
UC Berkeley
UC Berkeley Previously Published Works

Title
Close-kin mark-recapture methods to estimate demographic parameters of mosquitoes

Permalink
https://escholarship.org/uc/item/53s4z8qq

Journal
PLOS Computational Biology, 18(12)

ISSN
1553-734X

Authors
Sharma, Yogita
Bennett, Jared B
Rašić, Gordana
et al.

Publication Date
2022

DOI
10.1371/journal.pcbi.1010755
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/53s4z8qq
https://escholarship.org/uc/item/53s4z8qq#author
https://escholarship.org
http://www.cdlib.org/


RESEARCH ARTICLE

Close-kin mark-recapture methods to

estimate demographic parameters of

mosquitoes

Yogita Sharma1,2☯, Jared B. BennettID
3☯, Gordana RašićID
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Abstract

Close-kin mark-recapture (CKMR) methods have recently been used to infer demographic

parameters such as census population size and survival for fish of interest to fisheries and

conservation. These methods have advantages over traditional mark-recapture methods as

the mark is genetic, removing the need for physical marking and recapturing that may inter-

fere with parameter estimation. For mosquitoes, the spatial distribution of close-kin pairs

has been used to estimate mean dispersal distance, of relevance to vector-borne disease

transmission and novel biocontrol strategies. Here, we extend CKMR methods to the life his-

tory of mosquitoes and comparable insects. We derive kinship probabilities for mother-off-

spring, father-offspring, full-sibling and half-sibling pairs, where an individual in each pair

may be a larva, pupa or adult. A pseudo-likelihood approach is used to combine the mar-

ginal probabilities of all kinship pairs. To test the effectiveness of this approach at estimating

mosquito demographic parameters, we develop an individual-based model of mosquito life

history incorporating egg, larva, pupa and adult life stages. The simulation labels each indi-

vidual with a unique identification number, enabling close-kin relationships to be inferred for

sampled individuals. Using the dengue vector Aedes aegypti as a case study, we find the

CKMR approach provides unbiased estimates of adult census population size, adult and lar-

val mortality rates, and larval life stage duration for logistically feasible sampling schemes.

Considering a simulated population of 3,000 adult mosquitoes, estimation of adult parame-

ters is accurate when ca. 40 adult females are sampled biweekly over a three month period.

Estimation of larval parameters is accurate when adult sampling is supplemented with ca.

120 larvae sampled biweekly over the same period. The methods are also effective at

detecting intervention-induced increases in adult mortality and decreases in population size.

As the cost of genome sequencing declines, CKMR holds great promise for characterizing

the demography of mosquitoes and comparable insects of epidemiological and agricultural

significance.
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Author summary

Close-kin mark-recapture (CKMR) methods are a genetic analogue of traditional mark-

recapture methods in which the frequency of marked individuals in a sample is used to

infer demographic parameters such as census population size and mean dispersal dis-

tance. In CKMR, the mark is a close-kin relationship between individuals (parents and

offspring, siblings, etc.). While CKMR methods have mostly been applied to aquatic spe-

cies to date, opportunities exist to apply them to insects and other terrestrial species. Here,

we explore the application of CKMR to mosquitoes, with Aedes aegypti, a primary vector

of dengue, chikungunya and yellow fever, as a case study. By analyzing simulated Ae.
aegypti populations, we find the CKMR approach provides unbiased estimates of adult

census population size, adult and larval mortality rates, and larval life stage duration, and

may be informative of intervention impact. Optimal sampling schemes are compatible

with Ae. aegypti ecology and field studies. This study represents the first theoretical explo-

ration of the application of CKMR to an insect species, and demonstrates its potential for

characterizing the demography of insects of epidemiological and agricultural importance.

1 Introduction

In the last few years, there has been a growth of interest in close-kin mark-recapture (CKMR)

methods to characterize the demography of wild populations [1]. These methods are analo-

gous to traditional mark-recapture methods, which estimate census population size and other

demographic parameters based on the recapture rates of marked individuals. The advantages

of CKMR methods stem from the mark being a genetically-inferred close-kin relationship,

removing the need for physical marking and recapturing. Initial applications of these methods

have included a wide range of fish species—southern bluefin tuna [2], white sharks [3], brook

trout [4] and Atlantic salmon [5]. Fish provide a good case for CKMR because their popula-

tions are well-mixing, physical marking and recapturing pose logistical challenges, and there is

a willingness to invest in population size estimates given their importance to fisheries and con-

servation [1]. CKMR studies on fish have also estimated annual juvenile and adult survival

probabilities and rates of population growth [2, 3].

As high-throughput genomic sequencing, which enables accurate kinship estimation,

becomes cheaper, it is expected that CKMR methods will be applied to an increasing number

of species. For insects, two recent studies used the spatial distribution of close-kin pairs to

characterize dispersal patterns of Aedes aegypti [6, 7], the mosquito vector of dengue, Zika, chi-

kungunya and yellow fever. Both studies were set in urban landscapes—in Malaysia [6] and

Singapore [7]—where mosquitoes inhabit high-rise apartment buildings. These locations were

chosen to support releases of Wolbachia-infected mosquitoes intended for population replace-

ment [8] and suppression [9]. Characterizing mosquito movement is important to under-

standing the spatial transmission of vector-borne diseases [10], and to designing optimal

biocontrol strategies, such as those involving Wolbachia, for vector-borne disease control. By

analyzing close-kin pairs, these two studies estimated mean dispersal distances in agreement

with previous mark-recapture studies [7, 11], and isolated a radius of dispersal specific to Ae.
aegypti oviposition behavior [6].

In this paper, we extend the CKMR formalism described by Bravington et al. [1] to mosqui-

toes, using Ae. aegypti as a case study, in order to derive demographic parameters from

close-kin pairs. These methods involve deriving “kinship probabilities” describing the chance

that a given individual is related to another in the population. These are calculated as the
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reproductive output having a given kinship relationship divided by the total reproductive out-

put of all adult females in the population, and depend upon a parameterized model of life his-

tory and mating behavior, including egg production and mortality rates. Because the age of

adult Ae. aegypti mosquitoes is difficult to estimate in the field, age must be accommodated as

a latent variable, with marginal kinship probabilities being calculated by considering all consis-

tent event histories. For fish species to which CKMR methods have been applied thus far, full-

siblings are rare as adults tend to be polygamous [3]. In contrast, for mosquitoes, full-siblings

are common as adult females tend to mate only once, soon after emergence, and lay eggs from

this mating event over an extended period. Mosquito half-siblings are also common, and tend

to be paternal (i.e., have the same father and different mothers). Taking these considerations

into account, we derive kinship probabilities for mother-offspring, father-offspring, full-sibling

and half-sibling pairs where either individual in each pair may be a larva, pupa or adult. A

pseudo-likelihood approach is used to combine the marginal probabilities of all kinship pairs

[1].

To test the effectiveness of this approach at estimating mosquito demographic parameters,

we develop an individual-based model of mosquito life history, incorporating egg, larva, pupa

and adult life stages. By labeling each individual with a unique identification number (IN) and

tracking parental INs, this enables close-kin relationships to be inferred for sampled individu-

als. As studies of aquatic species have shown, a parsimonious individual-based simulation of

life history allows a variety of CKMR sampling schemes to be explored, and for effectiveness at

parameter estimation to be assessed [12, 13]. The short generation time of mosquitoes—less

than a month for Ae. aegypti [14]—means that sampling may take place over a few months, as

opposed to several years for long-lived fish species [2]. Open questions regarding sampling

schemes for mosquitoes relate to the required sample size, optimal frequency (e.g., daily,

biweekly or weekly), duration (i.e., number of months), and distribution of collections across

larval, pupal and adult life stages in order to estimate population size, mortality rates, and

durations of juvenile life stages. Here, we use our simulation model and CKMR framework to

address these questions, and in doing so, provide a case study for CKMR applications to com-

parable insects of epidemiological and agricultural significance.

2 Materials and methods

2.1 Mosquito population dynamics

We use a discrete-time version of the lumped age-class model [15, 16], applied to mosquitoes

[17], as the basis for our population simulation and CKMR analysis (Fig 1). This model consid-

ers discrete life history stages—egg (E), larva (L), pupa (P) and adult (A)—with sub-adult

stages having defined durations—TE, TL and TP for eggs, larvae and pupae, respectively. We

use a daily time-step, since mosquito samples tend to be recorded by day, and this is adequate

to model the organism’s population dynamics [18]. Daily mortality rates vary according to life

stage—μE, μL, μP and μA for eggs, larvae, pupae and adults, respectively—and density-depen-

dent mortality occurs at the larval stage. Mortality rates are assumed to be independent of age.

The sex of an emergent pupa is drawn from a Bernoulli distribution with probability 0.5 such

that, on average, half of emerging adults are female (F) and half are male (M). Females mate

once upon emergence, and retain the genetic material from that mating event for the remain-

der of their lives. Males mate at a rate equal to the female emergence rate which, for a popula-

tion at equilibrium, is equal to the female mortality rate, μA. Females lay eggs at a rate, β, which

is assumed to be independent of age.

Default life history and demographic parameters for Ae. aegypti are listed in Table 1. Given

the difficulty of measuring juvenile stage mortality rates in the wild, these are chosen for

PLOS COMPUTATIONAL BIOLOGY Close-kin mark-recapture methods for mosquitoes

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010755 December 12, 2022 3 / 27

https://doi.org/10.1371/journal.pcbi.1010755


consistency with observed population growth rates in the absence of density-dependence (see

S1 Text §1.1 for formulae and derivations). Larval mortality increases with larval density and,

according to the lumped age-class model, reaches a set value when the population is at equilib-

rium. Although mosquito populations vary seasonally, we assume a constant adult population

size, NA, for this CKMR analysis, and restrict sampling to a maximum period of four months,

corresponding to a season. Minor population size fluctuations occur in the simulation model

due to sampling and stochasticity.

2.2 Kinship probabilities

Following the methodology of Bravington et al. [1], we now derive kinship probabilities for

mother-offspring, father-offspring, full-sibling and half-sibling pairs based on the lumped age-

Fig 1. The lumped age-class model of mosquito life history. Mosquitoes are divided into four life stages: egg, larva,

pupa and adult. The durations of the sub-adult stages are TE, TL and TP for eggs, larvae and pupae, respectively. Sex is

modeled at the adult stage, with half of pupae developing into females and half developing into males. Daily mortality

rates vary by life stage—μE, μL, μP and μA for eggs, larvae, pupae and adults, respectively. Density-dependent mortality

occurs at the larval stage and is a function of the total number of larvae, NL. Females mate once upon emergence, and

retain the genetic material from that mating event for the remainder of their lives. Males mate at a rate equal to the

female emergence rate. Females lay eggs at a rate, β.

https://doi.org/10.1371/journal.pcbi.1010755.g001

Table 1. Demographic and life history parameters for Aedes aegypti mosquitoes.

Parameter: Definition: Value: References:

NA Adult population size 3000 [19–21]

μA Adult mortality rate 0.09 / day [22]

β Female fecundity 20 / day [23]

TE Duration of egg stage 2 days [14]

TL Duration of larval stage 5 days [14]

TP Duration of pupal stage 1 day [14]

μE Egg mortality rate 0.175 / day S1 Text §1, [24]

μL Larval mortality rate 0.554 / day S1 Text §1

μP Pupal mortality rate 0.175 / day S1 Text §1, [24]

https://doi.org/10.1371/journal.pcbi.1010755.t001
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class mosquito life history model. Each kinship probability is calculated as the reproductive

output having that relationship divided by the total reproductive output of all adult females in

the population. In each case, we consider two individuals (adult, larva or pupa) sampled at

known times, t1 and t2, with probability symbols and references to equations listed in Table 2.

Important details to note for this analysis are that: i) mosquito sampling is lethal, ii) although

age is a latent variable, temporal information is captured in the life stages of sampled individu-

als, and iii) mosquito mating behaviour, in which females mate once upon emergence and

males mate throughout their adult lifespan, is reflected in the calculations.

2.2.1 Mother-offspring. Let us begin with the simplest possible kinship probability,

PMOL(t2|t1), which represents the probability that, given an adult female sampled on day t1, a

larva sampled on day t2 is her offspring. This can be expressed as the relative larval reproduc-

tive output on day t2 of an adult female sampled on day t1:

PMOLðt2jt1Þ ¼
E½Larval offspring at time t2 from an adult female sampled at time t1�

E½Larval offspring at time t2 from all adult females�
¼
EMOLðt2jt1Þ

EL
: ð1Þ

Here, EMOL(t2|t1) represents the expected number of surviving larval offspring on day t2
from an adult female sampled on day t1, and EL represents the expected number of surviving

larval offspring from all adult females in the population at times consistent with the time of lar-

val sampling. Note that, since we are assuming a constant population size, EL is independent of

Table 2. Kinship categories, sampled life stages, sampling times, and probability symbols used in close-kin mark-recapture analysis.

Kinship category: Sampled life stages: Probability symbol: Equations:

Mother-offspring Adult female (t1), larva (t2) PMOL(t2|t1) §2.2.1

Adult female (t1), adult (t2) PMOA(t2|t1) S1 Text §2.1

Adult female (t1), pupa (t2) PMOP(t2|t1) S1 Text §2.1

Father-offspring Adult male (t1), larva (t2) PFOL(t2|t1) S1 Text §2.2

Adult male (t1), adult (t2) PFOA(t2|t1) §2.2.2

Adult male (t1), pupa (t2) PFOP(t2|t1)) S1 Text §2.2

Full-siblings Larva (t1), larva (t2) PFSLL(t2|t1) §2.2.3

Adult (t1), adult (t2) PFSAA(t2|t1) S1 Text §2.3

Larva (t1), adult (t2) PFSLA(t2|t1) S1 Text §2.3

Adult (t1), larva (t2) PFSAL(t2|t1) S1 Text §2.3

Pupa (t1), pupa (t2) PFSPP(t2|t1) S1 Text §2.3

Pupa (t1), larva (t2) PFSPL(t2|t1) S1 Text §2.3

Larva (t1), pupa (t2) PFSLP(t2|t1) S1 Text §2.3

Pupa (t1), adult (t2) PFSPA(t2|t1) S1 Text §2.3

Adult (t1), pupa (t2) PFSAP(t2|t1) S1 Text §2.3

Half-siblings Larva (t1), larva (t2) PHSLL(t2|t1) §2.2.4

Adult (t1), adult (t2) PHSAA(t2|t1) S1 Text §2.4

Larva (t1), adult (t2) PHSLA(t2|t1) S1 Text §2.4

Adult (t1), larva (t2) PHSAL(t2|t1) S1 Text §2.4

Pupa (t1), pupa (t2) PHSPP(t2|t1) S1 Text §2.4

Pupa (t1), larva (t2) PHSPL(t2|t1) S1 Text §2.4

Larva (t1), pupa (t2) PHSLP(t2|t1) S1 Text §2.4

Pupa (t1), adult (t2) PHSPA(t2|t1) S1 Text §2.4

Adult (t1), pupa (t2) PHSAP(t2|t1) S1 Text §2.4

https://doi.org/10.1371/journal.pcbi.1010755.t002
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time and is given by:

EL ¼
X0� TE

y2¼0� TE � ðTL � 1Þ

NF � b� ð1 � mEÞ
TE � ð1 � mLÞ

ð0� y2 � TEÞ: ð2Þ

Here, NF represents the equilibrium adult female population size (which is equal to half the

equilibrium adult population size, NA/2), and y2 represents the day of egg laying. Considering

day 0 as the reference day (in place of t2), the egg must have been laid between days (0 − TE −
(TL − 1)) and (0 − TE) (Fig 2A). Eq 2 represents the expected number of offspring laid by all

adult females in the population that survive the egg and larva stages up to the time of sampling

(day 0) and is graphically depicted in Fig 2A.

EMOL(t2|t1), on the other hand, is specific to the sampled adult female and the day of larval

sampling, t2. This is graphically depicted in Fig 2B, and is given by:

EMOLðt2jt1Þ ¼
Xt2 � TE

y2¼t2 � TE � ðTL � 1Þ

ð1 � mAÞ
ðt1 � y2Þ � I½ðt1 � TAÞ < y2 � t1� � b� ð1 � mEÞ

TE � ð1 � mLÞ
ðt2 � y2 � TEÞ

� �
: ð3Þ

Here, the day of egg-laying, y2, is summed over days (t2 − TE − (TL − 1)) through (t2 − TE),

for consistency with the larva being present on the day of sampling (Fig 2B). The first term in

the summation represents the probability that the adult female sampled on day t1 is alive on

the day of egg-laying, and the second term (in larger brackets) represents the expected surviv-

ing larval output of this adult female on day t2. This latter term is equal to their daily egg pro-

duction, β, multiplied by the proportion of eggs that survive the egg and larva stages from the

day they were laid up to the day of sampling. An indicator function is included to limit consid-

eration to cases where the day of egg-laying lies within the adult female’s possible lifetime—

i.e., between days t1 and (t1 − TA), where TA represents the maximum possible age of an adult

mosquito. Although adult lifetime is exponentially-distributed, a value of TA may be chosen

that captures most of this distribution and leads to accurate parameter inference.

Extending the mother-offspring kinship probability for pupal and adult offspring is

straightforward. These extensions are provided in S1 Text §2.1, and are also described for the

father-adult offspring case below.

2.2.2 Father-offspring. Next, we consider the father-adult offspring kinship probability,

PFOA(t2|t1), which represents the probability that, given an adult male sampled on day t1, an

adult sampled on day t2 is his offspring. This can be expressed as the relative adult reproductive

output on day t2 of adult females that mated with an adult male sampled on day t1:

PFOAðt2jt1Þ ¼
E½Adult offspring at time t2 from an adult male sampled at time t1�

E½Adult offspring at time t2 from all adult females�
¼
EFOAðt2jt1Þ

EA
: ð4Þ

Here, EFOA(t2|t1) represents the expected number of surviving adult offspring on day t2 of

an adult male sampled on day t1, and EA represents the expected number of surviving adult off-

spring from all adult females at times consistent with the time of adult offspring sampling.

Assuming a population at equilibrium, EA is independent of time and is given by:

EA ¼
X0� TE � TL � TP

y2¼0� TE � TL � TP � ðTA � 1Þ

NF � b� ð1 � mEÞ
TE � ð1 � mLÞ

TL � ð1 � mPÞ
TP � ð1 � mAÞ

ð0� y2 � TE � TL � TPÞ: ð5Þ

Here, considering day 0 as the reference day (in place of t2), the day of egg-laying, y2, is

summed over days (0 − TE − TL − TP − (TA − 1)) through (0 − TE − TL − TP), for consistency

with the adult offspring being present on the day of sampling (Fig 2C). Eq 5 therefore
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represents the expected number of offspring laid by all adult females in the population that

survive the egg, larva, pupa and adult stages up to the time of sampling (day 0) and is graphi-

cally depicted in Fig 2C.

EFOA(t2|t1) is graphically depicted in Fig 2D. Each adult female mates once upon emergence

and, since there are equal numbers of adult females and males in the population, each adult

male mates on average once in their lifetime too. The day of this mating event, ti, is unknown

Fig 2. Schematic representation of parent-offspring kinship probabilities. Parameters and state variables are as

defined in Table 1 and §2.1. Subscript 1 refers to the parent (blue), and subscript 2 refers to the offspring (purple, the

perspective from which probabilities are calculated). Circles represent living individuals and squares represent sampled

individuals. Parents are sampled on day t1, eggs are laid on day y2, and offspring are sampled on day t2. Offspring

kinship probabilities are the ratio of the expected number of surviving offspring from a given adult on day t2, and the

expected number of surviving offspring from all adult females on this day. The expected number of surviving offspring

from all adult females requires considering days of egg-laying consistent with larval ages at sampling in the range [0,

TL) (for larval offspring) (A), or adult ages at sampling in the range [0, TA) (for adult offspring) (C). Calculating the

expected number of surviving larval offspring on day t2 from an adult female requires considering days of egg-laying,

y2, consistent with maternal ages at egg-laying in the range [0, TA), and with larval offspring ages at sampling in the

range [0, TL) (B). For father-adult offspring pairs, this requires considering days of mating, ti, and egg-laying, y2,

consistent with maternal ages at egg-laying, and paternal and adult offspring ages at sampling in the range [0, TA) (D).

https://doi.org/10.1371/journal.pcbi.1010755.g002
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and so, in calculating EFOA(t2|t1), we treat this as a latent variable and take an expectation over

all possible values it can take:

EFOAðt2jt1Þ ¼
Xt1

ti¼t1 � ðTA � 1Þ

pAðt1 � tiÞ � EFOAðt2jt1; tiÞ: ð6Þ

Here, the expectation over the day of mating, ti, is taken over days (t1 − (TA − 1)) through

t1, for consistency with the day of adult male sampling (Fig 2D). The term EFOA(t2|t1, ti) repre-

sents the expected number of adult offspring on day t2, conditional upon the adult male being

sampled on day t1 and the day of mating being ti, and pA(t) represents the probability that a

given adult in the population has age t. Here, the probability that an adult has age (t1 − ti) is

equivalent to the probability that the mating event occurred on day ti. In general, pA(t) follows

from the daily adult survival probability, (1 − μA), and is given by:

pAðtÞ ¼ ð1 � mAÞ
t
.XTA � 1

tj¼0

ð1 � mAÞ
tj : ð7Þ

EFOA(t2|t1, ti) is then given by:

EFOAðt2jt1; tiÞ ¼
XtiþðTA � 1Þ

y2¼ti

ð1 � mAÞ
ðy2 � tiÞ �

I½ðy2 þ TE þ TL þ TPÞ � t2 < ðy2 þ TE þ TL þ TP þ TAÞ�

� b� ð1 � mEÞ
TE � ð1 � mLÞ

TL

� ð1 � mPÞ
TP � ð1 � mAÞ

ðt2 � y2 � TE � TL � TPÞ

0

B
@

1

C
A:ð8Þ

Here, the day of egg-laying, y2, is summed over days ti through (ti + (TA − 1)), for consis-

tency with the mother’s potential lifespan (Fig 2D). The first term in the summation represents

the probability that the mother is alive on the day of egg-laying, and the second term (in larger

brackets) represents the expected surviving adult output of this adult female on day t2. This

latter term is equal to their daily egg production, β, multiplied by the proportion of eggs that

survive the egg, larva, pupa and adult stages from the day they were laud up to the day of sam-

pling. An indicator function is included to limit consideration to cases where the day of adult

offspring sampling, t2, lies within their possible adult lifetime—i.e., between days (y2 + TE + TL
+ TP) and (y2 + TE + TL + TP + TA).

Extending the father-offspring kinship probability for larval and pupal offspring is straight-

forward, involving similar adaptations as per this case. These extensions are provided in S1

Text §2.2.

2.2.3 Full-siblings. Next, we consider the full-sibling kinship probability for larva-larva

pairs, PFSLL(t2|t1), which represents the probability that, given a larva sampled on day t1, a larva

sampled on day t2 is their full-sibling. This can be expressed as the relative larval reproductive

output on day t2 of the mother of a larva sampled on day t1:

PFSLLðt2jt1Þ ¼
E½Larvae at time t2 that are full-siblings of a larva sampled at time t1�

E½Larval offspring at time t2 from all adult females�
¼
EFSLLðt2jt1Þ

EL
: ð9Þ

Here, EFSLL(t2|t1) represents the expected number of surviving larvae on day t2 that are full-

siblings of a larva sampled on day t1 and is graphically depicted in Fig 3A. EL is given by Eq 2.

For convenience, let us refer to the larva sampled on day t1 as individual 1. To calculate
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EFSLL(t2|t1), there are two unknown event times that we treat as latent variables and take an

expectation over—i) the day that egg 1 is laid, y1, and ii) the day that individual 1’s mother

emerges as an adult, ti:

EFSLLðt2jt1Þ ¼
Xt1 � TE

y1¼t1 � TE � ðTL � 1Þ

pLðt1 � y1 � TEÞ �
Xy1

ti¼y1 � ðTA � 1Þ

pAðy1 � tiÞ � EFSLLðt2jt1; y1; tiÞ: ð10Þ

Fig 3. Schematic representation of sibling kinship probabilities. Parameters and state variables are as defined in

Table 1 and §2.1. Subscript 1 refers to the reference sibling (blue), and subscript 2 refers to the sibling from whose

perspective the probabilities are calculated (purple). Circles represent living individuals and squares represent sampled

individuals. The reference sibling is sampled on day t1 and laid on day y1. Sibling 2 is sampled on day t2 and laid on day

y2. Sibling kinship probabilities are the ratio of the expected number of surviving siblings of a given individual on day

t2, and the expected number of surviving offspring from all adult females on this day. Calculating the expected number

of surviving larval full-siblings of a larva requires considering days of their mother emerging as an adult, ti, and of egg-

laying, y1 and y2, that are consistent with maternal ages at egg-laying in the range [0, TA), and with larval ages at

sampling in the range [0, TL) (A). Calculating the expected number of surviving larval half-siblings of a larva requires

considering days of their father emerging as an adult, tj, their mothers emerging as adults, ti and tk, and of egg-laying,

y1 and y2, that are consistent with paternal ages at mating in the range [0, TA), maternal ages at egg-laying in the range

[0, TA), and larval ages at sampling in the range [0, TA) (B).

https://doi.org/10.1371/journal.pcbi.1010755.g003
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Here, the expectation over the day that egg 1 is laid, y1, is taken over days (t1 − TE − (TL
− 1)) through (t1 − TE), for consistency with the day that larva 1 is sampled, and the expecta-

tion over the day of their mother’s emergence, ti, is taken over days (y1 − (TA − 1)) through

y1, so that egg 1 may be laid during their mother’s potential lifetime (Fig 3A). The term

EFSLL(t2|t1, y1, ti) represents the expected number of surviving larvae on day t2 that are full-sib-

lings of larva 1, conditional upon egg 1 being laid on day y1, and their mother emerging as an

adult on day ti. pA(y1 − ti) represents the probability that their mother has age (y1 − ti), which is

equivalent to the probability that their mother emerged on day ti. Additionally, pL(t) represents

the probability that a given larva in the population has age t, and the probability that larva 1

has age (t1 − y1 − TE) is equivalent to the probability that the egg was laid on day y1. In general,

pA(t) is given by Eq 7, and pL(t) follows from the daily larval survival probability, (1 − μL), and

is given by:

pLðtÞ ¼ ð1 � mLÞ
t
=
XTL � 1

tj¼0

ð1 � mLÞ
tj : ð11Þ

EFSLL(t2|t1, y1, ti) is then given by:

EFSLLðt2jt1; y1; tiÞ ¼
XtiþðTA � 1Þ

y2¼ti

ð1 � mAÞ
ðy2 � tiÞ �

I½ðt2 � TE � TLÞ < y2 � ðt2 � TEÞ�

� b� ð1 � mEÞ
TE � ð1 � mLÞ

ðt2 � y2 � TEÞ

 !

: ð12Þ

Here, the day of sibling egg-laying, y2, is summed over days ti through (ti + (TA − 1)), for

consistency with the mother’s potential lifespan (Fig 3A). The first term in the summation rep-

resents the probability that the mother is alive on the day of sibling egg-laying, and the second

term (in larger brackets) represents the expected larval output of the mother on day t2. This

latter term is the same as for the mother-larval offspring case, with the exception that the indi-

cator function limits consideration to cases where the day of sibling egg-laying, y2, is between

days (t2 − TE − TL) and (t2 − TE), for consistency with a larval sibling being sampled on day t2.

We provide full-sibling kinship probabilities for other life stage pairs in S1 Text §2.3.

2.2.4 Half-siblings. Next, we consider the half-sibling kinship probability for larva-larva

pairs, PHSLL(t2|t1), which represents the probability that, given a larva sampled on day t1, a

larva sampled on day t2 is their half-sibling. This can be expressed as the relative larval repro-

ductive output on day t2 of adult females that mate with the father of a larva sampled on day t1:

PHSLLðt2jt1Þ ¼
E½Larvae at time t2 that are half-siblings of a larva sampled at time t1�

E½Larval offspring at time t2 from all adult females�
¼
EHSLLðt2jt1Þ

EL
: ð13Þ

Here, EHSLL(t2|t1) represents the expected number of surviving larvae on day t2 that are

half-siblings of a larva sampled on day t1 and is graphically depicted in Fig 3B. EL is given by

Eq 2. For convenience, let us refer to the larva sampled on day t1 as individual 1. To calculate

EHSLL(t2|t1), there are three unknown event times that we treat as latent variables and take an

expectation over—i) the day that egg 1 is laid, y1, ii) the day of the mating event between indi-

vidual 1’s mother and father, ti, and iii) the day that individual 1’s father emerges as an adult,
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tj:

EHSLLðt2jt1Þ ¼
Xt1 � TE

y1¼t1 � TE � ðTL � 1Þ

pLðt1 � y1 � TEÞ �
Xy1

ti¼y1 � ðTA � 1Þ

pAðy1 � tiÞ

�
Xti

tj¼ti � ðTA � 1Þ

pAðti � tjÞ � EHSLLðt2jt1; y1; ti; tjÞ:

ð14Þ

Here, i) the expectation over the day that egg 1 is laid, y1, is taken over days (t1 − TE − (TL
− 1)) through (t1 − TE), for consistency with the day that larva 1 is sampled, ii) the expectation

over the day of the mating event, ti, is taken over days (y1 − (TA − 1)) through y1, for consis-

tency with egg 1 being laid during their mother’s potential lifetime, and iii) the expectation

over the day that their father emerges, tj, is taken over days (ti − (TA − 1)) through ti, so that

the mating event overlaps with their father’s potential lifetime (Fig 3C). The term EHSLL(t2|t1,

y1, ti, tj) represents the expected number of surviving larvae on day t2 that are half-siblings of

adult 1, conditional upon adult 1 being sampled on day t1, egg 1 being laid on day y1, their

mother and father mating on day ti, and their father emerging as an adult on day tj. Addition-

ally, pL(t1 − y1 − TE) represents the probability that larva 1 has age (t1 − y1 − TE), which is

equivalent to the probability that the day of egg-laying was y1, pA(y1 − ti) represents the proba-

bility that their mother has age (y1 − ti), which is equivalent to the probability that their mother

emerged and mated on day ti, and pA(ti − tj) represents the probability that their father has age

(ti − tj), which is equivalent to the probability that their father emerged on day tj. In general,

pA(t) and pL(t) are given by Eqs 9 and 13, respectively. EHSLL(t2|t1, y1, ti, tj) is then given by:

EHSLLðt2jt1; y1; ti; tjÞ ¼
XtjþðTA � 1Þ

tk¼tj

ð1 � mAÞ
ðtk � tjÞ � mA �

XtkþðTA � 1Þ

y2¼tk

ð1 � mAÞ
ðy2 � tkÞ �

I½ðt2 � TE � TLÞ < y2

� ðt2 � TEÞ�

� b� ð1 � mEÞ
TE

� ð1 � mLÞ
ðt2 � y2 � TEÞ

0

B
B
B
B
@

1

C
C
C
C
A
:ð15Þ

In order to produce a half-sibling, larva 1’s father must mate with another adult female and

that adult female must produce an offspring. Here, the day of the second mating event, tk, is

summed over days tj through (tj + (TA − 1)), for consistency with the father’s potential lifespan,

and the day of sibling egg-laying, y2, is summed over days tk through (tk + (TA − 1)), for consis-

tency with the mother’s potential lifespan (Fig 3B). The terms in the first summation represent:

i) the probability that the father survives days tk through tj and therefore is alive on the day of

the second mating event, and ii) the probability that the father mates on this day. This latter

probability is equal to the adult mortality rate, μA, since, for a population at equilibrium, the

adult emergence and mortality rates are the same, and the mating rate is equal to the emer-

gence rate since females are assumed to mate upon emergence. Finally, the terms in the second

summation represent the probability that the mother is alive on the day of sibling egg-laying,

and the expected larval output of the mother on day t2. This latter term (in big brackets) is the

same as that for the full-sibling larva-larva case. We provide half-sibling kinship probabilities

for other life stage pairs in S1 Text §2.4.

2.2.5 Numerical calculation. In Fig 4, selected kinship probabilities are depicted as a

function of time between samples, t2 − t1, for a population of 3,000 adult Ae. aegypti with bio-

nomic parameters listed in Table 1. From this, the expected temporal distribution of sampled

close-kin is apparent. For mother-larval offspring pairs, for instance, the mother is more likely

to be sampled after the larval offspring since, after egg-laying, the mean time to maternal sam-

pling is longer than the duration of the egg stage plus the mean time to larval sampling (Fig
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2B). Conversely, for father-adult offspring pairs, the father is more likely to be sampled before

the adult offspring since, after mating, the mean time to paternal sampling is shorter than the

time to maternal egg-laying combined with the duration of offspring juvenile development

plus the mean time to adult offspring sampling (Fig 2D). Siblings are most likely to be sampled

around the same time as each other, while half-siblings may be found the largest number of

days apart (Fig 3).

2.2.6 Unknown sampling day. We also consider the case where a sample is collected on

day t, but the individual could have been sampled (i.e., trapped) on any of the τ days leading

up to and including its collection day. The kinship probability on day t is then the expressed as

an expectation over the τ possible sampling days, each of which is equally likely. We denote

the kinship probability in this case with an overline, PðtÞ.
As a demonstration, let us consider the mother-larval offspring kinship probability,

PMOLðt2jt1Þ, where the collection days of the adult female and larva are t1 and t2, respectively;

but the sampling days of the adult female and larva could be any of the τ1 and τ2 days leading

up to and including their respective collection days. Any of the potential sampling days of the

adult female and larva are equally likely, and so the mother-larval offspring kinship probability

may be expressed as the expectation:

PMOLðt2jt1Þ ¼
1

t1t2

Xt1

i¼t1 � ðt1 � 1Þ

Xt2

j¼t2 � ðt2 � 1Þ

PMOLðjjiÞ: ð16Þ

Here, PMOL(j|i) is as defined in Eq 1. Kinship probabilities when sampling days are

unknown follow an equivalent formulation for all other kinship categories and sampled sexes

and life stages.

Fig 4. Kinship probabilities versus time between samples. Selected kinship probabilities are depicted as a function of

time between samples, t2 − t1. Parent-offspring kinship probabilities are the probability that an individual sampled on

day t2 is an offspring of a given adult sampled on day t1. Sibling kinship probabilities are the probability that an

individual sampled on day t2 is a sibling of a given individual sampled on day t1. Each probability is calculated as the

reproductive output having that relationship divided by the total reproductive output of all adult females in the

population, as described in Table 2. The modeled population consists of 3,000 adult Ae. aegypti with bionomic

parameters listed in Table 1.

https://doi.org/10.1371/journal.pcbi.1010755.g004
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2.3 Pseudo-likelihood calculation

The goal of this mosquito CKMR analysis is to make inferences about demographic and life

history parameters given data on the frequency and timing of observed close-kin pairs. Here,

we combine the probabilities of parent-offspring and sibling pairs in a manner that takes

advantage of the nature of the kinship probabilities and the sampling process. The joint kin-

ship distribution is too complicated to be expressed analytically as a full likelihood, and so

we instead adopt a “pseudo-likelihood” approach [1], which treats the marginal kinship proba-

bilities for each pair of sampled individuals separately. This approach has been shown to pro-

duce accurate parameter and variance estimates provided the size of each sample taken is

small relative to the overall population [2, 3].

2.3.1 Parent-offspring pairs. Let us begin by considering the mother-larval offspring kin-

ship probability, PMOL(t2|t1), which represents the probability that, given an adult female sam-

pled on day t1, a larva sampled on day t2 is her offspring. Now consider nF(t1) adult females

sampled on day t1. The probability that a given larva has a mother amongst the nF(t1) sampled

adult females, pMOL(t2|t1), is equal to one minus the probability that none of the nF(t1) sampled

adult females are the larva’s mother, i.e.:

pMOLðt2jt1Þ ¼ 1 � ð1 � PMOLðt2jt1ÞÞ
nF ðt1Þ: ð17Þ

Here, PMOL(t2|t1) is as defined in Eq 1. Now consider nL(t2) larvae sampled on day t2, and

let kMOL(t2|t1) be the number of larvae sampled on day t2 that have a mother amongst the adult

females sampled on day t1. The pseudo-likelihood that kMOL(t2|t1) of the nL(t2) larvae sampled

on day t2 have a mother amongst the adult females sampled on day t1 follows from the bino-

mial distribution:

LðkMOLðt2jt1ÞÞ ¼ Binomial ðkMOLðt2jt1Þ : nLðt2Þ; pMOLðt2jt1ÞÞ: ð18Þ

The full log-pseudo-likelihood for mother-larval offspring pairs, ΛMOL, follows from sum-

ming the log-pseudo-likelihood over all adult female sampling days, t1, and over consistent lar-

val offspring sampling days, t2:

LMOL ¼
X

t1

Xt1þTEþðTL � 1Þ

t2¼t1þTE � ðTA � 1Þ

log LðkMOLðt2jt1ÞÞ: ð19Þ

Note that, for the purpose of efficient computation, we consider consistent adult sampling

days from (t1 + TE − (TA − 1)) through (t1 + TE + (TL − 1)). The earliest larval sampling day

(relative to t1) corresponds to the case where the mother laid the offspring at the beginning of

her life, was sampled at the end of her life, and the larval offspring was sampled at the begin-

ning of its life. The latest larval sampling day (relative to t1) corresponds to the case where the

mother was sampled on the day they laid their offspring, and the larval offspring was sampled

at the end of its life.

Parent-offspring pseudo-likelihood equations for other sampled sexes and life stages follow

an equivalent formulation. Of note, consistent offspring sampling days are specific to the kin-

ship and sampled life stages being considered (these can be deduced from schematic diagrams

like those in Fig 2). Also, for cases of adult offspring where t1 = t2, the number of sampled

adults, nA(t2), is reduced by one to account for the fact that an adult cannot be its own parent.
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The joint log-pseudo-likelihood for all parent-offspring pairs is then given by:

LPO ¼ LMOL þ LMOP þ LMOA þ LFOL þ LFOP þ LFOA: ð20Þ

Here, ΛMOP, ΛMOA, ΛFOL, ΛFOP and ΛFOA denote the log-pseudo-likelihoods for mother-

pupal offspring pairs, mother-adult offspring pairs, father-larval offspring pairs, father-pupal

offspring pairs and father-adult offspring pairs, respectively.

2.3.2 Sibling pairs. For siblings, we adopt a multinomial approach in which each pair of

individuals can either be full-siblings, half-siblings or neither. We begin with the larva-larva

full-sibling kinship probability, PFSLL(t2|t1), defined in Eq 9, and the larva-larva half-sibling

kinship probability, PHSLL(t2|t1), defined in Eq 13. These represent the probabilities that, given

a larva sampled on day t1, a larva sampled on day t2 is their full or half-sibling, respectively. We

consider a given larva, indexed by i and sampled on day t1(i), and nL(t2) larvae sampled on day

t2, and let kFSLL(t2|i) and kHSLL(t2|i) be the number of larvae sampled on day t2 that are full and

half-siblings of larva i, respectively. When counting siblings, we only consider siblings with

indices > i to avoid double-counting. The pseudo-likelihood that kFSLL(t2|i) and kHSLL(t2|i) of

the nL(t2) sampled larvae on day t2 are full and half-siblings of larva i, respectively, follows

from the multinomial distribution:

LðkFSLLðt2jiÞ; kHSLLðt2jiÞÞ ¼ Multinomial
fkFSLLðt2jiÞ; kHSLLðt2jiÞg :

nLðt2Þ; fPFSLLðt2jt1ðiÞÞ; PHSLLðt2jt1ðiÞÞg

 !

: ð21Þ

Note that, for cases where t1(i) = t2, the number of sampled larvae on day t2, nL(t2), is

reduced by one to account for the fact that a larva cannot be its own sibling. The full log-

pseudo-likelihood for larva-larva sibling pairs, ΛSLL, follows from summing the log-pseudo-

likelihood over all sampled larvae, i, and over consistent larval sampling days, t2:

LSLL ¼
XnL � 1

i¼1

Xt1ðiÞþ2ðTA � 1ÞþðTL � 1Þ

t2¼t1ðiÞ� 2ðTA � 1Þ� ðTL � 1Þ

log LðkFSLLðt2jiÞ; kFHLLðt2jiÞÞ: ð22Þ

Consistent larval sampling days for this case are from (t1(i) − 2(TA − 1) − (TL − 1)) through

(t1(i) + 2(TA − 1)+ (TL − 1)). The earliest larval sampling day (relative to t1(i)) corresponds to

the half-sibling case where the father mated with mother 2 at the beginning of his life and

mother 1 at the end of his life. Mother 1 then laid individual 1 at the end of her life, and larva 1

was sampled just before development into a pupa, while mother 2 laid individual 2 at the

beginning of her life, and larva 2 was sampled soon after emergence as a larva. The latest larval

sampling day (relative to t1(i)) corresponds to the reverse case. Full and half-sibling pseudo-

likelihood equations for other life stage pairs follow an equivalent formulation, with consistent

sampling days specific to the kinship and sampled life stages being considered (these can be

deduced from event history diagrams like those in Fig 3). The joint log-pseudo-likelihood for

full and half-sibling pairs is then given by:

LS ¼ LSLL þ LSLP þ LSLA þ LSPL þ LSPP þ LSPA þ LSAL þ LSAP þ LSAA: ð23Þ

Here, ΛSLP, ΛSLA, ΛSPL, ΛSPP, ΛSPA, ΛSAL, ΛSAP and ΛSAA denote the log-pseudo-likelihoods

for larva-pupa, larva-adult, pupa-larva, pupa-pupa, pupa-adult, adult-larva, adult-pupa and

adult-adult full and half-sibling pairs, respectively.

2.3.3 Parameter inference. Despite parent-offspring and sibling kinship probabilities not

being independent, the pseudo-likelihood approach enables us to combine these pseudo-likeli-

hoods, provided each sample taken is small relative to the overall population [1]. As we will

see later, our simulation studies suggest this to be the case. We therefore combine these log-
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pseudo-likelihoods to obtain a log-pseudo-likelihood for the entire data set:

L ¼ LPO þ LS: ð24Þ

Parameter inference can then proceed by varying a subset of the demographic and life his-

tory parameters in Table 1 in order to minimize −Λ. We used the nlminb function imple-

mented in the optimx function in R [25] to perform our optimizations. This function

implements a Newton-type algorithm and performed the best, in terms of speed and accuracy,

among the 13 algorithms available through the optimx function.

2.4 Individual-based simulation model

We developed an individual-based simulation model of mosquito life history to test the effec-

tiveness of the CKMR approach at estimating mosquito demographic and bionomic parame-

ters. The model is an individual-based adaptation of our previous model, MGDrivE [26],

which is a genetic and spatial extension of the lumped age-class model applied to mosquitoes

by Hancock and Godfray [17] and Deredec et al. [18] (Fig 1). The simulation time-step is one

day. Functionality is included to account for spatial population structure; however, in the pres-

ent analysis, a single panmictic population is modeled. This population is partitioned accord-

ing to discrete life stages—egg, larva, pupa and adult—with sub-adult stages having fixed

durations as defined earlier. Individual survival through a given day is assumed to follow a Ber-

noulli distribution with a stage-specific probability. Density-independent juvenile mortality

rates are calculated for consistency with observed population growth rates for Ae. aegypti
(Table 1). Additional density-dependent mortality occurs at the larval stage and regulates pop-

ulation size (see S1 Text §1 for formulae and derivations). Sex is modeled at the adult stage—

half of pupae emerge as females, and the other half as males, implemented according to a Ber-

noulli distribution with probability 0.5. Females mate once upon emergence, with the male

mate being chosen at random. Males mate throughout their lifespan, and independently of

previous mating events. Females lay eggs at a daily fecundity rate, β, for the duration of their

lifespan with daily egg production of each adult female following a Poisson distribution.

Sampling is lethal, and is implemented as specified, with collection days, locations and

sampling rates for each life stage defined by the user. To enable close-kin relationships to be

inferred for sampled individuals, each individual is labeled with a unique IN, and parental INs

are stored as attributes. Output CSV (comma-separated value) files are produced for each sam-

pled life stage (larva, pupa, adult female and adult male, as appropriate), and include the time

(day) and location (patch) of collection, as well as the individual’s age at the time of sampling,

their IN, and maternal and paternal INs. Inference of mother-offspring, father-offspring, full-

sibling and (paternal) half-sibling pairs from this data is straightforward. Age information was

not used in this analysis; but may be useful in the future as new technologies emerge to esti-

mate the age of wild-caught adults [27].

3 Results

We used simulated data from the individual-based mosquito model to explore the feasibility of

CKMR methods to infer demographic and bionomic parameters for Ae. aegypti. Our simu-

lated population consisted of 3,000 adults with bionomic parameters listed in Table 1. Open

questions concern the suitability of CKMR methods for Ae. aegypti, the range of demographic

and bionomic parameters that can be accurately estimated using them, and the potential to

measure intervention impact. To address these questions, we explored logistically feasible sam-

pling schemes to accurately infer adult and juvenile parameters by varying: i) sampled life

stage (larva, pupa or adult) and sex (adult female or male), ii) sampling frequency (daily,
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biweekly, weekly or fortnightly), iii) sampling duration (1–4 months), and iv) total sample size

(500–5,000 sequenced individuals). For adults, we focused on adult population size, NA, and

mortality rate, μA, and for juvenile life stages, we focused on larval mortality rate, μL, and the

duration of the larval stage, TL. By default, our pseudo-likelihood calculations were based on

parent-offspring and full-sibling pairs. Half-sibling pairs were only included for optimal

sampling schemes, due to the computational burden that half-siblings present by requiring

summation over six latent event times (Fig 3B). We also considered subsets of likelihood com-

ponents in our analyses, in the event that these may provide increased accuracy or precision.

Finally, we explored whether only knowing the sampling day to an accuracy of 2–4 days (the

number of days between collections) would substantively impact parameter inference.

3.1 Optimal sampling schemes to estimate adult parameters

To estimate adult parameters, our default sampling scheme consisted of a total of 1,000

sequenced individuals sampled daily over a three-month period (i.e., ca. 11–12 individuals

sampled each day, for a total of 1,000 individuals after three months of sampling). We first

explored the optimal distribution of sampled life stage and sex to estimate NA and μA. Sampled

larval, adult female and adult male life stage proportions were varied in 25% increments and

limited to scenarios where the number of sampled adult females was greater than or equal to

the number of sampled adult males (this reflects the case in the field due to the relative diffi-

culty of sampling adult males). We also considered the case where only pupae were sampled,

as pupae are often used as indicators of adult population size in entomological field studies

[28]. Results of 100 simulation-and-analysis replicates for each of ten sampling scenarios are

depicted in Fig 5A and 5B. The key result from this analysis is that the most accurate estimates

of NA and μA—in terms of both accuracy of the median and tightness of the interquartile range

(IQR)—are obtained when samples are dominated by adult females (75% or higher). This is an

intuitive result, as NA and μA both describe the adult population, and adult females provide the

most direct information on kinship—i.e., calculating the kinship probability for father-off-

spring pairs as compared to mother-offspring pairs involves summing over an additional

latent event time (Fig 2). Other key messages from this analysis are that IQRs of inferred

parameters are wider for samples dominated by larvae (75% or higher) or pupae (100%), and

there is a slight bias towards higher estimates of population size and lower estimates of adult

mortality in all cases. Given these results, we focused on adult female sampling while refining

other details of the sampling schemes for estimating adult parameters.

Next, we explored the most efficient sampling frequency to estimate NA and μA. While we

consider daily sampling a theoretical gold standard, mosquito collections in the field tend to

be at most biweekly [29], with weekly collections being more common [7]. For completeness,

we also considered collections occurring every two weeks, with results of 100 replicates for

each of the four sampling scenarios depicted in Fig 5C and 5D. The key result from this analy-

sis is that CKMR estimates of NA and μA are robust for daily, biweekly, weekly, and even fort-

nightly collections, which is reassuring for the logistical feasibility of the method. In the field,

the decision on sampling frequency will be based on the required total sample size, and the

sampling frequency required to achieve it. We decided to focus on biweekly sampling hence-

forth, given its precedent in the field, and considering it allows more mosquitoes to be col-

lected than weekly sampling. Here, we assume that the day of sampling is known (i.e., that

mosquitoes are collected within a single day of trapping); however, we later relax this assump-

tion so that the recorded day of sampling is pooled over the days between collections.

Following this, we explored the most efficient sampling duration to estimate NA and μA.

We explored durations of 1–4 months as, given the short generation time of mosquitoes
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[14], parent-offspring pairs could potentially be collected within a month, and given the sea-

sonality of mosquito populations, a maximum sampling period of four months corresponds

to a season when the constant population assumption may approximately apply. 100 repli-

cates for each of four sampling scenarios are depicted in Fig 5E and 5F. These results suggest

that sampling durations of 3–4 months provide unbiased estimates of NA and μA, while sam-

pling durations of 1–2 months lead to substantively higher estimates of μA and lower esti-

mates of NA. This is at least partly due to compressing the same amount of lethal sampling

into shorter time frames resulting in elevated mortality rates and suppressed population

sizes. Given these results, we retained a three-month sampling period as the most accurate

and efficient option.

Next, we explored the optimal sample size to estimate NA and μA for Ae. aegypti. We per-

formed 100 simulation-and-analysis replicates for each of four total sample sizes—500, 1,000,

1,500 and 2,000 adult females—depicted in Fig 5G and 5H. Results suggest that, while esti-

mates of NA and μA become more precise for larger sample sizes (as measured by the IQR),

adult mortality is notably overestimated for total sample sizes of 1,500 or higher, and adult

population size is correspondingly underestimated. This is a reflection of lethal sampling

removing individuals from the population and hence increasing adult mortality and reducing

adult population size. We therefore converged on an optimal sample size of 1,000 adult

females, collected biweekly over a three month period (i.e., ca. 40 adult females per collection),

as providing accurate and unbiased estimates of NA and μA.

Fig 5. Sampling schemes to estimate NA and μA for Ae. aegypti. Violin plots depict estimates of NA and μA for sampling scenarios described in §3.1.

The simulated population consists of 3,000 adult Ae. aegypti with bionomic parameters listed in Table 1. Boxes depict median and interquartile ranges

of 100 simulation-and-analysis replicates for each scenario, thin lines represent 5% and 95% quantiles, points represent outliers, and kernel density plots

are superimposed. The default sampling scheme consists of 1,000 individuals sampled as ca. 11–12 individuals per day over three months. In panels

(A-B), sampled larval, adult female and adult male life stage proportions are varied in 25% increments and limited to scenarios where the number of

sampled adult females exceeds the number of sampled adult males (e.g., “75F25M” represents a sample consisting of 75% adult females and 25% adult

males, and “50F25M25L” represents a sample consisting of 50% adult females, 25% adult males, and 25% larvae). The case of 100% sampled pupae is

also included. In panels (C-D), all sampled individuals are adult females, and four sampling frequencies are considered—daily, biweekly, weekly and

fortnightly. In panels (E-F), biweekly sampling is adopted, and sampling durations of 1–4 months are explored. In panels (G-H), a sampling duration of

three months is adopted, and total sample sizes of 500, 1,000, 1,500 and 2,000 adult females are explored.

https://doi.org/10.1371/journal.pcbi.1010755.g005
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Given this optimal sampling scheme to estimate NA and μA, we next explored the pseudo-

likelihood components used in these analyses. Curiously, we found that including half-siblings

in our analyses increased biases in our parameter estimates, leading to a greater underestimate

of μA and overestimate of NA (Fig 6). This could potentially be due to the half-sibling pseudo-

likelihood component requiring a longer sampling period to produce accurate parameter esti-

mates, as half-sibling kinship probabilities require summing over several more latent event

times than full-sibling and parent-offspring kinship probabilities. Adult parameter estimates

inferred from combined parent-offspring and full-sibling pseudo-likelihood components are

more accurate and precise (as measured by the median and IQR of replicate parameter esti-

mates, respectively) compared to those inferred from either pseudo-likelihood component in

isolation (Fig 6). This confirms the validity of the optimal sampling scheme inferred in Fig 5,

which was inferred for combined parent-offspring and full-sibling pseudo-likelihood compo-

nents. That produced a population size estimate of 3,016 (IQR: 2,765–3,359), and an adult

mortality rate estimate of 0.091 per day (IQR: 0.084–0.100 per day).

Finally, we explored the impact that not knowing the sampling day precisely would have on

estimation of NA and μA. We compared cases of biweekly sampling and sampling every two

days, both where the sampling day is known and where the sampling day is only known within

Fig 6. Pseudo-likelihood components to estimate NA and μA for Ae. aegypti. Violin plots depict estimates of NA (A)

and μA (B) for the optimal sampling scheme determined in Fig 4 (1,000 adult females collected biweekly over a three

month period, i.e., ca. 40 adult females per collection) and various included pseudo-likelihood components. The

simulated population consists of 3,000 adult Ae. aegypti with bionomic parameters listed in Table 1. Boxes depict

median and interquartile ranges of 100 simulation-and-analysis replicates for each scenario, thin lines represent 5%

and 95% quantiles, points represent outliers, and kernel density plots are superimposed. Adult parameter estimates

inferred from combined parent-offspring and full-sibling pseudo-likelihood components are more accurate than those

inferred from either pseudo-likelihood component in isolation and more accurate than those inferred by inclusion of

half-sibling pairs. In panels (C-D), parent-offspring and full-sibling pseudo-likelihood components are used and cases

of biweekly sampling and sampling every two days are compared, both where the sampling day is known and where

the sampling day is only known within the interval between samples.

https://doi.org/10.1371/journal.pcbi.1010755.g006
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the interval between samples (as would be the case for a regular mosquito surveillance pro-

gram) (Fig 6C and 6D). Encouragingly, we found that parameter estimation is still accurate

when the precise sampling day is unknown. The precision of the parameter estimates (as mea-

sured by IQR) was not substantively different, and not knowing the precise sampling day led

to slight overestimates of NA and underestimates of μA; but only by a small amount—mean

estimates of NA were 3,219 and 3,206 for unknown sampling day (biweekly sampling and sam-

pling every two days, respectively), as compared to 3,076 and 3,121 for known sampling day,

and mean estimates of μA were 0.087 per day for unknown sampling day (for both biweekly

sampling and sampling every two days), as compared to 0.091 and 0.089 per day for known

sampling day (biweekly sampling and sampling every two days, respectively).

3.2 Optimal sampling schemes to estimate juvenile parameters

Preliminary explorations of sampling schemes to estimate juvenile parameters suggested

this was not possible when including all pseudo-likelihood components. We therefore tested

pseudo-likelihood components on a component-by-component basis to see whether some

were more informative of juvenile parameters than others. We found that mother-larval off-

spring pairs provided accurate estimates of larval mortality, μL, and that mother-adult off-

spring pairs provided accurate estimates of the duration of the larval stage, TL. We were not

able to estimate pupal parameters (μP or TP), likely due to the brevity of this life stage. Pre-

liminary explorations suggested a sample of 1,000 adult females satisfied the adult require-

ment for larval parameter estimates, and had already been recommended for estimation of

NA and μA. We therefore focused our systematic exploration on the supplemental larval sam-

pling requirement to estimate μL and TL. We estimated these parameters simultaneously

using a grid search, varying TL discretely in the range [1, 10], inferring the value of μL that

minimized −Λ for each value of TL, and determining the values of μL and TL that minimized

−Λ overall.

Our default sampling scheme consisted of a total of 1,000 sequenced adult females and an

additional number of larvae sampled daily over a three month period. We first explored the

optimal larval sample size to estimate μL and TL. We performed 100 simulation-and-analysis

replicates for each of four total larval sample sizes—500, 1,000, 2,000 and 4,000—depicted in

Fig 7A and 7B). Results suggest that estimates of μL and TL are unbiased for larval sample sizes

of 1,000 or more, but precision of the estimates, particularly of μL (as measured by the IQR),

improves as larval sample size is increased. E.g., for a larval sample size of 1,000, the IQR for μL
is 0.461–0.673 per day, while for a larval sample size of 4,000, the IQR is 0.479–0.595 per day

(the true value is 0.554 per day, Table 1). We proceeded with a sample size of 4,000 larvae in

addition to the 1,000 adult females previously recommended, although we note that a larval

sample size as small as 1,000 may be adequate for the case of daily sampling.

Next, we explored the most efficient sampling frequency to estimate μL and TL. As for the

adult parameter case, we considered four sampling frequencies—daily, biweekly, weekly and

fortnightly—with results of 100 replicates for each scenario depicted in Fig 7C and 7D. The

key result from this analysis is that CKMR estimates of μL and TL are accurate and unbiased

for daily and biweekly collections; but that weekly and fortnightly collections are inadequate

for estimating μL and less reliable for estimating TL. While this is a more frequent sampling

requirement than that for estimating adult parameters, there is a precedent for biweekly collec-

tions in the field [29]. Biweekly collections were also our default recommendation for adult

collections due to their field precedent, and because they allow a greater number of individuals

to be collected over time.
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We then explored the most efficient sampling duration to estimate μL and TL. As for the

adult parameter case, we explored durations of 1–4 months, with results of 100 replicates for

each scenario depicted in Fig 7E and 7F. These results suggest that sampling durations of 3–4

months provide accurate estimates of μL and TL, while sampling durations of 1–2 months lead

to larval mortality being underestimated, and estimates of TL being less accurate. We therefore

converged on an optimal sample size of 4,000 larvae supplementing the 1,000 adult females

recommended earlier, collected biweekly over a three month period, as providing accurate and

unbiased estimates of μL and TL. This produces parameter estimates for μL of 0.527 per day

(IQR: 0.463–0.571 per day), and for TL of 5 days (IQR: 4–5 days).

Finally, we explored the impact that not knowing the sampling day precisely would have on

estimation of μL and TL. As for adult parameters, we compared the cases of biweekly sampling

or sampling every two days where the sampling day is known or only known within the inter-

val between samples (Fig 7G and 7H). Encouragingly, as for adult parameters, we found that

parameter estimation was still accurate when the precise sampling day was not known. The

precision of TL estimates was unchanged (as measured by IQR) while the precision of μL esti-

mates decreased slightly when the sampling day was unknown. Not knowing the precise

Fig 7. Sampling schemes to estimate μL and TL for Ae. aegypti. Violin plots depict estimates of μL and TL for sampling scenarios described in §3.2.

The simulated population consists of 3,000 adult Ae. aegypti with bionomic parameters listed in Table 1. Boxes depict median and interquartile ranges

of 100 simulation-and-analysis replicates for each scenario, thin lines represent 5% and 95% quantiles, points represent outliers, and kernel density plots

are superimposed. The default sampling scheme consists of 1,000 adult females and supplemental larvae sampled daily over a three month period. In

panels (A-B), total larval sample sizes of 500, 1,000, 2,000 and 4,000 are explored. In panels (C-D), a larval sample size of 4,000 is adopted, and four

sampling frequencies are considered—daily, biweekly, weekly and fortnightly. In panels (E-F), biweekly sampling is adopted, and sampling durations of

1–4 months are explored. The optimal sampling scheme consists of 4,000 larvae and 1,000 adult females collected biweekly over a three month period.

In panels (G-H), the optimal sampling scheme is adopted and cases of biweekly sampling and sampling every two days are compared, both where the

sampling day is known and where the sampling day is only known within the interval between samples.

https://doi.org/10.1371/journal.pcbi.1010755.g007
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sampling day led to slight underestimates of μL for biweekly sampling; but only by a small

amount—the mean estimate of μL was 0.513 per day for unknown sampling day, as compared

to 0.527 per day for known sampling day (as per Table 1, the true value is 0.554 per day).

3.3 Measuring intervention impact

Following determination of optimal sampling schemes to infer adult and larval demographic

parameters for Ae. aegypti populations, we explored whether CKMR methods could be used to

infer the impact of an intervention on adult demographic parameters. We considered fogging

with insecticides as a commonplace intervention against Ae. aegypti that is expected to increase

adult mortality rate and decrease population size, and modeled this by increasing the daily

lethal sampling rate by increments of 0.01 per mosquito per day, up to a maximum of an addi-

tional 0.10 per mosquito per day. Results of this analysis are depicted in Fig 8 and display a

clear pattern of increasing estimated adult mortality rate, in line with that simulated, and

decreasing estimated population size, reflecting the impact of increased adult mortality on the

population. Fig 8C depicts the statistical power of CKMR methods to detect a decrease in NA

or increase in μA as a result of this intervention. Here, a one-tailed test was used given a type I

error rate of 5% and 100 simulation-and-analysis replicates for each case. The power to detect

a change resulting from an adult mortality rate increased by 0.05 per mosquito per day

is> 90% for both NA and μA, and for an adult mortality rate increased by 0.06 per mosquito

per day, the power to detect a change is >99% for both parameters. This is an encouraging

result for the application of CKMR methods to the assessment of intervention impact.

Fig 8. Application of CKMR methods to infer intervention impact. CKMR methods are applied to a simulated population of 3,000 adult Ae. aegypti
with bionomic parameters listed in Table 1 and the optimal sampling scheme for estimating adult parameters (a total of 1,000 adult females sampled

biweekly over three months). Fogging is simulated as an intervention that elevates adult mortality. In panels (A-B), violin plots depict estimates of NA
and μA for fogging-induced adult mortality rates of 0.01–0.10 per day (increased in 0.01 per day increments). Boxes depict median and interquartile

ranges of 100 simulation-and-analysis replicates for each intervention-induced mortality rate, thin lines represent 5% and 95% quantiles, points

represent outliers, and kernel density plots are superimposed. In panel (B), actual intervention-modified adult mortality rates are denoted by red lines.

Results depict a pattern of increasing estimated μA and decreasing estimated NA in response to increasing fogging-induced mortality rates. In panel (C),

the statistical power to detect an increase in μA or a decrease in NA is depicted, assuming a type I error rate of 5%.

https://doi.org/10.1371/journal.pcbi.1010755.g008
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4 Discussion

We have demonstrated the application of the CKMR formalism described by Bravington et al.
[1] to estimate demographic parameters for mosquitoes with Ae. aegypti, a major vector of

dengue, Zika, chikungunya and yellow fever, as a case study. Using an individual-based simu-

lation based on the lumped age-class model [15, 16] applied to mosquitoes [17], we have

shown that these methods accurately estimate adult population size, NA, adult mortality rate,

μA, larval mortality rate, μL, and larval life stage duration, TL, for logistically feasible sampling

schemes when model assumptions are satisfied. Encouragingly, the optimal sampling scheme

inferred from this analysis is compatible with Ae. aegypti ecology and field studies. Estimating

adult parameters will likely be of most interest, and in this case, only adult females need to be

sampled. Conveniently, adult females are preferentially attracted to most commercial traps

through cues that mimic potential blood-meals, while adult males are more difficult to trap as

they do not blood-feed [29]. Estimating larval parameters requires larval collections, and

although larval breeding sites need to be actively sought out, larvae are an abundant life stage

that can easily be collected with a cup or pipette [30].

Other details of the CKMR-optimal sampling scheme are also compatible with Ae. aegypti
ecology. The sampling duration required for accurate estimates of both adult and larval param-

eters is three months, which is consistent with the length of a season, during which time the

constant population size assumption in this analysis approximately holds. For estimating adult

parameters, the total sample size of 1,000 adult females collected over three months is reason-

able, and sequencing these 1,000 mosquitoes to the extent required to accurately infer close-

kin relationships should fall within the budget of current mosquito surveillance programs [7].

For estimating larval parameters, the sample size of 4,000 larvae collected biweekly over three

months is achievable, given the abundance of this life stage, although currently the sequencing

expense would be burdensome. That said; as sequencing continues to become cheaper, and as

more scalable methods become available to estimate relatedness, large-scale larval sequencing

may also fall within the budget of surveillance programs, and smaller larval sample sizes are

sufficient for daily sampling schemes.

Finally, the sampling frequency requirement of these CKMR methods is compatible with

mosquito field studies, with biweekly sampling being adequate for accurate estimation of both

adult and larval parameters. This is commonplace among mosquito surveillance programs

[29]. If estimates of only adult parameters are desired, sampling frequency can be less frequent

(e.g., fortnightly), although achieving the total required sample size may be a barrier to less fre-

quent sampling. For CKMR methods, temporal information contributes to parameter estima-

tion, and so samples will be more informative if the day of collection is known—i.e., if samples

from a mosquito trap represent collections for a single day. However, the methods still work

adequately if that is not the case—i.e., if samples from a trap represent the accumulation of

mosquitoes over several days, as is the case for regular mosquito surveillance programs. A total

sample size of 1,000 adult females collected over three months corresponds to biweekly collec-

tions of ca. 40 mosquitoes or weekly collections of ca. 80 mosquitoes. With these numbers in

mind, the expected daily mosquito yield of a given location can inform the required sampling

frequency. An underlying assumption of CKMR analyses is random sampling, which should

be noted throughout field protocols. E.g., spatial clustering of samples should be avoided as

this can artificially elevate the number of pairs found, and biases towards trapping mosquitoes

of certain ages (e.g., those more likely to host-seek) should be avoided where possible, and

accounted for where not.

As a preliminary exploration of the application of CKMR methods to mosquitoes, and as a

modeling exercise, this study has several limitations. Firstly, the same life history model (Fig 1)
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was used as a basis for both the population simulations and the CKMR analysis. Additionally,

other than the parameters being estimated, the same parameters were used in both simulations

and analysis. This represents an overly generous scenario as compared to the field, where true

life history is varied and complex, and where life history parameters are only approximately

known. That said; this is an appropriate starting point to verify the utility of the method for

mosquitoes—it first needs to be shown to infer the true value of a parameter given the true

model. Subsequent analyses should explore the robustness of parameter inference when other

parameters in the model are dynamic or misspecified, or when kinship data are generated

from a more detailed model. The CIMSiM model of Ae. aegypti population dynamics [22],

for instance, models juvenile dynamics at the container level and incorporates temperature-

driven development rates. Using CKMR methods on data from a detailed model like CIMSiM

would allow the impact of structural model differences to be explored to a degree, while

acknowledging that true ecological dynamics are more complex than those of any in silico
model. The impact of modest model variations could also be explored, such as age-dependent

mortality rates, variance in the duration of juvenile life stages, and increased variance in the

fecundity parameter, β. Presently, the daily number of offspring generated by each adult female

is Poisson-distributed and distributing this according to an overdispersed negative binomial

distribution would reduce the effective population size, Ne, while maintaining the census adult

population size, NA [13], the impact of which would be interesting to explore.

A second limitation of the application of our methods is that we have assumed perfect kin-

ship inference throughout. A variety of molecular methods for kinship inference are available

[31–33], the accuracy of which should be assessed for Ae. aegypti and other species of interest.

Incorporating kinship uncertainty into the CKMR likelihood equations is theoretically possi-

ble [34], although this has produced little improvement in parameter inference at large compu-

tational cost when applied to data from fish species [2]. Likely, the best approach would be to

introduce errors in kinship assignment at the simulation phase, and to test the robustness of

the methods to this. Here, there is an important distinction between type I (false positive) and

II (false negative) error rates. Studies in fish species suggest that kinship inference must have

an especially low type I error rate in order for CKMR parameter inference to be informative

[1]. Kinship inference methods should be calibrated accordingly. On a related note, there is a

debate over the conditions for inclusion of half-siblings in CKMR analyses. Half-sibling

relationships are difficult to distinguish from avuncular (e.g., aunt-niece) and grandparent-

grandchild relationships, introducing kinship assignment errors into likelihood calculations.

Possible solutions have been proposed—e.g., restricting the time window of recording half-sib-

ling pairs to include mostly same-cohort captures [1]—however this is a moot point for the

present analysis, given that inclusion of half-siblings reduces the accuracy of parameter esti-

mates even when precisely known.

A third limitation of the current analysis is that it ignores spatial structure. The population

of 3,000 adults in the Ae. aegypti simulation was based on studies that suggest this to be a rea-

sonable estimate for the number of Ae. aegypti adults within a characteristic dispersal radius

in a variety of settings [19–21]; however, Ae. aegypti adults tend to be relatively sessile, often

remaining within the same household unit for the duration of their lifetime [11]. With this in

mind, a more accurate model might be Ae. aegypti populations distributed across households

with migration between them [35]. Areas of future research would be to test the robustness of

single-population CKMR methods to data from spatially structured simulations [36], and to

incorporate spatial structure into the CKMR analyses themselves, opening the potential to esti-

mate dispersal parameters using these methods. The theoretical underpinnings of this latter

approach have been outlined by Bravington et al. [1], and an analogous approach limited to

discrete generations and parentage data has been used to estimate dispersal parameters for
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coral trout [37]. Alternative close-kin methods have also been used to characterize dispersal

distances for Ae. aegypti [6, 7], and it will be interesting to see whether a spatially structured

CKMR approach can infer complementary information.

The application of CKMR methods beyond fish species has been contemplated since their

inception [1], and extending their application to the egg-larva-pupa-adult life history of Ae.
aegypti mosquitoes is promising for their application to insect species with comparable life his-

tories. A species of particular interest is Anopheles gambiae, the main African malaria vector,

which has a similar life history, increased dispersal [11] and larger population sizes than Ae.
aegypti [38, 39]. Age-grading methods are also available for this species, based on ovariole mea-

surements and emerging biochemical and spectroscopic techniques [27]. Incorporating approx-

imate age-at-capture information with kinship data should greatly enhance the precision of

CKMR parameter inference, as has been seen for applications to southern bluefin tuna [2] and

sharks [3]. The larger size of An. gambiae populations also means that smaller population pro-

portions need to be sampled in order to obtain accurate parameter estimates [13]. Although the

total required sample size will be higher, lethal sampling is less likely to bias the mortality rate

estimate upwards and the population size estimate downwards (as seen for Ae. aegypti in Fig 5).

Several species of insect agricultural crop pests should also be suited to these CKMR methods,

including the medfly and spotted wing Drosophila; although theoretical assessments will first be

needed, especially for more long-lived pest species such as the pink bollworm.

5 Conclusions

We have theoretically demonstrated the application of CKMR methods to estimate adult and

larval parameters for mosquitoes, with Ae. aegypti as a case study. CKMR methods have advan-

tages over traditional mark-release methods, as the mark is genetic, removing the need for

physical marking and recapturing. Particularly encouraging is the fact that the inferred optimal

sampling scheme is compatible with Ae. aegypti ecology and field studies, meaning that the

requisite samples may be obtained with only minor adjustments to current mosquito surveil-

lance programs. The methods also appear effective at detecting intervention-induced changes

in adult parameters. Sequencing requirements are significant, particularly for estimating larval

parameters; however, as sequencing becomes cheaper and more efficient, this will become less

burdensome and perhaps even routine. Work remains to test the robustness of these methods

under a range of scenarios in which model components and parameters vary, and in which

kinship inference is imperfect; however this study represents an important first demonstration

that parameter inference is accurate when the underlying model is known. Application to

other insects of epidemiological and agricultural significance is promising, particularly for An.
gambiae, a major malaria vector for which age-grading methods are available.

Supporting information

S1 Text. Supplemental model equations. Additional equations describing the lumped age-
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