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Heart failure is a major healthcare challenge, and most existing treatments mitigate its

symptoms without addressing underlying mechanical dysfunction. Therefore, recent advance-

ments aim to directly target the contractile machinery of the heart. In this work, we utilized

a combination of multiscale modeling approaches spanning from the atom to whole heart to

investigate the therapeutic potential of targeting proteins within the sarcomere to improve cardiac

contractile function in heart failure with reduced ejection fraction. We specifically investigated

2-deoxy-ATP (dATP), a potential myosin-activating therapeutic. dATP improves cardiac function

by increasing the rate of crossbridge cycling and Ca2+ transient decay. However, the molecular
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mechanisms of these effects and how therapeutic responses to dATP are achieved, especially

for small fractions of dATP, remain poorly understood. This is especially true in heart fail-

ure, where energy metabolism is impaired. We utilized a combination of molecular dynamics

(MD), Brownian dynamics (BD), and Markov state modeling, to show that dATP increases

the actomyosin association rate via stabilization of pre-powerstroke myosin. We also showed

using MD and BD that dATP acts on the sarcoendoplasmic reticulum Ca2+-ATPase (SERCA)

pump to accelerate Ca2+ re-uptake into the sarcoplasmic reticulum during cardiac relaxation

by increasing the rate of Ca2+ association to SERCA. We then employed a spatially explicit

model of the sarcomere to show that dATP increases the pool of myosin heads available for

crossbridge cycling, increasing steady state force development at low dATP fractions due to

mechanosensing and nearest-neighbor cooperativity. We extended our analysis to assess car-

diomyocyte mechanics and excitation-contraction coupling, and found that the effects of dATP

on SERCA, along with increased myosin recruitment, contributed to improved cell contraction

and relaxation. These mechanisms extended to the ventricular level to improve contractility and

metabolism, especially in heart failure, where our model of ventricular mechanics and circulation

predicted that dATP increased ejection fraction and the energy efficiency of cardiac contraction.

We finally extended our approach to demonstrate how our multiscale computational modeling

approach can be utilized to provide insight into the link between genotype and phenotype in

heart failure and to develop novel therapeutics.
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Introduction

0.1 Heart Failure: A Major Healthcare Challenge

Cardiovascular disease is the leading cause of death globally, with 23.6 million people

projected to die from stroke and heart disease by 2030 [58]. Further, adults over 40 have a

20% risk of developing heart failure [118]. Heart failure thus remains a significant cause of

morbidity, mortality, and cost to the healthcare system [178]. Heart failure is a clinical syndrome

with a number of potential causes and contributing factors including coronary artery disease,

high blood pressure, and cardiomyopathy [27]. There are several different cardiomyopathies,

including hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), restrictive

cardiomyopathy (RCM), arrhythmogenic right ventricle cardiomyopathy (ARVC), and other

non-classified cardiomyopathies. Further, heart failure can be classified as heart failure with

reduced ejection fraction (HFrEF) or heart failure with preserved ejection fraction (HFpEF),

which guides treatment strategies. There are a variety of causes and underlying mechanisms,

as well as phenotypic presentations and responses to treatment for each of these classifications

[183]. Thus, there is a need to better understand why different types of heart failure develop,

make better clinical predictions, and explore novel treatment options based on these predictions.

0.1.1 Heart Failure with Reduced Ejection Fraction

HFrEF, the focus of this work, comprises approximately 50% of cases of heart failure

overall [137]. It is typically defined as heart failure where the left ventricular ejection fraction

(EF) is 40% or less. Symptoms of HFrEF include dyspnea, fatigue, exercise intolerance,
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and congestion [137]. Typically, patients with HFrEF tend to be younger than patients with

HFpEF. Further, male patients, as well as those with a history of myocardial infarction, bundle

branch block, or smoking, were more likely to develop HFrEF than HFpEF, while smoking

and high blood pressure were equally likely to contribute to HFrEF and HFpEF [17]. Coronary

artery disease and hypertension are the largest risk factors for developing HFrEF, followed

by cardiomyopathy and other causes such as myocardial infarction and infection [17]. In

HFrEF, ventricular contraction is reduced, leading to reduced stroke volume (SV) and cardiac

output (CO). This typically leads to compensatory mechanisms such as activation of the renin-

angiotensin-aldosterone system [17]. These compensatory mechanisms initially increase CO

but can lead to worsening of heart failure in the long term, including increased hypertrophy and

fibrosis [17].

The progression of HFrEF also includes alterations in excitation-contraction coupling.

In heart failure, it has been shown that the sarcoplasmic reticulum Ca2+ ATPase (SERCA) and

the plasma membrane Ca2+ ATPase (PMCA) are down-regulated, and the Na+/Ca2+ exchanger

(NCX) is up-regulated. This leads to decreased sarcoplasmic reticulum (SR) Ca2+ load, decreas-

ing the amount of Ca2+ available for contraction and leading to reduced systolic function. Na+

is also elevated in heart failure, and the action potential is prolonged [15, 160, 227].

Further, myocardial energetics are also altered in HFrEF. The myocardium switches

from fatty acid oxidation to glucose and lactate utilization, which is more efficient in the short

term but leads to mitochondrial uncoupling in the long term. This results in reactive oxygen

species accumulation, which has been linked to mitochondrial damage, hypertrophy, and fibrosis.

Heart failure also leads to reduced ATP, creatine phosphate (CrP), and Pi levels, and increased

ADP levels [40]. The CrP/ATP ratio, which has been shown to be an indicator of cardiac

function, is also decreased in heart failure [229]. Generally, there is a linear relationship between

ATP utilization and cardiac work rate, but this relationship is altered in failing hearts, which

indicates an inefficient transduction of chemical energy from ATP hydrolysis to mechanical work

[40, 201]. The failing heart is therefore in a state of energy starvation where mitochondria are
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unable to synthesize ATP rapidly enough to maintain normal function. A recent study showed

that alterations in energetics can be directly related to changes in mechanics in heart failure, and

that modulation of metabolites may restore mechanical function [229, 40, 201].

0.1.2 Genetic Underpinnings of Dilated Cardiomyopathy

DCM, which can lead to the progression of HFrEF, is characterized by ventricular dilation,

decreased ventricular wall thickness, tricuspid and mitral regurgitation, and dilated atria, leading

to systolic dysfunction, where ventricular ejection is impaired [183]. The incidence of DCM is

36 cases per 100,000 people, and DCM accounts for 8-47% of all heart failure patients; 77% of

DCM patients die within 2 years of diagnosis [183]. Heart failure is the most frequent cause of

death in DCM, followed by sudden cardiac death [183]. There are a number of causes of DCM

including genetics and myocardial damage caused by infections, toxins, metabolic dysfunction,

autoimmune disease, and myocardial ischemia [183, 127].

More than 60 genes coding for sarcomere proteins, the cytoskeleton, the nuclear envelope,

the sarcolemma, ion channels, Ca2+-handling proteins, and intercellular junction proteins have

been identified in DCM [183]. In particular, 35-40% of DCM cases are caused by mutations in

sarcomere genes [127]. Several sarcomere mutations leading to DCM have been identified in the

thin filament, which often lead to reduced Ca2+ sensitivity. The TNNT2 del210K mutation in

troponin (Tn) and TPM1 D230N mutation in tropomyosin (Tm) are two such mutations [127].

Mutations can also occur in myosin, such as the MYH7 S532P and F764L mutations, which occur

in the myosin head domain. These mutations were shown to lead to reduced ATPase activity and

sliding motility, as well as a reduction of myosin motor step size [127]. The net effect of these

mutations is thus often a reduction in force production at the protein and sarcomere level, and/or

reduced energetic efficiency of contraction. It is not fully understood how we can link genotype

to heart failure phenotype, including growth and remodeling of the whole heart over time as a

result of a single or multiple mutations. It is also not always well understood how we can use

this information to better treat heart failure patients, especially as genetic screening becomes
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more common.

0.1.3 Current Treatment Approaches

Most existing treatment strategies for HFrEF slow the progression of the disease or

treat its symptoms, but do not fully restore cardiac function [202]. Existing treatments in-

clude angiotensin-converting-enzyme (ACE) inhibitors, angiotensin-receptor blockers, and beta-

adrenergic blockers to reduce blood pressure, and diuretics to reduce fluid retention [126, 137].

Patients may also require the use of implantable cardiac defibrillators, left ventricular assist

devices, cardiac resynchronization therapy, mitral valve repair, or heart transplants in more severe

cases [183, 137]. Lifestyle changes may also be recommended [126].

Another treatment strategy is the use of inotropic agents to improve contractility [50].

Digoxin, one such inotrope, acts to increase intracellular Ca2+ levels, leading to improvements

in cardiac function. However, it can increase mortality rate, and its use has declined in recent

years [183]. Other inotropes including dobutamine, norepinephrine, milrinone and levosimendan

each have their own potential negative side effects including increased myocardial oxygen

consumption and arrhythmogenesis [50, 118, 198].

In recent years, researchers have investigated a new class of ionotropic agents that target

myosin directly to improve contractile function while avoiding many of these negative side

effects. Omecamtiv mecarbil (OM) is a myosin activator that has been shown to improve

contractile function without altering intracellular Ca2+ or increasing energy demand on the heart

[118, 198]. OM acts by stabilizing the myosin lever arm in the pre-powerstroke state to increase

the number of myosin heads that can bind to actin, thus increasing the transition rate from

the weakly- to strongly-bound state and increasing force production [118, 226, 162]. Recent

studies including a recently completed phase 3 clinical trial have shown that OM is effective

at improving ventricular function and promoting reverse remodeling [14, 48]. However, OM

may prolong systole at higher doses, which could have deleterious effects such as impairing

relaxation. Danicamtiv, a myosin activator similar to OM, has also shown promise in improving
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ventricular function, but additional data is needed to determine if it may also prolong systole

[14].

0.2 2-deoxy-ATP as a Potential Heart Failure Therapeutic

The naturally occurring nucleotide 2’-deoxy-ATP (dATP) is another candidate myosin

activator for treating HFrEF [202]. Experimental studies have shown that dATP is a more

efficient energy source for contraction in cardiac muscle [170, 172]. dATP has been shown to

have a larger effect on cardiac muscle than skeletal muscle, increasing force production only at

sub-maximal Ca2+ levels in skeletal muscle [202, 172, 171]. dATP was also shown not to act

on cardiac smooth muscle [147]. When ribonucleotide reductase (R1R2), a naturally-occurring

enzyme that converts ADP to dADP, was delivered to myocytes using a recombinant adenoviral

system, even small increases in dATP (to 1-2% of the overall nucleotide pool), were sufficient to

increase myocyte shortening and relaxation, contractile force, and Ca2+ sensitivity [97]. dATP

thus has several advantages over similar inotropes such as OM, because it improves contractile

function without impairing relaxation. Similar results were observed in isolated myocytes from

canines and humans [135, 28]. Nowakowski et al. [147] saw enhanced contractility, fractional

shortening (FS), and EF with no signs of adverse remodeling in a transgenic mouse model

over-expressing R1R2. Kolwicz et al. [96] found that adenoviral delivery of R1R2 to mice

increased systolic function, even at 13 weeks post-transduction. Further, Kodota et al. [87]

saw similar results in post-MI pigs, with no evident safety or toxicity concerns. Additionally,

Lundy et al. [112] showed that dATP can diffuse through gap junctions between transduced

and non-transduced cardiomyocytes, and found that when human embryonic stem cell-derived

cardiomyocytes transduced with R1R2 were transplanted into adult rat hearts in vivo, cardiac

function was significantly improved. This suggests that dATP could potentially be delivered

clinically via a targeted gene therapy approach, but additional research and clinical data is

needed.
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Figure 0.1. Overview of existing data on dATP and remaining questions at multiple scales.
Existing information obtained through prior experimentation or computation is highlighted in
purple, and remaining questions are highlighted in green.

Despite these promising results, several key questions remain, illustrated in Figure 0.1.

dATP has been shown to act on myosin to increase the rate of crossbridge binding and cycling

[202], and electrostatic interactions between actin and myosin [167, 148] (Figure 0.1B), but

the mechanisms behind this and how small amounts of dATP (1-2% of the overall nucleotide

pool) are sufficient to significantly improve sarcomere contraction are not fully understood

(Figure 0.1C). Recent studies suggest that dATP may also affect the myosin OFF state [216,

115, 116, 167] (Figure 0.1D), but the mechanisms behind this and the degree to which this leads

to improved cellular and ventricular function has not been fully investigated (Figure 0.1F,G).

Further, dATP has been shown to increase the rate of Ca2+ transient decay, and thus relaxation,

in cardiomyocytes [97] (Figure 0.1E), but the mechanisms behind this are unclear, although we

have hypothesized that this may be due to dATP acting on SERCA (Figure 0.1A). It is also not

known how this translates to changes in contractility and lusitropy at varying levels of mechanical

function (Figure 0.1F,G). Additionally, it is not clear whether the increased rate of crossbridge
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cycling with dATP treatment exacerbates energy starvation in heart failure, due to faster ATP

turnover and/or increasing myocardial oxygen consumption (Figure 0.1G). Further, although it

has been demonstrated that altered energetics in heart failure directly contribute to mechanical

dysfunction, it is unknown how changes in Ca2+ handling with dATP will interact with these

effects.

0.3 Multiscale Computational Modeling

A computational modeling approach allows for assessment of the specific mechanisms of

small molecules such as dATP or mutations in sarcomeric proteins, and synthesis of information

across spatial and temporal scales in a way that would be difficult to accomplish experimen-

tally. Modeling can also be utilized to generate predictions that can be tested experimentally.

Significant progress has been made in the past several decades in developing computational

models of cardiac behavior at scales ranging from atomistic protein dynamics and protein-protein

interactions to patient-specific models of whole heart contraction and excitation-contraction

coupling. Still, combining these models into a cohesive, multiscale modeling framework that

accurately represents behavior at each of these scales simultaneously and integrates different

sources of experimental data remains a major challenge in the field.

0.3.1 Modeling at the Molecular Level

Computational techniques including MD and BD have allowed for simulation of sar-

comere proteins including myosin, actin, and their associated regulatory proteins, as well as

other proteins involved in excitation-contraction coupling such as SERCA. This has allowed

researchers to gain a better understanding of how mutations linked to heart failure in these

proteins affect their function, as well as to study how small molecule therapeutics including

OM [9] and dATP [147] affect protein dynamics. Molecular dynamics simulations involve

solving the equations of motion for each atom in a given protein or system over anywhere from

a few femtoseconds to a few microseconds [30]. The major limitation in these simulations is
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the computational power needed to run longer simulations for larger atomic systems, although

super computing has allowed for significant advances in recent years. Additionally, Gaussian

accelerated MD (GaMD) can be utilized to allow for broader conformational sampling [30].

Further, more detailed crystal structures of sarcomeric proteins obtained using X-ray

crystallography, NMR spectroscopy, or CryoEM have been solved in recent years, allowing for

improved MD simulations. In 2023, a complete structure of the thick filament obtained using

Cryo-EM was published, which is a major step forward in the field [44]. Further, a detailed

model of the cardiac thin filament has been developed [38]. Still, a complete, atomistic model of

actomyosin interactions including the complete thin and thick filaments as well as regulatory

proteins has yet to be accomplished, largely because of limitations in computing power. Further,

additional work is needed to better understand the structural underpinnings of the myosin OFF

state. Recent studies have provided insight into the structure of the interacting heads motif

[59, 35], but how this structure may be affected by small molecules or mutations, and how this

relates to the super-relaxed (SRX) state of myosin, remain to be determined. Further, detailed

structures and MD simulations for SERCA and other Ca2+ handling proteins have been published

[206], but their molecular interactions with myosin activating drugs have not been widely studied.

Some additional limitations can be overcome through homology modeling of structures that are

unavailable and by introducing mutations or small molecules in silico [30].

BD is another simulation tool that allows for a more coarse-grained assessment of protein-

protein or protein-ligand dynamics by modeling molecules of interest as rigid bodies [70]. In

BD, electrostatic fields around each protein are estimated, and one of the proteins (or ligands)

is placed on a sphere some distance away from the second protein and allowed to diffuse. If

the protein of interest comes within a certain reaction distance and satisfies pre-defined reaction

criteria, it is considered a binding event. Thousands of these trajectories are simulated, and

utilized to estimate a binding constant [70]. The Simulation Enabled Estimation of Kinetic Rates

package (SEEKR) is another recently developed computational tool that combines Brownian

dynamics with molecular dynamics and milestoning to more accurately estimate association
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rates [215]. Additionally, Marov modeling can be utilized in combination with these techniques

to investigate protein dynamics [168].

0.3.2 Modeling at the Sarcomere Level

Our current understanding of sarcomere contractile mechanics is largely based on the

sliding filament hypothesis developed by Huxley in 1954 [73, 75]. Huxley proposed a model

where each myosin head is modeled as a simple spring, which can bind to actin with a rate

dependent on its position relative to the actin binding site [74, 76]. The detachment rate also

depends on position. The attached myosin head generates force by pulling on actin, and force

is calculated with respect to its displacement from the binding site [7, 8]. This model also

couples ATP hydrolysis with force production. This foundational modeling framework has

been expanded upon over the years to create more complex models of sarcomere mechanics.

In 1999, Hunter et al. proposed a model of active and passive mechanics based on a variety

of experimental data, with the aim of incorporating this model in a larger whole heart model

[72, 7]. The Rice et al. model, published in 2008, expands upon the original Huxley et al.

model, and allows for modeling of steady state force-sarcomere and force-Ca2+ relationships,

steady state force-velocity relationships, isometric twitches, and slack-restretch protocols, where

force generated depends on spatial overlap between the thick and thin filaments, thus allowing it

to reproduce the length-tension relationship [174]. Similar models incorporating viscoelastic

properties, and allowing for modeling of passive and active mechanics, as well as thin filament

regulation by calcium, have been developed in recent years [200, 101], using data from rodents

and human cardiomyocytes. More detailed models that include mechanisms of cooperativity have

also been developed [100, 24], as well as models including the myosin OFF state [131, 22, 201].

Most of these models utilize ordinary differential equations to reproduce the behavior

of the sarcomere as a whole, with distribution functions indicating the fraction of crossbridges

in a given state at a given time. However, it can also be useful to model the dynamics of each

individual myosin head and nonlinear stochastic mechanical properties that vary throughout the
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sarcomere. This can be accomplished using Monte Carlo methods [223, 166, 130, 123], which

typically significantly increase computational cost but allow for a more detailed representation

of sarcomere mechanics and cooperative mechanisms.

0.3.3 Modeling at the Cellular Level

Many computational models of cardiac excitation-contraction coupling (ECC) have also

been developed. The Luo-Rudy model developed in 1994 was one of the first such models

[113]. More recently developed models incorporate stochastic behavior of calcium channels

and graded calcium release [173]. Coupled electromechanics models have also been developed,

incorporating both sarcomere mechanics and electrophysiology, including the Nickerson et al.

2001 [144] model (based on the Noble et al. 1998 guinea-pig electrophysiology model [145]).

Further, researchers have developed more detailed continuum models of cell electromechanics

[52]. Human cardiomyocyte models have also been developed in recent years, since older models

typically relied on rodent data [150, 56, 66, 199]. In addition, detailed mitochondria models can

be coupled to mechanoelectric cellular models to assess how excitation-contraction coupling

interacts with cellular metabolism [201]. These cardiomyocyte electrophysiology models have

been successfully utilized to predict the effects of cardiac drugs on the action potential and screen

for potential arrhythmogenicity [122].

Models of SERCA pump function have been developed by several researchers, including

the Shannon et al. model [184], which has widely been utilized in cellular electrophysiology

models. In this model, SERCA flux is reversible and depends on both cytosolic and SR Ca2+

concentrations. Tran et al. developed a more complex model of SERCA containing more states

and formulated based on thermodynamics [210]. This model can be implemented in larger

whole-cell electromechanics models.
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0.3.4 Modeling at the Whole Heart Level

A number of modeling frameworks for simulating ventricular and whole heart mechanics,

as well as the whole cardiovascular system, have been developed. The TriSeg model published

by Lumens et al. in 2009 [111] utilizes a simplistic representation of the left and right ventricles

and septum, where the ventricles are modeled as hemispheres. This allows for changes in shape

as the ventricles contract and relax to be calculated using relatively simple geometric equations.

This model has also been coupled to the CircAdapt model of the circulation [111], which has

also widely been implemented by other researchers. The CircAdapt model is a lumped parameter

model, where the ventricles, blood vessels, and valves are represented as resistors and capacitors.

More complex models of the heart can be constructed using a finite element approach,

which allows for more complex, realistic geometries and modeling of regional differences in

wall mechanics. Finite element models of the heart have significantly improved over the past

several decades [140]. The earliest models of the heart used a simplified cylinder [61], which

were later extended to axisymmetric geometries[60]. Biventricular models have been developed

more recently [98], as well as anatomically relevant four-chamber models [82]. Early models

utilized a simple Hill-type active contraction model to simulate cardiac contraction, while more

recent models incorporate more complex contraction mechanisms [231]. Patient-specific models

can also be developed using cardiac imaging data to reproduce geometry and diffusion tensor

MRI data to reproduce fiber architecture [98, 230]. Constitutive models can be utilized to

represent behavior at the tissue scale based on this fiber architecture [232]. Recent work has also

focused on modeling fluid-solid interactions [146, 88, 169]. Further, detailed whole heart models

of cardiac elecrtrophysiology have been utilized to model the electrical behavior of the heart,

especially in conditions such as arrhythmia [232]. Still, work remains to be done in creating

fully detailed, fully patient-specific, electromechancial finite element models that are relevant in

the clinic. Some researchers are moving towards a population-based atlas approach, which may

cut down on computational costs and improve clinical predictions [157, 233, 49].
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Additionally, growth laws can be incorporated to simulate growth and remodeling over

time. This allows for better simulation of conditions like heart failure, which result in morpho-

logical changes to the heart over time. Rodriguez et al. developed a framework for modeling

stress-dependent cardiac growth and remodeling in 1994 [175]. Kerckhoffs et al. [93] success-

fully modeled hypertrophy in a finite element model of the ventricles coupled to a circulation

model. Growth laws have been further implemented in modeling hypoplastic left heart syndrome

[39], growth in response to hemodynamic overload [228], and in subject-specific models [156].

0.3.5 Integrating Spatial and Temporal Scales

A major remaining challenge is linking these models at varying spatial and temporal

scales to create multiscale models. In 2004, Smith et al. developed a multiscale computational

model of the heart including biomechanics and electrophysiology, using a simplified contraction

model [189]. In 2008, Campbell et al. utilized a multiscale modeling approach to assess

transmural differences in electromechanical function[23]. Sheikh et al. [186] utilized models

of myofilament Ca2+ activation, twitch dynamics, and 3D LV torsion to investigate the role of

myosin light chain 2 in regulating regulating cardiac contraction. Sharifi et al. [185] recently

developed a multiscale model that spans from the level of the sarcomere to the cardiovascular

system, with a finite element representation of the left ventricle. This builds upon an earlier

multiscale model developed by Campbell et al. [21], including a myocyte electrophysiology

model, model of sarcomere mechanics, single ventricle model, and lumped parameter circulation

model. It also incorporates the baroreflex, which is physiologically important in maintaining

arterial pressure. Mann et al. [119] recently developed a multiscale framework that incorporates

a cellular-level contraction model in a finite element model with detailed, rat-specific geometry,

which accounts for the myosin OFF and ON states.

Patient-specific models spanning from the cellular to ventricular scale are progressing

towards being utilized in the clinic in assessing the arrhythmogenicity of drugs, and in creating

digital twins to facilitate medical device design [89, 156, 34]. However, these models often
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lack mechanistic detail below the cellular level, and typically use a simplified active contraction

model. For assessment of whether patients should receive cardiac resynchronization therapy,

assessment of arrhythmia risk, or similar clinical decision-making this modeling approach may

be sufficient, but for assessing the molecular mechanisms of a novel mutation or small molecule

therapeutic more detail is needed at the molecular and protein levels. This has largely yet to be

accomplished by existing modeling frameworks, especially in the context of inotropic drugs for

treating heart failure.

Further, an additional challenge in developing multiscale modeling approaches is deter-

mining the appropriate level of detail needed at varying spatial and temporal scales, and choosing

models at each scale that are sufficient to answer questions of interest [157]. It is important

to consider available data at each scale, and which parameters can be measured or must be fit.

Additionally, determining which model outputs at each scale can be utilized to connect to higher

level models, especially when linking models developed by different researchers, potentially

in different species and based on data from different experimental protocols, remains a major

challenge.

In this work, we utilize a novel computational multiscale modeling approach to address

several remaining questions about dATP, spanning from molecular mechanisms to biventricular

contractile function. This modeling framework serves to address several challenges in integrating

models across scales, and includes high levels of mechanistic detail at the molecular and protein

levels. Additionally, our approach provides significant advances in specifically modeling an

inotrope at each of these scales based on experimental data. We utilize molecular modeling

techniques including molecular and Brownian dynamics approaches to assess how dATP affects

myosin and SERCA protein dynamics. We then utilize Monte Carlo modeling techniques to

translate these molecular level results to changes in sarcomere force, and utilize models of

cardiomyocyte mechanics and EC coupling to assess cell-level changes in contraction and

relaxation as a result of altered crossbridge cycling and Ca2+ dynamics. We then assess how

these mechanisms scale to produce changes in ventricular function and energetics in heart failure
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using a mathematical biventricular heart model and lumped-parameter model of the circulation.

Finally, we demonstrate how this modeling approach can be extended to assess new small

molecule therapeutics and treatment options for patients with heart failure.
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Chapter 1

Modeling the Effects of dATP on Myosin
and the Sarcomere

1.1 Abstract

dATP has been shown to improve contractile function, but the mechanisms by which

small amounts of dATP lead to significant improvements in force production are not fully

understood. To investigate how dATP affects myosin kinetics and sarcomere mechanics, we

utilized atomistic simulations of pre-powerstroke myosin and BD simulations of actomyosin

association. These association rates were then incorporated in a mechanistic, spatially explicit

Monte Carlo Markov Chain model of cooperative sarcomere contraction, which we modified to

include transition dynamics between the myosin ON and OFF states. MD and BD simulations

showed that dATP increases the actomyosin association rate by 1.9 fold via stabilization of

pre-powerstroke myosin. Markov state models predicted that dATP also increases the pool of

myosin heads available for crossbridge cycling, increasing steady state force development at low

dATP fractions by 1.3 fold. This was shown to be due to thick filament mechanosensing and

thin filament nearest-neighbor cooperativity, which had the greatest impact on large increases in

force with small amounts of dATP.
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1.2 Introduction

dATP has been studied experimentally in vitro and in vivo and has been shown to improve

contractile function, but the specific mechanisms by which dATP improves force production

are not fully known [202, 172, 171, 147, 112, 96, 87, 97, 180]. Further, how levels of dATP as

low as 1-2% of the ATP pool significantly improve muscle contraction is not well-understood.

dATP has been previously shown to affect actomyosin affinity and the overall crossbridge

cycling rate, by also increasing the powerstroke rate and detachment rate [123]. dATP has

also been shown to increase electrostatic interactions between actin and myosin, but it is not

known whether additional mechanisms contribute to the increase in actomyosin association rate

[147, 148, 172, 167, 123]. Further, recent studies in cardiac and skeletal muscle suggest that

dATP may also increase the pool of myosin available for crossbridge cycling [115, 116, 167, 216].

To investigate these potential mechanisms, we utilized MD simulations and Markov state

modeling of pre-powerstroke myosin to assess how dATP affects myosin protein dynamics. We

then utilized atomistic BD simulations to estimate the actomyosin binding rate with ATP and

dATP. These association rates were then applied to constrain a novel model of thin filament

activation and crossbridge cycling, which builds upon previously developed models of the

contractile biophysics of the sarcomere [24, 174, 100, 195, 123]. Our model includes a spatially

explicit description of the half-sarcomere and detailed description of cooperative mechanisms as

in previous iterations of this model developed in our group [123]. We further modified the model

to include transition kinetics between the myosin ON and OFF states based on the hypothesized

mechanosensing mechanism. Further, this model allows for explicit tracking of ATP throughout

the crossbridge cycle, as well as competitive binding of ATP and dATP at varying ratios, as

in McCabe et al. [123]. This modeling approach allowed us to asses the distinct molecular

mechanisms by which dATP acts on myosin to improve force generation.
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1.3 Methods

1.3.1 Molecular Dynamics Simulations of ADP.Pi-Myosin and dADP.Pi-
Myosin

We first conducted MD simulations of pre-powerstroke ADP.Pi-myosin and dADP.Pi-

myosin. Starting coordinates for Atlantic bay scallop (Argopecten irradians) myosin II S1 in the

pre-powerstroke state (ADP.Pi) were obtained from an X-ray crystal structure in the Protein Data

Bank (PDB, www.rcsb.org [13]) solved by [55] (PDB ID: 1QVI, 2.54 Å resolution). The original

structure includes myosin II with ADP and vanadate (VO4) [53], a Ca2+-bound essential light

chain (ELC), and a Mg2+-bound regulatory light chain (RLC). The VO4 ion was replaced with

inorganic phosphate (Pi). To increase the computational efficiency of simulations investigating

motor domain dynamics, myosin II was truncated after residue 810 and residues in the RLC were

removed. Then, missing heavy atoms were built using Modeller [221]. These starting coordinates

were used to generate an additional system in which ADP was replaced by dADP via removal

of the 2’ oxygen. These systems will be referred to as ADP.Pi-myosin and dADP.Pi-myosin,

respectively. Next, hydrogen atoms were modeled onto the structures using the leap module of

AMBER and each protein was solvated with explicit water molecules in a periodic, truncated

octahedral box that extended 10 Å beyond any protein atom. Finally, Na+ and Cl− counterions

were added to neutralize the systems and then 120 mM Na+ and Cl− ions were added.

All simulations were performed with the AMBER package [26, 177] and the ff14SB

force field [117]. Water molecules were treated with the TIP3P force field [85]. Metal ions

were modeled using the Li and Merz parameter set [104, 106, 105]. ADP, dADP, and Pi

molecules were treated with the GAFF2 force field [220] with custom parameters derived from

QM simulations using ORCA [142, 141]. The SHAKE algorithm was used to constrain the

motion of hydrogen-containing bonds [63, 133]. Long-range electrostatic interactions were

calculated using the particle mesh Ewald (PME) method.

Each system was minimized in three stages. First, hydrogen atoms were minimized
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for 1000 steps in the presence of 100 kcal mol−1 restraints on all heavy atoms. Second, all

solvent atoms were minimized for 1000 steps in the presence of 25 kcal mol−1 restraints on all

protein atoms. Third, all atoms were minimized for 8000 steps in the presence of 25 kcal mol−1

restraints on all backbone heavy atoms (N, O, Cα and C atoms) After minimization, systems

were heated to 310 K during three successive stages. In each stage, the system temperature is

increased by ∼100 K over 100 ps (50,000 steps) using the canonical NVT (constant number

of particles, volume, and temperature) ensemble. During all heating stages, 25 kcal mol−1

restraints were present on the backbone heavy atoms (N, O, Cα and C atoms). After the system

temperatures reached 310 K, the systems were equilibrated over 5 successive stages using the

isobaric-isothermal NPT (constant number of particles, pressure, and temperature) ensemble.

During the first 4 stages, the systems were equilibrated for 0.4 ns in the presence of restraints

on backbone atoms. The strength of the restraints was decreased from 25 kcal mol−1 during

the first stage to 1 kcal mol−1 during the fourth stage. During the final equilibration stage, the

systems were equilibrated for 5 ns in the absence of restraints.

Production dynamics for conventional MD simulations were then performed using

pmemd in the canonical NVT ensemble using an 8 Å nonbonded cutoff, a 2 fs time step, and

coordinates were saved every ps. Simulations were run in triplicate for 2,000 ns each (12 µs net

sampling). Unless specified otherwise, simulations were analyzed separately, and the results of

replicate simulations were averaged together.

1.3.2 Markov State Model Construction

These triplicate simulations of ADP.Pi-bound and dADP.Pi-bound myosin were used

to construct two Markov state models (MSM) for each of the nucleotide conditions (ADP and

dADP) (Figure 1.1A). Feature selection to inform these MSM was carried out, focusing on the

behavior of the actin binding surface. The cardiomyopathy loop, loop 2, and loop 4, and closure of

the cleft have all been associated with myosin binding to actin during the powerstroke [95], [43].

Therefore, we used a collection of these features, based on the distances between their centers of
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Figure 1.1. Workflow of the MD to Markov state model construction used. The ADP and
dADP trajectories were first reduced in dimensions to 22 features measured on different loops
and surfaces on the actin binding surface of myosin (A). From the input features, time-lagged
Independent Component Analysis (tICA) was used to further reduce the simulation to two
dimensions (B). A k-means clustering algorithm was used to cluster the MD trajectory into a 500
microstate Markov model using a Bayesian estimation approach (C). PCCA+ fuzzy clustering
were used to further reduce the Markov state models of ADP and dADP into 3 metastable state
models each (D). From each metastable state, 15 conformations were sampled, and used as inputs
to the BD simulations using an ensemble based approach (E). BD simulations were carried out
over a range of reaction distances to generate a binding curve.

mass of either the tip, base or entire loops of interest, as well as two different measurements of

the cleft opening. To reduce the number of dimensions, time-lagged Independent Component

Analysis (tICA) was used to reduce these 22 features to only two primary features, using a time

lag of 200 ps (Figure 1.1B). tICA is widely used in MSM construction because it effectively

identifies the slow kinetics of MD simulations (as compared to principal component analysis or

other dimensionality reduction techniques) [181]. All six trajectories were used in featurization

and dimensionality reduction steps.

A k-means clustering algorithm was applied to the 2-D tICA spaces, to reduce the MD

simulations into 500-state space using the two primary features from the tICA analysis, where

each frame of the simulation is classified into one of the 500 states, and transitions between

states were counted using a Bayesian approach (Figure 1.1C) [179, 211]. Implied timescales (IT)

19



analysis was utilized to determine an appropriate lag time for MSM construction. This analysis

indicated that at a lag time of 900 ps, the timescales plateaued. Therefore, a lag time of 900 ps

was used to construct Markov models for both ADP.Pi-bound myosin as well as dADP.Pi-bound

myosin. IT analysis also revealed two major motion components for both ADP and dADP

myosin simulations, suggesting that these 500-state MSMs could be reduced to three metastable

states (Figure 1.1D). Note that states 0, 1 and 2 are used purely for naming convention, and state

0 in the ADP MSM is not analagous to state 0 in the dADP MSM. A Chapman-Kolmogorov

test was used to validate the MSMs, and showed minimal deviation between the observed and

predicted transition kinetics within the expected bounds [168]. From each of the three metastable

states, 15 frames were sampled to be used in the BD simulations, for both the ADP model and

dADP model, cumulatively leading to 45 structures per nucleotide condition to be used in BD

simulations (Figure 1.1E). Analysis was carried out in Python using PyEMMA [179].

1.3.3 Brownian Dynamics Simulations of Actomyosin Association

We used rigid body BD simulations to estimate the association rate of pre-powerstroke

myosin to actin. In this work, we improved upon previous BD simulations [123] by using an

ensemble of representative structures from the MD trajectories that have been sampled from

metastable states in the MSM as described above. Traditional approaches using BD typically

require a single frame from the MD simulation to be selected and used for the BD simulations.

However, our approach using an ensemble of conformations avoids this frame selection challenge.

In BD simulations, the first protein of interest (myosin) is placed randomly on a sphere and

allowed to diffuse, either binding to the second protein of interest (actin) if it reaches a set

reaction distance criteria, or escaping if it reaches a set escape orbital (Figure 1.1E).

BD simulations were carried out with Browndye 2.0 [70]. From each independent

conformation sampled from the ADP and dADP MSMs, independent BD simulations were

carried out to estimate the association rate between the myosin S1 head and a scallop actin dimer

homology model. The homology model was built using the source sequence from p. magellanicus
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and template structure (PDB ID: 3J8A) [214]. We defined reaction pairs within Browndye based

on possible hydrogen bonding pairs within 3.5 Å from sampled conformations within each

metastable state of the MSM (15 per metastable state), defined in the bound actomyosin state.

The bound state was constructed by aligning the myosin structure with actin using a crystal

structure of bound actin and myosin (PDB ID: 6X5Z) as a reference [43]. Alignment was

done in VMD [190, 191, 45]. PQR files were created for all structures using the Amber20

force field with PDB2PQR [42, 41]. Electrostatic fields were generated for both myosin and

actin structures using APBS [11]. Rather than define a reaction distance, we simulated BD

trajectories without a reaction endpoint and recorded the closest distance between actin and

myosin during the trajectory in order to calculate association rates at a range of reaction distance

criteria. BD simulations were carried out with 250,000 trajectories per conformation, leading

to 3.75 million total trajectories for each metastable state of each Markov model, and 11.25

million BD trajectories for ADP and dADP each. The binding curves were then averaged based

on the stationary distributions of the metstable states in the three-state MSM for both ADP and

dADP. These binding curves were then used for analysis and comparison. The full mechanics

and simulation approach of the BD methods are described in more detail in [70].

1.3.4 Spatially Explicit Sarcomere Model

We next modeled the effects of dATP on sarcomere mechanics, incorporating the asso-

ciation rates determined from the BD simulations. To do this, we modified a spatially explicit

cooperative model of the sarcomere previously published in our group [123, 24] (Figure 1.2).

This model is constructed using a Monte Carlo Markov Chain and contains 26 regulatory

units (RUs). Each RU represents seven actin monomers, one myosin S1 head, troponin, and

tropomyosin. This model consists of five states: blocked, with no Ca2+ bound to the thin

filament (B0), blocked, with Ca2+ bound to the thin filament (B1), closed (C), strongly bound

(M1), and post-powerstroke (M2). Parameters k+Ca and k−Ca determine transition between B0

and B1, representing Ca2+ binding to the thin filament; parameters k+b and k−b determine the
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Figure 1.2. Model of spatially explicit cooperative sarcomere mechanics, adapted from [123].
Inactive (OFF) state was added to original model, and parameter k+m is a function of force-
dependent parameter krecruit (Equation 1.20). Parameters k+b , k+f , and k+g depend on nearest-
neighbor cooperativity (Equations 1.6, 1.13, and 1.19)

transition between B1 and C, representing the movement of Tm across the actin surface to expose

the myosin binding site; parameters k+f and k−f determine the transition between C and M1,

representing myosin binding to actin; parameters k+p and k−p determine the transition between

M1 and M2, representing the powerstroke; parameters k+g and k−g determine transition from M2

to C, representing detachment.

Cooperativity was represented in the model in the same way as in previous studies

[24, 123], incorporating mechanisms of both thin filament Tm overlap and strain dependence

from neighboring bound myosin heads. Transition rates between states B1, C, M1, and M2 for a

given RU depend on the states of the two neighboring RUs. Equilibrium constants for a B to C

transition follow the following form:

kXY
BC = γ(XY )kre f

BC (1.1)

Where kre f
BC is defined based on a reference state, which for a B to C transition is where

both neighboring RUs are in the C state (and the middle RU is in the B state). This reference
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equilibrium constant is thus defined using the Gibbs relation as:

kre f
BC = exp

−∆Gre f
BC

RT
(1.2)

Additional energy barriers are added if either or both of the neighboring RUs are not

in the C state. These energy barriers are represented as cooperative coefficients for different

possible combinations of neighboring RUs (X and Y):

γ(XY ) = γ(Y X) =



γ
−2
B B,B

γ
−1
B B,C

γ
−1
B γM B,M

1 C,C

γM C,M

γ2
M M,M

(1.3)

where

γB =

(
exp

−∆GB
BC

RT

)−1

(1.4)

and

γM = exp
−∆GM

BC
RT

(1.5)

γB represents the effect of neighboring RUs pulling the middle RU back into the B state

due to Tm filament overlap, while γB represents the effect of neighboring RUs in the M state

pulling the middle RU into the C state due to strain from bound crossbridges. Finally, these

cooperative coefficients are weighted using coefficient q. Thus, for a B to C transition,
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kXY
b+ = kre f

b+ γ(XY )q (1.6)

kXY
b− = kre f

b− γ(XY )(q−1) (1.7)

Similarly, for a C to M transition, equilibrium constants follow the following form:

kXY
CM = µ(XY )kre f

CM (1.8)

Where kre f
CM is defined based on a reference state, which for a C to M transition is where

both neighboring RUs are in the C state (and the middle RU is in the C state). This reference

equilibrium constant is thus defined using the Gibbs relation as:

kre f
CM = exp

−∆Gre f
CM

RT
(1.9)

Additional energy barriers are added if either or both of the neighboring RUs are not

in the C state. These energy barriers are represented as cooperative coefficients for different

possible combinations of neighboring RUs (X and Y):

µ(XY ) = µ(Y X) =



µ
−2
B B,B

µ
−1
B B,C

µ
−1
B µM B,M

1 C,C

µM C,M

µ2
M M,M

(1.10)

where
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µB =

(
exp

−∆GB
CM

RT

)−1

(1.11)

and

µM = exp
−∆GM

CM
RT

(1.12)

µB is set equal to γM to maintain reversibility. µB represents the effect of neighboring

RUs pulling the middle RU back into the B state due to Tm filament overlap, while µM represents

the effect of neighboring RUs in the M state pulling the middle RU into the M state due to strain

from bound crossbridges. Finally, these cooperative coefficients are weighted using coefficient r.

Thus, for a C to M transition,

kXY
f+ = kre f

f+µ(XY )r (1.13)

kXY
f− = kre f

f−µ(XY )(r−1) (1.14)

kXY
g+ = kre f

g+ µ(XY )(r−1) (1.15)

kXY
g− = kre f

g− µ(XY )r (1.16)

As described in [123], the Ca2+ binding step is not cooperative, and depends only on the

Ca2+ concentration (Equations 1.17 and 1.18).

k+Ca = k+re f
Ca

[
Ca2+] (1.17)
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k−Ca = k−re f
Ca (1.18)

The powerstroke rate (k+p and k−p ) depends on the ATP, ADP, and Pi concentrations in the

system, as well as the free energy of crossbridge distortion (Equation 1.19).

k−p =
k+p

eGM1(x)−GM2(x)
(1.19)

where GM1(x) and GM2(x) are the free energy in the M1 and M2 states, respectively, as a

result of crossbridge distortion.

In addition to these five states, we added a sixth state to represent the pool of inactive

myosin heads not available for crossbridge cycling (OFF). To do this, we incorporated the

transition between the active and inactive states based on [22] and [121], governed by parameters

k+m and k−m , as well as krecruit , which describes the force dependence of this transition (Equation

1.20), where [M2] is the fraction of RUs in the M2 (post-powerstroke, force-producing) state.

k+m = k+re f
m (1+ krecruit [M2]) (1.20)

The transition from ON to OFF is simply defined as

k−m = k−re f
m (1.21)

After addition of this state, all other state occupancies were approximately the same as in

the original model formulation, except for a lower occupancy in the C state (Figure 1.3). Model

parameters were optimized such that OFF state occupancy is approximately 30% at baseline in

the new model, based on experimental measurements. Further description of this model can be

found in [123]. External RUs were clamped in the B0 state, and all other RUs were initially set

to the OFF state. 640 simulations were run for steady state force-pCa simulations, and transition

probability was determined using a random number from 0 to 1, using a time step of 5×10−4 as

26



0 500 1000 1500 2000
Time (ms)

0

0.2

0.4

0.6

0.8

1

S
ta

te
 O

c
c
u

p
a

n
c
y

M2
M1
C
B
OFF

0 500 1000 1500 2000

Time (ms)

0

0.2

0.4

0.6

0.8

1
S

ta
te

 O
c
c
u

p
a

n
c
y

M2
M1
C
B

A B

Figure 1.3. State occupancies for original spatially explicit sarcomere model developed by Mc-
Cabe et al. [123] (A) and updated model with inactive (OFF) state added (B). State occupancies
are similar between the two models, but occupancy in the C state is reduced in the updated
model. Model parameters were optimized such that OFF state occupancy is approximately 30%
at baseline in the new model, based on experimental measurements.

in [123]. Analysis was carried out using CUDA 11.7 [149] and Python 3.9.13 [213].

Default parameters from [123] were utilized for this study, except those that were

optimized: parameters k+m , k−m , and krecruit were optimized to match the approximate steady state

percentage of myosin heads in the OFF state (30%) based on X-ray diffraction data [216, 116],

as well as to match steady state force-pCa data for ATP from [171]. Parameters k+p and k+g were

adjusted to simulate dATP treatment in the same way as in [123], further detailed in Table 1.1.

krecruit was further adjusted to maximize steady state force with 1% dATP, and k+f was set based

on BD results (Table 1.1). Fitting was done to minimize the sum of squared error between data

and model and was conducted using parameter sweeps carried out in Python 3.9.13 [213].

Simulations were carried out in the same manner as [123], where the probability of a

given transition pi j at a given time step is calculated as:

pi j = ri j∆t (1.22)

where ri j is the reaction rate considering the state of the left and right neighboring RUs
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and ∆t is the time step. At each time step, a random number between 0 and 1 was generated, and

transition probabilities were calculated for each RU based on its current state and the states of its

neighbors. For force pCa simulations, maximum steady state force was calculated for a range

of Ca2+ concentrations based on experimental data from [171]. Hill curve fits were utilized to

smooth model outputs for force-pCa simulations.
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1.4 Results

1.4.1 dADP Stabilizes Pre-Powerstroke Myosin, Increasing its Affinity
for Actin

A combination of molecular modeling techniques showed that dADP and ADP differen-

tially affect the pre-powerstroke conformation of myosin at a molecular level. Analysis of MSM

constructed from three MD trajectories of 2 µs each for ADP.Pi-myosin and dADP.Pi-myosin

showed that overall, pre-powerstroke dADP.Pi-myosin has a lower probability of transitioning

to a new conformational sub-state (within the pre-powerstroke structure) than ADP.Pi-myosin

(Figure 1.4). Specifically, MD featurization and time-lagged Independent Component Analysis

(tICA) dimensionality reduction revealed that myosin loop 2 motion is the most important kinetic

feature of the actin binding surface on myosin (Figure 1.4A, Figure 1.1). The first two tICA

components were therefore utilized to construct three-state MSM for pre-powerstroke ADP.Pi-

and dADP.Pi-myosin to capture their major conformational dynamics ((Figure 1.4B, C). Repre-

sentative conformations from the three states are shown in Figure 1.4G and H. The stationary

distribution of the ADP.Pi MSM for states 0, 1 and 2 was 34.1%, 40.7% 25.2%, respectively.

However, for the dADP.Pi MSM, the stationary distribution was 5.00% , 8.17%, 86.8% for states

0, 1 and 2, respectively, suggesting that dADP.Pi-myosin is more stable. Further, based on mean

first passage time (MFPT) analysis of the transition times between metastable states, the dADP.Pi

model shows much more rapid transitions into state 2 as the dominant state, whereas the ADP.Pi

model has much more balanced kinetic transitions between all of the states (Figure 1.4E, F). We

further found that the overall root mean square fluctuation (RMSF) of the protein was lower

overall for dADP.Pi-myosin than ADP.Pi-myosin (Figure 1.4D), supporting the conclusion that

dADP stabilizes pre-powerstroke myosin.

An ensemble-based approach was used to carry out rigid body BD simulations of ac-

tomyosin association, with conformations sampled from the metstastable states of the MSM.

dADP.Pi-myosin showed a significantly higher ensemble-averaged crossbridge formation rate
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than ADP.Pi-myosin at all simulated reaction distances, where reaction distance is a parameter

in the simulation which defines the distance at which the two molecules are considered to

bind (Figure 1.1). The previously reported ADP.Pi-myosin.actin association rate of 2.50×106

M−1s−1 based on experimental measurements [123, 51, 222] corresponds to a reaction distance

of 7.17 Å (indicated by the dashed vertical line in Figure 1.4I). Using this reaction distance, the

predicted association rate for dADP.Pi-myosin.actin was 4.78×106 M−1s−1, a 1.9-fold increase

over ADP.Pi-myosin.actin. For reaction distances between 6.5 Å and 10 Å, association rates

were 1.54 to 2.13 fold greater for dADP than ADP. Thus, our results suggest that dADP increases

the actomyosin association rate via stabilization of the pre-powerstroke myosin structure.

1.4.2 Increased Force-Dependent Recruitment of Myosin and Nearest-
Neighbor Cooperativity Explain Significantly Increased Steady
State Tension Development with Low Fractions of dATP

We next assessed how the predicted increase in actomyosin association affects sarcomere

mechanics with 1% dATP using a spatially explicit Markov state sarcomere model (Figure 1.2)

[123, 24]. After prescribing the ADP.Pi-myosin.actin association rate (k+f = 2.50×106 M−1s−1)

based on reported measurements [123, 51, 222], increasing the actomyosin association rate

to 4.78×106 M−1s−1 as predicted for dADP.Pi-myosin.actin by the BD simulations resulted

in an 3% increase in overall sarcomere steady state force at maximal Ca2+ activation (Figure

1.5B). A previous study in our group showed using this sarcomere model that dATP increases

the crossbridge cycling rate (the powerstroke and crossbridge detachment rates, specifically) in

addition to increasing the actomyosin association rate, and that these parameter changes were

sufficient to explain experimental changes for simulations with 100% dATP [123]. However,

increasing parameters k+p (powerstroke rate) and k+g (detachment rate) in addition to k+f by

the same amount as in [123] resulted in an 8% increase in steady state force with 1% dATP.

Experimentally, 100% dATP was shown to increase maximum steady state force by 31% in

demembranated rat cardiac trabeculae [171]. Experimental data on changes in steady state
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shown for ATP (purple) and 1% dATP (teal). ATP curve was fit to experimental steady state
force-pCa data from [171]. dATP simulation includes increases in actomyosin association rate
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removing their effects from the model, are also shown. (B) Relative contributions of increased
crossbridge binding and cycling and increased myosin recruitment to increases in maximum
steady state force (at pCa 4.0) relative to ATP. Differences are expressed as percentages relative
to ATP.

force with 1% dATP are not available, but given data showing that small fractions of dATP are

sufficient to significantly increase force production, we would expect a larger increase in force

with 1% dATP. This suggests that although our previous modeling results were sufficient to

explain the effects of 100% dATP, additional mechanisms must be considered for small fractions

of dATP (Figure 1.5B).

We then modified the model to include the active (ON) and inactive (OFF) states of

myosin, and found that increasing parameter krecruit from 0.2 N−1m−2 to 779 N−1m−2, in

addition to k+f , k+p , and k+g , resulted in a 28% increase in steady state force with 1% dATP, which

was the maximal increase in force that could be achieved and is close to the observed increase

of 31% for 100% dATP (Figure 1.5A, B, additional details found in Table 2.1). krecruit was the

only parameter in the model which could be increased to produce such a dramatic increase in

steady state force (Figure 1.6). krecruit determines the force dependence of the recruitment of
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myosin from the thick filament backbone, and is regarded as a mechanism of thick filament

mechanosensing [22]. Previous computational work [167] showed that dATP activates the resting

conformation of cardiac myosin, and X-ray diffraction data [116] and fluorescent assays [216]

showed decreases in the fraction of myosin heads in an ordered or low ATPase activity state

(respectively) with increased dATP [115]. Therefore, our results suggest that dATP-mediated

recruitment of myosin to state(s) that can contribute to contraction is the dominant mechanism

by which it increases steady state force, especially at low dATP fractions.

We further assessed whether nearest-neighbor cooperativity could explain this increase

in steady state force with increased myosin recruitment. After increasing k+f , k+p , k+g , and krecruit ,

we set each of the cooperative parameters (γB, γM, and µM) to one, thus eliminating their effects

from the model, and assessed their relative impacts on maximum steady state force. We found

that setting γB to one resulted in increased steady state force (41% increase relative to ATP)

but flattened the force-pCa curve (Figure 1.5A). Further, the fraction of RUs in the B state is

decreased relative to the dATP simulation, while the fraction of RUs in the C and M states
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is increased, due to a loss of cooperativity between neighboring Tm molecules, which would

normally prevent RUs in the B state from transitioning to the C or M states if its neighboring

RUs are also in the B state (Figure 1.7). When γM is set to one (γM is equal to µB in the model to

maintain reversibility), the fraction of RUs in the M states goes up, leading to an overall increase

in steady state force (Figure 1.7). This is due to the fact that γM represents the cooperative effects

of neighboring RUs in the M state pulling neighboring RUs into the C state from the B state, while

µB represents the cooperative effects of neighboring RUs in the B state preventing neighboring

RUs from transitioning from the C to M state. Setting µM to one resulted in reduced steady

state force (6% increase relative to ATP) (Figure 1.5A). The fraction of RUs in the OFF state is

increased, and the fraction of RUs in the M states is reduced, due to a loss of cooperativity from

neighboring bound crossbridges that would make it more likely for neighboring crossbridges to

bind (Figure 1.7).

These results support the hypothesis that by increasing the pool of myosin available for

crossbridge cycling, a small fraction of dATP can have a disproportionate effect on sarcomere

mechanics by promoting the formation of ATP-myosin.actin crossbridges via nearest-neighbor

cooperative interactions, both from neighboring bound crossbridges and Tm overlap.
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1.5 Discussion and Conclusions

Our modeling approach allowed us to gain new mechanistic insight into the effects

of dATP on myosin, which agrees well with previous MD simulations [148, 115, 116, 29].

Featurization and dimensionality reduction analysis using tICA showed that loop 2 motion was

the most important kinetic feature in the MD simulations. This could increase actomyosin

association rates and possibly other steps in the crossbridge cycle such as nucleotide binding,

and warrants further investigation [31]. This aligns with previous work suggesting that switch 1

provides an allosteric mechanism for transmitting changes in the nucleotide binding pocket to

loop 2 and the actin binding surface, increasing the electrostatic affinity of myosin for actin [167].

The novel MSM framework utilized in this study therefore allowed us to gain insight into the

mechanisms by which dATP increases the actomyosin association rate, suggesting a combination

of stabilization of the pre-powerstroke myosin structure and conformational changes in key

protein regions, as well as overall changes in electrostatics. Stabilization of the pre-powerstroke

state of myosin may also decrease the likelihood of transition back into the OFF state, which

could be further investigated in future computational studies.

Interestingly, our BD simulations showed that dATP increases the actomyosin association

rate to a slightly lesser extent than was shown previously [123], although our results were

generally consistent (we observed a 1.9 fold change in the association rate compared with a 2.3

fold change in [123]). This is likely because our simulations covered a broader range of possible

myosin conformations. Further, the metastable conformation that was most dominant in our

analysis, state 2 of the dATP simulation, also had the fastest association rate according to our

ensemble BD approach. Generally all of these structures in state 2 can be described by having

a more pronounced loop 2 extension. Even within this subsample of conformations found in

state 2, the conformation that associated most quickly according to the BD simulations had an

even greater extension of loop 2 relative to the other structures in the state, again pointing to

loop 2 as a key structural and electrostatic feature. This analysis also matches with experimental
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assessments of loop 2 function, which highlights how additional positively charged lysines

inserted into the loop increases weak binding [84]. This improved method therefore overcomes

a major limitation of BD in which molecules are treated as rigid bodies, by accounting for the

conformational variability in several distinct sub-states, and allowing us to analyze the impact of

structural features on protein-protein association. The accuracy of these simulations could be

further improved in the future by including a more complete representation of the thin filament

and multiple myosin heads.

Our model predictions indicate that thick filament mechanosensing largely contributes to

the disproportionate effects of dATP on force. This has been proposed as a mechanism underlying

length-dependent activation, where force development coincides with myosin heads transitioning

from the thick filament backbone towards thin filaments [22, 107, 116, 20]. It is plausible that

this may explain how elevated dATP leads to increased recruitment of myosin S1 heads from the

thick filament backbone, but the underlying mechanism is still unclear. Furthermore, our model

predictions indicated that nearest-neighbor cooperativity was also necessary to explain the large

increases in force observed at low dATP percentages, which is consistent with results published

in [22, 123]. This may point to a mechanism in which a greater number of thin-filament binding

myosin heads (with 1% dATP) leads to a greater displacement of Tm, contributing to larger

increases in thin filament activation; this in turn allows more myosin heads to bind and generate

force, leading to increased recruitment from the thick filament backbone via a strain-dependent

positive feedback mechanism [167, 22]. Further, our results suggest that myosin recruitment is

the dominant mechanism by which dATP treatment leads to large increases in force with small

amounts (1%) of dATP, while increases in crossbridge binding and cycling were sufficient to

explain experimental data with 100% dATP, as shown previously [123]. This may be due to the

fact that relatively low amounts of dATP may be sufficient to fully deplete the inactive myosin

pool. Indeed, recent work showed that with 100% dATP, most myosin heads in the inactive pool

have likely been recruited [116, 216]. Thus, with 100% dATP, increased crossbridge binding

and cycling may be the dominant mechanism by which dATP further increases force production,
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since all available myosin heads have already been recruited. A combination of experimental

techniques and molecular modeling would allow us to fully explore how dATP interacts with

nearest-neighbor cooperativity and the inactive state of myosin at varying percentages.

This modeling approach provided insight into the mechanism by which dATP increases

actomyosin association and rate of crossbridge cycling, and our novel BD and MSM modeling

approach overcomes many of the limitations of previous BD simulations by better representing a

range of possible protein sub-states, which could be further extended in the future to assess novel

therapeutics. This study also supports the hypothesis that the main mechanism by which small

amounts of dATP lead to disproportionate changes in force is via recruitment of myosin into the

crossbridge cycling pool, and additional studies in the future may shed more light on the specific

mechanisms behind this, including mechanosensing and cooperativity as predicted by our model.
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Chapter 2

Multiscale Modeling Shows How 2’-deoxy-
ATP Rescues Ventricular Function in
Heart Failure

2.1 Abstract

In this study, we extended our previous analysis to assess the mechanisms by which dATP

improves ventricular function, and the extent to which molecular and cellular level mechanisms

of dATP contribute to changes in contractile function, particularly in heart failure. We further

utilized this modeling framework to assess how dATP affects myocardial energetics in heart

failure. We integrated cell-scale analysis of myocyte Ca2+ dynamics and contraction, organ-scale

modeling of biventricular mechanoenergetics, and systems level modeling of circulatory dynam-

ics with our previous findings using MD, BD, and Markov state modeling at the molecular and

filament levels. Together with faster myocyte Ca2+ handling, increased actomyosin association,

crossbridge cycling, and myosin recruitment led to improved ventricular contractility, especially

in a failing heart model in which dATP increased EF by 16% and the energy efficiency of cardiac

contraction by 1%. Together with the previous chapter, this work represents a complete multi-

scale model analysis of a small molecule myosin modulator in the heart from single molecule to

organ system biophysics, and elucidates how the molecular mechanisms of dATP may improve

cardiovascular function in heart failure.
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2.2 Introduction

We showed that at the molecular and cellular levels, dATP increases the rate of crossbridge

binding and cycling via stabilization of pre-powerstroke myosin, as well as the transition rate

of myosin out of the OFF state. Further, dATP has been shown experimentally to speed Ca2+

transient decay [97]. This may contribute to faster relaxation of cardiomyocytes post-contraction

and/or changes in ventricular lusitropy. It is unclear how the these distinct molecular and cellular

mechanisms of dATP integrate into improved ventricular pump function, especially in HFrEF

when energy metabolism is typically impaired [229, 40]. It is also not known whether dATP

treatment may lead to exacerbated energy starvation in heart failure.

Here, we assess how the molecular mechanisms of dATP interact with altered myocyte

Ca2+ handling to enhance contractility and lusitropy, using a model of cardiomyocyte mechanics

and Ca2+ dynamics. We then assess how these myocyte responses contribute to observed

improvements in left ventricular mechanoenergetics and hemodynamics in the normal and failing

heart by incorporating this cardiomyocyte model into a biventricular mechanics and lumped-

parameter circulatory system model. This comprehensive multiscale model analysis of the

heart can be used to predict organ system scale cardiovascular function from atomic resolution

simulations of molecular mechanisms and shows how very low fractions of dATP are able to

significantly improve pump function and efficiency in the failing heart. Our modeling approach

may additionally be a useful tool to study other sarcomere-targeted small molecule activators

and inhibitors.

2.3 Methods

Figure 2.1 provides an overview of the multiscale modeling approach used for this study,

including molecular and filament level modeling detailed in Chapter 1.

40



Cellular VentricularMolecular Filament

Molecular 

Dynamics

(d)ADP.Pi-

myosin

Brownian 

Dynamics

(d)ADP.Pi-

myosin/actin

Implicit 

sarcomere 

model

Ensemble of 

structures

Metabolite 

concentrations ((d)ATP, (d)ADP, Pi)

Adjusted to simulate failure

Crossbridge 

cycling rate

Mitochondria 

model

Ventricular mechanics 

and hemodynamics 

model

Sarcomere length

Active force

Myosin/actin 

association rate

Experimental 

(d)ATP Ca2+ 

transients

Geometry

A

B

D

F

Spatially 

explicit 

sarcomere 

model

C
Pool of myosin

available for cycling

E

Figure 2.1. Multiscale modeling overview. Gray arrows indicate coupling between models. MD
simulations of ADP.Pi-myosin and dADP.Pi-myosin binding to actin (A) in combination with
BD simulations (B) were utilized to determine myosin.actin association rate, which was used to
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2.3.1 Myocyte Mechanics Model

We assessed the effects of dATP on whole myocyte mechanics using a non-spatially

explicit sarcomere and myocyte mechanics model developed by [109], which is comprised of

a system of differential-algebraic equations (DAEs). Analysis was carried out in MATLAB

R2018b [77]. ODE15s was used to solve all differential equations. This model consists of six

states: inactive (OFF), nonpermissible (N), permissible (P), weakly-bound (A1), strongly-bound

(A2), and post-ratcheted (A3) [109, 200, 201] (Figure 2.2).

Parameters k+f and k−f determine transition between P and A1, representing myosin

binding to actin; parameters k+w and k−w determine transition between A1 and A2, representing

the transition from weakly-bound to strongly-bound; parameters k+p and k−p determine transition

between A2 and A3, representing the powerstroke; parameter k+g determines transition from A3

to P, representing detachment. Parameters kon and ko f f represent Ca2+ association to the thin

filament and determine transition from N to P, along with a cooperative parameter kcoop. This

model includes the same model of transition between the active and inactive states as the spatially

explicit model utilized in Chapter 1, based on [22] (Equation 2.1), where ON represents the
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active states, OFF represents the inactive states, and σXB represents active contractile force. This

model also includes parallel passive and series elastic springs, and a parallel dashpot, to represent

sarcomere viscoelasticity. Additional details on this model can be found in [121, 200].

dON
dt

= k+m(1+ krecruitσXB)OFF − k−mON (2.1)

Default model parameters from the rat model [109] were used for this study, except

those that were optimized as described in Table 2.2. Parameters were optimized to match steady

state force-pCa rat data from [171] and average unloaded shortening data from [97, 147]. For

force-pCa simulations, sarcomere length was fixed at 2.25 µm based on experimental protocols

[171], and kSE was set to 5×104 mmHg/µm to simulate isometric contraction. kon was set to

50 s−1, kpassive was set to 0.1 mmHg/µm, and η was set to 1.5 mmHg/µm to match EC50 and

steady state force for ATP. For shortening simulations, kSE was set to 35 mmHg/µm, kpassive was

set to 0.1 mmHg/µm, and η was set to 0.001 mmHg/µm to match FS, RT50, and RT90 for ATP

average shortening data. For each simulation, all myosin heads were initially set to the OFF state.

Shortening simulations were carried out at 1 Hz for comparison to average shortening data from

[97, 147], and the model was run for 3 beats to reach steady state.

kx = kx,AT P[1−dAT P(%)]+ kx,dAT P[dAT P(%)] (2.2)

Since this model is not spatially explicit, parameters were scaled as functions of dATP

level, with overall nucleotide concentrations kept constant according to Equation 2.2, where kx

represents the parameter assumed affected by dATP. Parameter k+f was set based on BD results,

and parameters k−f and k+w were optimized to mach EC50 and steady state force for 100% dATP,

further described in Figures 2.3, 2.4, and 2.5.

This achieved the same effect as increasing parameters k+f , k+p , and k+g in the spatially

explicit sarcomere model utilized in Chapter 1. Parameter krecruit was further optimized to match

average shortening data for 1% dATP [97, 147]. Optimization was done using a combination of
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Figure 2.3. Increased actomyosin association rate and crossbridge cycling rate with elevated
dATP leads to increased Ca2+ sensitivity and steady state force, which agrees with previous
modeling results from [123]. Open circles are steady state force-pCa experimental data from
[171], solid lines are model predictions for ATP in purple and 100% dATP in teal from spatially
implicit sarcomere model. ATP model curve was fit to experimental data, as described in the
Methods. (A) Increasing k+f (actomyosin association rate) based on BD simulations results in
increased Ca2+ sensitivity and maximum steady state force but does not fully explain experimen-
tal data. (B): Increasing k−f (actomyosin dissociation rate) and k+w (weakly- to strongly-bound
transition rate) in addition to k+f in the model gives a better match to experimental data.

manual tuning (to determine a reasonable parameter range) and Particle Swarm Optimization in

MATLAB [92]. Some parameter and state names were altered from original model: USR was

changed to OFF, UNR was changed to ON, k+SR was changed to k+m , k−SR was changed to k−m , k f orce

was changed to krecruit , ka was changed to k+f , kd was changed to k−f , k1 was changed to k+w , k−1

was changed to k−w , k2 was changed to k+p , k−2 was changed to k−p , and k3 was changed to k+g .

The Ca2+ interpolation function from this model (based on experimental data from [83])

was used to simulate Ca2+ transients at a range of frequencies for analysis at the cellular and

organ levels. We adjusted parameters a, b, c, and Ca0 in the interpolation function to match

DT50 and DT90 for ATP and dATP seen experimentally. Experimental studies have shown

varying results on the effects of dATP on Ca2+; Korte et al. [97] reported a 50% decrease in

DT50 and a 49% decrease in DT90 with elevated dATP, while Nowakowski et al. did not report

a significant decrease in DT50 or DT90 with elevated dATP. Therefore, to account for the range

in experimental values, we averaged these two data points to obtain an average Ca2+ transient
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for dATP, where DT50 is decreased by 31% and DT90 is decreased by 25%. Corresponding

shortening data was also averaged as described above, where average FS for ATP was 7.1 and

average FS for dATP was 9.5. For ventricular simulations, we used the original model Ca2+

transient from [109], and applied these same relative changes to DT50 and DT90 for dATP.

Maximum and minimum Ca2+ transient values were set to be equal for ATP and dATP for

all simulations since they were not shown to vary significantly experimentally [97, 147]. For

cellular-level simulations, minimum Ca2+ was set to 0, and maximum Ca2+ was set to 1. For

organ-level simulations, minimum and maximum Ca2+ values were set to be be the same as in

the original model from [109].

2.3.2 Crossbridge Energetics and Mitochondrial Metabolism Model

The mitochondria model implemented in Lopez et al. [109] (based on [12]) was utilized

to simulate myocardial energetics. This model consists of 29 ordinary differential equations

describing the membrane potential, metabolite concentrations, and ion concentrations in the mi-
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tochondria. The mitochondria is divided into three main compartments: matrix, inter-membrane

space, and cytosol. As in [109], metabolite concentrations in the mitochondria model feed

into the myocyte mechanics model. The crossbridge cycling rate from the sarcomere model is

used to calculate the ATPase rate, which feeds into the mitochondria model. Coupling to the

energetics model was only implemented for ventricular simulations. The model from [109] was

altered so that the mitochondria model updates the metabolite pools every three beats to allow

for assessment of changes in metabolite concentrations over time. Three beats was chosen as a

reasonable timescale to allow for a stable solution to model equations. Analysis was carried out

in MATLAB R2018b [77].

2.3.3 Ventricular Mechanics and Hemodynamics Model

Ventricular simulations under healthy and failing conditions were carried out using the

rat ventricular mechanics and hemodynamics model from [109] (Figure 2.6). This model is

based on [111], where the left and right ventricles are modeled geometrically using thin-walled

hemispheres with three segments: left ventricular free wall, right ventricular free wall, and the

septum. In each of these segments, the implicit sarcomere and energetics model described above

is utilized to calculate tension. Thus, sarcomere length and active force from the implicit myocyte

model feed into the ventricular model, and the recomputed geometry is used to update sarcomere

length in the implicit sarcomere model. This model is also coupled to a lumped-parameter

circulation model, which represents the aorta, arteries, capillaries, and veins.

Mean sham rat data from [109] were used for all analysis in healthy simulations, and

mean transverse aortic constriction (TAC) rat metabolite data were swapped in for heart failure

simulations, as described in [109]. The optimized crossbridge parameters described above for the

myocyte mechanics model were also used here (Table 2.2). We also updated the existing passive

force formulation in the model (Equation 2.3, 2.4) to produce a more realistic end-diastolic

pressure volume relationship, based on [94], where γ was set to 8 to produce a physiologic

end-diastolic pressure-volume relationship (Equation 2.5).
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Figure 2.6. Model of ventricular mechanics and circulation, adapted from [109, 121]. Force
development in biventricular model is computed using myocyte mechanics model shown in
Figure 2.2. Lumped-parameter circulation model is utilized to simulate blood flow, where RTAo
is the transmural aortic resistance, RAo and CAo are the resistance and compliance of the proximal
aorta, RPA and CPA are the resistance and compliance of the pulmonary arteries, RPV and CPV
are the resistance and compliance of the pulmonary veins, RSV and CSV are the resistance and
compliance of the systemic veins, CSA is the compliance of the systemic arteries, RSys is the
systemic vascular resistance, and RT SA is the transmural systemic artery resistance.
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Ca2+ association parameters were adjusted to account for the differences between in

vivo and in vitro data [131] (Figure 2.7). KSE was adjusted to 1×104 mmHg/µm, kpassive was

adjusted to 5.8×104 mmHg/µm, and η was adjusted to 1×10−4 (Table 2.2). Further, aortic

compliance (CAo) was set to 0.0015 mL/mmHg and LV, RV, and septal midwall reference surface

areas Amre f were scaled by a factor of 1.28 to match the wild-type experimental EF from [147].

All other parameters were kept unchanged, and dATP was simulated in the same way as in the

myocyte model. The model was run for 120 beats to reach steady state as in [109]. Analysis was

carried out in MATLAB R2018b [77]. Additional details on this model can be found in [121].

σpassive(SL) = kpassive(SL−SLrest)+σpassive,collagen(SL) (2.3)

σpassive,collagen(SL) =

 Pconcollagen[ePExpcollagen(SL−SLcollagen)−1] SL > SLcollagen

0 otherwise

 (2.4)

σpassive(SL) = kpassive(SL−SLrest)
γ (2.5)

2.4 Results

2.4.1 Increased Myosin Recruitment, Crossbridge Binding and Cycling,
and Calcium Sequestering Dynamics are Needed to Explain
Improvements in Myocyte Contractility and Lusitropy with
Elevated dATP

We utilized an implicit model of sarcomere mechanics and cardiomyocyte Ca2+ handling

(Figure 2.2) to extend our molecular and filament level findings to the whole myocyte level

(Figure 2.1D). This implicit model was chosen because it is less computationally expensive than

the spatially explicit sarcomere model utilized in Chapter 1 (Figure 2.1C), and is more compre-

hensive in its inclusion of a viscoelastic model, Ca2+ dynamics, and coupling to a mitochondria
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ing dynamics are needed to explain improvements in myocyte contractility and lusitropy with
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krecruit). (C): Relative contributions of increased crossbridge binding and cycling, faster Ca2+

dynamics, and increased myosin recruitment to changes in FS, RT50, and RT90 compared with
average experimental data from [97, 147]. Baseline experimental ATP values are shown as
purple dashed lines, and experimental dATP values are shown as teal dashed lines. Differences
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model (Figure 2.1E) to allow for cell shortening and whole heart mechanoenergetics simulations

(Figure 2.1F). The implicit myocyte model utilized in this study contains an additional cross-

bridge cycling state (the weakly-bound state) (Figure 2.2) compared with the spatially explicit

model utilized in the previous chapter, and we thus adjusted slightly different crossbridge cycling

parameters to achieve the same effect in the implicit model (k+f , k−f , and k+w ) as in the spatially

explicit model (k+f , k+p , and k+g ). More details on these models, including parameter selection,

can be found in the Methods and Tables 2.1 and 2.2.

We found that increasing the ADP.Pi-myosin.actin association rate, k+f , from 2.50×106

M−1s−1 to 4.78×106 M−1s−1 in the myocyte model based on the BD results resulted in only

a 1% increase in fractional shortening (FS) with 1% dATP, consistent with our findings using

the spatially explicit model (Figure 2.8C). Similarly, increasing parameters k−f (actomyosin

detachment rate) and k+w (weakly- to strongly-bound transition rate) in addition to k+f did not

further increase FS (Figure 2.8C). However, as was the case at the filament scale, we found

that increasing parameter krecruit from 0.2 N−1m−2 to 37 N−1m−2 in addition to k+f , k−f , and k+w

resulted in a 41% increase in FS with 1% dATP (Figure 2.8B, Figure 2.9 and Table 2.2), greater

than the experimentally measured increase of 34%. Again, this was the only parameter which

could produce this effect (Figure 2.9). This further supports the conclusion that dATP treatment

leads to disproportionate increases in force with 1% dATP by disrupting the resting states of

myosin, which outweighs the effects of increased crossbridge binding and cycling. However,

increased recruitment of myosin with elevated dATP resulted in slowed time to 50% relaxation

(RT50) and only explained 21% of the experimental changes in time to 90% relaxation (RT90)

[97, 147] (Figure 2.8C), so we next sought to assess additional factors that could explain these

changes in relaxation.

When the effects of 1% dATP (99% ATP) on the Ca2+ transient were simulated by

prescribing the experimental dATP Ca2+ transient, which showed decreased time to 50% and

90% Ca2+ transient decay (DT50 and DT90, respectively) relative to the 100% ATP transient

[97, 147] (Figure 2.8A), RT50 was decreased by 22% and RT90 was decreased by 20%, which
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Figure 2.9. Sensitivity analysis of parameter krecruit in implicit sarcomere model. (A) Relative
shortening vs a range of krecruit values. krecruit was set to 37 in the model (for 100% dATP) since
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substantially increase shortening. dATP Ca2+ transient was included in dATP model simulations.
k+p was increased to 100000, and k+g was decreased to 0.1 (to produce the largest possible changes
in force).

is closer to the experimental data [97, 147] (Figure 2.8C). When the more rapid Ca2+ dynamics

with elevated dATP were combined with an increased crossbridge binding and cycling rate and

increased myosin recruitment from resting states, as described above, these three mechanisms

together explained 97% of the average experimental increase in FS, 70% of the experimental

increase in RT50, and 96% of the experimental increase in RT90 (Figure 2.8B, C). Additionally,

including increased rates of crossbridge binding and cycling with elevated dATP in addition to

increased myosin recruitment and faster Ca2+ transient decay did not substantially change FS,

RT50, or RT90 (Figure 2.8C).

Therefore, our model predictions suggest that the integrative mechanisms of dATP on

myosin recruitment, crossbridge binding and cycling, and Ca2+ sequestering dynamics can

explain 100% of the experimental observations of improved contractility and lusitropy with

elevated dATP at the myocyte level, as well as the high sensitivity of cardiac muscle to small

fractions of dATP.
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2.4.2 Increased Myosin Recruitment, Crossbridge Binding and Cy-
cling, and Calcium Sequestering Dynamics with Elevated dATP
Contribute to Improved Ventricular Mechanoenergetics

In animal models, the ventricular concentration of dATP has successfully been increased

via upregulation of the enzyme ribonucleotide reductase (R1R2), which converts ADP to dADP

[202]. dADP is then converted to dATP by the normal cellular rephosphorylation process.

Elevated dATP has been observed to significantly increase left ventricular developed pressure

(LVDevP), CO, and EF in transgenic mice over-expressing R1R2 and infarcted pig hearts treated

with R1R2 via an adeno-associated viral vector in vivo [147, 87]. Therefore, we next utilized our

whole heart and circulation model ( Figure 2.6) to assess how the predicted effects of dATP on

sarcomere and Ca2+ dynamics at the myocyte level extend to altered ventricular function. This

model contains the same implicit sarcomere and Ca2+ handling models utilized for myocyte

level simulations (Figure 2.1D), which are further coupled to a mitochondria model (Figure

2.1E) and embedded within a biventricular mechanics and hemodynamics model (Figure 2.1F),

as described in the Methods.

After adjusting parameters KSE , kpassive, η , kon, CAo, and Amre f in the baseline ventricular

model to match experimentally measured EF in mice [147] (all other parameters were kept the

same as in the myocyte model), we simulated dATP treatment in the same way as in the myocyte

shortening simulations (Table 2.2). We found that increasing k+f from 2.50×106 M−1s−1 to

4.78×106 M−1s−1 in the ventricular model based on the BD results led to a <1% increase in EF,

and increasing k−f (actomyosin detachment rate), and k+w (weakly- to strongly-bound transition

rate) did not further increase in EF (Figure 2.10C). Consistent with our results at the filament and

myocyte scales, we found that increasing krecruit from 0.2 N−1m−2 to 37 N−1m−2 in addition

to k+f , k−f , and k+w led to a 9% increase in EF, which more closely matches experimental data,

which showed a 14% increase in EF with dATP [147] (Figure 2.10C).

Interestingly, when we included faster Ca2+ dynamics in the ventricular model (Figure

2.10A, B, C) we observed reduced EF, contrary to our findings at the myocyte scale (Figure
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54



2.10C). However, these findings are consistent with multiscale modeling results from [21], where

increasing the Ca2+ reuptake rate into the SR led to reduced EF. The combined effects of dATP

on myosin recruitment, crossbridge binding and cycling, and Ca2+ sequestering dynamics led to

an overall decrease in EF with 1% dATP, likely due to these Ca2+ transient effects. However,

these results support the conclusion that increased recruitment of myosin from the thick filament

backbone is the primary mechanism by which dATP improves contractility.

2.4.3 Elevated dATP Improves Ventricular Function in the Failing Heart
in Part Due to Improved Energetic Efficiency

To simulate heart failure, the metabolite concentrations in the model were adjusted to

mean values previously measured experimentally in failing rat hearts [109]. This resulted in

reduced EF (Figure 2.11A, C). Further, ATP and ADP concentrations were decreased and Pi

concentrations were increased, consistent with [109] (Figure 2.11G-I). We found that with 1%

dATP in the failing heart model, EF increased by 16%, CO increased by 16%, and LVDevP

increased by 13% (Figure 2.11C-E). EF was returned closer to normal with just 1% dATP (61%

vs 67% in the baseline healthy simulation), and was returned to 67% with 7% dATP (Figure

2.11C). This aligns well with experimental data in pigs which showed a 16% increase in EF with

dATP in failing hearts [87]. Therefore, the mechanisms identified at the molecular (increased

actomyosin association), filament (increased recruitment of myosin and faster crossbridge

cycling), and cellular (faster Ca2+ dynamics) scales were sufficient to explain experimentally

measured changes in EF with 1% dATP in the failing heart.

Overall, dATP improved ventricular function in a dose-dependent manner (Figure 2.11).

Further, our model was able to predict the effects of varying percentages of dATP on metabolite

concentrations and energetic function in the failing heart. ATP levels were unchanged (suggesting

that dATP treatment does not substantially deplete ATP pools), while ADP and Pi levels increased

with increasing dATP ratio (Figure 2.11G-I), as in [147]. The CrP/ATP ratio was decreased

slightly with increasing dATP ratio (Figure 2.11K). Further, myocardial oxygen consumption
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(MVO2) and ATPase rate also increased with increasing dATP ratio (Figure 2.11J, L). However,

with 1% dATP these metrics remained below normal, non-failing levels. Interestingly, efficiency,

defined as the work per beat divided by ATP hydrolysis rate, increased with increasing dATP

ratio, and was increased by 1% with 1% dATP (Figure 2.11M). This indicates another potential

mechanism by which dATP may improve ventricular function in the failing heart, and could

explain why dATP treatment does not lead to further metabolic impairment at low dATP fractions.

Finally, we assessed how each of our identified mechanisms of dATP contributed to

changes in ventricular function in our normal and failing models. EF, CO, and LVDevP all

increased to a greater extent with 1% dATP in failure (16%, 16%, and 13%, respectively) than in

the healthy heart simulations where EF was decreased by 2%, CO was decreased by 2%, and

LVDevP was increased by 3% compared to ATP (Figure 2.12A, B, C). Further, these results show

that increased myosin recruitment has a larger impact in failure, leading to greater improvements

in function. Interestingly, faster Ca2+ dynamics with dATP treatment led to increased EF in the

failing heart simulations, despite decreasing them in the healthy heart simulations (Figure 2.12A,

B, C). Increased myosin recruitment also led to greater increases in work rate (Figure 2.12D) and

efficiency in the failing heart simulations (Figure 2.12H) (despite decreasing efficiency in the

healthy heart simulations), while faster Ca2+ dynamics led to a 8% increase in the CrP/ATP ratio

(Figure 2.12F) and a 31% decrease MVO2 (Figure 2.12E) in the failing heart. These findings

suggest that the net effect of dATP treatment is to improve contractile function, primarily due to

its effects on myosin recruitment, while simultaneously improving energetic efficiency and the

overall metabolic state of the failing heart, at least in part due to its effects on Ca2+ handling.
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2.5 Discussion and Conclusions

In this study, we used multiscale computational modeling to integrate therapeutic mech-

anisms of dATP from the molecular scale to the cardiovascular system in the failing heart. In

Chapter 1, we predicted an increase in the actomyosin association rate with elevated dATP,

via stabilization of pre-powerstroke myosin. We found that this increase, along with enhanced

crossbridge cycling and recruitment of myosin into the crossbridge cycling pool, contributed

to increases in steady state force at the filament level. Enhanced recruitment of myosin was

shown to dominate behavior at all scales, suggesting that this is the primary mechanism by

which dATP improves contractility. Accounting for the faster Ca2+ transient decay observed

with dATP along with these mechanisms allowed us to fully explain changes in cellular con-

traction and relaxation, as well as ventricular mechanics. LV function was shown to improve

in a dose-dependent manner in simulations of the failing heart, with 1% dATP nearly restoring

EF to normal levels, in agreement with experimental results. dATP also improved energetic

efficiency without further impairing metabolic state in heart failure. Notably, dATP had a more

pronounced impact on ventricular function and energetic efficiency in the failing heart. The

multiscale modeling framework developed in this study not only provides a powerful tool for

linking molecular effects to changes in ventricular function, but also allowed us to parse the

relative effects of several mechanisms of dATP at various scales of function, which would be

difficult to accomplish experimentally.

We chose to utilize two different sarcomere models in this study: a spatially explicit

model [123] for filament scale force-pCa simulations in Chapter 1, and an implicit model [109]

for myocyte shortening and ventricular scale pressure-volume loop simulations in Chapter 2.

We chose to utilize the spatially explicit model to assess how small fractions of dATP interact

with nearest-neighbor cooperativity to produce disproportionate amounts of steady state force,

because this model contains a sophisticated representation of cooperative mechanisms. However,

this model is computationally expensive and does not allow for simulation of myocyte shortening,
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Ca2+ dynamics, or energetics, so we chose to utilize the implicit modeling framework developed

by Lopez et al. [109] for larger scale simulations. Due to differences in each of these models,

the parameter values adjusted in each model differed slightly, mainly due to the addition of

a weakly-bound state in the implicit model. dATP may also increase the transition between

the weakly- and strongly-bound states, but additional studies are needed to fully address the

mechanisms by which dATP increases the rate of crossbridge cycling. Further, it was necessary

to increase krecruit by a greater extent in the spatially explicit model than in the implicit model

to achieve the same effect. This may be explained by the fact that overall forces are lower by

several orders of magnitude in the spatially explicit model, which represents a single sarcomere,

than in the implicit model, which represents a whole cell. Regardless, our simulation results

reveal that recruitment of myosin into the pool available for crossbridge cycling is the primary

mechanism by which dATP increases contractile force.

Additional work is needed to fully explore the effects of dATP on Ca2+ dynamics. The

relative changes in DT50 and DT90 of the Ca2+ transient with dATP measured in isolated

cardiomyocytes (in vitro) at 1 Hz were utilized to scale the Ca2+ transient for the ventricular

simulations (at 7 Hz). This does not take into account possible frequency effects on changes

to the Ca2+ transient with dATP, or the effects of the experimental preparation. Further, we

assumed that the changes in the Ca2+ transient were independent of dATP fraction, but the

validity of this assumption warrants further investigation. Additional work is also needed to

determine the underlying mechanism by which dATP increases the rate of Ca2+ transient decay.

This is investigated further in Chapter 3, where we show that dATP acts on SERCA to increase

the rate by which it pumps Ca2+ back into the SR, but additional studies are needed to determine

whether dATP also acts on other ATPase pumps or mechanisms that regulate Ca2+ handling in

the cell. Extension of our model to include a model of the SERCA pump and other proteins

involved in Ca2+ handling would allow us to further investigate the effects of dATP on the Ca2+

transient. Finally, it is possible that there are additional mechanisms at play at the ventricular

level such as regulation by the autonomic nervous system that could be taken into account in
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future studies [54].

We found that the combined mechanisms of increased myosin recruitment and faster

Ca2+ dynamics led to both improvements in contractile function and energetic efficiency in the

failing heart, while efficiency was decreased in healthy heart simulations. This is consistent

with previous findings for OM, which has some similar mechanisms to dATP [201]. This is

likely because in both healthy and failing conditions, dATP improves both work rate and ATPase

rate; however, work rate is increased to a greater extent in the failing model, leading to an

overall increase in efficiency, while ATPase rate is increased to a greater extent in the healthy

model, leading to an overall decrease in efficiency. Interestingly, the large improvements in both

ventricular function and energetic efficiency in heart failure were mainly due to increased myosin

recruitment into the crossbridge cycling pool. This could plausibly be due to a larger initial pool

of myosin heads in inactive states in failure, but additional data is needed to further explore this.

We also observed that increased myosin recruitment led to increases in MVO2 in the healthy

heart, but not in the failing heart, which may also contribute to improvements in energetics in

failure. Further, we observed that faster Ca2+ transient decay led to reduced EF in healthy heart

simulations but increased EF in failing heart simulations, which could be due to the fact that

relaxation is likely impaired in failure. Further, we found that dATP increased the CrP/ATP ratio

in failure despite not changing it in healthy heart simulations with 1% dATP. Experimental data

from healthy transgenic mouse hearts showed a decreased CrP/ATP ratio with elevated dATP

[147], but the CrP/ATP ratio has not been measured in HFrEF with dATP, so additional data is

needed. Additionally, dATP treatment may lead to functional and/or morphological changes

in mitochondria, so further experimental data and expansion of our model to include these

mechanisms would allow for a more complete assessment of the effects of dATP on energetics.

Our modeling approach utilized a simplified model of the heart which approximates the

left and right ventricles as hemispheres. While this approach allowed us to gain valuable insight

into the ways in which dATP affects ventricular performance at a relatively low computational

cost, in the future this framework could be extended to capture more realistic geometries. A
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finite element model of the heart would allow us to incorporate patient-specific geometries and

to assess regional changes in mechanics, as well as potential growth and remodeling. This

model provides a powerful tool for assessing small molecule therapeutics such as dATP by

integrating existing experimental data at multiple levels spanning the molecular to whole organ

levels to generate new model predictions which can be tested through further experimentation

and modeling.
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Chapter 3

Multiscale Computational Modeling of
the Effects of 2’-deoxy-ATP on Cardiac
Muscle Calcium Handling

3.1 Abstract

Ca2+ transients in cardiomyocytes with elevated levels of dATP show faster Ca2+ decay

compared with cardiomyocytes with basal levels of dATP, but the mechanisms behind this

are unknown. Here, we design and utilize a multiscale computational modeling framework to

test the hypothesis that dATP acts on the sarcoendoplasmic reticulum Ca2+-ATPase (SERCA)

pump to accelerate Ca2+ re-uptake into the SR during cardiac relaxation. Gaussian accelerated

molecular dynamics simulations of human cardiac SERCA2A in the E1 apo, ATP-bound and

dATP-bound states showed that dATP forms more stable contacts in the nucleotide binding

pocket of SERCA and leads to increased closure of cytosolic domains. These structural changes

ultimately lead to changes in Ca2+ binding, which we assessed using BD simulations. We

found that dATP increases Ca2+ association rate constants to SERCA and that dATP binds

to apo SERCA more rapidly than ATP. Using a compartmental ordinary differential equation

model of human cardiomyocyte excitation-contraction coupling, we found that these increased

association rate constants contributed to the accelerated rates of Ca2+ transient decay observed

experimentally. This study provides clear mechanistic evidence of enhancements in cardiac
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SERCA2A pump function due to interactions with dATP.

3.2 Introduction

The sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) 2A is a P-Type ATPase [153,

18] which is critical for sequestration of Ca2+ into the SR during cardiac relaxation and is the

dominant SERCA isoform in cardiac muscle [80]. SERCA is a transmembrane protein embedded

in the SR lipid membrane which consists of 3 cytosolic domains (Nucleotide binding domain -

”N”, Phosphorylation domain - ”P”, Actuator domain - ”A”) as well as 10 transmembrane (M)

helices, M1 through M10 (Figure 3.1A) [194, 206]. The nucleotide binding region is located

within the N domain. Ca2+ binding occurs in the transmembrane region between helices M4, M5,

M6, and M8, at binding locations known as Site I and Site II (Figure 3.1C) [32, 206]. Generally,

SERCA transitions between two major states as it pumps Ca2+ into the SR in an ATP-driven

manner: E1 and E2. In the first state, E1, the the Ca2+ binding sites face the cytosolic side of

the membrane. Binding of ATP and two Ca2+ ions, followed by ATP dephosphorylation and

hydrolysis, reconform the protein so that Ca2+ can be released into the SR lumen [151, 206].

The SR-facing conformation is known as E2. Release of ADP, phosphate, and Ca2+ ions into

the SR lumen allow the protein to move back into the E1 state [19, 206]. A simplified ordinary

differential equation model of SERCA function developed by Tran et al. [210] describes several

rate-limiting steps within the cycle: (1) Mg2+ATP binding, (2) binding of the first Ca2+ ion to

site I (site II binding is then considered to occur instantaneously), (3) ADP release, coupled with

the E1-E2 transition, (4) Release of Ca2+ ions into the SR lumen, and (5) Pi release, coupled

with E2-E1 transition. Here we focus on how the first two of these rate-limiting steps may be

affected by a molecular modification to ATP.

Upregulation of dATP to ∼ 1% of the overall ATP pool led to increased cell shortening,

but also had a marked and beneficial effect on the Ca2+ transient leading to improved lisutropy

[97]. These results showed decreased time to 50% and 90% Ca2+ transient decay, suggesting
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Figure 3.1. (A) Overview of the SERCA structure. A, N, and P cytosolic domains, as well
as M1–M10 transmembrane helices are labeled. D351, the nucleotide phosphorylation site, is
also labeled. Nucleotide and Mg2+ are shown in the binding site on the N domain. (B) ATP
and dATP chemical structures. Note missing hydroxyl group on the ribose ring for dATP. (C)
Ca2+ binding site I and site II, and key residues used for assessing Ca2+ binding path dynamics
including E907 on M8, E770 on M5, and T798 on M6 (site I), E309 on M4 (site II), and E109
(M2) and E51 (M1) which comprise part of the Ca2+ entry path.
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that the rate of intracellular Ca2+ reduction is enhanced during dATP treatment. This may confer

additional therapeutic benefit in heart failure which is commonly characterized by decreased

function and expression of SERCA2A in failing cardiac myocytes [158, 164, 235]. SERCA

is also under investigation as a therapeutic target [158, 134, 235, 64, 212, 57]. To reveal

potential therapeutic mechanisms of dATP on SERCA2A, analysis at multiple scales from

atomic resolution MD to whole cell function is required.

We developed a multiscale modeling approach spanning molecular to whole cell scales.

GaMD simulations of human cardiac E1 SERCA2A embedded in a lipid bilayer [128, 218, 207,

86] were conducted on three separate systems: apo, ATP-bound, and dATP-bound. Analysis

of the GaMD trajectories allowed us to locate key sites in the cytosolic and transmembrane

domains of SERCA that may be modified by dATP binding. Rigid body BD simulations [70]

were then used to measure association rate constants of ATP, dATP, and Ca2+ ions to SERCA2A.

We found that dATP bound to SERCA2A with greater affinity than ATP, and Ca2+ bound with a

higher affinity to dATP-bound than ATP-bound SERCA. Finally, in a compartmental ordinary

differential equation model of whole cell Ca2+ handling [66], the effects of these molecular

differences on the Ca2+ transient were predicted.

3.3 Methods

3.3.1 Gaussian Accelerated Molecular Dynamics

We began with a crystal structure of human cardiac SERCA2A in the E2 state from

the protein data bank (PDB) (PDB ID: 7BT2) [13, 86]. Since no human cardiac SERCA2A

structures in the E1 state were available, we constructed a homology model using a SERCA1A

crystal structure in the E1 state purified from rabbit fast-twitch skeletal muscle (PDB ID: 3W5A)

[207]. Homology modeling was done using SWISS-MODEL [182]. Sequence identity was

83.7%, with 93.1% similarity, determined using Clustal Omega, [188] and the GMQE score for

the model was 0.77. Chain A from the 3W5A crystal structure was used for homology modeling.
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Ligands K+, MPD, and PCW were removed from the 7BT2 structure, and Na+, Mg2+, M1, PTY,

and sarcolipin were removed from the 3W5A structure. Nucleotide and Mg2+ position within

the nucleotide binding pocket were taken directly from the 7BT2 structure. CHARMM-GUI

was used to prepare all simulation files [103]. Protonation states were determined using the

PDB2PQR PropKa tool, at a pH of 7.0 [42, 193, 152, 41]. Protonated residues were: HSE (683),

and HSD (5, 32, 38, 190, 278, 284, 868, 872, 880, 882, 944). A disulfide bond was added

between CYS 875 and CYS 887. The protein was embedded in a 12.5 by 12.5 nm lipid bilayer,

and the position of SERCA within the bilayer was determined using the Orientations of Proteins

in Membranes (OPM) database [108]. The lipid bilayer was composed of POPC (51% upper

leaflet, 66% lower leaflet), POPE (43% upper leaflet, 17% lower leaflet), and POPS (6% upper

leaflet, 17% lower leaflet), with 308 total lipids in the upper leaflet and 297 total lipids in the

lower leaflet, based on experimentally determined membrane composition in the cardiac SR [16].

A rectangular water box of thickness 22.5 nm was added, and period boundary conditions were

utilized for simulation. K+ and Cl− ions were added using the Monte Carlo placement method

at a 150 mM concentration to neutralize the system [10]. AMBER input files were generated

using CHARMM-GUI.

To construct the dATP structure, the extra hydroxyl group was removed from the ATP

structure, taken directly from the 7BT2 crystal structure, using Chimera [159]. These ATP and

dATP structures were then input into CHARMM-GUI, and antechamber was used to generate

force field parameter files using the AMBER GAFF2 force field [65, 219]. The AMBER FF19SB

[203] force field was used for protein residues, and the Lipid17 and OPC [81] force fields were

used for lipid and water molecules, respectively. The SHAKE algorithm was used to constrain

the motion of hydrogen-containing bonds [133].

MD and GaMD simulations were performed using Amber20 [26], and all simulations

were run on the Triton Shared Computing Cluster through the San Diego Supercomputer Center

[2]. A total of 150 ns of conventional MD and 200 ns of GaMD (3 replicates) were performed

for apo-SERCA, and ATP- and dATP-bound SERCA. Prior to these simulations, minimization
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was done over 5000 steps of steepest decent minimization with 10 kcal mol−1 Å−2 positional

restraints on all protein atoms and 2.5 kcal mol−1 Å−2 positional restraints on all lipid atoms,

with NMR restraints. Equilibration was done over 6 steps, for 1.875 ns total. The Langevin

temperature equilibration scheme using a collision frequency of 1.0 ps−1 was utilized to set the

system temperature to 303.15 K using the NVT ensemble over 2 steps (125 ps each). During

these heating steps, 10 kcal mol−1 Å−2 positional restraints were present on all protein atoms

for the first step and 5 kcal mol−1 Å−2 positional restraints were present on all protein atoms

for the second step, and 2.5 kcal mol−1 Å−2 positional restraints with NMR restraints were

present on all lipid atoms for both steps. The system was then equilibrated over 4 stages using

the semi-isotropic (with constant surface tension) NPT ensemble (constant number of particles,

pressure, and temperature), for 125 ps, 500 ps, 500 ps, and 500 ps, respectively, with the system

set to 1.0 bar. Positional restraints on all protein atoms were 2.5, 1.0, 0.5, and 0.1 kcal mol−1

Å−2 for each step, respectively. Positional and restraints on all lipid atoms were 1.0, 0.5, 0.1,

and 0 kcal mol−1 Å−2 for each step, respectively, with NMR restraints.

MD and GaMD simulations were run at 303.15 K using the PMEMD (particle mesh

ewald molecular dynamics) method with a 9 Å nonbonded cutoff, and 2 fs timestep. Coordinates

were saved every 100 ps for MD and 20 ps for GaMD simulations. In GaMD, a Gaussian

distribution is used to provide a boost potential for the system in order to enhance conformational

sampling at shorter simulation time scales [128]. A single boost potential was applied to the total

potential energy only. The final frame from the 150 ns MD simulations was used as the starting

point for the GaMD simulations, and 0.4 ns of conventional MD prep, 2.4 ns of conventional MD

(to calculate potential statistics), 0.4 ns of GaMD pre-equilibration (with boost potential applied),

and 10.4 ns of GaMD equilibration (with boost potential applied and boost parameters updated)

were run before all GaMD production simulations. The three GaMD replicates were averaged

for analysis. Chimera, VMD, and PyMol were used for trajectory analysis and visualization

[159, 71, 1]. Analysis was performed using the AMBER cpptraj [176] and the MDTraj python

libraries [124]. Hydrogen bonding analysis used a 3 Å and 135° cutoff. Energetic reweighting of
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trajectory data was performed after all simulations using a Gaussian approximation of cumulant

expansion to the second order. This step is necessary because a boost potential was applied

at each time step in order to flatten the energy landscape during the simulation and increase

conformational sampling [128]. Briefly, the potential for mean force (PMF) as a function of

reaction coordinate A j is calculated as:

PMF(A j) =− 1
β

ln p(A j) (3.1)

Where β = kBT and p(A j) is the canonical ensemble distribution. Because boost poten-

tials followed a Gaussian distribution, p(A j) must be calculated from the ensemble distribution

of the boosted data set as:

p(A j) = p∗(A j)
⟨eβ∆V (r)⟩ j

∑
M
j=1⟨eβ∆V (r)⟩ j

ln p(A j),J = 1, ...,M (3.2)

Where ∆V (r) is the boost potential for each frame, M is the number of bins, and ⟨eβ∆V (r)⟩ j

is the ensemble averaged Boltzmann factor for frames in bin j. ⟨eβ∆V (r)⟩ is approximated using

second order cumulant expansion and is calculated as:

⟨eβ∆V (r)⟩= exp{
∞

∑
k=1

β k

k!
σ

2
∆V} (3.3)

Re-weighting of the GaMD simulations was done using scripts and protocols developed

by Miao et al. [129].

71



3.3.2 Brownian Dynamics

BD simulations with Browndye 2 [70] were used to probe SERCA binding kinetics.

Browndye treats molecules as rigid cores and uses an adaptive time step to efficiently simulate

binding kinetics. We first carried out BD simulations of ATP and dATP binding to the apo

SERCA structures derived from our GaMD simulations and compared their respective associ-

ation rate constants. In order to better capture the conformational dynamics and variability of

SERCA, 30 SERCA structures were used independently in 30 separate simulations for ATP and

dATP. The 30 conformations were obtained through hierarchical clustering of the apo GaMD

SERCA simulations, using Cα RMS as the cutoff metric. The lipid bilayer was removed for

nucleotide binding simulations to reduce simulation compute cost, given that the bilayer should

not substantially affect the relative rates of binding of ATP and dATP. Browndye uses ”reaction

pairs” as a reaction coordinate to measure progress of binding events. These pairs were defined

based on the starting homology model with ATP or dATP present. Pairs were defined by contacts

between (d)ATP and residues PHE 487 and ARG 559 with a distance less than 3.5 Å. The en-

counter complex description in Browndye, which specifies the distance between pairs necessary

for a reaction to be considered complete, was left unspecified, allowing for a range of binding

probabilities to be observed as a function of reaction distance. For each of the 30 representative

structures, BD simulations were carried out to measure the association of ATP, and separately

with dATP, with 50,000 individual trajectories simulated per conformation. Overall, 1.5 million

total ATP trajectories were simulated as well as 1.5 million dATP trajectories. The same AMBER

force field used for the GaMD simulations was used to parameterize the protein and nucleotide

charges and radii for BD simulations. Binding rate constant curves of the resulting simulations

were then averaged based on the cluster weight of each observed representative structure.

We again employed BD simulations to investigate changes in Ca2+ binding to site I and

II in SERCA when ATP or dATP is bound. The starting SERCA structures were clustered from

the GaMD ATP and dATP simulations. Thirty representative structures were extracted from
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each nucleotide condition, with the membrane intact. The same hierarchical clustering approach

based on the Cα RMS was again applied to generate representative structures. The membrane

was included to ensure that Ca2+ enters the SERCA protein through a realistic entry point,

likely via the M1/M2/M4 path, and not through the transmembrane region buried in the lipid

bilayer [206]. Reaction pairs for Ca2+ to site I were defined based on atoms forming hydrogen

bonds in a previously solved crystal structure [209]. A second set of reaction pairs was also

established from the same crystal structure for site II. For site I, the 30 structures from the ATP

conditions were used to run 50,000 BD trajectories, leading to 1.5 million trajectories. Similarly,

the 30 structures from the dATP GaMD simulations were used to run an additional 50,000 BD

trajectories per conformation, again leading to 1.5 million trajectories simulated. The binding

rate constant curves were averaged based on the frequency of the cluster throughout the GaMD

simulations. The same procedure was repeated using the same structures to investigate binding

to site II, with the reaction pairs adjusted accordingly for an additional 1.5 million trajectories

per nucleotide condition. In total, between the two Ca2+ sites and two nucleotides bound, 6

million Ca2+ binding BD trajectories were simulated.

All BD simulations for both the nucleotide and Ca2+ association simulations used 150

mM ionic strength, and a desolvation parameter of 0.025 based on sensitivity analysis to allow

for realistic binding distance criteria. Each BD trajectory had a maximum of 1000000 steps. The

dielectric coefficient of the solvent was set to 78, while the solute dielectric coefficient was set to

4.

3.3.3 Calcium Transient Modeling

To assess how changes in nucleotide and Ca2+ association rate constants to SERCA

impact the myocyte Ca2+ transient as a whole, we utilized a whole cell ECC model developed

by Himeno et al. [66]. This model was chosen because it explicitly includes a three-state model

of SERCA [210] which has parameters for ATP binding, Ca2+ binding, and E1-E2 transition. In

this model, state P1 is E1 SERCA, which undergoes a reversible reaction dictated by rates K+
1
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and K−
1 to state P2−5 (E1 with ATP and 2 Ca2+ ions bound). Ca2+ binding is considered to be

fully cooperative, i.e. binding of the second Ca2+ ion is instantaneous after the first Ca2+ binding

event. Reaction rates K+
2 and K−

2 encompass MgADP dissociation as well as the E1-E2 transition,

leading the model to state P6−10. Finally, reversible reaction rates K+
3 and K−

3 return the pump

to state P1 [210]. dATP experimental data were digitized from Korte et al. Figure 1B (GFP

and R1R2, respectively) [97]. Fura ratio units were converted to Ca2+ concentration by setting

the maximum fluorescence value to 0.45 µM, and the minimum value to 0.05 µM, since these

are approximately the maximum and minimum Ca2+ values typically seen in the ECC model

[66]. The ECC model was optimized to match the ATP experimental Ca2+ transient by varying

AmpSERCA, AmpNCX , AmpNaK , and fn, the same parameters which were tuned by Himeno et

al. in parameterizing their original model [66] (Table 3.1). Optimization was conducted using

Particle Swarm Optimization in MATLAB [92]. The timescale of the applied current in the ECC

model was adjusted to reflect differences between human and rat and to more closely fit control

(ATP) Ca2+ transients.

3.4 Results

3.4.1 dATP is More Stable in the Nucleotide Binding Pocket, Facilitating
E1-ATP to E1-ADP Transition via Enhanced Phosphorylation and
Movement of Cytosolic Domains

We first assessed differential interactions of ATP and dATP in the nucleotide binding

pocket in the N domain. Computing the overall number of contacts between the nucleotide

and residues identified to come within 3 Å for at least one frame of any of the simulations, we

found that dATP had a greater number of contacts overall (Figure 3.2A). The average number of

contacts was 8.7 for ATP and 10.5 for dATP. Further, we found that dATP had a lower RMSD

overall (averaged across all three GaMD simulations) than ATP (Figure 3.2B). This suggests

that dATP is interacting more closely with a greater number of residues in the N domain binding

pocket, and that it binds more stably, leading to less movement within the binding pocket.
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Figure 3.2. dATP is more stable in the nucleotide binding pocket. (A) The overall number of
contacts in the binding pocket (averaged across three replicates) was greater for dATP than for
ATP. Only residues identified to come within 3Å for at least one frame of the simulation were
included. Data are displayed as histograms showing the frequency distribution across the GaMD
simulations. (B) The RMSD for dATP (averaged across 3 replicates) was lower than for ATP.

We next assessed specific residue interactions with ATP and dATP in the nucleotide

binding pocket. The distances across three GaMD replicates between the nucleotide and several

residues of interest are shown in Figure 3.3A. Distances to known nucleotide interaction residues

PHE 487, ARG 559, and LYS 514 [206, 208, 68, 33] were unchanged (the average distances

were 0.39 nm, 0.30 nm, and 0.47 nm for ATP and 0.39 nm, 0.26 nm, and 0.45 nm for dATP,

respectively). This suggests that interactions with these residues do not explain differences in

nucleotide association. However, we found that ATP came in closer contact with several residues

toward the top of the nucleotide binding pocket than dATP, including THR 441, LYS 492, ARG

677, and ARG 489 (average distances were 0.50 nm, 0.33 nm, 0.36 nm, and 0.43 nm for ATP and

0.56 nm, 0.39 nm, 0.53 nm, and 0.49 nm for dATP, respectively) (Figure 3.3B). The phosphate

tail of dATP was shown to come in closer contact with several residues toward the bottom of

the nucleotide binding pocket than ATP, including LYS 352, THR 353, THR 624, and ASP 626

(average distances were 0.83 nm, 0.95 nm, 0.91 nm, and 0.56 nm for ATP and 0.45 nm, 0.47 nm,

0.41 nm, and 0.42 nm for dATP, respectively (Figure 3.3C).
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Figure 3.3. dATP occupies a more vertically aligned conformation in the binding pocket than
ATP. (A) Distance between nucleotide and residues of interest for ATP and dATP (averaged
across three replicates). For each residue of interest, distance distributions (between the residue
and nucleotide) are shown as violin plots, where the white dot in the center represents the median,
and the thick gray bar represents the interquartile range. Density curves are shown for ATP on
the left side of the plot and dATP on the right side of the plot, where the width of the curve
represents the frequency of the data (nucleotide-residue distance) at that point. ATP came in
closer contact with residues toward the top of the binding pocket, including THR 441, LYS
492, ARG 677, and ARG 489 [shown in (B)]. dATP was shown to come in closer contact with
residues toward the bottom of the binding pocket including LYS 352, THR 353, THR 624, ASP
626, and phosphorylation residue ASP 351 [shown in (C)]. This may be explained by the missing
hydroxyl group on dATP leading to weaker interactions with residues at the top of the binding
pocket. Distances to nucleotide association residues PHE 487 and ARG 559, as well as LYS 514,
were unchanged.
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Figure 3.4. Clustering analysis on nucleotide position within the binding pocket, including all
three GaMD simulations. Top five clusters are shown for ATP (A) and dATP (B).

We hypothesize that this is due to the additional hydroxyl group on ATP (Figure 3.1B),

allowing it to form additional hydrogen bonding interactions with residues at the top of the

binding pocket, while dATP does not, causing the phosphate tail to be pulled downwards. The

hydrogen bond occupancy of the 2’ hydroxyl group on ATP was measured to be 8.21% as a

hydrogen bond acceptor, 4.80% as a donor, and overall acting as either a donor or acceptor

in 12.4% of the simulation. While this is a minority of the simulation time, the consistent

interaction significantly alters its orientation and behavior in the pocket. The preserved 3’

hydroxyl shows similar levels of hydrogen bonding occupancy between ATP and dATP, at 30.4%

and 34.8% occupancy respectively as either a donor or acceptor. Interestingly, in dATP, the 3’

hydroxyl almost never bonds as a donor, at only 0.0312% of frame compared to 4.92% in ATP.

These results are further supported by clustering analysis, which confirmed that ATP is most

commonly located more horizontally across the top portion of the binding pocket across all 3

replicates, while dATP shows a more vertically aligned conformation in which the phosphate

tail is drawn downwards toward the P domain (Figure 3.4). This serves to position dATP such

that the gamma phosphate is located substantially closer to the phosphorylation residue ASP 351

(average distance was 1.2 nm for ATP and 0.74 nm for dATP) (Figure 3.3A, C) [206]. This may
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Figure 3.5. dATP enhances transition from E1-ATP to E1-ADP via A-N domain closure. Data
are displayed as histograms showing the frequency distribution across the GaMD simulations.
(A) A-N domain distance (averaged across three replicates), measured from the center of mass for
each domain, was lower for dATP than ATP. (B) First principal component from PCA analysis of
Cα movement performed on GaMD trajectories, which corresponds to A-N domain movement.

allow for faster phosphorylation by dATP compared with ATP.

Finally, we assessed the differential effects of ATP and dATP on the movement of

cytosolic domains of SERCA2A. Closure of the A and N domains (Figure 3.1A) in particular

is important for the E1-ATP to E1-ADP transition [206, 18, 136]. We found that the average

difference between the center of mass of the A and N domains was smaller for dATP than

for ATP (average distance was 3.8 nm for ATP and 3.5 nm for dATP), suggesting that dATP

enhances closure of these domains (Figure 3.5A). Further, the standard deviation in A-N domain

distances was smaller for dATP than ATP (0.09 nm for ATP vs 0.08 nm for dATP), suggesting

that dATP may also stabilize these domains in a more closed conformation. This was also

shown to correspond to the first principal component from a PCA analysis conduced on SERCA

structures from the GaMD simulations (Figure 3.5B), suggesting that this is the major motion

captured by our simulations. Further, reweighting analysis confirmed that these effects were not

due to bias in the GaMD simulations since the decrease in A-N distance with dATP, represented

by a minimum in the Potential of Mean Force (PMF), was still present even after recovering the
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original energy landscape (without the GaMD boost potential) via reweighting. Interestingly,

ATP increased A-N domain distances with respect to the apo structure, while dATP decreased

A-N domain distances with respect to the apo structure. This may be due to the fact that our

GaMD simulations do not have Ca2+ present; in the absence of Ca2+, the nucleotide can bind to

the N domain and can lead to opening of the cytosolic domains, but cannot lead to subsequent

complete closure of these domains or phosphorylation [206, 86]. The effects of dATP on SERCA

appear to be pronounced enough to lead to greater closure of the A and N domains. We expect

that if Ca2+ was present in the GaMD simulations, ATP A-N distances would be smaller than

the apo case, and dATP A-N distances would be decreased even further.

3.4.2 dATP Binding to SERCA Leads to Opening of Calcium Binding
Path

Next, we assessed whether dATP binding affects Ca2+ association in the transmembrane

region. The Ca2+ binding sites have been shown to be allosterically linked to the nucleotide

binding site via transmembrane helix M5 [206]. Ca2+ binds first to site I (passing through

site II, which is gated by GLU 309) [18, 206, 69, 79]. This is believed to occur through a

cooperative mechanism, where binding of Ca2+ to site I increases Ca2+ binding affinity for site

II [78, 69, 234]. We computed distances between THR 798 (M6), GLU 770 (M5), and GLU

907 (M8), since these residues make up Ca2+ binding site I [206] (Figure 3.1C). We found

that the average distances between M5 and M6 were increased (average distances were 0.55

nm for ATP and 0.66 for dATP) (Figure 3.6A). Average distances between M5 and M8 were

also increased (average distances were 0.45 nm for ATP and 0.52 nm for dATP) (Figure 3.6B).

Average distances between M6 and M8, on the other hand, were decreased (average distances

were 0.26 nm for ATP and 0.25 nm for dATP) (Figure 3.6C). This suggests that the net effect

of dATP is to cause opening of Ca2+ binding site I, since M5-M6 and M5-M8 distances were

increased by a greater magnitude than M6-M8 distances were decreased with dATP. Similar to

the effects of dATP on A-N domain distances, here we observed again that ATP and dATP had
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Figure 3.6. dATP binding leads to rearrangement of Ca2+ binding path. Distances for key
residues on M5 (GLU 770), M6 (THR 798), and M8 (GLU 907) that make up Ca2+ binding
site I, as well as Ca2+ sensing residues on M1 (GLU 51) and M2 (GLU 109) that make up the
Ca2+ entry path are shown. Distances were averaged across 3 replicates. Data are displayed as
histograms showing the frequency distribution across the GaMD simulations. Distances between
M5 and M6 (A) and M5 and M8 (B) were increased, while distances between M6 and M8 (C)
were decreased with dATP. Distances between M1 and M2 were increased with dATP (D). This
suggests that dATP may facilitate Ca2+ binding by opening the Ca2+ entry path to site I.
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opposing effects on transmembrane helix distances with respect to the apo structure. This may

again be due to the fact that our GaMD simulations were carried out in the absence of Ca2+.

Further, we assessed the effects of dATP on Ca2+ entry. Ca2+ is proposed to enter

SERCA through two different paths [91, 69]. The first is composed of M6, M7, M8, and M9,

while the second is composed of M1, M2, and M4. We chose to focus on the second, since

there is greater evidence supporting this path [91, 46, 102, 138]. We assessed distances between

GLU 51 (M1) and GLU 109 (M2), residues which have been implicated in Ca2+ sensing and

compose part of the binding path [91] (Figure 3.1C), and found that dATP also led to an increase

in this distance (average distance was 0.88 nm for ATP and 0.94 nm for dATP) (Figure 3.6D). We

again verified that these results were not due to bias in the GaMD simulations by conducting a

reweighting analysis since the changes in residue distances with dATP, represented by a minimum

in the Potential of Mean Force (PMF), were still present even after recovering the original energy

landscape (without the GaMD boost potential) via reweighting. Further, the standard deviation

of the distance distribution was smaller for dATP than ATP (0.11 nm for ATP and 0.06 nm for

dATP), suggesting that dATP also acts to stabilize these residues in a more open position. Thus,

dATP may lead to opening of both the Ca2+ binding path and Ca2+ binding site I, which could

facilitate enhanced Ca2+ association.

3.4.3 dATP Increases Rates of Nucleotide and Calcium Association to
SERCA Compared with ATP

BD simulations revealed that dATP bound more rapidly to the apo structure of SERCA

compared with ATP. The weighted average binding curve shows that across a wide range of

reaction distances greater than 7 Å, dATP binds more rapidly to the apo structure than ATP

(Figure 3.7A, B). Selecting a reaction distance of 8.11 Å corresponding to the ATP binding rate

constant of 2.59×107 (M s)−1 used by Tran et al. [210], the corresponding dATP association

rate constant was 36% higher (3.52 ×107 (M s)−1). We attribute the lower dATP binding rate

constants at low reaction distances to noise, since very few BD simulations reached these small
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distances. Less than 0.05% of simulations reached a distance of less than 8 Å and less than

0.03% of reactions reached a distance of less than 5 Å. Although ATP does have an additional

polar hydroxyl group that may promote additional electrostatic attraction to the nucleotide

binding pocket, we anticipate that removal of this functional group reduces steric hindrance,

therefore allowing dATP easier access to the binding site, and that this effect dominates the BD

simulations. Furthermore, analysis of a structure by structure comparison of the 30 SERCA

conformations used in our simulations revealed that although the nucleotide binding rate constant

varied considerably from conformation to conformation, dATP consistently associated more

rapidly to SERCA compared with ATP.

Further, BD simulations of dATP-bound SERCA showed differences in Ca2+ binding

compared to ATP-bound SERCA (Figure 3.7C, D). For reaction distances between 4 and 12 Å,

Ca2+ bound more rapidly to site I when dATP was bound than ATP. Experimental estimates

of Ca2+ association rate constants to SERCA vary by up to three orders of magnitude, making

determining an absolute binding distance and rate constant difficult, however a previous BD study

estimated a Ca2+ association rate constant of 3.13×109 (M s)−1 to ATP-bound SERCA [91]. In

our simulations, this value corresponded to a reaction distance of 10 Å at which Ca2+ binding

to site I of dATP-bound SERCA was 23% greater (3.85×109 (M s)−1). Interestingly, dATP

reduced the association rate constant of Ca2+ to site II. It is believed that Ca2+ binds to site I first

and initiates a conformational change before a second Ca2+ ion can bind to site II. Therefore,

the structures extracted from our GaMD simulations may not be an accurate representation of

SERCA when the first Ca2+ ion is bound. This process is also cooperative, so we anticipate that

this sequential step significantly alters the binding kinetics of the second Ca2+ ion. As such, we

focus our subsequent multiscale analysis on the effects of dATP on Ca2+ binding to SERCA at

site I.
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Figure 3.7. (A) BD-predicted binding rate constants as a function of reaction distance. Dotted
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1, quadrupling is equivalent to a Log2 fold change of 2, etc. Log fold changes of less than 1
are negative while fold changes greater than 1 are positive (e.g., a halving of the binding rate
constant is equivalent to a Log2 fold change of -1). dATP binds more rapidly to the nucleotide
site for reaction distances greater than 7Å below which sampling errors increase owing to the
low number of simulations reaching lower reaction distances. (C) BD-predicted association
rate constant of Ca2+ to sites I and II. dATP increases Ca2+ binding to site I compared with
ATP. Ca2+ binds site II more rapidly when ATP is bound to SERCA than dATP. Dotted lines
represent reaction distance that corresponds to the Ca2+ association rate constant determined
from a previous BD study [91]. (D) Log2 fold change in the association rate constant of Ca2+ to
site I when dATP is bound compared with ATP.
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Table 3.1. Optimized values for WT (ATP) and dATP-treated Ca2+ transients based on the
Himeno et al. model [66], including parameter changes based on BD results.

Parameter ATP model
dATP model,
23% decrease

Kd,Cai

dATP model,
41% decrease

Kd,Cai

AmpSERCA 94.47
AmpNCK 128.52
AmpNaK 17.77

fn 1.37
K+

1 (M s)−1 2.59×107 3.52×107 3.52×107

Kd,Cai (mM) 0.0027 0.0021 0.0016

3.4.4 Enhanced Calcium Binding to dATP-bound SERCA Accelerates
Myocyte Calcium Transient Decay

We optimized parameters of the Himeno ECC model to match measured Ca2+ transients

in the presence of ATP, as described in the methods [66, 92, 97]. In the Tran model of SERCA

kinetics [210] (incorporated within the Himeno model), K+
1 (rate of ATP binding to SERCA)

and Kd,Cai (dissociation constant for Ca2+ binding to SERCA) were then adjusted based on the

results of the BD simulations (Table 3.1). Thus, K+
1 was increased from 2.59×107 (M s)−1 to

3.52×107 (M s)−1 based on the BD-predicted change in nucleotide association to SERCA, and

Kd,Cai was was decreased by 23% from 0.0027 mM to 0.0021 mM based on the BD-predicted

change in Ca2+ binding to site I. These changes decreased time to 50% decay (DT50) of the

Ca2+ transient, but only modestly from 308 to 279 ms (Figure 3.8A). However, decreasing

Kd,Cai by 41%, which is still within the range of the BD simulation results, shortened DT50

by an amount similar to experimental observations in the presence of dATP (Figure 3.8B). In

contrast, changes in the nucleotide association rate constant had little effect, suggesting that

increasing Ca2+ binding to site I may be the primary mechanism by which dATP increases SR

Ca2+ reuptake (Figure 3.9).
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ation. (A) Effects of changing model parameters K+
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in Kd,Cai vs DT50. With a 23% decrease in Kd,Cai (based on BD results), we are not able to
fully match experimental measurements. However, with a 41% decrease in Kd,Cai, we are able
to match experimental measurements of DT50 with dATP. These simulations also include a 36%
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1 based on BD results, but changes in K+
1 were not shown to substantially affect

DT50 (Figure 3.9)
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3.5 Discussion and Conclusions

The results of this study provide new evidence for mechanisms by which dATP treatment

may contribute to improved SERCA pump function in cardiac myocytes. First, dATP was

shown to be more stable in the binding pocket of SERCA and was positioned to facilitate faster

phosphorylation. Increased closure of the A-N cytosolic domains indicates faster pump function

with dATP treatment. Further, we observed separation of transmembrane helices M5 and M6

and M5 and M8, as well as M1 and M2, which may facilitate faster Ca2+ association. dATP

demonstrates a 36% higher association rate constant than ATP to the N domain of SERCA.

However, inputting the nucleotide and Ca2+ association rate constants determined from BD

analysis (K+
1 and Kd,Cai) into an ECC model did not fully explain experimentally observed

differences in the Ca2+ transient due to dATP, but further decreasing the Ca2+ dissociation

constant could.

While this study provides valuable insight into the molecular mechanisms by which

dATP affects SERCA function, our GaMD simulations did not capture the phosphorylation event

or downstream protein conformational changes after Ca2+ binding. Future MD or quantum

mechanics simulation studies would aid in better elucidating these effects. Our BD simulations

also allowed for the entry of the nucleotides and Ca2+ from any orientation from the SERCA

pump, not only the cytosolic side, which is a limit of our approach. Moreover, there are also

other ATPases that contribute to intracellular Ca2+ dynamics such as the PMCA and NCX

pumps, which may also be affected by dATP to enhance Ca2+ efflux from the cell. SERCA is

regulated by phospholamban and several post-translational modifications that could also affect

its pump function [235]. It is likely that both SERCA upregulation and these other pumps

together could explain the improved relaxation observed experimentally due to dATP treatment.

This could be further explored with computational and experimental studies that specifically

focus on the effects of the cooperative binding of Ca2+ with relation to dATP and ATP. For

instance, additional MD simulations of SERCA with one or both Ca2+ binding sites occupied
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will certainly change the free-energy landscape and thus, yield additional structures and insights.

Additionally, since dATP is a candidate therapeutic approach for heart failure with reduced EF,

which is characterized by prolonged twitch relaxation and Ca2+ transient decay associated with

downregulated SERCA function, it would be useful to apply this analysis to a model of ECC in

the failing cardiac myocyte.

In this study, we analyzed the effects of nucleotide binding on SERCA pump kinetics

and the differential effects of ATP and dATP on Ca2+ affinity via changes to the transmembrane

domain. This study has demonstrated the power of multiscale modeling for investigating the

effects of ATP analogs on cardiac cells, as we integrated knowledge from the atomic to the

cellular level to uncover potential mechanisms of dATP which scale up to a significantly altered

Ca2+ transient and cardiac function as a whole.
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Chapter 4

Applications of Multiscale Modeling
Framework for In Silico Development
of Novel Heart Failure Treatments

4.1 Abstract

Many mutations linked to the development of DCM, which can lead to the progression

of HFrEF, lead to reduced Ca2+ sensitivity and decreased sarcomere force production. However,

it is not always clear how these molecular level mechanisms lead to long-term growth and

remodeling, and progression to heart failure. Computational modeling can provide a useful tool

not only for better understanding these mechanisms, but for generating predictions about potential

treatment options for specific mutations. In this study, we demonstrate how computational

modeling can be utilized to predict a novel treatment strategy for a specific mutation linked

to DCM, the D230N-Tm mutation. To do this, we utilized the twitch tension-time integral,

which has been shown to be an indicator of adverse remodeling, to predict that the L48Q-cTnC

mutation reverses the effects of the D230N mutation, leading to increased Ca2+ sensitivity and

force production similar to WT at the myocyte level. Model development was informed by

experimental data, and model predictions were validated using experimental data from double-

transgenic (D230N/L48Q) mice, which showed improved cardiac function, demonstrating the

utility of combining computational and experimental approaches. These techniques, along with
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the framework utilized in the previous three chapters, can be extended to investigate additional

mutations linked to cardiomyopathies and the development of HFrEF, as well as additional

potential gene therapy treatment options or small molecule therapeutics that can be targeted to

treat specific heart failure genotypes and phenotypes.

4.2 Introduction

Cardiomyopathies typically lead to adverse growth and remodeling of the heart. However,

the link between molecular and cellular level alterations in mechanical function and long term

remodeling is not always clear. There is also a need to develop precision medicine approaches to

target specific mutations linked to the development of these cardiomyopathies. In a recent study,

Davis et al. [36] showed that the area under the twitch curve can be utilized to predict whether

the heart will remodel eccentrically (as in DCM) or concentrically (as in HCM) given a particular

perturbation. This ”Tension index” (TI), calculated as the integral of the twitch-time curve

relative to control, strongly correlated with the degree of remodeling measured experimentally.

A positive TI was correlated with eccentric remodeling, while a negative TI was correlated

with concentric remodeling. The TI encompasses both peak twitch force and the rate of force

development and relaxation, and can thus be a useful tool for screening potential therapeutic

strategies targeted to specific mutations.

In this study, we showed that the TI can be utilized to predict therapeutic interventions

that can prevent deleterious remodeling in DCM, specifically in relation to the D230N-Tm

mutation [196, 197]. In vitro studies have shown that this mutation decreases Ca2+ sensitivity

and ATPase turnover rate, leading to a reduction in force production and the TI [99, 114, 62].

In vivo, D230N transgenic mice were also shown to develop a DCM phenotype with systolic

dysfunction and eccentric hypertrophy [114].

We utilized an implicit sarcomere model to predict that increasing thin filament Ca2+

sensitivity increased the TI of D230N hearts to a greater extent than increasing the actomyosin
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association rate (which is one mechanism of some inotropic interventions including dATP).

This prediction was compared to experimental data from double-transgenic mice expressing

the L48Q-cTnC mutation, which increases Ca2+ sensitivity [36, 204, 217, 47, 187, 90, 155],

in addition to the D230N mutation. These double-transgenic mice had significantly increased

TI and contractility and did not progress towards DCM remodeling, illustrating the power of

combining computational and experimental approaches to design novel treatment options for

genetic cardiomyopathies.

4.3 Methods

4.3.1 Calculation of TIs

Similar to what has been done previously [36], twitch tension-time traces were normal-

ized to the maximum wild type (WT) value. The time integral of the twitch tension curve was

calculated using a point-by-point integration method based on cumulative trapezoidal approxi-

mations using MATLAB [77]. The TI was then calculated as the difference between the time

integral relative to WT (The TI for WT is therefore 0 by definition).

4.3.2 Computational Simulations of Cardiac Twitches

Similar to what has been done previously [36], we simulated cardiomyocyte twitches by

modifying the parameters in the Negroni-Lascano model [143] to fit experimental measurements

of cardiac twitches. As shown in Figure 4.1, the model consists of 6 states: no Ca2+ bound

to Tn (T S), Ca2+ bound to Tn with no crossbridges (T SCa3), Ca2+ bound to Tn with weak

crossbridge attachment (T SCa3 ∼), Ca2+ bound to Tn with strong (tension-generating) cross-

bridge attachment (T SCa3∗), no Ca2+ bound to Tn with strong (tension-generating) crossbridge

attachment (T S∗), and no Ca2+ bound with weak crossbridge attachment (T S ∼). This model

was chosen due to its explicit definition of multiple thin filament states, as well as its use in

previous studies using the TI [36]. Original parameter values and initial conditions from the
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Figure 4.1. Schematic of the Negroni-Lascano model of cardiac tension development during
twitch transients, adapted from [143]. For clarity, we have labeled the states in which Tm is
occupied (blocked, closed, or open)

Negroni-Lascano model [143] were used to simulate “WT” twitches. To simulate D230N-Tm

twitches, we reduced the transition rate from T SCa3 to T SCa3 ∼ (parameter f, see Table 4.1) by

43.5% such that the peak tension was decreased by the same amount compared with WT (∼50%)

as observed experimentally. Yb, Zb, Yr, and Zr, which represent Ca2+ association and dissociation

from Tn, were varied to assess the effects of Ca2+ modulation on sarcomeres with the simulated

D230N-Tm mutation. Zp, and Yp, the transition rates between T SCa3 ∼ and T SCa3∗, and g,

the transition rate from T SCa3 ∼ to T SCa3, were varied to assess the effects of cross-bridge

modulation on cardiomyocytes with the simulated D230N-Tm mutation. Forward rates (Yb, Zr,

and Yp) were progressively increased by factors of 2–10 (with the exception of Yb, which was

increased by a maximum of 9-fold to allow for model convergence), and reverse rates (Zb, Yr,

Zp, and g) were simultaneously decreased by factors of 0.9–0.5 to assess a range of Ca2+ and

crossbridge modulation (Table 4.1). SL was set to 1.8 µm. Model equations were implemented

using MATLAB [77] and solved using a forward Euler method for 1000 ms under isometric

conditions.
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4.4 Results

4.4.1 Increasing Calcium Sensitivity Increases the TI of Cardiomy-
ocytes with D230N-Tm to a Greater Extent Than Increasing the
Crossbridge Binding Rate

We utilized a computational modeling approach to assess whether the TI of cardiomy-

ocytes containing the D230N-Tm mutation can be modulated using inotropic intervention and, if

so, whether augmented Ca2+ sensitivity of thin filament activation or augmented cross-bridge

binding has a greater effect on the TI. To do so, we used a model of cardiomyocyte contraction

[143], as has been done previously [36], to independently and systematically increase either

the Ca2+ affinity of cTnC or the rate of strong crossbridge attachment in a sarcomere with the

D230N-Tm mutation and calculated the TI for each case. Twitches of cardiomyocytes containing

dysfunctional Tm were simulated by reducing the rate of transition of Tm from “blocked” to

“closed” [143, 125] (Figure 4.1, Table 4.1) until peak tension was reduced by the same amount

observed experimentally in intact trabeculae from transgenic hearts containing D230N-Tm

(∼50%) (Figure 4.2A). The resulting TI of simulated D230N cardiomyocytes is –13.4 ×104

Tension*ms. Progressively increasing the rate of strong crossbridge binding increased the TI of

simulated D230N cardiomyocytes (Figure 4.2B, dotted line) until it eventually asymptoted at

a value well below 0 (the point at which the TI equals that of WT). Conversely, progressively

increasing the Ca2+ affinity of cTnC increased the TI of simulated D230N cardiomyocytes well

beyond 0 (Figure 4.2B, dashed line) and did not asymptote for the range of parameters explored

here.
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4.4.2 Increasing Calcium Sensitivity Using the cTnC L48Q Mutation
Successfully Augments Twitch Tension-Time Integrals of D230N-
Tm Hearts

Our simulated twitches suggest that the TI of D230N cardiomyocytes can be greatly

increased by augmenting Ca2+ binding to cTnC. The L48Q-cTnC mutation has been shown

to increase Ca2+ sensitivity [36, 204, 217, 47, 187, 90, 155], so Powers et al. hypothesized

that double transgenic (DTG) mice carrying both of these mutations would have a phenotype

similar to WT [165]. A structural model of the cardiac thin filament [224, 225, 120, 4] showed

that the L48Q-cTnC variant likely augments the Ca2+ sensitivity of thin filaments containing

D230N-Tm by allosterically increasing the strength of the cTnC–cTnI interaction [165]. Results

from the DTG (D230N/L48Q) mouse model showed increased Ca2+ sensitivity and improved

contractility, and DTG mice did not develop a DCM phenotype compared to D230N mice [165],

thus validating our computational predictions. Therefore, computational simulations can be

utilized to target the TI to successfully predict interventions to prevent the development of DCM

for specific sarcomeric mutations.

4.5 Discussion and Conclusions

This study provides an example of how computational modeling can be utilized to

test different interventions and predict an optimal strategy based on the underlying genetic

perturbation. These predictions can then be tested experimentally. The TI provides one useful

tool to assess this, which can also be applied to inotropes like dATP, but other strategies, including

adjusting rates in the sarcomere model to match experimental data as was done in Chapters

1 and 2, can also provide useful information. This approach can provide useful information

for identifying new potential gene therapy approaches as more genetic sequencing becomes

available and additional mutations of interest in heart failure are identified. L48Q cTnC was

successfully utilized to treat post-myocaridal infarction development of heart failure in rat and

mouse models [204, 47, 187], and computational modeling can aid in the identification of
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similar therapeutics in the future, building on work done by others in modeling and gene therapy

[37, 36, 96, 205, 163, 67].

In this study, we utilized a relatively simple ODE sarcomere model to simulate twitch

kinetics. We were able to match the TI of WT and D230N twitches measured experimentally

well with this model, and our model predictions on increasing Ca2+ sensitivity were validated

experimentally, suggesting that this model is detailed enough to achieve the aims of this study.

Still, a spatially explicit model such as the one utilized in Chapter 1 [123] would provide more

detail on cooperative thin filament mechanisms and could be better integrated with findings from

MD studies to provide greater mechanistic insight into this mutation and its interactions with

cTnC L48Q.

Further, this analysis could be expanded to include larger scale simulations of ventricular

function, utilizing the framework developed in Chapter 2, and validated against experimental

echocardiography data. This would allow us to extend this approach to predict not only how

mutations will affect the TI and twitch kinetics, but also larger scale ventricular function before

testing in animals or humans. This may prove important in assessing, for example, whether

delayed or faster twitch relaxation may impair or improve ventricular function, since the TI does

not explicitly account for these effects. Further, this modeling approach could be extended to

include longer term growth and remodling to predict development of a DCM or HCM phenotype,

and to tune optimal timing of gene delivery to prevent or reverse this.
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simulations of WT and D230N twitches, as well as computational predictions on the effects of

modulating crossbridge binding and Ca2+ sensitivity.
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Chapter 5

Conclusions

This work establishes a novel multiscale modeling framework extending from atomic

simulations of protein dynamics, to changes in cooperative force production in individual

sarcomeres, to viscoelastic cellular mechanics, to alterations in ventricular pump function

and energetics in heart failure. Using this framework, we showed that recruitment of myosin

into the pool available for crossbridge cycling contributed the most significantly to producing

disproportionate increases in force with small fractions of dATP, which held true at all scales of

function we investigated. These effects were even more notable in simulations of heart failure.

According to our model predictions, the underlying mechanism may depend on a cooperative

mechanosensing mechanism. Previously identified mechanisms of dATP including increased

actomyosin association via changes in electrostatics and faster crossbridge cycling can explain

experimental results with higher fractions of dATP, but were insufficient to explain supralinear

force increases with 1% dATP. Further, we found that the effects of dATP on SERCA, including

increased Ca2+ association with dATP, were crucial for increasing the rate of myocyte relaxation

and improving energetic function at the ventricular level. This provides promising evidence that

dATP may indeed have advantages over other similar inotropes which may slow relaxation and

lead to higher energy consumption, and the effects of dATP on Ca2+ dynamics counteract these

negative effects which may normally be caused by increased myosin recruitment. dATP has

the potential to permanently restore function in heart failure, providing a significant advance
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over current therapies. Furthermore, we showed that our modeling approach can be extended to

investigate other putative therapeutics beyond dATP, including targeted gene therapy. Overall,

this work shows how computational modeling may be utilized to integrate experimental data from

disparate sources to allow us to gain mechanistic insight, and can in turn be utilized to generate

new predictions that can be tested experimentally. This combination of experimental testing and

computational modeling provides a powerful path forward in developing next-generation tools

for better understanding and treating heart failure.

Our approach has several advantages over existing multiscale modeling frameworks. We

carried out more detailed simulations of molecular level protein dynamics and protien-protein

association, which we then utilized to constrain larger scale models of the sarcomere and cardiac

myocyte. We also incorporated cardiac energetics, and validated our model predictions with

experimental data on a specific cardiac therapeutic. Still, our multiscale modeling approach has

several limitations, and can be expanded in the future to improve computational predicitons and

allow for translation to other therapeutics, and closer translation to the clinic.

5.0.1 Limitations and Future Directions

One limitation of molecular modeling techniques including MD and BD is lack of

availability of atomically detailed structures, which is largely limited by computational power.

Still, advances in computing are allowing for increasingly advanced simulations. Our simulations

of myosin and actomyosin dynamics only included the myosin S1 head, but a complete model

of the cardiac thick and thin filaments including multiple myosin heads would improve the

accuracy of these simulations. Further, the BD simulations utilized in this work allow myosin to

freely diffuse and bind to actin; nucleotides and Ca2+ were also allowed to freely diffuse around

SERCA from any orientation. This could be improved by adding additional constraints on this

movement, or utilizing a spring to model the behavior of myosin as it binds to actin. Further,

more recent iterations of the BrownDye software allow for the addition of flexible regions within

the protein. This could improve our simulation accuracy, especially in the actin-binding region
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of myosin and the nucleotide and Ca2+ binding regions of SERCA. Finally, longer simulations,

ideally including more steps in the myosin and SERCA chemomechanical cycles, would allow

for better assessment of their dynamics in response to dATP binding. Implementing tools such

as SEEKR would also allow for better assessment of binding kinetics [215].

The sarcomere model we utilized could be improved by incorporating spatial data. The

sarcomere is divided into several zones (P, C, and D), each of which have varying ratios of

regulatory proteins. Further, recent single molecule imaging data showed that a greater proportion

of myosin heads were in the SRX state in the C zone compared to neighboring zones [161]. This

may lead to differential effects of modulators that affect the SRX state, like dATP, in different

areas of the sarcomere. Further, mutations that lead to the development of cardiomyopathies do

not always have the same degree of penetrance [110], leading to some myosin motors carrying

the mutation while others do not. This would be especially important in considering gene therapy

approaches such as TnC L48Q, where the penetrance of the gene therapy is also not always

100%. A more detailed spatially explicit sarcomere could incorporate this spatial imaging data

and more granular, patient specific mutation information, for instance using techniques employed

by Mijailovich et al. [132] in a recent study using a spatially explicit model to study varying

incorporation of the L48Q and I61Q TnC mutations on twitches.

In this work, we utilized models of both sarcomere mechanics and myocyte electro-

physiology, but did not assess the effects of dATP simultaneously on both myosin and SERCA

using a coupled excitation-contraction coupling model. In the future, such an approach may

provide useful insight into whether there is feedback between buffering of Ca2+ on the sarcomere,

crossbridge cycling, and Ca2+ transient dynamics [25]. Unpublished simulation results suggest

that this is not a major contributor to the effects of dATP on Ca2+ dynamics, but expanding our

analysis to include other ATPase pumps would allow us to further examine alternative mecha-

nisms by which dATP may enhance relaxation. Further, cardiac electrophysiology is affected by

heart failure, which was not accounted for in this study and would be important to incorporate

in the future [227], in addition to regulation by phosphorylation and other regulatory proteins.
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Additional experimental data where force and Ca2+ dynamics are measured simultaneously, as

well as additional cellular level data where dATP or other small molecules are applied in models

of heart failure would also allow for further model development.

We utilized a simplified model of ventricular geometry and hemodynamics in this study,

which was sufficient for model predictions of global ventricular function, including EF, CO, SV,

and LVDevP. However, to improve model predictions in the future, this modeling framework

could be extended to a finite element model. This would allow us to assess changes in regional

stresses and strains, as well as transmural heterogeneity, and to incorporate patient-specific

geometries. This would be especially important in treating heart failure post-myocardial in-

farction, where there are differences in regional mechanics due to fibrosis in the scar region

[192]. dATP has shown promise as a potential gene therapy approach, and transplantation of

human induced pluripotent stem cell-derived cardiomyocytes over-expressing R1R2 successfully

improved cardiac function in rat hearts [112]. This approach warrants further investigation in the

future, and knowledge of how placement of these stem cells interacts with regional mechanics

could be used to guide treatment strategies. These models can also be extended to account for

growth and remodeling over time, to make predictions about longer term clinical outcomes and

optimal timing of interventions including gene therapy and/or inotropic small molecules in terms

of preventing and/or reversing maladaptive remodeling. The modeling framework developed

recently by Sharifi et al. could be extended to achieve this [185].

Another limitation of this work is that it does not incorporate the spatially explicit,

stochastic sarcomere model in Chapter 1 in cell or organ level simulations. We instead chose

to utilize a more coarse-grained DAE-based sarcomere model for these simulations. Ideally,

we could incorporate a spatially explicit sarcomere model with mechanistic detail like the one

utilized in Chapter 1 into a finite element model, allowing us to assess the full mechanisms

of small molecule therapeutics like dATP at each spatial scale. However, this poses several

computational and numerical challenges. First, solving a stochastic model within an DAE, ODE,

or PDE modeling framework can be challenging numerically. There are techniques that can be
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utilized to accomplish this [236, 139], but computational expense is still often the limiting factor.

There are additional challenges and potential instabilities that arise when integrate DAEs at the

cellular level with PDEs in a finite element model of the ventricle. This has been approached

using techniques like operator splitting or updating [25]. Further, our spatially explicit model

would need to be adapted to allow for simulation of muscle shortening, rather than just isometric

twitch generation. This could be done using a framework similar to previous ODE sarcomere

models [174]. However, it is still important to assess exactly how much mechanistic detail is

needed at each scale to answer the questions posed by the study.

Finally, this modeling approach relies on optimization of several parameters. We tried

to limit the amount of optimization done, and primarily carried out optimization for fitting

to baseline experimental data. Further, we were interested in modeling a specific drug with

extensive existing experimental data. However, optimization approaches can still be prone to

error from local minima and overfitting. Uncertainty quantification techniques are one way

to avoid some of these challenges [3]. In general, machine learning techniques can provide

another way to avoid overfitting, quantify uncertainty, and expand this approach to assess new

mutations and potential small molecules or gene therapy approaches [5]. A recent study utilized

machine learning approaches to assess how shape features of a cardiac twitch relate to underlying

changes in rate constants, and how this relates to disease phenotype [6]. Further, artificial

intelligence has been successfully utilized for drug screening [154, 34]. As the field of artificial

intelligence continues to grow, it can provide a powerful tool for assessing new information on

novel mutations that lead to heart failure, and determining optimal treatment approaches.
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I. Milinković, M. Noutsias, A. Oto, O. Oto, S. U. Pavlović, M. F. Piepoli, A. D. Ristić,
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reversible markov models. J. Chem. Phys., 143(17):174101, 2015.

[212] T. Tsuji, F. del Monte, Y. Yoshikawa, T. Abe, J. Shimizu, C. Nakajima-Takenaka,
S. Taniguchi, R. J. Hajjar, and M. Takaki. Rescue of ca2+ overload-induced left ventriclur
dysfunction by targeted ablation of phospholamban. Am. J. Physiol. Heart Circ. Physiol.,
296(2):H310–H317, 2009.

[213] G. Van Rossum and F. L. Drake. Python 3 Reference Manual. CreateSpace, Scotts Valley,
CA, 2009.

[214] J. von der Ecken, M. Müller, W. Lehman, D. J. Manstein, P. A. Penczek, and S. Raunser.
Structure of the f-actin–tropomyosin complex. Nature, 519(7541):114–117, 2015.

[215] L. W. Votapka, B. R. Jagger, A. L. Heyneman, and R. E. Amaro. Seekr: Simulation
enabled estimation of kinetic rates, a computational tool to estimate molecular kinetics
and its application to trypsin-benzamidine binding. J. Phys. Chem. B, 121(15):3597–3606,
2018.

[216] J. Walklate, K. Kao, M. Regnier, and M. A. Geeves. Exploring the super-relaxed state of
myosin in myofibrils from fast-twitch, slow-twitch, and cardiac muscle. J. Biol. Chem.,
298(3):101640, 2022.

[217] D. Wang, I. M. Robertson, M. X. Li, M. E. McCully, M. L. Crane, Z. Luo, A. Tu,
V. Daggett, B. D. Sykes, and M. Regnier. Structural and functional consequences of
the cardiac troponin c l48q ca2+-sensitizing mutation. Biochemistry, 51(22):4473–4487,
2012.

120



[218] J. Wang, P. R. Arantes, A. Bhattarai, R. V. Hsu, S. Pawnikar, Y. M. Huang, G. Palermo, and
Y. Miao. Gaussian accelerated molecular dynamics (gamd): principles and applications.
Wiley Interdiscip. Rev. Comput. Mol. Sci., 11(5):e1521, 2021.

[219] J. Wang, W. Wang, P. A. Kollman, and D. A. Case. Automatic atom type and bond type
perception in molecular mechanical calculations. J. Mol. Graph. Model., 25(2):247–260,
2006.

[220] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case. Development and
testing of a general amber force field. J. Comput. Chem., 25(9):1157–1174, 2004.

[221] B. Webb and A. Sali. Comparative protein structure modeling using modeller. Curr.
Protoc. Protein Sci., 86(2.9.1–2.9.37), 2016.

[222] H. D. White and E. W. Taylor. Energetics and mechanism of actomyosin adenosine
triphosphatase. Biochemistry, 15(26):5818–5826, 1976.

[223] C. D. Williams, M. K. Salcedo, T. C. Irving, M. Regnier, and T. L. Daniel. The
length–tension curve in muscle depends on lattice spacing. Proc. Royal Soc. B,
280(1766):20130697, 2013.

[224] M. R. Williams, S. J. Lehman, J. C. Tardiff, and S. D. Schwartz. Atomic resolution probe
for allostery in the regulatory thin filament. Proc. Natl. Acad. Sci. USA, 113(12):3257–62,
2016.

[225] M. R. Williams, J. C. Tardiff, and S. D. Schwartz. Mechanism of cardiac tropomyosin
transitions on filamentous actin as revealed by all-atom steered molecular dynamics
simulations. J. Phys. Chem. Lett., 9(12):3301–3306, 2018.

[226] D. A. Winkelmann, E. Forgacs, M. T. Miller, and A. M. Stock. Structural basis for
drug-induced allosteric changes to human -cardiac myosin motor activity. Nat. Commun.,
6:7974, 2015.

[227] R. L. Winslow, J. Rice, S. Jafri, E. Marbán, and B. O’Rourke. Mechanisms of altered
excitation-contraction coupling in canine tachycardia-induced heart failure, ii: model
studies. Circ. Res., 84(5):571–586, 1999.

[228] C. M. Witzenburg and J. W. Holmes. Predicting the time course of ventricular dilation and
thickening using a rapid compartmental model. J. Cardiovasc. Transl. Res., 11(2):109–122,
2018.

[229] F. Wu, E. Y. Zhang, J. Zhang, R. J. Bache, and D. A. Beard. Phosphate metabolite
concentrations and atp hydrolysis potential in normal and ischaemic hearts. J. Physiol.,
586(Pt 17):4193–4208, 2008.

[230] C. Xi, G. S. Kassab, and L. C. Lee. Microstructure-based finite element model of left
ventricle passive inflation. Acta Biomater., 90:241–253, 2019.

121



[231] X. Zhang, Z. Liu, K. S. Campbell, and J. F. Wenk. Evaluation of a novel finite element
model of active contraction in the heart. Front. Physiol., 9:425, 2018.

[232] Y. Zhang, V. H. Barocas, S. A. Berceli, C. E. Clancy, D. M. Eckmann, M. Garbey, G. S.
Kassab, D. R. Lochner, A. D. McCulloch, R. Tran-Son-Tay, and N. A Trayanova. Multi-
scale modeling of the cardiovascular system: disease development, progression, and
clinical intervention. Ann. Biomed. Eng., 44(9):2642–2660, 2016.

[233] Y. Zhang, X. Liang, J. Ma, Y. Jing, M. J. Gonzales, C. Villongco, A. Krishnamurthy, L. R.
Frank, V. Nigam, P. Stark, S. M. Narayan, and A. D. McCulloch. An atlas-based geometry
pipeline for cardiac hermite model construction and diffusion tensor reorientation. Med.
Image Anal., 16(6):1130–1141, 2012.

[234] Z. Zhang, D. Lewis, C. Strock, G. Inesi, M. Nakasako, H. Nomura, and C. Toyoshima.
Detailed characterization of the cooperative mechanism of ca2+ binding and catalytic
activation in the ca2+ transport (serca) atpase. Biochemistry, 39:8758–8767, 2000.

[235] L. Zhihao, N. Jingyu, L. Lan, S. Michael, G. Rui, B. Xiyun, L. Xiaozhi, and F. Guanwei.
Serca2a: a key protein in the ca2+ cycle of the heart failure. Heart Fail. Rev., 25(3):523–
535, 2020.

[236] B. Øksendal. Stochastic Differential Equations. Springer Berlin, Heidelberg, 2003.

122


	Dissertation Approval Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Heart Failure: A Major Healthcare Challenge
	Heart Failure with Reduced Ejection Fraction
	Genetic Underpinnings of Dilated Cardiomyopathy
	Current Treatment Approaches

	2-deoxy-ATP as a Potential Heart Failure Therapeutic
	Multiscale Computational Modeling
	Modeling at the Molecular Level
	Modeling at the Sarcomere Level
	Modeling at the Cellular Level
	Modeling at the Whole Heart Level
	Integrating Spatial and Temporal Scales


	Modeling the Effects of dATP on Myosin and the Sarcomere
	Abstract
	Introduction
	Methods
	Molecular Dynamics Simulations of ADP.Pi-Myosin and dADP.Pi-Myosin
	Markov State Model Construction
	Brownian Dynamics Simulations of Actomyosin Association
	Spatially Explicit Sarcomere Model

	Results
	dADP Stabilizes Pre-Powerstroke Myosin, Increasing its Affinity for Actin
	Increased Force-Dependent Recruitment of Myosin and Nearest-Neighbor Cooperativity Explain Significantly Increased Steady State Tension Development with Low Fractions of dATP

	Discussion and Conclusions
	Acknowledgements

	Multiscale Modeling Shows How 2'-deoxy-ATP Rescues Ventricular Function in Heart Failure
	Abstract
	Introduction
	Methods
	Myocyte Mechanics Model
	Crossbridge Energetics and Mitochondrial Metabolism Model
	Ventricular Mechanics and Hemodynamics Model

	Results
	Increased Myosin Recruitment, Crossbridge Binding and Cycling, and Calcium Sequestering Dynamics are Needed to Explain Improvements in Myocyte Contractility and Lusitropy with Elevated dATP
	Increased Myosin Recruitment, Crossbridge Binding and Cycling, and Calcium Sequestering Dynamics with Elevated dATP Contribute to Improved Ventricular Mechanoenergetics
	Elevated dATP Improves Ventricular Function in the Failing Heart in Part Due to Improved Energetic Efficiency

	Discussion and Conclusions
	Acknowledgements

	Multiscale Computational Modeling of the Effects of 2'-deoxy-ATP on Cardiac Muscle Calcium Handling
	Abstract
	Introduction
	Methods
	Gaussian Accelerated Molecular Dynamics
	Brownian Dynamics
	Calcium Transient Modeling

	Results
	dATP is More Stable in the Nucleotide Binding Pocket, Facilitating E1-ATP to E1-ADP Transition via Enhanced Phosphorylation and Movement of Cytosolic Domains
	dATP Binding to SERCA Leads to Opening of Calcium Binding Path
	dATP Increases Rates of Nucleotide and Calcium Association to SERCA Compared with ATP
	Enhanced Calcium Binding to dATP-bound SERCA Accelerates Myocyte Calcium Transient Decay

	Discussion and Conclusions
	Acknowledgements

	Applications of Multiscale Modeling Framework for In Silico Development of Novel Heart Failure Treatments
	Abstract
	Introduction
	Methods
	Calculation of TIs
	Computational Simulations of Cardiac Twitches

	Results
	Increasing Calcium Sensitivity Increases the TI of Cardiomyocytes with D230N-Tm to a Greater Extent Than Increasing the Crossbridge Binding Rate
	Increasing Calcium Sensitivity Using the cTnC L48Q Mutation Successfully Augments Twitch Tension-Time Integrals of D230N-Tm Hearts

	Discussion and Conclusions
	Acknowledgements

	Conclusions
	Limitations and Future Directions

	Bibliography

