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Abstract

Annotating coding genes and inferring orthologs are two classical challenges in genomics and 

evolutionary biology that have traditionally been approached separately, limiting scalability. We 

present TOGA, a method that integrates structural gene annotation and orthology inference. 
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TOGA implements a different paradigm to infer orthologous loci, improves ortholog detection 

and annotation of conserved genes compared to state-of-the-art methods, and handles even 

highly-fragmented assemblies. TOGA scales to hundreds of genomes, which we demonstrate by 

applying it to 488 placental mammal and 501 bird assemblies, creating the largest comparative 

gene resources so far. Additionally, TOGA detects gene losses, enables selection screens, and 

automatically provides a superior measure of mammalian genome quality. Together, TOGA is a 

powerful and scalable method to annotate and compare genes in the genomic era.

One-Sentence Summary:

A scalable gene annotation approach using a different paradigm to detect orthologous loci 

provides comparative data for hundreds of genomes.

Keywords

comparative genomics; orthology inference; gene annotation; genome alignment; gene loss; 
machine learning

Homologous genes have a common evolutionary ancestry. Orthologs are homologous genes 

that originated from a speciation event, whereas paralogs originated from a duplication 

event. Distinguishing orthologs and paralogs is a fundamental problem in evolutionary 

and molecular biology (1) and a prerequisite for many genomic analyses, including 

reconstructing phylogenetic trees, predicting gene function, investigating molecular and 

genome evolution, and discovering differences in genes that underlie phenotypes of the 

sequenced species (2–6).

Current methods for orthology inference are either based on graph or gene tree approaches 

or a combination of both (7). Graph-based methods cluster genes into pairs or groups 

of orthologs based on pairwise sequence similarity such as (reciprocal) best alignment 

hits (8–12). Gene tree-based methods determine whether the evolutionary lineages of two 

genes coalesce in a speciation or a duplication node (12–14). Importantly, these approaches 

analyze coding or protein sequences of genes, necessitating the identification of gene 

locations (structural gene annotation) in each genome before inferring orthologs. This has 

two limitations. First, gene annotation quality has a large influence on the accuracy of 

orthology inference (15). Second, generating high-quality annotations is time-consuming 

and typically requires comprehensive transcriptomics (gene expression) data, leading to a 

growing gap between genome sequencing and annotation, including orthology inference.

Here, we developed TOGA (Tool to infer Orthologs from Genome Alignments), an 

integrative pipeline that jointly addresses two fundamental problems in genomics and 

evolutionary biology: structural gene annotation and orthology inference.
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Results

A different paradigm for orthology detection

All orthology detection methods implicitly or explicitly use the principle that orthologous 

sequences are generally more similar to each other than to paralogous sequences (1). While 

existing methods focus on similarity between coding sequences that typically evolve under 

purifying selection, this principle also extends to non-exonic regions (introns, intergenic 

regions) that largely evolve neutrally. The key innovation implemented in TOGA is that 

intronic and flanking intergenic regions of orthologous gene loci are also more similar to 

each other, provided that the evolutionary distance between two species is short enough 

to retain sequence similarity in neutrally evolving regions. For example, the evolutionary 

distance between human and other placental mammals and between chicken and other birds 

is ≤0.55 substitutions per neutral site (fig. S1, Tables S1–S2), explaining why orthologous 

introns and intergenic regions partially align within these clades (Fig. 1A,E and fig. S2). In 

contrast, evolutionary distances between paralogs that duplicated before the divergence of 

these clades often exceed 1 substitution per neutral site, resulting in unaligned introns and 

intergenic regions. TOGA exploits this principle by (i) taking a well annotated genome such 

as human, mouse or chicken as a reference, (ii) inferring all (co-)orthologous gene loci from 

a genome alignment between reference and a query species (other placental mammals or 

birds), and (iii) annotating and classifying these genes (Fig. 1B–D).

The TOGA annotation and orthology detection pipeline

TOGA takes as input a gene annotation of the reference and a whole genome alignment 

between reference and query genome. TOGA infers orthologous loci in the query, annotates 

genes, determines orthology types (number of orthologs per gene in reference and query 

as 1:1, 1:many, many:1, or many:many), detects lost genes, and generates protein/codon 

alignments. In the first step, TOGA uses a pairwise genome alignment between reference 

and query, represented by chains of co-linear local alignments (16). These alignment 

chains capture both orthologous gene loci as well as loci containing paralogs or processed 

pseudogenes (Fig. 1A). To distinguish between them, TOGA computes characteristic 

features that capture the amount of intronic and intergenic alignments, considering each 

gene and each overlapping chain (Fig. 1B and fig. S3). Synteny (conserved gene order), 

which can help to distinguish orthologs from paralogs (14), is used as an additional feature. 

TOGA then uses machine learning to compute the probability that a chain represents an 

orthologous locus for the gene of interest.

To train the machine learning classifier, we used known orthologous genes between 

human (reference) and mouse (query) from Ensembl Compara (14) (fig. S4). Testing this 

classifier on independent query species (rat, dog, armadillo) that represent different placental 

mammalian orders showed a near perfect classification of orthologous chains (Fig. 1F, 

Table S3). Manual investigation of misclassifications showed that false positives mostly 

represent partial or full gene duplications (actual co-orthologous loci) and that half of 

the false negatives may be related to faster X chromosome evolution (17) (fig. S5–S6). 

Features capturing intronic/intergenic alignments are most important for the classification 

performance (Fig. 1G). In contrast, synteny is the least important feature, likely reflecting 
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our training data sets that we deliberately enriched with translocated orthologs (fig. S7). 

Using synteny as an auxiliary but not determining feature enables TOGA to also accurately 

detect orthologs that underwent translocations or inversions (fig. S8).

In a second step, for every transcript of a reference gene, TOGA uses CESAR 2.0 (18, 19) 

to determine the positions of coding exons of the focal gene in each (co-)orthologous query 

locus (Fig. 1B and fig. S9–S10). Since orthologous gene loci do not necessarily encode 

a gene with an intact reading frame (Fig. 1H), TOGA assesses reading frame intactness 

for each transcript (Fig. 1C and fig. S11). To this end, TOGA implements an improved 

version of our gene loss detection approach (5) and identifies gene-inactivating mutations 

(frameshifting, stop codon or splice site mutations, exon or gene deletions) while taking 

assembly incompleteness into account (fig. S12–S17). A gene is only classified as lost, if 

all transcripts at all (co-)orthologous loci are classified as lost. TOGA detects gene losses 

using the mutations present in the assembly without attempting to fix potential base errors 

(fig. S18–S19). We benchmarked the specificity of this approach on 11,161 conserved 

genes. Only 21, 22, 12 and 21 of these genes are misclassified as inactivated in mouse, rat, 

cow and dog, respectively, indicating a very high specificity of 99.80–99.89% (Table S4). 

Manual inspection showed that misclassified cases include highly-diverged genes, genes that 

evolved drastic changes in exon-intron structure or protein length, and a lost gene that is 

compensated by a processed pseudogene copy, which highlights cases of less certain gene 

conservation (fig. S20–S23).

In the third step, TOGA determines the orthology type by considering all reference genes 

and all orthologous query loci that encode an intact reading frame (Fig. 1C and fig. S24). 

Finally, TOGA uses an orthology graph approach to resolve weakly-supported orthology 

relationships among many:many orthologs (Fig. 1D and fig. S25).

TOGA improves ortholog detection

To assess the performance of TOGA’s orthology detection pipeline, we compared it against 

Ensembl Compara, which integrates graph- and tree-based methods (14). Using orthologs 

between human and three representative mammals (rat, cow, elephant), TOGA detected 

97.6%, 98.9% and 96.5% of the orthologs provided by Ensembl (Fig. 2A, Table S5), 

showing a good agreement. Furthermore, for >90% of these commonly-detected orthologs, 

TOGA inferred the same orthology type (Fig. 2B). A quarter of the discrepancies are cases 

where TOGA infers 1:1 and Ensembl 1:many. In several of these cases, Ensembl annotates a 

processed pseudogene copy as a second ortholog (fig. S26).

For the orthologs detected only by Ensembl, TOGA did identify an orthologous locus in 

>93% of the cases, but detected either reading frame inactivating mutations, indicating 

a lost gene, or that more than half of the coding region overlaps assembly gaps in the 

query (classified as a missing gene) (Fig. 2C and fig. S27–S28). Consistent with these 

cases including more questionable orthologs, parameters measuring alignment identity 

(mean 51%), alignment coverage (mean 44%) and orthology confidence (mean 32%) are 

substantially lower compared to orthologs detected by both methods (means 81%, 94%, 

91%) (Fig. 2D).
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TOGA predicted for the three species 1,532 (rat), 1,711 (cow) and 2,174 (elephant) 

additional orthologs that are not listed in Ensembl (Fig. 2A). For rat, this includes PAX1, 

an important developmental transcription factor that was potentially missed by Ensembl 

because of a mis-annotated N-terminus (fig. S29). About half of these genes belong to large 

families such as zinc fingers, olfactory receptors or keratin-associated proteins (Fig. 2E). 

These genes exhibit alignment identity (mean 70%), alignment coverage (mean 83%) and 

orthology confidence (mean 94%) values that are more similar to orthologs detected by both 

methods (means 82%, 94%, 99%) (Fig. 2D), supporting that these genes are undetected 

orthologs.

TOGA improves annotation of conserved genes

We performed a direct comparison between TOGA’s comparative gene annotations and 

annotations generated by Ensembl and by the NCBI Eukaryotic Genome Annotation 

Pipeline (20, 21), two state-of-the-art methods that integrate transcriptomics data, 

homology-based data and ab initio gene predictions. We first applied TOGA using the 

human GENCODE 38 annotation (22) as the reference to other placental mammals that 

have Ensembl (70 species) or NCBI (118 species) annotations. We then used BUSCO 

(Benchmarking Universal Single-Copy Orthologs; odb10 dataset) to compare the percent of 

completely detected near-universally-conserved mammalian genes (23). TOGA annotations 

have a higher completeness score for 97% (Ensembl) and 91.5% (NCBI) of the species (Fig. 

3A,B, Tables S6–S7), increasing annotation completeness of conserved genes by an average 

of 4.1% or ~377 genes (Ensembl) and 0.7% or ~64 genes (NCBI) (fig. S30).

Second, we used TOGA with the mouse GENCODE M25 annotation (22) as the reference. 

This resulted in a higher BUSCO completeness for 98.5% (Ensembl) and 64% (NCBI) 

of the species (Fig. 3A,B, Tables S6–S7). As a homology-based method, TOGA benefits 

from the quality and comprehensiveness of the human and mouse input annotation (21, 

22). However, homology-based methods cannot annotate orthologs of genes that are 

not present in the reference (fig. S31, Table S8). This downside can be counteracted 

by combining multiple references. Indeed, combining human- and mouse-based TOGA 

annotations achieves a higher BUSCO completeness for almost all species (>98%) (Fig. 

3A,B).

Third, further adding TOGA annotations with generated additional references (cow, horse 

and cat) increases the total number of annotated genes and detects additional lineage-

restricted genes (fig. S32–S34). Nevertheless, comprehensive annotation of lineage-specific 

exons and genes requires transcriptomics data or ab initio predictions (fig. S35).

TOGA improves annotations even if transcriptomics data are available

Transcriptomics data provides direct evidence of transcripts expressed in the sampled 

tissues. We next tested whether TOGA can improve annotation of conserved genes, even 

if transcriptomics data and other gene evidence are available. To this end, we used six high-

quality bat genomes (6) and first annotated genes by integrating available transcriptomics 

data, ab initio gene predictions (Augustus (24)), aligned proteins from closely related bats, 

and comparative gene predictions (Augustus-CGP applied to a multiple genome alignment 
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(25)). For the six bats, these annotations contained 87.7% to 95.4% of the genes in the 

mammalian BUSCO odb10 set (Fig. 3C, Table S9). Adding TOGA with human as the 

reference generated annotations containing 98.8% to 99.3% of the BUSCO genes. This 

shows that even if comprehensive gene evidence are available, TOGA can improve the 

annotation of conserved genes.

TOGA joins split genes in fragmented assemblies

Genes split between different scaffolds are often missed or annotated as fragments, 

hampering downstream analyses. Although current genome projects aim to generate 

highly-complete, chromosome-level assemblies (6, 26), even such assemblies can contain 

fragmented genes (fig. S36). Furthermore, many currently available mammal or bird 

assemblies exhibit fragmentation (27, 28). To improve comparative annotation and orthology 

inference of fragmented genes, we leveraged TOGA’s ability to detect orthologous loci 

of gene fragments. We implemented a gene joining procedure that recognizes orthologous 

parts of 1:1 orthologous genes, joins them together, and generates an annotation and codon/

protein alignments for the full gene (Fig. 4A and fig. S37).

To evaluate the accuracy of this procedure, we leveraged that sequences of orthologous but 

not paralogous genes from closely related species are expected to be highly similar. Indeed, 

comparing a highly-fragmented with a highly-contiguous assembly of two sperm whale 

species (27, 29) showed that orthologous genes located on a single scaffold in both species 

have a much higher sequence identity (mean 98.70%) than paralogous genes (mean 75.18%) 

(Fig. 4B). Consequently, if TOGA would misidentify paralogous fragments as orthologs, 

sequence identity should decrease for fragmented genes. However, we observed an equally 

high identity for orthologous genes joined from two, three or even more fragments (Fig. 4B), 

indicating a high accuracy.

Demonstrating the effectiveness of TOGA’s gene joining procedure, in the highly-

fragmented sperm whale assembly the mean coding sequence length after joining 

fragmented genes is 97% of the length of the orthologous human gene. This is a substantial 

improvement over the single largest orthologous fragment present in the assembly (mean 

59%) (Fig. 4C, Table S10). We obtained similar improvements for other highly-fragmented 

assemblies. Even for an assembly of the extinct Steller’s sea cow with a scaffold N50 value 

of just 1.4 kb (30), TOGA improved the relative coding sequence length from 28% to 70%. 

Thus, TOGA increases the utility of fragmented genomes for comparative analyses.

TOGA scales to hundreds of genomes

As complete genomes are generated at an increasing rate, annotation and orthology 

inference methods that can handle hundreds or thousands of genomes are needed. Unlike 

previous methods, TOGA’s reference-based methodology scales linearly with the number 

of query species. We leveraged this by applying TOGA with the human GENCODE 38 

annotation (19,464 genes) as reference to a large set of placental mammals, comprising 488 

assemblies of 427 distinct species (Fig. 5A, Tables S1,S11). As expected, TOGA annotates 

more orthologous genes in the six Hominoidea (ape) species that are closely related 

to human (median 19,192). Importantly, for the remaining 482 assemblies, TOGA also 
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annotated a median of 18,049 orthologs, indicating that TOGA is an effective annotation 

method across placental mammals.

Fitting generalized linear models shows that the number of annotated orthologs is positively 

correlated with assembly quality metrics (contig and scaffold N50) and negatively correlated 

with the evolutionary distance (substitutions per neutral site) and divergence time (millions 

of years) to human (fig. S38, Table S12). Evolutionary distance has a stronger influence than 

divergence time. This is exemplified for Perissodactyla, where TOGA consistently annotates 

more orthologs than in many rodents, despite the rodent lineage splitting from human more 

recently.

To explore the influence of the reference genome, we applied TOGA to the same 488 

placental mammal assemblies using the mouse GENCODE M25 annotation (22,257 genes) 

as reference (Fig. 5B, Table S1). Corroborating a general influence of evolutionary distance 

and divergence time, TOGA annotated more orthologs for the 20 closely related Muridae 

assemblies (median 20,918) than for the remaining 466 assemblies (median 18,115). 

Overall, the number of annotated genes is similar to the human-based annotations.

TOGA provides a superior approach for assessing mammalian assembly quality

TOGA’s gene classification also provides a powerful benchmark to measure assembly 

completeness and quality. To this end, we first compiled a comprehensive set of 18,430 

ancestral placental mammal genes, defined as human coding genes that have an intact 

reading frame in the basal placental clades Afrotheria and Xenarthra (Table S13). For 

each of the 488 assemblies, we then used TOGA’s gene classification to determine which 

percent of these ancestral genes have an intact reading frame without missing sequence. 

This completeness measure is significantly correlated with the completeness value computed 

by BUSCO in genome mode (Pearson r = 0.73, P=10−81) (Fig. 6A). However, BUSCO’s 

values saturate at ~97% for highly complete assemblies, while TOGA’s completeness values 

exhibit a larger dynamic range (Fig. 6A,B), providing a better resolution to distinguish 

highly contiguous from less contiguous assemblies. This is exemplified by two closely 

related bats: a high-quality Rhinolophus ferrumequinum and a less-contiguous R. sinicus 
assembly have similar BUSCO (96.4% vs. 96.3% complete genes) but different TOGA 

completeness values (94.4% vs. 88.2%) (Fig. 6C). These results are driven by the TOGA 

methodology and not by the twofold increased gene number (18,430 vs. 9,226 genes; fig. 

S39).

BUSCO’s fragmented or missing gene classification indicates how much of the gene was 

detected, but does not distinguish between the two major underlying reasons: assembly 

incompleteness that results in missing gene sequence vs. assembly base errors that destroy 

the reading frame. TOGA’s gene classification explicitly distinguishes between these two 

different assembly issues, which provides valuable information on assembly quality. For 

example, TOGA detects a higher percentage of genes exhibiting inactivating mutations in 

the Bos gaurus (gaur, 14.2%) compared to the Bos taurus (cow, 4.3%) assembly, indicating 

that the B. gaurus assembly has an elevated base error rate, whereas both assemblies are 

indistinguishable in terms of BUSCO completeness (95.8 vs. 95.5%) (Fig. 6D). Similarly, 

the dog canFam5 assembly exhibits an elevated base error rate compared to dog canFam4 
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or dingo, whereas all three assemblies have similar BUSCO scores (Fig. 6E). Assemblies of 

the same species can suffer from different issues, illustrated by the spotted hyena, where the 

NCBI GCA_008692635.1 assembly has less missing sequence, but a noticeably higher base 

error rate compared to the DNAzoo assembly (Fig. 6E). Finally, illustrating extreme cases 

among seals, 56% of the genes in the Antarctic fur seal have inactivating mutations and 31% 

of the genes in the Weddell seal have missing exonic sequence (Fig. 6F).

TOGA facilitates more accurate codon alignments

Codon or protein alignments are important to screen for selection patterns and reconstruct 

phylogenetic trees, but alignment errors can substantially impact the outcome (31). 

TOGA implements two features that help to avoid codon alignment errors. First, TOGA 

masks all gene-inactivating mutations such as frameshifts, which otherwise can result in 

misalignments (fig. S40). Second, whereas existing methods align entire orthologous coding 

sequences, TOGA is aware of orthology at the exon level. This enables an “exon-by-exon” 

procedure that generates alignments by aligning and joining individual orthologous exons, 

which can avoid alignment errors (fig. S41).

Applying TOGA to 501 bird as well as other non-mammalian genomes

To demonstrate TOGA’s applicability to non-mammalian genomes, we used chicken 

(18,039 genes, RefSeq annotation (21)) as the reference and applied TOGA with default 

models and parameters to 501 assemblies of 476 distinct bird species (28, 32) (Tables 

S11,S14). Across all assemblies, TOGA annotated a median of 14,058 orthologous genes 

(Fig. 5C, Table S14).

We also explored whether TOGA can be applied to species other than mammals and 

birds. Tests with turtles, fish, sea urchins, hawk moths and Brassicaceae plants provide 

encouraging results (Fig. 5D) that may be further improved by retraining the machine 

learning classifier, defining new features, and adjusting genome alignment parameters and 

CESAR’s splice site profiles.

Comprehensive resources for comparative genomics

For the 488 placental mammal and 501 bird assemblies, we provide comparative gene 

annotations, ortholog sets, lists of inactivated genes and multiple codon alignments 

generated with MACSE v2 (33) for download at http://genome.senckenberg.de/download/

TOGA/. To our knowledge, these comprise the largest comparative genomics datasets for 

both clades so far. To facilitate visualizing and analyzing these data, we implemented a 

TOGA annotation track for the UCSC genome browser (34) (fig. S42). Our UCSC browser 

mirror at https://genome.senckenberg.de/ provides these annotation tracks for all analyzed 

assemblies.

Discussion

We envision two main use cases of TOGA. First, by detecting inactivated genes and 

providing orthologous sequences for codon alignments, TOGA enables phylogenomic 

analyses as well as screens for selection patterns and gene losses that are linked to relevant 
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phenotypes (6, 35–38). Second, TOGA can provide an initial annotation of conserved genes 

for newly-sequenced genomes or be integrated together with available transcriptomics data 

and ab initio gene predictions to comprehensively annotate conserved and lineage-specific 

genes. Additionally, TOGA’s classification of ancestral genes provides a useful assembly 

quality benchmark.

TOGA’s application range comprises species with “alignable” genomes, which we define 

in our context as genomes where orthologous neutrally evolving regions partially align. 

In general, this holds for evolutionary distances of ~0.6 substitutions per neutral site. 

Interestingly, applying TOGA with human as the reference to 18 marsupial and two 

monotreme mammals, where neutrally evolving regions are diverged because of the 

larger evolutionary distance (~0.8 and ~1 substitution per neutral site between human 

and marsupials/monotremes), still annotates on average 13,397 and 10,238 orthologs (Fig. 

5A,B), primarily because gene order is conserved (fig. S43). Nevertheless, for these more 

distant clades, human is not a powerful reference and a marsupial and a monotreme mammal 

should be used as the reference instead.

With the tree of life becoming more densely populated with genomes, thanks to great 

efforts of large-scale projects and numerous laboratories (26–28, 39), TOGA provides a 

general strategy to cope with the annotation and orthology inference bottleneck. For every 

“alignable” clade of interest, one can select one, or ideally several, reference species. 

Assembly and annotation of the reference(s) should ideally be highly complete, and 

reference choice can be influenced by the evolutionary distance to focal query species. 

References can be defined for different taxonomic ranks, from the class to the family or 

genus level. For example, in the Bat1K project (40), we aim at generating a high-quality 

assembly and comprehensive gene annotation for representatives of all bat families to serve 

as references for dozens or hundreds of other bats in these families.

Materials and Methods

TOGA input and output

As input, TOGA requires (i) the reference and query genome file in 2bit format (an indexed 

and compressed file that can be generated from a multi-fasta file with UCSC genome 

browser tool twoBitToFa), (ii) the coding gene annotation of the reference genome in 

bed-12 format (can be generated from genePred or gtf formats with the UCSC utilities 

genePredToBed and gtfToGenePred), and (iii) a chain file containing chains of co-linear 

local alignments between the reference and query genome. Optionally, information about 

U12 introns, where non-canonical splice sites are common, can be provided as input. If 

the gene annotation provides more than one transcript for a gene, TOGA will process 

all transcripts, as detailed below. To generate high-quality annotations, we recommend 

including representative isoforms (sometimes called principal) for each gene, in particular 

those that capture differences in exon-intron structures, but to exclude isoforms that 

represent much shorter and likely non-functional transcripts such as potential targets for 

nonsense-mediated decay. We also recommend excluding transcripts that represent fusion 

isoforms between two ancestral genes, as including such fusion transcripts interferes with 

inferring the correct orthology type.
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TOGA provides rich output and generates (i) a gene annotation of the query species in 

bed-12 format, (ii) an annotation file listing processed pseudogenes detected in the query in 

bed-9 format, (iii) the protein and codon alignments of all annotated genes in fasta format, 

(iv) per-exon nucleotide alignments together with alignment quality scores (nucleotide and 

protein similarity) in fasta format, (v) a table listing orthology relationships between genes 

in the reference and query (orthology type as 1:1, 1:many, etc.), (vi) a table of genes, 

transcripts and projections that are classified as intact, lost or other states describing the 

likelihood that a functional protein is encoded, (vii) a list of all detected gene-inactivating 

mutations in tsv format, (viii) a table listing for each reference transcript which alignment 

chains overlap this transcript and what their ortholog score is, (ix) tab-separated files 

that can be loaded as UCSC genome browser tracks to visualize the annotations, chain 

classification scores, exon-intron structure with inactivating mutations, and exon and protein 

alignments with nucleotide identity and BLOSUM alignment scores.

Overview of TOGA

The pipeline implemented in TOGA consists of the following steps. First, for each coding 

gene annotated in the reference, TOGA applies machine learning to determine orthologous 

(and co-orthologous) loci in the query genome by inferring which alignment chains 

represent orthologous alignments. Second, for each (co-)orthologous locus in the query 

genome, TOGA uses CESAR 2.0 (18, 19) to determine the positions and boundaries of 

all coding exons of each gene. In this step, TOGA also analyses the reading frame of 

the annotated transcript, filters the resulting exon alignments, detects gene-inactivating 

mutations, determines whether undetected exons are missing due to assembly gaps, and 

classifies the annotated transcript as intact, missing or inactivated. Third, after inferring all 

orthologous loci and annotating all genes, TOGA infers the orthology type between genes 

and resolves spurious many:many relationships that are only supported by weak orthology. 

The three steps are described in detail in the following.

Inferring orthologous loci from pairwise genome alignments

In the first step, TOGA infers orthologous loci by using pairwise chains of co-linear local 

alignments, computed between a reference and query genome (see below), and the gene 

annotation of the reference genome.

Identifying candidate chains—TOGA first extracts all chains that overlap or span at 

least one coding exon for a given coding gene. Since a naive approach that loops over all 

possible gene-chain pairs is time-consuming, TOGA implements a faster approach that relies 

on sorting genes and chains. Specifically, for each chromosome or scaffold, TOGA sorts 

the genomic regions of all genes and all chains by the start coordinate in the reference 

genome. Then, for each chain, TOGA iterates over the sorted list of genes, starting with 

the first gene that intersected the previous chain (all upstream genes can be skipped). For 

each gene, we determine whether the chain overlaps or spans at least one coding exon, 

which makes this chain a candidate chain. The iteration is stopped at the first gene that starts 

downstream of the current chain end. Compared to the naive approach, this procedure also 

has an asymptotic quadratic runtime of O(N2), but only in the worst case where every chain 

overlaps every gene. In practice, we found that this procedure results in a speedup of ~60 
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fold (human vs. mouse, 0.5 vs. 30 min), because it avoids considering numerous genes that 

are upstream or downstream of a focal chain.

Feature extraction for machine learning—Given a gene and an overlapping chain, 

TOGA computes the following features by intersecting the reference coordinates of aligning 

blocks in the chain with different gene parts (coding exons, UTR (untranslated region) 

exons, introns) and the respective intergenic regions. We define the following variables (see 

also fig. S3).

• c: number of reference bases in the intersection between chain blocks and coding 

exons of the gene under consideration.

• C: number of reference bases in the intersection between chain blocks and 

coding exons of all genes.

• a: number of reference bases in the intersection between chain blocks and coding 

exons and introns of the gene under consideration.

• A: number of reference bases in the intersection between chain blocks and 

coding exons and introns of all genes and the intersection between chain blocks 

and intergenic regions (excludes UTRs).

• f: number of reference bases in chain blocks overlapping the 10 kb flanks of the 

gene under consideration. Alignment blocks overlapping exons of another gene 

that is located in these 10 kb flanks are ignored.

• i: number of reference bases in the intersection between chain blocks and introns 

of the gene under consideration.

• CDS (coding sequence): length of the coding region of the gene under 

consideration.

• I: sum of all intron lengths of the gene under consideration.

Using these variables, TOGA computes the following features:

• “global CDS fraction” as C / A. Chains with a high value have alignments that 

largely overlap coding exons, which is a hallmark of paralogous or processed 

pseudogene chains. In contrast, chains with a low value also align many intronic 

and intergenic regions, which is a hallmark of orthologous chains.

• “local CDS fraction” as c / a. Orthologous chains tend to have a lower value, 

as intronic regions partially align. This feature is not computed for single-exon 

genes.

• “local intron fraction” as i / I. Orthologous chains tend to have a higher value. 

This feature is not computed for single-exon genes.

• “flank fraction” as f / 20,000. Orthologous chains tend to have higher values, 

as flanking intergenic regions partially align. This feature is important to detect 

orthologous loci of single-exon genes.
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• “synteny” as log10 of the number of genes, whose coding exons overlap by at 

least one base aligning blocks of this chain. Orthologous chains tend to cover 

several genes located in a conserved order, resulting in higher synteny values, 

which can help to distinguish orthologs from paralogs (14, 41–43).

• “local CDS coverage” as c / CDS, which is only used for single-exon genes.

The term ‘global’ refers here to features computed from all genes that overlap the chain, 

whereas ‘local’ refers to features computed from just the single gene under consideration. 

Most of these features quantify how well intronic and intergenic regions, which largely 

evolve neutrally, align in comparison to coding exons, which largely evolve under purifying 

selection. Because selection in UTR exons is variable, alignments overlapping UTR exons 

are ignored for feature computation. All features are visually explained in fig. S3.

Generating training data of orthologous and non-orthologous genes—We 

trained a machine learning approach to use the above-described features to distinguish 

chains representing alignments to orthologous genes. As training data, we used human-

mouse 1:1 orthologs from Ensembl (44) (Release 97, downloaded July 2019), for which the 

“orthology confidence” feature is 1. For each gene, we only considered the transcript with 

the longest coding region.

As positives (orthologous chains), we selected those chain-gene pairs, where (i) the chain 

is the top-level (highest-scoring) chain covering the gene, and (ii) the chain represents a 

true orthologous alignment of the gene (fig. S4). The latter condition was implemented by 

requiring that the Ensembl-annotated mouse ortholog is located at the query coordinates 

provided by this chain. To obtain negatives (non-orthologous chains that typically represent 

alignments to paralogs or processed pseudogenes), we reasoned that by definition other 

chains overlapping exons of true 1:1 orthologous genes cannot represent co-orthologs. 

Consequently, such chains represent non-orthologous alignments and were added to the 

negative set (fig. S4). To avoid selecting negative chains that cover only a small fraction of 

the gene, we only considered non-orthologous chains, where aligning blocks overlap at least 

35% of coding exons. Furthermore, for the positive and negative sets, we only considered 

chains with a score of at least 7,500 and genes whose coding exons overlap less than 75 

different chains.

We noticed that the vast majority of positives had high synteny feature values, indicating 

that inversions or translocations, which break the co-linear order between genes, are rare 

among human-mouse 1:1 orthologs. Since we aimed at also accurately detecting orthologous 

genes that underwent genomic rearrangements, we enriched the positive training dataset 

with artificially rearranged chain-gene pairs, generated by trimming long syntenic chains 

to new single gene-covering chains. To this end, we considered all 1:1 orthologous genes 

whose orthologous chain is among the top 100 scoring orthologous chains already used in 

the positive training set. For each of these genes, we determined breakpoints of an artificial 

rearrangement by adding a random number ranging from −10,000 to 3,000 to the gene start 

(transcription start) and adding a random number ranging from −3,000 to 10,000 to the gene 

end (transcription end). As a result, the artificial rearrangement may even lack some parts 

of the beginning or end of the gene (fig. S7). However, to avoid cases where the artificial 
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rearrangement lacks most of the coding exons, we only considered artificial rearrangements 

that include at least 80% of the gene’s coding region. For each artificial rearrangement, we 

used the breakpoints to trim the original orthologous chain, resulting in a new chain that 

typically covers only a single gene and sometimes only a part of a single gene (fig. S7).

To create the final training dataset with balanced proportions, we combined all 14,376 real 

orthologous and all 5,844 artificially rearranged gene-chain pairs as the positive set (20,220 

entries) and considered 20,220 randomly chosen gene-chain pairs as the negative set. We 

then split this training dataset into single- and multi-exon genes to train the two models, 

as described below. To create independent test datasets, we applied the same procedure to 

genome alignments of different query species, human-to-rat, human-to-dog and human-to-

armadillo.

Model training and testing—We trained two separate models (one for multi-exon genes 

and one for single-exon genes), since two features that quantify intronic alignments (“local 

CDS fraction” and “local intron fraction”) can only be computed for multi-exon genes. For 

single-exon genes, we found the feature “local CDS coverage” to be helpful in detecting 

orthologous loci. We did not use this feature when training the multi-exon model, as it 

did not increase classification performance further and hampered the detection of partial 

lineage-specific duplications of multi-exon genes. Hence, the multi-exon model was trained 

using all six features except “local CDS coverage” and the single-exon model was trained 

using all six features except “local CDS fraction” and “local intron fraction” (fig. S3).

We used the XGBoost (45) gradient boosting library, a machine learning approach that 

was successfully applied to a variety of classification tasks, to train both models with the 

following parameters: number of trees: 50, maximal tree depth: 3, learning rate: 0.1. For 

each gene-chain pair, the XGBoost predictor outputs a score between [0,1] that the chain 

represents an orthologous locus for the gene. The single-exon gene model showed a 5-fold 

cross-validation accuracy of 99.41% (standard deviation 0.28%) and the multi-exon gene 

model showed a 5-fold cross-validation accuracy of 99.23% (standard deviation 0.07%).

To assess the importance of the features for chain classification (Fig. 1G), we computed the 

“gain” value (45), which measures the contribution of the feature for each decision tree in 

the gradient boosting model as the average reduction of the loss function that is obtained 

when using this feature for splitting the training data.

We tested the single- and multi-exon model on independent test sets obtained for three 

representative placental mammals that include both a close sister species to mouse (rat) 

and more distant outgroups (dog, armadillo). To evaluate the performance of the models 

in detecting translocated or inverted orthologous genes, we separately tested them on real 

orthologous genes (typically high synteny values) and artificially rearranged orthologous 

genes (typically low synteny values of log10(1)) (Fig. 1F, Table S3). ROC curves were 

computed by ranking each gene-chain pair by the orthology score.
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Chain classification—To annotate genes and infer orthologs, we consider in this 

manuscript all gene-chain pairs where the orthology score is ≥0.5. This threshold can be 

adjusted by users via a TOGA parameter.

Annotating processed pseudogenes—Chains also align processed pseudogene copies 

of multi-exon genes, which enables TOGA to augment the query genome annotation by 

annotating processed pseudogenes. To this end, TOGA implements a post-hoc classification 

of non-orthologous chains into those that represent paralogs vs. processed pseudogene 

copies. To distinguish between paralogous and processed pseudogenes, TOGA computes for 

multi-exon genes the “alignment to query span” value. Defining e as the number of reference 

bases in the intersection between chain blocks and exons (here using both UTR and CDS) 

and defining Q as the span of the chain in the query genome, “alignment to query span” is 

computed as e / Q. This value is close to 1 for chains representing alignments to processed 

pseudogenes in the query, as introns are completely ‘deleted’ and thus the summed length of 

exon alignments is similar to the chain length in the query. Non-orthologous chains where 

the “alignment to query span” value is > 0.95 and that overlap only one gene are classified 

as processed pseudogene chains. TOGA then uses the chain span to annotate the processed 

pseudogene copy in the query and correctly label this locus as such (fig. S44).

Gene-spanning chains—For genes that are entirely absent from the query genome, 

either because they are deleted or completely overlap assembly gaps, there can be a chain 

that spans this gene but none of its aligning blocks overlap exons of this gene. Since 

the machine learning step cannot be applied to these chains, as most features cannot be 

computed, TOGA treats these chains as follows, but only if the focal gene completely lacks 

a detected orthologous locus. If aligning blocks of this chain overlap coding exons of at least 

two other genes, we consider it as an orthologous chain candidate for the focal gene. For 

such chains, TOGA runs CESAR 2.0 on the query locus defined by the closest upstream and 

downstream aligning blocks, if the distance is at most 1 Mb or at most 50 times the gene 

length (CDS start – CDS end). CESAR may detect the gene or remnants of it in this query 

locus, even if the gene did not align at the nucleotide level in the genome alignment chains. 

As described below, TOGA then filters the CESAR output to determine whether the gene 

exists but was missed in the genome alignment chain, whether the gene is likely deleted, or 

whether the gene overlaps assembly gaps and is thus missing.

Transcript alignment and classification

CESAR alignment—The result of the first step is a set of gene-chain pairs that are 

classified as orthologous and provide an orthologous locus for the respective gene in the 

query genome. In the second step, TOGA identifies the loci and splice site boundaries of 

all coding exons by aligning the coding exons of the reference species to the query locus. 

To this end, TOGA individually considers all transcripts provided for this gene and uses 

CESAR (Codon Exon Structure Aware Realigner) version 2.0 (18, 19) in multi-exon mode. 

Briefly, CESAR 2.0 is a Hidden Markov model-based method that takes the coding exons of 

the reference species as input and considers reading frame and splice site information when 

generating exon alignments in the query sequence. CESAR has a high accuracy in correctly 

aligning shifted splice sites, is able to detect precise intron deletions that merge two 
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neighboring exons, and generates alignments of intact exons (defined as exon alignments 

with consensus splice sites and an intact reading frame) whenever possible (18, 19). Before 

running CESAR, TOGA replaces in-frame TGA stop codons in the reference sequence, 

which can encode a selenocysteine amino acid, by NNN. This replacement enables CESAR 

to align such TGA stop codons to sense or to stop codons. Also, if information about U12 

introns in the reference is provided as input, TOGA passes this information to CESAR. As 

U12 intron splice sites can comprise a variety of dinucleotides including AT-AC, GT-AG, 

GT-GG, AT-AT or AT-AA (46), we have changed the U12 donor and acceptor splice site 

profile in CESAR to capture this splice site diversity with a uniform nucleotide distribution. 

Since knowledge about U12 introns in the reference may be incomplete or not always 

available, TOGA considers every intron in the reference without canonical GT/GC-AG 

splice sites as a putative U12 intron. For human or mouse as the reference, we used U12 data 

from U12DB (47).

Exon classification—After parsing the CESAR output, TOGA classifies each exon as 

present (P), missing (M) or deleted (D). This step is necessary as the Viterbi algorithm 

used in CESAR’s HMM may also output alignments of exons that do not exist in the query 

locus, either because the exon is truly deleted or diverged to an extent that no meaningful 

alignment is possible (class D) or because the exon overlaps an assembly gap in the query 

genome (class M).

To distinguish between classes P, M, and D, TOGA utilizes that an orthologous chain 

provides not only the orthologous query locus, but the aligning blocks of the chain also 

provide information about the location of individual exons. TOGA determines whether the 

CESAR-detected exon location overlaps the query genome locus that should contain the 

exon according to the genome alignment chain. If this is the case, then both the nucleotide-

based genome alignment chain and the codon-based CESAR alignment agree on the exon 

location in the query, and TOGA classifies these exons as present (P). For exons where the 

chain and CESAR disagree on the location and for exons that align only with the more 

sensitive CESAR method, TOGA uses two metrics to evaluate whether the exon aligns 

better than randomized exons. The first metric is the %nucleotide identity, defined as the 

percentage of identical bases in the CESAR alignment. The second metric, %BLOSUM, 

measures the amino acid similarity between reference and query using the BLOSUM62 

matrix. Let SRQ be the sum of BLOSUM scores for each amino acid pair between reference 

(R) and query (Q), with codon insertions and deletions getting a score of −1. As SRQ 

depends on the length of the exon, we also determine the maximum score possible for this 

exon by comparing the reference sequence to itself, thus computing SRR. %BLOSUM is 

defined as SRQ / SRR * 100. To determine thresholds that separate real and randomized exon 

alignments, we extracted 137,935 exons of human-mouse 1:1 orthologous genes for which 

the TOGA-annotated exon overlaps an Ensembl-annotated exon (real exons). Randomized 

exon alignments were obtained by aligning real exon sequences to the reversed query 

sequence with CESAR. By comparing %nucleotide identity and %BLOSUM between real 

and random CESAR exon alignments, we defined thresholds as %nucleotide identity ≥ 45% 

and %BLOSUM ≥ 20% (fig. S9). These thresholds correspond to a sensitivity of 0.98 and 

a precision of 0.99. Exons that exceed these thresholds are classified as present (P). For 
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all other exons, TOGA determines whether the query locus expected to contain this exon 

overlaps an assembly gap (≥10 consecutive N characters) in the query genome. If so, the 

exon is classified as missing (M), otherwise it is classified as class D. Exons not spanned 

by an orthologous chain are also classified as missing (M), as such cases are often due to 

assembly fragmentation and incompleteness. The exon classification workflow is detailed in 

fig. S10.

Transcript annotation and classification—To annotate transcripts in the query 

genome, TOGA uses the splice site coordinates of the CESAR alignment to annotate all 

exons of the given reference transcript that were classified as present in the previous step.

Gene orthology must be inferred based on the number of (co-)orthologs in the query that 

likely encode a functional protein. For example, even if TOGA detects a single orthologous 

locus for the given gene with high confidence, the predicted gene could be lost in the 

query, resulting in a 1:0 orthology relationship (no ortholog in the query). Similarly, as 

exemplified in Fig. 1H, TOGA can detect four orthologous loci in the query, but if only 

one of these loci encodes a functional gene, this results in a 1:1 orthology relationship. For 

these reasons, TOGA implements a transcript classification step to determine whether an 

annotated transcript is likely or unlikely to encode a functional protein.

Transcript classification is not a straightforward problem, as assembly gaps result in missing 

parts of the CDS and individual exons can get lost in otherwise clearly conserved genes, as 

shown in previous work (5). To take this complexity into account, we decided to classify 

annotated transcripts into five different major categories:

• “intact” transcripts, for which the middle 80% of the CDS is present (not missing 

sequence) and exhibits no gene-inactivating mutation, are likely to encode 

functional proteins,

• “partially intact” transcripts, for which ≥50% of the CDS is present and the 

middle 80% of the CDS exhibits no inactivating mutation, may also encode 

functional proteins, but the evidence is weaker as more of the CDS is missing 

due to assembly gaps,

• “missing” transcripts, for which less than 50% of the CDS is present and the 

middle 80% of the CDS exhibits no inactivating mutation, are undecided as more 

than half of the CDS is missing but no strong evidence for loss exists,

• “uncertain loss” transcripts exhibit at least one inactivating mutation in the 

middle 80% of the CDS, but evidence is not strong enough to classify the 

transcript as lost; hence, it may or may not encode a functional protein,

• “lost” transcripts, for which evidence for loss is sufficiently strong, are unlikely 

to encode a functional protein.

As shown in the flowchart in fig. S11A, TOGA derives this classification by first 

determining whether the transcript exhibits no (intact, partially intact, missing) or at least 

one (uncertain loss, lost) gene-inactivating mutation in the middle 80% of the CDS. This 

key distinction is motivated by our observation that frameshift and stop codon mutations 
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in conserved genes mostly occur in the first or last 10% of the CDS (fig. S12). Fig. S11B 

illustrates several examples of these five transcript types.

A special and rarely-occurring category called “paralogous projection” refers to cases where 

no orthologous chain but only a paralogous-classified chain was detected. This can arise if 

the real orthologous gene is entirely missing in the assembly (thus only a paralog aligns) 

or if TOGA misclassifies the orthologous gene because of excessive divergence of intronic/

intergenic regions. If the locus represented by the paralogous chain does not receive any 

annotation via an orthologous chain, then TOGA also annotates a gene at this locus (shown 

in fig. S6), as this locus likely encodes a gene. However, the annotation is labeled as a 

paralogous projection and shown in brown color.

Gene-inactivating mutations—To distinguish between intact and lost transcripts, TOGA 

considers the following gene-inactivating mutations: frameshifting insertions and deletions, 

in-frame (premature) stop codons, mutations that disrupt the canonical donor (GT/GC) or 

acceptor (AG) splice site dinucleotides, and deletions of single or multiple consecutive 

exons that together are not divisible by three and thus result in a frameshift. Contrary to 

our previous work (5), we do not consider larger frame-preserving deletions as inactivating 

mutations anymore, because we observed a number of cases where large deletions did 

occur in otherwise conserved genes. Examples of insertions or deletions (ranging from 

several hundred to a few thousand base pairs) inside large exons are shown in fig. S16. 

Examples of deletions of entire exon(s), sometimes comprising seven consecutive exons, are 

shown in fig. S17. These large frame-preserving deletions result in substantially shorter but 

likely functional proteins (though it is not known whether the function is truly conserved). 

Importantly, TOGA does consider stop codons as inactivating that may be assembled at a 

new exon-exon boundary, which arose from deletions of in-frame exons (fig. S14).

In case of precise intron deletions that merge two neighboring exons into a single larger 

exon, we do not consider the deletion of the splice sites. For U12 splice sites (labeled as 

such in the reference or inferred from non-canonical reference splice site dinucleotides), we 

do not consider splice site mutations. In-frame stop codons that were already present in the 

reference sequence (selenocysteine-encoding TGA codons or stop codon readthrough) are 

ignored. Two or more frameshifts that compensate each other (e.g. a −1 and −2 bp deletion, 

or three −1 bp deletions) and do not result in a stop codon in the new reading frame are not 

considered as inactivating mutations (fig. S15).

Transcript loss criteria—Using the list of detected inactivating mutations, TOGA 

quantifies the maximum percent of the reading frame that remains intact in the query 

(fig. S13). To distinguish between “intact”, “partially intact” and “missing” transcripts, 

we ignore missing sequence (NNN codons) in this calculation. To distinguish between 

“uncertain loss” and “lost” transcripts, we count missing sequence as aligning codons, 

making the conservative assumption that missing codons correspond to sense codons in the 

unknown query sequence (fig. S13), since this procedure results in a consistent classification 

of transcripts that have the same inactivating mutations and only differ in the amount of 

missing sequence.
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Based on the observation that inactivating mutations in conserved genes rarely occur in 

the middle 80% of the CDS (fig. S12), transcripts classified as “uncertain loss” or “lost” 

transcripts exhibit at least one inactivating mutation in the middle 80% of the CDS. 

The following criteria distinguish between “lost” and “uncertain loss” transcripts. Lost 

transcripts have a maximum percent intact reading frame <60% and exhibit inactivating 

mutations in at least 2 coding exons (fig. S11B). The latter requirement is motivated by 

previous observations that mutations in a single exon of an otherwise-conserved gene are not 

sufficient to infer gene loss (5). For genes with >10 exons, we replace the requirement of 

mutations in at least two coding exons by requiring mutations in at least 20% of the coding 

exons. For single exon genes, we simply require two inactivating mutations. As the size of 

individual exons can be large, we make an exception for multi-exon transcripts, where a 

single large exon represents a substantial part (≥40%) of the CDS. Such transcripts are also 

classified as “lost” if at least 2 mutations occurred in this large exon (fig. S11B). All other 

transcripts that have ≥1 inactivating mutation in the middle 80% of the CDS are classified as 

“uncertain loss”, indicating that evidence for loss is not strong enough as a larger part of the 

CDS remains potentially intact (>60%) or not enough exons exhibit inactivating mutations 

(exon vs. gene loss) (fig. S11B).

Since we do not consider frame-preserving deletions as inactivating mutations anymore, we 

added a new step to re-classify likely non-functional genes where most parts are lost due 

to frame-preserving deletions. To this end, we compute the percentage of reference codons 

that align to sense codons in the query (fig. S13) and classify a transcript as “uncertain loss” 

if this percentage is less than 50% and as “lost” if this percentage is less than 35%. Please 

note that by definition this percentage is 0% in case a gene is entirely deleted and spanning 

orthologous chains exist.

Orthology inference

Classifying genes based on the classification of all transcripts and all 
orthologous loci—In the previous steps, TOGA aligns and classifies transcripts in 

the query genome. For orthology inference, individual predicted transcripts need to be 

consolidated into predicted genes. Importantly, a gene in the reference can have several 

transcripts (isoforms) and a given gene can have several inferred orthologous loci in the 

query. In the third step, TOGA uses all orthologous loci and the classification of all 

transcripts to determine whether the gene has at least one functional ortholog in the query 

and, if so, what the orthology type is (1:1, 1:many, many:1, many:many).

While transcripts in the reference are already assigned to genes in the input gene annotation, 

transcripts in the query need to be assigned to predicted genes. To this end, TOGA assigns 

two transcripts to the same gene, if their coding exons overlap by at least one base on the 

same strand (fig. S24A). This allows TOGA to correctly annotate and distinguish nested 

genes on the same strand and overlapping genes located in antisense orientation (fig. S24B 

and C).

For a given reference gene and one orthologous query locus, TOGA considers the 

classification of all transcripts of this gene that were annotated for this locus and applies 

the following order of precedence: “intact”, “partially intact”, “uncertain loss”, “lost”, 
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“missing”, “paralogous projection” (fig. S11B). Hence, if at least one transcript is classified 

as intact, then TOGA infers that this orthologous locus contains a functional gene ortholog. 

An orthologous locus is inferred to contain a lost gene, if and only if all annotated transcripts 

of the given gene are classified as lost. To determine orthology type, TOGA then considers 

for each reference gene the classification of all its orthologous loci and for each of these 

query loci which reference genes were annotated.

Resolving many:many relationships supported by weak orthology—In the last 

step, TOGA uses the chain orthology probabilities computed by the gradient boosting 

approach (scores) to remove individual orthology relationships within a set of many:many 

orthologous genes that have substantially weaker support. For genes with a putative 

many:many orthology relationship, where ‘cross-gene’ orthology is supported only by 

alignment chains with weak orthology scores, this procedure aims at revealing the 

correct 1:1 orthology relationships. To this end, TOGA builds a bipartite graph with 

nodes representing reference and query genes and edges representing inferred orthology 

relationships weighted by the orthology score of the respective chain (fig. S25A). TOGA 

then tests if edges with substantially weaker orthology scores can be removed from the 

many:many orthology graph. To this end, TOGA subdivides all edges into two sets: set 

1 contains all edges that connect a leaf node (reference or query gene that has only one 

inferred ortholog), set 2 contains all other edges. Let Smin be the minimum orthology score 

of edges in set 1. Branches in set 2 with a score < Smin * 0.9 will be removed (fig. 

S25B), unless one of the following conditions is true. First, no edge will be removed in the 

graph, if this would result in an isolated node that loses all its orthology connections (fig. 

S25D). Second, if two reference genes (say A and B) have more than one mutual orthology 

connection, TOGA does not remove edges that result in separating A and B into different 

orthology groups (fig. S25C). Third, in a complete bipartite graph, where every reference 

gene is connected to every query gene, no edge will be removed as there is no leaf in the 

graph (fig. S25E).

Genome browser visualization

To visualize the annotations and gene/transcript classifications generated by TOGA in a 

genome browser, we extended the UCSC genome browser source code by a new TOGA 

annotation track type. The query annotations are loaded as a standard browser track in 

bed12 format and clicking on a transcript provides the following information: (i) the 

reference transcript with a link to Ensembl (or another user-defined gene resource) and 

reference genome coordinates, (ii) the orthology score of the chain used for projecting this 

transcript to the current locus, together with the features used for the machine learning 

classification, (iii) the transcript classification (intact, partial intact, etc.) together with the 

features that underlie this classification, (iv) a figure that visualizes all exons together 

with their class (present, missing, deleted) and all inactivating mutations, (v) a list of 

all detected inactivating mutations, (vi) the sequence alignment of the reference and the 

predicted query protein, and (vii) nucleotide alignments of individual exons together with 

coordinates, expected regions, %nucleotide identity and %BLOSUM values (fig. S42). This 

implementation comprises a new handler function in UCSC’s hgc.c that determines whether 

the user clicked on a TOGA annotation track and if so fetches all data from three SQL 
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tables that hold the information described above. Instead of storing an exon visualization 

figure file for each transcript, we generate this visualization by including pre-computed 

SVG image code that is stored in the SQL table in the generated html page. The code 

additions to UCSC’s kent source are available on the TOGA github page in subdirectory 

ucsc_browser_visualization. Our UCSC browser mirror at https://genome.senckenberg.de/ 

provides the TOGA track functionality for 488 placental mammal, 21 non-placental 

mammal and 501 bird assemblies. Work is in progress to integrate TOGA tracks into 

UCSC’s GenArk by storing the TOGA data in bigBed files instead of SQL tables.

Computing alignment chains

All 509 placental mammal alignment chains with human (hg38) and with mouse (mm10) 

as the reference were computed with the same parameters that are sufficiently sensitive 

to align orthologous exons between placental mammals (48). Briefly, we used LASTZ 

(version 1.04.00 or 1.04.03) (49) (parameters K = 2400, L = 3000, H = 2000, Y = 9400, 

default lastz scoring matrix) to generate local alignments. These local alignments were 

‘chained’ using axtChain (16) (all parameters default except setting linearGap=loose). Next, 

we applied RepeatFiller (50) (all parameters default) to add previously missed alignments 

between repetitive regions and chainCleaner (51) (all parameters default except setting 

minBrokenChainScore = 75000 and specifying -doPairs) to improve alignment specificity. 

All 501 bird alignment chains with chicken (galGal6) as the reference and all chains with 

other reference species were computed in the same way.

We also compared TOGA using alignment chains that were generated by the UCSC genome 

browser group with less sensitive parameters and without RepeatFiller and chainCleaner. In 

these tests, we used human (hg38) as the reference and mouse (mm10), cow (bosTau9) and 

dog (canFam3) as three query species. As shown in fig. S45, with the sensitive alignment 

chains TOGA annotated 223, 120, and 114 additional orthologous genes for mouse, cow 

and dog, respectively, despite using the same query assemblies. This suggests that higher 

alignment sensitivity, obtained by different lastz parameter settings and the application of 

RepeatFiller and chainCleaner, makes it easier for TOGA to detect and annotate orthologs. 

Therefore, we recommend this workflow to generate chains for new assemblies.

To facilitate running the complex chain-generating procedure, we provide a pipeline that 

uses modified UCSC source code scripts and nextflow to execute the compute cluster-

dependent steps. This pipeline was tested on different Linux systems and is available at 

https://github.com/hillerlab/make_lastz_chains.

Application of TOGA

To use TOGA to infer orthologs and annotate genes in numerous mammalian genomes, 

we used the human GENCODE V38 (Ensembl 104) and the mouse GENCODE VM25 

(Ensembl 100) gene annotation as reference. First, we extracted all transcripts for human 

and mouse from the Ensembl Biomart database (22, 44). In addition, we downloaded 

principal isoforms from the APPRIS database (52). Ideally, the input set of transcripts 

should be as comprehensive as possible to enable TOGA to also annotate alternative exons 

and splice sites; however, including problematic transcripts such as fusion transcripts or 
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potential NMD targets can lead to wrong gene classifications or orthology types. Therefore, 

TOGA provides a script to filter the input set of transcripts as follows. First, all non-coding 

transcripts that lack an annotated CDS are excluded. Second, we excluded isoforms whose 

CDS is too short. To this end, we compute for each gene a CDS length threshold as 80% of 

the CDS length of the principal APPRIS isoform. If the gene has more than one principal 

isoform, we used the principal isoform with the shortest CDS. If APPRIS does not provide 

a principal isoform for the gene, we used the transcript with the longest CDS instead. We 

then excluded all transcripts that have CDS length below this threshold. Third, we excluded 

erroneous transcripts that have a CDS length not divisible by 3. Fourth, we excluded 

potential NMD targets that have the annotated stop codon more than 55 bp upstream of the 

last exon-exon junction. Fifth, we excluded isoforms that have introns shorter than 20 bp, as 

such micro-introns are often used to mask frameshifting mutations. Sixth, if several isoforms 

have an identical coding region, we selected only the one with the longest UTR. This step 

reduces redundancy as TOGA only annotates the CDS. Seventh, we excluded transcripts that 

have in-frame stop codons, unless the stop codon(s) is a TGA codon, in which case it may 

encode selenocysteine. Finally, we excluded transcripts that do not start with an ATG codon 

or end with a stop codon.

For genes with many transcripts, these filters ensure that only proper transcripts will be used 

as input for TOGA. However, it is possible that these filters eliminate all transcripts of a 

gene, for example, if the reference genome has a base error in a constitutive exon. Since this 

would result in missing the gene entirely, we include for such genes the longest transcript 

that has a CDS length divisible by three.

To apply TOGA with other mammals as reference, we obtained transcripts from 

the UCSC table ncbiRefSeq, holding the NCBI Felis catus Annotation Release 

104 (2019–12-10) for cat (felCat9 assembly), NCBI Bos taurus Annotation Release 

106 (2019–12-18) for cow (bosTau9) and NCBI Equus caballus Annotation Release 

103 (2019–12-10) for horse (equCab3). To apply TOGA to birds, we used 

chicken (galGal6 assembly, NCBI accession GCA_000002315.5) as the reference. We 

downloaded the NCBI RefSeq annotation (GCF_000002315.6_GRCg6a_genomic.gff.gz) 

and combined this with the chicken APPRIS principal isoforms. To 

apply TOGA to other species, we downloaded NCBI RefSeq annotations 

(21) for the green sea turtle (GCF_015237465.1_rCheMyd1.pri_genomic.gff.gz), 

red-eared slider turtle (GCF_013100865.1_CAS_Tse_1.0_genomic.gff.gz), 

perch pike (GCF_008315115.2_SLUC_FBN_1.2_genomic.gff.gz), purple sea 

urchin (GCF_000002235.5_Spur_5.0_genomic.gff.gz), tobacco hawkmoth 

(GCF_014839805.1_JHU_Msex_v1.0_genomic.gff.gz), and Arabidopsis thaliana 
(GCF_000001735.4_TAIR10.1_genomic.gff.gz). These transcript sets were filtered as 

described above. For all non-mammalian genomes, we applied the standard TOGA method 

with default parameters and the machine learning model trained on human-mouse orthologs.

The assemblies of human (hg38) and mouse (mm10) also contain alternative haplotypes 

and structural variants (e.g. chr22_KI270876v1_alt). In case a haplotype contains the same 

gene as a reference chromosome (e.g. chr22), TOGA will infer an incorrect 2:1 orthology 

relationship in a query, since the reference gene is contained twice in the input annotation (at 
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different genomic loci). To avoid this, we only considered for human chr1-chr22 and chrX 

and for mouse chr1-chr19 and chrX. Progress in sequencing and assembly allows it now to 

fully assemble both haplotypes of a diploid organism. For such assemblies, we recommend 

generating alignments and running TOGA individually on both haplotype assemblies, as 

recently demonstrated for the common vampire bat (37).

The final input annotations that TOGA used with human as the reference comprised 39,664 

transcripts of 19,464 genes. For mouse, input annotations comprised 33,460 transcripts of 

22,257 genes, and for chicken 38,252 transcripts of 18,039 genes.

Even for highly fragmented genome assemblies, low-scoring chains are extremely unlikely 

to represent orthologous parts of genes. Therefore, we did not classify chains with alignment 

scores <15,000 (a user adjustable threshold). To avoid excessive runtimes, we considered 

for each gene only the 100 highest-scoring orthologous chains in case the gene has more 

than 100 orthologous chains (such genes are part of larger gene families with many:many 

orthology relationships). To reduce runtime, we also considered genes as deleted, if the 

query locus defined by the closest up- and downstream alignment block is less than 5% of 

the total length of the reference CDS.

To count the number of annotated orthologs in a query species in Figure 5, we only 

considered genes that are classified by TOGA as intact, partially intact or uncertain loss.

Gene loss detection accuracy

To evaluate TOGA gene loss detection pipeline sensitivity, we extracted a large set of 

conserved genes as a benchmark (Table S4). To this end, we extracted human genes that are 

annotated by Ensembl version 101 (downloaded July 8th, 2020) as 1:1 orthologs between 

human and mouse (mm10 assembly), rat (rn6), cow (bosTau9), and dog (canFam3). We 

excluded genes for which all isoforms contain very short introns (<50bp) in any of the 

four considered query species. This filter is necessary because such introns usually mask 

assembly base errors (frameshifting or stop codon mutations) or real inactivating mutations 

in lost genes (fig. S27). This resulted in a set of 11,161 human genes that are most 

likely conserved. Therefore, we considered all genes that TOGA classified as lost as false 

positives.

Comparing ortholog detection between TOGA and Ensembl

We downloaded orthologous genes from Ensembl Biomart (version 104, downloaded 

August 12th 2021) for human-rat (rn6 assembly), human-cow (bosTau9 assembly) and 

human-elephant (loxAfr3 assembly) together with the orthology type. Since TOGA but not 

Ensembl distinguishes between 1:many (more than 1 ortholog in the query species) and 

many:1 (one ortholog in the query, but more than one in the reference), we updated those 

Ensembl 1:many types as many:1, for which the orthology group had >1 gene annotated 

in reference and exactly one gene annotated in the query. For human-rat, we extracted for 

each Ensembl ortholog the orthology confidence value, the alignment identity between the 

“target and query gene” and the alignment coverage value from Ensembl Biomart. For each 

human-rat ortholog annotated by TOGA, we extracted TOGA’s orthology probability for the 
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orthologous chain and computed the alignment identity and coverage value. These data are 

plotted in Figure 2D.

For the analysis of gene families, we downloaded gene families from the HUGO 

Gene Nomenclature Committee (53) (http://ftp.ebi.ac.uk/pub/databases/genenames/hgnc/tsv/

hgnc_complete_set.txt) and used the Ensembl gene ID (ENSG) to determine gene families 

that comprise at least 30 members. Subfamilies of Zinc fingers, Olfactory receptors, T cell 

receptor and Immunoglobulin loci, and histones were combined. For genes for which only 

TOGA identified an ortholog, we then used the Ensembl gene ID to determine how many of 

these genes belong to larger gene families.

Running BUSCO on genomes and annotations

For all tests that included mammalian BUSCO, we used BUSCO version 5.2.2 

(23) and the mammalia odb10 dataset (downloaded on June 3rd, 2021) comprising 

9,226 genes. The BUSCO odb10 datasets used for non-mammalian clades are 

specified in Figure 5D. To assess completeness of mammalian genome assemblies, 

we ran BUSCO in genome mode with default parameters using MetaEuk (version 

34c21f2bf34c76f852c0441a29b104e5017f2f6d). To test whether there is a significant 

correlation between the BUSCO completeness and TOGA’s percent intact ancestral genes, 

we used the function cor.test() implemented in R version 4.0.3 and a two-sided test.

To assess completeness of gene annotations, we ran BUSCO in protein mode with default 

parameters and provided the protein sequences in a multi-fasta file as input. In contrast to 

applying BUSCO to a genome assembly, where one expects to find each of the “Universal 

Single-Copy Orthologs” only once in the assembly, applying BUSCO to a gene annotation 

results in the detection of many duplicated genes, because comprehensive annotations 

frequently include more than one transcript (splice variant) per gene. This does not indicate 

a problem but rather a comprehensive transcript annotation. For gene annotations, we 

therefore only report the number of completely detected BUSCO genes.

Comparing the completeness of TOGA, Ensembl and NCBI annotations

For NCBI, we downloaded the annotated RefSeq protein sequences from the ftp server 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/vertebrate_mammalian/) (protein.faa.gz files) for 

118 placental mammals. For Ensembl release 104, we downloaded all annotated proteins 

(pep.all.fa.gz files) from http://ftp.ensembl.org/pub/current_fasta/ for 70 placental mammals. 

For TOGA, we used all annotated proteins obtained with human or with mouse as 

the reference. In addition, we also pooled the two TOGA protein sets. We used the 

NCBI RefSeq identifier and the assembly name provided by Ensembl to assure that all 

comparisons between TOGA and NCBI or Ensembl were done for the same genome 

assembly. We then ran BUSCO with the mammalia odb10 dataset on these sets of proteins, 

as described above.

Adding TOGA as gene annotation evidence

To test whether TOGA as additional gene evidence can improve annotation completeness, 

we repeated the gene annotation procedure used in Jebb et al. (6), once with and once 
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without TOGA. Briefly, we used EVidenceModeler (v1.1.1) (54) to combine previously 

generated gene evidence into a consensus gene set. Gene evidence comprised (i) ab initio 
gene predictions generated by Augustus (v3.3.1) with a bat-specific Augustus model (55), 

(ii) comparative gene predictions generated by Augustus CGP with a multiple genome 

alignment, (iii) full-length transcripts obtained from Iso-seq and RNA-seq data, and (iv) 

aligned protein and cDNA sequences of related bat species. These sources of evidence were 

weighted as in Jebb et al. (6) with ab initio predictions set to weight 1, comparative gene 

predictions and aligned proteins/cDNA sequences set to weight 2, RNA-seq transcripts set to 

weight 10, and Iso-seq transcripts set to weight 12. For the “with TOGA” annotation test, we 

used TOGA with human (hg38) as the reference and added transcripts classified as intact, 

partially intact or uncertain loss as an additional gene evidence with weight 8. We then used 

EVidenceModeler to split the genome into 1 Mb chunks with 150 kb overlap, determined 

consensus gene models and combined them into a genome-wide set. Afterwards, we added 

RNA- and Iso-seq transcripts that are not classified as NMD targets to the consensus 

transcript set. For the annotation that uses TOGA as an additional gene evidence, we also 

added TOGA-annotated transcripts classified as intact, partially intact or uncertain loss to 

the final transcript set. This resulted in two gene annotations for each of the six bats, one 

with and one without TOGA. Both annotations were assessed for completeness by applying 

BUSCO with the mammalian odb10 gene set to the annotated protein sequences.

We also tested the impact of adding aligned human proteins in addition to 

aligned proteins from closely related bats for two bats (Myotis myotis and 

Rhinolophus ferrumequinum). To this end, we downloaded the human reference 

proteome from https://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/

reference_proteomes/Eukaryota/UP000005640/UP000005640_9606.fasta.gz, which 

provides a BUSCO completeness of 99.5%. We used GenomeThreader (56) with the 

sensitive default parameters to align these proteins to the genomes of both bats. The aligned 

proteins were added to the other gene evidence and EVidenceModeler was used to generate 

a consensus gene set.

Joining split genes in fragmented assemblies

To evaluate TOGA’s gene joining procedure, we used the TOGA annotations (human as 

reference) generated for the sperm whale (Physeter macrocephalus) and its closest relative, 

the pygmy sperm whale (Kogia breviceps). We first obtained a set of ‘benchmark’ genes 

for the contiguous Physeter genome GCA_002837175.2 assembly (Table S1). To this end, 

we extracted the longest CDS transcript for all genes that are classified as an intact 1:1 

ortholog, that are located on a single scaffold, and for which all human exons are annotated 

in Physeter. For each transcript in this set, we determined whether TOGA annotated an 

intact 1:1 ortholog in the highly-fragmented Kogia assembly. We then determined whether 

this ortholog is located on a single Kogia scaffold (thus requiring no joining, which serves 

as a positive control) or was joined by TOGA from 2, 3 or ≥4 orthologous fragments. As 

a negative control, we extracted paralogs (instead of orthologs) in Kogia that are located 

on a single scaffold and for which all exons are annotated. To this end, we intentionally 

used TOGA to annotate exons in paralogous loci, obtained via chains whose orthology 

probability is <0.5. We produced pairwise alignments between the Physeter and Kogia 
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sequences using MUSCLE version 3.8.1551 with default parameters and computed the 

nucleotide sequence identity.

To evaluate how effective the gene joining procedure is, we applied TOGA to Kogia and 

other highly-fragmented genomes. For each split gene, where TOGA joined orthologous 

fragments, we determined the CDS length and compared this to the CDS length of the 

longest-CDS transcript of the human ortholog. If the joined gene has a CDS length equal to 

the full-length human ortholog, this percentage is 100%. For comparison, we determined the 

CDS length of the single largest genomic fragment. Only split genes are shown in Figure 4C, 

but Table S10 provides data for all genes.

Generalized linear models

To investigate factors that influence the number of orthologs annotated by TOGA across 

placental mammals, we fitted Poisson and negative binomial generalized linear models 

(GLMs) with log link functions in R (https://www.R-project.org/, version 4.1.2) using the 

packages stats and MASS (version 7.3–54) (57), respectively. Given that the distribution of 

ortholog counts was negatively skewed, we first transformed it by subtracting each value 

from the maximum value across the dataset. We then specified the transformed variable 

as the response in the GLMs. For predictors, we used (i) the divergence time to human 

in millions of years (obtained from the median value listed in http://timetree.org/), (ii) the 

evolutionary distance to human (number of substitutions per neutral site), (iii) the natural 

logarithm of the contig N50 value (base pairs), and (iv) the natural logarithm of the scaffold 

N50 value (base pairs). We fitted models with all possible combinations of these predictors, 

as well as an empty (intercept-only) model. To account for the strong positive correlation 

between evolutionary distance and divergence time, we specified both variables not as 

separate but as interacting predictors in models that included both.

The best-fitting model, determined through model selection according to the Akaike 

Information Criterion (AIC; Table S12), was a negative binomial GLM that included all four 

predictors. The coefficients of this model had P-values < 0.05. The variance-function-based 

R2 value (58), which we calculated using the R package rsq (https://CRAN.R-project.org/

package=rsq, version 2.2), was 11.2%. By varying one predictor at a time and keeping the 

remaining predictors fixed at their mean values (fig. S38), we found that the most influential 

variable was contig N50, whereas the least influential was scaffold N50. Examining the 

distribution of AIC values across candidate GLMs (Table S12) led to the same conclusion. 

Performing the same analysis after excluding Hominoidea (Apes) led to qualitatively 

identical results and only slightly different model coefficients, P-values, and R2 values, 

indicating that our results are not biased by species that are very closely related to the 

reference genome (human). We also repeated this analysis including not only placental 

mammals but also monotremes and marsupials (fig. S38, Table S12).

Ancestral placental mammal genes

To use TOGA to assess mammalian genome completeness and quality, we obtained a 

set of protein-coding genes that likely already existed in the placental mammal ancestor. 

Given that the basal split of placental mammals is not yet resolved (59), we conservatively 

Kirilenko et al. Page 25

Science. Author manuscript; available in PMC 2023 May 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.r-project.org/
http://timetree.org/
https://cran.r-project.org/package=rsq
https://cran.r-project.org/package=rsq


defined ancestral placental mammal genes as those that have an intact reading frame in 

representatives of all three superorders: Boreoeutheria, Afrotheria and Xenarthra. We used 

the human GENCODE V38 (Ensembl 104) gene annotation (22), which implies that each 

gene is intact in Boreoeutheria, and then selected those genes that are classified by TOGA 

as intact or partially intact in at least one afrotherian and at least one xenarthran genome. 

We considered 11 afrotherian species (dugong, manatee, Asiatic elephant, African savanna 

elephant, cape rock hyrax, yellow-spotted hyrax, aardvark, cape golden mole, Talazac’s 

shrew tenrec, small Madagascar hedgehog, cape elephant shrew) and five xenarthran species 

(Hoffmann’s two-fingered sloth, southern two-toed sloth, giant anteater, southern tamandua, 

nine-banded armadillo). This procedure resulted in 18,430 genes (Table S13).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: TOGA utilizes intronic and intergenic alignments to detect orthologous gene loci.
(A) UCSC genome browser view of the human EHD1 gene locus shows five alignment 

chains to mouse. Only the orthologous chr19 locus but not paralogous (chr7/17/2) and 

processed pseudogene (chr5) loci show intronic and intergenic alignments.

(B-D) Illustration of the TOGA pipeline steps that identify orthologous loci, annotate and 

classify transcripts, and resolve weak orthology connections.

(E) Evolutionary distance explains why only the orthologous EHD1 locus shows intronic 

and intergenic alignments.

(F) Orthology detection performance shown as Receiver Operating Characteristics curves 

for single- and multi-exon genes as well as for genes that lack synteny due to deliberately-

introduced translocations.
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(G) Feature importance for detecting orthologous genes and the distribution of the most 

important feature (“global CDS fraction”; proportion of coding exon alignments of all 

aligning chain blocks).

(H) Importance of detecting all orthologous loci and determining reading frame intactness. 

The human STRC and CKMT1B locus is quadruplicated in guinea pig (top four chains). 

TOGA correctly recognizes all four co-orthologous loci. Despite the quadruplication, TOGA 

finds that only one copy of each gene encodes an intact reading frame and correctly infers a 

1:1 orthology relationship.
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Fig. 2: TOGA improves ortholog detection.
(A) Ortholog overlap between Ensembl Compara and TOGA.

(B) Percent of commonly-detected orthologs having the same orthology type.

(C) Percent of orthologs only detected by Ensembl, for which TOGA detects an orthologous 

locus but classifies the gene as lost or missing.

(D) Human-rat orthologs detected by both or only one method. Violin plots compare identity 

and coverage of coding region alignments and orthology confidence probabilities. Note that 

for orthologs only detected by TOGA, these features are not available on Ensembl Biomart, 

and vice versa. Horizontal black lines represent the mean.

(E) Percent of orthologs only detected by TOGA that belong to gene families with ≥30 

members. Pie charts show the proportion of the most frequent gene families.
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Fig. 3: TOGA improves annotation of conserved genes.
(A,B) Completeness of mammalian BUSCO genes in annotations generated by TOGA 

(Y-axis), Ensembl (X-axis in A) and the NCBI Eukaryotic Genome Annotation Pipeline 

(X-axis in B). Each dot represents one species. The set of 70 and 118 species in A and B 

overlaps but is not identical.

(C) Gene evidence used to annotate six bat species. Adding TOGA as evidence increases 

annotation completeness of mammalian BUSCO genes by 3.9% to 11.4%.
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Fig. 4: TOGA accurately joins genes split in fragmented genome assemblies.
(A) The ortholog of human LRCH3 is split into six fragments (evident by six chains) in 

the highly-fragmented pygmy sperm whale (Kogia breviceps) assembly (27). Different chain 

colors represent different scaffolds. TOGA correctly detects and joins all six orthologous 

gene fragments. The highly-contiguous assembly of the closely related sperm whale 

(Physeter macrocephalus) (29), where LRCH3 is located on a single scaffold, shows a 

highly-similar alignment block structure.

(B) Violin plots show the coding exon identity between Kogia breviceps and Physeter 
macrocephalus. Horizontal black lines represent the median. Fragmented orthologs joined 

by TOGA have an identity distribution highly-similar to orthologs already present on a 

single scaffold.

(C) Violin plots compare the coding sequence length before (blue) and after joining split 

genes (orange). Length is relative to the longest transcript of the human ortholog. Codon 

insertions can increase the relative length to >100%.
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Fig. 5: Large-scale application of TOGA to hundreds of genomes.
(A) Human as reference. Left: Box plots with overlaid data points show the number of 

annotated orthologs. Non-placental mammals are highlighted with a yellow background. 

Right: Box plots showing evolutionary distances to human.

(B) Mouse as the reference. Muridae are shown as a separate group.

(C) TOGA with chicken as the reference, applied to 501 bird assemblies.

(D) TOGA for other species using NCBI RefSeq annotations (21) as the reference. BUSCO 

gene completeness of the reference annotation provides an upper bound for the completeness 

of TOGA’s query annotation.
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Fig. 6: TOGA provides a superior measure of mammalian assembly quality.
(A) Comparison of the percent complete BUSCO genes and TOGA’s percent intact ancestral 

genes for 488 placental mammal assemblies. Each dot represents one assembly.

(B) Violin plots of BUSCO’s and TOGA’s completeness values. Horizontal black lines 

represent the median.

(C) BUSCO’s and TOGA’s completeness values for 50 assemblies that are top-ranked by 

BUSCO. Three pairs of closely related species are highlighted that have different assembly 

contiguity (contig N50) values and are distinguishable in terms of gene completeness by 

TOGA, but not by BUSCO.

(D-F) TOGA distinguishes between genes with missing sequences and genes with 

inactivating mutations. This highlights assemblies with a higher incompleteness or base 

error rate that is often not detectable by the BUSCO metrics.
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