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Marta C. González2 and David Lazer5,6

1Engineering Systems Division, and 2Department of Civil and Environmental Engineering, MIT,
Cambridge, MA 02144, USA
3School of Information Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
4Department of Economics, UC Davis, Davis, CA 95616, USA
5Harvard Kennedy School, Harvard University, Cambridge, MA 02144, USA
6Lazer Laboratory, Department of Political Science and College of Computer and Information Science,
Northeastern University, Boston, MA 02115, USA

Can data from mobile phones be used to observe economic shocks and their

consequences at multiple scales? Here we present novel methods to detect

mass layoffs, identify individuals affected by them and predict changes in

aggregate unemployment rates using call detail records (CDRs) from mobile

phones. Using the closure of a large manufacturing plant as a case study,

we first describe a structural break model to correctly detect the date of a

mass layoff and estimate its size. We then use a Bayesian classification

model to identify affected individuals by observing changes in calling behav-

iour following the plant’s closure. For these affected individuals, we observe

significant declines in social behaviour and mobility following job loss. Using

the features identified at the micro level, we show that the same changes in

these calling behaviours, aggregated at the regional level, can improve fore-

casts of macro unemployment rates. These methods and results highlight

promise of new data resources to measure microeconomic behaviour and

improve estimates of critical economic indicators.
1. Introduction
Economic statistics are critical for decision-making by both government and

private institutions. Despite their great importance, current measurements

draw on limited sources of information, losing precision with potentially dire

consequences. The beginning of the Great Recession offers a powerful case

study: the initial BEA estimate of the contraction of GDP in the fourth quarter

of 2008 was an annual rate 3.8%. The American Recovery and Reinvestment

Act (stimulus) was passed based on this understanding in February 2009.

Less than two weeks after the plan was passed, that 3.8% figure was revised

to 6.2%, and subsequent revisions peg the number at a jaw dropping 8.9%—

more severe than the worst quarter during the Great Depression. The govern-

ment statistics were wrong and may have hampered an effective intervention.

As participation rates in unemployment surveys drop, serious questions have

been raised as to the declining accuracy and increased bias in unemployment

numbers [1].

In this paper, we offer a methodology to infer changes in the macroeconomy

in near real time, at arbitrarily fine spatial granularity, using data already pas-

sively collected from mobile phones. We demonstrate the reliability of these

techniques by studying data from two European countries. In the first, we

show it is possible to observe mass layoffs and identify the users affected by

them in mobile phone records. We then track the mobility and social inter-

actions of these affected workers and observe that job loss has a systematic

dampening effect on their social and mobility behaviour. Having observed

an effect in the micro data, we apply our findings to the macroscale by creating

corresponding features to predict unemployment rates at the province scale.
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Figure 1. A schematic view of the relationship between job loss and call
dynamics. We use the calling behaviour of individuals to infer job loss
and measure its effects. We then measure these variables and include them
in predictions of unemployment at the macroscale, significantly improving
forecasts.
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In the second country, where the macro-level data are

available, we show that changes in mobility and social behav-

iour predict unemployment rates ahead of official reports

and more accurately than traditional forecasts. These results

demonstrate the promise of using new data to bridge the gap

between micro- and macroeconomic behaviours and track

important economic indicators. Figure 1 shows a schematic

of our methodology.
2. Measuring the economy
Contemporary macroeconomic statistics are based on a para-

digm of data collection and analysis begun in the 1930s [2,3].

Most economic statistics are constructed from either survey

data or administrative records. For example, the US un-

employment rate is calculated based on the monthly

Current Population Survey of roughly 60 000 households,

and the Bureau of Labor Statistics manually collects 80 000

prices a month to calculate inflation. Both administrative

databases and surveys can be slow to collect, costly to admin-

ister and fail to capture significant segments of the economy.

These surveys can quickly face sample size limitations at fine

geographies and require strong assumptions about the con-

sistency of responses over time. Statistics inferred from

survey methods have considerable uncertainty and are routi-

nely revised in the months following their release as other

data are slowly collected [1,4–6]. Moreover, changes in

survey methodology can result in adjustments of reported

rates of up to 1–2 percentage points [7].

The current survey-based paradigm also makes it challen-

ging to study the effect of economic shocks on networks or

behaviour without reliable self-reports. This has hampered

scientific research. For example, many studies have documen-

ted the severe negative consequences of job loss in the form

of difficulties in retirement [8], persistently lower wages
following re-employment including even negative effects on

children’s outcomes [9,10], increased risk of death and illness

[11,12], higher likelihood of divorce [13], and, unsurprisingly,

negative impacts on happiness and emotional well-being

[14]. Owing to the cost of obtaining the necessary data,

however, social scientists have been unable to directly

observe the large negative impact of a layoff on the frequency

and stability of an individual’s social interactions or mobility.
3. Predicting the present
These shortcomings raise the question as to whether existing

methods could be supplemented by large-scale behavioural

trace data. There have been substantial efforts to discern

important population events from such data, captured by

the pithy phrase of, ‘predicting the present’ [15–18]. Prior

work has linked news stories with stock prices [19–21] and

used web search or social media data to forecast labour

markets [22–26], consumer behaviour [27,28], automobile

demand, vacation destinations [15,29]. Research on social

media, search and surfing behaviour have been shown to

signal emerging public health problems [30–37]; although

for a cautionary tale see [38]. And recent efforts have even

been made towards leveraging Twitter to detect and track

earthquakes in real-time detection faster than seismographic

sensors [39–41]. While there are nuances to the analytic

approaches taken, the dominant approach has been to extract

features from some large-scale observational data and to

evaluate the predictive (correlation) value of those features

with some set of measured aggregate outcomes (such as dis-

ease prevalence). Here we offer a twist on this methodology

through identification of features from observational data

and to cross-validate across individual and aggregate levels.

All of the applications of predicting the future are

predicated, in part, on the presence of distinct signatures

associated with the systemic event under examination.

The key analytic challenge is to identify signals that (i) are

observable or distinctive enough to rise above the back-

ground din, (ii) are unique or generate few false positives,

(iii) contain information beyond well-understood patterns

such as calendar-based fluctuations and (iv) are robust to

manipulation. Mobile phone data, our focus here, are particu-

larly promising for early detection of systemic events as they

combine spatial and temporal comprehensiveness, naturally

incorporate mobility and social network information and

are too costly to intentionally manipulate.

Data from mobile phones has already proved extremely

beneficial to understanding the everyday dynamics of social

networks [42–48] and mobility patterns of millions [49–56].

With a fundamental understanding of regular behaviour, it

becomes possible to explore deviations caused by collective

events such as emergencies [57], natural disasters [58,59] and

cultural occasions [60,61]. Less has been done to link these

data to economic behaviour. In this paper, we offer a method-

ology to robustly infer changes to measure employment shocks

at extremely high spatial and temporal resolutions and

improve critical economic indicators.
4. Data
We focus our analysis at three levels: the individual, the

community and the provincial levels. We begin with
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Figure 2. Identifying the layoff date. (a) Total aggregate call volume (black line) from users who make regular calls from towers near the plant is plotted against
our model (blue). The model predicts a sudden drop in aggregate call volume and correctly identifies the date of the plant closure as the one reported in news-
papers and court records. (b) Each of the top 300 users likely to have been laid off is represented by a row where we fill in a day as coloured if a call was made near
the plant on that day. White space marks the absence of calls. Rows are sorted by the assigned probability of that user being laid off according to our Bayesian
model. Users with high probabilities cease making calls near the plant directly following the layoff. (c) We see a sharp, sustained drop in the fraction of calls made
near the plant by users assigned to the top decile in probability of being unemployed (red) while no affect is seen for the control group users believed to be
unaffected (blue). Moreover, we see that laid-off individuals have an additional drop off for a two week period roughly 125 days prior the plant closure. This time
period was confirmed to be a coordinated vacation for workers providing further evidence we are correctly identifying laid-off workers.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150185

3

unemployment at the community (town) level, where we

examine the behavioural traces of a large-scale layoff event.

At the community and individual levels, we analyse call

record data from a service provider with an approximately

15% market share in an undisclosed European country. The

community-level dataset spans a 15-month period between

2006 and 2007, with the exception of a six-week gap due to

data extraction failures. At the province level, we examine

call detail records from a service provider from another Euro-

pean country, with an approximately 20% market share and

data running for 36 months from 2006 to 2009. Records in

each dataset include an anonymous ID for caller and callee,

the location of the tower through which the call was made,

and the time the call occurred. In both cases, we examine

the universe of call records made over the provider’s network

(see the electronic supplementary material for more details).
5. Observing unemployment at the community
level

We study the closure of an auto-parts manufacturing plant

(the plant) that occurred in December 2006. As a result of

the plant closure, roughly 1100 workers lost their jobs in a

small community (the town) of 15 000. Our approach builds

on recent papers [52–54,57] that use call record data to

measure social and mobility patterns.

There are three mobile phone towers within close proxi-

mity of the town and the plant. The first is directly within

the town, the second is roughly 3 km from the first and is geo-

graphically closest to the manufacturing plant, while the third

is roughly 6.5 km from the first two on a nearby hilltop. In

total, these three towers serve an area of roughly 220 km2 of

which only 6 km2 is densely populated. There are no other

towns in the region covered by these towers. Because the

exact tower through which a call is routed may depend on fac-

tors beyond simple geographical proximity (e.g. obstructions

due to buildings), we consider any call made from these

three towers as having originated from the town or plant.
We model the pre-closure daily population of the town as

made up of a fraction of individuals g who will no longer

make calls near the plant following its closure and the compli-

mentary set of individuals who will remain (1 2 g). As a result

of the layoff, the total number of calls made near the plant will

drop by an amount corresponding to the daily calls of workers

who are now absent. This amounts to a structural break model

that we can use to estimate the prior probability that a user

observed near the plant was laid off, the expected drop in

calls that would identify them as an affected worker and the

time of the closure (see the electronic supplementary material

for full description of this model). We suspect that some

workers laid off from the plant are residents of the town,

and thus they will still appear to make regular phone calls

from the three towers and will not be counted as affected.

Even with this limitation, we find a large change in behaviour.

To verify the date of the plant closing, we sum the number

of daily calls from 1955 regular users (i.e. those who make at

least one call from the town each month prior to the layoff)

connecting through towers geographically proximate to the

affected plant. The estimator selects a break date, tlayoff, and

pre- and post-break daily volume predictions to minimize the

squared deviation of the model from the data. The estimated

values are overlaid on daily call volume and the actual closure

date in figure 2a. As is evident in the figure, the timing of the

plant closure (as reported in newspapers and court filings) can

be recovered statistically using this procedure—the optimized

predictions display a sharp and significant reduction at this

date. As a separate check to ensure this method is correctly

identifying the break date, we estimate the same model for

calls from each individual user i and find a distribution of

these dates ti
layoff is peaked around the actual layoff date (see

the electronic supplementary material, figure S1).
6. Observing unemployment at the individual
level

To identify users directly affected by the layoff, we calculate

Bayesian probability weights based on changes in mobile
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phone activity. For each user, we calculate the conditional

probability that a user is a non-resident worker laid off

as part of the plant closure based on their observed

pattern of calls. To do this, we compute the difference in

the fraction of days on which a user made a call near the

plant in 50 days prior to the week of the layoff. We denote

this difference as Dq ¼ qpre 2 qpost. We consider each

user’s observed difference a single realization of a random

variable, Dq. Under the hypothesis that there is no

change in behaviour, the random variable Dq is distributed

N 0,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(qpre(1� qpre)=50)þ (qpost(1� qpost)=50)

p� �
: Under the

alternative hypothesis, the individual’s behaviour changes

pre- and post-layoff, the random variable Dq is distributed

N d,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(qpre(1� qpre)=50)þ (qpost(1� qpost)=50)

p� �
, where d is

the mean reduction in calls from the plant for non-resident

plant workers laid off when the plant was closed. We

assign user i the following probability of having been laid

off given his or her calling pattern:

P(laid off)i ¼
gP(Dq̂jDq ¼ d)

gP(Dq̂jDq ¼ d)þ (1� g)P(Dq̂jDq ¼ 0)
: (6:1)

Calculating the probabilities requires two parameters,

g, our prior that an individual is a non-resident worker

at the affected plant and d, the threshold we use for the

alternative hypothesis. The values of g ¼ 5.8% and d ¼ 0.29

are determined based on values fit from the model in the

previous section.

6.1. Validating the layoff
On an individual level, figure 2b shows days on which each

user makes a call near the plant ranked from highest to

lowest probability weight (only the top 300 users are

shown, see the electronic supplementary material, figure S2

for more users). Users highly suspected of being laid off

demonstrate a sharp decline in the number of days they

make calls near the plant following the reported closure

date. While we do not have ground-truth evidence that any

of these mobile phone users was laid off, we find more sup-

port for our hypothesis by examining a two-week period

roughly 125 days prior to the plant closure. Figure 2c
shows a sharp drop in the fraction of calls coming from this

plant for users identified as laid-off post-closure. This

period corresponds to a confirmed coordinated holiday for

plant workers and statistical analysis confirms a highly sig-

nificant break for individuals classified as plant workers in

the layoff for this period. Given that we did not use call

data from this period in our estimation of the Bayesian

model, this provides strong evidence that we are correctly

identifying the portion of users who were laid off by this

closure. In aggregate, we assign 143 users probability weights

between 50 and 100%. This represents 13% of the pre-closure

plant workforce and compares closely with the roughly 15%

national market share of the service provider.
7. Assessing the effect of unemployment
at the individual level

We now turn to analysing behavioural changes associated

with job loss at the individual level. We first consider six

quantities related to the monthly social behaviour: (i) total

calls, (ii) number of incoming calls, (iii) number of outgoing
calls, (iv) calls made to individuals physically located in the

town of the plant (as a proxy for contacts made at work),

(v) number of unique contacts and (vi) the fraction of contacts

called in the previous month that were not called in the cur-

rent month, referred to as churn. In addition to measuring

social behaviour, we also quantify changes in three metrics

related to mobility: (vii) number of unique locations visited,

(viii) radius of gyration and (xi) average distance from most

visited tower (see the electronic supplementary material for

detailed definitions of these variables). To guard against out-

liers such as long trips for vacation or difficulty identifying

important locations due to noise, we only consider months

for users where more than five calls were made and locations

where a user recorded more than three calls.

We measure changes in these quantities using all calls

made by each user (not just those near the plant) relative to

months prior to the plant closure, weighting measurements

by the probability an individual is laid off and relative to

two reference groups: individuals who make regular calls

from the town but were not believed to be laid off (mathemat-

ically we weight this group using the inverse weights from

our Bayesian classifier) and a random sample of 10 000

mobile phone users throughout the country (all users in

this sample are weighted equally).

Figure 3a–i shows monthly point estimates of the average

difference between relevant characteristics of users believed

to be laid off compared to control groups. This figure

shows an abrupt change in variables in the month directly

following the plant closure. Despite this abrupt change,

data at the individual level are sufficiently noisy that the

monthly point estimates are not significantly different from

0 in every month. However, when data from months pre-

and post-layoff are pooled, these differences are robust and

statistically significant. The right panel of figure 3 and elec-

tronic supplementary material, table I show the results of

OLS regressions comparing the pre- and post-closure periods

for laid-off users relative to the two reference groups (see the

electronic supplementary material for detailed model specifi-

cation as well as confidence intervals for per cent changes

pre- and post-layoff for each variable). The abrupt and sus-

tained change in monthly behaviour of individuals with a

high probability of being laid off is compelling evidence in

support of using mobile phones to detect mass layoffs with

mobile phones.

We find that the total number of calls made by laid-off

individuals drops 51% and 41% following the layoff when

compared with non-laid-off residents and random users,

respectively. Moreover, this drop is asymmetric. The

number of outgoing calls decreases by 54% compared to a

41% drop in incoming calls (using non-laid-off residents as

a baseline). Similarly, the number of unique contacts called

in months following the closure is significantly lower for

users likely to have been laid off. The fraction of calls made

by a user to someone physically located in the town drops

4.7 percentage points for laid-off users compared with resi-

dents of the town who were not laid off. Finally, we find

that the month-to-month churn of a laid-off person’s social

network increases roughly 3.6 percentage points relative to

control groups. These results suggest that a user’s social inter-

actions see significant decline and that their networks become

less stable following job loss. This loss of social connections

may amplify the negative consequences associated with job

loss observed in other studies.
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For our mobility metrics, we find that the number of

unique towers visited by laid-off individuals decreases 17%

and 20% relative to the random sample and town sample,

respectively. Radius of gyration falls by 20% and 22% while

the average distance a user is found from the most visited

tower also decrease decreases by 26% relative to reference

groups. These changes reflect a general decline in the mobi-

lity of individuals following job loss, another potential

factor in long-term consequences.
8. Observing unemployment at the province
level

The relationship between mass layoff events and these fea-

tures of CDRs suggests a potential for predicting important,

large-scale unemployment trends based on the population’s

call information. Provided the effects of general layoffs and

unemployment are similar enough to those due to mass lay-

offs, it may be possible to use observed behavioural changes

as additional predictors of general levels of unemployment.

To perform this analysis, we use another CDR dataset cover-

ing approximately 10 million subscribers in a different

European country, which has been studied in prior work

[44,45,52–54,57]. This country experienced enormous macro-

economic disruptions, the magnitude of which varied

regionally during the period in which the data are available.

We supplement the CDR dataset with quarterly, province-

level unemployment rates from the EU Labor Force Survey,
a large sample survey providing data on regional economic

conditions within the EU (see the electronic supplementary

material for additional details).

We compute seven aggregated measures identified in the

previous section: call volume, incoming calls, outgoing calls,

numberof contacts, churn, numberof towers and radius of gyra-

tion. Distance from home was omitted due to strong correlation

with radius of gyration, while calls to the town were omitted

because it is not applicable in a different country. For reasons

of computational cost, we first take a random sample of 3000

mobile phone users for each province. The sample size was

determined to ensure the estimation feature values are stable

(see the electronic supplementary material, figure S6 for details).

We then compute the seven features aggregated per month for

each individual user. The kth feature value of user i at month t
is denoted as yi,t,k and we compute month over month changes

in this quantity as y0i,t,k ¼ (yi,t,k=yi,t�1,k): A normalized feature

value for a province s is computed by averaging all users

in selected province �ys,t,k ¼
P

i[sy
0
i,t,k. In addition, we use per-

centiles of the bootstrap distribution to compute the 95% CI

for the estimated feature value.

After aggregating these metrics to the province level, we

assess their power to improve predictions of unemployment

rates. Note that we do not attempt to identify mass layoffs

in this country. Instead, we look for behavioural changes

that may have been caused by layoffs and see whether

these changes are predictive of general unemployment stat-

istics. First, we correlate each aggregate measure with

regional unemployment separately, finding significant
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Figure 4. Predicting unemployment rates using mobile phone data. We
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associated with unemployment at the individual level also predicts unem-
ployment rates at the province level. To make our forecasts, we train
various models on data from half of the provinces and use these coefficients
to predict the other half. (a) Compares predictions of present unemployment
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measured using mobile phones. Both predictions correlate strongly with
actual values while changes in rates are more difficult to predict. The
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mobile phone covariates are added to various baseline model specifications.
In general, the inclusion of mobile phone data reduces forecast errors by
5 – 20%.
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correlations in the same direction as was found for individuals

(see the electronic supplementary material, table II). We also

find the strong correlations between calling behaviour vari-

ables, suggesting that principal component analysis (PCA)

can reasonably be used to construct independent variables

that capture changes in calling behaviour while guarding

against colinearity. The first principal component, with an

eigenvalue of 4.10, captures 59% of the variance in our data

and is the only eigenvalue that satisfies the Kaiser criterion.

The loadings in this component are strongest for social vari-

ables. Additional details on the results of PCA can be found

in the electronic supplementary material, tables III and IV.

Finally, we compute the scores for the first component for

each observation and build a series of models that predict quar-

terly unemployment rates in provinces with and without the

inclusion of this representative mobile phone variable.

First, we predict the present by estimating a regression of a

given quarter’s unemployment on calling behaviour in that

quarter (e.g. using phone data from Q1 to predict unemploy-

ment in Q1). As phone data are available the day a quarter

ends, this method can produce predictions weeks before

survey results are tabulate and released. Next, we predict the
future in a more traditional sense by estimating a regression

on a quarter’s surveyed unemployment rate using mobile

phone data from last quarter as a leading indicator (e.g.

phone metrics from Q1 to predict unemployment rates in

Q2). This method can produce more predictions months

before surveys are even conducted. See the electronic sup-

plementary material, figure S3 for a detailed timeline of

data collection, release and prediction periods. We have

eight quarters of unemployment data for 52 provinces. We

make and test our predictions by training our models on

half of the provinces and cross-validate by testing on the

other half. The groups are then switched to generate out of

sample predictions for all provinces. Prediction results for

an AR1 model that includes a CDR variable are plotted

against actual unemployment rates in figure 4. We find

strong correlation coefficients between predictions of predic-

tions of present unemployment rates (r ¼ 0.95) as well as

unemployment rates one-quarter in the future (r ¼ 0.85).

As advocated in [38], it is important to benchmark these

type of prediction algorithms against standard forecasts that

use existing data. Previous work has shown that the perform-

ance of most unemployment forecasts is poor and that simple

linear models routinely outperform complicated nonlinear

approaches [62–65] and the dynamic stochastic general equi-

librium (DSGE) models aimed at stimulating complex

macroeconomic interactions [66,67]. With this in mind, we

compare predictions made with and without mobile phone

covariates using three different model specifications: AR1,

AR1 with a quadratic term (AR1 Quad), AR1 with a lagged

national GDP covariate (AR1 GDP). In each of these model

specifications, the coefficient related to the principal com-

ponent CDR score is highly significant and negative as

expected given that the loadings weigh heavily on social vari-

ables that declined after a mass layoff (see the electronic

supplementary material, tables V and VI regression results).

Moreover, adding metrics derived from mobile phone data

significantly improves forecast accuracy for each model and

reduces the RMSE of unemployment rate predictions by

between 5 and 20% (see inserts in figure 4). As additional

checks that we are capturing true improvements, we use

mobile phone data from only the first half of each quarter
(before surveys are even conducted) and still achieve a

3–10% improvement in forecasts. These results hold even

when variants are run to include quarterly and province

level fixed effects (see the electronic supplementary material,

tables VII and VIII).

In summary, we have shown that features associated with

job loss at the individual level are similarly correlated with

province level changes in unemployment rates in a separate

country. Moreover, we have demonstrated the ability of mas-

sive, passively collected data to identify salient features of

economic shocks that can be scaled up to measure macroeco-

nomic changes. These methods allow us to predict ‘present’

unemployment rates two-to-eight weeks prior to the release

of traditional estimates and predict ‘future’ rates up to four

months ahead of official reports more accurately than using

historical data alone.
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9. Discussion
We have presented algorithms capable of identifying employ-

ment shocks at the individual, community and societal scales

from mobile phone data. These findings have great practical

importance, potentially facilitating the identification of

macroeconomic statistics with much finer spatial granularity

and faster than traditional methods of tracking the economy.

We can not only improve estimates of the current state of the

economy and provide predictions faster than traditional

methods, but also predict future states and correct for current

uncertainties. Moreover, with the quantity and richness of

these data increasing daily, these results represent conserva-

tive estimates of its potential for predicting economic

indicators. The ability to get this information weeks to

months faster than traditional methods is extremely valuable

to policy and decision-makers in public and private insti-

tutions. Further, it is likely that CDR data are more robust

to external manipulation and less subject to service provider

algorithmic changes than most social media [38]. But, just as

important, the micro nature of these data allow for the devel-

opment of new empirical approaches to study the effect of

economic shocks on interrelated individuals.

While this study highlights the potential of new data

sources to improve forecasts of critical economic indicators,

we do not view these methods as a substitute for survey-

based approaches. Though data quantity is increased by

orders of magnitude with the collection of passively gener-

ated data from digital devices, the price of this scale is

control. The researcher no longer has the ability to precisely

define which variables are collected, how they are defined,

when data collection occurs making it much harder to

insure data quality and integrity. In many cases, data are

not collected by the researcher at all and are instead first

pre-processed by the collector, introducing additional uncer-

tainties and opportunities for contamination. Moreover,

data collection itself is now conditioned on who has specific

devices and services, introducing potential biases due to

economic access or sorting. If policy decisions are based

solely on data derived from smartphones, the segment of

the population that cannot afford these devices may

be underserved.

Surveys, on the other hand, provide the researcher far

more control to target specific groups, ask precise questions
and collect rich covariates. Though the expense of creating,

administering and participating in surveys makes it difficult

to collect data of the size and frequency of newer data

sources, they can provide far more context about participants.

This work demonstrates the benefits of both data gathering

methods and shows that hybrid models offer a way to lever-

age the advantages of each. Traditional survey-based

forecasts are improved here, not replaced, by mobile phone

data. Moving forward, we hope to see more such hybrid

approaches. Projects such as the Future Mobility Survey

[68] and the MIT Reality Mining project [24] bridge this

gap by administering surveys via mobile devices, allowing

for the collection of process generated data as well as

survey-based data. These projects open the possibility to

directly measure the correlation between data gathered by

each approach.

The macroeconomy is the complex concatenation of

interdependent decisions of millions of individuals [69].

To have a measure of the activity of almost every individual

in the economy, of their movements and their connections

should transform our understanding of the modern economy.

Moreover, the ubiquity of such data allows us to test our

theories at scales large and small and all over the world

with little added cost. We also note potential privacy

and ethical issues regarding the inference of employment/

unemployment at the individual level, with potentially dire

consequences for individuals’ access, for example, to financial

markets. With the behaviour of billions being volunteered,

captured and stored at increasingly high resolutions, these

data present an opportunity to shed light on some of the

biggest problems facing researchers and policy-makers alike,

but also represent an ethical conundrum typical of the ‘big

data’ age.
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