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MATHEMATICAL LEARNING THEORY*

by

Richard C. Atkinson and Robert C. Calfee

Stanford University

Mathematical learning theory probably began in 1885 when Herman

Ebbinghaus attempted to fit some data from an experiment on recall with

a simple logarithmic functiono However, the term has come to be associated

closely with a number of recent developments in psychology, and it is

these developments and their immediate historical antecedents that we

will consider in this paper. In particular, we will discuss the role of

mathematical models in contemporary learning theory, with special reference

to the influence of such models on research and theory. A number of points

that we wish to make clear will then be illustrated by a detailed con-

sideration of a specific experiment 0 In this example, we will show

how the design and analysis of experiments are related to a mathematical

approach to learning.

Prior to 1950, the most significant attempt to formulate a mathe-

matical theory of learning was that of Clark L. Hull. His theoretical

system and variations of it (Hull, 1943, Spence, 1956, Logan, 1959) were

based on the postulation of a set of unobservable intervening variables,

psychological constructs such as habit and driveo These intervening

variables were related to the observable dependent and independent

variables by certain functions that were to be empirically determinedo

Within the Hullian framework behavior basically. was a deterministic

* The preparation of this document was supported by the National Institute
of Health (Grant M-5184) and by the National Science Foundation (Grant
24264). The paper is a contribution to a forthcoming book edited by
E. Nagel and B. B. Wolman entitled "Psychology and the Theory of Science"
(Basic Books, Inc.).



process, though a probabilistic overlay was added. All response measures

were functions of a single underlying factor, reaction potential, and it

was usually assumed that, since all response measures should be correlated,

the experimenter was free to choose the measure that he thought most

appropriate.

In general, experiments designed to test theories in the pre-1950

period were of two types: the comparative experiment and the factorial

experiment. (For a historical account of this period see Hilgard, 1956.)

In the comparative experiment, a situation was arranged in which opposing

predictions could be made by different theories. Few of the experiments

proved to be as crucial as they were designed to be, since the protagonists

were quite skillful at finding an interpretation of the theory that

accounted for the results, and the theories themselves were quite resilient.

The consequence of this experimentation was that it shortly became

difficult to distinguish one theoretical system from another (Seward, 1956).

As an example of the factorial experiment, we may mention the efforts

to determine whether drive and incentive combine additively or multipli­

catively. If the latter condition holds, one would expect a significant

interaction term when a factorial design is analyzed by the analysis of

variance technique. (A factorial design is one in which several levels

of each variable are represented in all possible combinations.) A non­

significant interaction would be interpreted as evidence for the additive

hypothesis. Clearly, the outcome depended on numerous conditions other

than the assumption being tested, such as the choice of levels of the

variables, the degree of experimental control, and probably the response

measure chosen. In particular, to the extent that experimental control

~as poor, the additive hypothesis would be favored.
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In the late 1940's and early 50's, there appeared a group of new

developments that have come to be called mathematical learning theory.

Let us at the outset state that we cannot hope to do justice to all the

investigators whose work properly falls within this category. And we

can only mention in passing that in addition to developing a number of

new learning aituations for their own purposes, experimenters have

applied mathematical theories of one type or another to a wide variety of

standard learning paradigms, such as classical conditioning, avoidance

conditioning, discrimination learning, stimulus generalization, paired

associate learning, memory processes and concept formation. (For recent

reviews, see Bush, 1960, Estes, 1959, 1962, Restle, 1959.)

The movement has been characterized by a number of features. Be~

havior is seen as an essentially probabilistic phenomenon. The primary

behavioral measure is taken to be the probability of occurrence of a mem­

ber of some response class. Theories are stated in a way that has made

mathematical development feasible. There has been a tendency to inter~

pret behavioral phenomena, not by reference to underlying molecular

processes, but by specification of the~ of operation (Estes, 1962).

These rules are simple mathematical laws whose implications describe the

overt response character of a behavioral system, much as Newton's laws

describe the activity of the solar system.

In a sense, mathematical learning theory is a misnomer. One should

not imagine that mathematical learning theory represents a position

that is opposed to other learning theories. What is actually being ex­

pressed is an increased dependence upon the use of mathematics in the

formulation of learning theory irrespective of whether the theory is

3



4



theory was abstract, Bush and Mosteller showed that derivations and

parameter estimation problems covld be greatly simplified if certain

restraints based.on extra-theoretical considerations were imposed on the

models. These considerations were of a sort that made sense psycho­

logically. An example is the "equal alpha" condition, where for certain

two-choice problems, (e.g., a T-maze) the symmetry of the situation

permits the assumption that the learning rate parameters associated with

the two responses are equal.

Estes' theoretical t'ormulation which has come to be known as Stimulus

Sampling Theory was of an entirely different form. The environment was

represented by a large population of discrete, mutually exclusive con­

ceptual entities which he called stimulus elements. Each element was

conditioned to one and only one response class. The organism took a

sample from the set of eleme"ts, and the probability of occurrence of

any response class was simply the proportion of elements in the sample

which were conditioned to that class. The reinforcement event acted

upon the conditioning relations of the sample of elements in some

specified fashion (e.g., all elements in the sample became conditioned

to the response class which was designated as correct) and the sample was

then returned to the population for resampling at a later time. In

Estes' initial development of these notions, the function describing

changes in response probability was a linear function similar to the

Bush-Mosteller model.

Let us now mention a nuniber of ways in which these systems repre­

sented advances over earlier. formulations. A feature of psychological

theories from Freud through Hull has been the postulation of multiple

unobservable processes, that may interact in some complicated fashion
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to either complement or oppose each other. At a Qualitative level of

analysis, by a suitable post facto weighting of such processes, one may

account for virtually any experimental result. Mathematical models have

allowed theorists to introduce and evaluate such notions in an unambiguous

manner. One may assume more than one underlying process, and then deter­

mine the contribution of each process uneQuivocably.

Another advance brought about by mathematical developments in

learning theory concerns changes in the organization and analysis of

data. In this regard, perhaps the most important role of mathematical

models has been to provide a framework within which the detailed trial­

by-trial aspects of behavior can be scrutinized (Anderson, 1959). An

experiment designed only to establish the existence of a gross relation

between two variables, such as response speed and reward magnitude,

ignores the many seQuential properties of psychological phenomena. Exam­

ination of these properties is a significant step forward in that it

provides a source of behavioral information that cannot be obtained from

an analysis of average performance curves. Theories stated only in

Qualitative terms do not provide an adeQuate means for analyzing and

interpreting such complex seQuential phenomena.

In this connection we may note Estes' distinction (1959) between

three levels of prediction from a mathematical model: extrapolation,

overdetermination, and situational invariance. Extrapolation refers

to the ability of a model to account for those statistics from which

parameters are estimated. (This reQuirement is not as simple as it may

seem. For example, no choice of parameters for a linear eQuation will

give a satisfactory fit to the typical learning curve.) Overdetermination
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refers to prediction, within the same body of data, of statistics that

are independent of those yielding the parameter estimates. Finally)

situational invariance is the degree to which parameter estimates made

in one experimental situation can account for data collected in other

experiments. The mixed record of successes and failures of mathematical

models shows that these requirements are not trivial. For example, in

numerous studies (Anderson, 1960; Suppes and Atkinson, 1960; Atkinson

and Estes, 1963) the learning rate parameters that satisfy the mean

learning curve requirements have proven inadequate in accounting for

asymptotic sequential dependency statistics ..

Among recent trends within the area of stimulus sampling theory,

we may mention the introduction of models where the number of stimulus

elements in the population is severely limited, leading in the limit to

the one-element model. In many learning situations, it is reasonable

to suppose that the subject does not sample randomly from a large

population of different cues, but restricts his attention to a few homo­

geneous aspects of the environment. In particular, the subject may

distinguish between stimulus events which consist of the same "elements",

but that have different patterns. For example, in a paired-associate

task, one can assume that each stimuJ.us word is represented by a single

pattern that is sampled with probability 1 when the stimulus word is

displayed. In analyZing such tasks, there has been a shift from linear

operator models to Markov models. In the latter models, the description

of the organism on a particular trial is phrased in terms of the momentary

state of each stimulus element; taken together, these descriptions con­

stitute the state of the organism. It is usually assumed that the change
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in response probabilities from trial n to trial n + 1 of an experiment

is dependent only on the state of the organism On trial n, and a

transition matrix that specifies the change in states associated with each

reinforcement event. This assumption, plus the restriction on the num­

ber of elements in the population, have served to reduce the number of

states in the Markov process to a manageable number. The resulting

models have proven mathematically tractable, and have given an excellent

account of a wide array of data.

In addition to the specification on the stimulus side of the exact

cues that are being sampled, there has been a relaxation of the original

stimulus sampling assumption that each element is conditioned in an

all-or-none fashion to some response class. For example, one may postu­

late neutral states, where if an element is sampled, the subject simply

responds at random from among the available response alternatives (LaBerge,

1959). An element may be "strongly" conditioned to a response in which

case, for example, at least two negative reinforcements must occur be-

fore the element changes conditioning to another response class, versus

a "weak" state, where a single error may produce a change in conditioning,

(Atkinson and Estes, 1963).

As an example of the effect of the use of models on experimental

design, we may mention the Bower paired-associate experiments (1961,

1962). In these experiments an attempt was made to evaluate a one­

element stimulus sampling model in which the learning is assumed to

occur abruptly, in an all-or-none fashion; the ability of such a model

to account for paired-associate data has been extremely good. It is

important to note several features of Bower's experiments that are
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relevant to the effects of a mathematical approach on research techni~ues.

First, the experiments were designed explicitly to test a particular

model. In the classical paired-associate task, both stimuli and responses

fre~uently were verbal items such as nonsense syllables or familiar

words. It seemed to Bower that at least two processes were taking

place in the traditional situation--learning of the response set and

the association of responses with the appropriate stimuli. The one­

element model wss designed to account only for the latter process. Hence

response items were chosen that one could assume would already be part

of the subject's response repertoire. Further in terms of the model it

was desirable to treat each subject's protocol as though the several

stimulus-response pairs were learned independently. Conse~uently,

stimuli were chosen that, in other situations, showed minimum inter­

ference with each other. Thus the theory as interpreted in the model

dictated the criteria for the selection of stimulus and response items

that would be appropriate to test Bower's ideas about the associative

phase of paired associate learning. The criticism sometimes made that

such experiments are contrived and artificial fails to recognize the

goal of laboratory research, which is to restrict the introduction of

extraneous variables that are not relevant to the hypothesis being

considered.

In the remaining part of this paper we shall try to give some

concrete illustrations of the role of models in psychological research.

In order to do this it will be necessary to describe a typical experi­

mental problem, outline several alternative models, and then indicate

some of the strategies and tactics involved in making a comparison

9



by guessing is

among the models. The task we select is a highly special case of

paired-associate learning. The reason for selecting this experimental

problem is that it illustrates many of the problems in psychological

theorizing without introducing too much mathematical complexity.

The experiment involves a list of 18 different paired-associate

items. The stimulus member of each pair is a single Greek letter and

the response is the number 1 or 2. The subjects are told the response

alternatives available to them, and each number occurs equally often as

the to-be-learned response. Hence the probability of a correct response

1
2·

Two types of trials are defined. On a study trial the 18 letter-

number pairs are exhibited singly in a random order. The subject is

instructed simply to associate each letter with the appropriate number

and is not required to make a response. On a test trial the letters

alone are presented singly in a new random order and the subject attempts

to give: the correct number to each letter. The subject is required to

respond to each letter on a test trial (even if he is uncertain and

must guess), but he is not told whether his response is correct.

In the experiment we shall examine, two study trials were given

followed by four test trials; the standard notation for this type of

experiment is simply Rl~TlT2T
3

T4 (Jones, 1962). If we represent

a.correct response by c and an error bye, then the response protocol

for an individual stimulus item (i.e., a particular Greek letter) over

the four test trials will consist of an ordered four-tuple of c's and

e 1 8. For example, the protocol would indicate a correct

response on T2 and incorrect responses on and The role

of theory in this situation is to predict the types of sequences that

will occur and their relative frequencies.
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One feature of our experimental situation that has been established

by several studies is that if we run enough test trials in sequence,

then in time the subject will become consistent in his response to each

stimulus. For some stimuli the stereotyped response is the correct one,

for other stimuli it is incorrect.

The models that we shall. examine are imbedded in the controversy

regarding all-or-none learning versus incremental learning. Of late,

there have been some particularly important studies dealing with this

issue but we will not attempt to review them here. Bather, for

illustrative purposes, we will take a naive approach and outline one

model that might be viewed as characterizing the incremental position

and another that typifies the all-or-none viewpoint.

The incremental model is in the spirit of Hullian theory and is

very similar to the early work of Bush and Mosteller (1951, 1955). We

assume that at the start of a trial there is a fixed number p associated
•

with each stimulus item that specifies the probability that a correct

response will. be made to that item. The effect of a study trial is to

increment that probability by a constant proportion e of the total

possible change. Specifically, if p is the probability before a

study trial, then after a single study trial the new probability will be

p + e(l-p). That is, the new probability is the old one plus a constant

e of the possible increase. In mathematical terminology, we say that

the effect of a study trial is to apply an operator Q to the operand

p to yield a new quantity Q(p};; Le., Q(p) = p + e(l-p). As will

be evident later, it will be more convenient to write this reinforcement

operator in the fol.lowing form:
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Q(p) = (l-8)P + 8 (l)

To obtain the new probability after two successive study trials we

apply the operator Q twice, namely

(l_e)2 p + (l-e)e + 8

= l - (l_P)(l_8)2

By induction one can show that after n successive study trials

l - (l_p)(l_8)n

For our experimental situation the initial probability of guessing correctly

l l
is 2 and hence we would set p = 2. Thus, for this model the prob-

ability of a correct response on the first test trial following n

successive study trials will be

(2)

The all-or-none learning process that we shall consider is one

that has been actively investigated by Estes (l960, 1961), Bower (l96l,

1962), Restle (l963), Suppes and Ginsberg (l963) and others. For this

model we assume that each stimulus item is in one of two conditioning

states: C or G. In state C the stimulus is conditioned to the
= = =

correct response and on a test trial will elicit that response with

probability l. In state G the stimulus is not conditioned to any

response, and in this state the probability of a correct response is

l2; i.e., a correct response will occur at the chance level. All items.

at the start of the experiment are in state ~, but on each stud~y trial

there exists a probability e that conditioning will occur. Thus,
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the probability that a particular stimulus item is in state C after
=

one study trial is 8, after two study trials 8 + (1-8)8, after three

study trials 8 + 8(1-8) + 8(1-8)2, etc. More generally the probability

of being in state C after n successive study trials is
=

Pr(C ) ~ 1 _ (1_8)n
=n

(3)

For this model the expected probability of a correct response on test

trial Tl after n successive study trials would be

n 1 n
~ 1-(1-8) + 2(1-8)

~ 1 _ ~(1_8)n (4)

That is, the probability of being in state Q plus 1
2 times the

probability of being in state G. The all-or-none character of this
=

model is represented by the fact that for the underlying states the

probability of a correct response can take on only two values; either

1- if the subject is in state Q, or 1 if the subject is in state C.
2

Further, the transition from G to C occurs in an all-or-none fashion
=

on a single trial.

To summarize to this point, for the incremental model two study

trials generate a fixed number associated with each stimulus item

that specifies the probability of a correct response on the first trial.

We shall call this number cp, and it is given by Equation 2 when

n :::: 2; i.e.,

1 2cp ~ 2(1-8) + 8(1-8) + 8

13



For the all-or-none model, each stimulus item will be in either state

C or state G. If the item is in state C a correct response occurs
= =
on a test trial; if the item is in state G a correct response occurs

=
with probability

1
The probability of being in state2' C after two

=
study trials will be called x and is given by Equation 3; i.e.,

x e + (l-e)e • (6)

The next question is with regard to the events that occur on a

test trial. As noted earlier, it is known that behavior eventually

becomes stereotyped if sufficiently long series of test trials are run,

and this observation suggests that systematic changes may be occurring

over test trials. A plausible assumption that accounts for the changes

is that in the absence of an experimenter-determined reinforcing event

(i.e., the experimenter telling the subject which response was correct)

the emitted response is the response reinforced. This last phrase

characterizes much of the theoretical work of contiguity theorists such

as Guthrie (1935); the idea being that the last response to take place in

the presence of a stimulus will remain associated with it and will tend to

reoccur when the stimulus is presented again.

The assumption that the emitted response is the one reinfOrced on

a test trial delimits a class of qualitative theories that can be ex-

perimentally investigated. But this class of theories is large and

difficult to characterize; also, too frequently new experimental findings

can somehow be made to agree with almost allJr of the theoretical positions.

Thus, much is to be gained 'by taking a qualitative assumption concerning

test trial effects and examining the consequences of stating it

14



mathemati~ally. To illustrate, assume that a qualitative theory pre­

dicts a difference between two experimental groups; an experiment is

run to test for the difference and none is obtained. What conclusion

can be drawn? Either that no difference exists or that if it exists it

is too small to be detected by the experimental procedures utilized.

In contrast, with a quantitative theory we know not only the direction

of the predicted difference but also the exact magnitude. Consequently

the equipment and experimental pTocedure can be designed sO that they

are sufficiently sensitive to detect the difference if it is present.

Then if no difference is found there can be no alibi that the effect

might be too small to be detected. Experiments that find no differences

are ambiguous in evaluating qualitative predictions; for quantitative

theoTies such results have an exact interpretation.

For the incremental model we shall assume the same reinforcing

operator on test trials as on study trials. Specifically, if p is

the probability of a correct response and that response occurs on a

test trial, then the new probabil.ity will be Q(p) = (l-a)p + a where

a is the parameter describing learning under self reinforcement. If

an incorrect response occurs (which has probability q = I-p), then

that response will be reinforced, which means that Q will be applied

to q; i.e., Q(q) = (l-a)q + a. By inspection of the last expression

we see that reinforcing an incorrect response is equivalent to applying

the operator Q'(p) = (l-a)p. Stating our ideas exactly, if p is

the probability of a correct response on a test trial, then p* (the

value at the end of the test trial) will be

15



p* =

Q(p) (l-a)p + a, if the correct response occurs.

(7)

Q' (p) (l-a)p , if the incorrect response occurs.

From these equations it can be shown that the probability of a correct

response will approach 1 or 0 as the run of test trials becomes

large. Thus, asymptotically some items will absorb on the correct res-

ponse and others on an incorrect response. If ~ denotes the probability

of a correct response to a specific stimulus item at the start of the

test sequence, then the probability that this item absorbs on the correct

response will be ~.

Our assumption that on a test trial the emitted response is rein-

forced also has a natural interpretation in terms of the all-or-none

model. As before, we assume that reinforcement of a response conditions

the stimulus to that response with some probability, say ~. If the

stimulus is conditioned to the correct response on a test trial (i.e.,

instate £) then that response occurs and by reinforcing it we guarantee

that it remains in state C.
=

If the stimulus item is in state ~' then

1with probability 2 the correct response occurs, and by assumption this

is reinforcing on a test trial, hence with probability ~ the item

moves to state C. Now it is obvious that we must also allow for the

occurrence of an incorrect response; if an item is in state G and an

incorrect response occurs, then the item will become conditioned with

probability ~ to the incorrect response. Therefore, in addition to

states C and G which characterize study trials we also need a state
= =

E to denote conditioning to an incorrect response. These notions are
=

embodied in the following transition matrix:

16



C G E
=

C 1 0 0

G ~ l-~ ~2 2

E 0 0 1=

(8)

The rows indicate the state at the start of a test trial and the columns

the state at the end of the trial. Each entry denotes the probability

of a transition from one state to another. In state C= (or ~) no

change can occur on a test trial. In state G the item may become con-
=

ditioned to the correct response if it occurs (with probability !)- and
2

conditioning is effective (with probability ~); similarly in state

G the item may become conditioned to the incorrect response if it occurs
=

and conditioning is effective. As in the case of the linear model each

stimulus item eventually absorbs in either state C or E.
= = Thus, after

or 1. This fact alone indicates that there are substantial

a long run of test trials, a given stimulus item will eventually elicit

either a correct or an incorrect response consistently.

These then are the two models we shall examine. From a qualitative

viewpoint each represents the same psychological process; i.e., they both

assume that a reinforcement tends to increase the likelihood of the rein-

forced response and they both assume the same subject-determined rein-

forcement schedules. However, the exact nature of the change that

occurs following reinforcement is quite different for the two models.

This is illustrated by the fact that the probability of a correct res-

ponse in the incremental model may take on any value from 0 to 1,

whereas for the all-or-none model it can take on only the values 0,

1
2'
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differences between the two models and it becomes important to determine

which interpretation of the reinforcing event best approximates the

actual learning process.

In order to compare these models we need to derive some predictions.

Consider first the incremental model and the possible outcomes for a

given stimulus item on trials T
l

and T
2

• What is the probability of

two correct responses? Well, a correct response will occur on Tl with

probability ~ (see Equation 5) and since the correct response occurred

on Tl , then the probability of a correct response on T
2

will be

(l-a)~ + a (see Equation 7). The probability of two correct responses

is simply the product of these two probabilities. Similarly, the

probability of an incorrect followed by a correct is (l-~) times

(l-a)~; i.e., the probability of an incorrect response on Tl times the

probability of a correct response on T2 given that the preceding trial

was incorrect. In this way we obtain the following expressions.

pr(cl c2 ) = ~[(l-a)~ + a]

Pr(cl e2 ) = ~[l - ((l-a)~ + a}]
(9)

Pr(el c2 ) (l-cp) [(l-a)cp]

Pr(el e2 ) = (l-cp)[l - (l-a)cp]

By similar methods expressions can be obtained for the probability of

any sequence of responses over the four test trials. We display a few

of these equations to indicate that even for a simple model of this

sort the elaboration of the theory leads to predictions whose con­

sequences are too complicated to be understood without the tools of

mathematical analysis:

18



Pr(Cl c2 c
3

c4) = ~[(1-a)~+a][(1-a)2~+(1_a)a+a][(1_a)3~+(1_a)2a+(1_a)a+a]

Pr( cl c2c3e4) = ~[(l-a)~+a] [(1-a)2~+(1-a)a+anl- (1_a)3~_(1_a)2a_ (l-a)a-a] (10)

Predictions for the same quantities can be obtained for the all-

or-none model. Consider first the possible outcomes for a given stimulus

item on trials Tl and T
2

• The probability of two correct responses

1 1
in a row is x + (1-x)2[~ + (1-~)2]' That is, with probability x the

stimulus item is in state C before the first test trial and hence will
=

generate correct responses on all subsequent trials; with probability

l-x the stimulus item starts in state· G and a correct response occurs
=

Tl with probability 1 further a correct responseon 2' can occur on

T2 if (1) conditioning was effective on Tl (i.e. , with probability

~) or (2) if conditioning was not effective and by chance the subject

again guessed correctly on the next trial. Pro ceding in this way we

obtain the following expressions:

(11)

Using the same methods one can obtain expressions for the sequence of

events over the four test trials. For example

19



1 1 1 2 1= x + 2(1-x)[~ + ~(l-~) + 4(1-~) (~ + (1-~)2)]

1 3
= Ib(l-X)(l-~)

(12)

Armed with these equations we now face the task of deciding which

model provides the best account of our data. Table 1 presents observed

frequencies for two identical experiments, one using 60 college students

at Stanford University and the other 60 fourth grade children from the

Oakland City schools*. As indicated earlier each subject was run on

18 paired-associates so that over a group of subjects we have information

on 18 X 60 = 1080 test trial sequences. The table gives the frequency

with which each sequence occurred in the two groups. In subsequent

analyses we assume that the items in the list are of equal difficulty

and that all subjects in a group learn at the same rate, i.e., we

postulate that the values of the various parameters are the same for all

subjects in the college group and for all subjects in the grade school

group. Of course, this assumption is suspect, but for purposes of this

paper it seems justified since it greatly simplifies subsequent analyses.

For with this assumption the response sequence associated with any given

stimulus item can be viewed as a sample of size one from a population

of sequences all generated by the same underlying process. A discussion

of the problems involved in treating individual data and group data is

given in Suppes and Atkinson (1960).

* This study was conducted by Duncan Hansen of Stanford University.
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TABLE 1

Observed frequencies for response sequences.

Sequence
Tl T2 T

3
T4

College Grade School
Code Group Group

1 c c c c 633 474

2 c c c e 22 51

3 c c e c 19 39

4 c c e e 28 38

5 c e c c 16 30

6 c e c e 19 27

7 c e e c 23 20

8 c e e e 54 71

9 e c c c 43 40

10 e c c e 6 15

11 e c e c 11 24

12 e c e e 10 33

13 e e c c 26 23

14 e e c e 11 19

15 e e e c 14 15

16 e e e e 145 161
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In order to make predictions for the data ~isplayedin Table 1 we

need estimates of the parameters ~ and a for the incremental model

and x and ~ for the all-or-none model. There are many ways of making

these estimates, but for the present problem a simple method is to select

the pair of parameter values that minimizes the X2 function*. To

illustrate the method, let Pi(a,~) denote theoretical expressions for

the four-response probabilities given in Equation 10, where the subscript

i refers to code numbers assigned in Table 1. Further, let 0i

(i=l to 16) denote the observed frequencies for one of the groups in

Table 1 and let T = 01 + 02+ ... +016' Then we define the function

2
X (a,~) =

16

L
i=l

(13)

and select our estimates of a and ~ so that they jointly minimize

the x2 function. Under the null hypothesis this minimum x2 has the

usual limiting distribution 'with 16 - 3 degrees of freedom. (If n

parameters are estimated then there are 16 - n - 1 degrees of freedom.)

Using this method we obtain parameter estimates for the incremental

model with the following minimum x2 values:

a

minimum I-

College Grade School

.331

.636

* For a review of some of these statistical methods as they apply to
learning. models see Chapter 2 in SUPPes and Atkinson (1960).
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Using the same minimum x2 method for the all-or-none model, we obtain the

following parameter estimates:

x

minimum l

College

.291

.409

40.4

Grade School

.191

.297

67.0

The above parameter estimates generate the predictions presented

in Table 2. For both the College and the Grade School groups the all-

or-none model provides the closest correspondence between predicted and

observed proportions on the four-response data. The superiority of the

all-or-none model is also reflected in the obtained minimum x2 ,s. For

the College group the X2 for the incremental model is more than six

times that for the all-or-none model; whereas, for the Grade School

group the ratio is almost three to one in favor of the all-or-none

model. Since all the x2 ,s are based on the same number of degrees of

freedom, it seems reasonable to conclude that the all-or-none model pro­

vides the best account of these data. Further, independent of any

comparative analysis of the models, the correspondence between the all­

or-none predictions and these data is reasonably good in terms of the

degree of accuracy that psychologists have come to expect in research

of this sort. See Atkinson and Estes (1963) for a discussion of this

point.

Finally, we should note that the parameter estimates for both the

all-or-none model &nd the incremental model have the expected properties.

For the all-or-none model the estimate of x is larger for the College
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TABLE 2

Observed proportions and predictions for the Incremental

Model and the All-or-None Model.

Sequence College Grade School

Code Incremental All-or-None Incremental All-or-None
Observed Predictions Predictions Observed Predictions Predictions

l .586 .476 .549 .439 .359 .426

2 .020 .035 .Ol3 .047 .044 .023

3 .Ol8 .060 .Ol3 .036 .070 .023

4 .026 .004 .024 .035 .009 .034

5 .Ol5 .045 .024 .028 .052 .034

6 .Ol8 .020 .Ol3 .025 .026 .023

7 .02l .020 .Ol3 .Ol9 .026 .023

8 .050 .044 .054 .066 .05l .06l

9 .040 .066 .054 .037 .07l .06l

lO .006 .ol8 .Ol3 .ol4 .025 .023

II .0lO .ol8 .Ol3 .022 .025 .023

l2 .009 .027 .024 .03l .035 .034

l3 .024 .025 .024 .02l .03l .034

l4 .0lO .020 .Ol3 .ol8 .028 .023

l5 .Ol3 .020 .Ol3 .ol4 .028 .023

l6 .l34 .l02 .l40 .l49 .l2l .l29

i 256.3 40.4 192·7 67.0
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group than for the Grade School group, reflecting the fact that more

learning occurred for the former group on the study trials. Also, the

parameter ~ characterizing the conditioning rate on test trials is

larger for the College group, indicating that the postulated self­

reinforcing event had more effect for the College students. Similarly,

for the incremental model the estimates of both ~ and a are greater

for the College group than for the Grade School group.

What conclusions can be drawn from Our analysis of these two

models? Should readers not familiar with psychology conclude that in­

cremental models are clearly less satisfactory than all-or-none models

and that subsequent theory construction should be along all-or-none lines

of development? This might be one conclusion, but few psychologists

inclined toward incremental theories of learning would be in agreement.

They, of course, would want to see many more comparisons between the two

models on a variety of experimental data. Further, they probably would

argue that the incremental model presented here was too simple and that

a mOre sophisticated interpretation of incremental theory would lead to

much better results. On this last point, psychologists favoring an

all-or-none position would agree, but they, in turn, would point out

that similar improvements easily could be made for the all-or-none model.

Further, they would emphasize that both models estimated the same number

of parameters and are of similar mathematical difficulty, and that these

facts are important when one evaluates the clear superiority of the all-

or-none process~
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It is not necessary to pursue such arguments to realize that a

single comparison of this sort is unlikelY to change anyone's theoretical

disposition. Only as more evidence accumulates and more variations of each

model are investigated will it become clear which approach 1s more

parisimonious. Certainly since the time of Henri Poincar~ we have known

that no theory is correct in an absolute sense. Rather, some theories

tend to be more useful than others in accomplishing the goals of the

scientific enterprise if they (l) lead to natural and unambiguous inter­

pretations of phenomena, (2) have a tractable logical structure, and

(3) suggest new experimental dimensions. The success of the Relativity

Theory was not due to the fact that the new concepts of space and time

were in any sense more true than the old ones. For, any of the phenomena

that could be explained by the new theory also could be explained on the

basis of absolute dimensions of space and time. But such explanations

became extremely cumbersome and artificial when contrasted to the ex­

planations Offered by Relativity Theory.

If we accept the notion that a single comparison of the sort

offered in this paper cannot be regarded as crucial in selecting between

models, then what is the next step? As indicated earlier, one obvious

requirement is to extend the application of the two models to many other

types of experiments. As more experimental comparisons are made a better

understanding of the properties of each model will be obtained which will

give us a measure of their relative power. However, in addition to

extending the range of application it also is important to take each

experiment and, by inspection of the discrepancies between theory and

observation, obtain some clues for modifications that will lead to a
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better model. This part of the scientific enterprise is extremely

challenging. In effect the theorist, by scrutinizing unexpected per­

turbations in the data, attempts to come up with either a modification

of the basic assumptions or a new interpretation of how the assumptions

can be applied. We doubt if such revisions follow any clear or

systematic pattern, more often than not the theorist trys many new

schemes and then reports the one that seems most promising. From the

viewpoint of understanding the scientific process, it is unfortunate

that the trial and error stage between successive revisions of a model

is not occasionally recorded. Looking at the end product tends to give

the misleading impression that theory develops in a neat and orderly

fashion.

In this next section we shall try to give the reader some idea of

the way the psychologist may use a set of experimental results to suggest

changes in the theory. We could present examples for either the incre­

mental or the all-or-none model since both have natural extensions

suggested by our data. However, it would be too lengthy to attempt both

in this paper; consequently we will only examine possible revisions of

the all-or-none theory. We select this model because the modifications

to be considered are tractable and will not introduce any new math­

ematical techniques. The modifications illustrate two types of re­

visions that can occur in a theory: one modification represents a

reinterpretation of how the axioms can be applied and the other, a basic

change in the axioms.

Inspection of the correspondence between predictions for the all­

or-none model and our data indicates two striking discrepancies. First,

the theory predicts that the probability of a correct response on Tl
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followed by an incorrect response on T
2

is the same as the probability

of an incorrect response on Tl followed by a correct response on T2;

i.e., Pr(cl e2 ) = Pr(el c2 ). However, the data clearly contradicts

this prediction as indicated below:

Pr( c
l

e
2

)

Pr(el c2 )

College

.104

.065

Grade School

.137

.104

These quantities are obtained directly from Table 2; i.e.,

pr(cl e2 )

Pr(cl e2 )

= P5+P6+P7+Pe and pr(el c2 )

is larger than Pr(el c2).

For both groups

Another discrepancy between theory and data is with regard to the

probability of a correct response on test trial n. The theory predicts

that this quantity, averaged over items, should be a constant; i.e.,

1Pr(cn ) = x + (1-x)2. The appropriate statistics are given below.

College Grade School

Pr(cl ) .754 .694

Pr( c2 ) ·715 .661

pr(c
3

) ·719 .629

Pr( c4) ·727 .616

In both groups there is a tendency for the probability of a correct res-

ponse to decrease over test trials. Parenthetically, the incremental

model makes the same predictions; i.e., Pr(cl e2 ) = Pr(e2 cl ) and

Pr(c ) = constant.
n
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Both of these observations suggest the need for a process in the

model that will produce an increase in the error rate over test trials.

One way of doing this is to asswne that the conditioning parameter

associated with a correct response is different from that associated with

an incorrect response. Specifically, we can asswne that when an item

is in state G on a test trial, then (1) if a correct response is made
=

it becomes conditioned with probability ~ and (2) if an incorrect res-

ponse is made it becomes conditioned with probably 5. The transition

matrix given in Equation 8 would now be rewritten as follows:

C G E= = =
C 1 0 0
=

1 1 ~ (14)G 2~ 1-2( ~t{,)
= 2

E 0 0 1
=

At a qualitative level of analysis this change provides for the dis-

crepancies noted above. It can be shown that

1
Pr(cl e2 ) = 1+(1-~) (l-x)

1
Pr(el c2 ) = 1+(1-5) (l-x)

(15)

which implies that Pr(cl e2 ) > Pr(el c2 ) when 5 >~. Similarly, it

can be shown that the probability of a correct response on test trial

n is

Pr() (l-x)[1 l( ~) jn-l (l-x)~ [1_(1 __21('i+~)}n-1Jcn = x + -2- -'2 ~+u + ~+6 ~,. u
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in the limit.

When 5 > ~ this equation describes a ~unction decreasing over test

(l-x)~
x + (~+5)trials thac approaches

What psychological rational can be offered ~or postulating that

5.>~? There are several but we shall mention one that assumes

di~~erences in learning rates for various paired-associate items. Let

us suppose that some stimulus-response connections are earier to learn

than others; e.g., for some subjects the Greek letter ill may be easier

to associate with response 1 than 2. If response 2 is assigned as the

to-be-learned response, then this item should be learned more slowly and

consequently would have a higher probability than other items of being

in state G after two study trials.
=

If the item still is in state G=
a~ter the study trials then, since response 1 is the more compatible

response, the item will be more likely to become conditioned to an error

response over the series o~ test trials. In essence the assumption is

that stimulus items not conditioned to a correct response after a series

of study trials will tend to favor association with an error response

on test trials.

The proposed modification that assumes dif~erential conditioning

parameters may be regarded as a revision of the basic axioms of the

model. The next modi~ication we of~er simply requireS a reinterpretation

of how the model might be applied. Originally it was assumed that after

a series of study trials each stimulus item was either in state C
=

(With

probability x) or state G (With probability i-x). A natural ex-
=

tension of these ideas is to permit the possibility that the item also

may be in state E at the end of a study trial.
=

That is, it seems

reasonable to assume that at the start of Tl there is a probability x'

28



that the item will be in state £, a probability y' that the item will

be in state ~, and a probability l-x'-y' that it will still be in

state G.
=

Introducing these two modifications yields a model that has four

parameters to be estimated from the data (namely, ~,5,x', and y') as

compared with two in the original all-or-none model. The question is

whether the addition of two parameters yields a substantial improvement

in the fit of the model.

The four parameters were estimated separately for each set of data

by selecting that parameter vector (~,5,x',y') that minimized x2 •

The obtained estimates were as follows.

College Grade School

~ .207 .041

5 .289 .270

x' .478 .379

yl 0 0

The predictions for the revised model based on the above estimates

are given in Table 3. The table also presents the associated minimum

X
2

,s. It is evident, by comparing these predictions and x2 values

with those given in Table 2, that the revised model does a better job.

The improvement is not very large for the College data but is dramatic

in the case of the Grade School data*. However, it is evident that the

improvement in prediction is due entirely to but one of the two

modifications. The change that permitted an item to be in state E at

* Statistical tests to evaluate these comparisons are available and are
discussed in reference to learning models by Suppes and Atkinson (1960).
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TABLE 3

Observed proportions and predictions for the revised

version of the All-or-None Model.

i
Sequence College Grade School

Code Observed Predicted Observed Predicted

1 .586 .578 .439 .435

2 .020 .016 .047 .034

3 .018 .015 .036 .026

4 .026 .026 .035 .045

5 .015 .022 .028 .028

6 .018 .015 .025 .026

7 .021 .013 .019 .020

8 .050 .054 .066 .075

9 .040 .041 .037 .033

10 .006 .015 .014 .026

11 .010 .013 .022 .020

12 .009 .024 .031 .035

13 .024 .020 .021 .022

14 .010 .013 .018 .020

15 .013 .012 .014 .015

16 .134 .123 .149 .141

l- 30.2 21.7
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the end of a study trial did not yield an improvement in prediction,

because in both the College and the Grade School groups the estimated

value of y' was O. Thus, the revision that postulated differential

conditioning parameters for correct and incorrect responses accounts

entirely for the improvement in the fit of the modified all-or-none model.

Without pursuing this example further, we hope that the reader has

a fairly clear picture of our view of the theoretical enterprise in

psychology. However, there is one last point. If we scan the X2 ,s

given in this paper and select the one associated with the best fit

(i.e., the modified all-or-none model applied to the Grade School data)

a value of 21.7 is obtained with 11 degrees of freedom. This value of

x2 is significant at the .05 level, and therefore on the basis of

statistical considerations we would reject the model. The sensible

retort to this statement is the point we have tried to emphasize through­

out the paper. We always assume that any model can be rejected on

statistical grounds if enough observations are made. The goal is not

to reject or accept a given model at some predetermined level of

significance, but rather to make comparisons among models and ask how

well a model performs relative to other models. Simply stated, a model

will not be rejected on purely statistical grounds, but will be rejected

only when there are other models that consistently do a better job of

prediction.

In conclusion, we view the use of mathematical models as virtually

synonymous with the construction of a quantitative theory of behavior.

From a mathematical standpoint it is logically possible to have a

theory of behavior that leads only to qualitative predictions. However,
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it is difficult ,to find in the history of science, let alone in the,

history of psychology, theories of this sort that have had sustained

empirical significance, From the systematic standpoint a theory. or model

based only on qualitative distinctions leads to a small number of testable

predictions, Aristotle's physics and Lewin's topological field theory

(1936) are good examples. The absence of precise systematization leads

usually to pseudo-derivations from the theory, By' pseudo-derivation

we mean the derivation of prediction that requires many additional

assumptions that are not part of the original theory, Further, as the

set of phenomena that we study expand in complexity so also does the

reasoning necessary for the design of experiments and the formulation

of hypotheses, Ordinary logic becomes inadequate and the elaboration

of the theory requires the powerful tool of mathematical analysis,

Finally, we remark that we have avoided a discussion of the general
~

nature of models and theories, The words "model" and "mathematical model"

are used in a variety of related senses by behavioral scientists and

philosophers, Often the most reasonable interpretation is that the model

is the set of mathematically formulated postulates that express in pre-

cise form the intuitive notions of the relevant psychological theory,

Despite the dominance of this usage in the literature of the behavioral

sciences, we prefer to use the more precise concept of model that has

been adopted by mathematical logicians, Roughly speaking, a model is

an abstract object that satisfies a theory. A theory given in axiomatic

form can, if one chooses, be identified with its set of axioms, It is

not to the point to enter into technical details here, What is important

in-our opinion is that models have a role to play whenever theory is

31



constructed. From our standpoint, if' a theory has systematic content

and is not simply a vague collection of' heuristic ideas, then there

exist models that satisfy the theory, and it is up to the experimenter

to determine whether these models provide an adequate analysis of' be­

havioral phenomena. We believe that the role of' mathematical models

in psychology is not really separate f'rom the role of' systeraatic

theorizing.
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