 

with ECM components such as collagen is critical for islets as it has been shown that in 

vitro culture of islets with collagen promotes islet differentiation, survival,436,437 and 

reorganization of pancreatic endocrine cell monolayers into islet-like organoids.433,438,439 

Using this knowledge, a group explored the use of type I oligomeric collagen scaffolds for 

encapsulating islets. This group used an oligomer, instead of monomeric collagen, 

because oligomers can retain their natural intermolecular crosslinks that result in 

interconnected, fibrillar scaffolds of high stiffness and longer degradation times. When 

islets were encapsulated in these type I oligomeric collagen devices/scaffolds and 

implanted in the subcutaneous space for 14 days, results showed high biocompatibility 

with no inflammatory reaction around the implant along with preservation of islet 

morphology. These qualities of the scaffolds heavily contributed in the ability of the 

encapsulated islets to correct and maintain low blood glucose levels of diabetic mice for 

up to 90 days in vivo.440 Another similar approach of promoting formation of extracellular 

matrix by developing a fibroblast populated type-I collagen matrix scaffold has been 
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successful as well. This approach showed a significant increase in insulin secretion and 

reduced the critical islet mass required to reverse diabetes from 200 to 100 islets per 

recipient. Moreover, due to the fibroblasts embedded in the scaffold, higher production of 

growth factors and increased cell proliferation was observed. This increase in cell 

proliferation, however, did not lead to fibroblast over-growth, demonstrating the 

fabrication of a device that enhances engraftment with controlled fibrotic response.433  

Additionally, the combined use of natural and synthetic materials has also been 

explored. A group has fabricated alginate hydrogel capsule that is surrounded and bound 

to a nanoporous, wettable, Ca2+ releasing nylon polymer thread, resulting in in situ 

crosslinking of the alginate hydrogel. This thread-reinforced alginate fiber for islet 

encapsulation (TRAFFIC) device provides facile mass transfer while still providing the 

mechanical stability needed for easy implantation and retrieval. The therapeutic potential 

of this device for treating T1D was also demonstrated when rat islets were encapsulated 

and implanted into diabetic C57BL/6 mice and human islets were encapsulated and 

implanted into SCID-Beige mice. Both the models demonstrated diabetes correction for 

several months, and additionally, the scaling up of the device in dogs was also proven. 

Additionally, changing the thickness of the alginate devices so that they have a diameter 

of ~1.3 mm lowered cellular overgrowth than thinner devices with diameter of 500 µm 

after 7-month of implantation in the intraperitoneal space. Even implantation in dogs 

showed no fibrosis or histological evidence of inflammation in the tissue, further 

confirming the biocompatibility of the device.396  

Lastly, a new technology that incorporates microencapsulation of islets in a three-

dimensional structure to promote a microenvironment that is conducive to survival of islets 
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also shows great potential in providing long term treatment for T1D. Islets in PEG hydrogel 

were casted into a PDMS mold, and after 12 days of implantation in the epididymal fat, 

encapsulated islets were able to promote euglycemia. Moreover, after 8 weeks of 

implantation, histological staining showed a thin layer of connective tissue around the 

hydrogel, demonstrating that these devices were integrated in the body and did not result 

in a foreign body response.441 

 

1.7.4 Vascular perfusion devices  

The challenges of inadequate supply of nutrients, hypoxia, and central necrosis in 

extravascular devices (micro and macro encapsulation) impelled the development of 

vascular perfusion devices (such as intravascular diffusion chamber and intravascular 

ultrafiltration chamber).233,399 Intravascular bioartificial pancreas device (iBAP) is 

anastomosed to blood vessels, allowing blood perfusion through the device.442 Unlike 

extravascular devices, iBAPs do not rely on passive diffusion and instead rely on 

connective mass transfer of glucose and insulin across the immune isolation barrier 

membrane. This intravascular approach, however, interposes normal blood flow and 

results in acute implant rejection due to immediate blood mediated inflammation reaction 

(IBMIR).82,233,248,399 Consequently, activation of the coagulation cascade and complement 

system leads to thrombosis, which reduces the membrane permeability and eventually 

leading to islet necrosis.82,233,248 Additionally, this approach requires more intensive and 

invasive surgical procedures that result in significant vessel injuries and tissue trauma, 

which further exacerbate the immune response to iBAPs. 
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For vascular perfusion devices, traditionally, a two-prong approach is used to 

manage immune response to both IBMIR and FBR.103,443 The two strategies are to, first, 

select an immune evasive, inert, synthetic, non-degradable biomaterial for fabricating 

both the immune isolation membrane and shell of the iBAP, and second, to immobilize 

active immune modulators, such as small molecules and other biologics. With these 

devices, there is a greater risk of coagulation and hemorrhage complications, and this 

limits the choice of biomaterials used to fabricate the immune isolation membrane of 

iBAPs. An example of iBAP material that has achieved partial feat is a silicon nanopore 

membrane.84,86 This membrane emerged as a preferred choice due to its established 

bioinert and biocompatible nature. Another example of such a material is alumina, 

however, complete understanding of its in vivo biocompatibility is still unknown.233,444–446 

Although, titania nanopores membranes for intravascular device can also be used as 

titania has been already approved for a few other implants, but more studies need to be 

conducted on the use of titania nanopores in terms of its immune-isolation properties, 

pore characteristics, and compatibility with implanted islets.170,180,183,444–446 Negative 

photoresist SU-8 2025 and 2075,258,444,446,447 along with  polycarbonate (PC), ePTFE, 

Dacron, PU, and nylon, have also been evaluated,443,444,446,448,449 but all these materials 

have sown minimal success as fluid exchange through the nanopore membranes 

eventually slowed, leading to thrombosis, clotting, and fibrosis. 

Due to the limited choices of biomaterials for vascular perfusion devices, more 

efforts have been placed in developing approaches to modulate the immune system 

therapeutically. Typically, before encapsulation, islets can be cultured in the presence of 

small molecules, such as L-arginine,330,450,451 cyclosporine A,82,248 enalapril,452,453 
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nicotinamide,454–456 vitamin B derivative, that will suppress the initial inflammatory 

reaction caused by islet associated tissue factors and other chemotactic factors, such as 

MCP-1, MIF, IL-8. Monoclonal antibodies, siRNA, and other active site inhibitors are also 

used to attenuate IBMIR.457  

Inhibition of the coagulation system can also increase long term efficacy of iBAPs. 

Anticoagulants and antiapoptotic molecules, such as activated protein C (APC),458–460 

thrombin inhibitors (such as melagatran, N-acetylcysteine),461–464 and platelet inhibitors 

(anti-GP IIb/IIIa),465,466 significantly reduce pro-inflammatory cytokines and inhibit IBMIR. 

Thrombomodulin and human recombinant antithrombin (ATryn)467–470 can limit 

thrombosis and reduce deposition of fibrin, infiltration of PMN leukocytes, expression of 

pro-inflammatory cytokines, and thrombin-antithrombin (TAT) complex.82 Withaferin-A, an 

anti-NFkB molecule, can also suppress the inflammatory response to implanted islets and 

IBMIR.471–475  

Additionally, antibodies from islets and the coagulation process also trigger the 

complement system, which initiates recruitment of immune cells. Complement inhibitor 

(compstatin) and anaphylatoxin inhibitory peptide (C5aIP) can effectively manage 

complement system-induced inflammatory response.471,476,477 Low molecular weight 

dextran sulfate (LMW-DS) can also successfully inhibit the coagulation and complement 

cascade. CD39 and soluble form of CR1 can serve as attractive targets to ameliorate the 

IBMIR and FBR.92,478,479 

Surface coating is one of the most widely used immune engaging strategies in the 

context of vascular perfusion devices in which the immune isolation membrane or 

encapsulated islets are coated with an immune-passivation material. For example, silicon 
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nanopore membranes have been modified with PEG to minimize protein fouling, which 

prevents IBMIR and FBR.84,233,442,480 Also, coating poly(sulfobetaine methacrylate) 

(pSBMA), a zwitterionic polymer, on silane treated silicon-nanopore immune isolation 

membrane has also demonstrated effective suppression of the immune reaction. Other 

zwitterionic polymers, such as poly(2-methacryloyloxyethyl phosphorylcholine) (pMPC) 

and poly oligo(ethylene glycol) methyl ether methacrylate (pOMEGA), can also be coated 

on silicon nanopore membranes to form brush-like structures change surface 

hydrophilicity such that steric repulsion prevents protein and cell adhesion, leading to 

attenuation of FBR.166,272,360,361,448  

Lastly, cell surface modification or islet-endothelial cells (EC) co-graft have also 

been effective in modulating the immune response. The amine group on the surface of 

islets cans be used to covalently attach an ultrathin heparin-PEG film, which can 

successfully suppress IBMIR and modulate immune cell response.300,444,448 IBMIR and 

FBR can also be downregulated by reducing complement and coagulation activation with 

a coating of biomolecules, such as thrombomodulin, urokinase, APC, and sCR1.233,468 

These biomolecules can be linked onto the islet surface using maleimide/thiol bonding or 

DNA hybridization.82,110 ECs or colony-forming ECs can also be co-transplanted with 

islets as ECs are neutral to blood exposure, lower the C3a level and TAT complex 

formation, preventing IBMIR and FBR.110,408,481–483 

 

1.7.5. Ancillary strategies   

In addition to the work predominantly focused on mitigating the FBR accompanying 

implantable CGMs, intravascular and extravascular islets encapsulation devices, many 
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independent efforts are also being made in the field. Efforts to address fibrosis and 

associated challenges in various domains can be effectively expanded to enhance the 

range of available strategies for implants used in diabetes mellitus management. 

We have discussed crucial role of biomechanics in FBR and fibrosis, and several 

biomechanical design aspects for the implant to resist the FBR.199,206,324 Recently 

published work on an actuatable soft reservoir for modulating host FBR uses a milli-scale 

dynamic soft reservoir (DSR) to mechanically oscillate and, subsequently, modulate the 

implant-tissue interface’s biomechanics for downregulating pro-inflammatory response. 

The induced oscillatory motion at the biotic-abiotic interface perturbs fluid flow along with 

cellular activity in the peri-implant tissue, promoting an anti-inflammatory response and 

reducing the fibrotic capsule while preserving its coherency and collagen maturity. This is 

a highly versatile and tunable DSR platform that can be integrated with implantable 

devices to manage diabetes mellitus, specifically for continuous glucose sensors and cell 

encapsulation devices, for which rapid diffusion of glucose, insulin, oxygen, and other 

small molecules are required to improve medical outcomes.484  

On a similar principle, using magnetoelastic resonator can also modulate FBR at 

the biotic-abiotic interface. This exciting work describes a passive, wireless, resonant 

magnetoelastic actuator to manipulate the fluid flow on the surface of implantable Ahmed 

glaucoma drainage devices. The magnetic field, generated by external coils, remotely 

excites the actuator to resonate, generating perturbations that limit FBR and significantly 

augment glaucoma drainage devices’ efficacy for lowering intraocular pressure. The 

ability of the magnetoelastic actuators can be appropriated for fibrosis mitigation in the 

implants for diabetes treatment.485  
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Likewise, the mechanical mismatch, in terms of topography, surface geometry, 

surface chemistry, between the implant and peri-implant tissue is a driver of FBR. 

Matching the implant stiffnesses with host tissue and providing surface properties that 

resist non-specific protein and cell binding significantly reduce pro-inflammatory 

response. A study exploited these key drivers and incorporated them while designing the 

sheath for the cardiac implantable electronic device (CIED). Scientists micro-engineered 

a non-resorbable, biosynthesized cellulose (BC) membrane that can be conformally 

wrapped around CIED implants. The mechanical properties of BC membrane, along with 

the rendered surface topography and spatial arrangement, synergistically minimized the 

adhesion and differentiation of the cellular mediators responsible for FBR. This BC 

conformal sheathing can be effectively borrowed and employed for CGMs, intravascular 

and extravascular cell encapsulation strategies to extenuate FBR.174,484,486  

Additionally, in terms of local delivery of FBR mitigating molecules, the effect of an 

active modulation of immune response using small and large biomolecules wear off with 

the depletion of the drug and/or changes in release rate. An exciting study addressed this 

issue by fabricating crystallized concentrated drug depots of the various anti-inflammatory 

drugs within implants’ (such as micro, macro extravascular cell-encapsulation devices, 

and implantable CGMs) material. These concentrated drug depots offer long-term, 

sustained release of the active immune modulators, which extends the overall lifespan 

(more than 12 months) of the implant and functional performance by reducing the 

fibrosis.393 
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1.8 Concluding Remarks 

All current and future treatments for DM require the use of implants or cellular 

grafts that can detect blood glucose levels and secrete insulin for correction of the 

detected blood glucose levels. Technologies like CGMs (percutaneous or subcutaneous 

electrochemical sensors), artificial pancreas, intravascular, extravascular immuno-

isolation, and cell encapsulation not only improve the outcome, but also have the potential 

to be a cure for DM. The long-term function and efficacy of these grafts depends on the 

activation and regulation of the immune cascade, which consists of two phases: the 

inflammatory phase and reparative phase. In the inflammatory phase, cellular debris is 

cleared through the secretion of proteolytic enzymes, degradation enzymes, inflammatory 

cytokines, etc. Once the debris has been cleared, the reparative phase dominates, in 

which cytokines and chemokines that promote angiogenesis and integration of the 

implant are secreted. After cells such as fibroblasts have completed the tissue repair 

process through deposition of collagen, the implant has successfully integrated within the 

body. However, if there are inflammatory cues present that prevent the resolution of the 

immune cascade, foreign body giant cells form, leading to excessive collagen deposition 

(fibrosis) and device failure. Therefore, it is essential to develop biomaterials that will not 

trigger a strong, inflammatory immune response that leads to fibrotic overgrowth and 

rejection of implant.  

The body’s immune response to an implanted biomaterial can be regulated by 

protein adsorption, biomechanics of the implant material and tissue, and cellular 

activation. Protein adsorption on the implant surface occurs almost instantaneously and 

plays a key role in the immune cell – implant interaction. Biomechanics of the biomaterial 
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as well as the tissue also affect the immune response, as mechanical loading and stress 

at implant site can directly promote secretion of soluble factors by immune cells. Both 

protein adsorption and biomechanics affect the activation of the immune cascade, in 

which various cell types are involved. Secretion of soluble factors or expression of surface 

markers can activate multiple cell types from both the innate and the adaptive immune 

system.  

Knowing the factors that play a key role in the activation and progression of foreign 

body response, biomaterials can be modified such that the foreign body response can be 

minimized. Immune evasive strategies involve the use of natural biomaterials or relatively 

inert synthetic materials. Immune-engaging strategies, on the other hand, involve 

changing material surface properties by changing surface chemistry, biofunctionalizing 

the surface, applying surface coating, adding surface patterning or topography, and 

changing the materials’ mechanical properties. All these strategies have been applied to 

implants, particularly those used for diabetes. Many groups have demonstrated the 

effectiveness of these strategies in mitigating fibrosis. However, due to the intricate nature 

of the immune response, no strategy has had complete long-term success in vivo.  

A potential way to further increase efficacy of implant materials in mitigating fibrosis 

could be through combinations of the various stand-alone solutions that have been used 

in the past. By combining different strategies, a greater synergistic effect may be induced. 

Moreover, the mechanisms by which the immune cells interact with biomaterials have not 

been completely elucidated. Key details about which factors are contributing to this 

immune cell activation are crucial for successful design of an anti-fouling implant. More 

insights on macrophage polarization would also be beneficial for designing biomaterials 
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that promote the reparative M2 macrophage phenotype and subsequent integration of 

implant. 

Increasing knowledge and insight on how the biological events can be modulated 

by changing chemical and physical properties of implant material, along with recent 

advances, will introduce highly biocompatible implants that have greater longevity in vivo. 

The future of the field of diabetes relies on this advancement as more sophisticated 

implant designs will allow implantable technology for diabetes to reach its full potential. 
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Table 1.1. Summary of the four different types of implants used to treat T1D and 
T2D 
Treatment Disease Type Purpose 
Continuous Glucose 
Monitors (CGMs) 

T1D, T2D Allows diabetes management through 
continuous measurement of glucose 
concentration in interstitial fluid. Can be 
connected to insulin pumps that can 
release insulin once high glucose levels are 
detected by CGM 

Vascular Perfusion 
Devices 

T1D Intravascular bioartificial pancreas (iBAP) 
are semi-permeable islet encapsulation 
devices that are anastomosed to blood 
vessels, allowing blood perfusion through 
the device. Rely on connective mass 
transfer of glucose and insulin across the 
membrane instead of passive diffusion.  

Islet 
Microencapsulation 

T1D, T2D Provides insulin delivery without the need 
for patient compliance by replacing islets/ β 
cells. Islets or stem-cell derived β cells are 
encapsulated in micron-sized semi-
permeable encapsulation devices, which 
can be implanted in various parts of the 
body. Provides high surface area to volume 
ratio for increased access to nutrients and 
oxygen, thereby increasing encapsulated 
cell viability.  

Islet  
Macroencapsulation 

T1D, T2D Provides insulin delivery without the need 
for patient compliance by replacing islets/ β 
cells. Islets or stem-cell derived β cells are 
encapsulated in macro-scale sized semi-
permeable encapsulation devices. Allows 
transfer of larger number of islets. 
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Figure 1.1. Multiple interrelated pathways activate the immune cascade post-
implantation. (a) Soluble factors released from the activation of complement system 
(C3a, C5a), prime polymorphonuclear leukocytes (PMN) and macrophages. (b) The 
primed immune cells interact with adsorbed proteins through pattern recognition 
receptors (PRRs) that recognize pattern associated molecular patterns (PAMPs) on 
biomaterial. Soluble factors released from PMNs further activate monocytes, which use 
both PRR and integrins to interact with the implanted biomaterial. Monocytes 
differentiate into macrophages and control the subsequent immune response. 
 

 

 

Figure 1.2. The fate of the implant depends on the resolution of the inflammatory 
immune cascade. (a) If macrophages can polarize from the inflammatory stage (M1) to 
their reparative stage (M2), they release soluble factors that promote fibroblasts to 
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secrete collagen and promote integration of the implant.  (b) If macrophages are unable 
to successfully transition from M1 to M2 phenotype, foreign body giant cells (FBGC) 
form and adhere to the implant surface. FBGC secrete more inflammatory soluble 
factors that activate myofibroblasts (fibrotic phenotype of fibroblasts), which secrete 
excessive amounts of collagen, leading to fibrous encapsulation of implant.  
 

 

 

Figure 1.3. Macrophages and dendritic cells work together to activate the adaptive 
immune system. Dendritic cells and sometimes, macrophages present antigens to T 
cells that stimulate activation of different T cell subtypes. These subtypes are influenced 
by the soluble factors present in the local microenvironment. If pro-inflammatory 
macrophages are present, the secreted soluble factors activate the inflammatory Th1 
CD4 cells. Meanwhile, if reparative macrophages are present, they secrete factors that 
activate the reparative Th2 CD4 cells along with regulatory CD4 (Treg) cells.  
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Figure 1.4. Several strategies can be used to mitigate the FBR and resulting fibrotic 
overgrowth. The three major categories that are affected by changes in material 
properties are protein adsorption, cell and tissue biomechanics, and cellular interaction. 
Changes in any of these three categories can induce a favorable immune response 
towards implants and increase their longevity as well as function in vivo.  
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Chapter 2. Supporting Survival of Transplanted Stem-Cell-Derived Insulin-

Producing Cells in an Encapsulation Device Augmented with Controlled Release 

of Amino Acids 

2.1 Introduction 

 Type 1 diabetes (T1D) can potentially be cured through islet transplantation, but 

limited beta cell availability and the need for immunosuppressive therapies pose 

challenges. 1–12 Encapsulation devices have been developed to protect transplanted cells 

from the immune system without requiring immunosuppressive drugs, but cell survival 

within these devices remains a significant obstacle due to limited nutrient and gas 

diffusion (Figure 2.1).9–13  

Previously, a nanoporous polycaprolactone (PCL) macroencapsulation device 

developed in our laboratory has shown to be conducive to cell survival if implanted on the 

surface of the liver.13,14 However, this transplantation site is invasive and difficult to 

monitor.15 A preferred site for transplantation of experimental cell source such as stem-

cell derived beta cells would be the subcutaneous space, which is a minimally invasive, 

accessible, and retrievable site. A drawback to this implantation site is that it is poorly 

vascularized and does not maintain viability and function of islets as well as the richly 

vascularized liver capsule.16–18 We have shown previously that hypoxia and nutrient 

deprivation, consequences of ischemia, synergistically kill stem cell-derived insulin-

producing cells. Moreover, supplementation of single amino acid, particularly alanine and 

glutamine, effectively rescued beta cells from nutrient deprivation.19 Therefore, in this 

study, we present an improvement in the encapsulation device by fabricating a 
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compartment that releases amino acids within the encapsulation device to sustain graft 

viability after transplant.  

 

2.2 Materials and Methods 

All chemicals were purchased from Sigma-Aldrich, unless stated otherwise. 

 

2.2.1. Nonporous and microporous film fabrication  

Using polycaprolactone (PCL, 80 kDa Mn) and 2,2,2-trifluoroethanol (TFE), 150 mg/mL 

PCL solution was spun cast onto silicon wafers for 90 s at 1000 RPM, and heated at 110 

°C for 30 s, which resulted in nonporous membranes. The microporous films were 

fabricated by spin casting 150 mg/mL polyethylene glycol (PEG, 2 kDa Mn) and 150 

mg/mL PCL solution onto silicon wafers for 90 s at 1000 RPM, after which the films were 

placed in DI water overnight to allow the PEG to leach out. 

 

2.2.2. Assembly of devices 

To make the amino acid devices, two nonporous films were placed onto PDMS (Sylgard 

184) with an embedded U-shaped nichrome wire, which was 0.7 cm in width. When 

current was applied to the nichrome wire, resistive heating occurred and fused the two 

films together. With a 10 second current of 1.2 amps the films were sealed, and the wire 

shape was designed to provide an opening for amino acid loading. Approximately 10 mg 

of amino acid was loaded into the device, after which the opening of the device was heat 

sealed. Devices containing both alanine and glutamine were created by creating an equal 

mixture of the amino acids, after which the mixture was loaded into the device. To attach 
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the amino acid devices inside the microencapsulation device, the amino acid device was 

carefully placed on the perimeter of the two microporous films. Together, the film was 

placed on a PDMS with an embedded U-shaped nichrome wire, which was 2 cm in 

diameter. With a 10 second current of 1.2 amps the films were sealed with an opening on 

one side. After loading a maximum volume of 200 µL cell medium, the open side of the 

device was heat sealed with a straight nichrome wire embedded in PDMS. 

 

2.2.3. Scanning electron microscopy  

Microporous PCL thin films were mounted on a flat SEM mount with colloidal graphite 

(Ted Pella). The cross sections were mounted after flash-dipping in isopropyl alcohol and 

liquid nitrogen freeze fracturing. Using the Carl Zeis Ultra 55 field emission electron 

microscope at San Francisco State University, the samples were imaged. 

 

2.2.4. Release study assay  

Nonporous films in thickness (10 µm thickness) were used to fabricate amino acid devices 

containing 5-7 mg of either alanine or glutamine. These devices were submerged in 1 mL 

of phosphate buffer solution (PBS) at 37 °C and sampled every 2-3 days. Alanine and 

glutamine quantification assays (Kit #s MAK001-1KT and GLN1-1KT, respectively) from 

Sigma-Aldrich were performed to determine the diffusion rates of the amino acids. 



 

 

 

135 

 

2.2.5. Cells  

Stem cell-derived insulin-producing cells (SCIPC) were differentiated from human 

embryonic stem cells using a previously established protocol (SCIPC corresponds to the 

immature beta-like stage).[1] 

 

2.2.6. In vitro viability assessment  

Amino devices were submerged in non-treated suspension cell plates containing SCIPC. 

In order to simulate the extreme nutrient-lacking conditions the of encapsulated cells in 

vivo, 200 SCIPC clusters and devices were placed in 3 mL of depleted media (1:100 

dilution of replete media in Hank’s solution) that contained no supplemental amino acids 

or nutrient. Cells were also placed in depleted media that contained 10 mM of 

free/dissolved alanine and glutamine. After 24 and 48 hours, propidium iodide staining 

was performed to determine the cell viability. Similar experiment was repeated to check 

cell viability after 2 weeks. However, to ensure survival of some cells, a 1:10 dilution was 

used for deplete media. 

 

2.2.7. Mice  

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (NSG) and C57BL/6J mice were purchased 

from Jackson Laboratories. Mice use in this study were housed and handled according 

to ethical guidelines approved by the Institutional Animal Care and Use Committee 

(IACUC) at the University of California, San Francisco, Committee on Laboratory Animal 

Resource Center. 
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2.2.8. Transplantation  

For transplants into the subcutaneous space, approximately 2.0 × 106 SCIPC clusters 

were transplanted as previously described.[2,3] The PCL encapsulation devices were 

implanted in the subcutaneous space via a small incision made under the mouse 

shoulder. The space between the skin and the muscle layer was dissected using a blunt 

instrument to create a pocket. The encapsulation device was implanted in this newly 

formed space, and the skin wound was closed using surgical staples. 

 

2.2.9. Bioluminescent imaging  

Graft-bearing animals were injected IP with D-luciferin solution (Goldbio, St. Louis, MO) 

at the dose of 150 mg/kg 8 min before imaging to capture the peak in bioluminescent 

intensity. The mice were anesthetized with an isoflurane mixture (2% in 98% O2) and the 

bioluminescent signal is quantified using a Xenogen IVIS 200 imaging system 

(PerkinElmer). Images were acquired for 1 min and then analyzed using the Living Image 

analysis software (Xenogen, Alameda, CA). Regions of interest (ROI) were centered over 

where the devices were located. Photons collected over the acquisition time were counted 

within the ROI. The same imaging protocol was repeated for every imaging session on 

different days to ensure consistency for longitudinal studies. 

 

2.2.10. Histology  

At the end of the experiment, PCL devices were collected together with the surrounding 

tissue and fixed in paraformaldehyde (Sigma), incubated overnight in 30% sucrose 
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(Sigma), and embedded in tissue-Tek® OCT (Sakura Finetek, Torrance,CA). Frozen OCT 

blocks were sliced to obtain thin cross-sections incorporating the tissue around the 

devices. The slides were stained with hematoxylin- and eosin-staining and/or  DAPI (0.2 

mg/mL) for 15 minutes and then mounted in Crystal Mount (Biomeda, Foster City, CA). 

Images were taken using Leica SP5 upright confocal microscope (Leica Microsystem, 

Buffalo Grove, IL) and analyzed with LAS X Life Science Microscope Software (Leica). 

 

2.3 Results 

2.3.1 Device fabrication 

Using the fabrication technique described in previous literature, thin-film 

nanoporous and nonporous films were fabricated.13 Nanoporous films, with pores ranging 

from 200 nm – 1 µm, were used for the encapsulation device. The pores in these outer 

membranes are large enough to allow transport of small molecules and peptides and yet 

small enough to prevent immune cells from penetrating and attacking the encapsulated 

cells.13,14 These pores were generated by leaching PEG from PEG:PCL films, which is 

advantageous as it allows for tunable pore size and distribution.20–24 To provide better 

control over the release rate, nonporous PCL films were used to create the small nutrient 

reservoir.25 To build this reservoir, approximately 10 mg of dry amino acid powder was 

encapsulated between two nonporous films, and the films were sealed using resistive 

heating (Figure 2.2a). The amino acid reservoir was then sandwiched between two 

nanoporous films, and the assembly was sealed, leaving a small opening available for a 

cell loading port (Figure 2.2b).  
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Once the encapsulation device with the nutrient-supplying internal compartment 

was assembled, cells were loaded in fresh medium, and the cell loading port was sealed 

to create the final, implantable device (Figure 2.2c). The resulting encapsulation device 

was reinforced by the addition of a thicker, nonporous backing layer which was heat 

sealed to the rim of the device so that the device would maintain its shape after 

implantation. Overall, the encapsulation device is 1.8 cm in diameter while the amino acid 

device is 0.7 cm in diameter (Figure 2.2d). The cross-section scanning electron 

microscopy (SEM) images of the nanoporous (Figure 2.2e) and nonporous films (Figure 

2.2f) further confirm the porosity and successful fabrication of the desired films. 

 

2.3.2 In vitro characterization and functionality of amino acid reservoirs 

To support beta cell survival after transplant, steady release of amino acid is 

needed for  at least 2 weeks since that is the time it takes for device vascularization to 

reach its plateau.13 Diffusion rate of the amino acids from the reservoir was controlled by 

manipulating film thickness.22,26 Films were fabricated with thicknesses of 10.7±0.8 µm, 

24.3±3.7 µm, and 37.8±1.7 µm, and the release of alanine and glutamine from devices 

was monitored in vitro for 18 days. ~10 µm films released alanine at a rate of 203.1±56.4 

µg/day, whereas ~25 µm and ~37 µm films released alanine at 116.9±32.6 µg/day and 

54.6±20.6 µg/day, respectively (Figure 2.3a). Similarly, glutamine was released at a rate 

of 162.7±73.6 µg/day for the ~10 µm films, 73.2±34.3 µg/day for the ~25 µm films, and 

43.7±14.4 µg/day for the ~37 µm films (Figure 2.3b). The linear regression of the 

cummulative release across all devices showed R2 values of approximately 0.99, thus 

confirming the linear zero order release of amino acids from these devices (Table 2.1). 
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As expected, the release rates of the devices increased proportionally with membrane 

thickness regardless of the amino acid used (Figure 2.4). Also, across all devices, the 

release profile shows zero order kinetics for over 2 weeks, which attests to the ability of 

the devices in providing consistent amount of sustained release (Figure 2.5). 

Approximately 10 mg of each amino acid was encapsulated in the devices, and by 18 

days, 36.1% of alanine and 29.2% of glutamine was released from the thinnest 10 µm 

films, confirming that the device will provide a sustained released for at least two weeks 

(Figure 2.6). 

Although the average loading amount of alanine and glutamine was similar in all 

the reservoirs, the release rates of these amino acids were different. The higher release 

rate of alanine was expected since alanine is more lipophilic and has a lower molecular 

weight (89.09 g/mol) than glutamine (146.01 g/mol). This further shows that with the 

knowledge of critical parameters such as properties of the membrane and the 

encapsulated drug, one can roughly predict the release rate from the reservoirs and easily 

manipulate the reservoirs to achieve the desired rate of release.25,26 Alternatively, other 

groups have looked at changing porosity to control the release rate; however it is not 

applicable to this study since amino acids are small molecules that diffuse rapidly through 

porous thin-film membranes.22 

After demonstrating sustained release for more than 2 weeks, in vitro tests were 

performed to determine the effectiveness of the amino acid devices in increasing viability 

of stem cell-derived beta cells when placed under nutrient deprivation. To ensure the best 

survival conditions for the cells, reservoirs made with 10 µm films were used as they 

provide the highest rate of release. Cells were placed in wells containing either nutrient 
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rich, regular media (RM) or nutrient lacking, deplete media (DM). Cells were also 

incubated in deplete media containing either 10 mM of free, dissolved amino acid or 

amino acid devices. After both, 24 hours and 48 hours, the results show that in the 

presence of amino acid devices, there is a significant decrease in beta cell death when 

compared to cells cultured in nutrient-depleted media alone (Figure 2.3c, d). Moreover, 

at 24 hours, this viability benefit is equivalent to using nutrient replete media and at 48 

hours, the viability benefit is significantly higher than using nutrient replete media. This 

not only indicates that alanine and glutamine are important in enhancing cell viability but 

also that the release rate from the 10 µm thick reservoirs is sufficient in providing a 

survival benefit. Cell viability was also tested at 2 weeks, and the results again 

demonstrated that there was increase in cell viability in the presence of amino acid 

reservoirs compared to both nutrient replete and deplete media (Figure 2.3e). Although 

the data is not statistically significant, it is still promising since it is not expected for cells 

to last for more than 3-4 days in nutrient deprived conditions in culture. The lower percent 

cell death at the 2-week time point is due to the fact that 10X diluted media was used 

instead of the 100X dilution used for the short-term experiments. Also, since all the 

experiments were performed with cells from different batches, the batch-to-batch 

variability of stem cell-derived beta cell differentiations might have led to further 

fluctuations of cell death absolute numbers across all the in vitro assays. 

 

2.3.3 In vivo cell survival 

To assess the ability of the amino acid releasing reservoirs in sustaining beta cell 

survival after transplant, luciferase-expressing stem cell-derived insulin-producing cells 
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were encapsulated into various PCL devices and transplanted in the dorsal subcutaneous 

space of NOD.Cg-Prkdcscid IIl2rgtm1Wjl/SxJ (NSG) mice (Figure 2.7a). Survival of the 

encapsulated beta cells after transplant was assessed in longitudinal studies by 

monitoring luciferase activity via bioluminescence imaging (Figure 2.7b). We measured 

the bioluminescence signal intensity associated with the graft starting immediately after 

transplant on day 0 and throughout a 21-day period. When stem cell-derived beta cells 

were encapsulated alone, the graft rapidly lost its bioluminescent signal within the first 

few days, and ~0% of cell survived at day 21. With the addition of the amino acid reservoir, 

graft survival significantly improved. When alanine reservoir were present, graft survival 

showed improvement up to 17.5%. Glutamine reservoirs showed similar graft protection 

with cell survival persisting at 19.8%. When both alanine and glutamine were added to 

the reservoir, graft survival at day 21 increased to 33.3% (Figure 2.7c). Moreover, after 

1 month, the thin film devices and those containing amino acid reservoir were explanted 

along with the surrounding tissue, and H&E staining and immunostaining was performed 

(Figure 2.7d). The cross-sectioned H&E tissue staining shows no deposition of fibrotic 

tissue along the graft, showing the in vivo biocompatibility of the thin-film devices. The 

immunostaining shows that in the presence of amino acid reservoir, the GFP expressing 

insulin producing cells were encapsulated within the thin-film device. This further shows 

that encapsulation devices containing amino acid reservoirs help increase survival of 

encapsulated cells when tranplanted subcutaneously.   
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2.4 Discussion 

Together, these results show that the fabricated encapsulation device with a 

nutrient-releasing internal compartment substantially increases cell viability in vitro and in 

vivo. Engraftment of beta cells in the subcutaneous space has been a challenge due to 

the inherently low vascularization present in this area, which results in prolonged ischemia 

of the graft and high percent of cell death post transplantation.16–18 To prevent ischemia, 

encapsulated cells can be supplied with nutrients, alanine and glutamine in particular, 

until the blood supply at the transplant site is restored.19 The challenge is to design a 

device which will contain an internal compartment that can provide a steady and 

sustained supply of nutrients directly to the encapsulated cells while vascularization 

occurs. The conducted studies show that amino acid devices fabricated from 10 µm thick 

nonporous PCL membranes provide sustained release of both alanine and glutamine for 

more than 2 weeks, at constant rates of 203.1 µg/day and 162.7 µg/day, respectively. 

The amino acid reservoirs provided greater than 80% viability of cells, during, both, short 

term (24 hours, 48 hours) and long term (2 weeks) in vitro nutrient deprivation challenge. 

The in vivo results also showed that the amino acid devices increased survival of grafts 

to 17.5% and 19.8% when single amino acid reservoirs were added alone, and cell 

survival was up to 33.3% in the presence of a reservoir containing, both, alanine and 

glutamine. The lower rate of survival with amino acid supplementation observed in vivo 

when compared to the in vitro results is likely due to the additional hypoxic stress 

experienced by the cells in the in vivo condition that is not addressed.  Previously, we 

have shown that optimal beta cell survival in vivo required prior adaptation of the beta 

cells to lower oxygen tension and amino acid provision.19 Therefore, in the future, we can 
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potentially increase graft survival in these devices by preconditiong cells to survive at low 

oxygen levels. 

The device design approach utilized here allows for flexible design, tunable 

scaling, and manipulation of membrane properties. Characterization of these devices also 

demonstrated the predictability of the model through knowledge of drug properties, 

membrane thickness, porosity, and drug payload. To further enhance the device and 

increase the viability of encapsulated cells, multiple internal and/or external 

compartments can be fabricated to release various molecules, such as 

immunosuppressive drugs, hormones, molecules that promote stem cell differentiation, 

or a more refined cocktail of nutrients to sustain cell viability for a longer period. Other 

approaches include expediting the vascularization of the devices by releasing angiogenic 

molecules, such as VEGF and/or releasing anti-inflammatory molecules such as IL1RA 

from an external compartment to protect the graft from immune response post 

transplantation.2,8 The concept developed herein is applicable to many cell encapsulation 

technologies, and further enhancement of these devices can be scaled for clinical 

applications to treat T1D 
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Table 2.1. Linear regression of cumulative release across all ALA and GLN devices 
Film Thickness R2 Value of Internal Reservoir 

Containing Alanine 
R2 Value of Internal Reservoir 

Containing Glutamine 
10 µm 0.9889 0.9871 
25 µm 0.9892 0.9936 
40 µm 0.9873 0.9912 

 

 

Figure 2.1. Simulated schematic showing percent graft survival post 
transplantation. Post transplantation, cells undergo a period of ischemia, which causes 
a significant drop in graft survival. This is exacerbated when cells are encapsulated due 
to the lack of vascularization, unless cells are provided with supplemental nutrients that 
can prolong cell survival until angiogenesis begins. 
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Figure 2.2. Schematic showing the fabrication of encapsulation device with internal 
compartment.  (a) Amino acid devices were created by encapsulating a formulation of 
dry amino acid powder inside nonporous films and was sealed by the current flowing 
through the nichrome wire. The amino acid device was sealed within the interior of the 
encapsulation device by sandwiching the device along the edge of the encapsulation 
device membranes. The encapsulation device was sealed in a U shape (indicated by the 
dotted line) between two nanoporous films. Using a 200 µL pipet tip, cells and medium 
were added, after which the opening was heat sealed. (b) Cartoon illustration of sealed 
encapsulation device containing the internal amino acid reservoir. (c) Image of assembled 
amino acid device (left; 0.7 cm) and encapsulation device (right; 1.8 cm). Cross-section 
SEM of (d) nanoporous and (e) nonporous thin-films of ~10 µm in thickness (scale bar = 
10 µm).  
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Figure 2.3. In vitro evaluation of amino acid reservoirs in providing release and 
increase in cell viability.  Sustained release of (a) alanine (ALA) and (b) glutamine 
(GLN) from thin film devices made with membranes of thicknesses varying from 10 µm, 
25 µm, and 37 µm. Cumulative release of amino acids (µg) measured over the course of 
18 days in PBS at 37 °C (N = 4 for each thickness; error bars represent ± SE relative to 
the mean). Cell survival benefit with ALA and GLN devices in depleted media (DM) 
compared to replete media (RM), DM (1:100 dilution of RM in PBS), and dissolved ALA 
and GLN in DM (Free ALA, Free GLN, respectively), over the course of (c) 18 hours, (d) 
48 hours, and (e) 2 weeks. Propidium iodide staining used to measure the decreased cell 
death shown in the presence of amino acid devices compared to DM (N = 3 per condition). 
Significance of differences of graft survival vs device control groups was determined using 
multiple unpaired t test, corrected for multiple comparison using Holm-Sidak method 
(error bars represent ± SE relative to the mean; *p < 0.05; ****p < 0.0001). Additionally, 
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for the 2 week follow up experiment, DM was changed to 1:10 dilution of RM in PBS in 
order to ensure long term cell survival. 

 

Figure 2.4. Correlation between film thickness and release rates of amino acids 
from devices. The linear regression performed on the release rate of amino acids and 
inverse thickness shows that there is a correlation between film thickness and release 
rates, which was expected. 
 

 

Figure 2.5. Release rates of amino acid from devices. The release rates of both the 
amino acids from devices is relatively constant, despite of the change in membrane 
thickness. The release rate is proportional to the thickness of the films. 
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Figure 2.6. Percent payload of ALA and GLN devices. After 18 days, approximately 
36.1%, 20.7%, and 11.1% of alanine and 29.2%, 13.1%, 8.3% of glutamine was released 
from 10 µm, 25 µm, and 37 µm thick membranes, respectively. Assuming the release rate 
stays constant, the devices can potentially provide amino acids for approximately a 
month. 
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Figure 2.7. In vivo viability of encapsulated cells in the presence of amino acid 
devices. (a) PCL device transplanted in the subcutaneous space of NSG mice. (b) 
Representative images of encapsulated SCIPC.LUC in PCL devices alone (N = 7), device 
+ ALA  reservoir (N = 6), device + GLN reservoir (N = 6), and device + ALA + GLN 
reservoir (N = 6). (c) Quantification of bioluminescent signal of cells transplanted into 
encapsulation devices with or without amino acid reservoirs. Significance of differences 
of graft survival vs device control groups was determined using multiple unpaired t test, 
corrected for multiple comparison using Holm-Sidak method (error bars represent ± SE 
relative to the mean; *p < 0.05). (d) H&E staining and immunofluorescent staining of 
tissue sections of encapsulation devices with and without amino acid reservoir,obtained 
from NSG mice 21 days post-transplantation. Nuclei are visualized by DAPI staining and 
insulin-producing cells are genetically modified to express GFP. The dotted white lines 
delineate the perimeter of the thin-film encapsulation devices. Magnification 10X. 
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Chapter 3. Replenishable Prevascularized Cell Encapsulation Devices Increase 

Graft Survival and Function in the Subcutaneous Space 

3.1 Introduction 

Cell encapsulation using macroencapsulation devices has shown to be a 

promising approach to address the requirement for patients to remain on 

immunosuppressive drugs after receiving beta cell transplants.1,2,7–13 Encapsulation 

devices offer a physical barrier to protect transplanted beta cells from immune attack; 

however, this barrier can limit the diffusion of oxygen and nutrients, causing ischemic 

stress detrimental to graft survival. This ischemic stress varies based on the 

transplantation site of the device. 1,2,4,7–10,14,15 

An ideal transplantation site for cell encapsulation devices includes 1) a dense 

vascular network that allows for insulin and glucose exchange, along with high oxygen 

and nutrient supply to the graft; 2) a hospitable microenvironment that prevents initial loss 

of cells post-transplant; and 3) a minimally invasive procedure for implanting, monitoring, 

and retrieving the graft. Transplantation in the subcutaneous space allows for minimally 

invasive implantation and retrieval.5,11,12,16–23 However, a significant challenge that 

remains unaddressed in subcutaneous cell transplantation is the loss of beta cell viability 

that occurs shortly after transplantation. During surgical implantation, the inherently low 

vasculature in the subcutaneous space is further destroyed, leading to an even lower 

supply of oxygen and nutrients at the transplantation site. This is particularly detrimental 

to highly metabolic beta cells.1,2,7,16,17,22,24,25  

Several studies have shown that subcutaneous transplantation sites can be 

modified to promote neovascularization post-transplantation. These methods involve use 
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of biologics such as growth factors (beta-fibroblast growth factor, VEGF)26–28, chemical 

modifications of the encapsulation material29, anti-inflammatory drugs14,30,31, co-delivery 

of mesenchymal stem cells32–34, and the use of oxygen generators10,35–37, among others. 

While these strategies may improve blood vessel formation, these methods require at 

least 10 days to create a dense vascular network that is well integrated with the host 

vasculature after cells have already been implanted in the subcutaneous space. Due to 

this limitation, these methods cannot rescue most of the graft loss that occurs within the 

initial days of implantation.7,11,12,15,21,38 

Another promising strategy to improve islet vascularization is the pre-

vascularization of encapsulation devices at the transplantation site. In this approach, a 

non-vascularized device is implanted before transplanting beta cells in the vascularized 

site. The advantage of this approach is that the host vasculature is well incorporated at 

the transplantation site, improving access to oxygen and nutrient supplies.7,11,20,21,32,39–41 

However, a drawback of this strategy is that the vascularized device is typically removed 

prior to beta cell transplantation. Device removal can rupture some newly formed vascular 

networks and create a sub-optimal microenvironment for subsequent islet transplantation. 

Several groups have sought to overcome this drawback; however, these approaches 

involve in vitro pre-vascularized devices or more complex encapsulation devices that 

require different membranes, drugs, and surface modification to promote in vivo vascular 

growth.7,42–44 To our knowledge, there are currently no strategies for encapsulation 

devices that create a pre-vascularized transplantation site that allows for the direct 

insertion of cells without disrupting the surrounding vasculature.  
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Here we report a pre-vascularization strategy using a replenishable encapsulation 

device that prevents the initial loss of cell viability and function of stem cell-derived insulin-

producing beta cell clusters in the subcutaneous space. Our method was designed to 

prepare the transplantation site such that a functional vascular network surrounds the 

encapsulation device prior to the transplantation of cells. This approach was developed 

using thin-film polycaprolactone (PCL) cell encapsulation devices that have been 

previously shown to maintain the viability and function of insulin-producing cells in the 

liver lobe for at least 6 months.45 We have also demonstrated that such devices support 

the viability of insulin-producing cells in the subcutaneous space by incorporating nutrient 

depots.24 Devices were implanted subcutaneously for 2 weeks, after which, they were 

loaded with stem cell-derived insulin-producing beta cell clusters without disrupting the 

integrity of the surrounding vascular network. After 28 days, more than 80% of pre-

vascularized replenishable devices showed signal, leading to a measurable C-peptide 

secretion in response to a glucose challenge.  

 

3.2 Materials & Methods 

3.2.1. Device Fabrication 

Chemicals were purchased from Sigma-Aldrich unless otherwise noted. Porous 

polycaprolactone (PCL) thin films were fabricated by dissolving PCL (80 kDa Mn) and 

poly (ethylene) glycol (2 kDa Mn) in 2,2,2-trifluoroethanol (TFE). The 150 mg/mL 

PEG:PCL solution was spun and cast onto silicon wafers for 90 s at 1000 RPM, after 

which the films were immersed in water to allow for PEG leaching and pore formation. To 

fabricate the device, two ~10 µm thick, porous, thin films were sandwiched onto a PDMS 
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(Sylgard 40) mold with a spoon-shaped nichrome wire embedded. The two films fused 

through resistive heating by passing a 1.2 A current through the nichrome wire, creating 

a spoon-shaped device with an opening at the neck. The resulting device was 1.5 cm in 

diameter, with a final 1 cm long neck that resulted in a total volume capacity of 160 µL.  

A thicker PCL film (spun cast on silicon wafers for 30 s at 300 RPM) was used to create 

a wider border around the device. For devices that were pre-vascularized, a small cannula 

was placed inside the device and sealed. For devices that were not pre-vascularized, the 

opening was sealed using resistive heating after cells in 70 µL of cell medium were 

pipetted inside the device. Although the total volume capacity was 160 µL, we only added 

70 µL to ensure proper sealing and no spillage of cells when cells were inserted in RPVIM 

devices in vivo.  

 

3.2.2 Mice 

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice (NSG; Jackson Strain 005557) mice were 

purchased from Jackson Laboratories. Mice used in this study were housed and handled 

according to ethical guidelines approved by the Institutional Animal Care and Use 

Committee (IACUC) at the University of California, San Francisco Laboratory Animal 

Resource Center (LARC). 

 

3.2.3. Culture of pluripotent cells 

A previously published gene-targeting approach of the insulated human AAVS1 locus 

was used to generate a cell line that expresses a constitutive firefly luciferase gene. Cell 

culture was performed using a version of the NIH-approved hESC line MEL-1 (NIH 
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registration number: 0139), in which GFP was knocked into one allele of the 

endogenous insulin locus (INSGFP/W hESCs). INSGFP/W hESCs was cultured on irradiated 

mouse embryonic fibroblasts (MEFs) (Thermo Fisher) in hESC maintenance media 

composed of DMEM/F12, 20% (v/v) KnockOut serum replacement (Thermo Fisher 

Scientific), nonessential amino acids (Thermo Fisher Scientific), GlutaMAX (Thermo 

Fisher Scientific), and 2-mercaptoethanol (Millipore). The maintenance media was 

supplemented with 4 ng/mL recombinant human fibroblast growth factor 2 (FGF-2; R&D 

Systems). Confluent hESCs were dissociated into single-cell suspension by incubation 

with TrypLE Select (Gibco) and passaged every 3–4 days. G-

banded karyotyping performed by Cell Line Genetics confirmed normal karyotype of 

INSGFP/W hESCs. Cells have been confirmed to be mycoplasma-free using the 

MycoProbe Mycoplasma Detection Kit (R&D Systems) or the Venor GeM Mycoplasma 

Detection Kit (Sigma) 

 

3.2.4. Differentiation into pancreatic cells 

To initiate differentiation, we dissociated confluent cultures into single-cell suspensions 

using TrypLE Select, counted cells, and seeded them in six-well suspension plates at a 

density of 5.5 × 106 cells per 5.5 mL of hESC maintenance media supplemented with 

10 ng/mL activin A (R&D Systems) and 10 ng/mL heregulinB (PeproTech). The plates 

were incubated at 37°C and 5% CO2 on an orbital shaker set at 100 rpm to induce 3D 

sphere formation. After 24 h, the spheres were differentiated as previously described 

(Nair et al., 2019a, 2019b). Spheres were collected in 50-mL tubes, allowed to settle by 

gravity, washed once with PBS or RPMI (Gibco), and resuspended in d1 differentiation 
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media. The resuspended spheres were distributed into fresh six-well suspension plates 

for a final volume of 5.5 mL of d1 media per well. Until d3, spheres were fed daily by 

removing media and replenishing with 5.5 mL of fresh media. From d4 to d20, media 

was removed daily, and 5 mL of fresh media was added. Media compositions for 

differentiation of INSGFP/W hESCs are as follows: d1, RPMI (Gibco) containing 0.2% 

FBS, 1:5,000 ITS (Gibco), 100 ng/mL activin A, and 50 ng/mL WNT3a (R&D Systems); 

d2, RPMI containing 0.2% FBS, 1:2,000 ITS, and 100 ng/mL activin A; d3, RPMI 

containing 0.2% FBS, 1:1,000 ITS, 2.5 μM TGFbi IV (Calbiochem), and 

25 ng/mL keratinocyte growth factor (KGF; R&D Systems); d4–5, RPMI containing 0.4% 

FBS, 1:1,000 ITS, and 25 ng/mL KGF; d6–7, DMEM (Gibco) with 25 mM glucose 

containing 1:100 B27 (Gibco) and 3 nM TTNPB (Sigma); d8, DMEM with 25 mM 

glucose containing 1:100 B27, 3 nM TTNPB, and 50 ng/mL epidermal growth 

factor (EGF; R&D Systems); d9–11, DMEM with 25 mM glucose containing 1:100 B27, 

50 ng/mL EGF, and 50 ng/mL KGF; d12+, DMEM with 25 mM glucose containing 1:100 

B27, 1:100 GlutaMAX (Gibco), 1:100 NEAA (Gibco), 10 μm ALKi II (Axxora), 500 nM 

LDN-193189 (Stemgent), 1 μm Xxi (Millipore), 1 μM T3 (Sigma-Aldrich), 0.5 mM vitamin 

C, 1 mM N-acetylcysteine (Sigma-Aldrich),10 μM zinc sulfate (Sigma-Aldrich), and 

10 μg/mL heparin sulfate. 

 

For transplantation experiments for IVIS imaging, MEL1 INSGFP/W hESCs were 

differentiated up to d19–20, while for in vivo glucose measurement experiments the 

cells were cultured for an additional 7 days in CMRL containing 10% FBS, 1:100 

Glutamax (Gibco), 1:100 NEAA (Gibco), 10 μm ALKi II (Axxora), 0.5 mM vitamin C, 1μM 
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T3 (Sigma-Aldrich), 1 mM N-acetyl Cysteine (Sigma-Aldrich), 10 μM zinc sulfate 

(Sigma-Aldrich) and 10 μg/mlof heparin sulfate) supplemented with 10 μM of the ROCK 

inhibitor Y-27632 (Tocris) and Penicillin Streptomycin (Corning) before transplantation 

 

3.2.5. Transplantation  

PCL encapsulation devices were implanted in the subcutaneous space via a small 

incision in the mouse's lower back. The space between the skin and the muscle layer was 

dissected using blunt forceps, and saline was injected to create an easily accessible 

pocket. The encapsulation device was implanted in this newly formed space, and the skin 

wound was closed using surgical staples. For devices containing cells, 2.5 × 103 clusters 

in 70 µL of media were transplanted. For pre-vascularized devices, a small incision was 

made near the previous incision site, and a blunt instrument was used to open the space 

such that the neck of the device was visible. Without disrupting the device's position, 

scissors were used to cut open the neck, and a 200 uL pipet tip was used to insert cells, 

after which the cannula inside the device was removed, and a cautery pen was used to 

seal the device. 

 

3.2.6. Lectin Perfusion to Assess Functional Vasculature 

To analyze the vasculature around the grafts, lectin perfusion was performed on mice 

containing empty (no cell) devices. 0.1 mL of 1 mg/mL Tomato-lectin Dylight 647 (Thermo 

Fisher) was injected into the atrium of mice after anesthetizing with isoflurane. The right 

atrium of the mouse was cut, and after the mouse was allowed to bleed out, 10 mL of 

PBS was injected into the left ventricle using a pump. Finally, 10 mL of 4% PFA was 
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injected into the left ventricle using the pump, after which the device and surrounding skin 

were dissected and stored in 4% PFA overnight. Samples were transferred to 30% 

sucrose, washed with PBS, and imaged using a Nikon 6D/High Throughput microscope 

and a Leica Widefield microscope. To quantify the vasculature around the entire device, 

4x magnification images were used. These acquired images were analyzed using the Fiji 

software (NIH, version 2.0.0-rc-69/1.53c). Specifically, the Fiji software set a manual 

threshold for each image, after which the area covered by the stained vessels was 

manually highlighted and then calculated by the program. This area was divided by the 

total area of the image to determine the percentage of vasculature over the total area. To 

determine the fold change in the vasculature, all values were divided by the average 

percentage of vasculature over the total area on day 7. For each time point, n=5 animals 

were used, and five images of 4x magnifications per animal were used for the analysis. 

The number of branches and nodes were manually calculated for each image. A node 

was defined as a point at which two vessels intersect, and a branch was defined as 

vessels that were extending from the main blood vessel.  

 

3.2.7. Bioluminescent Imaging  

Graft-bearing animals were injected intraperitoneally (IP) with D-luciferin solution 

(Goldbio) at 150 mg/kg 30 min before imaging to capture the peak in bioluminescent 

intensity. Mice were anesthetized with an isoflurane mixture (2% in 98% O2), and the 

bioluminescent signal was quantified using a Xenogen IVIS 200 imaging system 

(PerkinElmer). Images were acquired for 1 min and then analyzed using the Living Image 

analysis software (Xenogen). Regions of interest (ROI) were centered over the location 



 

 

 

162 

of the devices and background signal was obtained by capturing ROI of a non-

bioluminescent signal. Photons collected over the acquisition time were counted within 

the ROI. The same imaging protocol was applied each time to ensure consistency across 

longitudinal studies. 

 

3.2.8. Intraperitoneal Glucose Tolerance Test 

Mice were subjected to an IP glucose tolerance test (IPGTT) at 28 days post-

transplantation to assess function of the grafted cells. The test was split into two parts to 

prevent undue stress on mice. In the first round, mice were fasted overnight, after which 

the blood glucose levels and blood samples were obtained via tail vein and cheek bleeds, 

respectively. After five days of rest, mice were fasted overnight, and blood glucose levels 

were measured from the tail vein. 3 mg/kg glucose was injected into the intraperitoneal 

space of mice, and after 45 minutes, blood glucose and blood samples were obtained 

from the tail vein, and cheek bleeds, respectively. C-peptide-levels were measured using 

an ultrasensitive insulin ELISA kit (Alpco 80-CPTHU-CH05) 

 

3.2.9. Histology 

Explanted grafts were collected and fixed in 4% paraformaldehyde for 24 h and 

dehydrated in 30% sucrose for 48 h. Tissue samples were embedded in optimal cutting 

temperature (OCT) and 8 µm sections were placed on TOMO adhesive slides for 

immunostaining. Slides were stained with hematoxylin and eosin (H&E, StatLab), 

picrosirius red (Polysciences), and tri-chrome (Sigma) staining kits. Images for H&E and 

tri-chrome staining were obtained on a brightfield microscope, and picrosirius red staining 
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was visualized using a circular polarized light microscope. For immunostaining, slides 

were fixed in 95% methanol and permeabilized in 0.1% Triton X-100. Sections were 

treated with primary antibodies against CD31 (R&D systems AF3628) diluted 1:50, vWF 

(Millipore AB7356) diluted 1:10, and C-peptide (DSHB GN-ID4) diluted 1:200, overnight 

at 4 C. Samples were rinsed with PBS followed by 1 h room temperature incubation with 

1:500 dilution of secondary antibody (AF 546, Sigma) and/or Alexa Fluor 647-conjugated 

glucagon antibody (Novus Biologics IC1249R) diluted 1:2000. Samples were then rinsed 

with PBS, incubated with Hoechst 3322 for 5 minutes, and mounted using anti-fade 

mounting medium (ProLong, LifeTechnologies). Images were obtained using a NIKON 

widefield fluorescence microscope. 

 

3.2.10. Statistical analysis 

Data were analyzed using GraphPad Prism software version 9.4. All differences in 

vasculature between experimental groups were evaluated using One-way ANOVA or 

Two-way ANOVA, followed by Tukey’s post hoc test or Student’s t-test. Graft survival was 

compared using Kaplan-Meier survival curves. P<0.05 was considered statistically 

significant. 

 

3.3. Results 

3.3.1. Design of subcutaneous thin film PCL device and implantation technique  

To create a refillable device, we modified the fabrication of thin film devices 

described in previous work.24,45,46 We fabricated a small device that was 2 cm in length 

and width to permit the insertion of the device in the subcutaneous space with minimal 
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stress to the animal. In brief, the new design included a 1 cm long and 0.6 cm wide neck 

with an enclosed catheter that allows for a facile opening of the device and the insertion 

of cells (Figure 3.1). The long neck was crucial in opening the device and inserting cells 

without removing the device from the transplant site and disrupting the surrounding 

vasculature. After inserting the cells, a cauterizer was used to seal the device opening 

through resistive heating. The circular region, where the cells reside, has a diameter of 

1.6 cm and maximum volume capacity of 160 µL. To provide mechanical support, we also 

incorporated a 100 µm thick PCL border around the device, which keeps it sturdy and 

prevents it from folding over in vivo. Additionally, transplantation in the subcutaneous 

space allowed for multiple surgeries where no adverse side effects were observed (based 

on whole animal and gross site observation). This may not be possible with other 

implantation sites, where repeated administration may lead to greater adverse 

events.16,17,19  

Once encapsulation devices were assembled, we next determined the ability of 

devices to maintain cellular viability and function, with and without pre-vascularization 

and/or device removal. Devices were either loaded with cells and immediately 

transplanted into an unmodified subcutaneous space ("Standard Implantation Method", 

SIM), or were first implanted as an empty device to establish vasculature before loading 

with cells (Refillable Pre-Vascularized Implantation Method, RPVIM). For the pre-

vascularized devices, an empty device was allowed to vascularize for 14 days. After that, 

stem cell-derived insulin-producing beta cell clusters were inserted, and devices were 

sealed without disrupting the newly formed vasculature around the device. To 

demonstrate that maintaining an intact vascular network in RPVIM is critical for graft 
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survival, we also compared with a previously reported approach where pre-vascularized 

empty devices were explanted and replaced with a SIM device (“Standard Pre-

Vascularization Method”, SPVIM). We hypothesized that disruption of the pre-

vascularized zone around the device would limit its ability to preserve graft survival in the 

subcutaneous space.  

 

3.3.2. Vasculature formation after transplantation of encapsulation device in 

subcutaneous space  

Lectin perfusion assay was used to quantify vascular density around implanted 

empty devices at 1, 2, 4 weeks and compared the vascular density in the native skin of 

immunodeficient NSG mice (Figure 3.2A). At 1 week, no increase of vasculature was 

seen in the transplantation site. By 2 weeks, the total amount of functional vasculature 

around the implant doubled from baseline. After 2 weeks, the increase in vascular density 

diminishes, and only an additional ~10-15% increase in the percent vasculature is 

observed after 4 weeks of implantation (Figure 3.2A-C).  The progression of 

angiogenesis was also evident by the increase in nodes and number of branches from 

pre-existing blood vessels. After 2 weeks of implantation, nearly 3-fold more nodes and 

branches were seen around the device compared to 1 week of implantation. Again, 

although there was an increase in the number of nodes and branches between week 2 

and week 4, this increase was less than 1-fold (Figure 3.2D, E). These results suggest 

that a vascularized site for islet engraftment can be created in the subcutaneous space 

after 2 weeks of implantation.  
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3.3.3. Survival of  stem cell-derived insulin-producing beta cell clusters in pre-

vascularized replenishable encapsulation devices  

We next asked whether pre-vascularization, with or without removal of the device, 

affects the survival of stem cell-derived insulin-producing beta cell clusters. These 

luciferase-labeled cell clusters were generated using a previously established 

protocol.47,48 For cell survival studies, two different stages of stem cell-derived insulin-

producing beta cell clusters were used. Cells generated after 20 days of differentiation 

(d20) are immature beta cell-like clusters, while day 28 (d28) cells are mature beta cell-

like clusters that display enhanced functional properties (Figure 3.3).47,48 Cells were 

encapsulated in devices and transplanted into the subcutaneous space of 

immunodeficient NSG mice, after which bioluminescence imaging was used to monitor 

the surviving graft mass of encapsulated cells over a period of 28 days. The d20 cells in 

SIM devices showed less than 15% of the baseline signal within the first 7 days, indicating 

that the initial transplantation site microenvironment was not hospitable for cells (Figure 

3.4A). SPVIM devices also showed around 90% decrease in the average fractional 

change in bioluminescence signal compared to the baseline at day 7. In comparison, the 

RPVIM devices showed only around 20% decrease in bioluminescence signal after day 

7, and these maintained greater than 40% of the baseline bioluminescence signal after 

28 days of implantation (Figure 3.4B). Additionally, when plotting the percentage of grafts 

showing greater than 15% of the baseline bioluminescence signal across the different 

conditions, ~88% of the RPVIM devices showed a signal over 28 days (Figure 3.4C). 

This percentage was significantly greater than the SPVIM and SIM groups, indicating that 

the pre-vascularization without subsequent device removal improves survivability of 
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immature stem cell-derived insulin-producing beta cell clusters in the subcutaneous 

space. 

Moreover, this same trend was observed with the d28 cells, which are believed to 

be more susceptive to ischemia due to higher metabolic activity.47,48 The change in 

bioluminescence compared to the baseline for cells in RPVIM was ~60% after 28 days, 

while the SIM and SPVIM showed only ~10-15% fractional change (Figure 3.4D, E). The 

percent of grafts that survived by day 28 for RPVIM was 75%; other conditions showed 

little to no survival after day 7 (Figure 3.4F).  These results support our hypothesis that 

pre-vascularization without vascular disruption creates a highly suitable post-transplant 

environment, allowing for increased graft survival. 

  

 

3.3.4. Function of mature insulin-producing cells within pre-vascularized 

replenishable encapsulation devices 

  Given the viability data, we hypothesized that RPVIM devices would show greater 

glucose-stimulated insulin secretion than SIM or SPVIM devices. Since the d20 cells are 

immature and do not respond significantly to glucose challenge, we conducted functional 

tests on d28 cells that more closely resemble mature beta-cell-like clusters and 

demonstrate glucose-stimulate insulin secretion.47,48 To assess the function of the 

encapsulated cells, after 28 days of implantation, we performed an intraperitoneal glucose 

tolerance test (IPGTT), in which mice were fasted overnight (“fasting”) and then 

challenged with a bolus intraperitoneal injection of 20 mM glucose (“fed”). d28 cells in the 

RPVIM device groups produced a significant increase of approximately 2-fold more C-
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peptide in in the fed vs. fasted state. In contrast, cells in the SIM and SPVIM groups 

showed no evidence of glucose-stimulated insulin secretion (Figure 3.5A). Additionally, 

the amount of C-peptide produced by cells in RPVIM devices post-bolus of glucose was 

5-fold higher than cells in SIM and SPVIM groups. This post-glucose response in RPVIM 

group was significantly greater than SIM and SPVIM groups (Figure 3.5B). 

Explantation and histological analysis of RPVIM devices containing stem cell-

derived insulin-producing beta cell clusters showed the presence of viable and insulin 

secreting beta-like clusters inside the vascularized device. The trichrome staining showed 

multiple beta cell-like clusters lined between the skin and muscle layers (Figure 3.6A-B). 

These beta cell-like clusters are not found in the SIM and SPVIM device explants 

(Figures 3.7, 3.8, respectively) The hematoxylin and eosin staining show biocompatibility 

of the devices as there was no visible deposition of fibrotic tissue along the graft and no 

irregularities in size or shape at the tissue and cellular levels indicating that there are no 

detrimental effects caused by the implant (Figure 3.6C). Immunostaining of cells for 

glucagon and human C-peptide confirmed the presence of islet-like clusters within the 

device (Figure 3.6D). Additionally, like the H&E staining, picrosirius red staining also 

confirmed little to no levels of collagen present on the periphery of the device, confirming 

minimal fibrosis (Figure 3.6E). Immunofluorescence staining of von Willebrand Factor 

and CD31 demonstrate increased angiogenesis and higher levels of platelet endothelial 

cell adhesion molecule 1, a marker for vascular differentiation (Figure 3.6F-G). 

Collectively, the IPGTT and histological analysis of grafts demonstrate robust glucose 

stimulated insulin secretion and morphological integrity of stem cell-derived insulin-

producing beta cell clusters within the RPVIM devices.  
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3.4. Discussion 

Our results confirm other studies reporting that implantation within the 

subcutaneous space does not allow for the survival of beta cells, which are typically highly 

vascularized in their native environment.5,19,41,49,50 Low oxygen tension and lack of 

nutrient supply caused by insufficient vasculature often lead to ischemia and necrosis of 

the highly metabolic beta cells.2,4,24,25,39,51,52 It has also been shown that beta cell function 

and insulin secretion are severely impacted by the dense vascular network through blood 

flow-dependent and independent pathways.5,38,50 Therefore, it is crucial for encapsulated 

beta cells to have functional and robust vasculature around the implant.  

Here, we demonstrate an easy-to-implement pre-vascularization approach that 

aims to relieve the ischemic stress experienced by encapsulated cells upon implantation 

in immunodeficient NSG mice. Our results indicate that in the subcutaneous space, pre-

vascularization of replenishable devices increases the survival of encapsulated stem cell-

derived insulin-producing beta cell clusters post-transplantation. The nanoporous thin-

film encapsulation device was designed such that after pre-vascularization, cells could be 

loaded easily through the port without the need to remove the device from the transplant 

site. After the cells were loaded, the device was resealed using resistive heating. This 

technique maintains the device's shape and structure while also preserving the 

surrounding vasculature (Figure 3.1). Additionally, previously published research 

suggested that a functional, planar encapsulation device should be no more than 550 µm 

in thickness with a volume fraction of ~2.5%.53 In our encapsulation devices, the total 

volume of transplanted beta cell cluster mass was 4.423 µL, which results in a volume 

fraction of ~2.7%. Also, we estimated that these loaded encapsulation devices had a 
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thickness of ~100 µm demonstrating that our device design satisfies the optimized 

parameters. Analysis of the vasculature around the encapsulation device showed that 

after 14 days of pre-vascularization in the subcutaneous space, the device is surrounded 

with twice as many new, functional blood vessels compared to 7 days of implantation 

(Figure 3.2). The presence of these blood vessels plays an important role in cell survival 

and function inside the encapsulation device as we observed greater than 80% graft 

survival in RPVIM devices in the subcutaneous space (Figure 3.4). The RPVIM devices 

also show greater performance than SPVIM devices, a technique used previously by 

several groups to enhance cell engraftment.7,20,32,39,43 This was also observed in more 

mature stem cell-derived insulin-producing beta cell clusters, which are highly metabolic 

and require robust sources of nutrients and oxygen.47,48 Moreover, the mature cells in 

pre-vascularized grafts also demonstrate significantly higher levels of glucose-stimulated 

insulin secretion compared to controls (Figure 3.5). The histological analysis 

demonstrates in vivo biocompatibility and the presence of functional stem cell-derived 

insulin-producing beta cell clusters inside RPVIM devices (Figure 3.6). While functional 

beta cell clusters were observed in the device, some necrotic areas were also present, 

likely due to insufficient oxygen supply. This is also indicated by the 50% reduction in 

cluster mass observed in RPVIM devices (Figure 3.4). However, overall, the RPVIM 

approach resulted in a significant increase in vascular coverage and oxygen availability, 

leading to better preservation of beta cell cluster mass and function compared to controls. 

Results from this study confirm that the RPVIM devices effectively provide a hospitable 

microenvironment for encapsulated stem cell-derived insulin-producing beta cell clusters 

in the subcutaneous space for 28 days. Future studies include longer-term survival and 
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function studies using the RPVIM devices and testing the ability of these devices to 

reverse diabetes in a diabetic mouse model. These studies will provide key insights into 

the clinical benefit of this approach.   

Our approach involves modification of the subcutaneous site to create a highly 

vascularized implantation site without introducing multiple devices, materials, or biologics 

whose long-term safety and biocompatibility need to be accounted for. This strategy 

utilized only FDA-approved biomaterials and took advantage of the naturally occurring 

vascularization process in the body.24,45,45,46 The lectin perfusion studies demonstrated 

functional vasculature surrounding the implant at 14 days, which we deemed sufficient 

time to create a favorable transplantation site. We observed robust vascular response 

with vessel branching, ingrowth, and outgrowth on and around the encapsulation device 

in the subcutaneous site. Additionally, since neovascularization is a dynamic process, we 

expect the vasculature to remodel extensively over time, especially with the addition of 

encapsulated cells.5,50 Furthermore, our approach showed that not only is a pre-

vascularized site necessary for subcutaneous implants, but it is also crucial to ensure that 

we preserve the vascular network while transplanting the cells in the pre-vascularized 

site.  

Islet transplantation using cell encapsulation devices can offer a long-term 

treatment for T1D. A major limitation that remains unaddressed is the loss of cell viability 

post-transplant. A major cause of this is the ischemic stress experienced by encapsulated 

cells that are transplanted in the inherently low vascularized subcutaneous space. 

However, transplantation of cellular grafts in the subcutaneous space is highly attractive 

as it allows for noninvasive graft monitoring, ease in device retrieval, or re-filling the 
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implanted device with new islets if required. Previous research has shown that modifying 

the subcutaneous space to increase vascular network formation prior to the 

transplantation of encapsulation devices can increase graft survival and function. 

However, these approaches often involve the use of biologics or techniques that disrupt 

the vasculature when inserting the encapsulation device.  

Our replenishable pre-vascularized device allows the transplantation of insulin-

producing cells in encapsulation devices without disrupting the hospitable environment 

formed around the device during the pre-vascularization period. Thus, we can take 

advantage of the body’s ability to form robust vasculature around PCL devices. Our 

results show that this method increases the survival and function of cells encapsulated 

within thin-film PCL devices in the subcutaneous space over 28 days. We anticipate that 

the results of this work are relevant to a broader range of cell therapy devices in which 

ischemic stress leads to a loss in graft post-transplantation.  
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Figure 3.1. Schematic of cell encapsulation device and pre-vascularization methodology. 
A) Illustration of the fabrication of thin film PCL encapsulation devices assembled using 
a resistive heating method. B) Image of the 2 cm wide encapsulation device showing the 
long neck that allows for easy insertion of cells and thicker surrounding membrane that 
provides mechanical support. C) Cross-sectional SEM image of nanoporous PCL 
membrane used to fabricate encapsulation devices. The inner pores of the membranes 
are ~200 nm in size, and the membrane thickness is ~10 µm. D) Implantation strategies 
for comparing standard implantation, standard pre-vascularization implantation, and 
replenishable pre-vascularization implantation methods. 
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Figure 3.2. Vasculature formation around empty implanted devices. A) Lectin-perfusion 
assay (stained in purple) was performed to visualize functional vasculature after 7 (n=6), 
14 (n=6), and 28 days (n=6) of implantation. B) Representative images of vascular 
networks (detected using lectin-perfusion assay) used to quantify changes in C) total 
vascular area, D) number of nodes, and E) number of branches around the implant. The 
significance across all experimental groups was performed using One-way ANOVA, 
followed by Tukey’s post hoc test.  
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Figure 3.3. Schematic showing differentiation of stem cell-derived insulin-producing 
beta cell clusters. The beta cell clusters are derived from human embryonic pluripotent 
stem cells and are differentiated to produce immature beta cell-like clusters (d20) or 
mature beta cell-like clusters (d28). 
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Figure 3.4. In vivo viability of stem cell-derived insulin-producing cells encapsulated in 
RPVIM devices. Representative images of encapsulated A) Luciferase positive d20 
(d20.LUC) cells in SIM devices (n=8, blue circles), SPVIM devices (n=10, orange 
squares), and RPVIM devices (n=9, green triangles) and D) Luciferase positive d28 
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(d28.LUC) in SIM devices (n=3, blue circles), SPVIM devices (n=4, orange squares), 
RPVIM devices (n=4, green triangles). Quantification of bioluminescence signal from cells 
transplanted in devices compared to baseline for B) d20.LUC and E) d28.LUC cells. The 
significance of changes in bioluminescent signal at day 28 vs. baseline was determined 
using multiple unpaired t-tests, corrected for multiple comparisons using Holm–Sidak 
method. Quantification of the percent of C) d20.LUC and F) d28.LUC grafts showing 
bioluminescence over a period of 28 days. The significance between survival curves was 
determined using the Kaplan-Meier test, and comparisons were made using a Log-rank 
(Mantel-Cox) method. 
 

 

Figure 3.5. Glucose response and insulin secretion from RPVIM devices containing d28 
stem cell-derived insulin-producing cells. A) Levels of secreted C-peptide from cells in 
RPVIM devices significantly increase 45 minutes post-intraperitoneal glucose injection. 
The significance between fasting and glucose groups was determined using a one-tailed 
unpaired t-test. B) Systemic C-peptide levels in RPVIM devices are greater post-IPGTT 
compared to SIM and SPVIM devices. Statistical significance across the groups was 
determined using a 2-way ANOVA fitting a mixed-effects model followed by Tukey’s post 
hoc test. 
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Figure 3.6. Histological analysis of RPVIM devices shows the presence of viable and 
functional D28 cells. In all the images, the outline of the device is shown using a yellow 
dashed line. A)  20x and B) 40x images of trichrome staining shows the presence of stem-
cell derived insulin producing cell clusters inside the device. The device resets between 
the skin and muscle layer, with numerous blood vessels surrounding the implant. C) 
Representative 20X image of H&E staining confirms the presence of islets and in vivo 
biocompatibility. D) Representative immunofluorescence staining of stem cell-derived 
insulin-producing cells inside RPVIM device for human C-peptide (C-PEP, yellow), human 
glucagon (GCG, red), and nuclei (DAPI, blue). E) Host vasculature (detected by staining 
with mouse-specific anti-vWF, green) is present around the outskirts of RPVIM device 
showing the presence of neovasculature. Nuclei are stained with DAPI in blue. F) Host 
endothelial cells (detected by mouse specific anti-CD31 staining) are found primarily near 
the muscle layer in RPVIM devices. G) Minimal collagen (detected by picrosirius red 
staining) is observed around the graft.  
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Figure 3.7. Histological analysis of SIM devices shows lack of stem cell-derived insulin-
producing beta cell clusters. In all the images, the outline of the device is shown using a 
yellow dashed line. A)  20x images of trichrome staining shows that there are no beta cell 
clusters as seen in SIM devices. B) 4X and representative 2X image of H&E staining 
confirms the in vivo biocompatibility of the SIM devices. C) Representative 
immunofluorescence staining of stem cell-derived insulin-producing cells inside RPVIM 
device for human C-peptide (C-PEP, yellow), human glucagon (GCG, red), and nuclei 
(DAPI, blue). No signal for human C-peptide and/or human glucagon was seen. D) 
Negligible host vasculature (detected by staining with mouse-specific anti-vWF, green) is 
present around the outskirts of SIM devices. Nuclei are stained with DAPI in blue. E) Host 
endothelial cells (detected by mouse specific anti-CD31 staining) are found primarily near 
the muscle layer in SIM devices. 
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Figure 3.8. Histological analysis of SPVIM devices shows similar results as SIM devices. 
In all the images, the outline of the device is shown using a yellow dashed line. A)  20x 
image of trichrome staining shows that there are no beta cell clusters as seen in SPVIM 
devices. B) 4X and representative 2X image of H&E staining confirms the in vivo 
biocompatibility of the SPVIM devices. C) Representative immunofluorescence staining 
of stem cell-derived insulin-producing cells inside SPVIM device for human C-peptide (C-
PEP, yellow), human glucagon (GCG, red), and nuclei (DAPI, blue). No signal for human 
C-peptide and/or human glucagon was seen. D) Little to no amount of host vasculature 
(detected by staining with mouse-specific anti-vWF, green) is present around the outskirts 
of SIM devices. Nuclei are stained with DAPI in blue. E) Host endothelial cells (detected 
by mouse specific anti-CD31 staining) are found primarily near the muscle layer in RPVIM 
devices. 
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Chapter 4. Modulating the Immune Microenvironment around Implants to Promote 

Implant Integration 

4.1 Introduction 

Inflammation is a complex biological response to tissue injury or infection, involving 

the activation of immune cells and the release of various cytokines and chemokines.11–13 

This process is mediated by immune cells such as macrophages, which are activated 

upon contact with the biomaterials used in the encapsulation devices. Macrophages play 

a key role in initiating inflammation and directing the subsequent immune response.8,14–

17 When macrophages come in contact with the implant, they are activated to their 

inflammatory phenotype, creating a toxic local microenvironment. The activation of 

macrophages depends on the properties of the biomaterial used in the device, such as 

surface chemistry, topography, stiffness, and degradation products. These properties will 

eventually cause macrophages to either amplify their inflammatory response or to 

polarize to their anti-inflammatory phenotype to activate the tissue repair process.8,16–18 

Moreover, as these macrophages polarize, they also exhibit different cell shapes: 

inflammatory macrophages have a rounded cell shape while reparative macrophages 

have an elongated cell shape.19–21 

Therefore, the choice of biomaterial is critical in designing effective encapsulation 

devices.3,16,17 Ideally, biomaterials should promote the polarization of macrophages to 

their anti-inflammatory phenotype, which is associated with tissue repair and 

regeneration. Recent studies have shown that the surface topography of biomaterials can 

modulate macrophage phenotype, with nanoscale and microscale features leading to 

different polarization outcomes. Nanotopography has been shown to promote the M2 
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phenotype,22–25 while microtopography has been shown to promote the M1 

phenotype.20,23,26,27 Additionally, promoting an elongated cell shape by patterning the 

physical cues or decreasing perceived stiffness of substrate can also induce the 

reparative M2 phenotype.20,21,23,28 Therefore, tailoring the surface topography of 

biomaterials can serve as a powerful tool in modulating macrophage polarization to its 

reparative phenotype, thus controlling the immune response and accelerating 

engraftment of the device and increasing its efficacy in treating T1D. 

In this chapter, we investigate the effects of surface topography on macrophage 

polarization in response to PCL-based biomaterials for cell encapsulation in T1D. We first 

fabricate and characterize mineralized PCL thin films with nanoscale topography and 

micron-scaled topographic PCL thin films. We then evaluate the changes in gene 

expression levels of TNFα and Arg1, which are markers for the M1 inflammatory 

phenotype and M2 reparative phenotype, respectively, in macrophages cultured on these 

biomaterials. Our results provide insights into how the surface topography of biomaterials 

can be tailored to modulate macrophage phenotype and improve the success of cell 

encapsulation for treating type 1 diabetes. 

 

4.2 Materials & Methods 

4.2.1 Nano-scale topographic thin-film fabrication 

PCL thin films were fabricated according to previously published literature.29–31 The 

PCL thin films were incubated in 10 mL of modified simulated body buffer with low (10 

mM) and high (100 mM) concentration of HCO3 for period of 7 days, according to 

established literature.32 The mSBF solution contained 141mM NaCl, 4.0 mM KCl, 0.5 mM 
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MgSO4, 1.0 mM MgCl2, 4.2 mM or 100mM NaHCO3, 20.0 mM HEPES, 5.0 mM CaCl2, 

and 2.0 mM KH2PO4 in ddH2O. Prior to incubation in mSBF, some of the PCL thin films 

were hydrolyzed in 0.5M NaOH solution for 5h at 37°C.  

 

4.2.2 Micron-scale topographic thin-film fabrication 

SU-8 10 negative photoresist (MicroChem) was used to create microstructures 

designed to be 10 µm in height. Microstructures were fabricated on plasma-treated 3-inch 

silicon wafers. A spin-coater was used to coat SU-8 10 photoresist. The coating 

conditions were 5 second spin speed of 500 rpm at 100 rpm/second acceleration, after 

which the ramp was increased to 3000 rpm spin speed at an acceleration of 300 

rpm/second and hold for a total of 30 seconds. After the SU-8 10 10 µm thick coating was 

applied, the wafer was soft baked for 2 minutes at 65°C, followed by 5-7 minutes at 95°C. 

The wafer was then patterned using a Karl Suss MJB3 mask aligner by exposing the 

wafer through a photomask to a 365 nm UV light source. Following exposure, post expose 

bake was performed for 1 minute at 65°C, followed by 2 minutes at 95°C.  

Elastomeric stamp using polydimethylsiloxane (PDMS) was generated from the 

silicon wafer. 10 parts of Sylgard 184 pre-polymer and 1 part of curing agent was 

combined and poured over the silicon wafer, after which the PDMS mold was left in a 

vacuum oven to cure at 70°C overnight. The resulting PDMS mold was then used to spin-

coat 150 mg/mL PCL thin films. Resulting thin films were ~10 µm in thickness containing 

pillars of height 10 µm. 
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4.2.3 Characterization using scanning electron microscopy  

Nano- and micro-topographic PCL thin films with and without cells were fixed after 48h of 

culture and the sample was dehydrated and dried using HMDS. These samples were 

mounted on a flat SEM mount with colloidal graphite (Ted Pella). Using the Carl Zeis Ultra 

55 field emission electron microscope at University of California San Francisco, the 

samples were imaged. 

 

4.2.4 Cell culture of RAW264.7, mouse BMDM, and human-derived macrophages 

The RAW264.7 cell line was used to culture immortalized macrophages in vitro. 

The cells were maintained in DMEM medium supplemented with 10% FBS and 1% 

PenStrep at 37°C in a humidified atmosphere containing 5% CO2. 

Mouse BMDMs were obtained from adult mice, which were euthanized using CO2 

inhalation according to a protocol approved by the Institutional Animal Care Use 

Committee of University of California San Francisco. Bone marrow of the dissected 

femurs were flushed with 5 mL DMEM and the bone marrow was centrifuged for 5 minutes 

and then cultured for five days in 6-well tissue culture plates. To promote macrophage 

differentiation, cells were stimulated with 20 ng/mL of monocyte colony stimulation factor 

(M-CSF) every other day.  

Human tissue macrophages were derived from peripheral blood monocytes. 5 mL 

of human blood was collected and density gradient separation method using 

Polymorphprep solution (Sigma) was used to isolate human monocytes. The tubes were 

centrifuged at 500RCF for 40 min at room temperature. The peripheral blood 

mononuclear cells (PBMCs) were collected, diluted in PBS, and centrifuged at 350RCF 
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for 10 minutes. The supernatant was removed and re-suspended in red cell lysis buffer, 

after which the cells were centrifuged at 250 RCF for 5 minutes. The cells were then 

resuspended in medium and cultured in 24 well plates for 6 days at a seeding density of 

500,000 cells/well. To promote macrophage differentiation, cells were stimulated with 

human M-CSF every 2-3 days. 

 

4.2.5 Macrophage polarization using RTqPCR 

All cells were seeded on TCP or PCL films glued to 24 well plates at a seeding 

density of 50,000 cells/mL. Control conditions included M0 cells on TCP, M1-polarized 

cells on TCP (stimulation of 100 ng/mL of LPS), and M2-polarized cells on TCP 

(stimulation of 40 ng/mL of IL-4). After 24- or 48-h of culture, RNA was harvested using 

RNEasy Mini Kit (Qiagen) and converted to cDNA using iScript cDNA synthesis kit (Bio-

Rad Laboratories). The Viia7 qPCR machine was used to perform qPCR and relative 

gene expression levels were calculated using the DDCt method and normalized against 

the housekeeping gene. To conduct these experiments, custom-made DNA primers 

(Integrated DNA Technologies) were utilized, which can be found in Table 4.1. 

 

4.3. Results 

4.3.1 Fabrication and characterization of mineralized PCL thin films 

PCL thin films were fabricated according to previously established protocols.29–31 

Subsequent incubation of hydrolyzed PCL films in modified simulated body fluid (mSBF) 

resulted in a significant growth of a mineral layer on the surface of the material (Figure 

1A).32 A qualitative analysis of the non-hydrolyzed and hydrolyzed surface incubated for 
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7 days in mSBF with varying concentrations of bicarbonate ion (HCO3) confirmed the 

formation of mineral coatings on the hydrolyzed surfaces. Scanning electron microscopy 

(SEM) images revealed that non-hydrolyzed PCL films incubated with mSBF resulted in 

little to no formation of minerals, demonstrating that pre-treatment of PCL was crucial for 

the mineral nucleation process (Figure 1B). The SEM images also show distinct 

morphological differences resulting from the use of mSBF solutions with HCO3 

concentrations of 10mM (low) and 100mM (high). The mineral layer formed at lower 

HCO3 concentrations exhibited more dispersed spherical nanostructures. Some of the 

spherical nanostructures aggregated to form larger spheres that were less than 500 nm 

in diameter. At high concentrations of HCO3, the entire surface of the PCL film was 

covered with plate-like structures of minerals. These plate-like structures are composed 

of aggregated spherical nanostructures, similar to the ones that were formed in the low 

mSBF concentration.  

Furthermore, FTIR spectra of non-hydrolyzed and hydrolyzed PCL with mSBF 

incubation further confirms the data seen in SEM (Figure 1C). The non-hydrolyzed PCL 

showed similar absorption bands as untreated PCL, despite being incubated in mSBF 

solution. However, when the PCL films were hydrolyzed and incubated with mSBF, the 

absorption bands corresponded to those shown by hydroxyapatite. Additionally, 

increasing concentration of HCO3 in the mSBF solution also corresponded with 

increasing relative intensity of the phosphate peaks at 564 and 1032 cm-1 and of the 

hydroxyl peaks ranging from 330 to 3650 cm-1.  
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4.3.2 Macrophage polarization on nanostructured PCL films 

To evaluate the effect of nanoscale topography created through mineralized PCL 

on macrophages, changes in gene expression levels of TNFa (a marker for the M1 

inflammatory phenotype) and Arg1 (a marker for the M2 reparative phenotype) were 

quantified after 24- and 48-hour cultures (Figure 2).19,33 After 24 hours of culture, 

immortalized macrophages cultured on flat and mineralized PCL showed no significant 

changes in TNFa expression compared to tissue culture plastic (TCP). However, 

significant changes were seen after 48 hours of culture. RAW264.7 cells cultured on flat 

PCL showed increased TNFa expression compared to TCP, while the macrophages 

cultured on 10mM mineralized PCL showed a significantly lower TNFa expression level 

(Figure 2). However, although the 100 mM mineralized PCL film did show a decreased 

level of TNFa expression as compared to flat PCL, this change was similar to expression 

level of macrophages cultured on TCP. While the M1 expression levels decreased, M2 

expression of macrophages cultured on 10mM mSBF significantly increased after 24 

hours of culture. Additionally, a similar trend was observed, where an increase in mSBF 

concentration led to decreased increase in M2 expression (Figure 2). This indicates that 

there is a concentration-dependent nanotopography that can lead to decreased M1 and 

increased M2 phenotype in immortalized macrophages. 

 This topography-driven change in phenotype was also tested in primary murine 

BMDMs. Despite the changes observed in the immortalized macrophages, murine 

BMDMs did not show any change in expression levels of TNFa and Arg1 at 24- and 48-

hours (Figure 3). These findings suggest that the topography-driven phenotype 
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modulation observed in immortalized macrophages may not be directly applicable to 

primary murine BMDMs. 

 

4.3.3 Fabrication and characterization of micron-scaled topographic PCL thin films 

 Micron-scaled PDMS topographic molds were fabricated using SU-8 

photolithography, after which the PDMS molds were used to generate four unique micron-

structured patterns on PCL thin films. SEM images of topographic thin films confirms 

pillars of that are 10µm in height and 25 µm in diameter (Figure 4). The spacing between 

the pillars was varied to create various patterns that can affect macrophage attachment 

pattern and shape. All films will be referred by their horizontal width space and vertical 

width space (e.g., H70_V10 means pillars that are 70 µm apart horizontally and 10 µm 

apart vertically). 

 

4.3.4 Macrophage polarization on micron-scaled topographic PCL films 

 To understand the effect of patterned micron-scaled topography on macrophage 

polarization, immortalized and primary murine and human macrophages were cultured 

on the various topographic patterns. SEM imaging was used to assess the impact of pillar 

spacing on macrophage morphology. The results revealed distinct differences in 

macrophage shape based on the spacing between the pillars (Figure 4). When cultured 

on H10_V10 pillars, macrophages exhibited an elongated morphology, with some cells 

extending and attaching to different pillars. Similarly, the H20_V20 topographies, which 

have greater inter-pillar distances, still promoted an elongated macrophage cell shape. 
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However, when macrophages were cultured on H20_V10 and H70_V10 

topographies, a different morphology was observed. In contrast to the elongated shape 

seen on H10_V10 and H20_V20 topographies, macrophages cultured on H20_V10 and 

H70_V10 topographies exhibited a more rounded cell shape (Figure 4). Notably, 

macrophages did not interact with the pillars on the H70_V10 topography, likely due to 

the large horizontal distance between the pillars (Figure 4). These observations indicate 

that the spacing between the pillars can significantly impact macrophage morphology and 

suggest that topographical cues could play a crucial role in directing macrophage 

behavior. 

 Changes in gene expression of macrophages cultured on the microtopography 

were quantified for immortalized and primary macrophages. RAW264.7 cells cultured on 

topographic and flat PCL films showed no changes in expression levels of CXCL5, a M1 

marker, and Arg1 after 24h of culture (Figure 5). However, a longer culture period of 48h 

showed some changes in macrophage gene expression. Macrophages on H20_V10 

pillars showed a 2-fold increase in expression levels of CXCL5, and macrophages on 

H70_V10 and H20_V20 showed 0.5-fold decrease in CXCL5 expression levels (Figure 

5). Although there were changes observed on the M1 macrophage spectrum, the M2 

marker, Arg1, showed no change in gene expression level after 48h (Figure 5). These 

findings indicate that microtopography selectively affects M1 macrophage gene 

expression without altering M2 marker expression. 

 When murine BMDMs were cultured on the micron-scaled topographies, a different 

response was observed. The study found that the topographies, apart from H20_V10, 

exhibited a significant increase in CXCL5 expression levels of at least two-fold after 48 
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hours of culture (Figure 6). Additionally, the macrophages showed an almost three-fold 

increase in Arg1 expression levels across all topographies (Figure 6). Interestingly, the 

results showed that macrophages cultured on flat PCL films exhibited an unexpected 

outcome of an eight-fold increase in Arg1 expression levels (Figure 6). This suggests 

that PCL may promote the reparative phenotype in macrophages. These findings 

highlight the distinct responses of murine BMDMs to micron-scaled topographies, in 

contrast to the observations made in immortalized macrophages. 

 To validate the findings from the murine BMDM study, a similar experiment was 

conducted using human macrophages. Human macrophages were cultured on the same 

micron-scaled topographies for a period of 48 hours. The results of this study showed a 

similar pattern of gene expression as the murine study, with all topographies, except 

H20_V10 and H70_V10, exhibiting at least a two-fold increase in the M1 expression 

levels, indicated by IL-1b (Figure 7). However, unlike the murine BMDM, human 

macrophages showed no change in M2 expression levels, indicated by CD206 (Figure 

7). These findings reveal a similar pattern of M1 marker expression in human 

macrophages as observed in murine BMDMs, while highlighting distinct species-specific 

differences in M2 marker expression in response to the tested topographies. 

 

4.4 Discussion 

In the present study, we investigated the impact of mineralized and topographically 

patterned PCL thin films on macrophage polarization. Our findings demonstrate that 

nanoscale topography generated through mineralization of PCL films significantly affects 

the macrophage phenotype. Furthermore, we provide evidence that micron-scaled 
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topographical features on PCL thin films can modulate macrophage morphology and 

gene expression, which may have implications for the design of biomaterials for tissue 

engineering and regenerative medicine applications. 

The successful fabrication of mineralized PCL films with distinct morphological 

differences resulting from varying HCO3 concentrations highlights the importance of pre-

treatment and incubation conditions in controlling the mineral nucleation process (Figure 

1). Our SEM and FTIR analysis confirmed the formation and composition of mineral 

coatings on hydrolyzed PCL surfaces, emphasizing the need for hydrolysis in promoting 

mineral formation (Figure 1B,C). The observed differences in mineral layer morphology 

due to HCO3 concentrations suggest that the control over the mineralization process 

could enable the fine-tuning of nanoscale topography for specific applications. 

Our study shows that nanoscale topography created through mineralized PCL can 

modulate macrophage polarization. Immortalized macrophages exhibited a decrease in 

inflammatory M1 markers and an increase in reparative M2 markers in a concentration-

dependent manner (Figure 2). This indicates that nanotopography can play a significant 

role in directing macrophage behavior. Interestingly, primary murine BMDMs did not 

exhibit the same response to nanoscale topography, suggesting that immortalized cell 

lines may not accurately represent the behavior of primary cells (Figure 3). Further 

investigation using primary cells is warranted to better understand the impact of 

nanotopography on macrophage polarization. 

The fabrication of micron-scaled topographic PCL thin films with distinct pillar 

patterns allowed us to explore the effect of microscale topography on macrophage 

polarization. Our findings demonstrate that the spacing between the pillars can 
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significantly impact macrophage morphology, with cells exhibiting either elongated or 

rounded shapes depending on the pillar arrangement (Figure 4). This suggests that 

topographical cues can play a crucial role in directing macrophage behavior. 

Gene expression analysis of macrophages cultured on microtopographic PCL 

films revealed some changes in M1 marker expression levels, but no change in M2 

markers in immortalized macrophages (Figure 5). On the other hand, primary murine 

BMDMs showed changes in both M1 and M2 marker expression levels. The observed 

increase in Arg1 expression levels for macrophages cultured on flat PCL films was 

unexpected and suggests that PCL may promote the reparative phenotype in 

macrophages (Figure 6). Human-derived macrophages exhibited a similar pattern of M1 

marker expression but showed no change in M2 markers (Figure 7). This discrepancy 

emphasizes the need for further investigation using human cells to better understand the 

translational potential of topography-mediated macrophage polarization. 

In conclusion, our study demonstrates that both nanoscale and microscale 

topographies on PCL thin films can modulate macrophage polarization. These findings 

provide valuable insights into the role of topography in directing macrophage behavior 

and could have important implications for the design of biomaterials for tissue engineering 

and regenerative medicine applications.  

While our study provides valuable insights into the impact of topography on 

macrophage polarization, it is important to acknowledge the need for further validation 

and investigation. To ensure the reliability and reproducibility of our findings, the 

experiments should be repeated with various macrophage sources and across different 

experimental setups. To enhance the understanding of the observed effects on cell 
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phenotype, future studies should consider the simultaneous changes in both topography 

and composition while working with mineralized PCL experiments. Quantifiable 

characterizations of roughness and topography for the samples, in addition to SEM 

images, would provide more accurate insights into the effects of varying bicarbonate 

concentrations on mineral composition and surface mineral coverage. Moreover, 

additional in vitro assays, such as immunofluorescence staining and flow cytometry, could 

be employed to comprehensively assess the changes in gene expression profiles and 

protein levels following exposure to different topographical features. Furthermore, linking 

the nano and micro aspects of this study would benefit from addressing the compositional 

differences between nano- and micro-PCL surfaces. By conducting experiments that 

investigate the impact of these compositional differences, future research can provide a 

more comprehensive understanding of the interplay between topography and 

composition in influencing cell behavior. It is also crucial to recognize that macrophages 

exist on a continuum of activation states, and thus, a more comprehensive analysis of 

gene expression changes is required to uncover the complex interplay between 

topography and macrophage polarization. By employing a multifaceted approach, we can 

gain a deeper understanding of the topography-mediated modulation of macrophage 

behavior, which can ultimately lead to the development of more effective biomaterials for 

tissue engineering and regenerative medicine applications. Additionally, future studies 

should focus on elucidating the mechanisms underlying topography-mediated 

macrophage polarization and exploring the potential of three-dimensional biomaterials 

with topographical cues to modulate macrophage function and wound healing response. 
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Table 4.1. Primers used for qPCR 
Cell Type Gene Sequence 

RAW264.7 GAPDH Forward: TGTCGTGGAGTCTACTGGTGTCTTC 
Reverse: CGTGGTTCACACCCATCACAA 

RAW264.7 TNFα Forward: TGGAACTGGCAGAAGAGG 
Reverse: AGACAGAAGAGCGTGGTG 

RAW264.7 Arg1 Forward: TTGGGTGGATGCTCACACTG 
Reverse: TTGCCCATGCAGATTCCC 

RAW264.7 CCL5 Forward: GCCCACGTCAAGGAGTATTTC 
Reverse: ACACACTTGGCGGTTCCTTC 

Murine BMDM GAPDH Forward: TGTCGTGGAGTCTACTGGTGTCTTC 
Reverse: CGTGGTTCACACCCATCACAA 

Murine BMDM TNFα Forward: TGGAACTGGCAGAAGAGG 
Reverse: AGACAGAAGAGCGTGGTG 

Murine BMDM Arg1 Forward: TTGGGTGGATGCTCACACTG 
Reverse: TTGCCCATGCAGATTCCC 

Murine BMDM CCL5 Forward: GCCCACGTCAAGGAGTATTTC 
Reverse: ACACACTTGGCGGTTCCTTC 

Human-Derived 
macrophages 

GAPDH Forward: ACAACTTTGGTATCGTGGAAGG 
Reverse: GCCATCACGCCACAGTTTC 

Human-Derived 
macrophages 

IL1β Forward: ATGATGGCTTATTACAGTGGCAA 
Reverse: GTCGGAGATTCGTAGCTGGA 

Human-Derived 
macrophages 

CD206 Forward: AAGGCGGTGACCTCACAAG 
Reverse: AAAGTCCAATTCCTCGATGGTG 
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Figure 4.1. Characterization of mineralized PCL thin films fabricated using modified 
simulated body fluid (mSBF) with varying bicarbonate ion (HCO3) concentrations. (A) 
Hydrolyzed PCL films incubated in mSBF exhibit significant mineral layer growth on the 
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surface. (B) SEM images display minimal mineral formation on non-hydrolyzed PCL films, 
highlighting the importance of pre-treatment for mineral nucleation. Distinct morphological 
differences are observed based on mSBF HCO3 concentrations: 10 mM (low) exhibits 
dispersed spherical nanostructures, while 100 mM (high) shows complete surface 
coverage with plate-like structures composed of aggregated spherical nanostructures. (C) 
FTIR spectra confirm the SEM findings, with hydrolyzed PCL films incubated in mSBF 
exhibiting absorption bands corresponding to hydroxyapatite. The relative intensity of 
phosphate peaks at 564 and 1032 cm-1 and hydroxyl peaks ranging from 330 to 3650 
cm-1 increase with higher HCO3 concentrations. 
 

 
Figure 4.2. Evaluation of M1 and M2 macrophage marker expression on flat, 10 mM, and 
100 mM mineralized PCL surfaces. TNFα (M1 marker) and Arg1 (M2 marker) expression 
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levels were assessed after 24 and 48 hours of culture. At the 24-hour time point, flat and 
mineralized PCL surfaces exhibited no notable differences in TNFα expression compared 
to TCP. However, after 48 hours, flat PCL surfaces displayed increased TNFα levels 
relative to TCP, whereas 10 mM mineralized PCL presented significantly reduced 
expression. Interestingly, 100 mM mineralized PCL showed decreased TNFα levels 
compared to flat PCL, aligning with TCP expression. Arg1 (M2 marker) expression 
significantly rose after 24 hours on 10 mM mSBF, exhibiting an inverse correlation 
between mSBF concentration and M2 expression increase.  
 

 
Figure 4.3. Changes in TNFα and Arg1 gene expression levels were quantified after 24- 
and 48-hour cultures of primary murine BMDMs on flat and mineralized PCL films. No 
significant changes were observed in TNFα and Arg1 expression levels, suggesting that 
the response to nanotopography may be cell type-dependent. 
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Figure 4.4. SEM imaging of topographic thin films and their effect on macrophage 
morphology. SEM images confirming the dimensions of the 10µm height and 25 µm 
diameter pillars with varying spacing between them. Macrophages cultured on H10_V10 
and H20_V20 topographies exhibited an elongated morphology, with some cells 
extending and attaching to different pillars, as observed by SEM imaging. These results 
demonstrate the ability of pillar spacing to influence macrophage attachment and shape. 
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Figure 4.5. Impact of microtopographic PCL films on gene expression profiles in 
immortalized and primary macrophages. No alterations in CXCL5 (M1 marker) and Arg1 
(M2 marker) expression levels were observed for RAW264.7 cells cultured on 
topographic and flat PCL films after a 24-hour incubation period. Following 48 hours of 
culture, a 2-fold upregulation of CXCL5 expression was detected in macrophages grown 
on H20_V10 pillars, while a 0.5-fold reduction was noted for H70_V10 and H20_V20 
conditions. Arg1 expression remained unchanged across all experimental conditions after 
48 hours. 
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Figure 4.6. Differential gene expression profiles of murine BMDMs cultured on micron-
scaled topographies. After 48 hours, all topographies, except H20_V10, demonstrated a 
significant increase in CXCL5 (M1 marker) expression, with levels elevated by at least 
two-fold. A nearly three-fold upregulation of Arg1 (M2 marker) expression was observed 
across all topographies. Remarkably, an eight-fold increase in Arg1 expression levels 
was found for macrophages cultured on flat PCL films, suggesting a potential role of PCL 
in promoting the reparative macrophage phenotype. 
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Figure 4.7. Comparative gene expression analysis of human-derived macrophages 
cultured on micron-scaled topographies. Following a 48-hour incubation period, all 
topographies, excluding H20_V10 and H70_V10, displayed a minimum two-fold 
upregulation in M1 expression levels, as evidenced by IL-1β. In contrast to murine 
BMDMs, human macrophages exhibited no alterations in M2 expression levels, denoted 
by CD206. 
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Chapter 5. Conclusions and Perspectives 

This thesis provides a comprehensive analysis of the challenges faced by cell 

encapsulation devices for T1D treatment, particularly focusing on the FBR and its 

subsequent effects on cell survival, vasculature, and inflammation. Through the 

development of nutrient-supplementing devices, pre-vascularization techniques, and 

tailoring biomaterial properties, we demonstrate significant progress in enhancing the 

performance and long-term success of cell encapsulation devices for T1D management. 

This work demonstrates two significant advancements in improving the survival of 

encapsulated cells within the subcutaneous space. The nutrient-releasing reservoir, as 

described in Chapter 2, effectively increases cell survival by 30% in the poorly 

vascularized subcutaneous space by providing a steady supply of essential nutrients to 

the encapsulated cells. Furthermore, the novel RPVIM approach presented in Chapter 3 

demonstrates a remarkable increase in cell survival, reaching up to 75% after 28 days of 

implantation. These results highlight the potential of combining innovative strategies to 

enhance the performance of cell encapsulation devices. 

However, there is still room for improvement in achieving near-complete cell 

survival. As discussed in Chapter 4, the impact of surface topography on macrophage 

polarization and the immune response can be further explored to optimize the design of 

encapsulation devices. Future studies should investigate the integration of topographic 

features into the encapsulation devices to modulate the immune response and promote 

reparative macrophage phenotypes, potentially bringing cell survival closer to 100%. By 

combining the successful approaches of nutrient-releasing reservoirs, pre-vascularization 

techniques, and topographic modifications, a path can be paved towards highly effective 
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cell encapsulation devices that ensure optimal engraftment and function in the treatment 

of T1D. 

While the results presented in this thesis are encouraging, some areas require 

further investigation and development for the successful translation of these findings into 

clinical practice. Future research should be directed towards the following aspects: 

1. Long-term studies and in vivo testing with immunocompetent mice: It is crucial to 

conduct long-term in vivo studies to evaluate the durability and performance of the 

developed encapsulation devices, focusing on their ability to maintain functionality 

and prevent adverse immune responses over extended periods. Since all the 

studies have been performed with NSG mice, it is essential to test the devices in 

immunocompetent mice to assess their performance in a more clinically relevant 

setting. 

2. Diabetic mouse model testing: To better understand the immune response and 

subsequent device engraftment in the disease state, it would be beneficial to test 

the devices long-term in a diabetic mouse model. This approach will help 

determine the potential impact of the disease on the encapsulation devices and 

identify any unforeseen challenges that may arise in a diabetic environment. 

3. Integration with other therapeutic approaches: As mentioned previously, 

combining cell encapsulation devices with other treatment strategies, such as 

immunomodulatory therapies, tailoring surface topography of biomaterials, and 

pre-vascularization techniques, could potentially enhance the overall efficacy of 

T1D management. 
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4. Scalability and manufacturing: To bring these devices to clinical use, it is essential 

to establish efficient, scalable, and cost-effective manufacturing processes that 

can produce consistent and reliable encapsulation devices. However, challenges 

exist in fabricating large-scale topographic devices, manufacturing stem-cell 

derived insulin-producing cells, and executing a two-step approach for 

prevascularizing, like RPVIM, in patients. Addressing these challenges will be 

crucial in translating the research findings into practical applications for T1D 

treatment. 

In conclusion, this thesis contributes to addressing the challenges associated with 

cell encapsulation devices for T1D treatment, particularly focusing on the foreign body 

response and fibrosis. By investigating and modulating these factors, a foundation has 

been laid for the development of more effective and durable encapsulation devices. As 

knowledge advances and these technologies are refined, progress toward providing a 

transformative solution for individuals living with T1D can be achieved. 

By addressing the aforementioned areas and fostering interdisciplinary 

collaboration and innovation, the groundwork is established for a future where cell 

encapsulation devices become a standard, effective, and long-lasting treatment option 

for T1D patients, ultimately improving their quality of life and disease management.  
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