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Identification of Cell-Specific Differential DNA Methylation
Associated With Methotrexate Treatment Response
in Rheumatoid Arthritis

Cameron Adams,1 Nisha Nair,2 Darren Plant,3 Suzanne M. M. Verstappen,4 Hong L. Quach,1 Diana L. Quach,1

Alex Carvidi,5 Joanne Nititham,6 Mary Nakamura,7 Jonathan Graf,5 Anne Barton,3 Lindsey A. Criswell,6

and Lisa F. Barcellos8

Objective. We undertook this study to estimate changes in cell-specific DNA methylation (DNAm) associated with
methotrexate (MTX) response using whole blood samples collected from rheumatoid arthritis (RA) patients before and
after initiation of MTX treatment.

Methods. Patients included in this studywere from the Rheumatoid ArthritisMedication Study (n = 66) and theUniversity
of California San Francisco Rheumatoid Arthritis study (n = 11). All patients met the American College of Rheumatology RA
classification criteria. Blood samples were collected at baseline and following treatment. Disease Activity Scores in 28 joints
using theC-reactive protein level were collected at baseline and after 3–6months of treatment withMTX.Methylation profiles
were generated using the Illumina Infinium HumanMethylation450 and MethylationEPIC v1.0 BeadChip arrays using DNA
from whole blood. MTX response was defined using the EULAR response criteria (responders showed good/moderate
response; nonresponders showed no response). Differentially methylated positions were identified using the Limma software
package and Tensor Composition Analysis, which is a method for identifying cell-specific differential DNAm at the CpG level
from tissue-level (“bulk”) data. Differentially methylated regions were identified using Comb-p software.

Results. We found evidence of differential global methylation between treatment response groups. Further, we found
patterns of cell-specific differential global methylation associated with MTX response. After correction for multiple testing,
1 differentially methylated position was associated with differential DNAm between responders and nonresponders at base-
line in CD4+ T cells, CD8+ T cells, and natural killer cells. Thirty-nine cell-specific differentially methylated regions associated
with MTX treatment response were identified. There were no significant findings in analyses of whole blood samples.

Conclusion. We identified cell-specific changes in DNAm that were associated with MTX treatment response in RA
patients. Future studies of DNAm andMTX treatment response should include measurements of DNAm from sorted cells.

INTRODUCTION

Rheumatoid arthritis (RA) is the most common systemic

autoimmune disease and affects up to 1% of the global

population (1). Methotrexate (MTX) is a disease-modifying anti-

rheumatic drug (DMARD) that is the most frequent first-line

DMARD for the treatment of RA (2). Approximately 30–40% of

patients continue with MTX treatment after 2 years (3,4). Reasons
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for discontinuation of treatment include inefficacy and adverse
events. Significant joint damage can occur in the early phase of
RA, and response to the first treatment regimen is an important
indicator of long-term prognosis (5–8).

MTX is a synthetic folate that has been shown to greatly
increase binding affinity for dihydrofolate reductase protein as
compared to folic acid (9). The specific mechanisms of the antiin-
flammatory effects of MTX in the setting of RA are not fully under-
stood but are believed to include the accumulation of adenosine
as a result of a reduction in purine metabolism, decreased prolifer-
ation and increased apoptosis of immune cells, and inhibition of
cytokine production (10). Previous research suggests that medica-
tions, including MTX, alter patterns of DNA methylation (DNAm)
(9,11–13). This is of interest for several reasons, including that
treatment-associated changes in the epigenome may explain, at
least in part, the mechanisms of MTX in RA. Further, DNAm pat-
terns prior to treatment and changes in DNAm associated with
treatment may serve as predictors of treatment response (14).

The most common tissue type used in epigenome-wide
association studies (EWAS) employing DNAm is blood or periph-
eral blood mononuclear cells (PBMCs) extracted from blood (15).
Peripheral blood contains several different cell types, each of which
have different methylation profiles. DNAm measurements taken
from blood samples include a combination of DNAm in the constit-
uent cell-types, and adjustment for global cell proportions is critical
when performing EWAS (16,17). However, adjustment for global
cell proportions can limit researchers’ ability to detect differential
DNAm, and cell-specific differential DNAm may be obscured if,
for example, the differential DNAm at a CpG for a given phenotype
is present in only 1 cell-type or if the direction of differential DNAm
is in opposing directions between certain cell-types. Using mea-
surements of DNAm in T lymphocytes that were recorded before
the initiation of treatment, previous studies identified patterns of
global methylation, as well as 2 CpGs that were associated with
MTX treatment response (18,19). Two previous studies investigat-
ing the association between DNAm and MTX treatment response
using DNAm measurements in whole blood and isolated PBMCs
found limited evidence of DNAm associated with MTX response
(20,21). To our knowledge, no studies have investigated DNAm in
sorted cells and patient response to treatment with MTX.

In this study, we estimated changes in cell-specific DNAm
associated with treatment response using whole blood samples
collected from RA patients before and after initiation of MTX treat-
ment. RA patients included in this study were from the Rheuma-
toid Arthritis Medication Study (RAMS) and the University of
California San Francisco Rheumatoid Arthritis (UCSF-RA) treat-
ment response study.

PATIENTS AND METHODS

Patient data. A flow chart of study procedures and analy-
ses is displayed in Figure 1. Participants were from the RAMS

and the UCSF-RA study. The methods used in the RAMS have
been described previously (20). Briefly, the RAMS is a 1-year,
UK-based multicenter longitudinal observational study of RA
patients and MTX treatment. UCSF-RA study participants were
recruited from rheumatology clinics in San Francisco County
between 2016 and 2020. Research protocols for the RAMS and
the UCSF-RA were approved by the research ethics boards at
the Central Manchester NHS Research Ethics Committee (project
no. 08/H1008/25) and the UCSF Human Research Protection
Program (project no. 15-17175), respectively, and carried out in
conformity with the Declaration of Helsinki. Written informed con-
sent was obtained from each patient. Patients from the UCSF-RA
study and the RAMS included in this research were naive to MTX
at baseline. For RAMS participants, blood samples were collected
at baseline and 4 weeks after treatment initiation. Clinical data and
disease activity scores were measured at baseline before
treatment initiation and at 6 months after treatment initiation. For
UCSF-RA study participants, blood samples were collected at
baseline and at the next follow-up visit, �3–6 months after treat-
ment initiation. All patients met the American College of Rheuma-
tology RA classification criteria (22).

Figure 1. Flow chart illustrating the quality control procedures and
differential DNA methylation analyses used in this study of DNA meth-
ylation and response to treatment with methotrexate in rheumatoid
arthritis patients. UCSF = University of California San Francisco;
RAMS = Rheumatoid Arthritis Medication Study; DMP = differentially
methylated position; TCA = tensor composition analysis;
DMR = differentially methylated region; MCM = marginal conditional
model; GO = gene ontology.
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Disease activity scores and treatment response
criteria. For this study, the disease activity score based on
28 joints using the C-reactive protein (DAS28) level was used as
the primary measure of disease activity (23). Component mea-
surements of the DAS28 were performed at the pretreatment
baseline visit and at the follow-up visit (6 months after baseline
for RAMS participants and 3–6 months after baseline for UCSF-
RA study participants). CRP levels were measured in serum sam-
ples collected from whole blood that had been obtained from par-
ticipants at each visit. Missing DAS28 scores for 2 UCSF-RA
participants were imputed using their Clinical Disease Activity
Index scores (24). Response to MTX was defined according to
the EULAR response criteria: good response defined as DAS28
≤3.2 units after treatment and DAS28 improvement >1.2 units;
moderate response defined as DAS28 between 3.2 and 5.1 units
after treatment and DAS28 improvement between 0.6 and 1.2
units; and no response defined as having DAS28 after treatment
>5.1 units and DAS28 improvement ≤0.6 units (25).

Methylation data quality control. Genome-wide
DNAm profiles for each participant were measured with the Illu-
mina 450K (RAMS participants) and EPIC arrays (UCSF-RA study
participants) using DNA extracted from whole blood samples.
Stratified random sampling (RAMS participants) or placement of
each participant’s pretreatment and posttreatment samples on
the same array (UCSF-RA study participants) was used to bal-
ance out the number of pretreatment and posttreatment samples
on each DNAm array and to prevent batch effects.

DNAm data processing. DNAm data were processed
using the minfi R package (26). Raw DNAm data from the 450K
and EPIC arrays were combined including only overlapping CpG
sites (452,567 sites). Normalization and quality control steps were
performed on the combined DNAm data. We excluded samples
with ≥5% detection (0 samples; P < 0.01) and CpGs with ≥5%
detection (834 sites; P < 0.01). CpG sites with annotated SNPs
in the single base extension or CpG were excluded (16,130 sites).
Previously identified cross-reactive probes were also excluded
(26,854 sites) (27). Finally, CpG sites on sex chromosomes were
excluded, leaving 399,716 CpG sites for analyses. Background
subtraction and dye-bias correction were performed using pre-
processNoob, and between-array normalization was performed
using preprocessFunnorm.

Global cell proportion estimation. Global cell type
proportions for B cells, CD8+ T cells, CD4+ T cells, monocytes,
natural killer (NK) cells, and neutrophils were estimated separately
within each array type (450K and EPIC) using estimateCellCounts2
with IDOL Optimized CpGs (28). Input methylation data were nor-
malized using preprocessNoob.

Correction for array type. There is substantial overlap in
CpG coverage between the EPIC and 450K arrays; however, previ-
ous studies have revealed differences in global DNAm between
these arrays (29). We used Harman correction, a method to correct
DNAmmeasurements for batch effects constrained by the probabil-
ity of overcorrection, to remove the effect of array type (EPIC versus
450K) on measurements of global DNAm (30). A matrix of normal-
ized and quality controlled M values was used as input with a confi-
dence limit of 95% corresponding to a 95% probability that only
batch variation was being removed. Principal components analysis
was used to determine if Harman correction was successful
(Supplementary Figure 1, available on the Arthritis & Rheumatology
website at http://onlinelibrary.wiley.com/doi/10.1002/art.42464).

Differential position analyses. Blood methylation. An
EWAS was performed using Limma software (31) to examine the
association between differential DNAm in blood samples and
response to treatment with MTX. EULAR treatment response
was collapsed into the binary variable, TR (TR = 1 for good or
moderate response according to EULAR criteria, TR = 0 for non-
response according to EULAR criteria). The primary parameter
of interest in this study was the difference in the change in DNAm
between follow-up (time = 1) and baseline (time = 0) between the
treatment response groups. The following time interaction model
was used to estimate this parameter:

CpGj � β0 + β1TRi + β2Timei + β3 TRi × Timeið Þ

where β3 is the estimate of the difference in DNAm at CpGj between
treatment responders (TR = 1) and nonresponders (TR = 0)
between baseline and follow-up visits. To estimate differences in
DNAm between treatment response groups before and after treat-
ment and within treatment response groups over time, we imple-
mented the following models: 1) change in DNAm from baseline
to follow-up among all participants; 2) change in DNAm from base-
line to follow-up separately among treatment responders and non-
responders; 3) change in DNAm at baseline between treatment
responders and nonresponders; and 4) change in DNAm at
follow-up between treatment responders and nonresponders.
Covariates in all models included age, sex, tobacco smoking his-
tory (ever or never smoked), array slide, and estimated global cell
proportions. P values were adjusted for multiple testing using the
Benjamini-Hochberg method (32). Additionally, due to the limited
sample size, CpGs with P values less than 1 × 10−6 were consid-
ered to have suggestive evidence for differential DNAm.

Cell-specific analyses. Tensor Composition Analysis (TCA)
was used to estimate differential DNAm between treatment
response and cell-specific DNAm. TCA is a method for estimating
cell type–specific associations between DNAm and disease phe-
notypes using bulk DNAm data (33). The linear models defined
above were also implemented in TCA. Estimated global cell pro-
portions were included as input. We implemented the following
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2-step pipeline to estimate differential DNAm in TCA: 1) a joint
model that tests for evidence of differential DNAm within any cell
type at a CpG; and 2) a marginal conditional model, which tests
for evidence of differential DNAm within a particular cell type
adjusted for the other cell types at a CpG. The joint model can
be thought of as an analysis of variance test and provides evi-
dence for differential DNAm in at least 1 cell type. Joint model
P values were adjusted for multiple testing using the Benjamini-
Hochberg method (32). All CpGs with P values less than 0.05
after correction for multiple testing were tested for cell-specific dif-
ferential DNAm using the marginal conditional model. Marginal
conditional model P values less than 0.05 after correction for
multiple testing were considered significant.

Differential region analyses. Exploratory differentially
methylated region (DMR) analyses were performed using the
Comb-p software implemented in the ENmix R package (34,35).
Comb-p is a moving-averages method that uses autocorrelation
between adjacent P values within a genomic window to identify
regions of differential DNAm. This method is agnostic to the statis-
tical test used to generate the CpG level P values. We identified
DMRs using P values estimated in Limma and the marginal condi-
tional model test in TCA. To generate genome-wide P values for
cell-specific DMR analyses, marginal conditional models were
applied to all CpGs in TCA. The following parameter settings were
used: bin.size = 310, seed = 0.001, dist.cutoff = 750bp. The

Benjamini-Hochberg and Dunn–Šid�ak methods were used to
correct for multiple testing (32). DMRs with fewer than 2 CpGs
were excluded from the results.

Whole blood global methylation estimates. Global
DNAm in whole-blood samples was estimated by taking the mean
methylation value across all CpG sites that passed quality control in
each sample. Differences in global DNAm between response

groups at baseline and follow-up were estimated using t-tests,
and statistical significance was assessed using permutation testing
(1,000 iterations). Statistical testing of cell-specific global methyla-
tion was not possible using TCAmethods; however, bar plots were
used to identify evidence for differences in global methylation

Annotation of DMPs and DMRs. DMPs and DMRs were
annotated to genic features and CpG island location using Illu-
mina and UCSC Genome Browser gene annotation. Additionally,
the distance to the nearest upstream and downstream transcrip-
tion start sites for CpGs was annotated using rGREAT (36).

Pathway analysis and sensitivity analysis. Analyses
for enrichment of gene ontology and KEGG pathways were per-
formed using gometh from the missMethyl R package separately
for the top 1,000 nominally significant CpGs identified in Limma
(P < 0.05) and TCA (marginal conditional model P < 0.05) analy-
ses. DMP analyses conducted in Limma and TCA were performed
separately among participants who self-identified as White.
Pearson’s correlation coefficient was used to assess the consis-
tency of estimated changes in DNAm among all participants and
among participants identifying as White. To assess the effects of
heterogeneity between the UCSF-RA study data set and the RAMS
data set, Limma analyses of DMPs were performed separately
within each data set and combined using random effect meta-anal-
ysis. Meta-analyses could not be performed for TCA analyses
because the sample size was too small in the UCSF-RA study to
run TCA. To assess whether CpGs in the top DMPs and DMRs
were associated with the data set or methylation array (UCSF-RA/
EPIC array versus RAMS/Illumina 450K array) or self-reported
race, principal components analysis was performed on Harman
batch-corrected methylation measurements for CpGs within the
top DMPs and DMRs. Plots were used to assess whether principal
components from CpGs in DMPs and DMRs clustered by data

Table 1. Baseline characteristics of participants with rheumatoid arthritis in a study of the effect of methotrexate
treatment on DNA methylation*

RAMS (n = 66) UCSF-RA (n = 11)

Response
(n = 36)†

No response
(n = 30)‡

Response
(n = 4)†

No response
(n = 7)‡

Female 25 (69.4) 24 (80.0) 4 (100.0) 6 (85.7)
Age at baseline, mean ± SD years 60.13 ± 14.02 59.17 ± 15.24 61.85 ± 10.48 54.95 ± 12.05
Self-reported race
Asian 0 (0.0) 0 (0.0) 0 (0.0) 1 (14.3)
African American 0 (0.0) 0 (0.0) 1 (25.0) 2 (28.6)
Other 0 (0.0) 0 (0.0) 0 (0.0) 2 (28.6)
White 36 (100.0) 30 (100.0) 3 (75.0) 2 (28.6)

Baseline DAS28-CRP score, mean ± SD 4.96 ± 1.02 4.10 ± 1.30 3.83 ± 0.70 3.15 ± 1.04
Ever smoker, yes 20 (55.6) 16 (53.3) 1 (25.0) 5 (71.4)

* Except where indicated otherwise, values are the number (%) or participants. RAMS = Rheumatoid Arthritis
Medication Study; UCSF-RA = University of California, San Francisco Rheumatoid Arthritis Study; DAS28 = Disease
Activity Score in 28 joints using the C-reactive protein level.
† Treatment response was defined as “good” or “moderate” according to the EULAR response criteria.
‡ Treatment response was defined as “none” according to the EULAR response criteria.
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set/array or self-reported race. All statistical analyses were
conducted using R version 4.0.2 (37).

RESULTS

Study participant characteristics. Baseline characteris-
tics of study participants are reported in Table 1. Thirty-six RAMS
participants and 4 UCSF-RA study participants were identified as
responders to treatment with MTX. Participant ages at baseline
were similar between response groups among RAMS

participants; however, responders in the UCSF-RA study
were � 6 years older than nonresponders. All RAMS participants
self-reported as White. Approximately 50% of the UCSF-RA
study participants were White, with 3 participants identifying as
African American, 1 participant identifying as Asian, and 1 partici-
pant identifying as Other. Baseline DAS28 scores were similar
among the responders in both cohorts. Nonresponders in the
RAMS (mean ± SD 4.10 ± 1.3) had a higher baseline DAS28
score than their UCSF-RA study counterparts (mean ± SD
3.15 ± 1.04).

Figure 2. Distribution of direction of estimated differential DNA methylation. (A) Whole blood Limma models and (B) cell-specific TCA models. R
= treatment response; NR = treatment nonresponse; T0 = DNA methylation at baseline visit; T1 = DNA methylation at follow-up visit; NK = natural
killer; Neu = neutrophil; Mono = monocyte; CD8T = CD8+ T cell; CD4T = CD4+ T cell; Bcell = B cell.
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Differences in global methylation between
treatment responders and nonresponders. The distribu-
tion of differential DNAm estimates from Limma and TCA analyses
are presented in Figure 2. Among all participants, �50% of CpGs
were hypomethylated (Figure 2A) following treatment. The direc-
tion of global DNAm was different between MTX treatment
responders and nonresponders (based on the EULAR response
criteria). Average DNAm following treatment among treatment
responders was reduced compared to nonresponders. We found
reduced methylation among responders (49.01%) compared to
nonresponders (49.25%) at the follow-up visit (permutation test
P = 0.022) but not at baseline (permutation test P = 0.77)
(Supplementary Figure 2, http://onlinelibrary.wiley.com/doi/10.
1002/art.42464).

Cell-specific changes in global methylation. Based on
the visual inspection of bar plots, there was evidence that the pro-
portion of CpGs that were hypomethylated following treatment
with MTX were different between cell-types (Figure 2B). The direc-
tion of DNAm change following MTX treatment was different
between treatment response groups. For example, CPG sites in
neutrophils were more likely to be hypomethylated in nonre-
sponders than in responders. This contrasted with DNAm
changes in monocytes, where there was more hypermethylation
in nonresponders than in responders. These cell-specific differ-
ences were also seen between treatment response groups within
each visit.

DMP results. Five CpGs demonstrated P values less than
1 × 10−6 in Limma analyses of DMPs (Table 2). Two CpGs
(cg06336912 and cg15936718) were associated with decreased
DNAm at the follow-up visit in MTX treatment responders com-
pared to nonresponders. The other 3 CpGs were from the model
comparing change in DNAm over time between responders and
nonresponders (cg16868591), change in DNAm over time
among responders (cg19506849), and change in DNAm among
nonresponders (cg18224793).

One DMP reached significance after correction for multiple
testing in the TCA joint models (Table 3). Cg13249593 was asso-
ciated with cell-specific differential DNAm between responders

and nonresponders at baseline in CD4+ T cells, CD8+ T cells,
and NK cells. The site cg13249593 is located within a CpG island
�21 kb upstream of KRT19 and 23 kb downstream of KRT9 and
is a predicted enhancer (GH17J041546) for several genes,
including KRT19, KRT9, SMARCE1, and CAVIN1
(Supplementary Figure 3 and Supplementary Table 1, http://
onlinelibrary.wiley.com/doi/10.1002/art.42464) (38).

DMR results. No DMRs were identified using Limma analy-
ses. Using P values from TCA marginal conditional models,
39 cell-specific DMRs were identified in models comparing
change in DNAm over time among nonresponders (3 DMRs),
change in DNAm over time among responders (3 DMRs), and
change in DNAm between responders and nonresponders at
baseline (16 DMRs) and at follow-up (17 DMRs). The top 10 DMRs
ranked by P value are presented in Table 4. The top DMRs were
located close to transcription start sites and CpG islands (see
Supplementary Table 2 for complete DMR results, http://
onlinelibrary.wiley.com/doi/10.1002/art.42464).

Pathway analyses. No gene ontology pathways reached
significance after correction for multiple testing; however, several
gene ontologies that reached nominal significance in cell-specific
differential CpGs from TCA analyses are related to immune func-
tion and MTX response (Supplementary Figure 4, http://
onlinelibrary.wiley.com/doi/10.1002/art.42464). At baseline,
CpGs associated with differential DNAm between MTX treatment
nonresponders were enriched for pathways related to regulation
of the immune system, adaptive immune response, and lympho-
cyte differentiation, among others. After treatment, CpGs associ-
ated with differential DNAm between treatment response groups
were enriched for pathways possibly related to MTX response
(antiporter activity and regulation of purine nucleotide metabolic
process) and lymphocyte differentiation and proliferation.

In the KEGG pathway analyses, the Wnt signaling pathway
(hsa04310; P = 8.9 × 10−5, false discovery rate–corrected
P = 0.03) was significant after correction for multiple testing in
Limma analyses estimating differential DNAm over time among
all participants.

Table 2. Results of Limma analysis of differentially methylated positions*

Annotation

CpG chr:bp (hg19) GREAT† UCSC gene Model % Δβ P

cg06336912 chr16:90173019 PRDM7 (–30,681) T1: R–NR –5.86 1 × 6.5−6

cg15936718 chr16:90088801 GAS8 (–207) GAS8 T1: R–NR –3.49 1 × 8.9−6

cg16868591 chr19:12803493 DHPS (–10,777); FBXW9 (+3,964) FBXW9 (R1–R0)– (NR1–NR0) –3.39 1 × 3.0−6

cg19506849 chr10:114767609 HABP2 (–545,176); TCF7L2 (+57,600) TCF7L2 R1–R0 2.64 1 × 9.4−6

cg18224793 chr7:100222124 MOSPD3 (+11,991); TFR2 (+18,220) TFR2 NR1–NR0 2.34 1 × 4.7−6

* Five CpGs demonstrated significance (P < 1 × 10−6) in Limma analyses of differentially methylated positions. chr = chromosome;
GREAT = Genomic Regions Enrichment of Annotations Tool; NR = nonresponder; R = responder; R0 = responder at baseline visit; R1 = responder
at follow-up visit; NR0 = nonresponder at baseline visit; NR1 = nonresponder at follow-up visit; T1 = follow-up visit.
† Distance from CpG to transcription start site of nearest upstream and downstream gene annotated using rGREAT software.
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Comparison of DNAm estimates with previous
studies. In a study by Glossop et al, 2 CpGs in T lymphocytes
(cg03018489 and cg14345882) were found to be associated
with MTX treatment response as measured by the DAS28 at
baseline before treatment initiation (18). In Limma analyses,
cg14345882 was associated with hypermethylation in
responders compared to nonresponders at baseline at nominal
significance (Δβ = 6.1%; P = 3.1 × 10−3). In results from TCA,
the estimated direction of differential DNAm at cg14345882 was
the same in CD4+ and CD8+ T cells as reported by Glossop et
al., but was not significant (P > 0.05). The CpG cg03018489
was excluded during quality control. In a study by Gosselt et al, evi-
dence was found of differences in global DNAm in leukocytes
between treatment response groups, with higher DNAm associ-
ated with treatment nonresponse (39). In our DNAm data from
whole blood samples, we found evidence of differences in global
DNAm between MTX responders and nonresponders after treat-
ment (β = –0.24%; P = 0.03) but not at baseline (β = –0.03%;
P = 0.79). Estimated cell-specific differential DNAm between treat-
ment responders and nonresponders from TCA models indicates
increased DNAm among nonresponders at baseline in CD8+
T cells and monocytes, and increased DNAm among responders
at baseline in CD4+ T cells and neutrophils (Figure 2B).

Sensitivity analyses. Estimated changes in DNAm from
analyses restricted to participants who self-identified as White
were strongly correlated with those estimated in all partici-
pants in both the Limma and TCA analyses (Supplementary
Figures 5 and 6, http://onlinelibrary.wiley.com/doi/10.1002/
art.42464). Estimated coefficients were also similar in magni-
tude and direction in the most significant DMPs, and
P values were generally similar in magnitude (Supplementary
Tables 3 and 4, http://onlinelibrary.wiley.com/doi/10.1002/
art.42464). Results from meta-analyses were consistent with
estimated coefficients in the top DMPs in Limma analyses
(Supplementary Table 5 and Supplementary Figure 7, http://
onlinelibrary.wiley.com/doi/10.1002/art.42464). Estimates of
heterogeneity (I2 and Cochran’s Q statistic) were not signifi-
cant. Plots of the first 6 components from principal compo-
nents analysis of CpGs in DMPs and DMRs (reported in

Tables 2, 3, and 4 and Supplementary Table 2, http://
onlinelibrary.wiley.com/doi/10.1002/art.42464) did not show
evidence of clustering by data set/array type or by self-
reported race (Supplementary Figure 8, http://onlinelibrary.
wiley.com/doi/10.1002/art.42464).

DISCUSSION

In this study, we investigated differential DNAm associated
with EULAR treatment response to MTX among MTX-native RA
patients. This is the first study to report results for cell-specific dif-
ferential DNAm estimated using whole blood samples in studies
of MTX response in RA patients. Similar to recent studies investi-
gating differential DNAm and response to MTX treatment, no sig-
nificant DMPs or DMRs associated with treatment response were
identified after correcting for multiple testing in analyses of whole
blood (20,21). One DMP and 39 DMRs from cell-specific analyses
were identified after correction for multiple tests. The site
cg13249593 was associated with differential DNAm in treatment
responders compared to nonresponders at baseline before treat-
ment in CD4+ (hyper) T cells, CD8+ (hypo) T cells, and NK (hypo)
cells. It is located approximately 21 kb upstream and 23 kb down-
stream of the transcription start sites of KRT9 and KRT19,
respectively, on chromosome 17. KRT19 produces the protein
keratin 19, which has been found in the synovial fluid of RA
patients. Keratin 19 has been found to be an autoantigen in anti–
cyclic citrullinated peptide–positive RA patients (40). Evidence for
differential DNAm at cg13249593 was found in the Limma analy-
ses as well (Δβ = –0.37; P = 1.5 × 10−3) but was not significant
after correction for multiple tests. Estimated coefficients from
Limma and TCA indicate that treatment with MTX was associated
with DNAm changes in nonresponders to levels observed in
responders and had no discernible effect in responders
(Supplementary Figure 9, http://onlinelibrary.wiley.com/doi/10.
1002/art.42464).

The site cg13249593 is in a CpG island and is in a region that
is a predicted enhancer for several nearby genes; data from the
NIH Roadmap Epigenomics Mapping Consortium shows that
cg13249593 is located in an enhancer or flanking promoter
region, depending on the cell type (CD4+, CD8+, or NK cells;

Table 3. Results of the tensor composition analysis of differentially methylated positions

CpG chr:bp (hg19) GREAT annotation* Model†
Cell
type Δ Methylation

Joint
model P‡

Marginal conditional
model P

cg13249593 chr17:39705234 KRT19 (–20,674);
KRT9 (+23,076)

T0: R–NR CD4T
CD8T

0.226
–0.310

1 × 2.4−8

1 × 9.5−3§
1 × 4.6−6

1 × 1.8−5

NK –0.489 1 × 2.3−6

* Distance from CpG to transcription start site of nearest upstream and downstream gene annotated using rGREAT software. See Table 2 for
definitions.
† Model comparing difference in DNA methylation at baseline before treatment with methotrexate between rheumatoid arthritis patients
identified as treatment responders compared to nonresponders.
‡ Joint model in tensor composition analysis tested for evidence of differential DNA methylation within any cell type at each CpG.
§ P for false discovery rate.
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Supplementary Figure 3, http://onlinelibrary.wiley.com/doi/10.
1002/art.42464). The differences in DNAm at baseline between
the treatment response groups suggest that expression of genes
influenced by DNAm levels at cg13249593 may be different
between treatment response groups; however, response to treat-
ment with MTX was not associated with the changes in DNAm at
cg13249593 observed in nonresponders. The top DMR analyses
identified several cell-specific DMRs. Of note, a DMR located
53 bp from the transcription start site of ALOX12 was associated
with differential DNAm between responders and nonresponders
at follow-up in monocytes and NK cells. Previous research has
found that increased expression of ALOX12 in monocytes is
associated with juvenile RA and that MTX decreases the expres-
sion of ALOX12 (41,42). Estimated coefficients from TCA indicate
that DNAm was higher among MTX treatment responders than in
nonresponders, suggesting decreased expression among
responders.

There was evidence of differential DNAm in the top 20 genes
associated with MTX response from the Comparative Toxicoge-
nomics Database (41) in Limma and TCA analyses at P < 0.05
(Supplementary Figure 10, http://onlinelibrary.wiley.com/doi/10.
1002/art.42464). These genes included SLC19A1, the gene most
strongly associated with MTX response, as well as DHFR and
BLC2. SLC19A1 is a folate transporter and is integral to the MTX
pathway (43). Inhibition of DHFR expression through the
increased binding affinity of MTX (a synthetic folate) for DHFR,
compared to folate, is the primary mechanism of MTX in the treat-
ment of cancer (9). BCL2 is an apoptosis regulator, and inhibition

of B cell apoptosis has been associated with increased expres-
sion of BCL2 in RA patients (44).

Our results are consistent with findings from a previous study
by Glossop et al, which identified 2 CpGs predictive of MTX
response before treatment in T lymphocytes (18). While our
results did not reach genome-wide significance, the direction of
differential DNAm at the CpG that passed quality control, both in
blood and in CD4+ and CD8+ T cells, were the same as those
reported by Glossop et al, with higher baseline DNAm among
MTX responders than nonresponders (Supplementary Figure 10,
http://onlinelibrary.wiley.com/doi/10.1002/art.42464). We were
not able to replicate the findings of Gosselt et al with regard to
the differences in global DNAm between response groups at
baseline; however, we did find evidence of differential global
DNAm in whole blood samples after treatment. We did not have
cell-specific measurements of DNAm and therefore could not
estimate global cell-specific differences in DNAm directly. How-
ever, the distribution of hypermethylated versus hypomethylated
CpG sites between response groups at baseline and follow-up
in the TCA analyses provides evidence of differences in DNAm at
baseline between the response groups, specifically in CD4+ T
cells, CD8+ T cells, monocytes, and neutrophils.

The lack of significant DMPs and DMRs in whole blood sam-
ples in this study is similar to the results of 2 previous studies
which investigated response to DNAm and did not find evidence
that differential DNAm was associated with MTX treatment
response. Recent studies demonstrating evidence of an associa-
tion between differential DNAm and MTX response used DNAm

Table 4. Top 10 cell-specific differentially methylated regions determined using tensor composition analysis*

Region, chr:bp Model
Cell
type

No.
CpG Δ Methylation P

GREAT
annotation Illumina annotation

Gene† Gene Feature
CpG
island

1:161008461–
61008826

T0: R–NR CD8T 8 Hyper 1 × 9.5−18 TSTD1 (+136) TSTD1 TS200 Island

12:9217389–
9217907

T0: R–NR Bcell 10 Hyper 1 × 5.8−15 – LOC144571 TS200 Island

1:202310823–
202311278

T1: R–NR Neu 7 Hyper 1 × 3.1−14 UBE2T (+57) UBE2T TS200 Island

17:6899084–
6899577

T1: R–NR Mono 11 Hyper 1 × 2.0−13 ALOX12 (–53) ALOX12 TS200 Island

13:36871753–
36872346

R: T1–T0 NK 9 Hypo 1 × 8.6−13 – C13orf38 TS200 Island

1:161008461–
161008826

T0: R–NR CD4T 8 Hypo 1 × 1.8−12 TSTD1 (+136) TSTD1 TS200 Island

17:6899084–
6899577

T1: R–NR NK 11 Hypo 1 × 4.9−12 ALOX12 (–53) ALOX12 TS200 Island

10:77542301–
77542585

T0: R–NR CD4T 9 Hyper 1 × 1.5−11 C10orf11 (–76) C10orf11 TS200 OpenSea

6:32063725–
32064258

T1: R–NR NK 16 Hypo 1 × 5.9−11 TNXB (–50,087) TNXB Body Island

6:31148331–
31148748

T0: R–NR CD8T 15 Hyper 1 × 1.2−10 – – – Island

* GREAT = Genomic Regions Enrichment of Annotations Tool; chr = chromosome; Hyper = hypermethylation; Hypo = hypomethylation;
NR = nonresponder; R = responder; T0 = baseline visit.
† Distance from CpG to transcription start site of the nearest upstream and downstream gene annotated using rGREAT software.
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quantified in T lymphocytes (18). This finding, along with our find-
ings of differences in the patterns of global cell-specific DNAm
between MTX treatment response groups and the identification
of a cell-specific DMP and several cell-specific DMRs, suggests
that associations with DNAm and MTX response are cell-type
specific.

Strengths of this study included the prospective design used
for each data set. Patients in the RAMS and the UCSF-RA study
were naive to MTX at baseline, and blood samples and disease
activity scores were collected both before and after the initiation
of treatment. Furthermore, all participants received MTX mono-
therapy rather than combination therapy during the observation
period. To our knowledge, this is the first study to report on cell-
specific DNAm associated with MTX using methods to estimate
cell-specific DNAm from whole blood samples. Patients in the
RAMS reported treatment compliance >80% (20). We were
unable to evaluate MTX treatment compliance in the UCSF-RA
study participants.

Limitations of this study included residual confounding
resulting from combining DNAm data from the Illumina 450K and
EPIC platforms; however, results from principal components
analyses indicate that we were able to remove array effects with
the Harman correction (Supplementary Figures 1 and 7, http://
onlinelibrary.wiley.com/doi/10.1002/art.42464). Other limitations
of this study included a lack of diversity with regard to participant
demographic characteristics and the small sample size. Partici-
pants were recruited from rheumatology clinics in the UK and
the San Francisco Bay Area, and nearly all participants self-
identified as White, which limits the generalizability of our findings.
Furthermore, the sample size was relatively small, which limited
the power to identify smaller changes in DNAm with genome-
wide significance.

Other limitations included differences in the study protocols
between the RAMS and the UCSF-RA study. In the RAMS, blood
samples used for the analysis of DNAmwere collected at baseline
and after 4 weeks of treatment, while blood samples from the
UCSF-RA study participants were collected at baseline and the
follow-up visit. There were also some limitations in the TCA analy-
ses. First, the estimates of differential DNAm in TCA were not esti-
mated using measurements of cell-specific DNAm in our
participants. Another limitation was that there is more power to
detect differential DNAm in more abundant cell types compared
to less abundant cell types. Finally, the 2 time-point models used
in the Limma analysis and TCA were slightly different. The Limma
models included a random effect for each participant. The TCA
software cannot perform paired analyses using random effects
or by including participant IDs as a covariate. Including IDs as a
covariate would create an unidentifiable model (no. of cell-types
× no. of parameters in the model).

In conclusion, we estimated changes in DNAm associated
with response to treatment with MTX in RA patients through the
use of methods that deconvolute cell-specific DNAm at the CpG

level. We identified evidence of cell-specific differential DNAm
between treatment responders and nonresponders at baseline
in 1 DMP with genome-wide significance. We also identified
39 cell-specific DMRs. No DMPs or DMRs were identified in anal-
yses of whole blood samples after correction for multiple testing,
although we were not powered to detect modest effects. Our
findings of cell-specific differential DNAm associated with MTX
response and the paucity of evidence of differential DNAm in this
present research and in similar studies using DNAm from whole
blood samples and PBMC samples indicate that future studies
of DNAm and MTX response will require larger sample sizes to
detect modest effects of MTX on the methylome and DNAm data
derived from sorted cells.

AUTHOR CONTRIBUTIONS
All authors were involved in drafting the article or revising it critically

for important intellectual content, and all authors approved the final ver-
sion to be published. Dr. Barcellos had full access to all of the data in
the study and takes responsibility for the integrity of the data and the
accuracy of the data analysis.
Study conception and design. Adams, Nair, Plant, Verstappen, Naka-
mura, Graf, Barton, Criswell, Barcellos.
Acquisition of data. Nair, H. Quach, D. Quach, Carvidi, Criswell,
Barcellos.
Analysis and interpretation of data. Adams, Nair, Criswell, Barcellos.

REFERENCES

1. Almutairi KB, Nossent JC, Preen DB, et al. The prevalence of rheuma-
toid arthritis: a systematic review of population-based studies.
J Rheumatol 2021;48:669–76.

2. Lopez-Olivo MA, Siddhanamatha HR, Shea B, et al. Methotrexate for
treating rheumatoid arthritis. Cochrane Database of Systematic
Reviews; 2014. URL: https://www.cochranelibrary.com/cdsr/doi/10.
1002/14651858.CD000957.pub2/full.

3. Romão VC, Canhão H, Fonseca JE. Old drugs, old problems: where
do we stand in prediction of rheumatoid arthritis responsiveness to
methotrexate and other synthetic DMARDs? BMC Medicine 2013;
11:17.

4. Verstappen SM, Owen SA, Hyrich KL. Prediction of response and
adverse events to methotrexate treatment in patients with rheumatoid
arthritis. Int J Clin Rheumatol 2012;7:559.

5. Lindqvist E, Jonsson K, Saxne T, et al. Course of radiographic dam-
age over 10 years in a cohort with early rheumatoid arthritis. Ann
Rheum Dis 2003;62:611–6.

6. Rezaei H, Saevarsdottir S, Forslind K, et al. In early rheumatoid arthri-
tis, patients with a good initial response to methotrexate have excel-
lent 2-year clinical outcomes, but radiological progression is not fully
prevented: data from the methotrexate responders population in the
SWEFOT trial. Ann Rheum Dis 2012;71:186–91.

7. Vastesaeger N, Xu S, Aletaha D, et al. A pilot risk model for the predic-
tion of rapid radiographic progression in rheumatoid arthritis. Rheu-
matology (Oxford) 2009;48:1114–21.

8. Breedveld FC, Weisman MH, Kavanaugh AF, et al. The PREMIER
study: a multicenter, randomized, double-blind clinical trial of combi-
nation therapy with adalimumab plus methotrexate versus methotrex-
ate alone or adalimumab alone in patients with early, aggressive
rheumatoid arthritis who had not had previous methotrexate treat-
ment. Arthritis Rheum 2006;54:26–37.

ADAMS ET AL1096

https://doi.org/10.1002/art.42464
https://doi.org/10.1002/art.42464
https://doi.org/10.1002/14651858.CD000957.pub2/full
https://doi.org/10.1002/14651858.CD000957.pub2/full


9. Brown PM, Pratt AG, Isaacs JD. Mechanism of action of methotrexate
in rheumatoid arthritis, and the search for biomarkers [review]. Nat
Rev Rheumatol 2016;12:731–42.

10. Wessels, Huizinga TW, Guchelaar HJ. Recent insights in the pharma-
cological actions of methotrexate in the treatment of rheumatoid
arthritis. Rheumatology (Oxford) 2008;47:249–55.

11. Kim YI, Logan JW, Mason JB, et al. DNA hypomethylation in inflam-
matory arthritis: reversal with methotrexate. J Lab Clin Med 1996;
128:165–72.

12. Ellis JA, Munro JE, Chavez RA. Genome-scale case-control analysis
of CD4+ T- cell DNA methylation in juvenile idiopathic arthritis reveals
potential targets involved in disease. Clin Epigenetics 2012;4:20.

13. Plant D, Wilson AG, Barton A. Genetic and epigenetic predictors of
responsiveness to treatment in RA (review). Nat Rev Rheumatol
2014;10:329.

14. Nair N, Wilson AG, Barton A. DNA methylation as a marker of
response in rheumatoid arthritis. Pharmacogenomics 2017;18:
1323–32.

15. Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in
epigenome-wide association studies. Genome Biol 2014;15:R31.

16. Reinius LE, Acevedo N, Joerink M, et al. Differential DNA methylation
in purified human blood cells: implications for cell lineage and studies
on disease susceptibility. PLoS One 2012;7:e41361.

17. Houseman EA, Accomando WP, Koestler DC, et al. DNA methylation
arrays as surrogate measures of cell mixture distribution. BMC Bioin-
formatics 2012;13:86.

18. Glossop JR, Nixon NB, Emes RD, et al. DNA methylation at diagnosis
is associated with response to disease-modifying drugs in early rheu-
matoid arthritis. Epigenomics 2017;9:419–28.

19. Gosselt HR, van Zelst BD, de Rotte MC, et al. Higher baseline global
leukocyte DNA methylation is associated with MTX non-response in
early RA patients. Arthritis Res Ther 2019;21:157.

20. Nair N, Plant D, Plant D, et al. Differential DNA methylation correlates
with response to methotrexate in rheumatoid arthritis. Rheumatology
(Oxford) 2020;59:1364–71.

21. Gosselt HR, Vallerga CL, Mandaviya PR, et al. Epigenome wide asso-
ciation study of response to methotrexate in early rheumatoid arthritis
patients. PLoS One 2021;16:e0247709.

22. Aletaha D, Neogi T, Silman AJ, et al. 2010 rheumatoid arthritis classi-
fication criteria: an American College of Rheumatology/European
League Against Rheumatism collaborative initiative. Arthritis Rheum
2010;62:2569–81.

23. Tamhane A, Redden DT, McGwin G, et al. Comparison of the disease
activity score using erythrocyte sedimentation rate and C-reactive
protein in African Americans with rheumatoid arthritis. J Rheumatol
2013;40:1812–22.

24. Leong KP, Tan JW, Gao X, et al. Conversion among the 28-joint count
activity indices for rheumatoid arthritis. Eur J Rheumatol 2020;7:
105–11.

25. Fransen J, van Riel PL. The Disease Activity Score and the EULAR
response criteria. Clin Exp Rheumatol 2005;23:S93–9.

26. Fortin JP, Triche TJ, Hansen KD, et al. Preprocessing, normalization
and integration of the Illumina HumanMethylationEPIC array with
minfi. Bioinformatics 2017;33:558–60.

27. Chen Y, Lemire M, Choufani S, et al. Discovery of cross-reactive
probes and polymorphic CpGs in the Illumina Infinium HumanMethy-
lation450 microarray. Epigenetics 2013;8:203–9.

28. Salas LA, Koestler DC. FlowSorted.Blood.EPIC: Illumina EPIC data on
immunomagnetic sorted peripheral adult blood cells; 2020. URL:
https://github.com/immunomethylomics/FlowSorted.Blood.EPIC.

29. Logue MW, Smith AK, Wolf EJ, et al. The correlation of methylation
levels measured using Illumina 450K and EPIC BeadChips in blood
samples. Epigenomics 2017;9:1363–71.

30. Oytam Y, Sobhanmanesh F, Duesing K, et al. Risk-conscious correc-
tion of batch effects: maximising information extraction from high-
throughput genomic datasets. BMC Bioinformatics 2016;17:332.

31. Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expres-
sion analyses for RNA-sequencing and microarray studies. Nucleic
Acids Research 2015;43:e47.

32. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a prac-
tical and powerful approach to multiple testing. J R Stat Soc B 1995;
57:289–300.

33. Rahmani E, Schweiger R, Rhead B, et al. Cell-type-specific resolution
epigenetics without the need for cell sorting or single-cell biology. Nat
Commun 2019;10:3417.

34. Pedersen BS, Schwartz DA, Yang IV, et al. Comb-p: software for
combining, analyzing, grouping and correcting spatially correlated
P-values. Bioinformatics 2012;28:2986–8.

35. Xu Z, Xie C, Taylor JA, et al. ipDMR: identification of differentially meth-
ylated regions with interval P-values. Bioinformatics 2021;37:711–3.

36. Gu Z. rGREAT: Client for GREAT Analysis; 2021. URL: https://github.
com/jokergoo/rGREAT, http://great.stanford.edu/public/html/.

37. Anon. R Core Team (2020)—European Environment Agency. URL:
https://www.eea.europa.eu/data-and-maps/indicators/oxygen-
consuming-substances-in-rivers/r-development-core-team-2006.

38. Fishilevich S, Nudel R, Rappaport N, et al. GeneHancer: genome-
wide integration of enhancers and target genes in GeneCards. Data-
base 2017;2017:bax028.

39. Gosselt HR, van Zelst BD, de Rotte MC, et al. Higher baseline global
leukocyte DNA methylation is associated with MTX non-response in
early RA patients. Arthritis Res Ther 2019;21:157.

40. Poulsen TB, Damgaard D, Jørgensen MM, et al. Identification of novel
native autoantigens in rheumatoid arthritis. Biomedicines 2020;8:141.

41. Davis AP, Grondin CJ, Johnson RJ, et al. Comparative Toxicoge-
nomics Database (CTD): update 2021. Nucleic Acids Res 2021;49:
D1138–43.

42. Cepika AM, Banchereau R, Segura E, et al. A multidimensional blood
stimulation assay reveals immune alterations underlying systemic
juvenile idiopathic arthritis. J Exp Med 2017;214:3449–66.

43. Desmoulin SK, Hou Z, Gangjee A, et al. The human proton-coupled
folate transporter. Cancer Biol Ther 2012;13:1355–73.

44. Yang J, Zhao S, Yang X, et al. Inhibition of B-cell apoptosis is medi-
ated through increased expression of Bcl-2 in patients with rheuma-
toid arthritis. Int J Rheum Dis 2016;19:134–40.

CELL-SPECIFIC DIFFERENTIAL DNA METHYLATION ASSOCIATED WITH MTX TREATMENT IN RA 1097

https://github.com/immunomethylomics/FlowSorted.Blood.EPIC
https://github.com/jokergoo/rGREAT
https://github.com/jokergoo/rGREAT
http://great.stanford.edu/public/html/
https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006
https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006

	Identification of Cell-Specific Differential DNA Methylation Associated With Methotrexate Treatment Response in Rheumatoid ...
	INTRODUCTION
	PATIENTS AND METHODS
	Outline placeholder
	Patient data
	Disease activity scores and treatment response criteria
	Methylation data quality control
	DNAm data processing
	Global cell proportion estimation
	Correction for array type
	Differential position analyses
	Blood methylation
	Cell-specific analyses

	Differential region analyses
	Whole blood global methylation estimates
	Annotation of DMPs and DMRs
	Pathway analysis and sensitivity analysis


	RESULTS
	Outline placeholder
	Study participant characteristics
	Differences in global methylation between treatment responders and nonresponders
	Cell-specific changes in global methylation
	DMP results
	DMR results
	Pathway analyses
	Comparison of DNAm estimates with previous studies
	Sensitivity analyses


	DISCUSSION
	AUTHOR CONTRIBUTIONS
	Study conception and design
	Acquisition of data
	Analysis and interpretation of data

	REFERENCES




