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Abstract: Systemic acid–base status is primarily determined by the interplay of net acid production
(NEAP) arising from metabolism of ingested food stuffs, buffering of NEAP in tissues, generation
of bicarbonate by the kidney, and capture of any bicarbonate filtered by the kidney. In chronic
kidney disease (CKD), acid retention may occur when dietary acid production is not balanced by
bicarbonate generation by the diseased kidney. Hormones including aldosterone, angiotensin II,
endothelin, PTH, glucocorticoids, insulin, thyroid hormone, and growth hormone can affect acid–base
balance in different ways. The levels of some hormones such as aldosterone, angiotensin II and
endothelin are increased with acid accumulation and contribute to an adaptive increase in renal acid
excretion and bicarbonate generation. However, the persistent elevated levels of these hormones can
damage the kidney and accelerate progression of CKD. Measures to slow the progression of CKD
have included administration of medications which inhibit the production or action of deleterious
hormones. However, since metabolic acidosis accompanying CKD stimulates the secretion of several
of these hormones, treatment of CKD should also include administration of base to correct the
metabolic acidosis.

Keywords: metabolic acidosis; aldosterone; angiotensin II; endothelin; parathyroid hormone; gluco-
corticoids; insulin; thyroid hormone; growth hormone

1. Introduction

Hormones can affect acid–base balance by impacting processes that are involved
in the production of acid, buffering of acid and excreting acid from the body. Approx-
imately 1 mEq/kg body weight of net endogenous acid (NEAP) is produced in adults
and 2–3 mEq/kg body weight in normal children each day. In addition, ~4500 mEq/day
(180 L × 25 mEq/L) of bicarbonate is filtered by the glomerulus and reabsorbed by the
renal tubules, predominately the proximal tubule. For each milliequivalent of acid that
is produced by metabolism, an equal quantity of bicarbonate must be generated by the
kidney to maintain the blood pH and serum bicarbonate concentration at normal levels of
~7.38 ± 0.02 and 25.4 ± 0.09 mEq/L in males and ~7.40 ± 0.02 and 24.4 ± 1.3 mEq/L in
non-pregnant females, respectively.

Although changes in the external and internal pH of renal tubules are the major
factors affecting acid–base regulation by the kidney, alterations in the concentrations of
several hormones including aldosterone, angiotensin II, endothelin, parathyroid hormone,
glucocorticoids, insulin, thyroid hormone, and growth hormone can also play important
roles. These effects might be magnified, with damage to the kidney resulting in chronic
kidney disease (CKD). Paradoxically, the adaptive changes in concentrations of hormones
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which augment renal acid secretion and bicarbonate reabsorption can have maladaptive
effects on the kidney by accelerating the progression of CKD.

In this review, we summarize the regulation of renal acid–base balance in individuals
with normal renal function and CKD with an emphasis on the role of the endocrine
system on the various processes which determine overall acid–base balance. Although the
changes in hormones augment the body’s response to an acid load in many cases, some
hormones may contribute to the progression of CKD and/or CKD-associated disorders.
Thus, targeting certain hormones could provide another option in the treatment of patients
with CKD.

2. Regulation of Acid–Base Balance
2.1. Net Acid Production

Liver metabolism of ingested food results in H+ or HCO3
− production [1,2] (see

Figure 1). On a typical North American diet, approximately 210 mEq of H+ is generated
daily from the metabolism of the neutral sulfur-containing amino acids, methionine and
cysteine to sulfate and H+ ions. In addition, the cationic amino acids, lysine, arginine,
and some histidine residues are converted into neutral products and H+. Approximately
160 mEq/day of HCO3

− are generated from the metabolism of the amino acids, glutamate
and aspartate, and organic anions such as citrate, gluconate, malate, acetate, and lactate. An
additional 25–75 mEq of organic anions (potential base), half of which are metabolizable,
are excreted in the urine. Therefore, NEAP each day is ~50 mEq. There is, however, often
great variability among individuals with NEAP varying from 20 mEq to 120 mEq/day,
primarily reflecting differences in diet content. When looking at dietary items which
appear to separate people with a lower NEAP (<50 mEq/day) vs. those with high NEAP
(>50 meq/day), there was a significantly higher consumption of vegetables and fruits in
the group of individuals with lower NEAP [3]. In addition, some have suggested that
differences in the individual microbiome (the bacterial population of the gastrointestinal
tract) could affect the quantity of NEAP produced. The impact of dietary intake on acid–
base balance in subjects with normal kidney function is exemplified by the studies of Kurtz
et al. performed in normal subjects who were given different diets designed to produce net
acid excretion between 14 and 154 mEq/day [4]. An inverse relationship between plasma
[HCO3

−] and endogenous acid load was found: the greater the acid load, the lower the
plasma [HCO3

−]. Frassetto et al. confirmed an impact of the level of dietary acid load on
acid–base balance [5]. More recently in studies on African Americans who participated in
the African American Study of Kidney Disease and Hypertension (AASK), higher NEAP
was associated with lower serum bicarbonate concentrations. Moreover, for any given level
of NEAP, the reduction in serum bicarbonate was greater with more severe reduction in
kidney function (eGFR) [6].

In individuals with non-dialysis-dependent CKD, the generation of acid from diet
does not appear to be affected by the presence of CKD. When individuals are maintained
on a constant diet, net acid production rates appear to be equal in those with CKD and
in those with normal kidney function [7]. Uribarri et al. [8–10] examined acid production
rates in patients with non-dialysis CKD (GFR 19–33 m/min) or who were receiving chronic
peritoneal dialysis or hemodialysis. In CAPD patients, in whom the plasma [HCO3

−] was
in the normal range, net H+ production was lower than that of individuals with normal
renal function, but was similar to that of patients with CKD not receiving dialysis. The net
H+ production rate in stable chronic hemodialysis patients with mild pre-dialysis hypobi-
carbonatemia (serum bicarbonate 21 to 23 meq/L) was reduced by ~50%. The reduction
in net H+ production in patients receiving both renal replacement therapy modalities was
attributed to a decrease in sulfuric acid generation from sulfur-containing amino acids
of unclear cause and the retention of metabolizable organic anions, which were potential
sources of base [9,10]. A fall in urinary excretion of metabolizable anions has also been
described at earlier stages of CKD; whether this is due to the accompanying metabolic
acidosis is not clear [11].
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Figure 1. Net endogenous acid production (NEAP) is a composite of protons produced by metabolism
of protein and base produced by metabolism of fruits and vegetables. H+ production is primarily due
to metabolism of animal protein to amino acids cysteine, methionine, lysine and arginine. Smaller
quantities of H+ are due to metabolism of vegetable protein of the same amino acids. Base is due to
metabolism of fruits and vegetable primarily from citrate. Several formulae have been derived to
estimate NEAP. A popular one is that proposed by Frassetto et al. [5].

Dietary protein intake is often reduced in patients with CKD, which reduces NEAP.
Also, the effect of changes in NEAP on acid–base parameters might be more profound in
individuals with CKD than in those with normal renal function. For example, at entry into
the Modification of Diet in Renal Disease (MDRD) study, serum [HCO3

−] was inversely
correlated with estimated protein intake (a major determinant of NEAP) such that there
was a 1 mmol/L decease in bicarbonate for each gram per kilogram body weight increase
in protein intake. Also, a 25% reduction in estimated dietary protein intake (from 1.01 to
0.74 g/kg body weight per day) in individuals with a mean GFR of 38 ± 9.2 mL/min per
1.73 m2 caused serum [HCO3

−] to rise by approximately 1 mmol/L (0.91 ± 0.25 mmol/L).
A similar effect of changes in dietary protein intake on serum [HCO3

−] was detected in a
study of African Americans with CKD [6]. In addition, in dialysis patients, a lower serum
[HCO3

−] was often observed in individuals ingesting the highest protein intake, whereas
higher values of serum [HCO3

−] are observed in those with low protein intake [12].
In summary, NEAP in individuals with CKD, both before and after initiation of

maintenance dialysis, is usually normal or reduced. Thus, an elevated NEAP is rarely
the major contributory factor in the development of hypobicarbonatemia. However, since
NEAP is primarily correlated with dietary protein intake, any increase in protein intake
can contribute to the development or worsening of metabolic acidosis and any reduction in
protein intake below normal can lessen the severity of the metabolic acidosis. In addition, an
increase in ingestion of fruits and vegetables, as sources of base, can reduce the net acid load
for any level of protein intake. Indeed, increasing the intake of fruits and vegetables has
been recommended as a means of providing base to patients with CKD not on dialysis [13].

2.2. Buffering of Acid by Tissues

The acid produced each day is first buffered by extracellular and cellular buffers in the
muscles, bones, and kidneys. This results in a bicarbonate space, a measure of acid buffering,
of approximately 50% body weight measured in kilograms. Muscle provides the largest
reservoir of buffers as it accounts for 40% of the body weight and is rich in physiological
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intracellular buffers such as bicarbonate, phosphate, proteins and metabolic intermediates
of glucose oxidation which by tissue buffering can mitigate the impact of acid loads on
systemic pH in individuals with normal kidney function and CKD [14,15]. Interestingly, the
severity of the acidity of the intracellular compartment observed in uremic individuals did
not correlate tightly with the extracellular pH so that extracellular pH did not appear to be
a good indicator of the pH within muscle cells (6.82 in intreated CKD compared to 7.04 in
individuals without CKD) [14]. Bone can also serve to buffer acid [16]. With its large storage
of potential base, bone could contribute to the maintenance of acid–base homeostasis in
the setting of acid challenges [17]. Nevertheless, the quantitative contribution of bone to
the maintenance of blood pH is not entirely clear [18]. When coupled with reduced kidney
function, a reduced mass of buffering tissues (muscle and bone) which can occur with
aging can result in a higher risk for acid retention and associated deleterious effects. As
will be noted below, parathyroid hormone and thyroid hormone can modulate the degree
of buffering by bone and muscle.

2.3. Bicarbonate Reabsorption and Generation by the Kidneys

The kidneys play a major role in maintaining acid–base balance. Depending on the
quantity of animal protein ingested, metabolism generates approximately 1 mEq/kg body
weight [4,15]. When NEAP is positive, it is imperative that the kidneys reclaim the large
quantity of bicarbonate filtered by the glomeruli to prevent loss of base and produce new
bicarbonate to compensate the NEAP from diet.

Although bicarbonate can be absorbed along the nephron, approximately 90% of the
filtered bicarbonate is reabsorbed by the proximal tubule. The proximal tubule transports
bicarbonate from lumen and back to blood through a series of biochemical and transport
processes. Brush border membrane facing the lumen transports H+ from inside the cell to
the lumen mostly via sodium–hydrogen exchange (predominately with the NHE3 isoform)
and by a H+-ATPase proton pump. The H+ in the lumen reacts with HCO3

− to form H2CO3
which is converted to CO2 in the presence of a brush border carbonic anhydrase (CA IV).
The CO2 passes into the cell via gas channels, where it encounters the intracellular carbonic
anhydrase (CA II) and is converted back to HCO3

− and H+. The H+ is recycled back to the
lumen, whereas the HCO3

− is transported back to the blood side of the proximal tubule
via a basolateral Na+-HCO3

− co-transporter (NBCe1). As the transport of Na+ occurs
against a steep electrochemical gradient (intracellular Na+ low and intracellular potential
negative), the NBCe1-mediated transport occurs by transporting 3 anionic HCO3

− for
each Na+ moved across the basolateral membrane [19]. Na+ is also transported by the
ATP-driven Na+-K+ ATPase, thereby accomplishing net movement of Na+ and HCO3

−

from lumen to peritubular capillaries. HCO3
− extrusion out the basolateral membrane

can also occur via electroneutral basolateral HCO3
−–chloride exchange [20], which could

account for HCO3
− exit but not for additional Na+ efflux. In any case, defective bicarbonate

reabsorption occurs with treatment with carbonic anhydrase inhibitors and in proximal
RTA and in Fanconi’s syndrome.

The generation of new bicarbonate occurs as a result of the excretion of ammonium
and titratable acid. Ammonia production and excretion are the main ways by which the
kidney increases acid excretion in response to increased acid loads. Ammonia production
is determined by delivery of substrate amino acids (normally glutamine) to the kidney,
where they are converted in the proximal tubule to ammonium and through metabolism of
the amino acid carbon skeleton to bicarbonate. Excretion of the ammonium into the final
urine is important to prevent its return to the liver, where it can be detoxified to urea, a
process that consumes bicarbonate. The production of titratable acid (i.e., H+ buffering
to anions such as phosphate) is mainly driven by the delivery of phosphate to the distal
nephron coupled with secretion of H+ in the collecting duct.

In chronic kidney disease (CKD), the ability of the kidney to compensate for the
daily acid load may become impaired so that acid retention occurs. Although problems
with bicarbonate reclamation can occur in some individuals with CKD [21], bicarbonate
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reabsorption is usually intact [22]. Therefore, the major reason for acid retention in CKD
is a reduction in ammonia production and excretion [23,24]. In any case, when the acid
production even slightly exceeds the net acid excretion rates, acid can accumulate in the
interstitium and cells of the kidney and be buffered by bone so that reductions systemic
blood bicarbonate and pH are not observed [25–27]. As the imbalance between acid
production and acid excretion worsens, reductions in the serum bicarbonate and blood pH
are seen.

The importance of avoiding acid accumulation is underscored by its many clinical
consequences which include dysfunction of several organs (muscle [28,29], bone [18,30,31]
and kidney [32]) and an increase in mortality [33]. We will now focus on the important role
of several hormones in the response to acid challenges and also their potential contributory
role to progressive kidney disease.

3. Roles of Hormones in Acid-Balance and in Ckd Progression

A variety of hormones including aldosterone, angiotensin II, endothelin, parathyroid
hormone, glucocorticoids, insulin, antidiuretic hormone, thyroid hormone and growth
hormone play roles in modulating these processes (see Table 1).

Table 1. Hormones Involved in Regulation of Acid–Base Balance and Their Impact on Progression of
Chronic Kidney Disease.

Hormone Effect of Acidosis on
Serum Level or Action

Effect on Acid Base
Balance

Role Acid–Base Balance in
CKD

Effect on Progression
of CKD

Aldosterone
Increased levels with

metabolic
acidosis [34,35]

Increases H+ secretion
in collecting duct and

increases net acid
excretion [36–38]

Increased levels may help
increase kidney acid

excretion. Decreased levels
may worsen

acidosis [39,40]

Increased action
associated with

worsening kidney
function. Blocking

action slows
progression [41,42]

Angiotensin II Increased levels with
metabolic acidosis [43]

Stimulates proximal
tubule ammonia
production and

collecting duct acid
excretion [44–47]

May help to preserve
kidney acid excretion as

kidney function
declines [32]

A contributory cause of
worsening kidney
function. Blocking

actions slows
progression [32,42,48]

Endothelin
Increased with

metabolic
acidosis [49,50]

Increased net acid
excretion by

stimulating H+

secretion in proximal
tubules and collecting

duct [49–53]

May enhance acid
excretion as kidney

function declines [53,54]

Proinflammatory and
profibrotic actions

worsen kidney
function [54–56]

PTH Increased levels in
some studies. [57,58]

Increased net acid
excretion. Increased

bone buffering
capacity [17,58–62]

Increased levels in
secondary

hyperparathyroidism [63]

Association of
secondary

hyperparathyroidism
with worsening CKD,
but causal relationship

is unclear [63,64]

Glucocorticoids Increased levels [65]

Increased glutamine
delivery and kidney

ammonia production.
increased proximal

tubule acid
secretion [66–69]

Higher levels of
glucocorticoids in CKD are

not associated with
enhanced glutamine

delivery. Unclear whether
there is resistance to

action [70]

Association of high
glucocorticoids with

progression but unclear
whether the high

glucocorticoid levels
cause worsening of

CKD [71,72]
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Table 1. Cont.

Hormone Effect of Acidosis on
Serum Level or Action

Effect on Acid Base
Balance

Role Acid–Base Balance in
CKD

Effect on Progression
of CKD

Insulin
Increased levels due to

insulin
resistance [73,74]

High levels may reduce
H+ secretion by distal

nephron [75]

Effect on acid–base balance
unclear. Correction of

acidosis improves insulin
sensitivity in CKD [76]

Hyperinsulinemia in
the setting of insulin

resistance may result in
impaired kidney

hemodynamics and
progression of
CKD [77–79]

Thyroid hormone Reduced free T3 levels
and increased TSH [80]

Hypothyroidism
impedes maximal

response to metabolic
acidosis with reduced
distal acidification and

reduced tissue
buffering [81–85]

Reduced T3 due to reduced
conversion of T4. May

improve with correction of
acidosis [86]

Hypothyroidism in
CKD is associated with

poor outcomes
(mortality,

cardio-vascular disease,
functional status, body

composition) [87]

Antidiuretic
hormone Variable

May increase acid
secretion in collecting

duct leading to normal
bicarbonate in
SIADH [88,89]

Role in acid–base
regulation in CKD is

unclear as AVP signaling
pathway may be

disturbed [90]

Blocking action in
patients with more
rapidly progressive
ADPKD can slow

progression. [91,92]

Growth hormone
(GH) and IGF-1

GH may be increased
while IGF-1 levels may

be decreased [93,94]

Reduced GH and IGF-1
activity may impair

tissue buffering by loss
of muscle and bone

mass. Direct effects of
GH on tubular acid
secretion [93,95–98]

In severe CKD, GH levels
are normal or increased but

there is resistance to GH
action accompanied by
reduced IGF-1 levels.

Unknown if GH receptors
are reduced in renal

tissue [98]

High GH levels may be
associated with

progressive kidney
disease under certain
conditions through
adverse effects on

podocytes [99–102]

3.1. Aldosterone

Usually considered as a regulator of sodium and potassium balance, aldosterone is
also a major modulator of acid excretion by the kidney. The role of aldosterone in the
response of the body to acid loads is underscored by the effect of acute metabolic acidosis
to increase circulating levels of aldosterone, thereby enhancing its effect on acid excretion
by the kidney [34,35]. Aldosterone enhances sodium reabsorption in the collecting duct,
thereby setting up a negative lumen potential that not only favors potassium secretion but
also electrogenic H+ secretion via the vacuolar H+ ATPase located in the acid-secreting
intercalated cells of the collecting duct. Aldosterone also has direct effects on translocation
of H+-ATPases to the luminal membrane via a protein kinase C-dependent pathway [36,37]
which increases the number of proton pumps. Furthermore, aldosterone enhances the
luminal expression of the ammonia transporter RhCG in intercalated cells [38] which can
interact with the vacuolar H+ ATPase to facilitate ammonia transport into the lumen [39].
Thus, cell-to-lumen flow of ammonia can be directly facilitated by the co-upregulation of
the two transporters. On the other hand, reductions in aldosterone levels as seen in primary
adrenal insufficiency [40] and hyporeninemic hypoaldosteronism [103] are associated with
non-anion gap metabolic acidosis as well as hyperkalemia. The cause for reduced acid
secretion in patients with reduced aldosterone levels and high potassium levels arise from
the direct inhibition of kidney ammonia production by hyperkalemia. This concept is
supported by studies showing that correction of the hyperkalemia can correct metabolic
acidosis in such individuals [104,105].

In CKD, circulating aldosterone levels are generally elevated [41]. Elevated aldosterone
levels in patients with CKD are associated with hemodynamic and profibrotic effects that
lead to CKD progression regardless of the presence or absence of diabetes [42]. The increase
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in aldosterone levels appears to be due in part to accompanying acid retention, as both
in humans and animals, provision of base reduces aldosterone levels and slows CKD
progression [32,106].

Patients with diabetes and other conditions, however, may have low circulating aldos-
terone levels in the setting of hyporeninemic hypoaldosteronism [107]. It is important to
recognize that many drugs that slow the progression of CKD such as angiotensin-converting
enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs) and mineralocorticoid
receptor antagonists (MRAs) can cause hyperkalemia and hypobicarbonatemia. Therefore,
careful monitoring of serum potassium and total CO2/bicarbonate levels as well as kidney
function in patients receiving these agents is imperative.

3.2. Angiotensin II

Angiotensin II has direct effects on acid–base transporters and metabolism in the kid-
ney. In the proximal tubule, angiotensin II, acting through its type 1 angiotensin receptor
(AT1R), stimulates Na+-H+ exchange [44], Na+-HCO3

− cotransport [44,45] and ammonia
production and secretion [46,108]. In the outer medullary collecting duct, angiotensin II act-
ing through its AT1R increases vacuolar H+-ATPase activity in acid-secreting intercalated
cells by enhancing trafficking of this transporter to the luminal membrane [47]. Further-
more, acid-loading promotes the effects of angiotensin II on the kidney by activation of the
intrarenal renin–angiotensin system [43] and by increasing its effect on base generating
processes. In mice given short-term acid loads, angiotensin II stimulated ammonia produc-
tion and secretion by the proximal tubule to a higher degree than tubules obtained from
non-acid loaded mice [109]. This enhanced effect was seen even though the unstimulated
levels of ammonia production in short-term acid loaded mice were not perceptibly higher
than the levels observed in control mice. It is unclear whether the enhancement of the
effects of angiotensin II with acid loading is limited to the beneficial adaptive response
to increase ammonia production and secretion or can extend to potentially nephropathic
effects of angiotensin II on the progression of CKD.

In mice and humans with CKD, blocking AT1Rs is renoprotective, preventing progres-
sion of disease but also reducing the ability of the kidneys to fully enhance the excretion of
ammonia in response to metabolic acidosis [40,109]. Increased intrarenal activation of the
renin–angiotensin system in CKD has been associated with higher risk of progression [48],
but could also represent a response to maintain the ability of the kidney to handle dietary
acid loads in the face of reduced kidney function. In a study of risk factors for reduced
serum bicarbonate in patients with CKD [110], the use of angiotensin-converting enzyme
inhibitors or angiotensin receptor blockers was associated with a higher risk for having
lower serum bicarbonate levels. As useful as they are in slowing the progression of CKD,
ACEIs and ARBs may not prevent all of the adverse effects of acid retention so that serum
bicarbonate/tCO2 should be monitored closely and low serum bicarbonate/tCO2 levels
treated with base supplementation and/or with dietary adjustments to increase fruits and
vegetables while reducing animal protein.

3.3. Endothelin

Endothelins are small peptide hormones, which are potent vasoconstrictors and are
made by endothelial cells and other cells in the body [111]. The major and most-studied
endothelin is endothelin-1 which in addition to its vasoconstrictor properties can have
direct effects on the ability of the kidney to excrete acid by augmenting acid secretion by
the proximal tubule [51,52] and collecting duct [49,53]. In the collecting duct, endothelin-1
may not only stimulate acid-secretion by type A intercalated caells but may also reduce
secretion of bicarbonate in type b intercalated cells [50].

Endothelin-1 levels are increased with acid-retention and in CKD [55,56]. In CKD,
acid-retention may also be the major driver for elevated endothelin levels. The increased
endothelin-1 levels may serve to maintain adequate levels of acid excretion as kidney
function declines, but endothelin-1 also has adverse proinflammatory and profibrotic
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effects, which may become maladaptive over time [56]. Increased endothelin levels lead
to increased tubule-interstitial damage, inflammation, and fibrosis, which are associated
with increased synthesis of fibronectin and collagen, effacement of the podocytes and a
decline in GFR. As endothelin may be a factor contributing to progression of CKD, agents
which block endothelin receptors are being used to slow the progression of CKD [54,59]. In
addition, treatment of acid retention and metabolic acidosis can lower endothelin levels
and reduce their harmful effect on kidney function [32].

3.4. Parathyroid Hormone

Parathyroid hormone (PTH) plays an important role in acid–base regulation both by
making available bone carbonate buffer stores to counteract acid accumulation in CKD [17]
and also by altering kidney transport processes involved in bicarbonate reclamation and net
acid excretion [57,60]. PTH levels may be increased with metabolic and respiratory acidosis
so that it may play an active role in acid–base homeostasis [61]. PTH has been associated
with increased urinary bicarbonate losses possibly related to reduced proximal tubular
bicarbonate reabsorption. This observation, however, was more likely due to increases in
the filtered load of bicarbonate resulting from sustained elevations in serum bicarbonate
levels associated with elevated PTH levels [60,112]. In response to acute metabolic acidosis,
PTH levels increase with associated enhancement of phosphate excretion, titratable acid
and ammonium excretion. The effect of acidosis to increase PTH secretion may be mediated
through the reduction in the calcium-sensing receptor (CSR) activity by extracellular pH,
thereby reducing its inhibitory effect on PTH secretion [58]. The mechanism by which
extracellular pH alters CSR activity is unknown. Point mutations in candidate histidine
residues in the CSR, which could theoretically convey pH sensitivity did not alter the CSR
response to altered extracellular pH [58]. Parathyroidectomy markedly blunts baseline and
acid-induced net acid excretion [62] as well as reducing cellular buffering [113].

Although animal studies suggested a positive correlation between parathyroid hor-
mone and renal net acid excretion, a finding with strong biological plausibility, the evidence
of such a tight relationship between PTH and phosphorus and titratable acid excretion in
humans with CKD has been less clear. Studies involving the Chronic Renal Insufficiency
Cohort (CRIC) showed that higher acid loads and metabolic acidosis were associated
with increased serum phosphorus concentration and augmented phosphaturia, but not
consistently associated with increased concentrations of PTH or FGF-23, two known phos-
phaturic hormones [63]. These results may have been confounded by variations in diet
and kidney function. Also, direct measures of titratable acid excretion were not obtained
in these studies. Rather, titratable acid excretion was estimated using the measured urine
phosphorus concentration, and urine pH.

Epidemiologic studies have shown an association between the presence of secondary
hyperparathyroidism and CKD progression and cardiovascular outcomes [64,114]. The
causal relationship is unclear with higher PTH levels being more likely to occur with
worsening kidney function [114]. The impact of secondary hyperparathyroidism on acid–
base regulation in CKD may be related to its possible effect on bone buffering and on
maintaining phosphate excretion, and thereby titratable acid excretion.

3.5. Glucocorticoids

Glucocorticoids play a key role in the body’s response to acid challenges. Yet, glucocor-
ticoids have been shown to increase endogenous acid production, which could theoretically
increase acid accumulation in the body if it were not for their effects to increase net acid
excretion by the kidney [65]. In metabolic acidosis circulating glucocorticoid levels are
elevated [66] which increase proximal tubular bicarbonate reabsorption and ammonia
secretion which, in turn, prevent further falls in circulating bicarbonate levels. Glucocorti-
coids are necessary for optimal enhancement of Na+-H+ exchanger activity with metabolic
acidosis [67], thereby ensuring optimal bicarbonate reclamation and ammonium secretion
by the proximal tubule in this setting. Dexamethasone supplementation increases the
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apical membrane activity of the NHE-3 isoform of the Na+-H+ exchanger in brush border
membranes [68]. Glucocorticoids are also important in enhancing the uptake and oxidation
of glutamine, the major substrate for ammoniagenesis, by the proximal tubules [69]. The
effects of glucocorticoids on distal acidification are less clear. In adrenalectomized rats, the
provision of glucocorticoids increases urinary acidification, but this could be an indirect
effect of an increased glomerular filtration rate causing increased delivery of phosphate
and sodium to the distal nephron [115,116]. Studies on rabbit medullary collecting ducts
after chronic treatment with glucocorticoid (dexamethasone) did not affect acid secretion
by this segment, whereas mineralocorticoid did [117].

In addition to their effects on acid transport and ammonia secretion in the proximal
tubule, with metabolic acidosis, glucocorticoids stimulate muscle proteolysis [118], provid-
ing amino acid substrates for increasing blood glutamine levels, thereby increasing delivery
of glutamine to the kidney for ammoniagenesis [70]. These effects of glucocorticoids to
foster the breakdown of muscle protein and contribute to sarcopenia could also eventually
reduce tissue acid buffering capacity by reducing muscle mass.

In humans with CKD, the extraction of glutamine by the kidney is suppressed and
its role as a substrate for ammoniagenesis is lessened [71]. The role of glucocorticoids
in this shift of ammoniagenic substrates is unclear. Circulating glucocorticoid levels are
increased in humans with CKD [72], and this may be related to reduced clearance of
cortisol and shifts in peripheral metabolism. Higher rates of production may correlate with
progression of CKD [119]. It is unknown whether resistance to the action of glucocorticoids
in the kidney and proximal tubule may contribute to disturbed metabolism of glutamine.
Resistance to glucocorticoids occurs in peripheral blood lymphocytes via a post-receptor
mechanism [120]. It is unclear whether other tissues, including the kidney, display similar
patterns of glucocorticoid resistance.

3.6. Insulin

Studies in animals and humans have demonstrated a role for insulin in the regulation
of the transport of sodium by the kidney [121,122]. The effect on sodium excretion was
not associated with changes in serum aldosterone levels [121]. Although it is known that
metabolic acidosis and CKD can induce insulin resistance [73–75,122], insulin’s role in
acid–base regulation under normal circumstances and in CKD is less clear. Administration
of pharmacologic doses of insulin to dogs while maintaining constant serum glucose levels
resulted in reduced distal acid excretion as estimated by a decline in the urine-to-blood
pCO2 [123]. This occurred whether the serum potassium was maintained at a constant
level or allowed to fall. In studies of patients with insulin-dependent diabetes, more
physiological doses of insulin were used while maintaining euglycemia, and demonstrated
a transient rise in urinary pH and bicarbonate excretion with a fall in ammonia and
titratable acid excretion that was dose-dependent. Studies using the euglycemic clamp
approach maintain serum glucose levels by increasing glucose infusion rates while insulin
is maintained at a constant level. Therefore, some change in intracellular glucose flux
would be anticipated, which could alter ammoniagenic processes in the kidney. In other
studies, insulin had no significant effect on renal glutamine net balance, fractional excretion
or release and uptake [124]. These findings suggested that changes in glutamine-driven
renal ammonia production rates were unlikely to be affected by insulin. Taken together, the
effects of insulin on acid excretion were likely due to modification of transport mechanisms
which determine acid excretion rather than a direct effect on glutamine metabolism and
renal ammoniagenesis.

In CKD, insulin resistance can contribute to the progression of CKD for several reasons.
Insulin resistance with hyperinsulinemia can result in altered renal hemodynamics [75],
sodium retention [77], altered renal albumin handling [78], mesangial cell growth [79] and
renal fibrosis [76]. Acidosis in patients with CKD may contribute to insulin resistance
and its correction can improve insulin resistance [125]. Further studies including a larger
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number of individuals with and without diabetes are needed to validate the role of insulin
resistance in progression of CKD.

3.7. Antidiuretic Hormone

Evidence for a role of antidiuretic hormone (ADH) in acid–base regulation is limited.
In patients with the syndrome of inappropriate ADH secretion the serum [HCO3

−] is
usually normal despite the potential diluting effects of water retention [88]. The mainte-
nance of a normal serum [HCO3

−] has been attributed to changes in aldosterone levels [89].
Nevertheless, ADH has been demonstrated to play a role in stimulating acid excretion by
the kidney by increasing collecting duct H+ transport [60,126], which could theoretically
augment bicarbonate generation by the kidney and boost serum [HCO3

−]. In diabetic
ketoacidosis, ADH levels may be initially elevated and fall with treatment [90]. It was, how-
ever, unclear whether the initially elevated levels contributed to the clinical or laboratory
changes observed in these patients. It is unknown whether circulating concentrations of
ADH or its co-secreted peptide copeptin are altered in other forms of metabolic acidosis in
which the osmolality, hydration and volume status have remained normal.

ADH levels may be elevated in individuals with CKD with associated increases in
serum osmolality as the azotemia of CKD progresses [91]. At the same time, the rise in
ADH was associated with a reduction in urine cyclic AMP, tubular epithelial aquaporin 2
abundance and concentrating ability, all consistent with tubular resistance to the action
of ADH.

The effect of ADH on the progression of chronic kidney disease has been demonstrated
in patients with autosomal dominant polycystic kidney disease (ADPKD). The beneficial
effect of blocking the V2 receptor of ADH with tolvaptan was most evident in patients
with ADPKD who had enlarging kidney volume and rapidly progressive disease [92,127].
Interestingly, one observational study of 67 individuals treated with chronic tolvaptan for
ADPKD showed an increase in serum bicarbonate levels with tolvaptan treatment [128]. The
reason for an increase in bicarbonate concentration was unclear, but as net acid excretion
was diminished in individuals treated with tolvaptan [81], the higher bicarbonate level did
not result from enhanced acid excretion but rather from either increased base or reduced
acid absorption into the body or reduced net endogenous acid production.

3.8. Thyroid Hormone

The presence of normal levels of thyroid hormone are important in allowing the
kidney to respond optimally to acid challenges. In man, non-immune hypothyroidism
is generally associated with a normal serum bicarbonate concentration, but when an
acid load is given, a defect in distal nephron acidification can be observed [82]. Studies
on rats have demonstrated that hypothyroidism was associated with reduced urinary
acidification [83], which was likely due to a distal defect in acid secretion as estimated
by a reduced urine-to-blood pCO2 gradient after bicarbonate loading [84]. Subsequent
studies exploring the transport mechanisms of the renal acidification defect observed with
thyroid hormone deficiency demonstrated that the acid–base transporters which appeared
to be affected most were those located in the apical membrane of the proximal tubule.
The sodium–hydrogen exchanger 3 (NHE3), the B2 subunit of the H+-ATPase and the
sodium-phosphate co-transporter IIa (NaPi IIa) were reduced in hypothyroid rats, whereas
the number of acid-secreting intercalated cells of the collecting duct was increase in a
compensatory manner [80]. It should be pointed out that chronic metabolic acidosis can be
associated with reduced thyroid hormone levels and elevate thyroid-stimulating hormone
levels and these factors could further contribute to an altered response to acid loads [85].

In addition to the direct effects thyroid hormone has on acid–base transport processes
in the kidney, reduced thyroid hormone levels may dampen the release of glutamine from
muscles, which could reduce the flow of glutamine to kidneys and impair ammoniagenic
response to an acid load [87]. Nevertheless, the effect of hypothyroidism on interorgan
glutamine transport in metabolic acidosis or in CKD has not been directly examined.
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CKD is associated with altered thyroid function [86]. There are low serum free tri-
iodothyronine (T3) levels which have been attributed to altered peripheral conversion
of T4 and which can be associated with elevated thyroid-stimulating hormone levels.
Hypothyroidism can be associated with worse clinical outcomes (mortality, cardiovascular
disease, physical function and body composition) [86]. The reduction in body muscle
content could result in a reduced reservoir for amino acids to be delivered to the kidney for
ammoniagenesis and reduced muscle tissue volume to serve as an acute buffer to acid loads.
As patients with CKD have many reasons for reduced acid excretion, the independent
effect of thyroid dysfunction on kidney acid–base handling in CKD is difficult to discern.
In any case, correction of acidosis with base therapy improves thyroid axis indices [85,129].

3.9. Growth Hormone and Insulin-like Growth Factor 1

Growth hormone and insulin-like growth factor 1 (IGF-1) affect a variety of kidney
functions including glomerular filtration rate and phosphate reabsorption [93] and can
play a role in systemic acid–base balance [93,95]. In studies of rats, removal of the pituitary
gland resulted in metabolic acidosis due to a decrease in net acid secretion, and treatment
with growth hormone corrected the metabolic acidosis and restored renal acid excretion
likely by improving renal tubular acid secretion [96] and ammoniagenesis [94]. Studies in
canine isolated proximal tubules demonstrated a stimulatory effect of growth hormone on
ammonia production [94]. The clinical relevance of the effect of low growth hormone levels
and activity was observed in children with growth hormone deficiency and displayed mild
metabolic acidosis which resolved with administration of growth hormone.

Human adults given an NH4Cl acid load were noted to have reduced IGF-1 levels due
to a reduced hepatic stimulatory response to growth hormone while growth hormone levels
were slightly higher with a greater rise in response to growth hormone stimulating factor
than in non-acidotic controls [130]. When human subjects were given an NH4Cl acid load to
induce metabolic acidosis and subsequently given a sustained period of growth hormone,
ammonia excretion increased and serum bicarbonate level was partially corrected [95]. The
latter study indicated that higher levels of growth hormone could increase IGF-1 levels
and overcome the apparent resistance to the action of basal levels of growth hormone
to stimulate ammonia production and acid excretion by the kidney. The mechanism of
enhanced acid secretion was explored in subjects who were restricted in dietary sodium
intake while being given an NH4Cl acid load and growth hormone [97]. Sodium restriction
did not affect the stimulation of ammoniagenesis by growth hormone but did block urinary
acidification and net acid excretion compared to subjects with higher sodium intakes. Distal
sodium delivery to the collecting duct appeared to be important in stimulating sufficient
proton secretion to promote urinary acidification and net acid excretion.

Growth hormone has been shown to exert physiological effects that are not mediated
by IGF-1. The effect of growth hormone to stimulate ammoniagenesis in proximal tubule
segments was demonstrated in the absence of IGF-1 in vitro [94], and the effect of growth
hormone to stimulate collecting duct hydrogen ion secretion was not reproduced by the
provision of IGF-1 [96]. Studies on rabbit proximal tubules showed no direct effect of either
growth hormone or IGF-1 on volume and bicarbonate reabsorption, but IGF-1 did increase
phosphate reabsorption [98]. As the somatic effects of growth hormone are mediated via
IGF-1, disruption of the growth hormone/IFG-1 access could reduce muscle and bone mass,
which could potentially affect the tissue buffering capacity in the body. The overall effect of
growth hormone and IGF-1 on acid–base balance in the setting of metabolic acidosis would
likely reflect the relative acid–base impact of acidosis on growth hormone and IGF-1 levels
and their effects on acid–base transport and metabolic processes.

In severe CKD, although growth hormone levels may be normal or increased, there
is resistance to growth hormone action due to reduced growth hormone receptor expres-
sion in tissues, post-receptor dysregulation, reduced IGF-1 levels and the presence of
inhibitory proteins which inhibit the action of IGF-1 [99]. Whether CKD-induced resistance
to growth hormone extends to its effect on acid–base functions of the kidney is unknown.
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Of note, although studies were carried out in experimental CKD [100], acromegalic individ-
uals [101,102] and individuals with poorly controlled type 1 diabetes mellitus [131], high
growth hormone levels can be associated with glomerular hyperfiltration, hypertrophy
and glomerulosclerosis (the latter more rarely in humans), and chronic administration of
growth hormone for the treatment of growth hormone deficiency has not been associated
with progression of chronic kidney disease [132–134].

3.10. Effects of Acid pH Which May Contribute to CKD Progression in the Absence of Hormones

So far, the emphasis of this review has been to highlight the roles of various hormones
in the regulation of acid–base balance and their potential impact on acid–base balance
and CKD progression. However, there is evidence that changes in the level of acidity in
the surrounding cellular environment can directly inflict kidney damage. In vitro mod-
els in which the extracellular milieu can be tightly controlled have used to examine the
effects pH to induce potential inflammatory mediators. Lowering the pH of cultured
RAW (macrophage-like) cells to 7 and 6.5 with hydrochloric acid resulted in an increased
proinflammatory profile [135]. Such pH-induced changes could result in an inflammatory
response, which could provoke further injury to neighboring kidney cells [136]. In cortical
slices and isolated proximal tubules, exposure to pH 6.5 with low bicarbonate concentration
resulted in a more oxidized nicotinamide adenine dinucleotide (NAD+) state and altered
lipid metabolism, which resulted in tubular damage [137]. Although these studies have
demonstrated provocative effects of low pH on potentially pathogenic factors in the kidney,
the extreme reduction in pH applied in these studies would seem to lessen the applicability
of the results to individuals that we see in our CKD clinics. As illustrated in this review, the
design of in vivo studies on isolated acid–base status as a single causative factor would be
challenging given the complex interplay among changes in acid–base status and various
hormone levels.

4. Summary and Conclusions

Aldosterone, angiotensin II, endothelin, PTH and glucocorticoids play important roles
in the regulation of acid–base balance by the kidney in patients with normal renal function.
Other hormones such as insulin, growth hormone and thyroid hormone may also play a role
under certain circumstances. In general, alterations in the activity of individual hormones
can affect certain transporters and metabolic processes in the proximal and/or distal
tubules to alter the kidney response to acidosis (see Figure 2). Their role in the regulation
of acid–base balance in patients with CKD may become more important as renal function
declines. Further, in some cases, development of metabolic acidosis can increase hormonal
concentration or activity. In such cases, improvement in acid–base balance resulting from
treatment with base is associated with a decrease in the hormonal concentrations.

A rise in the concentration of certain hormones can adversely affect kidney function
and accelerate the progression of CKD (Figure 3). Administration of agents that block the
action of such hormones or with base, which lowers the concentration of the hormones,
can slow the progression of CKD. Therefore, administration of base to improve acid–base
balance in patients with CKD and administration of agents that block the action of the
hormones should be considered as an integral component of therapy.
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Figure 3. Effect of CKD on hormone secretion, renal acid excretion and progression of CKD. A
complex interplay exists between development of CKD, hormone secretion, and progression of CKD.
Increases in secretion of endothelin, aldosterone, and angiotensin II with CKD may also cause kidney
damage. Glucocorticoids are also increased in CKD and acidosis and play a role in muscle catabolism;
although they are initially shuttled to the kidney amino acids for ammoniagenesis, sarcopenia can
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result in reduced tissue buffering of acid. Treatment strategies that lessen these effects could slow
progression of CKD. Direct effects of metabolic acidosis to cause kidney damage have been suggested
by in vitro studies, but the extreme levels of low pH used in the studies reduced their applicability to
most patients with CKD (RAAS: renin–angiotensin–aldosterone system).
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