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ABSTRACT OF THE DISSERTATION

Conditional Distribution Function Estimation Using Neural Networks

By

Bingqing Hu

Doctor of Philosophy in Statistics

University of California, Irvine, 2024

Professor Bin Nan, Chair

This dissertation presents novel neural network-based methods for estimating conditional

distribution functions across diverse settings. We introduce a robust approach for survival

analysis with right-censored and time-varying covariates, estimating the conditional hazard

function and deriving the conditional survival function. This method outperforms traditional

Cox proportional hazards models and recent neural network models in both simulated and

real-world data scenarios. Expanding the methodology to uncensored data, we propose a

unified approach for estimating conditional distribution functions for continuous responses

with multiple covariates. Our method shows improved robustness, accuracy, and compu-

tational efficiency compared to kernel-based and mean regression neural network methods.

Further, we address limitations of traditional models by using DeepONet to capture complex,

long-term effects of covariates on hazard functions, demonstrating enhanced flexibility and

adaptability. We also develop a deep operator neural network framework for functional data

analysis, where covariates are functions, paving the way for advanced analysis of complex

data structures.

x



Chapter 1

Introduction

Estimating a conditional distribution function given covariates is of great interest in many

fields such as medicine, finance, and engineering. Accurate estimation of these functions

allows researchers and practitioners to make informed decisions and predictions based on

the relationships between variables. Neural networks have traditionally been employed in

classification tasks and conditional mean estimation due to their flexibility and capacity

to model complex, non-linear relationships. In this dissertation, we extend the application

of neural networks to the estimation of conditional distribution functions given multiple,

different types of covariates.

In Chapter 2, we address the survival analysis problem with right-censored data and time-

varying covariates. Survival analysis often involves incomplete data due to censoring, which

presents unique challenges. We propose a novel method using neural networks to estimate

the instantaneous conditional hazard function. From this, we derive the conditional survival

function, providing a comprehensive framework for handling censored data. We demonstrate

the effectiveness of our method through simulations and applications to real-world datasets,

showing superior performance compared to the traditional Cox-PH model and the latest
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neural network models.

Chapter 3 extends the methodology to uncensored data. Here, we adapt the neural network-

based approach to estimate the conditional distribution function for continuous response

variables with multiple covariates. This chapter bridges the gap between survival analysis and

general regression problems, offering a unified approach to estimate conditional distributions.

We compare our method against kernel-based approaches and mean regression neural nets,

showcase its advantages in terms of robustness.

In Chapter 4, we expand our survival analysis framework to accommodate arbitrary effects

of covariates. Traditional survival models often assume instantaneous effect of covariates on

hazard function, which can be restrictive. Our approach leverages the flexibility of neural

networks to capture complex, long term effect of covariates on hazard. We introduce the

use of deep operator neural network, a deep learning architecture designed for operator

learning, to model these arbitrary effects. Through simulations, we validate the robustness

and adaptability of our method.

Chapter 5 further extends our approach to the realm of functional data analysis. Func-

tional data, where covariates are functions rather than scalar or vectors, pose significant

challenges for traditional statistical methods. We develop a deep operator network frame-

work to estimate conditional distribution functions of both continuous and discrete outcome

given functional covariates. This innovative approach opens new avenues for analyzing com-

plex data structures in various applications. We demonstrate our method through both

simulations and real-world datasets.

Overall, this dissertation provides a comprehensive exploration of neural network-based

methods for estimating conditional distribution functions in diverse settings. By addressing

both censored and uncensored data, incorporating arbitrary covariate effects, and extending

to functional data analysis, we offer a versatile toolkit for researchers and practitioners.

2



Our main contribution is the development of an approach that can effectively handle high-

dimensional covariates and incorporate censored data. Our method is the most robust non-

parametric approach with least assumptions. While it may be less efficient compared to

the machine learning and deep learning methods when their model assumptions hold, our

approach remains consistently valid regardless of the data distribution, ensuring broad ap-

plicability and reliability. The methods developed herein have the potential to significantly

impact various applied fields.
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Chapter 2

Conditional Survival Function

Estimation Using Neural Networks

for Right Censored Data with

Time-Varying Covariates

2.1 Introduction

Neural networks are widely used in prediction. Depending on the nature of the outcome (or

response) variable of interest, most of the current work falls into two categories: classification

for a categorical outcome variable and mean prediction for a continuous outcome variable.

For the classification problem, one approach is to estimate the conditional distribution func-

tion of a categorical response variable given a set of predictors, also called covariates, then

to classify a new data point into one of the categories of the response variable based on the

estimated predicting probabilities given the new covariate values. A typical example is to

4



use the logistic model for predicting a binary outcome. For a continuous response variable,

however, the focus has been primarily on the center of its conditional distribution function

which is used to predict a new data point. In fact, estimating the conditional distribu-

tion function of a continuous response variable nonparametrically is of greater interest [24].

It is a challenge, however, to estimate the conditional distribution function given multiple

continuous covariates [25]. Nevertheless, with continuous predictors, the conditional distri-

bution can provide a richer characterization of the relationship between the predictors and

the response and allows for the construction of prediction intervals [24]. We propose to es-

timate the conditional distribution function of a continuous random variable given multiple

covariates using neural networks.

Our work is inspired by the estimation of the conditional survival function for censored failure

time data with time-dependent covariates. In the survival analysis literature, a conditional

survival function is usually estimated by fitting the semiparametric Cox proportional haz-

ards model [13]. Although it has been widely used, particularly in health studies, the Cox

model requires strong modeling assumptions that can be violated in practice. To alleviate

the modeling assumptions, kernel smoothing methods have been applied for estimating the

hazard function [55, 53]. In [55], for example, a nonparametric estimator for the conditional

hazard function is obtained by taking a ratio of the local linear estimators for the conditional

density and the survival function. For multi-dimensional covariates, however, kernel smooth-

ing methods suffer poor accuracy, reflected in slow convergence rates [25]. Researchers have

been exploring the application of neural networks in survival analysis since the 1990s. One

line of research uses neural networks to replace the linear component in a Cox model and

the negative (logarithm of) partial likelihood as the loss function, see e.g., [16] and [64].

Recently, [33] revisited the Cox model and applied modern deep learning techniques (stan-

dardizing the input, using new activation functions, new optimizers and learning rate schedul-

ing) to improve training. Their neural network model, called DeepSurv, outperforms Cox

5



regressions evaluated via the C-index [26] on several real data sets. In simulation studies,

DeepSurv outperforms Cox regression when the proportional hazards assumption is violated

and the two methods perform similarly when the proportional hazards assumption is satis-

fied.

Following a similar modeling strategy, [11] developed the neural network model Cox-nnet

for high-dimensional genetics data. Building upon the methodology of nested case-control

studies, [40] proposed to use a loss function that modifies the partial likelihood by sub-

sampling the risk sets. Their neural network models, Cox-MLP(CC) and Cox-Time, are

computationally efficient and scale well to large data sets. Both models are relative risk

models with the same modified partial likelihood but Cox-Time further removes the propor-

tionality constraint by including time as a covariate in the relative hazard. Cox-MLP(CC)

and Cox-Time were compared to the classical Cox regression, DeepSurv and a few other

models on five real-world data sets and found to be highly competitive. We will compare

our method to Cox-MLP(CC) and Cox-Time on four of these data sets (those in which the

the number of tied survival times are negligible). In all of the aforementioned methods, the

semi-parametric nature of the model is retained, hence the baseline hazard function needs

to be estimated in order to estimate the conditional survival function, whereas our method

estimates the conditional hazard function directly without specifying any baseline hazard

function.

Another commonly used approach is to partition the time axis into a set of fixed intervals so

that the survival probabilities are estimated on the set of discrete time points (discrete-time

methods). [4] proposed a model called PLANN in which the neural networks contain a input

vector of covariates and a discrete time point, and an output of the hazard rate at this

time point. They used the negative logarithm of a Bernoulli likelihood as the loss function.

[56] proposed a model that outputs a vector with each element representing the survival

probability at a predefined time point, and used a modified relative entropy error [54] as the

6



loss function. [6] also discretized the time, but used an ad hoc loss function that is the sum

of squared errors, where for each subject at each time interval, the error is the difference

between 1 (if a failure is observed in the interval) or 0 (otherwise) and the corresponding

hazard component. More recent work includes Nnet-survival [18] and RNN-SURV [19]. Both

models require fixed and evenly partitioned time intervals, where Nnet-survival includes

a convolutional neural network structure (CNN) and RNN-SURV uses a recurrent neural

network structure (RNN). They all use Bernoulli type loss functions with differently created

binary variables, where RNN-SURV adds an upper bound of the negative C-index into the

loss function.

There are also deep learning methods based on parametric models. They try to estimate

the parameters in mixture parametric distributions (Weibull, log-normal, etc.) [2] [3] [46]

[45]. A comprehensive systematic review of deep learning based survival methods can be

found in [63]. There are several limitations in the current literature of survival analysis using

neural networks. Cox-based neural network models are relative risk models with baseline

hazards, which retain certain model structure, and the networks only output the relative

risks. Parametric models have more specific model assumptions. Discrete-time methods and

some of the latest cox-based methods such as [47] use loss functions that are constructed by

heuristic criteria other than the true likelihood function. Moreover, most of these methods

only deal with time-independent covariates.

To overcome these limitations, we propose a new method to estimate the conditional haz-

ard function directly using neural networks. In particular, inspired by the standard data-

expansion approach for the Cox regression with time-varying covariates, we input time-

varying covariates together with observed time points into a simple feed-forward network

and output the logarithm of instantaneous hazard. We build the loss function from the loga-

rithm of the full likelihood function, in which all functions, including the conditional hazard

function, the conditional cumulative hazard function, and covariate processes, are evaluated

7



only at the observed time points. Compared to existing methods, our new method has a

number of advantages. First, we can handle time-varying covariates. Second, we make the

least number of assumptions that only include conditional independent censoring and that

the instantaneous hazard given entire covariate paths only depends on values of covariates

observed at the current time. Third, estimating the (logarithm of) hazard function without

imposing any constraints to the optimization automatically leads to a valid survival function

estimator that is always monotone decreasing and bounded between 0 and 1. Furthermore,

because our loss function does not need to identify the risk set, scalable methods (e.g., train-

ing with batches in stochastic gradient descent) can be easily implemented to avoid blowing

up the computer memory.

2.2 The Estimating Method Using Neural Networks

In this section, we start with the likelihood-based loss function for estimating the conditional

survival function given a set of time-varying covariates and then provide an estimating pro-

cedure using neural networks.

2.2.1 Data and Notation

For subject i, we denote the time-varying covariate vector as Xi(t), the underlying failure

time as Ti, and the underlying censoring time as Ci, where Ti possesses a Lebesgue density.

Let the observed time be Yi = min{Ti, Ci} and the failure indicator be ∆i = I(Ti ≤ Ci).

We have n independent and identically distributed (i.i.d.) observations {Yi,∆i, X̃i(·) : i =

1, . . . , n}, where X̃i(t) denotes the covariate history up to time t, that is, X̃i(t) = {Xi(s), 0 ≤

s ≤ t}. We assume each of the processes Xi(t) has left continuous sample path with right

limit. Let f(t|X̃i(∞)) be the conditional Lebesgue density function of Ti, fC(t|X̃i(∞)) be

8



the conditional density function of Ci, S(t|X̃i(∞)) be the conditional survival function of Ti,

and SC(t|X̃i(∞)) be the conditional survival function of Ci.

Noting that the conditional survival probability given time-varying covariate is not well-

defined if there is an internal covariate, we assume that all covariates are external [32].

Specifically, the conditional hazard function of Ti is independent of future covariate values

and, furthermore, only depends on the current values of covariate processes:

λ
[
t
∣∣∣X̃i(∞)

]
= λ

[
t
∣∣∣X̃i(t)

]
= λ [t |Xi(t) ] . (2.1)

Let h(t,Xi(t)) = log λ(t|Xi(t)). Then the conditional cumulative hazard function given

covariate history has the following form:

Λ
[
t
∣∣∣X̃i(∞)

]
= Λ

[
t
∣∣∣X̃i(t)

]
=

∫ t

0

λ
[
s
∣∣∣X̃i(s)

]
ds =

∫ t

0

eh[s,Xi(s)]ds,

and the conditional survival function is given by

S
[
t
∣∣∣X̃i(∞)

]
= S

[
t
∣∣∣X̃i(t)

]
= exp

{
−Λ

[
t
∣∣∣X̃i(t)

]}
= exp

{
−
∫ t

0

eh[s,Xi(s)]ds

}
. (2.2)

Using h instead of λ in the above expression removes the positivity constraint for λ, hence

simplifies the optimization algorithm for estimating the conditional survival function (2.2).

Furthermore, equation (2.2) is always a valid survival function for any function h.
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i start time stop time δij covariates
1 t0 = 0 t1 0 x1(t1)
1 t1 t2 0 x1(t2)
...

...
...

...
...

1 · · · y1 δ1 x1(y1)
2 t0 = 0 t1 0 x2(t1)
2 t1 t2 0 x2(t2)
...

...
...

...
...

2 · · · y2 δ2 x2(y2)
...

...
...

...
...

Table 2.1: The expanded data set for survival problem with time varying covariate, where
(t1, . . . , tn) are sorted values of (y1, . . . , yn) from the training set.

2.2.2 Likelihood

Assume censoring time is independent of failure time given covariates. Then given observed

data {yi, δi, xi(·)}, i = 1, . . . , n, the full likelihood function becomes

Ln =
n∏

i=1

{f [yi|x̃i(yi)]SC [yi|x̃i(yi)]}δi {fC [yi|x̃i(yi)]S[yi|x̃i(yi)]}1−δi

∝
n∏

i=1

λ[yi|xi(yi)]
δiS[yi|x̃i(yi)]

=
n∏

i=1

exp{h[yi, xi(yi)]δi} exp
{
−
∫ yi

0

eh[t,xi(t)]dt

}
.

Thus, the log likelihood is given by

ℓn =
n∑

i=1

{
h[yi, xi(yi)]δi −

∫ yi

0

eh[t,xi(t)]dt

}
. (2.3)
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2.2.3 Data Structure and Discretized Loss

When fitting the Cox model with time-varying covariates, the data set is usually expanded

to the structure given in Table 2.1 so each row is treated as an individual observation, where

(t1, . . . , tn) are sorted values of observed times (y1, . . . , yn) and δij = δiI(tj = yi). Specifically,

the time axis is partitioned naturally by observed times. The same data structure can be

applied to maximizing the log likelihood function (2.3) at the grid points (t1, . . . , tn), or

equivalently, minimizing the following loss function:

loss(h) =
1

n

n∑
i=1

n∑
j=1

I(tj ≤ yi)
{
eh[tj ,xi(tj)](tj − tj−1)− h[tj, xi(tj)]δij

}
, (2.4)

where t0 = 0. It becomes clear that the expanded data set in Table 2.1 provides a natu-

ral way of implementing numerical integration in the negative log likelihood −n−1ℓn based

on empirical data. Once an estimator of h is obtained using neural networks (see Subsec-

tion 2.2.4 for details), the conditional survival function can be estimated by plugging the

estimated h into Equation 2.2.

2.2.4 Neural Networks, Hyperparameters and Regularization

We propose to estimate the arbitrary function h(t, xi(t)) by minimizing the respective loss

function (2.4) using neural networks. We then obtain the estimated conditional survival

curve from Equation (2.2). The input of neural networks is (tj−1, tj, xi(tj)) in each row of

Table 2.1, and the output is ĥ(t, xi(t)).

We use tensorflow.keras [12] to build and train the neural networks. The network structure

is a fully connected feed forward neural network with two hidden layers and a single output

value. The input layer consists of tj−1, tj, and covariates. An intercept term is included in

each layer (see Figure 2.1). The relu function is used as the activation function between input

11



Figure 2.1: An example of fully connected feed forward neural network with 2 hidden layers.
In this example, the input dimension is 4 plus an intercept term, each hidden layer contains
10 nodes plus an intercept node and the output is a single value.

12



and hidden layers, and the linear function is used for the output so that the output value

is not constrained. We use Adam [34] as the optimizer. Other hyperparameters include

the number of nodes in each layer, the batch size and the initial learning rate. In our

simulations, the number of nodes in each hidden layer is 64, the batch size is 100, and the

initial learning rate is 0.001. To have a fair comparison in real-world data examples, we tune

the hyperparameters from the set of all combined values with the number of nodes in each

hidden layer taken from {64, 128, 256}, the initial learning rate from {0.1, 0.01, 0.001, 0.0001},

and the batch size from {64, 128, 256}.

We use early stopping to avoid over-fitting. According to [20], early stopping has the ad-

vantage over explicit regularization methods in that it automatically determines the correct

amount of regularization. Specifically, we randomly split the original data into training set

and validation set with 1:1 proportion. When the validation loss is no longer decreasing in

10 consecutive steps, we stop the training. To fully use the data, we fit the neural networks

again by swapping the training and the validation sets, then average both outputs as the

final result.

2.3 Simulations

For censored survival data with time-varying covariates, we compare our method of using

neural networks to the partial likelihood method for the Cox model under two different

setups. In the first setup, we generate data following the proportional hazards assumption

in which case the Cox model is the gold standard. In the second setup, we generate data from

the model with a quadratic term and an interaction term in the log relative hazard function

so the Cox model with original covariates as linear predictors is misspecified. Details are

given below.

13



1. In both setups, we use the hazard function of a scaled beta distribution as the baseline

hazard:

λ0(t) =
f0(t/τ)

1− F0(t/τ)
,

where f0(.) and F0(.) are the density and the distribution functions of Beta (8, 1),

respectively. We use τ = 100 so that t ∈ [0, 100].

2. Generate time-varying covariates on a fine grid of [0, τ ]. For t ∈ {0,∆s, 2∆s, ...., τ}

with ∆s = 0.01, i ∈ {1, 2, ..., n}, we generate random variables αi1, . . . , αi5 indepen-

dently from a Uniform (0, 1) distribution, and qi independently from a Uniform (0, τ)

distribution, and construct two time-varying covariates as follows:

x1i(t) = αi1 + αi2 sin(2πt/τ) + αi3 cos(2πt/τ) + αi4 sin(4πt/τ) + αi5 cos(4πt/τ),

x2i(t) =


0, if t ≤ qi;

1, if t > qi.

The sample paths of both covariates are left-continuous step functions with right limit.

We also generate three time-independent covariates:

x3i ∼ Bernoulli (0.6),

x4i ∼ Poisson (2), truncated at 5,

x5i ∼ Beta (2, 5).

3. In Setup 1, the conditional hazard function is

λ[t|xi(t)] = λ0(t)e
2x1i(t)+2x2i(t)+2x3i+2x4i+2x5i , (2.5)
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and in Setup 2,

λ[t|xi(t)] = λ0(t)e
2x1i(t)

2+2x2i(t)+2x3ix4i+2x5i . (2.6)

Clearly, fitting the Cox model λ[t|xi(t)] = λ0(t) exp{β1x1i(t)+β2x2i(t)+β3x3i+β4x4i+

β5x5i} with data generated from (2.6) in Setup 2 will not yield desirable results.

4. Once covariates are generated, we numerically evaluate the conditional cumulative

hazard function and the conditional survival function on the fine grid of survival time.

Specifically, for s ∈ {0,∆s, 2∆s, . . . , τ},

Λ[t|x̃i(t)] = ∆s
∑
s≤t

λi[s|xi(s)],

S[t|x̃i(t)] = exp {−Λi[t|x̃i(t)]} .

5. For i ∈ {1, 2, ..., n}, we generate random variable ui from a Uniform (0, 1) distribution,

then obtain the failure time by ti = sup {t : Si[t|x̃i(t)] ≥ ui}.

6. We generate the censoring time ci from an exponential distribution. Then we have

yi = ti∧ ci and δi = I(ti ≤ ci). The parameter of the exponential distribution is chosen

to yield a censoring rate around 20% in setup (2.5), and about 50% in setup (2.6).

For each simulation setup, we independently generate a training set and a validation set with

equal sample size, then fit our model using neural networks. We refit the model by swapping

training and validation sets, and take the average as our estimator. For the Cox regression,

we maximize the partial likelihood using all data. We repeat the process for N independent

data sets, and calculate the average and sample variance of these N estimates at each time

point on the fine grid for another set of randomly generated covariates. Finally, we plot the

sample average of conditional survival curves estimated by neural networks together with
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the empirical confidence band, the average conditional survival curves estimated from the

Cox regression, and the true conditional survival curve for a comparison.

The simulation results illustrated in both Figure 2.2 and Figure 2.3 are based on a sample

size of n = 3000 (1500 for training and 1500 for validation) with 100 repetitions, where the

curves for 9 different sets of covariates are presented. The green dashed line is the average

estimated curve by using the partial likelihood method, the orange dash-dot line is the

average estimated curve by our proposed neural networks method, and the black solid line is

the truth curve. The dotted orange curves are the 90% confidence band obtained from the

100 repeated simulation runs using the proposed method. From Figure 2.2 we see that when

the Cox model is correctly specified, both the partial likelihood method and our proposed

neural networks method perform well, with estimated survival curves nicely overlapping with

the corresponding true curves. When the Cox model is misspecified, Figure 2.3 shows that

the partial likelihood approach yields severe biases, whereas the proposed neural network

method still works well with a similar performance to that in Setup 1 shown in Figure 2.2

even with a higher censoring rate.

2.4 Real-World Data Sets

There are five real-world data sets analyzed by [40]. We re-analyze all these data sets using

our method and compare with [40], except one data set that contains too many ties for

which a discrete survival model would be more appropriate. Theses four data sets are: the

Study to Understand Prognoses Preferences Outcomes and Risks of Treatment (SUPPORT),

the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC), the

Rotterdam tumor bank and German Breast Cancer Study Group (Rot.& GBSG), and the

Assay Of Serum Free Light Chain (FLCHAIN).
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Figure 2.2: Conditional survival curves for 9 different sets of covariates when the Cox model
is corrected specified (censoring rate around 20%).
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Figure 2.3: Conditional survival curves for 9 different sets of covariates when the Cox pro-
portional hazards assumption is violated (censoring rate around 50%).
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The first three data sets are introduced and preprocessed by [33]. The fourth data set is

from the survival package of R ([58]) and preprocessed by [40]. These four data sets have

sample sizes of a few thousand and the covariate numbers range from 7 to 14. The covariates

in these data sets are all time-independent.

To compare with their method, we use the same 5-fold cross-validated evaluation criteria

described in [40], including concordance index (C-index), integrated Brier score (IBS) and

integrated binomial log-likelihood (IBLL). The time-dependent C-index [1] estimates the

probability that the predicted survival times of two comparable individuals have the same

ordering as their true survival times,

C-index = P [Ŝ(Ti|xi) < Ŝ(Ti|xj)|Ti < Tj,∆i = 1].

The generalized Brier score [22] can be interpreted as the mean squared error of the prob-

ability estimates. To account for censoring, the scores are weighted by inverse censoring

survival probability. In particular, for a fixed time t,

BS(t) =
1

n

n∑
i=1

 Ŝ(t|xi)
2I(Yi ≤ t,∆i = 1)

Ĝ(Yi)
+

[
1− Ŝ(t|xi)

]2
I(Yi > t)

Ĝ(t)

 .

where Ĝ(t) is the Kaplan-Meier estimate of the censoring time survival function. The bino-

mial log-likelihood is similar to the Brier score,

BLL(t) =
1

n

n∑
i=1

 log
[
1− Ŝ(t|xi)

]
I(Yi ≤ t,∆i = 1)

Ĝ(Yi)
+

log
[
Ŝ(t|xi)

]
I(Yi > t)

Ĝ(t)

 .

The integrated Brier score IBS and the integrated binomial log-likelihood score IBLL are

calculated by numerical integration over the time duration of the test set.

The results of our method are summarized in Table 2.2, together with the results of [40] for
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C-Index IBS IBLL
a b c a b c a b c

SUPPORT 0.613 0.629 0.609 0.213 0.212 0.195∗∗ -0.615 -0.613 -0.574∗∗

METABRIC 0.643 0.662 0.652∗ 0.174 0.172 0.166∗∗ -0.515 -0.511 -0.496∗∗

Rot.&GBSG 0.669 0.677 0.680∗∗ 0.171 0.169 0.176 -0.509 -0.502 -0.524
FLCHAIN 0.793 0.790 0.788 0.093 0.102 0.102∗ -0.314 -0.432 -0.336∗

Table 2.2: Comparisons of different methods (a: Cox-MLP (CC); b: Cox-Time; c: our
new method) for analyzing four real data sets. The result of our method is marked with
** when it outperforms both Cox-MLP(CC) and Cox-Time, and is marked with * when it
outperforms one of the models.

a comparison. For SUPPORT and METABRIC data, our model yields the best integrated

brier score and integrated binomial log-likelihood.

For Rot.&GBSG data, our model has the best C-index. The other results are comparable to

that from the [40]. Note that in the 5-fold cross validation procedure, we use the set-aside

data only as the test set for evaluation of the criteria and the rest of the data for training

and validation of the neural networks, whereas [40] use the set-aside data as both the test

set and the validation set which would lead to more favorable evaluations.
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Chapter 3

Conditional Distribution Function

Estimation Using Neural Networks

for Continuous Response with

Multiple Covariates

3.1 Introduction

In Chapter 2, we discuss the method of using neural network to estimate the conditional

hazard function for censored survival data. We can see that an estimator of the conditional

hazard function yields an estimator of the conditional survival function, hence equivalently

the conditional distribution function, on the support of censored survival time given co-

variates. When there is no censoring, the problem naturally reduces to a general regression

analysis, where the conditional distribution function is of interest. With slight modifications,

our method for censored survival data can be adapted to uncensored data in a straightfor-
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ward way. This expands the scope of the current literature on neural networks that primarily

focuses on certain characteristic of the conditional distribution, for example, the conditional

mean that corresponds to the mean regression. Once we obtain an estimator of the condi-

tional distribution function, we can easily calculate the conditional mean given covariates,

which provides a robust alternative approach to the mean regression using the L2 loss. Note

that the mean regression requires a basic assumption that the error term is uncorrelated with

any of the covariates, which can be easily violated if some important covariate is unknown

or unmeasured and correlated with some measured covariate. Our likelihood estimating

approach, however, does not need such an assumption.

3.2 The Generalized Estimating Method

If there is no censoring, then δi = 1 for all i ∈ {1, . . . , n} in the log likelihood function (2.3).

Now consider an arbitrary continuous response variable Y ∈ (−∞,∞) that is no longer

“time.” Note that the time variable T ∈ [0,∞). We are interested in estimating F (y|x), the

conditional distribution function of Y given covariates X = x, where X is a random vector.

Since there is no time component, covariates are no longer “time-varying.”

Assume {Yi, Xi}, i = 1, . . . , n, are i.i.d. Denote the observed data as {yi, xi}, i = 1, . . . , n.

We generalize the idea of using hazard function in survival analysis to estimate F (y|x) for an

arbitrary continuous random variable Y . Again, let λ(t|xi) = eh(t,xi). Then the conditional

cumulative hazard function becomes

Λ(t|xi) =

∫ t

−∞
λ(s|xi)ds =

∫ t

−∞
eh(s,xi)ds,
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i start stop δij covariates
1 t0 = −∞ t1 0 x1

1 t1 t2 0 x1
...

...
...

...
...

1 ... y1 1 x1

2 t0 = −∞ t1 0 x2

2 t1 t2 0 x2
...

...
...

...
...

2 ... y2 1 x2
...

...
...

...
...

Table 3.1: The expanded data set for estimating the conditional distribution function of
a continuous response variable, where (t1, . . . , tn) are sorted values of (y1, . . . , yn) from the
training set.

which gives the conditional distribution function

F (t|xi) = 1− exp [−Λ(t|xi)] . (3.1)

Hence, the log likelihood function is given by

ℓn =
n∑

i=1

[
h(yi, xi)−

∫ yi

−∞
eh(t,xi)dt

]
. (3.2)

Note that the above log likelihood has the same form as (2.3) except that the covariates

are not time-varying, δi = 1 for all i, and integrals start from −∞. As a way of evaluating

integrals in the log likelihood, the expanded data structure in Table 2.1 can be useful in

estimating h(y, x) with slight modifications given in Table 3.1.

To be numerically tractable, we assign 1/n to be the value of the distribution function at t1,

in other words, we make F (t1|xi) = 1/n, which is the empirical probability measure of Y at

t1. Thus Λ(t1|xi) = − log(1− 1/n). Letting δij = I(tj = yi) and evaluating the integrals in

(3.2) on grid points (t1, . . . , tn) that are sorted values of (y1, . . . , yn), we obtain the following

loss function:
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loss(h) =
1

n

n∑
i=1

{
− log(1− 1/n) +

n∑
j=2

I(tj ≤ yi)
[
eh(tj ,xi)(tj − tj−1)− h(tj, xi)δij

]}

=
1

n

n∑
i=1

n∑
j=2

I(tj ≤ yi)
[
eh(tj ,xi)(tj − tj−1)− h(tj, xi)δij

]
+ Constant. (3.3)

Once an estimator of h, denoted by ĥ, is obtained, the conditional distribution function (3.1)

can be estimated by

F̂ (y|x) = I(t1 ≤ y)

{
1− n− 1

n
exp

[
−

n∑
j=2

I(tj ≤ y)eĥ(tj ,x)(tj − tj−1)

]}
. (3.4)

Remark: If the support of the continuous response variable has a fixed finite lower bound,

then the integration for the conditional cumulative hazard function is the same as that for

survival data. In other words, there is no need to assign a point mass of 1/n at t1.

Similar to what we discuss in Chapter 2, we can estimate the arbitrary function h(t, xi) by

minimizing the loss function (3.3) using neural networks. We then obtain the estimated

conditional distribution function from Equation (3.4). The input of neural networks is

(tj−1, tj, xi) in each row of Table 3.1, and the output is ĥ(t, xi). Note that the first row

for each i in Table 3.1 is excluded from the calculation (since we manually assign a point

mass of 1/n at t1). The network structure and the hyperparameters setup are the same as

discussed in Chapter 2: In the simulations, the number of nodes in each hidden layer is 64, the

batch size is 100, and the initial learning rate is 0.001. In real-world data examples, we tune

the hyperparameters from the set of all combined values with the number of nodes in each

hidden layer taken from {64, 128, 256}, the initial learning rate from {0.1, 0.01, 0.001, 0.0001},

and the batch size from {64, 128, 256}.
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3.3 Simulations

For uncensored continuous outcomes, the traditional neural network method with the com-

monly used L2 loss function gives the conditional mean estimator. Then the conditional

distribution function given a set of covariate values can be estimated by shifting the center

of the empirical distribution of training set residuals to the estimated conditional mean. This

would yield a valid estimator under the assumption that the errors (outcomes subtract their

conditional means) are i.i.d. and uncorrelated with conditional means. We will evaluate the

impact of this widely imposed condition for the mean regression via simulations. On the

other hand, an estimator of the conditional distribution function gives a conditional mean

estimator as follows:

∫ ∞

−∞
tdF̂ (t|x) =

n∑
i=1

ti

(
F̂ (ti|x)− F̂k(ti−1|x)

)
.

Thus, we will compare our method to the method with L2 loss on the estimation of the

conditional distribution function as well as the estimation of the conditional mean.

In the following simulation studies, we consider i.i.d. data generated from the following

model:

yi = x2
1i + x2ix3i + x3ix4i + x5i + ϵig(xi),

i = 1, . . . , n, where xi denotes the i-th vector of all covariates, ϵi is mean-zero given all

covariates, and g is a function of covariates, so ϵig(xi) is the i-th error term with zero-

mean. We consider two simulation setups. In the first setup, the error is uncorrelated

with the mean and has constant variance. In the second setup, the error is correlated

with the mean and has non-constant variance. We would expect our new method either

performs similarly or outperforms the method with L2 loss since our loss function is based

on the nonparametric likelihood function that is free of any model assumption. Specifically,

25



covariate values x1i, . . . , x5i are generated from the following distributions:

x1i ∼ N(0, 1), truncated at ± 3,

x2i ∼ Uniform (0, 1),

x3i ∼ Beta (0.5, 0.5),

x4i ∼ Bernoulli (0.5),

x5i ∼ Poisson (2), truncated at 5.

The two setups are:

Setup 1 (uncorrelated error with constant variance): generate another covariate x6i ∼

N(1, 1) independently, then generate ϵi ∼ a mixture distribution of N (−2, 1), N (0, 1),

and 0.5x2
6i with mixture probabilities (0.1, 0.7, 0.2), and let g(xi) = c, where c is a

constant.

Setup 2 (correlated error with non-constant variance): generate another covariate x6i ∼

N(1 + 0.5x1i, 0.75), such that

x1i

x6i

 ∼ N


0

1

 ,

 1 0.5

0.5 1


 ,

then generate ϵi ∼ a mixture distribution of N (−2, 1), N (0, 1), and 0.5x2
6i with mixture

probabilities (0.1, 0.7, 0.2), and let g(xi) = cx2
1i, where c is a constant.

Note that different values of constant c yield different signal to noise ratios in both setups.

For each setup, we generate independent training and validation data sets with equal sample

26



size, then fit both models with our general loss given in (3.3) and the L2 loss using the

same neural network architecture. Figure 3.1 and Figure 3.2 illustrate the comparisons of

estimated conditional distribution functions given 9 different sets of covariates between these

two methods with a sample size of 5000 and 100 replications. In these figures, the black solid

curve represents the true conditional distribution function, the green dashed curve represents

the estimated conditional distribution function using L2 loss, and the orange dash-dot curve

represents the estimated conditional distribution using our method. The orange dotted

curves are the 90% confidence band estimated using our method from the 100 repeated

experiments. Figure 3.1 illustrates that when the error is uncorrelated with the covariates

and has constant variance (Setup 1), both methods perform well in estimating the conditional

distribution functions. When the error becomes correlated with the covariates and has non-

constant variance (Setup 2), the traditional neural network method using L2 loss fails, which

is illustrated in Figure 3.2.

Further more, we compare the conditional mean estimates of both methods under two dif-

ferent sample sizes (n = 1000 and n = 5000) and two different magnitudes of noises (c = 0.5

and c = 1). We evaluate the performance of both methods by averaging the mean and me-

dian squared prediction errors, respectively, of 500 independently generated test data points

over 100 replications, and summarize the results in Table 3.2. The averaged coverage rates

of 90% and 95% predictive intervals obtained using our method are also presented in Ta-

ble 3.2. These coverage rates demonstrate the performance of our distribution estimation, as

they reflect the proportion of times that the outcome values in the test set fall within their

corresponding predictive intervals. In Setup 1, both methods have similar mean squared

prediction error, and our method yields slightly smaller median squared prediction error. In

Setup 2, our model yields slightly better mean squared error, and significantly better median

squared error. Our model provides reasonable prediction coverage rates in both setups, with

improved performance as the sample size increases.
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Figure 3.1: Conditional distribution functions given 9 different sets of covariate values for
uncensored data generated in Setup 1 with c=0.5.
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Figure 3.2: Conditional distribution functions given 9 different sets of covariate values for
uncensored data generated in Setup 2 with c=0.5.
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Sample size n 1000 5000
Setup 1
c 0.5 1 0.5 1
L2 method mean squared error 0.50 1.83 0.45 1.73
new method mean squared error 0.51 1.84 0.44 1.73
L2 method median squared error 0.17 0.59 0.14 0.52
new method median squared error 0.16 0.56 0.13 0.51
new method 90% coverage rate 0.90 0.90 0.90 0.90
new method 95% coverage rate 0.95 0.95 0.95 0.96
Setup 2
c 0.5 1 0.5 1
L2 method mean squared error 1.79 6.90 1.65 6.47
new method mean squared error 1.74 6.84 1.58 6.34
L2 method median squared error 0.09 0.27 0.04 0.13
new method median squared error 0.02 0.08 0.01 0.05
new method 90% coverage rate 0.87 0.87 0.91 0.91
new method 95% coverage rate 0.91 0.91 0.95 0.94

Table 3.2: Average mean/median squared errors of both methods and the prediction coverage
rate of the new method over 100 replications.

Target probability 0.10 0,20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
Setup 1 0.11 0.20 0.30 0.40 0.51 0.62 0.72 0.82 0.91
Setup 2 0.09 0.18 0.29 0.40 0.52 0.63 0.74 0.83 0.92

Table 3.3: Average empirical cumulative probabilities of 100 repeated test sets at several
estimated percentiles (n = 1000, c = 0.5).

Additionally, we provide more detailed evaluation of the performance of conditional dis-

tribution estimates using test data by comparing sample proportions (empirical cumulative

probabilities) at several estimated percentiles to corresponding population cumulative proba-

bilities. We consider two cases in the above simulations: Setup 1 and Setup 2 when n = 1000

and c = 0.5. In each case, for a considered (target) probability we obtain the estimated per-

centile for each individual in the test set, then calculate the frequency of individuals with

response values less than or equal to their estimated percentiles. We average the results

over 100 independent replications, which are summarized in Table 3.3. From Table 3.3 we

see that our method provides reasonably accurate estimates of the conditional distribution

functions for a moderate sample size.
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3.4 Comparisons to Kernel Methods for Uncensored

Data

It is advantageous of using neural networks for estimating the conditional distribution when

there are several continuous covariates. For low dimensional continuous covariates, especially

1-D or 2-D, kernel methods can be applied for estimating conditional distributions [24]. We

first consider the following example of [24] with 1-D covariate to compare our method with

the Nadaraya-Watson (NW) estimator:

Yi = 2 sin(3.1416Xi) + ϵi,

where {Xi} and {ϵi} are two independent sequences of independent random variables having

a common distribution with density 1 − |x| on [−1, 1]. Following [24], we estimate the

conditional distribution function of Y given X on a regular grid defined by steps .067 and

.054 in x- and y-axes, and evaluate the performance of estimators via mean absolute deviation

error (MADE), which is defined as follows:

MADE =

∑
i |F̂ (yi|xi)− F (yi|xi)|I(.001 ≤ F (yi|xi) ≤ .999)∑

i I(.001 ≤ F (yi|xi) ≤ .999)

For the NW approach, we select bandwidth via a 5-fold cross-validation using mean square

errors. For the neural network method, we use the fixed hyperparameters discussed in

Section 2.2.4. Other combinations of hyperparameters yield similar results. The boxplots of

MADEs in Figure 3.3a illustrates the results of simulations with a sample size of 1000 over

100 replications. We can see that NW method yields slightly better MADEs.

We further examine the case with two continuous covariates. Specifically, we add another
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(a) (b)

Figure 3.3: Boxplots of MADEs for the NW method and our proposed method. (a) 1-D
covariate, n = 1000, (b) 2-D covariates, n = 1000.

random covariate to the above mean structure:

Yi = 2 sin(3.1416X1i) +X2i + ϵi,

where {X1i} and {ϵi} are still from a distribution with density 1− |x| on [−1, 1], and {X2i}

is from uniform(-1,1). We estimate the conditional distribution function on a grid defined

by steps .067, .067 and .054 in x1-, x2- and y-axes. The boxplots of MADEs obtained from

100 simulations with a sample size of 1000 are presented in Figure 3.3b, which show that

the NW method loses its edge when the covariate dimension increases. It is well-known that

going to any higher dimension will be difficult for kernel methods.

3.5 Real-World Data Sets

We use QSAR Fish Toxicity data set [8] and Airfoil Self-Noise data set [5] to illustrate

our method for uncensored data. QSAR Fish Toxicity data set is collected for developing

quantitative regression models to predict acute aquatic toxicity towards the fish Pimephales

promelas (fathead minnow) on a set of 908 chemicals. Six molecular descriptors (representing
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the structure of chemical compounds) are used as the covariates and the concentration that

causes death in 50% of test fish over a test duration of 96 hours, called LC50 96 hours (ranges

from 0.053 to 9.612 with a mean of 4.064) was used as model response. The 908 data points

are curated and filtered from experimental data. The six molecular descriptors come from

a variable selection procedure through genetic algorithms. In their original research article,

the authors used a k-nearest-neighbours (kNN) algorithm to estimate the mean. The data

set can be obtained from the machine learning repository of the University of California,

Irvine (https://archive.ics.uci.edu/ml/datasets/QSAR+fish+toxicity).

Airfoil Self-Noise data set is collected for developing a noise prediction model. Self-noise is

defined as the noise generated when an airfoil passes through smooth non-turbulent inflow

conditions. The data set contains 1503 samples and six variables. The response variable is

scaled sound pressure level (dB) and the covariates are, frequency (Hz), angle of attack (◦),

chord length (m), free-stream velocity (m/s), and suction side displacement thickness (m).

The data set can also be obtained from the machine learning repository of the University of

California, Irvine (https://archive.ics.uci.edu/ml/datasets/Airfoil+Self-Noise#).

We use 5-fold cross-validated R2, mean squared error and median squared error to evaluate

our method and the neural networks with L2 loss on these two real-world data sets and

summarize the results in Table 3.4. Our new method yields better prediction in all three

criteria for both data sets. The large advantage of our method for the Airfoil Self-Noise

data may be due to a very skewed distribution of the response variable. For each data

set, predicted conditional distribution functions given two different sets of covariate values

obtained by our method are presented in Figure 3.4 for an illustration.
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Fish Airfoil
L2 method New method L2 method New method

Mean squared error 0.86 0.82 19.76 8.52
Median squared error 0.22 0.20 8.24 2.38
R2 0.59 0.61 0.60 0.82

Table 3.4: Conditional mean prediction results of the L2 method and the new method

(a) (b)

(c) (d)

Figure 3.4: Estimated conditional distribution functions for 4 individuals. (a)(b): Fish
Toxicity, (c)(d): Airfoil. The three vertical lines illustrate locations of the predicted mean,
the predicted median and the observed value.
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3.6 Numerical Comparison to ODE Neural Networks

The data expansion technique used in this work provides a simple and natural way of nu-

merically evaluating the full likelihood based loss function. However, it seems that the data

expansion would increase the effective sample size from n to n2. This is not a concern for the

survival problem with time-varying covariates (Chapter 2) because each covariate process

needs to be observed at least at all distinct time points, leading to an order of n2 number

of distinct data points. When covariates are random variables other than stochastic pro-

cesses, the sample size is indeed n, thus there should be a large room for developing more

efficient numerical approaches. In particular, a recent work by [57] comes to our attention,

which combines neural networks with an ordinary differential equation (ODE) framework to

estimate the conditional survival function given a set of baseline covariates, in other words,

time-independent covariates. They use ODE solver to integrate the cumulative hazard func-

tion from an initial value and its derivative (the hazard function). In the following part of

the section, we would discuss how to use the Neural ODE model to estimate the conditional

distribution function for uncensored data and make a comparison of the ODE approach to

our method.

The Neural ODE model is proposed by [9]. For a variable z, given its initial state z(t0)

and derivative (continuous dynamics), any later state of this variable z(t1) can be calculated

using an “ODE solver” such as Euler’s method. The key idea is that the derivative can be

parameterized by a neural network:

z′(t) = f(z(t), t; θ).
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When the loss function L is a function of the final state, it can be written as:

L(z(t1)) = L

(
z(t0) +

∫ t1

t0

f(z(t), t; θ)dt

)
= L(ODESolver(z(t0), f, t0, t1, θ)).

Then by minimizing the loss, the parameters θ can be learned. Based on adjoint sensitivity

analysis [48], the Neural ODE model is able to avoid going into the “ODE solver” in back

propagation, but use another ODE to calculate the gradient and update the parameters.

[57] apply this model to the conditional survival function estimation and name their approach

the Survival Ordinary Differential Equation Networks (SODEN). Specifically, they consider

the conditional hazard function and the cumulative hazard function as an ODE with fixed

initial value:

Λ′
x(t) = f(Λx(t), t;x, θ),

Λx(0) = 0,

(3.5)

where the function f is modeled by a feed-forward neural network. The loss function is the

negative log-likelihood:

l(θ) =
n∑

i=1

{Λxi
(yi)− δi log f(Λxi

(yi), yi;xi, θ)}. (3.6)

Note that the loss function is based on the likelihood, which is similar to Equation (2.3). The

only difference is that they calculate the cumulative hazard from the “ODE solver” instead

of the direct numerical integration using the observed time partition. Note that SODEN of

[57] only applies to the survival time that has a fixed lower limit at zero.

In order to apply ODE solver, observation time is rescaled so that all the individuals have

the same time window. Let Hi(t) = Λxi
(tyi), then Hi(1) = Λxi

(yi). For each individual,

Equation set (3.5) can be transformed to:
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H ′
i(t) = f(Hi(t), tyi;xi, θ)yi,

Hi(0) = 0.

(3.7)

The input of the neural network f is tyi, Hi(t) and xi (the time point t is determined by the

“ODE Solver”). Assume the covariate dimension is d, and denote

M(t) =


H1(t) y1 x1

H2(t) y2 x2

... ... ...


n∗(d+2)

,

f̃M(t) =


f(H1(t), ty1;x1, θ)y1 0 0

f(H2(t), ty2;x2, θ)y2 0 0

... ... ...


n∗(d+2)

.

Then,

M(1) = ODESolver(M(0), f̃M(t), t0 = 0, t1 = 1; θ). (3.8)

From M(1) and f̃M(1), we obtain Λxi
(yi) and f(Λi(yi), yi;xi, θ) in the loss function (3.6).

We can see that, the way SODEN deals with the covariates is to set the derivative of the

covariates to be 0 in f̃M(t), so that the same covariate values pass into the neural network

at each time step. If a covariate is time-varying, it is difficult to input the covariate history
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into this framework.

As for the general regression case discussed in this Chapter, the ODE framework in SODEN

model can be adapted. Recall that we assign 1/n to be the value of the distribution function

at the smallest observation point t0, we can modify Equation Set (3.5) to

Λ′
x(t) = f(Λx(t), t;x, θ),

Λx(t0) = − log(1− 1/n),

and rescale Λxi
by Hi(t) = Λxi

(t(yi − t0) + t0).

We have observed that the ODE method performs similarly comparing to our approach in

terms of the mean/median square errors in the simulations described in Section 3.3. In

terms of the memory usage, the ODE model is more efficient as it does not require data

expansion. The time complexity of the ODE model is close to O(n) based on experiments.

However, the numerical comparisons show that our method is faster than the ODE method

for a broad range of sample sizes (see Figure 3.5), indicating a memory-speed trade-off of

our method and a large coefficient of the ODE complexity. For much larger sample sizes,

we would expect the ODE method beats our method in speed (results not obtained due to

the memory limitation). On the other hand, the ODE method may loss its advantage in

estimating the survival function with time-varying covariates because of the needed data

expansion to a size of n2.
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Figure 3.5: The memory and time cost vs. sample size for ODE model and our previous
model
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Chapter 4

Survival Estimation with Arbitrary

Effects of Time-varying Covariates

Using Neural Networks

4.1 Introduction

Survival prediction is of increasing importance and estimating the conditional survival func-

tion from censored data nonparametrically is of great interest. Recent advances in machine

learning and deep learning have overcome certain limitations of traditional semiparametric

survival analysis methods [13, 62]. These approaches include Gradient Boosting Machines

(GBM) [28, 50] and Random Survival Forests (RSF) [30], which are ensemble methods based

on survival trees [41]; DeepSurv [33] and DeepHit [19], which are based on neural networks.

Some of them [28, 50, 33], although in a more flexible non-linear form, still keep the Cox

model or the accelerated failure time model framework, thus still assume certain model struc-

tures. Also, they estimate a risk score that summarizes the features rather than estimating
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the conditional survival function directly. DeepHit divides the continuous time into a series

of evenly partitioned time intervals and output the probability of an event occurring in each

time interval. RSF is a flexible approach, which uses log-rank test to split the data and

directly output the survival probabilities on observed time points.

The above methods are developed for time-independent covariates. Time-varying covariates,

however, are also common in practice. To fit the Cox-PH model with time-varying covariates,

the dataset needs to be expanded with each row representing a subject’s records during a

specific time interval formed by all the observed time points. The machine learning and deep

learning methods mentioned above can potentially be extended to incorporate time-varying

covariates using the same data expansion technique, that is, to treat each time interval as a

separate observation with constant covariates. Such extensions for time-varying covariates,

however, are still in their early stages and are relatively limited. In particular, [14] found that

the computational cost is extremely high for RSF when dealing with time-varying covariates.

Following the same data expansion technique, we have proposed a non-parametric approach

using neural networks to directly estimate the conditional survival function given time-

varying covariates [29]. It takes time-varying covariates, baseline covariates and a corre-

sponding time interval as the input of a feed forward neural network and outputs the log-

arithm of the conditional hazard function. The method uses a loss function determined by

the full nonparametric likelihood, thus does not assume any specific model structure.

To the best of our knowledge, all the known methods for time-varying covariates, including

those discussed above, assume that the effect of covariates on the conditional hazard func-

tion is instantaneous. That is, the instantaneous hazard given entire covariate paths only

depends on values of covariates observed at the current time point. Such an assumption,

however, can be rather limited and considering non-instantaneous effects of covariates on

the hazard function can be interesting and important in addressing some realistic problems,

for example, when hazard is related to an arbitrary cumulative exposure or certain delayed
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covariate effects. A nonparametric approach for non-instantaneous covariate effects provides

the most flexible way of estimating how covariates influence survival, captures complex tem-

poral dynamics and eliminates modeling biases in survival prediction.

In this work, we further generalize the method of [29] to account for arbitrary effects of

time-varying covariates based on the entire covariate history. The time-varying covariates

are functional inputs and the conditional survival function (or equivalently the conditional

hazard function) becomes an operator. We propose to apply the recently developed deep

operator network, the DeepONet [42], to estimate the unknown operator. To the best of our

knowledge, our new method is the first to model arbitrary effects of time-varying covariates

in estimating the conditional survival function with the fewest assumptions.

4.2 Methodology

Consider survival times of n subjects, which can be right-censored. We are interested in

estimating the survival time ditribution given the covariates. For subject i, we denote the

time-varying covariate vector as Xi(t). We further denote the underlying failure time as

Ti, and the underlying censoring time as Ci. We assume that the failure time possesses a

Lebesgue density and that the censoring time is independent of failure time given covariates.

Let the observed time be Yi = min{Ti, Ci} and the failure indicator be ∆i = I(Ti ≤ Ci).

The observations are independent and identically distributed (i.i.d.), and can be written as

{Yi,∆i, X̃i(·) : i = 1, . . . , n}, where X̃i(t) denotes the covariate history up to time t, that

is, X̃i(t) = {Xi(s), 0 ≤ s ≤ t}. We assume each of the processes Xi(t) has left continuous

sample path with right limit. Let f [t|X̃i(∞)] be the conditional Lebesgue density function

of Ti, fC [t|X̃i(∞)] be the conditional density function of Ci, S[t|X̃i(∞)] be the conditional

survival function of Ti, and SC [t|X̃i(∞)] be the conditional survival function of Ci.
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We further assume that future covariate values do not influence the current risk. In other

words, the risk of an event occurring at time t only depends on the current and past values of

covariates, not on future values, so the covariates are external [32]. The conditional hazard

function of Ti can be written as:

λ
[
t
∣∣∣X̃i(∞)

]
= λ

[
t
∣∣∣X̃i(t)

]
. (4.1)

To meet the positivity constraint for the hazard function, we log transform the hazard

function to ease the numerical implementations. Denote h[t, X̃i(t)] = log λ[t|X̃i(t)]. Then

the conditional cumulative hazard function given covariate history has the following form:

Λ
[
t
∣∣∣X̃i(∞)

]
= Λ

[
t
∣∣∣X̃i(t)

]
=

∫ t

0

λ
[
s
∣∣∣X̃i(s)

]
ds =

∫ t

0

eh[s,X̃i(s)]ds.

The conditional survival function is given by

S
[
t
∣∣∣X̃i(∞)

]
= S

[
t
∣∣∣X̃i(t)

]
= exp

{
−Λ

[
t
∣∣∣X̃i(t)

]}
= exp

{
−
∫ t

0

eh[s,X̃i(s)]ds

}
. (4.2)

Equation (4.2) is always a valid survival function for any function h[s, X̃i(s)]. Once the

function h is estimated, we can easily determine the conditional survival function estimator.

Remark: Kalbfleisch and Prentice [32] clearly distinguishes two different types of time-

varying covariates: external and internal. An external covariate is the one that its future

path is not affected by the occurrence of a failure at the current time. Any non-external

covariate is an internal covariate. An internal covariate is typically taken on the individual

subject over time, and its path is affected by the survival status. We assume that the

covariates are external in this work. Note that the conditional survival probability is not

well-defined if there is an internal covariate.
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i time point covariates
1 t1 x1(t0), 0, . . . , 0
1 t2 x1(t0), x1(t1), 0, . . . , 0
...

...
...

1 tm x1(t0), x1(t1), ..., x1(tm−1)
2 t1 x2(t0), 0, . . . , 0
2 t2 x2(t0), x2(t1), 0, . . . , 0
...

...
...

2 tm x2(t0), x2(t1), ..., x2(tm−1)
...

...
...

Table 4.1: The data structure with time varying covariate.

4.2.1 Data Structure and DeepONet

To estimate the function h[s, X̃i(s)] nonparametrically using the DeepONet [42], we first

need to discretize the time. We partition the time axis evenly into m intervals on grid points

(t0 ≡ 0, t1, t2, ...tm ≡ τ), where τ is a finite upper bound of the considered support of the

survival time, oftentimes taken to be the largest observed failure time in a data set in practice.

Given observed data {yi, δi, xi(·)}, the input of the DeepONet is [s, xi(t0), xi(t1), ..., xi(tm−1)]
T

where s ∈ {t1, t2, ..., tm}. Note that h[s, X̃i(s)] = h[s, X̃i(τ)] for external covariates Xi(·), we

aim to only input the history value of the covariates up to the time point s, and the future

values are masked with 0. See equation (4.3) for the validity of such an approach. As shown

in Table 4.1, each subject is expanded into m rows for input.

As for the neural network structure, the most straightforward way is to directly employ a

classical network, such as fully connected feed forward neural networks (FNN) or convolu-

tional neural networks (CNN), and concatenate x̃(s) and s together as the network input.

Most of the related work uses such simple concatenatation [4, 19, 29, 31] as they only con-

sider the covariate value at the current time point, i.e., [s, xi(s)]. While we are dealing with

the entire covariate history, treating each element in [xi(t0), xi(t1), ...xi(tm−1)] and s equally

is not reasonable. Recently, using neural networks to approximate operators has drawn
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Figure 4.1: The unstacked DeepONet Structure. u, y, G(u)(y) in this figure correspond to
x, s, h(x)(s) respectively.

increasing attention in the research literature [42, 38]. It is shown in [42] that the deep

operator network can learn various explicit operators, such as integrals and fractional Lapla-

cians, as well as implicit operators that represent deterministic and stochastic differential

equations. Our problem can be seen as an operator learning problem if we treat h[s, X̃i(s)]

as an operator h[X̃i(s)](s). Thus the neural operator structure can be applied. Specifically,

we use an unstacked DeepONets structure. A DeepONet consists of two sub-networks, one

for encoding the input function at a fixed number (m) of sensors [x(t0), x(t1), ..., x(tm−1)]
T

(branch net), and another for encoding the location s for the output function (trunk net)

[42]. See Figure 4.1, where a different set of notation is used.

The branch and trunk architecture is inspired by the Universal Approximation Theorem for

Operators [10]. The theorem states that two fully connected neural networks with a single

hidden layer, combined by a vector dot product of the outputs, are able to approximate

any continuous nonlinear operator with arbitrary accuracy. Specifically, suppose that σ is

a continuous non-polynomial function, X is a Banach space, K1 ⊂ X and K2 ⊂ Rd are

compact sets in X and Rd, respectively, V is a compact set in C(K1), and G is a nonlinear

continuous operator which maps V into C(K2). Here C(K) is the Banach space of all

continuous functions defined on K equipped with the uniform norm. For any ϵ > 0, there
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are positive integers n, p, and m, constants cki , ξ
k
ij, θ

k
i , wk ∈ R, xj ∈ K1, i = 1, . . . , n,

k = 1, . . . , p, and j = 1, . . . ,m, such that

∣∣∣∣∣G(u)(y)−
p∑

k=1

n∑
i=1

cki σ

(
m∑
j=1

ξkiju(xj) + θki

)
σ(wk · y + ζk)

∣∣∣∣∣ < ϵ (4.3)

holds for all u ∈ V and y ∈ K2.

A generalized version of the approximation theorem (Theorem 2 in [42]) states that for any

nonlinear continuous operator G and any ϵ > 0, there exist positive integers m, p, continuous

vector functions g : Rm → Rp, f : Rd → Rp, and x1, x2, . . . , xm, such that,

|G(u)(y)− ⟨g[u(x1), u(x2), ..., u(xm)], f(y)⟩| < ϵ (4.4)

holds for all u and y, where ⟨·, ·⟩ denotes the dot product in Rp. The functions g and f can

be chosen as diverse classes of neural networks, for example, fully connected neural networks,

residual neural networks and convolutional neural networks.

4.2.2 Full Likelihood and Discretized Loss

We propose to use the full likelihood to build the loss function. Given the observations

{yi, δi, xi(·)}, the full likelihood function is

Ln =
n∏

i=1

{f [yi|x̃i(yi)]SC [yi|x̃i(yi)]}δi {fC [yi|x̃i(yi)]S[yi|x̃i(yi)]}1−δi

∝
n∏

i=1

λ[yi|x̃i(yi)]
δiS[yi|x̃i(yi)]

=
n∏

i=1

exp{h[x̃i(yi)](yi)δi} exp
{
−
∫ yi

0

eh[x̃i(t)](t)dt

}
.
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The log likelihood is given by

ℓn =
n∑

i=1

{
h[x̃i(yi)](yi)δi −

∫ yi

0

eh[x̃i(t)](t)dt

}
. (4.5)

By calculating the above integrals numerically using the summation on a partition of [0, τ ]

withm subintervals, we obtain the loss function that is the discretized negative log likelihood,

scaled by the sample size:

loss(h) =
1

n

n∑
i=1

m∑
j=1

I(tj−1 ≤ yi)
{
eh[x̃i(tj−1)](tj−1)(tj − tj−1)− h[x̃i(tj−1)](tj−1)δij

}
, (4.6)

where δij = I(tj ≥ yi)δi. Note that δij is always 0 until the event happens.

4.2.3 Details in Network Architectural and Hyperparameter Tun-

ing

The implementation of DeepONet is provided in the python package DeepXDE [43]. The

package is originally used for solving ordinary and partial differential equations. It supports

five tensor libraries as backends. To adapt the method to our problem, we modified the

code in DeepXDE using its TensorFlow 2.x backend. Specifically, we use our customized loss

function and modify the branch net structure for the CNN method. We trained the neural

networks on a system equipped with an AMD Ryzen 9 8945HS processor with Radeon 780M

Graphics at 4.00 GHz and 32GB of RAM.

For trunk net, since we only have one dimensional time point input, we use the simple

one layer FNN structure. For branch net, we try both FNN and CNN to summarize the

time-varying covariates. The FNN is simply composed of two fully connected hidden layers

(a.k.a. dense layer). The CNN structure is composed of two blocks of 1D convolutional

layers [36] and max pooling layers, followed by one fully connected layer. In simulations, we
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have one time-varying covariate and two extra time-independent covariates. When we use

FNN structure, we concatenate the time-independent covariates to the time-varying ones

directly, so the input dimension is m+ 2. When we use CNN structure, it is not reasonable

to concatenate two types of covariates. So we first input the time-varying covariates into

CNN and then concatenate the time-independent ones with the CNN output before going

through the final fully connected layer. Since the branch net requires fix length of the input,

we mask the future value of the time-varying covariates with 0 (see Table 4.1). The masked

values will not contribute to the output of the FNN branch net because the multiplication

with those future time input-weights will be 0, regardless of the weight values, see equation

(4.3). To ensure that it does not contribute to the output in the case of using CNN, we

use casual padding [60] that automatically neglects the future time steps. We expect the

CNN branch net to perform better because it uses temporal neighborhood information of

the time-varying covariates.

We use a validation dataset to decide when to stop during training and use another indepen-

dent test dataset to tune the hyperparameters. Specifically, in each training, we stop when

the validation loss no longer decreases, and we choose the hyperparameter combination with

the smallest test loss. The hyperparameters are chosen from the following sets:

number of nodes in each dense layer: [32, 64, 128, 256]

number of filters in each Conv1D layer: [16, 32, 64]

pool size: [4, 8]

learning rate: [0.01, 0.001, 0.0001]

batch size: [100, 500, 1000]

In the following simulations, the number of nodes in each dense layer (except for the last

layer in branch and trunk net) is 128, number of filters in each Conv1D layer is 16, pool size

is 8 with the same stride, learning rate is 0.001 and batch size is 1000. “Relu” function is

used as the activation function between the hidden layers, and linear function is used for the
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final output so that the output value is not constrained. “Adam” is used as the optimizer.

In the last layer before doing dot product, we use p = 10 nodes as suggested in [42].

When we use FNN as the branch net, the number of partition m is crucial to the model

performance. In the following simulations we try m = 100, 200, 300, 400, 500 with the other

hyperparameters fixed. When sample size n = 500, in 5 out of 10 experiments, we obtain

the minimum test loss at m = 200, and the median m value for the best test loss is 250.

We further increase the sample size to 2000, and observe that the optimal m value is still

around 250. Thus, we use m = 250 in all the simulations in the next subsection.

4.3 Simulations

We generate data from a model where covariate history has a cumulative effect on the

conditional hazard function. The Cox-PH model that assumes λ[t|X̃i(t)] = λ[t|Xi(t)] is

misspecified in this setup.

First, we generate a time-varying covariate on a fine grid of [0, 100]. For t ∈ {0,∆s, 2∆s, ...., 100}

with ∆s = 0.1, i ∈ {1, 2, ...n}, we generate random variables αi1, . . . , αi5 independently from

a Uniform (0, 1) distribution and construct a time-varying covariate as follows:

xi(t) = αi1 + αi2 sin(2πt/τ) + αi3 cos(2πt/τ) + αi4 sin(4πt/τ) + αi5 cos(4πt/τ).

The sample paths of the covariate is left-continuous step functions with right limit. Then we

generate two time-independent covariates zi ∼ Bernoulli(0.5), and wi ∼ Normal(0, 1). The

binary covariate z can be seen as a treatment assignment variable.
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The conditional hazard function is generated by

λ (t |x̃i(t) , zi, wi) = 0.05 ∗ exp

(
wi + zi + 0.01 ∗

t∑
0

xi(s)∆s+ 0.01 ∗
t∑
0

x2
i (s)zi∆s

)
.

We numerically evaluate the conditional cumulative hazard function and the conditional

survival function on the fine grid of survival time. Specifically, for s ∈ {0,∆s, 2∆s, . . . , 100},

Λ(t|x̃i(t)) = ∆s
∑
s≤t

λi(s|xi(s)),

S(t|x̃i(t)) = exp {−Λi(t|x̃i(t))} .

Note that, due to the discrete nature of the time variable, the exact survival function deter-

mined by the above hazard function should be expressed as a product integral. We find using

the survival function as an exponential function of the cumulative hazard to approximate

the exact survival function is adequate for simulation studies.

For i ∈ {1, 2, ...n}, we generate random variable ui from a Uniform (0, 1) distribution, then

obtain the failure time by ti = sup {t : Si(t|x̃i(t)) ≥ ui}. We generate the censoring time ci

from an Exponential (50) distribution. Then we have yi = ti ∧ (ci ∧ 99) and δi = I(ti ≤ ci).

The censoring rate is around 20% in this setup.

We independently generate training sets and validation sets, with the time-varying covariate

taking value on m equispaced grid points. We fit our model using neural networks and

then use the fitted model to estimate the conditional survival curves given 9 different sets

of newly generated covariates. We repeat the process for N = 200 times, plot the sample

average and 90% confidence band of the estimated conditional survival curves. Figure 4.2

50



Figure 4.2: Conditional survival curves for 9 different sets of covariates using feed forward
neural networks with sample size n = 2000.

shows the results from DeepONet with FNN branch net. We see that the estimated curves

well overlap with the ground truth (black solid lines). Figure 4.3 shows the results from the

Cox-PH model. We only shows the sample average of the Cox-PH model since the variance

is small. We can see a large bias from the Cox model. This is expected because the Cox

model assumptions are violated in this simulation setup.

Figure 4.4 shows the result with CNN based branch net. We can see that, using CNN

structure with the same number of partition (m = 250) gives slightly better survival estimates

with smaller variances (narrower confidence bands). Both Figures are based on a sample

size of 2000. The results with sample size of 500 are slightly more biased in some cases.
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Figure 4.3: Conditional survival curves for 9 different sets of covariates using Cox-PH model
with sample size n = 2000.
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Figure 4.4: Conditional survival curves for 9 different sets of covariates using CNN with
sample size n = 2000.
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Figure 4.5: Conditional survival curves for with 9 different sets of covariates.

Given a specific set of xi(t) and wi, we can estimate the survival curves with zi = 0 and

zi = 1 respectively and illustrate the curve difference to mimic the treatment effect for

a new individual. This provides a framework of understanding how treatment affects an

individual’s survival probability adjusted by potential confounders without imposing any

model assumption, making the evaluation of personalized treatment possible. Figure 4.5

provides illustrations of such estimates. The upper curves are the ground truth (solid black)

and estimates (solid green) for zi = 1, while the lower curves are the ground truth (solid

black) and estimates (solid yellow) for zi = 0. We can see the effect variation among different

individuals.
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4.4 Discussion

It is worth noting that directly using the full likelihood approach enables our method to be the

most non-parametric, providing maximum robustness with the least number of assumptions.

This makes our approach always valid across all data distributions, ensuring reliability in

diverse situations. Other methods may be more efficient, but only when their specific model

assumptions hold true.

In the simulations, we numerically evaluate the conditional cumulative hazard function and

the conditional survival function at discrete time points. Despite this discrete evaluation, the

relationship between survival and hazard functions is treated continuously. This approach

may introduce bias because the discrete evaluation may not perfectly align with the contin-

uous model, potentially leading to discrepancies in the estimated functions. To mitigate this

bias, it would be prudent to use the exact survival function at discrete time points. This

adjustment could improve the accuracy of the estimates by aligning the evaluation more

closely with the actual data structure, thereby reducing any potential bias introduced by the

continuous approximation.

Additionally, when incorporating covariate history into the neural network, we construct an

expanded dataset where each time point for every subject is paired with the entire covariate

history. This approach, while comprehensive, significantly increases memory requirements

due to the large volume of data involved. Improving the efficiency of data handling and

storage is crucial, which is of great interest for future work. It is also of interest to apply

our method to real world data with external time-varying covariates.
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Chapter 5

Conditional Distribution Estimation

Given Functional Covariates Using

Deep Operator Neural Networks

In Chapter 3, we show how to use neural networks to estimate the conditional distribution

function for a continuous response variable given covariates in an Euclidean space. We know

that when the number of the covariates is greater than two, the traditional kernel method

becomes difficult to apply. In this chapter, we investigate the estimation of a conditional

distribution given functional covariates, which is even more challenging. In this case, the

conditional distribution function becomes an operator. We propose to use deep operator

network for its estimation.
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5.1 Introduction

Functional Data Analysis (FDA, refer to Ramsay & Silverman’s work [49] for a comprehensive

discussion on FDA methods and see [61] for a recent review) is a branch of statistics that

deals with data that are in the form of curves or functions. Different from traditional data,

functional data are intrinsically infinite dimensional and generated by smooth underlying

processes. In reality, the functional data can only be collected discretely over time or space. It

might be tempting to consider functional data as classical multivariate data. Unfortunately,

multivariate manipulation does not take into account smoothness or more general structure

of the underlying functions so that the curse of dimensionality happens. Numerous practical

studies have shown that a direct functional approach gives better results [52]. In this work,

we consider a regression setting in which the response is a scalar and at least one of the

predictors is a random function. Specifically, let Y be a scalar response variable and X(t),

t ∈ T , be the functional covariate. The conventional FDA focuses on a functional linear

model (FLM) [7, 23] that has the following form:

E(Y | X) = β0 +

∫
T
X(s)β(s)ds.

FLM can be fitted by first expanding the covariate and the coefficient function in the same

functional basis, i.e., X(t) =
∑∞

k=1 Akφk(t), β(t) =
∑∞

k=1 βkφk(t). Then the model becomes

a linear model of the form

E(Y | X) = β0 +
∞∑
k=1

βkAk,

where the infinite sum is replaced by a finite sum that is truncated at the first K terms in

implementations.

The conventional FLM is a linear model considering the cumulative linear effect of X(t) on
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Y . One direct way to generalize it to nonlinear models is to add a nonlinear link function

between the linear predictor and the response [44]. To further remove the model’s structural

constraints, some nonparametric models have been considered [17].

In recent years, as modern deep learning models have shown competitive performance across

various fields, researchers have started to apply them to FDA. Most work uses basis function

expansion to convert functional inputs into a finite-dimensional vector before feeding them

into a standard feed forward neural network. For example, both [52] and [51] use functional

neurons in the first neural network layer. Specifically, they use B-splines to summarize

the functional input. [59] also consider using the Fourier basis functions to summarize the

functional covariate into a scalar in the first layer of a neural network. The basis coefficients

would be updated as the neural network learns. They simply call their neural net model

Functional Neural Networks. [65] propose an alternative neural network architecture called

AdaFNN that consists of a novel Basis Layer implemented via micro-networks, where the

basis functions themselves do not need to be a priori and can be learned from the full data.

On the other hand, convolutional neural networks (CNN) [39] are designed to handle high-

dimensional inputs and naturally pool neighboring information. It is shown that, under

suitable assumptions, the convergence rate of CNN is independent of the input dimension

[37]. CNN-based methods have achieved great success in imaging data analysis and many

other fields, revolutionizing the processing and the analysis of complex datasets across various

domains. Unlike the methods that integrate basis function expansion, directly using CNNs

is more straightforward, allowing for automatic learning of hierarchical representations from

raw data. As shown in [59], CNNs achieve performance comparable to that of basis expansion

methods on some functional datasets.

In this work, we investigate the potential of applying CNNs to functional data. Instead

of mean regression, we aim to estimate the conditional distribution function of a scalar

response variable Y given functional covariates X. The idea of using neural networks to
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estimate conditional distribution functions has been discussed in [29], where covaraites are

Euclidean variables. For functional covariates X, we take them together with a grid point as

the input of our model, and output the value of the conditional distribution function at that

grid point. In order to treat the functional covariates and the grid point differently, we use

a neural operator structure called DeepONet [42] to estimate the conditional distribution

function of Y given the functional X.

Our method is different from the well-known generative deep learning models. Generative

models, such as Generative Adversarial Networks (GANs) [21], Variational Autoencoders

(VAEs) [35], and Diffusion Models [27], provide ways to draw new samples from the em-

pirical data distribution, whereas our method directly estimates an arbitrary conditional

distribution function. It would be an interesting future work to compare our method with

those generative deep learning methods within the context of FDA.

5.2 Methodology

Given a dataset {(xi(·), yi)}ni=1 of i.i.d. samples of functional covariates X(·) and the as-

sociated scalar response variable Y . We assume that X(t) is a stochastic process (or in

general a set of stochastic processes and Euclidean variables) defined over a bounded inter-

val t ∈ [a, b]. We then partition [a, b] by grid points a ≤ t1 < t2 < · · · < tm ≤ b for numerical

considerations and assume xi(t) is observed on these grid points.

5.2.1 Continuous Response

Since P (Y ≤ y | X) is non-decreasing and bounded between 0 and 1, in order to estimate the

conditional cumulative distribution function (CDF) without any constraint, we use hazard

function to construct the likelihood. The hazard function of a continuous Y given X is
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defined as:

λ(s | X) = lim
∆s→0

P (s ≤ Y < s+∆s | Y ≥ s,X)

∆s

Let h(s | X) = log λ(s | X). Then h can take any real value without any constraint. The

conditional CDF can be expressed in terms of the hazard function as:

F (y | X) = 1− exp

(
−
∫ y

−∞
eh(s|X) ds

)
. (5.1)

Once an estimator of h becomes available, an estimator of the conditional CDF can be

obtained from the above equation (5.1) given a set of covariates X.

Clearly h(s|X) is an operator for functional covariates X. Hence we propose to apply

the recently developed deep operator neural network approach, the so-called DeepONet

method [42], for the estimation of h(s|X). A DeepONet consists of two sub-networks, one

for encoding the functional input at the discrete time grid {t1, t2, ...tk} (branch net), and

another for encoding the locations s for the output functions (trunk net) [42]. The branch and

trunk architecture is inspired by the Universal Approximation Theorem for operators [10],

which states that two fully connected neural networks with a single hidden layer, combined

by a vector dot product of the outputs, are able to approximate any continuous nonlinear

operator with arbitrary accuracy. In practice, people usually use multiple hidden layers and

different neural network architectures. For trunk net, since we only have one dimensional

input, we use simple one layer fully connected neural network. For branch net, we use

1D convolutional layers [36] followed by max pooling layers to summarize the functional

covariates. See Figure 5.1 for an illustration. When there exist Euclidean covariates W , we

concatenate them with X at each time grid as the branch net input.

Following the notation for operators, we denote h(s | X) by h(X)(s) from now on. We use

the full likelihood to build the loss function given the dataset {(xi(·), yi)}ni=1, where xi(t) is
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Figure 5.1: DeepONet structure with CNN layers for branch net

observed on the grid points {t1, t2, ...tm}. Similar to [29], the log likelihood is given by

ℓn =
n∑

i=1

[
h(xi)(yi)−

∫ yi

−∞
eh(xi)(s)ds

]
. (5.2)

We evaluate the above integrals using Riemann summation. Specifically, we evaluate h(xi)(s)

on an equal-spaced partition, i.e., s ∈ {s1, s2, ..., sk}, where s1 is the first order statistic of

{yi}ni=1, and sk is the maximum order statistic. Then, we obtain the following discretized

loss function:

loss(h) =
1

n

n∑
i=1

k∑
j=2

I(sj−1 ≤ yi)
[
eh(xi)(sj)(sj − sj−1)− h(xi)(sj)δij

]
. (5.3)

where δij = I(sj ≥ yi). Note that the above loss function is obtained by assigning a point

mass of 1/n at s1 for the case that Y has unbounded lower support. If the support of Y

has a finite lower bound s0, then the inner summation in (5.3) starts from j = 1. Since

F (s1|xi) = 1/n, we have
∫ s1
−∞ eh(xi)(s)ds = − log(1 − 1/n). Once an estimator of h, denoted

by ĥ, is obtained, the conditional distribution function (5.1) can be estimated by

F̂ (y|x) = I(s1 ≤ y)

{
1− (1− 1

n
) exp

[
−

k∑
j=2

I(sj ≤ y)eĥ(x)(sj)(sj − sj−1)

]}
. (5.4)
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i evaluation point covariates
1 s1 x1(t1), x1(t2), . . . , x1(tm)
1 s2 x1(t1), x1(t2), . . . , x1(tm)
...

...
...

1 sm x1(t1), x1(t2), . . . , x1(tm)
2 s1 x2(t1), x2(t2), . . . , x2(tm)
2 s2 x2(t1), x2(t2), . . . , x2(tm)
...

...
...

2 sm x2(t1), x2(t2), . . . , x2(tm)
...

...
...

Table 5.1: The data structure for functional data.

Note that in (5.4), F̂ (y | x) = 0 when y < s1 and F̂ (y | x) = 1/n when y ∈ [s1, s2).

For better illustration, the data structure is shown in Table 5.1. Each subject is expanded

into m rows for input.

5.2.2 Discrete Response

When the response variable Y is discrete, assume Y ∈ {s1, s2, . . . , sk}, the full log likelihood

function is

ℓn =
n∑

i=1

log f(yi|xi),

where f(y|x) = P (Y = y|X = x), y ∈ {s1, s2, . . . , sk}. The hazard function of Y given

covariates X = x is defined as

λ(sj|x) =
f(sj|x)

P (T ≥ sj|x)
∈ (0, 1].
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Thus we have

f(sj|x) = λ(sj|x)P (T ≥ sj|x) = λ(sj|x)
j−1∏
r=1

(1− λ(sr|x)) = λ(sj|x)
k∏

r=1

(1− λ(sr|x))I(sr<sj).

Let h(x)(sj) = log
λ(sj |x)

1−λ(sj |x) ∈ (−∞,∞), we have

ℓn =
n∑

i=1

{
log λ(yi|xi) +

k∑
j=1

I(sj < yi) log[1− λ(sj|xi)]

}

=
n∑

i=1

{
log

eh(xi)(yi)

1 + eh(xi)(yi)
+

k∑
j=1

I(sj < yi) log
1

1 + eh(xi)(sj)

}
.

The loss function becomes

loss(h) =
1

n

n∑
i=1

k∑
j=1

I(sj ≤ yi)
[
log(1 + eh(xi)(sj))− h(xi)(sj)δij

]
, (5.5)

where δij = I(sj ≥ yi).

Once an estimator of h is obtained, the conditional distribution function can be estimated

by

F̂ (sj|x) =

j∑
r=1

f̂(sr|x)

=

j∑
r=1

{
λ̂(sr|x)

r−1∏
t=1

[1− λ̂(st|x)]

}

=

j∑
r=1

eĥ(x)(sr)∏r
t=1[1 + eĥ(x)(st)]

.
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5.3 Hyperparameters

For the trunk net of DeepONet, we use a simple one layer fully connected neural network.

For the branch net, we use CNN to summarize the functional covariates. The CNN structure

is composed of 2 blocks of 1D convolutional layers [36] and max pooling layers, followed by

1 fully connected layer.

“Relu” function is used as the activation function between the hidden layers and linear

function is used for the final output so that the output value is not constrained. “Adam”

is used as the optimizer. In last layer before doing dot product, we use p = 10 nodes as

suggested in [42]. For simulations in Section 5.4, we choose a commonly used hyperparameter

combination. Specifically, we use the following optimal hyperparameters: number of nodes

in each dense layer is 128, number of filters in each Conv1D layer is 32, kernel size is 3,

pool size is 8 with the same stride, learning rate is 0.0001 and batch size is 1000. We use

the same set of hyperparameters for our new method and the conventional mean regression

neural networks. This approach allows for a straightforward comparison. For real world data

in Section 5.5, we choose the hyperparameters that yield smallest validation loss for both

methods. Specifically, for our new method, number of nodes in the last dense layer is 128,

number of filters in each Conv1D layer is 64, kernal size is 3, pool size is 2, number of nodes

in trunk net dense layer is 64, batch size is 2000, learning rate is 0.0001. For L2 method,

number of filters in each Conv1D layer is 64, kernal size is 3, pool size is 2, number of nodes

in each dense layer is 256, batch size is 500, learning rate is 0.001.

The implementation of DeepONet is provided in python package DeepXDE [43]. We modified

the code in DeepXDE using its TensorFlow 2.x backend. We trained the neural networks on

a system equipped with an AMD Ryzen 9 8945HS processor with Radeon 780M Graphics

at 4.00 GHz and 32GB of RAM.
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5.4 Simulations

For t ∈ {0,∆t, 2∆t, ...., 1} with ∆t = 0.01, i ∈ {1, 2, ...n}, we generate a functional covariate,

xi(t) from a standard Brownian motion, {Wk}k∈[0,1], The incrementWk+s−Ws has theN(0, k)

distribution. We generate another functional covariate, zi(t) from a Poisson Process with

a rate of 10. We also generate a time independent covariate wi from a standard normal

distribution.

5.4.1 Continuous Response

We consider three simulation setups,

• Setup 1:

yi = 0.01 ∗
∑
t

{sin[xi(t)] + wi}[− log(t)] + ϵi,

and ϵi ∼ N(0, 1).

• Setup 2:

log µi = 0.001 ∗
∑
t

{sin[xi(t)] ∗ zi(t) + zi(t) + wi}[− log(t)],

and yi ∼ Exponential(1/µi).

• Setup 3:

log µi = 0.001 ∗
∑
t

{sin[xi(t)] ∗ zi(t) + zi(t) + 10 ∗ (wi + vi)}[− log(t)],

where vi ∼ N(1 + 0.5wi, 0.75) is an unmeasured confounder. yi ∼ Exponential(1/µi).
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In Setup 1, the model for yi is relatively straightforward. Here, yi is generated using a

sinusoidal function of xi(t) with an additive noise term wi and a time-dependent factor

involving the logarithm of t. The error term ϵi follows a normal distribution, meaning the

errors are uncorrelated with the mean of the response variable yi. This setup assumes a

simple linear relationship with normally distributed errors. In Setup 2, the model is more

complex. Instead of modeling yi directly, it models the logarithm of the expected mean µi.

The model includes multiplicative and additive interactions with another time-dependent

term zi(t). The final response variable is assumed to follow an Exponential distribution. In

Setup 3, we further include an unmeasured confounder vi into the simulation model.

We independently generate training sets and validation sets. For each simulation run, when

the validation loss no longer decreases, we stop training to avoid overfitting. Once the neural

net model is trained, we use the fitted model to estimate the conditional CDF curves given

newly generated covariates. We repeat the process for N = 500 times, then plot the sample

average and 90% empirical confidence band of the estimated conditional CDF curves.

The traditional neural network method with the commonly used L2 loss function gives the

conditional mean estimator. The conditional distribution function given a set of covariate

values can be estimated by shifting the center of the empirical distribution of training set

residuals to the estimated conditional mean. This would yield a valid estimator under

the assumption that the errors (outcomes subtract their conditional means) are i.i.d. and

uncorrelated with conditional means. On the other hand, in our method, an estimator of

the conditional distribution function gives a conditional mean estimator as follows:

∫ ∞

−∞
tdF̂ (t|x) =

n∑
i=1

ti

(
F̂ (ti|x)− F̂k(ti−1|x)

)
.

Thus we can compare our method to the widely imposed mean regression method with

the same CNN neural network structure on the estimation of the conditional distribution
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L2 method new method
mean squared error for mean estimation 1.0018 1.0325
median squared error for mean estimation 0.4242 0.4418

mean squared error for distribution estimation 0.0016 0.0025
median squared error for distribution estimation 0.0003 0.0004

90% coverage rate 0.843 0.896
95% coverage rate 0.881 0.951

Table 5.2: Average mean/median squared errors for mean estimation and distribution esti-
mation, and prediction coverage rates over 500 replications. (Setup 1)

function as well as the estimation of the conditional mean.

Conditional CDF curves for 9 different sets of functional covariates are shown in Figure 5.2,

Figure 5.3 and Figure 5.4. We can see that, in Setup 1, both methods estimate CDF well

but the estimated curves by the proposed method shows slight bias in some cases. This is

not surprising because L2 method should have the best performance in this setup. In Setup

2 and Setup 3, L2 method using the empirical distribution of the residuals can not estimate

the distribution curve correctly since there is a mean-variance relationship and the true CDF

is not smooth at 0. In Setup 3, the performance of L2 method is slightly worse because of

not accounting for the confounder vi.

We also evaluate the performance of both methods by averaging the mean and median

squared errors for the mean estimation and distribution estimation, respectively, of 200

independently generated test data points over 500 replications. The results are shown in

Table 5.2, Table 5.3 and Table 5.4. Coverage rates of 90% and 95% predictive intervals are

also presented. For Setup 1, we can see that the new method has larger mean and median

squared errors for mean estimation and similar mean and median squared errors for CDF

estimation. But for Setup 2 and Setup 3 where L2 model assumption is violated, the new

method has better performance in CDF estimation, which leads to better 90% and 95%

coverage rates.
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Figure 5.2: Conditional distribution functions for 9 different sets of functional covariates
(setup 1).

L2 method new method
mean squared error for mean estimation 0.7679 0.7680
median squared error for mean estimation 0.2203 0.2718

mean squared error for distribution estimation 0.0018 0.0007
median squared error for distribution estimation 0.0009 0.0004

90% coverage rate 0.908 0.893
95% coverage rate 0.961 0.945

Table 5.3: Average mean/median squared errors for mean estimation and distribution esti-
mation, and prediction coverage rates over 500 replications. (Setup 2)
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Figure 5.3: Conditional distribution functions for 9 different sets of functional covariates
(setup 2).

L2 method new method
mean squared error for mean estimation 0.6369 0.6418
median squared error for mean estimation 0.1763 0.2219

mean squared error for distribution estimation 0.0020 0.0009
median squared error for distribution estimation 0.0009 0.0005

90% coverage rate 0.911 0.896
95% coverage rate 0.960 0.941

Table 5.4: Average mean/median squared errors for mean estimation and distribution esti-
mation, and prediction coverage rates over 500 replications. (Setup 3)
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Figure 5.4: Conditional distribution functions for 9 different sets of functional covariates
(setup 3).
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5.4.2 Discrete Response

For discrete response, we consider the following setup:

µi = 0.01 ∗
∑
t

{sin[xi(t)] + wi}[− log(t)],

yi ∼ Poisson(µi).

In this setup, we are dealing with a discrete response variable yi that follows a Poisson distri-

bution. The mean parameter µi of the Poisson is determined by the time dependent variable

xi(t) and time-independent variable wi, all modulated by a time-dependent logarithmic fac-

tor − log (t).

Again, we independently generate training sets and validation sets, and train our neural

networks with the loss function described in Section 5.2.2. We use the fitted model to

estimate the conditional CDF curves given newly generated covariates. We repeat the process

for N = 100 times, then plot the sample average and 90% confidence band of the estimated

conditional CDF curves. The estimated conditional CDF for 9 sets of functional covariates

are shown in Figure 5.5. Our method provides a novel way to estimate the stepped CDF of a

discrete variable. The estimated step functions (orange) closely align with the truth (black).

5.5 Real Data

In this section, we apply our method on a public real world data set discussed in [59]. The

Bike Sharing data [15] contains the hourly and daily count of rental bikes between years

2011 and 2012 in Capital bike share system with the corresponding weather and seasonal

information. The goal is to predict the number of daily rentals given hourly temperature

(functional, 24 points) in each day. We also include a binary variable representing working
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Figure 5.5: Conditional distribution functions for 9 different sets of functional covariates
(Discrete Case)
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L2 method new method
mean squared error 0.491 0.528
median squared error 0.261 0.323
50% coverage rate 0.447 0.471
90% coverage rate 0.835 0.900
95% coverage rate 0.892 0.956

Table 5.5: The prediction coverage rate and mean/median squared errors for mean estima-
tion.

day or not in the prediction model because this could be a crucial factor to the bike rental.

The sample size is 730. Although the number of daily rentals is discrete, it ranges from a few

hundreds to more than 8000. So, it would be reasonable to treat the response as continuous.

Although the Bike dataset has been previously analyzed using other FDA methods, such

as in [59], the data usage differs, and the preprocessing details were not clearly presented

in earlier works. For instance, [59] only uses Saturday records, to eliminate the effect of

different week days, resulting in a very small sample size. These factors make it challenging

to directly compare different methods with existing results.

In [59], it was demonstrated that conventional mean regression neural networks with a CNN

structure perform well in predicting mean outcomes compared to kernel methods. Therefore,

we compare our method, which predicts the conditional CDF, with the mean regression

neural networks (L2 method). Specifically, we employ the same CNN structure in the branch

net of our method as used in the conventional mean regression neural networks.

We use 5-fold cross-validation to train the models and make predictions. In real-world

datasets, where the underlying conditional CDF is unknown, we assess the quality of the

CDF estimate by examining the coverage rate. Additionally, as described in Section 5.4.1,

we calculate the conditional mean from the estimated conditional CDF. The performance of

the methods is then evaluated using 5-fold cross-validated mean squared error (MSE) and

median squared error for mean estimation. The results are summarized in Table 5.5.
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(a) (b) (c)

Figure 5.6: Estimated conditional distribution functions for 3 individuals. The vertical lines
illustrate locations of the observed values.

Since the L2 method directly minimizes the mean squared error, it is expected that the MSE

of the predicted mean would be smaller. Our new method provides reasonable estimates of

the mean. Regarding coverage rates, our CDF method provides better results. Our coverage

rates are very close to the expected values, while L2 method has lower coverage rates than

expected, indicating that the prediction intervals produced by L2 model are narrower than

the truth.

Figure 5.6 illustrates how our method estimates the conditional CDF (represented by the

blue curve) based on the functional and scalar covariates. The observed values of the response

are indicated by the vertical red lines.
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