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MATHEMATICAT, LEARNING THEORY
by

Richard C. Atkinson znd Robert C. Calfee

Stanford University

Mathematieal learning theory probably began in 1885 when Herman
Ebbinghaus attempted to fit some data fyom an expefiment on recall with
a8 simple logarithmic function. However, the term has come to be asscciated
closely with a number of recent develcpments in psychology, and it is
these developments and their immediste historiecal antecedents that we
will consider in this paper. In particular, we will discuss the role of
mathemstical models in contemporary learning theory, with special reference
to the influence of such models on research and theory. A number of points
that we wish to make clear will then be illustrated by a detailed con-
sideration of a specific experiment,. In this example, we will show
how the design and analysis of experiﬁents are related to a mathematical
approach to learning.

Prior to 1950, the most significant attempt to formulate a mathe-
matical theory of learning wés that of Clark L. Hull. His theoretical
system and variations of it (Hull, 1943; Spence, 1956; Logan, 1959) were
rbased on the postulation of a set of unobservable intervening variables,
psychological constructs such as habit and drive. These intervening
variables‘were related to the observable dependent and independent
variables by certain functions that were to be empirically determined.

Within the Hullian framework behavior basically‘ ﬁas a deterministic

* The preparation of this document was supported by the National Institute
of Health (Grant M-5184) and by the National Science Foundation (Grant
2426L). The paper is a contribution to a forthcoming book edited by
E. Nagel and B. B. Wolman entitled "Psychology and the Theory of Science"
(Basic Books, Inc.).



process, though a probabiiistic overlay was added. All response measures
were funections of a single underlying factor, reaciion potential, and it
was usually assumed that, since all response measures should be correlated,
the experimenter was free to éhoose the measure that he thought most
appropriate.
| In general, experiments designed to teét theoriés in the pre-1950

ﬁeriod wére of two fyﬁes:.thé comparative experiment.and the factorial
e#periment. (For a historical account of this_period see Hilgard, 1956,)
In the compafatife ex]p:_—:-:r':i_merlt_,.o a situation was arranged‘in which oﬁ?osing
predictions could be made by different theories. Few of the experiments
proved to be as crucial as they were designed to be, since the protagonists
were quite skillful at finding an ipterprétation of the theory that
accounted fbr the results,_and the theories themselves were jgitg resilient.
The consegquence of this experimentation ﬁas that_it shortly became
difficult to distinguish one theoretical system from another (Seward, 1956)u.

H As an example of the factorial experiment, we may mention the effortsr
tp determine whether drive_and incentive combine additively or muitipli-
catively. If.the latter éondition holds, one would expect a siénificant
intefaction term when a factorial design is analyzed by the analysis of
variance techniéue. (A factorial design is one in which several levels
6f each variéﬁle‘are represented in all.possible combinations,) A non-
significant-interaction would be iﬁterpreted as evidence for the additive
hypothesié° Clearly,.the outcome_depended on numerous conditions other
than the éssumption.being tested;.sﬁch as the chéice of levels of the
variables, ﬁhe degree of egperimental coﬁtrol, and proﬁably the response
Ingééure chesen. In parficular;_to the extent that experimental céntrol

Wés'poor,_the additive hyﬁothesis would be favored.
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" In the late 1940's and early 50's, there appeared a group of new
developments that have come to be called mathematical learning theory.
Let us at the outset state that we cﬁnnot hope to do justice to all the
investigators whose work properly.falls within this category. And we
can only menticn iﬁ passing that in addition to developing a number of
new learning situations for their own purposes, experimenters have
applied mathematical thecories of one type or ancother to a wide variety of
standard learning paradigms, such as classical conditioning, avoidance
conditioning, discrimination learning, stimulus generalization, paired
associate learning, memory processes and concept formation. (For recent
reviews, see Bush, 1960; Estes, 1959, 1962; Restle, 1959.)

The movement has been characterized by & number of Ffeatures. Be-
havior is seen as an essentially probsbilistic phenomenon. The primary
behavioral measure is taken to be the probability of occurrence of a mem-
ber of some response class. Theories are stated in a way that has made
mathematical development feasible., There has been a tendency to inter-
pret behavioral phenomenagrnot-by reference to underlying molecular

processes, but by specification of the rules of operation (Estes, 1962).

These rules are simple mathematical laws whose implications describe the
overt response character of a behavioral system, much as Newton's laws
describe the activity of the solar-systemé

In a sense, mathematical learning theory is a misnomer. One should
not. imagine that mathematical learning theory represents a position
that is opposed to other learning theories. What is actually being ex-
pressed is an increased dependence upon the use of mathematics in the

formulation of learning theory irrespective of whether the theory is



orlented toward stimulus-response notions, cognitive constructs, expect-
ancies, of some other approach. As we shall see, issues that in the past
have crucially differentiated oppdsing theoretical systems,‘ﬁhen for-
mulated in a precise mathematical fashion can live {together quite com-
fortably within a single system. The use of mathematics has allowed the
psychologist to analyze more adequately the content of his statements,
and to determine whether a particular set of data are consistent with
these statements. VIn particular, mathematical models have been of
heuristic importance in the reformulation and extention of theory. A
‘mathematical model consists of a set of axiome that are generated by the
theory. By means of a .calculus such as probability theory, predictions
from the model are cbtained by straightforward mathematical deduction.
Even though the theory may be qualitatively stated, so that a given
model is not the only one which might be inferpretable from the theory,
the model serves to make explicit the assumptions that are in fact being
made. If additional or dlifferent assumptions hecome necessary, then the
form of these, as well as their implications, become evident.

- Two main lines .of development in mathematical learning theory that
appeared almost simultaneously are those associated with Bush and
Mosteller (1951, 1955) and Estes (1950, 1959). Bush and Mosteller began
‘with what Restle (1959) has called an abstract theory. For reasons of
mathematical simplicity, they assumed that the probabiliiy of a given
response on a trial could always be expressed as a linear function of
the probability of the same response on the preceeding trial. The fdrm
of the linear operstor (i.e., the parameter values of the function) de-

pended on the type of reinforcement event that intervened. Though the




theory was abstract, Bush and Mosteller showed that.derivations and
parameter estimation broblems' could be greatly simplified if certain.
restraints based.on extra-theoretical considerations wefe imposed on the
models. These considerations were of a sort thaf made sense psycho-.
logically. An example is the "equal alpha" condition; where for certain
two-choice problems, (e.g., a T-maze) the symmetry of the situation
permite the assumption that the learning rate parameters associated with
the two responses are: equal.

Estes? theoretical formulation which has come to be known as Stimulus
Sampling Theory was of an entirely different form. The environment was
represented by a large population of discrete, mutually exclusive con-
ceptual. entities whiech he called stimulus elements. Each element was
conditiconed. to cne and only one response class. The organism took a
sample from the set of elemeats; and the probability of occurrence of
any response class was simply the proportion of elements in the sample
which were conditioned to that class. The reinforcement event ascted
upon the conditioning relstions of the sample of elements in some
specified fashiou (e.g., all elements in the sample became conditioned
to the response class which was designated as correct) and the sample was
then returned to the population for resampling at a later time. 1In
Estes’ initial development of these notions,; the function describing
changes in response probability was a linear function similar to the
Bush-Mosteller model.

Let us now mention a number of ways in which these systems repre-
sented‘advances over earlier formulations. A feature of psychclogical
theories from Freud through Hull has been the postulation of multiple

unobservable processes; that may interact{.in some complicated fashion

>



to elther complement or oppose each other. At a qualitative level of
analysls, by a suitable post facto weighting of such processes, one may
~account for virtually any experimental result. Mathematical models have
aliowed theorists %o introduce and evaluate such notions in an unsmbiguous
manhner. Q(One may assume more than one underlying process, and then deter-
mine the contribution of each process uneguivocably.

Another advance brought about by mathematical developments in
learning theory concerns changes in the organization .and anaelysis of
“.data. In this regard, perhaps the most important role of mathematical
models has been to prﬁvide a framework within which the detailed trial-
by-trial aspects of behavior can be serutinized (Anderson, 1959). An
experiment designed only to establish the existence of a gross relation
between two varisbles, such as response speed and.reward magnitude,
ignores the many sequential properties of psychological phenomenza. Exam-
ination of these properties is a significant step forward in that 1t
provides a source of behavioral information that cannot be c¢btained from
an analysis of average performance- curves. Theories stated only in-
gualitative terms do not provide an adeduate means for analyzing and
~interpreting such complex sequential phenomens.

In this connection we may note Estes' distinction (1959) between
three levels of prediction from z mathematical model: extrapolation,
éverdetermination, and situational invariance. Extrapolation refers
to the ability of a model to account for those statistics from which
parameters are estimated. (This requirement is not as simple as it may
seem. For example, no choice of parameters for a linear equation will

give & éatisfactory-fit to the typical learning curve.) Overdetermination



refers to‘prediction, within the same body of data, of statistics that
are independent of those yielding the parameter-éstimates. Finally,
gitvational invariance is the degree to which parameter estimates made -
in one experimental situatiocn can .account for data collected in other.
experiments. The mixed record of successes and failures of mathematical
models shows that these requirements are not trivial. For example, in
numerous studies (Anderson, 1960; Suppes and Atkinson, 1960; Atkinson -
and Estes, 1963) the learning rate parameters that satisfy the mean
learning curve requirements have proven inadequate in accounting for
asymptotiec sequential dependency statistics.

Among recent trends within the area of stimulus sampling theory,
we may mention the introduction of models where the number of stimulus
elements in the population is severely limited, leading in the limit to
the one-element model. In many 1éarning situations, it is reasonable.
to suppose that the subject does not sample randomly from a large
population bf different cues; but restriects his attention to a few homo-
geneous aspects of the enviromment. In particular, the subject may
distinguish between stimulus evente which consist of the same "elements”,
but that have Gifferent patferns. For example, in a paired-associate
task, one can aséume that each stimulus word is represented by a single
battern that.is sampled with probability "1l when the stimulus word is
displeyed. 1In aralyzing such tasks, there has been a shift from linear
operator models to Markov models. In the latter models, the description
of the organism on a particular trial is phrased in terms of the momentary.
state of each stimulus element; taken together, these descriptions con-

stitute the state of the organism. It is usually assumed tThat the change



in response probabilities from trial n to trial n + 1 of an experiment
is dependent only on the state of the organism on trial n, and a .
transition matrix that specifies the change in states associated with each
reinforcement event. This assumption, plus the restriection on the num-
ber of elements in the populétion, have served to reduce the number of
"states in the Markov process to a manageable number. The resulting

models have proven mathematically tractable, and have given an excellent
account of a wide array of data.

In addition to the specification on the stimulus side of the exact
cues that are being sampled, there has been a relaxation of the original
stimulus sampling assumption that each element is conditioned in an
all-or-none fashion to scme response class. For example, one may postu-
late neutral states, where if an element is sampled, the subject simply
responds at random f}om among the available response alternatives (LaBerge,
195%). An element may be "strongly" conditioned to a response in Whiéh
case, for example, at least two negative reinforcements must occur be-
fore.the element changes conditioning to another response class, versus

" a "weak" state, where a single error may produce & change in conditioning,
(Atkinson and Estes, 1963).

As an example of the effect of the use of models on experimental
design, we may mention the RBower pailred-associate experiments (1961,
1962). - In these experiments an attempt was made to evaluate a one-
element stimilus sampling model in which the learning is assumed to
oceur abruptly, in an all-or-none fashion; the ability of such a model
to acecount for paired-assocciate data has been extremely gcod. It is

important to note several features of Bower's experiments that are



relevant to. the effects of a mathematical approach on research technigques.
Firet, the experiments were designed explicitiy to test a particulsy
model. In the classical paired-associate task, both stimuli and responses
frequently were verbal items such as nonsense syllables or Tamiliar
words. It seemed to Bower that at least two processes were. taking

place in the traditional situation--~learning of the response set and

the éssociation of responses with the appropriate stimuli. The one-
element model was designed to account only for the latter process. Hence
" response items were chosen that one could assume would already be part

of the subject's response repertolre. TFurther in terms of the model it
was desirable to treai each subject's protocel as though the several
stimulus-response palrs were learned independently. Consequently,

stimuli were chosen that,; in other situwations, showed minimum inter- -
ference with esch other. Thus the theory as interpreted in the model
dictated the criteria for the selection of stimulus and response items
that would hbe gppropriate to test Bower's ideas about the associative
phase of paired associate learning. The eriticism scmetimes made that
such experiments are contrived and artificial fgzils to recognize. the

goal of laboratory research, which is to restrict the introduction of
extraneous variables that are not relevant to the hypothesis being

considered.

In the remaining part of this paper we shall try to give some
concrete illustrations of the role of models in psychological research.
In order to do this it will be necessary to describe a typical experi-
mental problem, outline several alternative models, and then indicate

some of the strategiles and tactics involved in making a comparison .



among the models. The task we select isg a highly special case of
paired-associzte learning. The reason for selecting this experimental
-.problem is that it illustrates many of the problems in psychological
theorizing without introdueing oo much mathematical complexity.

The experiment involves a list of 18 different psired-associate
items. The stimulus member of each pair is a single Greek letter and
the response is the number 1.or 2. The subjects are t0ld the response
alternatives available tco them, and each number ocvcurs equally often as
the to-be-learned response. Hence the probability of a correct response
1
5
Two types of trials are defined. On a study trial the 18 letter-

by guessing is

number pairs are exhibited singly in a random order. The subject is
instructed simply to asscciate each letter with the appropriate number
and is not regquired to make a response. 0On a test trial the letters
alone are presented singly in a new random order and the subject attempts
to give the correct number to each letter. The subject is required to
respond to each letter on a. test trial (even if he is uncertain and
must guess), but he is not told whether his responge is correct.

In the experiment we shall examine, two study trials were given
Tollowed by four tes£ trials; the standard notation for this type of
cexperiment is simply RlRETlTéTBTh (Jones, 1962). TIf we represent
a . correct response by ¢ and an error by e, then the response protocol
for an individual stimulus item (i.e., a particular Greek letter) over
the four test trials will consist of an ordered four-tuple of c's and

e's. For example, the protocol e € would indicate a correct

1%°%3
response on Té -and incorrect responses on leT5, and Tuo The role

of theory in this situation ig to predict the types of sequences that

will cceur and their relative frequencies.
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One feature of our experimental situstion that has been established
by several studies is that if we run enough test trials in sequence,
then in time the subject will bhecome congistent in his response tQ each
stimulus. For some stimuli the stereotyped response is the correct one;
for other stimuli it is incorrect.

The models that we shall.examine ares imbedded in the controversy
regarding all-or-none learning versus incremental learning. Of late,
there have been some particulsrly important studies dealing with this
issue but we will not attempt to review them here. Rather, for
illustrative purposes, we will take a naive spproach and cutline one
model that might be viewed &s characterizing the incremental position
and another that typifies the all-or-none viewpoint.

The incréementsl model is in the spirit of Hullian theory and is
very similar to the esrly work of Bush and Mosteller (1951, 1955). Ve
assume that at the start of a trial there is a fixed number p. associated
with each stimulus item that specifies the probability that a correct
response will be made to that item. The effect of a study trial is to
increment fhat probability by a consfant proportion © of the total
possible change. GSpecifically, i1f p 1is the probsbility hefore a
study trial; then after a single study triasl the new probabilit& will be
p + 8(1l-p). That is, the new probability is the old one plus a constant
8 of the possible'increase° Ig mathemstical terminclogy, we say that
the effect of a study trial iz to apply an éperator @ Go the operand
p to yield a new quantity Q(p); i;e,, Qp) = p + 68(2-p). As will
-be evident later, it will be mofe convenient Lo write this reinforpement

operator in the following form:
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a(p) = (1-8)p + 6 (1)

To obtain the new probability after two successive study trials we

apply the operator @ twice, namely

2 : 2
7 (p) =  [Qp)] = (1-6)" p + (1-8) + @
2
=1 - (1-p)(1-6)
By induction one can show that after n successive study trials

Qo) = 1 - (1-p)(1-6)* .

For our experimental situation the initial probability of guessing correctly
.1 1 ‘

is = and hence we would set p = 5- Thus, for this model the prob-
abiiity of = correct response on the first test trial following =n

successive study ftrials will be

Pf(cl) =1 - %(1-e)n . _ (2)

The all-or-none learning.process that we shall consider is one
that has been actively investigated by Estes (1960, 1961), Rower (1961,
1962); Restle (1963), Suppes and Ginsberg (1963) and others. For this
medel we assume that each stimulus item is in one of ftwo conditioning'
states: c or g. In state g the stimulus is conditioned to the
correct resﬁonse and on a test trial will elicit that response with
probabiiity-l, In state g the stimulus is not conditioned to any
response, and in this state the probébility of a correct response is
55 i.e., a correct response will occur at the chance level. All items.
-at the start of the experiment are in state g, but on each study trial

there exists a probability & that conditioning will ceccur. Thus,
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the probability that a particular stimulus item is in state C after
one study trial is &, after two study trials 6 + (1-6)8, after three
study trials 0 + &(1-8) + 9(1—9)2, ete. More generally the probability

of being in state C after n successive study trials is
n
Pr{C )} =1 - (1-8)" . (3)

For this model the expected probagbility of a correct response on test

trial Ii after n successive study trials would be

Pr{c,) = 1-(1~9)n + %(1;9)n

1)

=1 - 5(1-e)" . (4)

That is, the probability of being in state g plus % tiﬁes the
probability of being in state gc The all-or-none character of this
model is represented by the fact that for the underlying states the
probability of a correct response can take on only two values; either
1

5 it the'subject is in state @, or 1 1if the subject is in state .

Further, the transition from _g to C occurs in an all-or-none fashion
on & single trial.

To summarize to this point, for the incremental model two study
trials generate a fixed number associzted with each stimulus item.
that specifies the probability of a correct response on the first trial.

We shall call this nﬁmber ¢, and it 1s given by Equaticn 2 when

1 :2; iue.,

| ¢ = .23:(1-9)2 +6(i-8) +9 . - (5)

135



For the all-or-none model, each stimulus item will be in either state

C or state G.  If the item is in state

(Ko!

a correct response occurs

on a test trial; if the item is in state G & correct response occurs
. ‘ot 1 1 . .

with probability 5e The probability of being in state ( after two

study trials will be called x and iIs givern by Equation 3; i.e.,
®x =8 + (1-8)9 . (6)

The next question is with regard to the events that occur on a
test trial. As noted earlier;, it is known that behavior eventually
becomes stereotyped if sufficiently long series of test trials are run,
and this observation suggests that systematic changes may be occurring
over test trials. A plausible assumption that accounts for the changes
is that in the absence of an experimenter-determined reinforcing event
(i.e., the experimenter telling the subject which response was correct)
the emitted response is the response reinforced. This last phrase
pharacterizes much of the theoretical work of contiguity theorists such
as Guthrie (1935); the idea being thaﬁ the last response to take place in
the presence of.a stimulus will remain associated with it and will tend to
reoccur when the stimulus is presented again.

The assumption that the emitted response is the one reinforced on
a test trial delimits a class of qualitative theories that can be ex-
perirentally investigated. But this class of theories is large and
difficult tc characterize; also, too frequently new experimental findings
can scomehow be made tc agree with almost any of the theoretical positions.
Thus, much is to be gained by taking a qualitative assumption concerning

test trial effects and examining the consequences of stating it
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mathematically. To illustrate, assume that = quglitative theory pre-
dicts a differenée betweeﬁ two experimental groupé; an experiment is
run to test for the difference and none is obtained. What coﬁclusion
can be arawn? Either that no difference exists or that if it exists it
is too small to be detected by the experimental procedures utilized.
In contrast, with a guantitative theory we know not énly the direction
of the predicted difference but alsc the exact magnitude. Consequently
the equipment and‘experimental procedure can be designed so.fhat they
ére sufficiently sensitive to detect the difference if if is present.
Then if.no difference is founa there can be no alibi that the effect
might be tco small tc be detected. Experiments that find no differences
are ambiguous in evaluaiing qualitative predictions; fpf qﬁanﬁitative
theories such resuits have an exacf inferpretation. | |

For thé.inéremental modei we shall assume the same.reinforcing
oﬁerator on fest trials as.on study trials. Specifically, if: p 1is
the probability of a correct response and that response occﬁrs on é
test trial, then the ﬁew probability will be Q(p) = (1-a)p + @ where
a. is.thé parameter describing leérning under. seif reinforcementn It
an incorrect response occurs (which has probabilify q = 1-p), then
fhat response.will be reinforced, which means that § wiil be applied_
to q; di.e.; Qq) = (I-a)g + d. By inspection of the last expression
we sgsee that reinforecing an incorrect response is equivalenf-to applying
the operator Q‘(p) = (l-d)po Stating our ideés exactly, if p 1is
the probability of é correct.response on a teét frial,.then p* (fhe

value at the end of the test trial) will be



Q(p) = (1-a)p + @, if the correct response occurs.

Q'(p) = (1-@)p , if the incorrect response occurs.

From these equations it can be shown that the probability of a correct
résponse Wili approach 1 or 0 .as the run of test trials becomes

:large. Thus, asymptoticaliy some items will absorb con the correct res-
ponse and others on en incorrect respbnse, If © denotes the probability
of a_cbrrect response to a specifiec stimulus item at the start of the

test sequence, then the probasbility that this item absorbs on the correct
'fesponse will be .

'Our assumption that on a test trial the emitted response is rein-
Torced slsc has a natural intefpretation in terms of the all-or-none
deel. As before;, we assume that reinforcemént of a response conditions
the stimulus to that response with some prébability, say p. If the
stimnius is cbnditi&ned to the correcf respoﬁse on a . test trial (i.e.,
in _state g) then that response occurs and by reinforciﬁg it we guarantee

that it remains in state (. If the stimwlus item is in state G, then

with probability % the correct response occurs, and by assumption this

is reinforcing on a . test trial; hence with probability B8 the item

ﬁoves to state (. Now it is obvious that:we must also allow for the
: 6ccurrence of an incorréct response; 1if &n item is in state g and an
incorrect response occurs, then the item will become conditioned with
probabiliﬁy 8 <o the incorrect response. Therefore, in addition to
stafes g and g which characterize study trials we also need a state

E +to denote conditioning to an incorrect response. These notions are

embodied in the following transition matrix:

16
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le!
ftd

¢ 1 0 0
e (B e F ®
E 0 0 1

The rows indicate the state at the start of a test trial and the columns
the state at. the end of the trial° Fach entry denotes.the f:obaﬁility
of a traﬁsition from one state to another. 1In state C (of E) no
ghange can occur on a test trial. Im state G the item may become con-
ditioned to the correct response if it.occurs (with probability %) and
conditioning is effective (with probability g); similarly in state

g the item may become conditioned to the incorrect response if it occurs
and conditioning is effective. As in the éase of the linesr model each
stimulus item eventually absorbs in either state 2 or Eo Thus, after
a.leong run of test trials, a given stimulus item will eventually elicit
elther a correct or an incorrecﬁ response consistently.

These then are the two models we shall examine. From a qualitative
viewpoint each reprresents the same psychological process; i.e., they both
assume that a reinforcement tends to increase the likelihood of the rein-
forced response and they both assume the same subject-determined rein-
forcement schedules. However, ﬁhe exact natﬁre of the change that
'océurs following reinforcement is guite different for the two models.
This is illustrated by the fact that the probability of a correct res-
ponse in the inérementallmodel may take on any value from O to 1,

whereas for the sll-or-none model it can take on only the values O,

1

5s  OF -l. This fact alone indicates that there are substantial
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differences between the two models and it becomes important to determine
which interpretation of the reinforcing event best approximates the
actual learning process.

In order to compare these models we need to derive some predictions.
Consider first the incremental model and the possible ocutcomes for a
given stimulus item on trials Tl and Hbu What is the probability of
two correct responses? Well, a correct response will occur on Ty with
probability o (seé Equation 5) and since the correct response occufred
on Tl’ then the pfobability of a correct response on Té will he
(1-a)o + @ (see Equation 7). The probability of two correct responses
. is simply the product of these itwo probabilities. Similarly,; the
probability of an incorrect followed By a correct is (1-p) times
(1-a)p; 1.e., the probability of an iﬁcorrect response on T, times the

2

probability of a correct response on T. given that the preceding trial

was incorrect. In this way.we obtain the following expressions.

i

Pr(eye,) = 9[(1-0)p + al

185) = 0[1 - ((1-o)p + a}] ()
(1-9) [ (1-a)o]

(1-9)[1 - (1-a)o]

Pr(c

il

Pr(e

1% )
Pr(e

It

1%2)

By similar methods expressions can be cobtained for the probability of
any sequence of responses over the four test ‘l_:rials° We display & few
of these equations to indicate that even for a simple model of this
sort the elaboration of the theory leads to predictions whose con-
sequences are too complicated to be understoqd without the tools of

mathematical analysis:
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Pr(e,c.coc ) cp['(l—a)cp+oc][(1-a)2cp+(l-cx)cx+a][(l-oc)5cp+(1-cx)2a+(l—oz)oc+a]
172737,

Pr(cicyezey) = ol (L-a)ptar][ (1-0) (L) b} [1-(1-01) P (1-t) - (L-0) o] (10)

Pr(elegeBej_l_) = (lncp)[l-(l-o:)q)][l-(l-ox)ggo][l—(l—a)icp]

Predictions for the same quantities can be obtained for the all-
or-none model. Consider first‘the possible outcomes for a given stimulus
item4on trials Ti and Iée The Probability of twe correct fésponses
in a row is x + (l-x)%[ﬁ + (l—B)%]. That is, with probability x the
stimulus item is in state c before the first test trial and hence will
generate correct responses on all subséquent'trials; with probability
“l-x  the stimulus item startslin state G and a correect response occurs

on T with probability %, further a correct response can Occur on

1
T, if (1) conditioning was effective on T, (i.e., with probability
B) or (2) if conditioning was not effective and by chance the subject
again guessed correctly on the next trial. Proceding in this way we

cbtain the following expressicns:

Pr(c,c,) = x + 5(1-x)[B + (1-B)5]

Pr(c,e,) = p(1-x)(1-p)

N (11)
Pr(e,c,) = 7(1-x)(1-8)
Pr(eje,) = 2(1-x)[B + (1-8)5]

Using the same methods one can obtain expressions for the sequence of

events over the four test trials. For example

19




Pr(clc2c5ch) =X + %(l—x)[ﬁ + %ﬁ(l-ﬁ) + %(1-5)2{5 + (1-5)%}]

Pr(cjcyezey) = i%(l"X)(l-B)i'
) (12)

-

Priejepesey) = %(l'xjfﬁ +28(1-8) + F(1-8)° (8 + (1-B)311 .

Armed with these equations we now face the task of deciding which
mgdel provides the best account of our data. Table 1 presents observed
frequencies for two identical experiments, one using 60 college students
at Stanférd University_and the other 60 fourth grade children from the
Oakland City schools®. As indicated earlier each subject was run on
.18 paired—associates.so that over a group of subjects we have information
on 18 X 60 = 1080 test trial sequences. The table gives the freguency
with which each sequence occurred in the fwo groups. In subsequent
analyses we assume that the items in the list are of equal difficulty
and that all subjects in a group learn at the same rate; i.e., we
postulate that the values of the various parameters are‘the same for all
subjects in the college group and for zll subjects in the grade sghool
group. Of course, this assumption is suspect, but for purposes of this
paper it seems justified since it greatly simplifies subsequent analyses.
For with this assumption the response sequence associéted with any given
stimulue item can be viewed as a sample of size one from a population
of sequences all generated by the same underlying process. Aldiscussion
of the problems involved in treating individual data and group data is

given in Suppes and Atkinson (1960)a

This study was conducted, by Duncan Hansen of Stanford University.
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TABIE 1

Observed frequencies for response sequences.

Sequence T College Grade School
Code 1 4 Group Group
1 c c 633 L7k
2 c e 22 51
3 e c 19 59
L c e 28 38
5 c c 16 30
6 e e 19 27
7 d c 23 20
8 c = 5h 71
9 e c 43 Lo
10 e e 6 15
11 e C 11 24
12 e e 10 53
13 e c 26 23
14 e e 11 19
15 e c 14 15
16 e e 145 161
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In order to make predictions for the- data displayed 'in Teble 1 we-
need estimates of the parameters ¢ and @ for the incremental model
and k and B for the all-or-none medel. There are many ways of making
these estimates, but for the present problem a simple methed is to select
the pair of parsmeter values that minimizes the X2 function®. To
illustrate the method, let pi(a,Q) denote theoretical expressions for
the four-response probabilities gifen in BEquation 10O, vhere the subscript
i refers to code numbers assigned in Table 1. Further, let Oi
(i=l +to 16) denote the cbserved frequehcies for one of the groups in

Teble 1 snd let T = 0; + 0yt v 0y ' Then we define the function

16 [1p;(c9) - 0, 1

5 .
X () = 3

(13)

and select our estimates of @ and ¢ so0 that they jointly minimize

the X? function. Under the null hypothesis this minimum X2 has the

usuel limiting distribution with 16 - 3 degrees of freedom. (If n

parameters are estimated then there sre 16 - n - 1 degrees of freedom.)
Using this method we obtain parameter estimates for the incremental-

model with the following minimum X2 values:.

College ) Orade School
o A5583 | 2351
@ - T05 636
minimum X? 256.3 192.7

For a review of some of these statistical methods as they apply to
learning models see Chapter 2 in Suppes and Atkinson (1960).
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Using the same minimum X? method for the all-or-none model, we obtain the

following parameter estimates:

Colliege Grade School
B .291 .191
X o9 297
minimum % ho. L 67.0

The above parameter estimates generate the predictions presented
in Table 2. For both the College and the Grade School groups the all-
or-none model provideg the closest correspondence between predicted and
observed proportions on the four-response data. The superiority of the
all-or-none model is also reflected in the obtained minimum Xg’s. For
the College group the X2 for the incremental model is more than six
times that for the all-or-none model; whereas, for the Grade School
group the ratio is almost three to oﬁe in favor of the all-or-none
model. Since all the X?'s are based on the same number of degrees of
- freedom, it seems reasonable to conclude that the all-or-none model pro-
vides the best account of these data. Further, independent of any
comparative analysis of the models, the correspondence hetween the all-
or-none predictions and these dats is reasonably good in terms of the
degree of accuracy that psychologists have come to expect in research
of this sort. See Atkinson and Estes (1963) for a discussion of this
point.

Finally, we should note that the paramefer estimates for hoth the
all-or-none model gnd the increﬁental model have the expected properties.

For the all-or-none model the estimate of x  1s larger for the College

<
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Observed proportions and predicticns for the Incremental

Model gnd the All-or-None Model.

TABLE 2

Sequence College Grade School
Code Incremental | All-or-None Incremental | All-or-None
Observed |Predictions | Predicticms |{Observed |[Predictions |Predictions

1 .586 L76 549 439 .359 426
2 020 035 .013 047 Ol 023
3 -018 =060 .013 -036 070 .023
b 026 .COb .02k -035 .009 L0%h

5 015 045 .02k 028 .052 034

6 .018 020 .013 .025 .026 .023

7 .021 .020 .013 019 026 .02%
8 .050 Nt .05k .066 .051 061
9 .0ho 066 054 037 071 .061
10 006 .018 013 .01k .025 .023
11 .010 .018 013 .022 .025 .023
12 009 027 024 031 .035 034
13 024 025 024 021 031 034
14 .010 .020 013 .018 .028 .023
15 013 020 .013 Noit 028 023
16 134 102 140 149 121 .129
& 256.3 4Ok 192.7 67.0
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group than for the Grade School group, reflecting the fact that more
learning occurred for the former group on the study trials. Also,'fhé
parameter B  characterizing the conditioning rate on test trisls is
larger for the College group, indicating that the postuleted self-
“reinforeing event had more effec£ for the College students. Similarly,
for the incremental model the estimates of both ¢ and « are greater
for the College group than for the Grade School group.

- What conclusions can be drawn from our analysis of these iwo
models? Should readers unot familiér with psycholeogy conclude that in-
cremental models are clearly less satisfactory than all-or-none models
and that subsequent theory construction should be along all-or-none lines
of "development? This might be one conclusion, but few psychologists
~inelined toward incremental theories of learning would be in agreement.

. They, of course; would want to see many more comparisons between the two
models on a variety of experimental data. Further, they probably would
argue that the incremental model presented here was too'simple and that
a more sophisticated interpretation of incremental theory would lead to
much better results. On this last point, psychologists favoring an
all-or-none position would agree, but they; in turn, would point out
that similar improvements easily could be made for the all-or-none model.
Further; they would emphasize that both models estimated the same number
of parasmeters and are of similar mathematical difficulty, and that these
facts are impoftant when one evaluates the clear superiority of the all-

or-none process.
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It is not necessary to pursue such arguments to realize that a
single comparison of this sort is unlikely to change anyone’s theofetical
disposition. Only as more evidence accumulates and more variations of each
model are investigated will it become clear which approsch is more
parisimonious. Certainly since the time of Henri Poincaré we have known
that no theory is correct in an absolute sense. Rather, some theories
tend to be more useful than others in accomplishing the goals of the
sclentific enterprise if they (1) lead to natural and unambiguous inter-
pretations of phenomena, (2) havé a tractable logical structure, and
(3) suggest new experimental dimensions. The success of the Relativity
Théory was not due to the fact that the new concepts of space and time
were in-any sense more true than the old ones. For, any of the phenomensa
that could be explained by the new theory also could be explained on the
basis of absolute dimensions of space and time. But such explanations
became extremely cumbersome and artificial when contrasted to the ex-
blanations offered by Relativity Theory.

If we accept the notion that a single comparison of the sort
offered in this paper cannot be regarded as crucial in selecting between
models, then what is the next step? As indicated earlier, one obvious
requirement is to extend the application of the two models to many other
types of experiments. As more experimental comparisons are mede a better
understanding of the properties of each model will be obtained which will
give usla measure of their relative power. However, in addition to
extending the range of application it also 1s important to take each
experiment and, by inspection of the discrepancies between theory and

observation, obtain some clues for modifications that will lead to s
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better model. This part of the scientific enterprise is extremely
challenging. In effect the theorist, by scrutinizing unexpecied per-
turbations in the data, attempts to come up with either s modification
of the basic assumptions or a new interpretation of how the assumptions
can be applied. We doubti if such revisions fellow any clear or
systematic patfern; more often than not the theorist trys many new
schemes and then réports the one thatlseems most promising. From the
viewpoint of understanding the scientific process, it is unfortunate
that the trial and error stage between successive revisions of a medel
is not ocessionally recorded. Looking at the end product tends to give
the misleading impression that theory develops in a neat and orderly
fashione |

In this next section we shall try to give the reader some idea of
the way the psychologist may use a set of experimental results to suggest
changes in the theory. We could present examples for elther the incre-
mental or the all-or-none model since both have natural extensions
suggested by our dsta. However, it would be too lengthy to attempt both
in this paper; consequently we will only examine possible revisions of
the all—or-noﬁe theory. We select this model because the modifications
t0 be considered are tractable snd will not introduce any new math-
emztical techniques. 'The modifications illustrate two types of re-
visions that can occur in a theory: one modification represents s
reinterpretation of how the axioms can be applied and the other; a basic
change in the axioms.

Inspection of the correspondence hetween predictions for the all-
or-none model and our data indicates two striking discrepancies. PFirst,

the theory predicts that the probability of a correct response on Tl

25




followed by an incorrect response on T2 is the same as the probability

followed by a correct response on T3

of an incorrect response on T o

1
i.e., Pr(cle2 = Pf(elce), However, the data clearly contradicts

this prediction as indicated belows:

College Grade School

Pr(cleg) <104 137
Pr(elcg) 065 104

These guantities are obtained directly from Table 2; i.e.,
Pr(clég) = psfp6+p7+p8' and Pr(elce) = p9+plo+pli+ﬁ12, For both groups
Pr(clez) is larger than Pr(elcg),

Anéther discrepancy between theory and data is with regard to the
probability of & correct response on test trial n. The theory predicts
~ that this guantity, averaged over items; should be a constant; 1.e.,

Pr(cn) =X + (l-x)%° The appropriate statistics are given below.

College Crade School
Pr(cl) . T54% .604
Pr(cgj T15 661
Pr(c5) 719 629
Pr(cu) _ 727 616

In both groups there is a tendency for the probability of & correct res-
ponse to decrease over test trials. Parenthetically, the incremental
model makes the same predictions; i.e., Pr(clea) = Pr(eecl) and

Pr(cn) = congtant.
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Both of these observations suggest the need for a process in the
model that will produce an increase in the error rate over test trials,

One way of doing this is to assume that the conditioning paraméter

assoclated with a correct response is different from that associated wlth
an incorrect response. Specifically, we can assume that when an ltem

is in state G on a test trial, then (1} if a correct response is made

it becomes conditioned with probability u and (2) if an incorrect res-
ponse 1s made it becomes conditioned with probably &. The tfansition

matrix given in Equation 8 would now be rewritten as follows:

< g E
c [ 1 0 o |
¢ | B ke L (1)
g | o 0 -

At a qualitetive level of analysis this change provides for the dis-

crepancies noted above. It can be shown that

Pr(cye,) = F(1ek) (1-x) 5)

Pr(e,c,) = F{1-8) (1-x)

‘which implies that Pr(c,e,) > Pr(e;c,) when & > u. Similarly, it
can be shown that the probability of a correct response on test trial

n is

prey) = x + B2 0 eyt B0 1 g Lie)® ) (1)
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When_ o } W Ithis equation describeé:a function decreasing over.fést
ffiélé tﬁét approaches lx } (iQx)u .in thé iimit.:  : . |

e L .HIH+55 S .

What.psychological rational can be_offered.for.postuiéting fhat
&.> u? There éfe several bﬁt ve shéll mention oﬁe £ha£.assumes |
_differences in learning rétes.for vafioﬁs paired—assééiate items. .Let
ﬁs suppoée thét some stimulus-response connéctiohs are earief tollearﬁ
.ﬁhan others; e.é., for some subjects the CQreek letter w may be easier
to assoéiaté with response 1 than 2. If response 2 is éséigﬁéd aévthe
to-be-learned response,.fhen fhié item'éhould bé iééfned moré slowly aﬁd
consequeptly would have a higher prdbability than other items of being
in'state g after two study trials. If the item still is in state G
after the study trigls then, Since response 1 is the more compatible
résponse, the item will be more likely to become conditioned to an error
fesponse over the sefies of test trials. In essence the assumption 1s
that stimulus items not conditioned to a correct response after a geries
of study trials will tend to favor association with an error response
onltest trials.

The proposed modification that assumes differential conditioning
" parameters may be regarded as a revision of the basic axioms of the
model. The next modification ﬁe offer simply requires a reinterpretation
of how the model might be applied. Originally it was assumed that after
a series of study trials each stimulus item was either in state ¢ (with
probability x) or state G (with probability 1-x). A natural ex-
tension of these ideas is to permit the possibility that the item also
may be In state E at the end of a study trial. That is, it seems

reasonable to assume that at the start of Tl there is a probability x'
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that the item will be in state C, & probability y' <that the item will
be in state E, and a probability 1l-x'-y' that it will still be in

state G.

Introducing these two modifications yields a model that has four
parameters to be estimated from the data (namely, u,5,x', and y') as
compared with two in the original. sll-or-none model. The questién is
whether the addition of two parameters yielde a substantial improvement
in the fit of the model.

The four parameters were estimated separately for each set of data
by selecting that parameter vector (u,8,x';y'} that minimized .

The obtained estimates were as follows.

College Grade School
1 207 Nol'ME
(6] 289 270
x? 478 379
y' 0 0

The predictions for the revised model based on the above estimates
aré given in Table 3. The iable also presents the asscciated minimum
Xg‘sn It is evident; by comparing these predictions and X? values
with those given in Teble 2, that the revised model does a better Jjob.
The improvement is not very large for the College dats but is dramatic
in the case of the Grade School data®. However, it is evident that the

improvement in prediction is due entirely to but one of the two

modificetions. The change thet permitted an item to be in state E at

Statistical tests to evaluate these comparisons are available and are
discussed in reference to learning models by Suppes and Atkinson (1960).
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TABLE 3

Observed proportions and predictions for the revised

version of the All-or-Kone Modelu

Sequence Colliege Grade School
Code Observed | Predicted Observed | Predicted
1 .586 578 439 435
2 .020 .016 -OUT .03k
3 .018 015 -036 .026
4 .026 026 1,035 QU5
5 .015 022 .028 .028
6 .018 .015 .025 .026
7 .021 .013 019 .020
'8 050 054 066 075
9 040 041 .037 033
10 006 .015 Noik:! 026
11 010 .013 .022 .020
12 .009 024 .031 .035
13 .02k .020 021 - .022
14 .010 .013 .018 .020
15 013 .012 .01k 015
16 134 .12% .149 L1
' 30.2 21.7
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the end of a study trial did not yield an improvement in prediction,

because In both the College and the Grade School groups the estimated

value of ¥’ .was 0. Thus, the revision that postulated differentiél

conditioning parameters for correct and incorrect responses accounks

entirely for the improvement in the fit of the modified all-or-none model.
Without pursuing this example further, we hope that the reader has

=3 fairly clear.picture of our view of the théoretical enterprise 1in

psychology. However, there is one last point. If we scan the Xg‘s

given in this paper and select the one associatedA%i££_t£éwﬁest.fit
(i.e., the modified all-or-none model spplied to the Grade School data)
a value of 21.7 is obtaiﬁed with 11 degrees of freedom. This value of‘
X? 1s significant abt the .05 level, and therefore on the basis of
statistipal considerations we would reject the model. The sensible
retort to this statement is the point we have tried to emphasize through-
-out the paper. We always assume that any model can be rejected on
statistical grounds if enough observations are made. The goal is not

to reject or accept a given model at some predetermined level of
significance, but rather to make comparisons among models.and ask how
well a model performs relative to other models. Simply stated; a model
will not be rejected on purely statistical grounds, but will be rejected
only when there are other models that consistently do a better job of
prediction.

In conclusion, we view the use of mathematical models as virtually

synonymous with the construction of a quantitative theory of behaviocr.
From a mathematical standpoint it is logically possible to have a

theory of behavior that leads only to Qualitative predictions. However,
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it is difficult to find in.the history of science, let alone. in the
history of psychology, theories of this sort that have had sustained
empirical significance. From the systematic. standpoint a theory: or model
based only 6n.qualitative distinctions leads to a small number of testable
predictions. lAristqtle‘s physics and Lewin's topological field theory
(1936) are good examples. The absence of precise.systematization leads
usualiy to pseudo-derivations from the theory. By pseudo-derivation
we mean the derivation of prediction that requires many additionsl
assumptions that are not part of the original theory. Further, as the
set of phenomena that we study expand in complexity so also does the
reasoning necessary for the design of experiments and the formulation
of hypotheses. QOrdinary logic becomes inadequate and the elaboration
of the theory requires the powerful tool. of mathematical anslysis.
Finally, we remark that we have avoided a discussion of the general
nature of models and theories. The words "model” and "methematical model"
are used in a variety of related senses by behavioral scientists and
rhilosophers. dften the most reasonable interpretation is that the model
is the set of mathematically formulated postulates that express in pre-
cise form the intuitive notions of the relevant psychological theory.
Despite the dominance of this usage in the literature of the behavicral
gciences; we prefer to use the more precise concept of model that has
been adopted by mathematical logicisns. Roughly speaking, a model is
an abstract object that satisfies a theory. A theory given_in axlomatic
form can, if one chooses; be identified with its set of axloms. It is
not to the point to enter into technical detalls here. What i1s important

in our opinicn isrthat models have a role tc play whenever theory is
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constructed. From our standpoint, if a theory has systematic content
and ig not simply a vague collection of heuristic ideas, then there
 exist models that satisfy the theory, and it is up to the experimenter
to determine whether these models provide an adequate analysis of be-
havioral phenomens. We believe that the role of mathematical models
in psychology is not really separate from the role of systematic

theorizing.

32




REFERENCES

Anderson, N. H. Effect‘of first-order condltional probgbility in a two-

choice learning situation. J. exp. Psychol., 1960, 59, 71—95.'

Anderson, N. H. An snalysis of sequential dependencles. In R. R. Bush
and W. K. Estes (Eds.), Studies in mathematical learning theory.
Stanford, California: Stanford University Press, 1959, 248-26lk,

Atkinson, R. €. and Estes, W. K. ©Stimulus sampling theory. In R. R.
Bush, E. Galanter, and R. D. Luce (Eds.), Handbook of mathematical

psychology. Vol. 2. New York: Wiley, 1963, in press.

Bower, G. H. A model for response and training variables in paired-

asscciate learning. Psychol. Rev., 1962, §2, 3453,

- ‘Bower; G. H. Applications of a model to paired-associate learning.

Psychometrika, 1961, 26, 255-280.

Bush, R. R. A survey of mathematical learning theory. In R. Duncan Luce
(Edo), Developments EE mathematical psychology. Glencoe, Jllincis:

The Free Press, 1960.

Bush,; R. R. and Mosteller, F. gStochastic models for learning.
New York: Wiley, 1955.

Bush, R. R. and Mcsteller, ¥F. A mathematical model for simple learning.
Psychol. Rev., 1951, 58, 313-323.

Estes, W. K. Learning theory. Aunual Review of Psychology, 1962, 13, '
107-1h4k .

Estes, W. K. New developments in statistical behavior theory: differential
tests of axioms for associative learning. Psychometrika, 1961,

26, 73-84.

Estes; W. XK. Learning theory and the new mental chemistry. Psychol.
Rev., 1960, 67, 207-223.

Estes; W. K. The statistical approach to learning theory. In S. Koch

McGraw-Hill, 1959, 380-491.

(Bd.), Psychology: A study of a science. Vol. 2. New York:

33



Estes, W. K. Toward a statistical theory of learning. DPsychol. Rev.,
1950, 575 94-107.

CGuthrie, E. R. The psychology of learning. New York: Harper, 1935.

Hilgard, E. R: Theories of Learning. (Rev. Edition). New York:
Appleton-Century-Crofts, 1956, ' '

Hulil, C. L. Principles of behavior: An introduction %o behavior theory.
' New York: Appleton-Century-Crofts, L9435,

Jores, J. E. All-or-none versus incremental learning. Psychol. Rev.,

1962, €9, 156-160.

LaBerge, D. A medel with neutral elements. In R. R. Bush and W. K. Estes

(Eds.), Studies in mathematical learning theory. Stanford,

California: Stanford University Press, 1959, 53-06l.

Lewin, K. Principles of topological psychology. New York: MeGraw-Hill,
19%6. |

Logan, F. A. The Hull-Spence approach. In S. Koch (Ed.),; Psychology:
A study of a science. Vol. 2. New York: MeGraw-Hill, 1959,
293-358. '

Luce, R. D. Individual choice behavior: A theoretical analysis.

New York: Wiley, 1959.

Restle, ¥. Sources of difficulty in learning paired associates. In -

Studies in mathematical psychology. Stanford; California:

Stanford University Press, 1963, in press.

Restle, F. A survey and classification of learning models. In R. R. Bush
and W. K. Bstes (Eds.), Studies in mathematical learning theory.
Stanford, California:’ Stenford University Press, 1959, 415-428.

Seward, J. P. Reiunforcement and expectancy:; two theories in search of

a controversy. Psychol. Rev., 1956, 63, 105-113.

Spence; K. W. Behavior theory and conditioning. New Haven, Conn.:

Yale University Press, 1956.

Suppes; P. and Atkinson; R. C. Markov learning models for multiperson

interactions. Stanford, California: Stanford University Press, 1960C.

Suppes; P. and Ginsberg, R. A fundamental property of all-cr-none models.
Psychol. Rev., 1963, 70, in press.
3k






