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Rethinking Model-Based Gaze Estimation

HARSIMRAN KAUR, SWATI JINDAL, and ROBERTO MANDUCHI, University of California,
Santa Cruz
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Fig. 1. End-to-End Geometric Gaze estimation

Over the past several years, a number of data-driven gaze tracking algorithms have been proposed, which
have been shown to outperform classic model-based methods in terms of gaze direction accuracy. These
algorithms leverage the recent development of sophisticated CNN architectures, as well as the availability of
large gaze datasets captured under various conditions. One shortcoming of black-box, end-to-end methods,
though, is that any unexpected behaviors are difficult to explain. In addition, there is always the risk that a
system trained with a certain dataset may not perform well when tested on data from a different source (the
“domain gap" problem.) In this work, we propose a novel method to embed eye geometry information in an
end-to-end gaze estimation network by means of a “geometric layer". Our experimental results show that our
system outperforms other state-of-the-art methods in cross-dataset evaluation, while producing competitive
performance over within dataset tests. In addition, the proposed system is able to extrapolate gaze angles
outside the range of those considered in the training data.

CCS Concepts: • Computing Methodologies→ Computer Vision.
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1 INTRODUCTION
Measuring gaze direction from an image of the viewer (taken, for example, by a laptop camera)
has proven a challenging task. To date, the most successful approaches have been based on deep
network models [Cheng et al. 2021]. These systems take the whole image, or a cropped portion
thereof containing one or both eyes, together with some information about the viewer’s head pose,
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to produce the gaze direction in a suitable reference frame. While providing generally accurate
results, this mechanism has a few well-known shortcomings, such as its dependence on the dataset
used to train the network (the “domain gap” problem), and its lack of explainability (vaguely defined
as the ability to justify unexpected results).

A different strategy, which predates purelymachine learning approaches, is to leverage the known
mechanical and optical characteristics of the human eyeball. For example, IR gaze trackers [Guestrin
and Eizenman 2006] use active illumination to measure the center of curvature of the cornea as
well as the pupil center, from which they compute the pupillary axis [Atchison et al. 2000]. While
this mechanism cannot be replicated using regular webcams, it is reasonable to assume that the
ability to measure specific anatomical properties of the eye could be beneficial for gaze estimation.
Consider for example measurement of the pupillary axis, which can be used as a proxy for the
visual axis (modulo the 𝜅 angles, which describes the relative position of the two axes when looking
straight ahead). The pupillary axis1 connects the pupil center with the anterior corneal center of
curvature. It is situated close to what could be considered in first approximation the “eye center”,
or center of rotation of the eyeball, a point that moves only minimally with eye rotation. Hence,
pupillary axis estimation boils down to the measurement of the location of the pupil center (a
relatively simple task), thanks to its location in the center of the iris) and of the eye center, which
can be considered a function only of the (measurable) head pose.

A common criticism of this class of algorithms is that their results are highly sensitive to errors
in the estimation of the physical parameters considered (in the example above, pupil and eye center
location). This is certainly true, and this error sensitivity can be quantified (Sec. 5). However, the
fact that this type of error modeling is not available for “black box” neural networks, does not
mean that these systems are immune to errors (as due to, e.g., image noise). Indeed, the ability to
describe the cause of errors, and thus to predict the quality of the results and to “explain” possible
malfunctioning, can be considered an asset, rather than a shortcoming.
One well-known problem of model-based approaches to gaze estimation is that some of the

parameters to be measured (such as the eye center) are not directly observable. This complicates
the use of machine learning algorithms for estimating such parameters. An ingenious solution
[Park et al. 2018b; Wood et al. 2016] is to generate synthetic realistic eye images from a physical
model, whose parameters are known in advance. Unfortunately, this synthetic data may not be fully
representative of real-world images. Some researchers [Kaur and Manduchi 2020] have attempted to
employ domain-transfer techniques to generate domain-specific images with known gaze direction.
An as yet unexplored direction could be to use an IR gaze tracker to obtain the location of the
eye center of training images, provided that the geometric calibration between gaze tracker and
webcam is available.

Rather than attempting to create labels for unobservable quantities of interest, we train a network
to find the location of a “pseudo eye center”, PEC (or, more precisely, of its projection on the image
plane) by defining an inductive loss that utilizes the annotated gaze direction and the location of
the pupil, which, as mentioned earlier, can be obtained fairly reliably from the image. Note that the
line joining PEC to the pupil center (“pseudo pupillary axis”, PPA) is not guaranteed to coincide
with the real pupillary axis (whose exact location is not available in the training data). Rather,
training aims to ensure that the relative location of PPA and of visual axis (as determined by the
“pseudo 𝜅 angles") is constant for a given individual. At deployment, our system computes the
image projection of the PEC and of the pupil center. Then, the PPA is obtained by backprojecting

1Note that in the literature (e.g. [Guestrin and Eizenman 2006]), the pupillary axis is often misnamed as the “optic axis", the
latter being the line of best fit through the centers of curvature of the different refracting surface within the eyeball [Atchison
et al. 2000].
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these two points, and is then rotated according to the pseudo-𝜅 values, which are regressed using a
prior standard procedure with the viewer fixating at a number of calibration targets on the screen.
To properly train the network, we found it beneficial to add a second branch (Figure 2b) that
starts from a common image embedding then directly regresses the PPA, with the loss function
accounting for the gaze estimation error from both branches. This second branch (which is not used
at deployment) effectively conditions the training of of the convolutional network that generates
the image embedding.

2 RELATEDWORK
The gaze estimation techniques can primarily be categorized as appearance-based and model-based,
which can be further be person-independent or personalized methods.

2.1 Appearance-based methods
Earlier appearance-basedmethods used classical machine learning techniques - linear regression [Lu
et al. 2014], Support Vector Regression [Martinez et al. 2012], Random Forests [Sugano et al. 2014]
to regress gaze from eye images. The accuracy of the models improved considerably with the use
of CNN based models that used either eye as input [Zhang et al. 2015] or the entire face [Cheng
et al. 2018, 2020; D and Biswas 2021; Fischer et al. 2018; Krafka et al. 2016; Zhang et al. 2020, 2017].
Other approaches included use of visual saliency information [Alnajar et al. 2013; Chen and Ji 2011;
Park et al. 2020; Sugano and Bulling 2015; Sugano et al. 2010], Bayesian neural networks [Wang
et al. 2019] and unsupervised learning [Sun et al. 2021; Yu and Odobez 2020].

2.2 Model-based methods
Many of the geometric methods involved computing the 3D eye center by anchoring it a stationary
point on the face [Chen and Ji 2008; Sun et al. 2015] or by directly fitting a 3d face-eye deformable
model [Wang and Ji 2017]. Some methods fit an ellipse to the detected iris and compute the pose to
get the gaze [Wang et al. 2003; Wood and Bulling 2014].

2.3 Hybrid methods
Several hybridmethods have also been proposed that combine the eye geometrywith the appearance
models. Noticeably, use of intermediate gaze maps computed from eye geometry [Park et al. 2018a]
and landmark based models [Ji and Wang 2021; Park et al. 2018b; Yu et al. 2018] demonstrated the
effectiveness of using the additional information over appearance based methods.

2.4 Person-specific Gaze Estimation
Personalized models that require subject specific samples can significantly improve the performance
of gaze models. This has been achieved by fitting an SVR to the last layer of the CNN model trained
on the gaze dataset [Krafka et al. 2016], meta-learning [Park et al. 2019], using mixed-effects neural
networks [Xiong et al. 2019], training siamese network with two different gaze samples from the
same person [Liu et al. 2018] or learning the person-specific parameters during training [Chen
and Shi 2020; Linden et al. 2019]. In [Chen and Shi 2020], the gaze angles are decomposed as
pupillary axis and offset, which are added to obtain the visual axis prediction. The offset is learned
for each subject during the training itself. This kind of decomposition forces the network to learn
a person-independent gaze, which is the function of the eye appearance. During inference, the
subjective bias is computed using few calibration samples by calculating the mean of the difference
between the predicted gaze and the true gaze. Chen et al. [Chen and Shi 2020] outperforms the
previous calibration-based methods. This algorithm (which we will call End-to-End) serves as a
baseline for our work.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 2, Article etra-fp1050. Publication date: June 2022.
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Fig. 2. Left: Eye geometry model used for our geometric layer. Right: The GeoGaze architecture.

3 METHOD
3.1 Geometric Preliminares
We will denote 3-D points and vectors by uppercase boldface, and 2-D image points by lower case
boldface. Matrices are represented using uppercase non-boldface characters.

The task of a (monocular) gaze tracker is to compute the visual axis of each of the viewer’s eyes
(see Fig. 2). In practice, this is performed by first computing a different axis, such as the pupillary
axis in the case of a IR tracker. This is because the visual axis cannot be obtained directly from
anatomical measurements. The visual axis goes through the lens’ nodal points (whose location
cannot be computed in practice [Cui and Lakshminarayanan 2003]) and the preferred retinal
location, which, while relatively stable with time, changes from person to person [Kilpeläinen
et al. 2021]. It can only be observed through (subjective) fixation tests, whereas other types of
axes [Mosquera et al. 2015] can, in principle, be determined from objective measurements. Both the
visual axis and the considered axis to be tracked (measurement axis) are “attached” to the eyeball,
and thus rotate in a similar way when gaze changes (through motion of the eyeball or of the
viewer’s head). This property can be formalized through the concept of equivariance. Specifically,
given a sequence 𝑈 of unit-norm 3-D vectors (axes) (U0, . . .U𝑛), we will say that the sequence of
axes 𝑉 = (V0, . . .V𝑛) is equivariant with 𝑈 if for any pair of indices (𝑖, 𝑗), there exists a rotation
matrix 𝑅𝑖, 𝑗 such that U𝑗 = 𝑅𝑖, 𝑗U𝑖 and V𝑗 = 𝑅𝑖, 𝑗V𝑖 . Thus, any sequence of measurement axes is
equivariant with the associated sequence of visual axes, provided that they come from the same
individual.

An axis U𝑖 can be defined by two angles, e.g. the angular components of its spherical coordinates
[𝜃U𝑖

, 𝜙U𝑖
] with respect to a given reference frame (such as the camera frame.) This can be thought

of as first defining a canonical axis (e.g. U0 = [0, 0, 1]𝑇 ) then rotating the reference frame by
an ordered sequence of elementary rotations with associated Euler angles. Using the 𝑍 − 𝑋 − 𝑌

ordering: U𝑖 = 𝑅
𝑌 (𝛽)𝑅𝑋 (𝛼)𝑅𝑍 (𝛾)U0, where, for example: 𝑅𝑋 (𝛼) =


1 0 0
0 cos𝛼 sin𝛼
0 − sin𝛼 cos𝛼

 .
Without loss of generality, 𝛾 (initial rotation angle around the 𝑍 axis) can be set to 0 (since we

chose the canonical axis to be oriented along the original 𝑍 axis). It is easy to see that, in the final
reference frame, the spherical coordinates (𝜃U𝑖

, 𝜙U𝑖
) of U𝑖 are related to the Euler angles of rotation

as by: 𝜃U𝑖
= 𝛼 , 𝜙U𝑖

= −𝛽 . Hence, U𝑖 = 𝑅0,𝑖 [0, 0, 1]𝑇 with: 𝑅0,𝑖 = 𝑅𝑌 (−𝜙U𝑖
)𝑅𝑋 (𝜃U𝑖

) resulting in
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the familiar representation: U𝑖 = [sin𝜙U𝑖
· cos𝜃U𝑖

, sin𝜃U𝑖
, cos𝜙U𝑖

· cos𝜃U𝑖
]𝑇 . The vector V0 could

similarly be defined in terms of its spherical coordinates (𝜃V0 , 𝜙V0 ). Note that if U0 represent the
pupillary axis of an individual looking straight ahead, and V0 is its associated visual axis, (𝜃V0 , 𝜙V0 )
represent the 𝜅 angles for this individuals. Given the spherical coordinates (𝜃U𝑖

, 𝜙U𝑖
) of an axis U𝑖 ,

the associated axis V𝑖 can be expressed as:

V𝑖 = 𝑅0,𝑖V0 = 𝑅
𝑌 (−𝜙U𝑖

)𝑅𝑋 (𝜃U𝑖
)𝑅𝑌 (−𝜙V0 )𝑅𝑋 (𝜃V0 ) [0 0 1]𝑇 (1)

= 𝑅𝑌 (−𝜙U𝑖
)𝑅𝑋 (𝜃U𝑖

)𝑅𝑌 (−𝜙V0 )𝑅𝑋 (𝜃V0 )𝑅𝑋 (−𝜃U𝑖
)𝑅𝑌 (𝜙U𝑖

)U𝑖 (2)

We will denote the relationship between the spherical coordinates of V𝑖 and those of U𝑖 as follows:
[𝜃V𝑖

, 𝜙V𝑖
] = 𝐹V0 [𝜃U𝑖

, 𝜙U𝑖
] This relationship is, in general, complex. If, however, both 𝜃U𝑖

and 𝜃V0 are
small in magnitude, the product of the rotation matrices in (1) approximately commutes, in which
case one may write: 𝜃V𝑖

≈ 𝜃U𝑖
+ 𝜃V0 , 𝜙V𝑖

≈ 𝜙U𝑖
+ 𝜙V0 . Note that this oft-used approximation may

generate non-negligible errors when gaze deviates substantially from the canonical axis [0, 0, 1]𝑇 .
For example, for 𝜅 angles of 𝜃V0 = 2◦, 𝜙V0 = 6◦ and a pupillary axis of 𝜃U𝑖

= 10◦, 𝜙U𝑖
= 30◦,

computing the visual axis by simply adding the 𝜅 angles to the angular spherical coordinates of the
pupillary axis, rather than using (1), produces an angular error of 0.37◦.
In order to build a data set of images with associated ground-truth visual axis V𝑖 , a standard

approach [Park et al. 2018b; Sugano et al. 2014; Zhang et al. 2015] is to ask participants to fixate
specific points on a computer screen. Assuming that the camera’s pose with respect to the screen is
known (this can be computed using standard methods, e.g. [Rodrigues et al. 2010]), the location of
each fixation point on the screen can be converted to the camera’s reference frame. A deformable
3-D face model is used to compute the participant’s face pose from the image (defined in the camera
frame) and to define a “gaze origin" point on this model. Specifically, the gaze origin is taken to be
the center of the two eye corners in the deformable model. The visual axis is then defined as the
line joining the gaze origin to the gaze point on the screen.

3.2 GeoGaze: Algorithm
During training, our system is provided with a sequence of images of different viewers, along with
the ground-truth visual axis for each eye in each image. It is tasked with determining, for each
image and each eye, a pseudo pupillary axis PPA, such that the sequence of PPAs computed for all
images of the same viewer is equivariant with the sequence of visual axes associated with the same
images. The pseudo 𝜅 angles relating the PPAs with the visual axes are computed for each user
during training. At deployment, the system computes the PPA for each image, then rotates it using
the pseudo 𝜅 angles (Eq. (1)), obtained for each viewer through a standard calibration procedure.
The main novelty of our approach is in the way PPAs are represented and computed. Rather

than directly regressing PPAs (e.g. in terms of their spherical coordinates), we identify a PPA by
two 3-D points: the pupil center PC and the pseudo eye center PEC. Both points are first computed
as 2-D points (pc and pec respectively) in the image. The pseudo eye center is then backprojected
in space, using a value of distance 𝐷 obtained from the head pose (itself computed from the image):

PEC = 𝐷 · 𝐾−1pec (3)

where 𝐾 is the intrinsic camera matrix and pec is the augmented vector (with a 1 appended as third
entry). PEC is assumed to be close to the center of rotation of the eyeball, therefore it is reasonable
to think that, in first approximation, its depth should only be a function of the head pose, and not
of the direction of gaze.

The image point pc (projection of the pupil center) is also backprojected to a point in space PC
that is at distance of 𝑟=12 mm from PEC. Similarly to [Chen and Ji 2008; Wang and Ji 2017], we
compute the points where the camera ray through pc (expressed as 𝑑 · 𝐾1pc for a generic scalar
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𝑑) intersects the sphere of radius 𝑟 centered at PEC, and choose the intersection point at shorter
distance from the camera. If the camera ray defined by pc does not intersect this sphere, then PC
is assigned to the point in this camera ray that is closest to PEC (resulting in an axis PPA that is
orthogonal to this camera ray.) The pseudo pupillary axis is then given by PC − PEC.
It is instructive to compare the GeoGaze algorithm with other model-based algorithms. For

example, GazeML [Park et al. 2018b] also estimates the location of the eye center pec from the
image. The GazeML network is trained on ground-truth eye center data. Since the eye center is not
directly observable, GazeML uses synthetic data from the UnityEyes dataset [Wood et al. 2016] for
training. Reliance on synthetic data (which may not be fully representative of real-world conditions)
is a main limitation of this approach. Differently from GazeML, we do not assume ground-truth
knowledge of the eye center PEC during training. In fact, PEC does not necessarily correspond to
a specific anatomical feature (such as the corneal center of curvature), which would be difficult or
impossible to annotate manually. Instead, PEC is implicitly defined by the constraint that it should
be located at a distance of 𝑟 from PC, and that the resulting sequence of PPAs (i.e. axes through
PEC and PC) should be equivariant with the ground-truth visual axes VAs. This allows us to train
the system with any images for which the visual axis is available. The underlying assumption
is that the pupil location pc in the image, as well as the distance 𝐷 to the user, can be reliably
estimated from each image. In Sec. 5, we provide an analytical derivation of the the sensitivity of
the measured PPA to errors in the estimation of pc and of 𝐷 .

A different approach was taken in other model-based algorithms [Chen and Ji 2008; Wang and Ji
2017], which also estimate the location of the eye center despite missing ground-truth annotations.
In both such algorithms, the eye center is computed in relation to a set of facial features, detected
in the image and backprojected at an appropriate distance. In the case of [Chen and Ji 2008],
the eye center is determined by means of an offset vector that is computed during an initial per-
person calibration phase. The model of [Wang and Ji 2017] matches a deformable face model to
the backprojected features. The location of the eye center is included in the face model, which is
adapted to the viewer through an initial calibration phase with a 3-D camera. In both cases, the
per-person calibration procedure requires a stable head pose. Unlike these methods, GeoGaze does
not rely on facial features, but estimates the pseudo eye center directly from the image. Because of
this, GeoGaze can be trained end-to-end, and requires no personalization procedure besides what
is needed for the determination of 𝜅 angles.
We should also emphasize that the choice of the distance 𝑟 between the pseudo eye center

PEC and the pupil enter PC is not critical. Indeed, the only constraint on PEC is that it should
be “attached" to the eyeball, such that any generated sequence of axes PC − PEC is equivariant
with the associated visual axes. Our choice for 𝑟=12 mm (the average eyeball radius) was based
on two observations: (1) if 𝑟 is too small, the computed pseudo pupillary axis PPA becomes very
sensitive to localization errors for the projected pec (see Sec. 5); (2) a too large 𝑟 results in the
location of PEC (and thus of pec) that may vary widely with gaze, even when the head pose is fixed.
Intuitively, it would be desirable that the location of PPE be only dependent on head pose and
not on gaze, as this would remove one cause of variability. Indeed, this is the main assumption of
classic model-based algorithms such as [Chen and Ji 2008; Wang and Ji 2017], that compute the eye
center location based on facial features that supposedly do not move with gaze. In practice, though,
the eye center does move with gaze, by as much as 0.7 mm [Moon et al. 2020]. Neglecting this eye
center displacement would result in a gaze estimation error as high as 3◦. We experimented with
leaving the distance 𝑟 as a variable to be estimated by the network, but did not find any significant
difference with respect to using a fixed value.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 5, No. 2, Article etra-fp1050. Publication date: June 2022.
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3.3 GeoGaze: Architecture
The architecture of the proposed system is rather straightforward (see Fig. 2b). An input image,
after pose normalization as per [Zhang et al. 2018], is cropped to only contain one eye, and fed to a
convolutional neural network (CNN) that produces a 256-dimensional embedding. Then, a fully
connected layer computes the estimated pec location in the image. In parallel, the distance 𝐷 to
the user and the pupil center pc are also computed from the image, using off-the-shelf algorithms
(see Sec. 2b). This data is passed on to a “geometric layer". Specifically, from pec, pc, and 𝐷 , the
geometric layer: (1) backprojects pec into PEC (Eq. (3)); (2) backprojects pc into PC as explained in
the previous section; (3) computes the pupillary axis PPA = PC − PEC; (4) applies an appropriate
rotation (Eq. (1)) to PPAs using person-specific pseudo 𝜅 angles (i.e., the spherical coordinates of
V0).

The goal of training is to optimize the parameters of the CNN and of the fully connected layer,
as well as to determine the optimal pseudo 𝜅 angles for each person in the training set. The loss
to be minimized is a linear combination of two components: the average discrepancy between
the reconstructed and the real visual axes (as measured by the Euclidean distance of the spherical
coordinates of the two axes); and the average norm of the person-specific pseudo 𝜅 angles. This
second regularization term is necessary, as the same loss could otherwise be achieved by infinite
equivalent solutions with different pseudo 𝜅 angles. Note that, as mentioned above, if the estimated
PEC is at a distance larger than 𝑟 from the camera ray defined by pc, no anatomically consistent
solution can be found, and thus a fail-safe mechanism is invoked (by setting PPA to be orthogonal to
this camera ray). While this situation occurs only sporadically once the network is properly trained,
we noticed that this may happen relatively often during the initial phase of training, potentially
driving convergence towards local plateaus of the loss function. This is because the angular error
is relatively unaffected by changes in the pec location in these situations (the error effectively
“saturates"). To reduce this risk, we consider one additional loss component at the beginning of
training. Specifically, we add a vector of length 𝑟 , oriented along the ground-truth visual axis VA, to
the estimated PEC. We use this as a proxy for the actual pupil location PC, under the assumption
that the visual axis is relatively close to the pseudo eye center. This point is then projected onto the
image in location p̂c = 𝐸𝑁 [𝐾 (PEC + 𝑟VA)], where EN is the operator that computes the Euclidean
normalization [Förstner and Wrobel 2016] of a homogeneous vector (divides its entries by the last
one) and then removes the homogeneous part (last entry). Then, we add to the overall loss the
Euclidean distance (in the image plane) between pc and p̂c. Note that this loss component never
saturates, even when the pec is grossly wrong. We found that this loss component is no longer
necessary after the initial training phase.
We have also experimented with implementing a second “end to end" (E2E) branch during

training (see Fig. 2). This branch feeds off the output of the CNN, and directly generates predictions
of the spherical coordinates [𝜃PPA𝐸2𝐸 , 𝜙PPA𝐸2𝐸 ] of the pseudo pupillary axis PPA axis through a
fully connected layer. This branch is only considered during training, with the purpose to improve
optimization of the initial CNN. This can be seen as a form of multi-task optimization [Ruder 2017;
Yu et al. 2018].

The overall loss to be minimize is thus:

L = E
(
∥ [𝜃VA, 𝜙VA] − 𝐹V0 [𝜃PC−PEC, 𝜙PC−PEC] ∥ + 𝜆1∥ [𝜃V0 , 𝜙V0 ] ∥ + 𝜆2∥pc − p̂c∥ (4)

+ 𝜆3∥ [𝜃VA, 𝜙VA] − 𝐹V0 [𝜃PPA𝐸2𝐸 , 𝜙PPA𝐸2𝐸 ] ∥
)

Note that, during training, the system generates one value of PEC per image and one pair [𝜃V0 , 𝜙V0 ]
per person. In practice, this is obtained by feeding in input a one-hot vector representing the
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identity of the person for each image. The weight 𝜆2 is set to 1 during the initial phase of training,
0 afterwards. 𝜆1 and 𝜆3 are both set to 1.

3.4 Calibration
A user-specific calibration procedure is required to estimate the kappa angles associated with
each user. This procedure requires taking a number of images of the user with associated ground-
truth visual axes (see Sec.3.1) as the user looks in different direction. (In practice, we sample
a number of images of each participant within the considered data sets.) After computing the
pseudo-pupillary axis for each image and for each eye of the user, we use the Orthogonal Procrustes
algorithm [Schönemann 1966] to find the optimal rotation matrix that transforms the set of ground-
truth visual axes to match the associated pseudo-pupillary axes, as computed with our algorithm.
We then obtain the Euler angles 𝛼, 𝛽,𝛾 associated with this rotation matrix (using the 𝑍 − 𝑋 − 𝑌
ordering). The two kappa angles for this user are then obtained as (𝜃V0 , 𝜙V0 ) = (𝛼,−𝛽) (see Sec. 3.1).

4 EXPERIMENTS
4.1 Implementation details
We used the dilated-net architecture [Chen and Shi 2020, 2018] for the the CNN backbone followed
by two MLP branches. Each MLP branch consists of two fully connected layers with 256 neurons
each followed by the output layer of dimension 2. Training uses the Adam [Kingma and Ba
2014] optimizer, with the learning rate set to 0.001 and batch size of 64. 𝜆2 is set to 0 after 4
epochs. The pupil center is computed by the GazeML network [Park et al. 2018b], which uses
a hourglass architecture for iris landmarks detection2. GazeML produces a heatmap for each
landmark, representing the probability of each pixel being the landmark location. We computed the
pupil center as the mean of the iris landmarks. Errors are produced in terms of the angle between
estimated and ground-truth visual axis. In our experiments, we always compare the results of
GeoGaze against those of a system (End-to-End) that is identical to GeoGaze, but does not have the
final geometric layer. End-to-End [Chen and Shi 2020] directly computes the spherical coordinates
of the PPA, along with the pseudo 𝜅 angles for each person in the training data. It does not require
the external pupil detection module. We compared our results to another baseline where within
End-to-End system, we concatenate the 2-d pupil center to the 256-d feature vector before feeding
it to the fully connected layer. We call this baseline End-to-End+pupil.
We consider five different datasets for our experiments. The two data sets (UnityEyes [Wood

et al. 2016], U2Eyes [Porta et al. 2019]) are made up of synthetic images, and are used in a toy
scenario to highlight some of the features of GeoGaze. We also consider the following real-world
datasets: MPIIGaze [Zhang et al. 2015], Columbia [Smith et al. 2013], and UTMultiview [Sugano
et al. 2014]. MPIIGaze was collected “in the wild" from 15 participants, with no constraints on head
and eye movements. The Columbia dataset (56 participants) and UTMultiview (50 participants)
were collected in a laboratory environment, with multiple cameras (5 and 8, respectively) used to
reliably compute ground-truth head poses.

4.2 Synthetic Data: UnityEyes and U2Eyes
Unity Eyes: We generated 20,000 images for training, with yaw and pitch angles uniformly
distributed between −15◦ and 15◦. We used these images to train the GazeML model used for pupil
detection (using the available ground-truth annotated landmark), as well as the GeoGaze and the
End-to-End networks. We then generated two test sets, with 20,000 images each: one with the same
gaze distribution as the training set (in-distribution), and the other with yaw and pitch sampled
2https://github.com/swook/GazeML
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uniformly between −30◦ and −15◦ and between 15◦ and 30◦ (out-of-distribution). For unity images,
the visual axes were set to be identical to the pupillary axes, and the 𝜅 angles were forced to 0 for
both algorithms, and used the geometric function specific to the unity eyes model (which uses
orthographic projection model without camera calibration parameters).

U2Eyes, based on UnityEyes, contains binocular eye images, with kappa angles introduced. Data
is available for 20 participants, with 5875 images per participant distributed across different head
pose and gaze directions. The pitch and yaw angles are roughly distributed between −20◦ to 20◦.
For each participant, we divided the data in two sets. Set 1 contains samples with pitch and yaw
between −10◦ to 10◦ (in-distribution), while Set 2 contains the rest of the data (out of distribution).
The left eye images were cropped using the eye corners information provided. We performed
five-fold cross-validation (training on 16 subjects and testing on the remaining 4), training on Set 1
and testing on either Set 1 (in-distribution) or Set 2 (out-of-distribution). 16 samples per participant
were used for user-specific calibration.

Table. 1 shows the results for both GeoGaze and End-to-End (with and without pupil) when
tested on the in-distribution (i-d) and on the out-of-distribution (o-o-d) sets for both UnityEyes
and U2Eyes. Note that while the results are comparable for the in-distribution data, the average
error of End-to-End for out-of-distribution data (9.2◦) in case of UnityEyes and (5.3◦) in case of
U2Eyes is substantially larger than for GeoGaze (3.3◦ and 1.9◦ respectively). Clearly, the End-to-End
system was unable to “extrapolate" gaze angles that were not seen in the training data. With
pupil information added, the model was able to perform better than simple End-to-End. However
providing the pupil information in the geometric layer proved much better for out-of-distribution
images.

Table 1. GeoGaze vs End-to-End baselines on UnityEyes and U2Eyes – Mean Angular Errors (degrees)

Algorithm i-d o-o-d

End-to-End+pupil 0.9◦ 7.4◦

End-to-End [Chen and Shi 2020] 1.0◦ 9.2◦

GeoGaze 1.3◦ 3.3◦

(a) UnityEyes

Algorithm i-d o-o-d

End-to-End+pupil 1.4◦ 3.4◦

End-to-End [Chen and Shi 2020] 1.7◦ 5.3◦

GeoGaze 1.5◦ 1.9◦

(b) U2Eyes

Since U2Eyes provides ground-truth annotations for the kappa angles (along with pupil center,
eye center, and pupillary axis), we performed a simple experiment to evaluate the ability of our
system to perform user-specific calibration, as well as the effect of calibration on the predicted
visual axis. We randomly chose one participant, then trained our system on all other participants
on data from Set 1 and tested on data from both Set 1 and Set 2. We obtained an average error
of 0.14 pixels in pupil center prediction and 2.13 pixels in eye center prediction, for an average
pupillary axis angular error of 3.99◦. (See Sec. 5.1 for a model of the effect of pupil center prediction
errors on the predicted pupillary axis.) Note that the pseudo eye center PEC and pseudo pupillary
axis PPA computed by our system need not coincide with the actual eye center and pupillary
axis, as explained in Sec. 3.3. This discrepancy is evident in Fig. 3, which shows the predicted
PPA vs. ground-truth pupillary axis pitch and yaw angles for different gaze directions of the same
participant. It is clear from the figure that the predicted PPA follows the ground-truth pupillary axis
fairly accurately, but with a fixed bias. This bias is compensated by an opposite bias in the estimated
kappa angles, obtained via user-specific calibration (Sec. 3.4), which returned kappa angles of
(−1.63◦, 6.96◦), against ground-truth values of (2.50◦, 8.00◦). As a result of this compensation, the
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predicted visual axis (after kappa angles compensation) has a much smaller average angular error
(equal to 1.30◦) than the pupillary axis.

Fig. 3. Distribution of pitch and yaw angles corresponding to predicted pseudo pupillary axis and ground-
truth pupillary axis for U2Eyes. The 45◦ line represents perfect matching.

4.3 Real-world Dataset
For these datasets, we normalize the eye images using a technique similar to [Zhang et al. 2018],
which applies a homography to the image equivalent to rotating the camera such that its optical
axis points at the mid-point of the eye. Note that in our case we used the 2-D corners detected in the
image, rather than the 3-D eye corners, to determine this mid point. This reversible normalization
procedure requires estimation of the head pose, which could be inaccurate due to various reasons.
Unlike other model-based methods (e.g., [Sun et al. 2015], [Wang and Ji 2017]) that define the gaze
direction in reference to head orientation, our algorithm computes all quantities in the camera
frame of reference, and is therefore not affected by errors in the rotational component of head pose.
However, incorrect estimation of the head distance may generate errors in gaze direction; this effect
is modeled in Sec. 5.2. The image was resized to correspond to a normalized distance of 600 mm.
We cropped a patch of 128x64 pixels around each eye. Right eye images were flipped, along with
the corresponding yaw and the horizontal coordinate of the iris landmarks. The 𝜅 angles were
computed separately for the left and the right eye through a standard initial calibration procedure.
For the UTMultiview dataset, we only used those images for which a full face is visible.

4.3.1 Within Dataset Evaluation. Our first experiment shows results on the MPIIGaze dataset, with
the system trained and tested on the same data set, We performed leave-one-person-out evaluation
with a variable number of images used for per-person calibration. It has approx 75,000 images for
left and right eyes of 15 subjects. We compared the results of GeoGaze against published results
from other competing algorithms: FAZE[Park et al. 2019], GRS[Yu et al. 2019], End-to-End[Chen
and Shi 2020], as well as GazeML [Park et al. 2018b], which is model based.
Results are shown in Table. 2. Note that for this within-dataset experiment, GeoGaze produces

results that are comparable with those of other algorithms. Only the End-to-End systems along
with the one where pupil is added, consistently produced a lower error.

4.3.2 Cross-Dataset Evaluation. Next, we trained our algorithms on the MPII dataset, leaving one
person out for validation. The models thus trained were tested on a different dataset (Columbia).
Calibration was computed from 20 randomly sampled images for each participant. It is important
to note that the Columbia dataset contains image with gaze direction with positive value of pitch
(i.e., looking upwards), while pitch values are always negative (or very small positive value) in the
MPII images. This represents an out-of-distribution challenge for our algorithms. Since there are no
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Table 2. Within Dataset Evaluation (MPII) - Mean Angular Error (degrees)

Number of Calibration Images
Algorithm 1 5 9 16 32 64

GRS [Yu et al. 2019] 5.0◦ 4.2◦ 4.0◦ - - -
FAZE [Park et al. 2019] 4.7◦ 4.0◦ 3.9◦ 3.8◦ 3.8◦ 3.7◦

GazeML [Park et al. 2018b] 8.5◦ 7.8◦ 7.2◦ 7.0◦ 6.9◦ 6.7◦

End-to-End+pupil 4.6◦ 3.5◦ 3.4◦ 3.3◦ 3.3◦ 3.3◦

End-to-End [Chen and Shi 2020] 4.6◦ 3.6◦ 3.4◦ 3.4◦ 3.3◦ 3.3◦

GeoGaze 5.0◦ 4.0◦ 3.8◦ 3.7◦ 3.5◦ 3.5◦

published results with other algorithms for this cross-data set evaluation, we only present results
from GeoGaze and End-to-End (with and without pupil center).

In Table. 3, we show the resulting average angular errors for all images in the Columbia dataset.
In addition, we show the pitch angle error when pitch angles are higher or lower than 0◦. While the
algorithms perform similarly when the pitch angle < 0◦, GeoGaze has noticeably lower error (5.6◦)
than End-to-End (6.4◦) and End-to-End+pupil (6.6◦)for images with large pitch. This behavior is
similar to what observed in the out-of-distribution experiments of Sec. 4.2.

Table 3. Cross-dataset Evaluation (MPIIGaze→ Columbia) - Mean Angular Error (degrees)

Algorithm All Pitch Error (Pitch > 0◦) Pitch Error (Pitch < 0◦)

End-to-End+pupil 6.6◦ 6.6◦ 3.3◦

End-to-End [Chen and Shi 2020] 6.8◦ 6.4◦ 3.6◦

GeoGaze 6.7◦ 5.6◦ 3.4◦

We also considered a second cross-dataset experiment, with the GeoGaze and End-to-End
algorithms trained on the UTMultiview dataset [Sugano et al. 2014] and tested on both the
Columbia [Smith et al. 2013] and the MPIIGaze [Zhang et al. 2015] datasets. For comparison,
we also report results from two other model-based algorithms: GazeML [Park et al. 2018b] and the
algorithm of Wang et al. [Wang and Ji 2017]. It is important to note that these two model-based
algorithms are not trainable on specific datasets. Note from Table. 4a that GeoGaze produces

(a) Cross-dataset Evaluations (UTMultiview →
Columbia, MPIIGaze) - Mean Angular Error (degrees)

Algorithm Columbia MPIIGaze

[Wang and Ji 2017] 7.1◦ -
GazeML [Park et al. 2018b] 7.1◦ 6.9◦

End-to-End+pupil 6.7◦ 8.3◦

End-to-End [Chen and Shi 2020] 7.2◦ 7.4◦

GeoGaze 5.4◦ 6.6◦

(b) Cross-dataset Evaluations (UTMultiview →
Columbia, MPIIGaze) - No calibration - Mean Angular
Error (degrees)

Algorithm Columbia MPIIGaze

GazeML [Park et al. 2018b] 8.7◦ 8.4◦

End-to-End+pupil 8.8◦ 10.8◦

End-to-End [Chen and Shi 2020] 8.2◦ 9.2◦

GeoGaze 7.1◦ 8.8◦

consistently smaller errors than the other algorithms considered.
Table. 4b shows results obtained without per-person calibration. Note that this type of calibration

is not always feasible [Sugano et al. 2016; Zhang et al. 2013]. In this case, results are biased due to the
fact that the 𝜅 angles are not considered (they were forced to 0 in our experiments). Note that results
from the algorithm of Wang et al. [Wang and Ji 2017] were not available for this experiment. Even
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Fig. 4. Examples of gaze estimation using GeoGaze. White dot: pec; Orange dot: pc; Green arrow: estimated
visual axis; Red arrow: ground-truth visual axis. Row1: Examples of gaze prediction with error < 2◦. Row2:
Examples of gaze prediction with error > 6◦. The pupil center pc appears to be correctly localized, suggesting
that the problem could be with the localization of the pseudo eye center pec. Row3: Examples of gaze prediction
with error > 6◦. In these cases, the pupil center pc is clearly mislocated, which certainly contributed to the
large gaze error.

in this highly biased case, GeoGaze performed comparatively better than GazeML and End-to-End
for the Columbia dataset. For MPIIGaze, the performance was better than End-to-End with and
without pupil center but worse than GazeML.

4.3.3 Ablation Study. Table. 5 compares previously shown results for the GeoGaze algorithm,
against those obtained when the second branch (without the geometric layer) is removed during
training. It is seen that the second branch (which is not used during deployment) facilitates training,
and that its use leads to improved results.

Table 5. Ablation Study - Mean Angular Error (degrees)

Algorithm MPIIGaze→
MPIIGaze

MPIIGaze→
Columbia

UTMultiview→
Columbia

UTMultiview →
MPIIGaze

GeoGaze (2nd branch removed) 4.0◦ 7.2◦ 6.2◦ 7.0◦

GeoGaze 3.8◦ 6.7◦ 5.4◦ 6.6◦

4.3.4 Qualitative Analysis. Fig. 4 contains examples of gaze detection using GeoGaze (green arrow),
shown along with the ground-truth visual axis (red arrow). The second and third row in the figure
contain images with substantial gaze error (> 6◦). In the third row, the pupil center pc is poorly
located, which may justify the large error. For the images in the second row, the pupil center
appears to be correctly located. In this case, the error is likely to be due to a poorly located pseudo
eye center pec.

5 GEOMETRIC MODEL: ERROR SENSITIVITY
One of the advantages of using a geometric model for gaze estimation is that it makes it possible,
to some extent, to measure the sensitivity of the system to errors in specific components, such as
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those that measure relevant features. This can be useful for multiple reasons. It may help explain
unexpected errors, by tracking the problem down to faults in individual components. It may allow
identification of the weakest links in the chain, which may require particular attention in terms of
design or training. In some cases, it may also be possible to predict when a specific component
may fail based on observable data (e.g., image blur), which may provide a means to determine the
reliability of the produced result.
GeoGaze computes the location of two feature points in the image (pec and pc) as well as

the distance 𝐷 of the eye center to the camera. It then generates the pseudo pupil axis PPA by
backprojecting pec to distance 𝐷 , and by backprojecting pc to a point PC at distance 𝑟 to PEC. The
pseudo pupillary axis PPC = PC − PEC is then rotated according to the 𝜅 angles. Barring errors in
estimation of the 𝜅 angles, any errors in the direction of PPC are due to errors in pec, pc, or 𝐷 . In
the following, we will derive the angular error as a function of errors in the computation of pc and
𝐷 . Note that errors in pec have an identical effect on the estimated direction of PPC as errors in pc.

To simplify our analysis, we will assume that both 𝜅 angles are 0◦, and will use a simplified eye
model with a fixed eye center, located along the camera’s optical axis at a distance 𝐷 from the
camera’s optical center. We will consider an eye rotation by 𝜃 around a fixed vertical axis. Thus,
the eye center projects onto the principal point, and the pupil center projects onto a horizontal
line with eye rotation. Note that the segment joining the eye center and the pupil center (Fig. 2a)
subtends an angle 𝛼 at the optical center with tan𝛼 = 𝑟 sin𝜃/(𝐷 − 𝑟 cos𝜃 ), and that the segment
pc − pec has horizontal component equal to 𝑓 · 𝑟 sin𝜃/(𝐷 − 𝑟 cos𝜃 ), where 𝑓 is the camera’s focal
length (remember that pc−pec has vertical component equal to 0.) In the following, we will assume
the following representative values for the considered quantities: 𝑓 =1300 pixels; 𝐷=500 mm. As
mentioned earlier, we set 𝑟=12 mm.

5.1 Sensitivity to Errors in pc
The error Δ𝜃 in gaze direction can be related to the error Δ(pc𝑥 − pec𝑥 ) as by:

Δ𝜃 ≈ Δ(pc𝑥 − pec𝑥 )
𝑑𝜃

𝑑 (pc𝑥 − pec𝑥 )
with:

𝑑𝜃

𝑑 (pc𝑥 − pec𝑥 )
= − (𝐷 − 𝑟 cos𝜃 )2

𝑓 · 𝑟 · (𝑟 − 𝐷 cos𝜃 ) (5)

As expected, increasing 𝑟 reduces the sensitivity of the estimated 𝜃 to errors in pc. Fig. 5 (a) shows
the error Δ𝜃 as a function of 𝜃 for errors in pc𝑥 − pec𝑥 ranging from 1 to 3 pixels. While Δ𝜃 is
relatively constant with 𝜃 , it is seen that just 1 pixel of error in the location of pupil center or if eye
center can lead to a 2◦ gaze direction error. This shows the importance of accurate pupil and eye
center localization with this type of algorithms. For context, we note that the pupil localization
errors reported using the GazeML algorithm [Park et al. 2018b] on the GI4E dataset [Sesma et al.
2012] have a median value of approximately 3% of the palpebral fissure width. Given an average
palpebral fissure width value of 30 mm, this corresponds to an error of about 1 mm. With the focal
length and distance parameters considered here, this maps to a 2.6 pixel error in the localization
of pc. Following this reasoning, and using (5), we should expect a median error of about 4.7◦
due to incorrect localization of the pupil center. This number is consistent with the errors we
measured in our experiments; in fact, we typically obtain lower errors for within-dataset evaluations
(see Table. 2). Note that the quality of pupil localization is highly dependent on factors such as
illumination and gaze direction (see e.g. Fig. 4.)

5.2 Sensitivity to Errors in 𝐷
The sensitivity of gaze direction to errors in the distance 𝐷 to the user can be computed as
Δ𝜃 ≈ 𝛿𝜃

𝛿𝐷
Δ𝐷 , with 𝛿𝜃

𝛿𝐷
= −sin𝜃/(𝑟 − 𝐷 cos𝜃 ). As seen in Fig. 5 (b), this type of error becomes

significant for large gaze angles. Note that, while large errors of 𝐷 (e.g., 100 mm, which is the
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Fig. 5. Gaze direction error Δ𝜃 as a function of gaze direction 𝜃 for: (a) different values of error in pc𝑥 − pec𝑥
(1, 2, 3 pixels); (b) different values of errors in 𝐷 (20, 50, 100 mm.)

extreme case shown in Fig. 5 (b)) are unlikely, it is reasonable to assume that a generic face model
that simply detects visible features such as palpebral fissure corners may be unable to measure
the actual distance to the eye center, and errors of 10 or 20 mm may be expected. Our analysis
shows that these errors may result in a gaze direction error of about 0.6◦ for 𝜃 = 15◦, and of 1.4◦
for 𝜃 = 30◦.

6 CONCLUSION
We have presented a new algorithm for gaze estimation that uses a model of the eye, embedded
in a deep neural network. From the architectural standpoint, we simply constrain the flow of
computation by means of a final “geometric layer". Compared to prior model-based algorithm, our
GeoGaze system (1) does not require ground-truth eye center annotations, (2) is trained end-to-end,
and (3) does not require a personalization phase with fixed head pose. As with any other gaze
tracking systems, a personalization phase is needed to estimate the 𝜅 angles, which vary from
individual to individual.

Our experimental results highlighted some interesting properties of the GeoGaze algorithm. In the
toy example with synthetic datasets (Sec. 4.2), as well as in cross-dataset evaluation (Sec. 4.3.2), we
showed that, when compared to a black box end-to-end system, GeoGaze was able to “extrapolate"
gaze directions that were unseen during training. This is not surprising: under the assumption
that the pseudo eye center PEC is relatively independent of gaze, previously unseen gaze angles
are easily measured if the pupil position can be correctly measured. In contrast, extrapolation is
known to be a difficult problem for neural networks [Webb et al. 2020].
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