
UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Planck 2013 results. VII. HFI time response and beams

Permalink
https://escholarship.org/uc/item/53s5s107

Authors
Ade, PAR
Aghanim, N
Armitage-Caplan, C
et al.

Publication Date
2014-11-01

DOI
10.1051/0004-6361/201321535
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/53s5s107
https://escholarship.org/uc/item/53s5s107#author
https://escholarship.org
http://www.cdlib.org/


A&A 571, A7 (2014)
DOI: 10.1051/0004-6361/201321535
c© ESO 2014

Astronomy
&

Astrophysics
Planck 2013 results Special feature

Planck 2013 results. VII. HFI time response and beams
Planck Collaboration: P. A. R. Ade82, N. Aghanim57, C. Armitage-Caplan86, M. Arnaud69, M. Ashdown66,6, F. Atrio-Barandela18, J. Aumont57,

C. Baccigalupi81, A. J. Banday89,10, R. B. Barreiro63, E. Battaner90, K. Benabed58,88, A. Benoît55, A. Benoit-Lévy24,58,88, J.-P. Bernard89,10,
M. Bersanelli34,48, P. Bielewicz89,10,81, J. Bobin69, J. J. Bock64,11, J. R. Bond9, J. Borrill14,83, F. R. Bouchet58,88, J. W. Bowyer53, M. Bridges66,6,61,

M. Bucher1, C. Burigana47,32, J.-F. Cardoso70,1,58, A. Catalano71,68, A. Challinor61,66,12, A. Chamballu69,15,57, R.-R. Chary54, H. C. Chiang27,7,
L.-Y Chiang60, P. R. Christensen77,37, S. Church85, D. L. Clements53, S. Colombi58,88, L. P. L. Colombo23,64, F. Couchot67, A. Coulais68,
B. P. Crill64,78,?, A. Curto6,63, F. Cuttaia47, L. Danese81, R. D. Davies65, P. de Bernardis33, A. de Rosa47, G. de Zotti43,81, J. Delabrouille1,

J.-M. Delouis58,88, F.-X. Désert51, J. M. Diego63, H. Dole57,56, S. Donzelli48, O. Doré64,11, M. Douspis57, J. Dunkley86, X. Dupac39,
G. Efstathiou61, T. A. Enßlin74, H. K. Eriksen62, F. Finelli47,49, O. Forni89,10, M. Frailis45, A. A. Fraisse27, E. Franceschi47, S. Galeotta45,
K. Ganga1, M. Giard89,10, Y. Giraud-Héraud1, J. González-Nuevo63,81, K. M. Górski64,91, S. Gratton66,61, A. Gregorio35,45, A. Gruppuso47,

J. E. Gudmundsson27, J. Haissinski67, F. K. Hansen62, D. Hanson75,64,9, D. Harrison61,66, S. Henrot-Versillé67, C. Hernández-Monteagudo13,74,
D. Herranz63, S. R. Hildebrandt11, E. Hivon58,88, M. Hobson6, W. A. Holmes64, A. Hornstrup16, Z. Hou28, W. Hovest74, K. M. Huffenberger25,

A. H. Jaffe53, T. R. Jaffe89,10, W. C. Jones27, M. Juvela26, E. Keihänen26, R. Keskitalo21,14, T. S. Kisner73, R. Kneissl38,8, J. Knoche74, L. Knox28,
M. Kunz17,57,3, H. Kurki-Suonio26,41, G. Lagache57, J.-M. Lamarre68, A. Lasenby6,66, R. J. Laureijs40, C. R. Lawrence64, R. Leonardi39,

C. Leroy57,89,10, J. Lesgourgues87,80, M. Liguori31, P. B. Lilje62, M. Linden-Vørnle16, M. López-Caniego63, P. M. Lubin29, J. F. Macías-Pérez71,
C. J. MacTavish66, B. Maffei65, N. Mandolesi47,5,32, M. Maris45, D. J. Marshall69, P. G. Martin9, E. Martínez-González63, S. Masi33,

M. Massardi46, S. Matarrese31, T. Matsumura11, F. Matthai74, P. Mazzotta36, P. McGehee54, A. Melchiorri33,50, L. Mendes39, A. Mennella34,48,
M. Migliaccio61,66, S. Mitra52,64, M.-A. Miville-Deschênes57,9, A. Moneti58, L. Montier89,10, G. Morgante47, D. Mortlock53, D. Munshi82,

J. A. Murphy76, P. Naselsky77,37, F. Nati33, P. Natoli32,4,47, C. B. Netterfield19, H. U. Nørgaard-Nielsen16, F. Noviello65, D. Novikov53,
I. Novikov77, S. Osborne85, C. A. Oxborrow16, F. Paci81, L. Pagano33,50, F. Pajot57, D. Paoletti47,49, F. Pasian45, G. Patanchon1, O. Perdereau67,
L. Perotto71, F. Perrotta81, F. Piacentini33, M. Piat1, E. Pierpaoli23, D. Pietrobon64, S. Plaszczynski67, E. Pointecouteau89,10, A. M. Polegre40,

G. Polenta4,44, N. Ponthieu57,51, L. Popa59, T. Poutanen41,26,2, G. W. Pratt69, G. Prézeau11,64, S. Prunet58,88, J.-L. Puget57, J. P. Rachen20,74,
M. Reinecke74, M. Remazeilles65,57,1, C. Renault71, S. Ricciardi47, T. Riller74, I. Ristorcelli89,10, G. Rocha64,11, C. Rosset1, G. Roudier1,68,64,
M. Rowan-Robinson53, B. Rusholme54, M. Sandri47, D. Santos71, A. Sauvé89,10, G. Savini79, D. Scott22, E. P. S. Shellard12, L. D. Spencer82,
J.-L. Starck69, V. Stolyarov6,66,84, R. Stompor1, R. Sudiwala82, F. Sureau69, D. Sutton61,66, A.-S. Suur-Uski26,41, J.-F. Sygnet58, J. A. Tauber40,
D. Tavagnacco45,35, L. Terenzi47, M. Tomasi48, M. Tristram67, M. Tucci17,67, G. Umana42, L. Valenziano47, J. Valiviita41,26,62, B. Van Tent72,

P. Vielva63, F. Villa47, N. Vittorio36, L. A. Wade64, B. D. Wandelt58,88,30, D. Yvon15, A. Zacchei45, and A. Zonca29

(Affiliations can be found after the references)

Received 21 March 2013 / Accepted 10 December 2013

ABSTRACT

This paper characterizes the effective beams, the effective beam window functions and the associated errors for the Planck High Frequency
Instrument (HFI) detectors. The effective beam is the angular response including the effect of the optics, detectors, data processing and the scan
strategy. The window function is the representation of this beam in the harmonic domain which is required to recover an unbiased measurement of
the cosmic microwave background angular power spectrum. The HFI is a scanning instrument and its effective beams are the convolution of: a) the
optical response of the telescope and feeds; b) the processing of the time-ordered data and deconvolution of the bolometric and electronic transfer
function; and c) the merging of several surveys to produce maps. The time response transfer functions are measured using observations of Jupiter
and Saturn and by minimizing survey difference residuals. The scanning beam is the post-deconvolution angular response of the instrument, and is
characterized with observations of Mars. The main beam solid angles are determined to better than 0.5% at each HFI frequency band. Observations
of Jupiter and Saturn limit near sidelobes (within 5◦) to about 0.1% of the total solid angle. Time response residuals remain as long tails in the
scanning beams, but contribute less than 0.1% of the total solid angle. The bias and uncertainty in the beam products are estimated using ensembles
of simulated planet observations that include the impact of instrumental noise and known systematic effects. The correlation structure of these
ensembles is well-described by five error eigenmodes that are sub-dominant to sample variance and instrumental noise in the harmonic domain.
A suite of consistency tests provide confidence that the error model represents a sufficient description of the data. The total error in the effective
beam window functions is below 1% at 100 GHz up to multipole ` ∼ 1500, and below 0.5% at 143 and 217 GHz up to ` ∼ 2000.
Key words. cosmic background radiation – cosmology: observations – instrumentation: detectors – surveys

1. Introduction

This paper, one of a set associated with the 2013 release of
data from the Planck1 mission (Planck Collaboration I 2014),
? Corresponding author: B. P. Crill, e-mail: bcrill@jpl.nasa.gov

1 Planck is a project of the European Space Agency – ESA – with in-
struments provided by two scientific Consortia funded by ESA member

describes the impact of the optical system, detector response,
analogue and digital filtering and the scan strategy on the

states (in particular the lead countries: France and Italy) with contri-
butions from NASA (USA), and telescope reflectors provided in a col-
laboration between ESA and a scientific Consortium led and funded by
Denmark.
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determination of the High Frequency Instrument (HFI) angular
power spectra. An accurate understanding of this response, and
the corresponding errors, is necessary in order to extract astro-
physical and cosmological information from cosmic microwave
background (CMB) data (Hill et al. 2009; Nolta et al. 2009;
Huffenberger et al. 2010).

Bolometers, such as those used in the HFI on Planck, are
phonon-mediated thermal detectors with finite response time to
changes in the absorbed optical power. The observations are af-
fected by attenuation and the phase shift of the signal resulting
from a detector’s thermal response, as well as the analogue and
digital filtering in the associated electronics.

In the small signal regime (appropriate for CMB fluctua-
tions and Galactic emission), the receiver response can be well
approximated by a complex Fourier domain transfer function,
termed the time response. The time-ordered data (also referred
to as time-ordered information, or TOI) are approximately de-
convolved by the time response function prior to calibration
and mapmaking (for recent examples of CMB observations with
similar semiconductor bolometers see Tristram et al. 2005; Masi
et al. 2006).

Ideally, the deconvolved TOIs represent the true sky signal
convolved with the optical response of the telescope (or physi-
cal beam) and filtered by the TOI processing. The combination
of time domain processing and physical beam convolution is,
in practice, degenerate, due to the nature of the scan strategy;
the Planck spacecraft scans at 1 rpm, with variations less than
0.1% (Planck Collaboration I 2011). The beams reconstructed
from the deconvolved planetary observations are referred to as
the scanning beam.

These deconvolved data are then projected into a pixelized
map, as discussed in Sect. 6. of Planck Collaboration VI (2014).
To a good approximation, the effect of the mapmaking algorithm
is to average the beam over the observed locations in a given
pixel. This average is referred to as the effective beam, which
will vary from pixel to pixel across the sky. The mapmaking pro-
cedure implicitly ignores any smearing of the input TOI; no at-
tempt is made to deconvolve the optical beam and any remaining
electronic time response. Thus, any further use of the resulting
maps must take the effective beam into account.

To obtain an unbiased estimate of the angular power spec-
trum of the CMB, one must determine the impact of this effective
beam pattern on a measurement of an isotropic Gaussian random
signal in multipole (`) space. The filtering effect is well approx-
imated by a multiplicative effective beam window function, de-
rived by coupling the scan history with the scanning beam pro-
file, which is used to relate the angular power spectrum of the
map to that of the underlying sky (Hivon et al. 2002).

The solar and orbital motion of Planck with respect to the
surface of last scattering provides a 60-s periodic signal in the
time ordered data that is used as a primary calibrator (Planck
Collaboration V 2014; Planck Collaboration VIII 2014). This
normalizes the window function at a multipole ` = 1; the effec-
tive beam window function is required to transfer this calibration
to smaller angular scales.

These successive products (the scanning beam, the effective
beam and the effective beam window function) must be accom-
panied by an account of their errors, which are characterized
through ensembles of dedicated simulations of the planetary ob-
servations. The error on the effective beam window function is
found to be sub-dominant to other errors in the cosmological pa-
rameter analysis (Planck Collaboration XVI 2014).

The scanning beam is thus measured with on-orbit plane-
tary data, coupling the response of the optical system to the

deconvolved time response function and additional filters in the
TOI processing. As shown in the following, the main effect of
residual deconvolution errors is a bias in the beam window func-
tion of order 10−4 at ` > 100, due to a residual tail in the beam
along the scan direction.

The scanning beam can be further separated into the follow-
ing components;

1. The main beam, which is defined as extending to 30′ from
the beam centroid.

2. The near sidelobes, which extend between 30′ and 5◦. These
are typically features below −30 dB, and include the opti-
cal effects of phase errors, consisting of both random and
periodic surface errors and residuals due to the imperfect de-
convolution of the time response.

3. The far sidelobes, which extend beyond 5◦. These features
are dominated by spillover: power coupling from the sky to
the feed antennas directly, or via a single reflection around
the mirrors and baffles. The minimum in the beam response
between the main beam and direct spillover of the feed over
the top of the secondary mirror falls at roughly 5◦, making
such a division natural (Tauber et al. 2010).

This paper describes the main beam and the near sidelobes, the
resulting effective beam patterns on the sky and the effective
beam window function used for the measurement of angular
power spectra, along with their errors. The effects of the far side-
lobes are mainly discussed in Planck Collaboration VI (2014)
and Planck Collaboration XIV (2014), and their effects on cali-
bration described in Planck Collaboration X (2014). A compan-
ion paper (Planck Collaboration IV 2014) computes the effec-
tive beams and window functions for Planck’s Low Frequency
Instrument (LFI). Despite using very different methods which
depend more strongly on optical modelling, the two instruments
produce compatible power spectra, providing a cross-check of
both approaches (Planck Collaboration XXXI 2014).

The signal-to-noise ratio of Jupiter observations with HFI
allows the measurement of near sidelobes to a noise floor of
−45(−55) dB relative to the forward gain at 100 (857) GHz. The
HFI analysis does not rely on a physical optics model to con-
strain the behaviour of the beam in this regime.

On-orbit measurements of the Planck HFI scanning beam
and temporal transfer function have been previously reported in
Planck HFI Core Team (2011a) for the Early Release Compact
Source Catalog (ERCSC; Planck Collaboration VII 2011) and
early science from Planck. Section 2 presents an improved
model for the time response and explains how its parameters
are derived using on-orbit data, and how it is deconvolved from
the data. Figure 1 provides a flowchart of the determination of
the time response parameters. Figure 2 is the flowchart of the
steps that lead from planet measurements to effective beams, ef-
fective beam window functions and assessment of uncertainties.
Section 3 describes how the scanning beams are reconstructed
from planet observations. Section 3.4 specifically describes the
effects of long time scale residuals in the data due to imperfect
deconvolution of the time response. Section 4 describes the prop-
agation of the scanning beams to effective beams and effective
beam window functions using the scanning history of Planck.
Section 5 describes the techniques used to propagate statisti-
cal and systematic errors and to check the consistency of the
beams and window functions. Section 6 describes the final er-
ror budget and the eigenmode decomposition of the errors in the
effective beam window function.
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2. Time response

In Planck’s early data release, a 10-parameter model TF10 de-
scribes the time response of the bolometer/electronics system
(Planck HFI Core Team 2011a). This section describes an im-
proved model of the time response based on the HFI readout
electronics schematics which more accurately reproduces phase
shifts in the system close to the Nyquist frequency. The im-
proved model also provides more degrees of freedom for the
bolometer’s thermal response in order to describe more accu-
rately the low frequency response of the bolometer.

2.1. Model

The new model is named LFER4 (Low Frequency Excess
Response with four time constants) and consists of an analytic
model of the HFI readout electronics (Lamarre et al. 2010) and

four thermal time constants and associated amplitudes for the
bolometer:

TF(ω) = F(ω)H′(ω; S phase, τstray), (1)

where TF(ω) represents the full time response as a function of
angular frequency ω. The time response of the bolometer alone
is modelled by

F(ω) =
∑
i=1,4

ai

1 + iωτi
, (2)

and H′(ω; S phase, τstray) is the analytic model of the electronics
transfer function (whose detailed equations and parameters are
given in Appendix A) with two parameters.

The overall normalization of the transfer function is forced
to be 1.0 at the signal frequency of the dipole, leaving a total of
9 free parameters for each bolometer.
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The sum of single-pole low-pass filters represents a lumped-
element thermal model with four elements. The thermal model
underlying the temporal transfer function is described elsewhere
(Spencer et al., in prep.); this work adopts an empirical approach
to correcting the data.

The two parameters of H′ mainly affect the high frequency
portion of the time response. S phase represents the phase differ-
ence between the bias and the lock-in summation, and is fixed in
the model as a readout electronics setting. The second parameter
τstray is the time constant of the bolometer resistance and the par-
asitic capacitance of the wiring and is measured independently
during the checkout and performance verification (CPV) phase
of the mission prior to the sky survey. All resistance and capac-
itance values of the readout electronics chain are fixed at values
from the circuit diagram.

The in-flight data are used to determine the remaining seven
free parameters. Low frequency parameters are constrained by
minimizing the difference between the first and second survey
maps (Sect. 2.2), while planetary observations are used to con-
strain those parameters governing the high frequency portion of
the time response (Sect. 2.3).

The fastest thermal time constants in the LFER4 model
roughly correspond to the time constants measured during pre-
launch tests of the bolometers (Holmes et al. 2008; Pajot et al.
2010). The slower time constants contribute lower frequency re-
sponse at the several percent level. The time constants in the
LFER4 model are not exactly identical to those measured on
glitches (Planck Collaboration X 2014) due to additional filter-
ing applied by the deglitching. A future publication (Spencer
et al., in prep.) will relate the time constants and amplitudes to
the thermal properties of the bolometer and module.

2.2. Fitting slow time constants with galaxy residuals

As Planck scans across the Galactic plane, the low frequency
time response of HFI spreads Galactic signal away from the
plane. Surveys 1 and 2 consist of roughly six months of data
each and cover nearly the same sky, scanned at almost opposite
angles. The difference between maps made with data from the
two individual surveys highlights the effect since the Galactic
power is spread in different directions in the two surveys, creat-
ing symmetric positive and negative residuals in the difference
map. The LFER4 parameters are varied to minimize the differ-
ence between these surveys. For most bolometers, the fit is lim-
ited to the slowest time constant and its associated amplitude,
and in others the fit is extended to the two slowest time constants
and associated amplitudes.

Other systematic effects can confuse the measurement of
LFER4 parameters by creating a similar positive/negative resid-
ual pattern in the survey difference. The philosophy employed
here is to minimize the survey residuals fitting only for LFER4
parameters, but to use simulations and data selections to test the
dependency of the results with other systematics.

2.2.1. Survey difference method 1

Two techniques are used to perform the fit. The first method is
based on map re-sampling in the time domain, using the point-
ing to generate synthetic TOI. The synthetic TOI of each sur-
vey is compared with the synthetic TOI of both surveys com-
bined. Before the production of these synthetic TOI, the maps
are smoothed to 30′. Given the fact that in consecutive surveys
the scan direction is nearly opposite, the survey 2 TOI is very

similar to the time-reversal of the survey 1 TOI. This symmetry
is assumed to be exact, ensuring that time reversal is equivalent
to taking the complex conjugate in the frequency domain. Since
the sky signal has been convolved by the true transfer function,
TFtrue(ω), and deconvolved by the estimated – not fully correct
– transfer function TF0(ω), the single survey re-sampled time-
stream is

d1(t) = F −1(TFtrue(ω)/TF0(ω)F (s(t′)), (3)

where F is the Fourier transform operator, s is the true sky map
observed at time t′, and d1 is the synthetic TOI. This can be
written as,

d1(t) = F −1(δTF(ω)F (s(t′)), (4)

having defined δTF(ω) = TFtrue(ω)/TF0(ω) as the corrective fac-
tor which should be applied to the estimated transfer function.
The synthetic TOI of survey 2, d2, is similarly defined. For the
TOI of both surveys combined, the average of the two maps is
used.

Using the time reversal property, the synthetic TOI d(t) of the
full sky map (survey 1 and survey 2 combined) may be written
as

d(t) = F −1
(
δTF(ω) + δTF∗(ω)

2
F (s(t′))

)
·

In the Fourier domain, the ratio of the TOIs is

R(ω) =
F (d1(t))
F (d(t))

=
δTF(ω)
<(δTF(ω))

= 1 + i
=(δTF(ω))
<(δTF(ω))

·
Since the real part of the transfer function at low frequency is
close to 1, the imaginary part of the ratio of the synthetic beams
is equal to the imaginary part of the corrective factor, δTF(ω):

=(R) = =(δTF(ω)).

The LFER4 model of the transfer function is fitted to this mea-
sure of the imaginary part of the correction to infer the param-
eters of the true transfer function, in the low frequency regime,
typically below a few Hz.

2.2.2. Survey difference method 2

The second method looks at one-dimensional slices through the
Galactic plane for each survey independently. A sky signal slice
is obtained by resampling a sky map for a single survey and a
single bolometer. The slices are taken along the scan direction
and the sky signal is averaged over 5◦ in longitude. Only the
sky region close to the Galactic plane is considered (10◦ above
and below the Galactic plane and longitudes between −40◦ and
60◦). The slice is convolved with the ratio of the transfer func-
tion used to create the map and a new LFER4 transfer function
with trial parameter values. New sky survey maps are obtained
by re-projecting the slices into pixelized maps. As for the previ-
ous method, parameters of the low-frequency part of the LFER4
transfer functions are chosen so that they minimize the residuals
in the difference between surveys 1 and 2.

In practice, the first method is used for the 100–353 GHz
bolometers, and at 545 GHz and 857 GHz the second method
is used, being better adapted to the maps having the most struc-
ture in the Galactic difference residuals. Figure 3 shows an ex-
ample of the residual remaining in a HEALPix2 map (Górski
et al. 2005) of the survey difference, after fitting the long time
response, showing reduced asymmetry in the Galactic plane.
2 http://healpix.sf.net
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Fig. 3. Survey 2 minus Survey 1 residual close to the Galactic cen-
tre before (upper) and after (lower) fitting and deconvolving the low
frequency part of the time response for bolometer 353-2. Remaining
residuals are dominated by gain difference between the surveys due to
ADC non-linearity (Planck Collaboration VIII 2014) and artifacts of
the different scanning directions (beam asymmetry) and pixel coverage
survey to survey.

2.2.3. Survey difference systematics

In the survey difference solution for the time response, any sys-
tematic effect that creates a residual in the survey difference
can be confused with a time response effect, in particular af-
fecting the low frequency time response. This section identifies
a number of residual-producing systematics and quantifies the
resulting bias in the transfer function. These residual-producing
systematics include far sidelobes, zodiacal light, pointing offset
uncertainty, gain drifts, main beam asymmetry and polarized sky
signal.

Due to the very high signal-to-noise ratio of Galactic sig-
nal at sub-millimetre wavelengths, far sidelobe pickup of the
Galactic plane is detected in the 545 GHz and 857 GHz chan-
nels. A physical optics model of the far sidelobe pickup is used
to estimate the signal from the Galactic centre. The optical depth
of the zodiacal dust cloud along the line of sight varies as Planck
orbits the Sun, leaving a residual in the survey difference (Planck
Collaboration XIV 2014). A model of the zodiacal dust emission
is subtracted in the reconstruction of the time response. The re-
construction of the time response is then repeated without sub-
tracting the models; these do not significantly affect the result
(Fig. 4).

As a probe of the effect of far sidelobes on the time constant
determination, the pipeline is run on a survey difference map
obtained from the sidelobe model alone for each of the 100, 143,
217, and 353 GHz channels. The method did not find a long
time constant, as the sidelobe effect on the survey map is very
different from the time constant effect.

A systematic offset in the pixel pointing creates a residual in
the survey difference. The pointing solution reduces the pointing

Fig. 4. 68%, 95%, and 99% likelihood contours for the long time con-
stant τ3 and associated amplitude a3 for a 545 GHz bolometer (545-4)
with (black) and without (red) zodiacal emission and far sidelobe re-
moval. The square and cross indicate the maximum likelihood values.

Fig. 5. Survey 1 minus survey 2 residual for the 545 GHz bolometers,
averaged from Galactic longitude 0 through 20◦. The black curves show
the Planck data, and red is a simulation.

error to a few arcseconds RMS in both the co-scan and cross-
scan direction. With the 6◦ s−1 scanning speed, this error cor-
responds to frequencies greater than 1 kHz, far from the range
affected by the long time constant.

Gain variability can also bias the estimation; due to non-
linearity in the analogue to digital converters (ADC), the HFI
responsivity to the sky signal varies at a few tenths of a percent
throughout the mission. As a probe of this effect, gain-corrected
data for the 100, 143 and 217 GHz bolometers are used to recon-
struct the long time response. This has a negligible impact on the
fitted parameters. Residual gain errors tend to leave monopolar
residuals that are not coupled to the long time constants in the
fitting procedure.

Some residual is expected in the survey difference maps be-
cause the asymmetric beam scans the sky at different angles in
the two surveys. This is especially an issue at 545 GHz where
the beam is substantially asymmetric. To quantify the amplitude,
simulated survey difference maps are generated using a realistic
asymmetric beam model convolved with the Planck Sky Model
(Delabrouille et al. 2013); the residuals in the Galactic plane
at 545 GHz are dominated by the main beam asymmetry (see
Fig. 5).
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Fig. 6. Gridded Jupiter data for bolometer 143-3b before and after fit-
ting for LFER4 parameters. The best fit Gaussian is subtracted from
each plot to emphasize residuals. Residuals in the main beam show the
deviation from a Gaussian shape, captured in the representations of the
scanning beam, as described in Appendices B and C.

Polarization sensitive bolometers (PSBs) show an additional
residual in the survey difference maps because of polarized sky
signal observed at slightly different crossing angles in the two
surveys. For the PSBs, the low frequency time response is there-
fore determined using different levels of polarization masking.
These studies do not suggest the presence of any significant level
of bias from polarization, but only higher noise with wider mask-
ing. As an additional check on the contribution of residual po-
larization to the low frequency response, the survey difference of
the sum of the two arms of each PSB pair is input to the pipeline.
This sum is not sensitive to polarization, and no bias is found in
the determination of the time response.

2.3. Fitting fast time constants with planet crossings

Filtering of the TOIs and errors in the deconvolution kernel
results in ringing along the scan direction. The planets Mars,
Jupiter and Saturn are high signal-to-noise sources that can be
used to minimize this smearing by adjusting the parameters of
the LFER4 model. See Sect. 3.1 for a description of the planet
data.

In solving for the high frequency portion of the time re-
sponse, the beam profile is forced to be compact. The optical
beam is modelled as a spline function on a two-dimensional grid
(see Appendix C for details) and the LFER4 parameters are fit
by forcing conditions on the resulting beam shape (Fig. 6).

The planet data are first deconvolved with a time response
model derived from pre-launch data, to recover an initial esti-
mate of the beam profile. Jupiter is used for the 100, 143 and
217 GHz channels, while Saturn is used for higher frequencies

(see Sect. 3.4 for a discussion of the non-linearity of Jupiter at
higher frequencies).

Rather than deconvolve the planet data, the model parame-
ters are determined in the forward sense. Since the beam is de-
composed into B-spline functions, this basis is convolved with
the temporal transfer function to retrieve the coefficients for each
basis function using the planet data. These coefficients are ap-
plied to the original deconvolved B-spline functions to recover
an estimate of the optical beam. The convolution is made in
the Fourier domain by re-sampling the B-spline function onto
a timeline with a sample separation corresponding to 4.′′5. The
typical knot separation length of the basis function is between 1′
and 2′.

In the Fourier domain, the convolution of the temporal trans-
fer function with the planet signal is

PC(ω) = B0(ω)TF0(ω), (5)

where B0(ω) is the Fourier transform of the slice through the
peak planet signal in the scan direction b0(t), which is obtained
by de-convolving planet data using a fiducial estimate, TF0(ω)
of the transfer function. The slice b0(t) is then symmetrized
about the origin (defined by the location of the maximum of the
B-spline representation)to obtain bsym(t), and its Fourier trans-
form Bsym(ω). This operation aims to recover a beam that, by
construction, is symmetric, within the limits allowed by the
model of the temporal transfer function,

PC(ω) = Bsym(ω)TF∗(ω). (6)

Here Bsym(ω) is entirely defined by PC(ω) and TF0(ω) and
the new estimate of the time response TF∗(ω) is derived from
Eq. (6). This function is parameterized in terms of the three
shortest time constants (τ1, τ2, τ3) and their associated ampli-
tudes (a1,a2,a3).

2.4. Stationarity of the time response

The time response of each HFI detector/readout channel is a
function of the cryogenic temperature of the bolometers and
the ambient-temperature components of the readout electronics.
Both cryogenic and ambient temperatures change throughout the
mission as the Galactic particle flux and the Planck spacecraft
solar distance are modulated. The seasonal consistency of the
scanning beam sets an upper limit on changes in the time re-
sponse through the mission, shown below in Sect. 5.2.1.

2.5. Deconvolution of the data

The time response transfer function is deconvolved from the
data and not included as part of the scanning beam, because
the low frequency response of the bolometer would give an ex-
tended scanning beam, stretching many degrees from the main
lobe along the scan direction.

Since the time response amplitude decreases as a function
of frequency, the deconvolution operation increases the noise at
high frequency to an unacceptably high fraction of the RMS.
During the deconvolution stage of the TOI processing, a phase-
less low-pass filter is applied in order to suppress the high fre-
quency noise and keep pixel aliasing at a manageable level.

In the early data release, a finite impulse response low-pass
filter was used for this purpose (Planck HFI Core Team 2011b).
In the 2013 cosmology data release, the low-pass filter is further
tuned for the 100, 143, 217 and 353 GHz channels to reduce filter
ripple produced by the lowpass filters used in the early-release
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data. The filter is now implemented in the Fourier domain, with
a kernel consisting of the product of a Gaussian and a squared
cosine,

K( f ) = K1( f )K2( f ), (7)

where

K1( f ) = e−
1
2 ( f / fGauss)2

(8)

and

K2( f ) =


1 if f < fc,
cos2

(
π
2

f− fc
fmax− fc

)
if fc < f < fmax,

0 if f > fmax.

(9)

Here fmax = fc + k( fsamp/2 − fc) and fsamp is the sampling fre-
quency of the data. The parameters of the filter are the same
for all bolometers in the bands 100–353 GHz: fGauss = 65 Hz;
fc = 80 Hz; and k = 0.9. To first order, this filter widens the scan-
ning beam along the scan in an equivalent way to convolving the
optical beam with a Gaussian with full-width at half-maximum
(FWHM) of 2.′07. The filter introduces some rippling along the
scan direction at the −40 dB level at 217 and 353 GHz, where
the beams allow harmonic signal content close to the filter edge.
The rippling is captured by the B-spline beam representation (see
Fig. 11).

The 3-point finite impulse response filter is still used for the
545 and 857 GHz channels3. This extends the scanning beams
along the scan direction more than the Gaussian-cosine Fourier
filter (the 545/857 GHz filter time scale corresponds to 3.′0 on
the sky), but has the advantage of reducing rippling and signal
aliased from above the Nyquist frequency.

The deconvolution kernel multiplied by the data in the
Fourier domain is the product of the lowpass filter with the in-
verse of the bolometer/electronics time response,

D( f ) = K( f )/TF( f ). (10)

Figure 7 shows a comparison of the deconvolution functions re-
sulting from the LFER4 model and from the TF10 model used
in the ERCSC data. The differences between the two models ap-
pear mainly in the phase at high frequency, mostly above the
signal frequency corresponding to the beam size. Although the
phase of LFER4 is a more accurate description of the system, in
practice replacing LFER4 with TF10 had little effect on the data,
because of the lowpass filter applied at the time of deconvolution
and the empirical determination of an overall sample offset in the
pointing reconstruction.

In the HFI data processing (Planck Collaboration VI 2014),
data chunks of length 219(≈5 × 105) samples are Fourier trans-
formed at a time, overlapping by half with the subsequent chunk
to avoid edge effects.

3. Scanning beams

The filtering of the TOI and the accuracy of the deconvolution
kernel affect the angular response of the HFI detectors. An accu-
rate estimate of the scanning beam, resulting from the filtering of
the physical (optical) beam by these time domain convolutions,
is required to relate the angular power spectra of the maps to that
of the underlying sky. As described in Planck HFI Core Team
(2011a) and Planck HFI Core Team (2011b), the HFI scanning

3 The data are convolved with the kernel [0.25, 0.5, 0.25] in the time
domain.
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Fig. 7. Phase and amplitude as a function of signal frequency of the
deconvolution function of bolometer 217-1. The solid black curve is
the LFER4 model, while the dashed red curve shows the TF10 model
used in the earlier Planck papers. The vertical dotted line marks the
signal frequency corresponding to the half power point of the average
effective beam.

beam profiles are measured using the planetary observations.
HFI uses two flat sky representations of the two-dimensional
scanning beams, one using Gauss-Hermite polynomials, and an-
other using B-spline functions.

Three selections of planetary data are used to derive esti-
mates of different aspects of the beam:

1. the first two observing seasons of Mars (main beam, and
window functions);

2. all available seasons of Mars [3], Jupiter [5] and Saturn [4]
(near sidelobe); and

3. all five Jupiter observations (residual time response).

The effective beam window functions used in the CMB analysis
are ultimately derived from the first of these. In each case, the
statistical properties of the beam representations and the choice
of planetary data are studied using ensembles of simulated planet
observations (Sect. 5).

While the signal-to-noise ratio of the Jupiter and Saturn data
is significantly greater than the Mars data, at this stage of the
analysis a reconstruction bias results in the main beams recov-
ered from simulated Jupiter and Saturn observations that is not
present in the simulations of Mars. Additionally, the non-linear
response of some HFI detectors to the Jupiter signal (Planck
HFI Core Team 2011a) makes the normalization of the planet
peak response uncertain at the few percent level (see Sect. 3.4).
Therefore the main beam model is established using Mars data,
while observations of Jupiter and Saturn are used only to esti-
mate the near sidelobes and residuals in the deconvolution of the
transfer function.

The B-spline representation of the joint Mars observations
is used as input for the calculation of the effective beam and
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Table 1. Observation seasons of the planets observed by Planck: date
range and position in Galactic coordinates.

Planet Season Date range l b
[◦] [◦]

Mars . . . . . . 1 2009 22 Oct.–29 Oct. 204.3 30.6
2 2010 10 Apr.–15 Apr. 203.3 31.5
3 2011 20 Dec.–25 Dec. 251.3 60.5

Jupiter . . . . . . 1 2009 25 Oct.–29 Oct. 33.6 −40.2
2 2010 03 Jul.–09 Jul. 102.4 −61.4
3 2010 06 Dec.–12 Dec. 83.8 −61.0
4 2011 03 Aug.–09 Aug. 156.4 −43.0
5 2012 10 Jan.–13 Jan. 147.5 −49.2

Saturn . . . . . . 1 2010 04 Jan.–08 Jan. 286.0 62.2
2 2010 11 Jun.–17 Jun. 271.6 62.5
3 2011 18 Jan.–22 Jan. 310.3 58.2
4 2011 29 Jun.–05 Jul. 298.4 60.9

Uranus . . . . . . 1 2009 05 Dec.–10 Dec. 81.3 −60.1
2 2010 30 Jun.–05 Jul. 97.3 −60.9
3 2010 10 Dec.–15 Dec. 89.2 −60.8
4 2011 05 Jul.–10 Jul. 105.4 −60.6
5 2011 22 Dec.–26 Dec. 97.4 −60.9

Neptune . . . . . . 1 2009 31 Oct.–05 Nov. 39.9 −44.5
2 2010 17 May–22 May 45.0 −48.1
3 2010 03 Nov.–07 Nov. 42.0 −46.1
4 2011 20 May–25 May 47.4 −49.6
5 2011 16 Nov.–20 Nov. 44.3 −47.7

the effective beam window function. Simulations have shown
the B-spline representation to better capture the features out-
side of the main lobe, due to the necessarily finite order of
the Gauss-Hermite decomposition. However, the Gauss-Hermite
model is used for other systematics checks, including the consis-
tency of the planets and observing seasons.

Because the Jupiter and Saturn data allow measurement of
the beam response below −45 dB from the peak, there is no need
to rely on a model of the telescope to determine the main beam
or near sidelobe structure.

3.1. Planetary data handling

The JPL Horizons package4 (Giorgini et al. 1996) is pro-
grammed with Planck’s orbit to calculate the positions of the
planets. Table 1 shows the dates when the planets were within
2◦ of the centre of the focal plane. By the end of HFI operations
Mars was observed three times, Saturn four times, and Jupiter
five.

The planets Jupiter, Saturn and Mars are among the bright-
est compact objects seen by Planck HFI; the signal amplitude
affects the data handling in a number of ways. Moving solar sys-
tem objects are flagged and removed from the TOI in the stan-
dard processing pipeline. Specialized processing for the planet
data is required, with two major differences from the nominal
processing (see Planck Collaboration VI 2014 for details).

While the pickup from the 4He-JT cooler is removed from
the data as usual, pointing periods containing very bright sources
such as the planets cannot be used to reliably estimate the line
amplitude. Instead, during the planet observations, these are ex-
trapolated from neighbouring pointing periods.

To better detect glitches near the extremely bright planet
crossings, an estimate of the planet signal is subtracted from

4 http://ssd.jpl.nasa.gov/?horizons
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Fig. 8. Window functions of the planetary discs of Jupiter, Saturn, and
Mars, equivalent to the bias in the inferred effective beam window func-
tion if the beam is reconstructed from observations of one of these plan-
ets alone. The labels show the corresponding angular radius of each
disc.

the data prior to glitch detection. Glitch template subtraction is
performed on the signal-subtracted timeline in the same way as
during nominal observations.

In order to remove the (quasi-stationary) astrophysical back-
ground from the planetary data, a bilinear interpolation of the
frequency averaged map is subtracted. The full mission map is
used for the five-season Jupiter data, while the nominal survey
sky maps are used in the processing of the other planetary data.

The planets are oblate spheroids, and appear as ellipses
slightly extended along the direction of the ecliptic. The Planck
planet range and Planck sub-latitude calculated by JPL Horizons
are used in combination with the polar and equatorial radii of the
planets reported by Horizons to compute the angular size and el-
lipticity of each planet. During HFI observations, the mean an-
gular radii of Jupiter, Saturn and Mars are 20.′′44, 8.′′542, and
4.′′111, respectively. The ratio of the equatorial to polar radii are
1.069, 1.109 and 1.006, respectively.

The finite planetary disc size increases the apparent size of
the scanning beam and biases the inferred effective beam win-
dow function. The filtering in multipole space of a circular disc
of angular radius R can be written as Bdisc(`) = 2J1(`R)/(`R),
where J1(x) is the Bessel function of order 1. Figure 8 shows
the B2

disc(`) for the three planetary discs. In practice, the effects
of the disc size are mitigated by merging observations from the
three brightest planets. The effects of the large Jupiter disc size
are greatest where the spatial gradient of the beam is greatest,
between the –3 to −10 dB contours of the beam. By excluding
the Jupiter observations above −10 dB, the disc size smearing is
reduced, and setting a −20 dB threshold results in a bias in the
window function below 10−3 at all multipoles.

Planck observes Saturn at a range of ring inclination angles:
6.◦03, 2.◦45, 12.◦6 and 9.◦4 for seasons 1, 2, 3 and 4, respectively.
While emission from the solid angle of the ring increases the
effective planetary disc area, the brightness temperature of the
ring tends to be much less than the planetary disc temperature
for the Planck bands. For example Weiland et al. (2011) fit a sin-
gle 90 GHz ring brightness temperature 14% that of the Saturn
disc. In our beam reconstruction the average of the first three
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Planck observations of Saturn is used, and even in the extreme
limit where the ring brightness temperature is the same and only
Saturn data are used, the multipole space correction is 2 × 10−3

at ` = 3000; this correction is ignored.
The elliptical shape of the planetary disc gives a further bias

in the inferred window function, depending on whether the long
axis of the beam is aligned with or perpendicular to the long axis
of the planet. In this case the planetary disc is approximated as an
elliptical Gaussian withσ = 0.5R. The worst case is a 10−3 effect
in the case of 100 GHz beams measured on Jupiter at ` = 3000
(where the 100 GHz window function is vanishingly small). At
143 and 217 GHz, the 10−3 level is reached only at ` = 4000.
The effect is negligible in the range of Planck’s sensitivity. With
Saturn and Mars, the ellipticity effects are <10−4 and <10−6, re-
spectively, at all multipoles; the ellipticity of the planetary discs
has a negligible effect on the estimate of the scanning beam.

3.2. Main beam model

Two representations are used to describe the (two dimensional)
main beam; a Gauss-Hermite basis (described in Appendix B
following Huffenberger et al. 2010 and Planck HFI Core Team
2011a) and a B-spline basis (Appendix C).

The Gauss-Hermite (GH) and B-spline bases have very dif-
ferent characteristics. The GH representation uses a relatively
small number of parameters and, in practice, amounts to a pertur-
bative expansion about a Gaussian shape. The B-spline is quite
general, using many more degrees of freedom to fit the data on
a defined grid, with the spline controlling the behaviour in be-
tween. The bias and correlation structure of the noise of these
two representations are characterized using Monte Carlo simu-
lations of the planetary data which include all the details of the
beam-processing pipeline used on the data (these simulations are
described more completely in Sect. 5). In each case, the param-
eters of the representation are derived directly from the time-
ordered data, without recourse to a pixelized map.

Figure 9 shows the B-spline scanning beams for the entire
HFI focal plane, as reconstructed from the Jupiter and Saturn
data. Figure 10 shows the radially binned, frequency averaged
beam profile for the HFI channels, comparing the B-spline rep-
resentation of the Mars data (solid black lines) with the com-
bined Mars, Jupiter and Saturn data (filled and open points, and
the blue dashed line). The B-spline maps are apodized with a
Gaussian at a radius beyond the signal-to-noise floor of the Mars
data: 13.′4, 13.′0, 11.′4, 12.′9, 17.′8, 17.′8 on average at 100, 143,
217, 353, 545,and 857 GHz respectively.

The azimuthally averaged beam window function, B2
` , from

each of these models is compared to the known input beam
model. At 100, 143 and 217 GHz the two methods perform com-
parably, with the B-spline having slightly smaller bias and vari-
ance; at the higher frequencies the B-spline performs demonstra-
bly better, especially at 545 and 857 GHz, as expected due to the
highly non-Gaussian shape of these multi-mode detectors.

3.3. Near sidelobes

While the HFI beams are Gaussian at the −25 dB level, non-
trivial structure in the beam is captured in the data at lower
power. There are two distinct components to the near lobe re-
sponse: a discrete pattern of secondary lobes evident at frequen-
cies of 217 GHz and above; and a diffuse shoulder consistent
with phase errors in the aperture plane.

The Planck reflectors suffer from print-through of the hon-
eycomb structure that supports the carbon-fiber face sheets. The
size of the deformation has been measured during thermal test-
ing to be less than 20 µm (Tauber et al. 2010). While small in
amplitude, the strict periodicity of this pattern results in a cor-
respondingly periodic structure in the near lobes, seen clearly
in Fig. 12, which is slightly larger than predicted based on the
pre-launch measurements. A simple grating equation describes
the angular positions of the resulting contributions to the near
sidelobes,

sin θn =
nλ
Yd
· (11)

where θn is the angular position of the order n lobe from the
central beam peak, λ is the wavelength of the radiation, d is
the grating periodicity and Y is a factor that describes the po-
sition of each reflector along the optical path, with Y = 1.00 for
the primary reflector and Y = 1.80 for the secondary reflector.
Three possible periodicities (19.6 mm, 30 mm, 52 mm) in the
honeycomb array dominate the Planck dimpling pattern for the
857 GHz detectors, though only those for the 52 mm periodic-
ity can be seen for the 545 GHz and 353 GHz detectors. For
the highest frequency detectors, only the weaker lobes due to
the 19.6 mm and 30 mm periodicities are seen outside the 40′
main beam model, but they contribute at most (0.050 ± 0.008)%
to the integrated beam solid angle. A forthcoming publication
(Oxborrow et al., in prep.) will present an in-depth study of the
mirror surface.

The second component is a beam shoulder becoming signifi-
cant near the −30 dB contour, and extending to 2–4 FWHM from
the beam centre. This shoulder is consistent with scattering from
random surface errors on the primary and secondary reflectors,
and is reasonably well-described by a spectrum of surface errors
with correlation lengths ranging from 2 to 12 cm, with an RMS
of order 10 µm (Ruze 1966). The contribution of each of these
components is included in the radially binned profiles shown in
Fig. 10.

While the B-spline parameterization captures both the main
beam and near sidelobe structure, the extended features must be
separately included in the Gauss-Hermite beam representation.
Figure 11 shows contour plots of a B-spline beam using Mars,
Jupiter and Saturn data at each frequency.

The B-spline representation of the scanning beam used to
compute the window function includes only that portion of the
near sidelobe structure that falls within the signal-to-noise of
the Mars data; the Jupiter and Saturn data provide an estimate
of the beam solid angle that is neglected in the scanning beam
product. The near sidelobe solid angle, and the resulting window
function error, are sensitive to the details of the analysis, includ-
ing the sky subtraction, offset removal and masking of in-scan
ringing at the part-per-million level. Although a comprehensive
study of these effects in the Jupiter and Saturn data are underway,
a conservative, and model independent upper limit is obtained
by taking the envelope of the noise floor to define the maximum
solid angle allowed by the data (the red dashed line in Fig. 10).
A reasonable estimate of the true solid angle in the near lobes
can be obtained by extrapolating the data below the noise floor
(the blue dashed line in Fig. 10). By either measure, the grat-
ing lobes and diffuse shoulder account for a small fraction of the
total beam solid angle; for the 100, 143 and 217 GHz channels
this contribution represents less than 0.15% of the total solid an-
gle (see Table 2). The amplitude of the impact on the window
function is estimated by comparing the Legendre transform of
the maximal envelope of the Jupiter and Saturn data with that of
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Fig. 9. B-spline scanning beams reconstructed from Mars, Saturn, and Jupiter seasons 1, 2 and 3 data for near sidelobe studies. The beams are
plotted in logarithmic contours of −3, −10, −20 and −30 dB from the peak. PSB pairs are indicated with the a bolometer in black and the b
bolometer in blue.

the nominal Mars derived scanning beam. The result is shown as
the family of green curves in Fig. 19. Because the Monte Carlo
ensembles that are used to derive the error envelope neglect this
near sidelobe structure in the beam that is input to the simula-
tions, the window function error amplitudes have been scaled
to accomodate the upper limit defined by the noise floor of the
Jupiter and Saturn data.

3.4. Residual time response

The Planck spacecraft spin rate is constant to 0.1%, making the
time response of the electronics and the bolometer degenerate
with the angular response of the optical system.

The B-spline beam model extends ±20′ from the centre of
the beam. An error in the time response on fast timescales will
thus be exactly compensated by the scanning beam. However, er-
rors in the time response beyond the limit of the scanning beam
reconstruction will not be accounted for, and will bias the recov-
ered beam window function.

To look for residual long tails due to incomplete deconvo-
lution of the time response, all five seasons of Jupiter obser-
vations are binned into a 2D grid of 2′ pixel size extending 6◦
from the planet (Fig. 12). These are background-subtracted us-
ing the Planck maps and stacked by fitting a Gaussian to esti-
mate the peak amplitude and centroid of each observation. The
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Fig. 10. Azimuthally- and band-averaged main beam profiles (black solid curve) derived from the B-spline representation of the first and second
Mars observations compared to that derived from a combination of Mars, Jupiter and Saturn observations (filled and open markers represent
positive and negative data respectively). The red dashed line is defined as the joint envelope of the main beam and near sidelobe dataset, the
integral of which represents the maximal solid angle that is compatible with these data. A nominal near lobe model, provided as a reasonable
extrapolation of the data below the noise floor, is shown as the blue dashed line. The fractional increase in solid angle, relative to the Mars-alone
derived beam profile, is displayed in each panel. The black dotted line shows the GRASP physical optics model averaged over a subset of detectors
that have been simulated (100–353 GHz). The data show a clear excess in power over the model at 143, 217 and 353 GHz that is consistent with a
spectrum of surface errors on scales between 2 and 12 cm, with an RMS of order 10 µm. Table 2 contains an estimate of the fraction of the solid
angle in the near sidelobes that is not captured in the B-spline representation. For clarity, the figure extends only to 45′. In all cases the solid angle
is derived from the profile extending out to 5◦. Due to the high signal-to-noise of the Jupiter data (−40 to −55 dB, depending on the frequency),
and the rapidly falling response of the beam, the solid angle estimates are insensitive to the limit of integration.

data are binned as a function of pointing relative to the planet
centre.

While a static non-linearity correction is included in the TOI
processing, partial ADC saturation and dynamical non-linearity
bias the normalization of these tails by underestimating the

Jupiter peak signal. An estimate of the non-linear correction is
derived by fitting a gridded map of all three Mars observations
to a map of all five Jupiter observations for each detector. A sig-
nal reduction at the peak of Jupiter is ruled out at the 1% level at
100 and 143 GHz, but detected at higher frequencies. Relative to
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Fig. 11. One scanning beam at each HFI frequency (100-3b, 143-6, 217-1, 353-7, 545-1, and 857-3). Contours are in dB from the peak in steps of
−5 dB. The lowest contours are set at −30 dB, −35 dB, −40 dB, −45 dB, −45 dB, −45 dB at 100 GHz, 143 GHz, 217 GHz, 353 GHz, 545 GHz,
and 857 GHz, respectively.

Table 2. Scanning beam solid angle (ΩSB) error budget, showing the bias and fractional error due to the residual time response (∆Ωτ), near
sidelobes (∆ΩNSL) and solid angle colour correction (∆ΩCC).

Band ΩSB ∆Ωτ ∆ΩNSL ∆ΩCC ∆ΩMC
[GHz] [arcmin2]

100 . . . . . . 104.2 −0.03 ± 0.04% 0.11 (0.21)% <0.3% 0.53%
143 . . . . . . 58.4 −0.03 ± 0.01% 0.13 (0.17)% <0.3% 0.14%
217 . . . . . . 26.9 −0.03 ± 0.01% 0.11 (0.13)% <0.3% 0.11%
353 . . . . . . 25.1 −0.002± 0.01% 0.18 (0.22)% <0.5% 0.10%
545 . . . . . . 25.4 0.04 ± 0.01% 0.16% <2.0% 0.13%
857 . . . . . . 23.0 0.09 ± 0.01% 0.21% <1.0% 0.15%

Notes. The Monte Carlo error (∆ΩMC) includes noise and pointing uncertainty. The colour correction is the upper limit in solid angle change due to
colour correction from a planet spectrum source (roughly ν2) to IRAS-convention (ν−1). The near sidelobe contribution of the nominal (maximal)
near sidelobe envelopes is shown for the 100–353 GHz bands; there is no appreciable difference between the two in the sub-mm bands, due to the
extremely high signal-to-noise of these data.

Mars, the peak Jupiter signal is reduced by non-linearity on aver-
age by 3± 3%, 12± 3%, 12± 4% and 65± 20% at 217, 353, 545
and 857 GHz, respectively. The tail normalizations are scaled by
these factors.

An example of the residual tail is shown in Fig. 13. As well
as a tail following the planet due to imperfect deconvolution of
the time response, there is also a tail preceding the planet cross-
ing; this is due to the lowpass filter applied in the Fourier do-
main. The residual beam tails have amplitudes typically at the
level of 10−4 of the peak but extend several degrees from the

centre of the beam. The response beyond 6◦ on the sky is con-
sistent with noise for all detectors.

The signal to noise of the tail measurement greater than 6◦
from Jupiter sets a model-independent limit on the knowledge of
the time response at signal frequencies from 0.016 Hz to 0.1 Hz
at <10−4.

These stacked Jupiter data are integrated to determine the
expected bias in total beam solid angle from this remaining un-
corrected time response (see Table 2). The mean integral values
are typically a few times 10−4 of the main beam solid angle, an
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Fig. 12. Gridded data from all five seasons of Jupiter. The colour scale shows the absolute value of the peak signal.

order of magnitude lower than the error in the beam solid angle
due to noise and other systematics.

The residual scanning beam tails can also bias the effective
beam window function. The spherical harmonic transform of the
residual that is not included in the model for the main scanning
beam is computed, Bfull

`m = Bmain
`m + Btail

`m , where Bmain
`m is the multi-

pole space representation of the main scanning beam model and
Btail
`m is the multipole space representation of the long tail model.

In all cases, the m = 0 (symmetric) mode of the ratio of Bfull
`m to

Bmain
`m dominates higher order modes by at least a factor of 1000,

meaning that the coupling to the scan strategy is negligible and
the bias in the effective beam window function can be approxi-
mated by

δW` =
∑

m

|Bfull
`m |2

|Bmain
`m |2

− 1. (12)

The main effect on the effective beam window function is that at
low `, the bias δW` approaches a value of twice the fractional
contribution to the total solid angle. When the window func-
tion is normalized to unity at the dipole frequency, the effect is a
roughly constant bias in the window function at a level of a few
×10−4 for ` > 100. The contribution of the residual tail to the
window function is neglected in the error budget.

3.5. Far sidelobes

The far sidelobes (FSL) are defined as the response of the in-
strument at angles more than 5◦ from the main beam centroid.
Tauber et al. (2010) describes the pre-launch measurements and
predictions of the far sidelobe response using physical optics
models. Figure 14 compares the measured beam profile of detec-
tor 353-1 with the FSL physical optics model. The way the FSL
are treated in the dipole calibration and in the scanning beam
model affects the effective beam window function, and care is
needed to check whether the off-axis response could bias the
window function at ` > 40 (angular scales 5◦) relative to ` < 40.
To the extent that the physical optics simulations correctly pre-
dict the far sidelobe response (which is shown to be roughly the
case in the survey difference maps), they produce effects negligi-
ble in the effective beam window function of HFI. Appendix D
presents the details of this calculation.

As a check of the quality of the physical optics model of
the far sidelobes, Planck Collaboration XIV (2014) attempt a
template fit of the physical optics model to the survey differ-
ence maps in combination with a zodiacal light model. The tem-
plate fits are presented in Table 4 of Planck Collaboration XIV
(2014). The FSL signature is clearly detected at 857 GHz at a
level much higher than predicted. As these channels are multi-
moded (Maffei et al. 2010), the differences are not that surpris-
ing; it is very difficult to perform the calculations necessary
for the prediction. In addition, the specifications for the horn
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Fig. 13. A slice through stacked Jupiter data for bolometer 143-6, illustrating residual long time response after deconvolution. The vertical dotted
line shows the extent of the scanning beam map (plotted in blue).
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Fig. 14. Azimuthally averaged profiles of measured beams of channel
353-1 compared to the azimuthal average of the far sidelobe physical
optics model.

fabrication were quite demanding, and small variations, though
still within the mechanical tolerances, could give large variations
in the amount of spillover.

For the lower frequency, single-moded channels, there is
no clear detection of primary (PR) spillover (i.e., pickup from
close to the spacecraft spin axis; see Appendix D). While the
significant negative values of the best fit template amplitude may
indicate some low-level, large-scale systematic, there seems to
be nothing with the distinctive signature of PR spillover at fre-
quencies between 100 and 353 GHz. These values indicate that
the PR spillover values in Table 2 of Tauber et al. (2010) may be
overestimated.

For the direct contribution of the secondary (SR) spillover,
the situation is similar at 353 GHz, but at 217 and 143 GHz there
is a 3σ detection at about the level expected, while at 100 GHz
the value is about 2.5 times higher than expected, though the
signal-to-noise level of the detection is less than 2σ. The baffle
contribution to the SR spillover appears higher than predicted,
though Planck Collaboration XIV (2014) note that the baffle
spillover is difficult to model and the diffuse signal is easily con-
taminated by other residuals in the survey difference.

4. Effective beams

Unlike WMAP (Jarosik et al. 2011), for large portions of the sky
the scan strategy of Planck does not azimuthally symmetrize the
effect of the beams on the CMB map. Treating the beams as
azimuthally symmetric leads to a flawed power spectrum recon-
struction. To remedy this, the effective beam takes the coupling
between the azimuthal asymmetry of the beam and the uneven
distribution of scanning angles across the sky into account.

The effective beam is computed for each HFI frequency
scanning beam and scan history in real space using the FEBeCoP
(Mitra et al. 2011) method, as in Planck’s early release (Planck
HFI Core Team 2011b). A companion paper describes the de-
tails of the application of FEBeCoP to Planck data (Rocha et al.,
in prep.).
FEBeCoP calculates the effective beam at a position in the

sky by computing the real space average of the scanning beam
over all crossings angles of that sky position. The observed tem-
perature sky T̃ is a convolution of the true sky T and the effective
beam B,

T̃ = Ωpix B ⊗ T, (13)

where Ωpix is the solid angle of a pixel, and the effective beam
can be written in terms of the pointing matrix Ati and the scan-
ning beam P(r̂ j, p̂t) as

Bi j =

∑
t Ati P(r̂ j, p̂t)∑

t Ati
, (14)

where t is the time-ordered data sample index and i is the pixel
index. Ati is 1 if the pointing direction falls in pixel number i, else
it is 0, pt represents the pointing direction of the time-ordered
data sample, and r̂ j is the centre of pixel number j, where the
scanning beam P(r̂ j, p̂t) is being evaluated (if the pointing direc-
tion falls within the cut-off radius).

The sky variation of the effective beam solid angle and the el-
lipticity of the best-fit Gaussian to the effective beam at HEALPix
Nside = 16 pixel centres are shown for 100 GHz in Fig. 15. The
effective beam is less elliptical near the ecliptic poles, where
more scanning angles symmetrize the beam.

The mean and RMS variation of the effective beam solid an-
gle across the sky for each HFI map are presented in Table 3.
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Table 3. Mean values of effective beam parameters for each HFI frequency.

Band Ω σΩ ∆Ω FWHM Ω1 Ω2 ε ∆ε
[GHz] [arcmin2] [arcmin2] [arcmin2] [arcmin] [arcmin2] [arcmin2]

100 . . . . . . 105.78 0.55 0.31 9.66 (9.65) 100.83 105.78 1.186 0.023
143 . . . . . . 59.95 0.08 0.25 7.27 (7.25) 56.81 59.95 1.036 0.009
217 . . . . . . 28.45 0.03 0.27 5.01 (4.99) 26.44 28.43 1.177 0.030
353 . . . . . . 26.71 0.02 0.25 4.86 (4.82) 24.83 26.65 1.147 0.028
545 . . . . . . 26.53 0.03 0.34 4.84 (4.68) 24.29 26.30 1.161 0.036
857 . . . . . . 24.24 0.03 0.19 4.63 (4.33) 22.65 23.99 1.393 0.076

Notes. The error in the solid angle σΩ comes from the scanning beam error budget. The spatial variation ∆Ω is the RMS variation of the solid
angle across the sky. Two values are reported for the FWHM: the first is the FWHM of the Gaussian whose solid angle is equivalent to that of the
effective beams; the second in parenthesis is the mean best-fit Gaussian. Ω1 and Ω2 are the solid angles contained within a ring with radius 1 and
2 FWHM respectively (used for aperture photometry as described in Appendix A of Planck Collaboration XXVIII 2014). The ellipticity ε is the
ratio of the major to minor axis of the best fit Gaussian, averaged over the full sky. ∆ε is the RMS variability over the sky of the ellipticity.

104.941 108.839
solid angle [arcmin2 ]

1.0165 1.2148
ellipticity

Fig. 15. Effective beam solid angle (upper panel) and the best-fit
Gaussian ellipticity (lower panel) of the 100 GHz effective beam across
the sky in Galactic coordinates.

4.1. Effective beam window functions

The multipole space window function of one (or two) observed
map(s) is defined, in the absence of instrumental noise and other
systematics, as the ratio of the ensemble averaged auto- or cross-
power spectrum of the map(s) to the true theoretical sky power
spectrum

Weff
` = 〈Cobs

` 〉/Csky
`
. (15)

It must account for the azimuthal asymmetry of the scan his-
tory and the beam profile. This is done in the HFI data process-
ing pipeline using the harmonic space method Quickbeam (de-
scribed in Appendix E.2), which allows a quick determination

of the nominal effective beam window functions and of their
Monte Carlo based error eigenmodes (Sect. 6) for all auto- and
cross-spectra pairs of HFI detectors, the error determination be-
ing computationally intractable with FEBeCop.

In the FEBeCoP approach, many (approximately 1000) ran-
dom realizations of the CMB sky are generated starting from
a given fiducial power spectrum Cin

` . For each beam model,
the maps are convolved with the pre-computed effective beams,
and the pseudo-power spectra C̃conv

`
of the resulting maps are

computed and corrected by the mode coupling kernel matrix M
(Hivon et al. 2002) for a given sky mask: Cobs

` = M−1
``′C̃

conv
`′ . The

Monte Carlo average of kernel-corrected power spectra com-
pared to the input power spectrum then gives the effective beam
window function (Eq. (15), with Cin

` replacing Csky
`

).
In addition, another harmonic space method (FICSBell;

Appendix E.1) was also tested and all three methods give consis-
tent results for the nominal window functions at 100–353 GHz
(see Fig. E.1).

For two different maps obtained with different detectors or
combination of detectors X and Y , because of the optical beam
non-circularity and Planck’s scanning strategy, the cross-beam
window function is not the geometrical mean of the respective
auto-beam window functions, i.e.,

WXY (`) ,
[
WXX(`)WYY (`)

]1/2
if X , Y, (16)

as illustrated in Fig. 16, while of course WXY = WYX for any X
and Y .

The effective beam window functions for the 2013 maps are
shown in Fig. 17. Variations in the effective beam window func-
tion from place to place on the sky are significant; the published
window functions have been appropriately weighted for the anal-
ysis of the nominal mission on the full sky. Analyses requiring
effective beam data for more restricted data ranges or for par-
ticular regions of the sky should refer to the specialized tools
provided in Planck Collaboration (2013).

5. Uncertainties and robustness

Ensembles of simulated planetary observations are used to prop-
agate noise and other systematic effects in the time-ordered data
into errors in the beam reconstruction. These simulations are also
used to estimate bias in the reconstruction of the beam by com-
paring the ensemble average beam with the input beam.

To assess the completeness of the statistical and systematic
noise model, the consistency of the beam reconstruction derived
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from different planetary observations is measured against corre-
sponding Monte Carlo ensembles. The MC-derived beam statis-
tics, including both the bias and the correlation structure of the
errors, have been found to be somewhat sensitive to the near lobe
structure that is included in the beam used as an input to the sim-
ulations. An investigation of this effect is ongoing.

In addition, several sources of systematic error that can po-
tentially impact the beam determination, but are not included in
the current simulation pipeline, have been investigated. The most
significant of these are the beam colour correction and distortion
due to ADC non-linearity. These errors are estimated separately
and found to be small in comparison to the error bars estimated
in the eigenmode analysis described in Sect. 6.

5.1. Simulation of planet observations

The bias and uncertainty in the scanning beams are determined
using ensembles of simulated planet observations. The simula-
tion pipeline uses the LevelS Planck simulation code (Reinecke
et al. 2006) to generate simulations of the first two observations
of Mars and the first three observations of Jupiter and Saturn for
each bolometer. This pipeline is used to generate 100 simulations
for each bolometer at 353 GHz, 545 GHz and 857 GHz, 200 at
143 GHz and 217 GHz, and 400 at 100 GHz. Each simulation
is reconstructed into a beam model using the identical procedure
and software as for the real data.

The components of the simulations are as follows.

1. The scanning beams used as input to the simulations are the
same Mars beams used to calculate the effective beam win-
dow function. As shown in Appendix B, the reconstruction
bias depends more on the beam representation than the exact
input beam used in a simulation.

2. The Planck spacecraft pointing and the Horizons
ephemerides are used to calculate the pointing relative
to the planets for the simulation. An additional random 2.′′5
RMS per sample pointing error is added in both the in-scan
and cross-scan directions with a power spectral density
given by the pointing error estimate, consistent with the
estimated error in the spacecraft pointing (see Sect. 4, and
Fig. 7 of Planck Collaboration VI 2014). Error in the beam
centroid determination is not simulated.
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Fig. 17. Effective beam window functions (solid lines) for each HFI
frequency. The shaded region shows the ±1σ error envelope. Dashed
lines show the effective beam window function for Gaussian beams with
FWHM 9.′65, 7.′25, 4.′99, 4.′82, 4.′68, and 4.′33 for 100, 143, 217, 353,
545 and 857 GHz, respectively.

3. Detector noise is generated in the timeline by a random re-
alization of Gaussian noise with a power spectral density as
reported in Planck Collaboration VI (2014).

For a small number of the simulations, cosmic ray glitches
are added to the simulation with the energy spectrum and rate
measured in the data (Planck Collaboration X 2014), and the
deglitching procedure from the standard pipeline is applied to
detect samples contaminated by glitch transients and to subtract
the long tails (Planck Collaboration VI 2014).

Each simulation in the ensemble provides an estimate of
the scanning beam, which is then used as input to Quickbeam
(Appendix E.2) to estimate an effective beam window function
(EBWF). The resulting ensemble of EBWFs are then used to
compute the bias and errors on the EBWF derived from the data;
the mean of the ensemble provides a measure of the reconstruc-
tion bias, and the distribution of the ensemble gives the uncer-
tainty. The bulk of the RMS of the ensemble can be captured
with a small number of eigenmodes (Sect. 6).

This procedure allows for the direct determination of the
EBWF and associated errors for each of the detector cross-
correlations input to the angular power spectrum likelihood, de-
scribed in Planck Collaboration XV (2014).

5.2. Absolute consistency: comparison of systematics
against simulations

5.2.1. Seasonal consistency

One important test of the consistency of the scanning beam mea-
surement is the stability over time, as measured in different
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seasons and on different objects over the course of the mis-
sion. The difference of the scanning beam window function be-
tween the first two observations of Mars is shown in Fig. 18.
The residuals are well within the estimated uncertainty that is
derived from the simulation ensemble for 100–353 GHz. Due
to the sparse cross-scan sampling, the B-spline beam represen-
tation does not converge for a single planetary observation; for
this test the Gauss-Hermite (GH) formalism is used.

5.2.2. Time variability of planet flux density

Mars is known to have diurnal variability at HFI frequencies
due to the non-uniformity of the surface albedo5. A single de-
tector scans Mars on time scales of a few hours, during which
the brightness temperature of Mars can vary by several percent.
Additionally, the Mars planetary disc area varies by several per-
cent during an observation as it moves relative to Planck. To
assess the impact of Mars variability on the scanning beam de-
termination, GH representations of the beam are derived for each
bolometer, with and without a model for the diurnal variability
of Mars. Using χ2 tests for goodness of fit, these results are in-
distinguishable.

5.2.3. Beam colour correction

The scanning beams are measured using planets, whose spectral
energy distribution (SED) roughly follows the Rayleigh-Jeans
spectrum. However, the beam window functions from these mea-
surements are used to correct the angular power spectra of CMB
anisotropies, which is characterized by a very different spectrum,
one that is falling in power as a function of frequency relative to
a Rayleigh-Jeans spectrum across the HFI bands.

Physical optics simulations, using the GRASP6 software, are
used to investigate this effect. For each HFI channel from 100–
353 GHz, monochromatic simulations are generated at five

5 http://www.lesia.obspm.fr/perso/emmanuel-lellouch/
mars/
6 TICRA, http://www.ticra.com
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Fig. 19. An estimate of known biases in the effective beam window
function compared to the RMS statistical error including the additional
factor 2.7 (grey shaded region) for each HFI frequency band. Green is
the bias due to near sidelobes, blue is the colour-correction bias, and
magenta shows an upper limit on the effect of ADC non-linearity.

frequencies across each band using the pre-launch telescope
model (Maffei et al. 2010; Tauber et al. 2010). The solid angle of
these simulated beams varies across the band, due to diffraction
and focussing effects. For 100–217 GHz, the beam size comes
to a minimum near the band centre, while at 353 GHz the beam
size rises with frequency.

No attempt is made to colour-correct the planet-derived win-
dow functions, because a telescope solution has not yet been
determined that agrees with the measured solid angles. Spot
checks at 143 and 353 GHz with a defocussed telescope model
improve agreement between the data and the model, but does
not change the trend of solid angle with frequency across the
band. The investigation of these effects suggests that numerical
models can bound the uncertainty, but cannot reliably predict
a bias. Rayleigh-Jeans-weighted average and CMB anisotropy-
weighted average beams are produced and used to compute an
effective beam window function (blue curves in Fig. 19). The
largest bias results at 353 GHz. For the frequencies 100, 143,
and 217 GHz, however, the band average effect is less than 0.1%
across the entire multipole range used in the CMB likelihood.

The beam solid angle also varies as a function of source
SED; the GRASP simulations constrain the size of the beam solid
angle colour correction from a ν2 source SED (like the planets)
to the IRAS convention ν−1. At 545 and 857 GHz, the GRASP
models of Murphy et al. (2010) provide a measure of the effect,
which is found to be significant at 353 GHz, but not at the other
frequencies, at the level of a few tenths of a percent (Table 2).
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5.2.4. ADC non-linearity

Non-linearity in the ADC in the HFI readout electronics mainly
manifests itself as an apparent gain drift (Planck Collaboration
VI 2014; Planck Collaboration VIII 2014), however, the mea-
sured beam shapes are also biased by the effect.

Correcting the ADC non-linearity relies on a model that pre-
dicts which ADC codes contribute to each data sample. The
presence of large signal gradients, such as a planet, or pickup
from the 4He-JT cooler, make modelling difficult. A model for
correcting every detector is still under development.

A model of the behaviour of the ADCs is used to apply non-
linearity to simulated Mars observations. The B-spline scanning
beams reconstructed from these simulations predict biases that
are typically under 2% at ` ≤ 2000, less than the RMS error
(see the magenta curves in Fig. 19 for simulated bias of the 100
through 353 GHz channels).

Using the brighter planets in future Planck main beam mod-
els will tend to reduce the effect, as the higher signal amplitudes
sample a broader range of the ADC, tending to average down the
resulting bias (Mather et al. 1993).

5.2.5. Pointing errors

While the simulated planet observations account for random
pointing errors, pointing drifts remain at the level of a few arc-
seconds per pointing period in the co-scan and cross-scan di-
rections common to all detectors (Planck Collaboration I 2014;
Planck Collaboration VI 2014). These have the effect of widen-
ing the beam. Even in the worst case, if remaining errors are
Gaussian-distributed with a 2.′′5 residual, the window function
B2
` is 0.2% biased at multipole ` = 3000. Since this is a very

small effect relative to the other beam errors, it is considered
negligible.

5.2.6. Glitches

The HFI data are affected by transient signals due to interac-
tions with high energy particles. The planet simulation tools al-
low for the addition of a random population of glitches to sim-
ulated Mars observations with a realistic rate and energy spec-
trum (Planck Collaboration X 2014), testing the performance of
the deglitching algorithm near planet signals and the effects of
undetected low energy glitches in the channel with the highest
glitch rate at each frequency band.

The RMS of the noise increases by at most 20% in the
bolometer with the highest glitch rate, but more typically less
than 10%, and the reconstruction bias changes by a negligible
amount. The effects are small enough that they are not included
in the error budget.

5.3. Relative consistency: window function ratios vs. spectral
ratios

The CMB sky itself allows an additional, and statistically power-
ful, check on the relative consistency (but not the absolute accu-
racy) of the effective beam window functions within a frequency
band. See Fig. 33, and the associated discussion in Sect. 7.3 of
Planck Collaboration VI (2014), showing the self-consistency
of the window functions at a level better than 0.4%, across the
full range of multipoles employed in cosmological parameter
estimation.

6. Total error budget

The distribution of beam solid angles reconstructed from simu-
lated planet reconstructions provides the statistical error budget
for the beam solid angles (Table 2). Other systematic effects are
small in comparison.

The uncertainty in the effective beam window function is de-
termined with the distribution of window functions computed
from the simulated beams. These errors are highly correlated in
multipole space, and we find that they can be fully described
by a small number of eigenmodes and their covariance matrix
(Appendices G.1 and G.2), which can be retrieved, together with
the nominal beam window functions, from Planck Collaboration
(2013) and the Planck Legacy Archive7. These simulations also
allow us to determine the bias induced by the beam reconstruc-
tion pipeline, and correct the final beam window functions from
it (Appendix G.3).

Studies have been performed to probe the impact of assump-
tions regarding the near sidelobe response of the beam. These
studies suggest the potential that the Monte Carlo ensembles
used to derive the error eigenmodes may not capture aspects of
the bias and the correlation structure of the errors. A visual sum-
mary of the total error budget, including the impact of the near
sidelobe response, is provided in Fig. 19. For the initial data re-
lease a conservative scaling of the MC-derived beam errors, a
factor of 2.7 in power, is applied in order to accommodate the
maximum extent of the bias that is allowable, given the signal-
to-noise ratio of the Jupiter and Saturn data.

7. Conclusion

A combination of Jupiter and Saturn observations, survey dif-
ference maps, and checkout and performance verification (CPV)
phase data is used to derive the bolometer/readout electronics
time response transfer function. This transfer function is decon-
volved from the HFI time-ordered data. Residuals can be de-
tected as long tails, stretching up to 6◦ from compact sources,
but are at a level less than 10−4 of the beam peak, and so are
insignificant for the scanning beams.

The effective beams and window functions are estimated for
all HFI detectors using a scanning beam derived from a com-
bination of the first two seasons of Mars observations. The ef-
fective beam products account for the partial symmetrization
of the scanning beam which results from the scan strategy.
The FEBeCoP algorithm produces effective beams in real space,
while the Quickbeam method is used to produce the effective
beam window functions and errors in harmonic space.

The final error budget for each effective beam window func-
tion (both auto- and cross-beams) is well-described by five
eigenmodes for each beam and a correlation matrix of eigen-
values. The error parameters are estimated with an ensemble of
simulated Mars observations. The simulations are based on ran-
dom realizations of noise and pointing errors.

No significant time variation of the scanning beam or the
time response is found. Cross-power window functions are
also produced that describe the beam filtering effects in cross-
correlations between independent HFI maps.

The high signal-to-noise ratio of the Jupiter and Saturn data
limit the contribution of the near sidelobe response (between 30′
and 5◦ of the beam centroid) to the total beam solid angle to
less than 0.2% at 100 to 217 GHz. This portion of the beam,

7 http://www.sciops.esa.int/index.php?project=
planck&page=Planck_Legacy_Archive
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Table A.1. HFI electronics filter sequence; here s = iω.

Filter Description Parameters Function

0 Stray capacitance low pass filter τstray = RboloCstray h0 =
1

1.0 + τstray s

1 Low pass filter R1 = 1 kΩ
C1 = 100 nF

h1 =
2 + R1C1 s

2(1 + R1C1 s)

2 Sallen Key high pass filter R2 = 51 kΩ
C2 = 1 µF

h2 =
(R2C2 s)2

(1 + R2C2 s)2

3 Sign reverse with gain . . . h3 = −5.1

4 Single pole low pass filter with gain R4 = 10 kΩ
C4 = 10 nF

h4 =
1.5

1 + R4C4 s

5 Single pole high pass filter coupled to a
Sallen Key low pass filter

R9 = 18.7 kΩ
R12 = 37.4 kΩ

h5 =
2 R12R9R78C18 s

s3K3 + s2K2 + sK1 + R12R9

C = 10.0 nF
R78 = 510 kΩ
C18 = 1.0 µF
K3 = R2

9R78R2
12C2C18

K2 = R9R2
12R78C2 + R2

9R2
12C2

+R9R2
12R78C18C

K1 = R9R2
12C + R12R78R9C18

which is beyond the signal-to-noise of the Mars data, is not fully
represented in the beam simulations. The Monte Carlo derived
error amplitudes are scaled by a factor of 2.7 to account for the
contribution of the near sidelobe response to the beam window
function.

Far sidelobes contribute negligibly to the window function,
but may potentially impact the primary calibration and result in
pickup from bright Galactic sources. Improved physical optics
models for the far sidelobes will be forthcoming for future re-
leases.

The impact of non-linearity in the ADC, the sensitivity of
beam shape to the spectral intensity of the source, and residual
cosmic ray transients are found to be insignificant sources of
systematic error.

Knowledge of the beam window functions allows Planck
HFI to extrapolate the dipole calibration over more than three or-
ders of magnitude in angular scale. For the current data release,
beam errors are subdominant to noise, foreground marginaliza-
tion and sample variance in cosmological parameter estimation.
Future Planck data releases will fully exploit all of the avail-
able planetary data and create wide-field beam maps, allowing
an even more precise, and accurate, measurement of the main
beams and near sidelobes.
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Appendix A: Electronics model

This Appendix derives the effect of the HFI electronics filtering
on the TOI. If the input signal (power) on a bolometer is

s0(t) = eiωt, (A.1)

the bolometer physical impedance can be written as:

s(t) = eiωtF(ω), (A.2)

where ω is the angular frequency of the signal and F(ω) is
the complex intrinsic bolometer transfer function. For HFI the
bolometer transfer function is modelled as the sum of 4 single
pole low pass filters,

F(ω) =
∑
i=1,4

ai

1 + iωτi
· (A.3)

The modulation of the signal is done with a square wave, written
here as a composition of sine waves of decreasing amplitude,

s′(t) = eiωtF(ω)
∞∑

k=0

eiωr(2k+1)t − e−iωr(2k+1)t

2i(2k + 1)
, (A.4)

where the Euler relation sin x = (eix − e−ix)/2i is used, and ωr is
the angular frequency of the square wave. The modulation fre-
quency is fmod = ωr/2π and was set to fmod = 90.18759 Hz
in flight. This signal is then filtered by the complex electronic
transfer function H(ω). Setting

ω+
k = ω + (2k + 1)ωr

and

ω−k = ω − (2k + 1)ωr
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Table A.2. Parameters for LFER4 model that are deconvolved from the data.

Bolometer a1 τ1 a2 τ2 a3 τ3 a4 τ4 τstray S phase
[ms] [ms] [ms] [ms] [ms]

100-1a . . . . . . 0.392 10.0 0.534 20.9 0.0656 51.3 0.00833 572 1.59 0.00139
100-1b . . . . . . 0.484 10.3 0.463 19.2 0.0451 71.4 0.00808 594 1.49 0.00139
100-2a . . . . . . 0.474 6.84 0.421 13.6 0.0942 37.6 0.0106 346 1.32 0.00125
100-2b . . . . . . 0.126 5.84 0.717 15.1 0.142 35.1 0.0145 293 1.38 0.00125
100-3a . . . . . . 0.744 5.39 0.223 14.7 0.0262 58.6 0.00636 907 1.42 0.00125
100-3b . . . . . . 0.608 5.48 0.352 15.5 0.0321 63.6 0.00821 504 1.66 0.00125
100-4a . . . . . . 0.411 8.2 0.514 17.8 0.0581 57.9 0.0168 370 1.25 0.00125
100-4b . . . . . . 0.687 11.3 0.282 24.3 0.0218 62.0 0.00875 431 1.38 0.00139

143-1a . . . . . . 0.817 4.47 0.144 12.1 0.0293 38.7 0.0101 472 1.42 0.00125
143-1b . . . . . . 0.49 4.72 0.333 15.6 0.134 48.1 0.0435 270 1.49 0.00125
143-2a . . . . . . 0.909 4.7 0.076 17.0 0.00634 100 0.00871 363 1.48 0.00125
143-2b . . . . . . 0.912 5.24 0.051 16.7 0.0244 26.5 0.0123 295 1.46 0.00125
143-3a . . . . . . 0.681 4.19 0.273 9.56 0.0345 34.8 0.0115 317 1.45 0.00125
143-3b . . . . . . 0.82 4.48 0.131 13.2 0.0354 35.1 0.0133 283 1.61 0.00083
143-4a . . . . . . 0.914 5.69 0.072 18.9 0.00602 48.2 0.00756 225 1.59 0.00125
143-4b . . . . . . 0.428 6.06 0.508 6.06 0.0554 22.7 0.00882 84 1.82 0.00125
143-5 . . . . . . 0.491 6.64 0.397 6.64 0.0962 26.4 0.0156 336 2.02 0.00139
143-6 . . . . . . 0.518 5.51 0.409 5.51 0.0614 26.6 0.0116 314 1.53 0.00111
143-7 . . . . . . 0.414 5.43 0.562 5.43 0.0185 44.9 0.00545 314 1.86 0.00139

217-5a . . . . . . 0.905 6.69 0.080 21.6 0.00585 65.8 0.00986 342 1.57 0.00111
217-5b . . . . . . 0.925 5.76 0.061 18.0 0.00513 65.6 0.0094 287 1.87 0.00125
217-6a . . . . . . 0.844 6.45 0.068 19.7 0.0737 31.6 0.0147 297 1.54 0.00125
217-6b . . . . . . 0.284 6.23 0.666 6.23 0.0384 24 0.0117 150 1.46 0.00111
217-7a . . . . . . 0.343 5.48 0.574 5.48 0.0717 23 0.0107 320 1.52 0.00139
217-7b . . . . . . 0.846 5.07 0.127 14.40 0.0131 47.9 0.0133 311 1.51 0.00139
217-8a . . . . . . 0.496 7.22 0.439 7.22 0.0521 32.5 0.0128 382 1.79 0.00111
217-8b . . . . . . 0.512 7.03 0.41 7.03 0.0639 27.2 0.0139 232 1.73 0.00125
217-1 . . . . . . 0.014 3.46 0.956 3.46 0.0271 23.3 0.00359 1980 1.59 0.00111
217-2 . . . . . . 0.978 3.52 0.014 26.1 0.00614 42 0.00194 686 1.6 0.00125
217-3 . . . . . . 0.932 3.55 0.034 3.55 0.0292 32.4 0.00491 279 1.74 0.00125
217-4 . . . . . . 0.658 1.35 0.32 5.55 0.0174 26.8 0.00424 473 1.71 0.00111

353-3a . . . . . . 0.554 7.04 0.36 7.04 0.0699 30.5 0.0163 344 1.7 0.00125
353-3b . . . . . . 0.219 2.68 0.671 6.95 0.0977 23.8 0.0119 289 1.57 0.00111
353-4a . . . . . . 0.768 4.73 0.198 9.93 0.0283 50.5 0.00628 536 1.81 0.00125
353-4b . . . . . . 0.684 4.54 0.224 10.8 0.0774 80 0.0149 267 1.66 0.00111
353-5a . . . . . . 0.767 5.96 0.159 12.4 0.0628 30.3 0.0109 357 1.56 0.00111
353-5b . . . . . . 0.832 6.19 0.126 11.1 0.0324 35 0.0096 397 1.66 0.00111
353-6a . . . . . . 0.049 1.76 0.855 6.0 0.0856 21.6 0.0105 222 1.99 0.00125
353-6b . . . . . . 0.829 5.61 0.127 5.61 0.0373 25.2 0.00696 360 2.28 0.00111
353-1 . . . . . . 0.41 0.74 0.502 4.22 0.0811 17.7 0.0063 329 1.32 0.00097
353-2 . . . . . . 0.747 3.09 0.225 7.26 0.0252 44.7 0.00267 513 1.54 0.00097
353-7 . . . . . . 0.448 0.9 0.537 4.1 0.0122 27.3 0.00346 433 1.78 0.00125
353-8 . . . . . . 0.718 2.23 0.261 6.08 0.0165 38 0.00408 268 1.77 0.00111

545-1 . . . . . . 0.991 2.93 0.007 26.0 0.00139 2600 . . . . . . 2.16 0.00111
545-2 . . . . . . 0.985 2.77 0.013 24.0 0.00246 2800 . . . . . . 1.87 0.00097
545-4 . . . . . . 0.972 3.0 0.028 25.0 0.00078 2500 . . . . . . 2.22 0.00111

857-1 . . . . . . 0.974 3.38 0.023 25.0 0.00349 2200 . . . . . . 1.76 0.00111
857-2 . . . . . . 0.84 1.48 0.158 6.56 0.00249 3200 . . . . . . 2.2 0.00125
857-3 . . . . . . 0.36 0.04 0.627 2.4 0.0111 17 0.002 1900 1.52 0.00126
857-4 . . . . . . 0.278 0.4 0.719 3.92 0.00162 90 0.00152 800 1.49 0.00056

gives

Σ(t) =

∞∑
k=0

F(ω)
2i(2k + 1)

[
H(ω+

k )eiω+
k t − H(ω−k )eiω−k t

]
. (A.5)

This signal is then sampled at high frequency (2 fmodNsamp).
Nsamp is a parameter of the HFI electronics corresponding to
the number of high frequency samples in each modulation

semi-period. In order to obtain an output signal sampled every
π/ωr seconds, the waveform is integrated on a semi-period, as
done in the HFI readout. To also include a time shift ∆t, the in-
tegral is calculated between nπ/ωr + ∆t and (n + 1)π/ωr + ∆t
(with T = 2π/ωr period of the modulation). The time shift ∆t is
encoded in the HFI electronics by the parameter S phase, with the
relation ∆t = S phase/Nsamp/ fmod.
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After integration, a sample of a bolometer at time tn can be
written as

Y(tn) = (−1)nF(ω)H′(ω)eitnω, (A.6)

where

H′(ω) =
1
2

∞∑
k=0

e−i( πω
2ωr

+ω∆t)
[

H(ω+
k )eiω+

k ∆t

(2k + 1)ω+
k

(
1 − e

iω+
k π

ωr

)

− H(ω−k )eiω−k ∆t

(2k + 1)ω−k

(
1 − e

iω−k π
ωr

) ]
. (A.7)

The output signal in Eq. (A.6) can be demodulated (thus remov-
ing the (−1)n) and compared to the input signal in Eq. (A.1). The
overall transfer function is composed of the bolometer transfer
function and the effective electronics transfer function, H′(ω),

T F(ω) = F(ω)H′(ω). (A.8)

The shape of H(ω) is obtained by combining low and high-
pass filters with Sallen Key topologies (Sallen & Key 1955),
with their respective time constants, and accounting also for
the stray capacitance low pass filter given by the bolometer
impedance combined with the stray capacitance of the cables.
The sequence of filters that define the electronic band-pass func-
tion H(ω) = h0 ∗h1 ∗h2 ∗h3 ∗h4 ∗h5 are listed in Table A.1, with
parameters listed in Table A.2.

Appendix B: Gauss-Hermite beams

HFI’s scanning beams are described by an elliptical Gaussian
shape to an accuracy of 2–5% in solid angle. A Gauss-Hermite
representation of the beam uses Hermite polynomials to pro-
vide higher-order corrections to a Gaussian model (Huffenberger
et al. 2010). There are fewer degrees of freedom than in a grid-
ded beam map, allowing higher signal-to-noise on each mode.
However, because the order of the decomposition is truncated,
in practice the description is ill suited to a description of fea-
tures much beyond the extent of the main beam. Larger scale
features of the beam, including a beam shoulder (Ruze 1966) or
the effect of the print-through of the backing structure (grating
lobes), must be included separately.

The initial two-dimensional Gaussian is parametrized as

P(x1, x2) =
A

|2πΣ|1/2 exp

−1
2

2∑
i, j=1

(xi − x̄i)Σ−1
i j (x j − x̄ j)

 , (B.1)

where A is an overall amplitude, (x1, x2) are two-dimensional
Cartesian coordinates (the pointing is projected to a flat sky),
(x̄1, x̄2) are the coordinates of the beam centre, and the correla-
tion matrix is given by

Σ =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
. (B.2)

Hence, the Gaussian model parameters A, x̄1, x̄2, σ1, σ2, ρ are fit-
ted. These can also be expressed in terms of the ellipticity, e (de-
fined here as the ratio between the major and minor axes), and
rotation angle α, of the Gaussian ellipse.

The coefficients to the Gauss-Hermite polynomials multiply-
ing the elliptical Gaussian are then fitted. The basis functions are
defined as

Φn1n2 (x) ∝ Hn1 (x′1)Hn2 (x′2) exp
(−x′ · x′/2) , (B.3)

where Hn(x) is the order-n Hermite polynomial and the primed
coordinates x′ rotates into a system aligned with the axes of the
Gaussian and scaled to the major and minor axes σi (i.e., to the
principle axes of the correlation matrix Σ). Having determined
the elliptical Gaussian separately, the subsequent Gauss-Hermite
polynomial fit is a generalized least-squares procedure, solvable
by the usual matrix techniques, under the assumption of white
noise. Because the full data model includes further effects such
as pointing error, glitch effects, etc, a full error analysis requires
a broad suite of simulations, described in Sect. 5.

Appendix C: B-spline beams

In this model of the scanning beam, a two-dimensional B-spline
surface is fit to the time-ordered planet data. A smoothing cri-
terion is applied during the fit to minimize the effects of high
spatial frequency variations due to noise. This representation of
the beam is superior to a simple two-dimensional binning of the
data in its ability to capture large signal gradients.

B-splines are a linear combination of polynomials of degree
k and order k + 1. They are defined by the location of their con-
trol points (called knots) of which there are 5 for 3rd degree
polynomials.

The k-degree B-spline built using the knots {λi, ..., λi+k+1}
(de Boor 1972; Cox 1972) is given by

Pi,1(x) =

{
1, if x ∈ [λi, λi+1]
0, if x < [λi, λi+1] (C.1)

with recursion relations

Pi,l+1(x) =
x − λi

λi+l − λi
Pi,l(x) +

λi+l+1 − x
λi+l+1 − λi+1

Pi+1,l(x). (C.2)

where the index l runs from 1 through the B-spline degree k. The
B-spline knots {λi, ..., zλi+k+1} are located on a regularly spaced
grid in the detector coordinate frame. At the edge of the recon-
structed beam map area, 4 coincident knots are added to avoid
vanishing basis functions, allowing a unique decomposition.

In the solution to the B-spline coefficients Pi,l(x), a smooth-
ing criterion is introduced as a constraint on the sum of the
derivatives of the beam at each knot, motivated by the assump-
tion that the true beam does not contain very high spatial fre-
quencies and prevents noise from biasing the reconstruction at
spatial frequencies smaller than the smoothing scale.

A smoothing criterion η (Dierckx 1993) is related to the sum
of the order k derivative of the beam model (Pk) evaluated at the
knot locations λi:

η =

g∑
i=1

[
Pk(λi+) − Pk(λi−)

]2
(C.3)

where g is the total number of distinct knots and λi+ and λi− are
the left and right derivative of the beam model evaluated at the
knot location. The smoothing criterion is introduced as an extra
term in the score function ζ in the least-squares minimization of
the beam map with respect to the data,

ζ = η + p × δ. (C.4)

where δ is the usual squared difference between the data points
yr and the model P(xr) at pointings xr,

δ =

m∑
r=1

[
yr − P(xr)

]2 . (C.5)
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Table C.1. Summary of B-spline knot spacing and smoothing criterion
weight p used in the beam reconstruction.

Band Knot separation p
[GHz] [arcmin]

100 . . . . . . 1.5 10
143 . . . . . . 1.25 10
217 . . . . . . 1.0 10
353 . . . . . . 1.0 104

545 . . . . . . 0.75 106

857 . . . . . . 0.75 106

and p is a relative weighting factor for the smoothing crite-
rion. The knot spacing and the smoothing criterion weight p are
determined separately for each frequency band based on physi-
cal optics simulations and the coverage of the two Mars transits
given by the scanning strategy (see Table C.1). Simulated planet
observations (see Sect. 5) show that the choice of B-spline knot
spacing and smoothing parameters do not significantly bias the
beam reconstruction.

Appendix D: Far sidelobe effects on the effective
beam window function

The far sidelobes (FSL) are defined as the response of the instru-
ment at angles >5◦ from the main beam centroid. The FSL af-
fect both 1. the gain calibration of the instrument with the dipole,
and 2. how the calibration is transfered to higher multipoles with
the effective beam window function. Here we discuss the inter-
play of these effects.

The FSL can be separated into three main components (see
Fig. 5 of Tauber et al. 2010):

1. Primary Reflector Spillover (PR Spillover) is the response
of the instrument to radiation from just above the primary
mirror that reflects off the secondary mirror and arrives at
the feed horns. This response is nearly aligned with the spin
axis of the spacecraft, and therefore scans very little of the
sky on 1 min time-scales.

2. Secondary Reflector Direct Spillover (SR Direct Spillover,
or SRD) is the response from directly above the secondary
mirror. The sidelobe peaks roughly 10◦ from the main beam,
and as such scans the sky in nearly the same way as the main
beam as the satellite rotates. The azimuthal extent is roughly
30◦.

3. Secondary Reflector Baffle Spillover (SR Baffle Spillover, or
SRB) is response from radiation reflecting off the baffles.
This is difficult to model, being diffuse radiation reflecting
off the poorly known inner baffle surfaces. It is spread over a
large fraction of the sky.

The HFI dipole calibration is performed assuming a delta-
function (pencil) beam (Planck Collaboration VIII 2014). This
leads to a bias in the calibration described by the ratio of the
dipole convolved with the full-sky beam to the dipole convolved
by a pencil beam,

g̃ = g
P ⊗ D

Ppencil ⊗ D
,

where g̃ is the estimated gain, g is the true gain, P is the true full-
sky beam, Ppencil is the assumed pencil beam, and D is the dipole.
The true full-sky beam is taken to consist of three portions,

P = Pmain + PNSL + PFSL,

the main beam Pmain (within 20′ of the centroid), the near side-
lobes PNSL (between 20′ and 5◦), and the far sidelobes PFSL (re-
sponse further than 5◦ from the centroid). The quantity

PMNSL = Pmain + PNSL

is defined as the beam within 5◦ of the centroid (the main lobe
and near sidelobes). The bias in the calibration can be rewritten
as

g̃ = g
(
1 − fFSL +

PFSL ⊗ D
Ppencil ⊗ D

)
, (D.1)

where fFSL is the integral of the far sidelobe response relative to
the full beam integral. The first term, 1 − fFSL, is due to the loss
in response of the main lobe and near sidelobes to far sidelobes,
while the second term represents the coupling of the dipole into
the sidelobes.

For each pointing period the convolution of the pencil beam
with the dipole is approximated by

Ppencil ⊗ D ' sin θmaindpencil, (D.2)

where θmain is the angle between the main beam centroid and
the spin axis, and dpencil is the dipole amplitude that would be
observed with a pencil beam. The components of the far side-
lobes enter into Eq. (D.1) differently, and assuming the majority
of the response to the dipole in each component comes from one
direction on the sky, can be approximated as

PFSL ⊗ D ' εPR sin θPRdpencil + εSRD sin θSRDdpencil

+ εSRB sin θSRBdpencil,

where εPR, εSRD, and εSRB are the fraction of the total solid angle
in the PR spillover, the SR direct spillover, and the SR baffle
spillover, respectively, and θPR, θSRD, θSRB are the angles be-
tween the spin axis and the peak of the PR spillover response,
the SR direct spillover response, and the SR baffle spillover re-
sponse respectively. Equation (D.1) then simplifies to

g̃ ' g
(
1− fFSL+εPR

sin θPR

sin θpencil
+εSRD

sin θSRD

sin θpencil
+εSRB

sin θSRB

sin θpencil

)
·

(D.3)

From Tauber et al. (2010), θpencil ' 85◦, θPR ' 10◦, θSRD ' 75◦,
and θSRB ' 45◦ making the PR spillover and SR baffle spillover
negligible. Equation (D.3) reduces further to

g̃ ' g
(
1 − fFSL + εSRD

sin θSRD

sin θpencil

)
· (D.4)

SR direct spillover scans the dipole, but with a slightly differ-
ent amplitude, since it is offset by 10◦ from the main lobe. The
PR spillover does not modulate the dipole; aligned with the spin
axis, the PR spillover contributes a nearly constant signal during
each stable pointing period. The predicted values of the solid
angle fractions are fFSL = 3.3 × 10−3 and εSRD = 1.9 × 10−3

at 100 GHz (Tauber et al. 2010), making the measured gain
g̃ ' 0.9985g.

However, the effect of the gain bias on the angular power
spectrum is further reduced by corrections to the effective beam
window function due to the FSL. Not including the FSL in the
beam model tends to bias the window function at very low multi-
poles relative to high multipoles. Considering the measured sky
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signal at small scales T̃sky as compared to the true sky Tsky one
has

T̃sky =
S
g̃

=
P ⊗ Tsky(

1 − fFSL +
PFSL⊗D

Ppencil⊗D

) ,
where S is the signal measured by the bolometer. Solving for the
true sky signal gives

PMNSL ⊗ Tsky =

(
1 − fFSL +

PFSL ⊗ D
Ppencil ⊗ D

)
T̃sky − PFSL ⊗ Tsky.

Considering that PMNSL ⊗ Tsky ' (1 − fFSL)Tsky,

Tsky '
(
1 +

PFSL ⊗ D
Ppencil ⊗ D

1
1 − fFSL

)
T̃sky −

PFSL ⊗ Tsky

1 − fFSL
·

Now also considering that PMNSL⊗D ' (1− fFSL)Ppencil⊗D, the
true sky signal can be written as

Tsky ' T̃sky

(
1 +

PFSL ⊗ D
PMNSL ⊗ D

− PFSL ⊗ Tsky

PMNSL ⊗ Tsky

Tsky

T̃sky

)
,

or

Tsky =
(
1 + φD − φsky

)
T̃sky, (D.5)

where the second-order correction term Tsky/T̃sky ' 1 is
dropped, and the following factors are defined:

φD =
PFSL ⊗ D

Ppencil ⊗ D
;

and

φsky =
PFSL ⊗ Tsky

Ppencil ⊗ Tsky
·

Here φsky represents the relative pickup of anisotropy in the side-
lobe beam as compared to the main beam and near sidelobes.
The response of the FSL to CMB anisotropy is negligible, but
Galactic response may not be. The PR spillover contributes only
a constant value per pointing period, because it is not modu-
lated with the scan. Only the SR direct spillover enters into the
formula. Since the SR direct spillover is nearly aligned with
the main beam, Galactic signal is not picked up in the CMB
anisotropy except close to the Galactic plane. So for foreground-
clean regions of the sky, φsky � fFSL.

The quantity φD is the bias due to the ratio of dipole re-
sponse in the far sidelobes to dipole response in the main beam.
Again the PR spillover contributes only an offset per pointing
period, which is removed by the polkapix destriping algorithm
(Tristram et al. 2011; Planck Collaboration VIII 2014), so we are
left with the SR direct spillover and SR baffle spillover. Applying
the same approximation as in Eq. (D.2) gives

φD ' εSRD
sin θSRD

sin θpencil
,

and Eq. (D.5) becomes

Tsky '
(
1 + εSRD

sin θSRD

sin θpencil

)
T̃sky. (D.6)

This result implies that FSL bias of the effective beam window
function tends to cancel the gain bias (Eq. (D.4)), and the re-
sponse to CMB anisotropy is unaffected to first order.

Simulations of the sky scanned with the far sidelobe phys-
ical optics model (Planck Collaboration XIV 2014; Planck
Collaboration VI 2014) confirm this.

Appendix E: Harmonic space computation
of the effective beam window function

Two harmonic space techniques (FICSBell and Quickbeam),
developed independently but closely related in their formalism,
have been used to compute the effective beam window func-
tions. They provide a valuable cross-check of the pixel-based
results obtained with FEBeCoP (Fig. 2) and their low computa-
tional requirements allow fast calculation of the window func-
tion errors through the processing of Monte Carlo simulations
of planet observations.

E.1. FICSBell

FICSBell is a harmonic space method for computing the effec-
tive beam window function directly from the scanning beam and
the scan history. The steps of this method are as follows.

1. The statistics of the orientation of each detector d within
each map pixel p is computed first, and only once for a given
observation campaign:

wd
s (rp) =

∑
j

eisψ j , (E.1)

where ψ j is the orientation of the detector with respect to the
local meridian during the measurement j occurring in the
direction rp. Note that the s = 0 moment is simply the hit
count map. The orientation hit moments are computed up to
degree s = 4. At the same time, the first two moments of the
distribution of samples within each pixel (i.e., the centre of
mass and moments of inertia) are computed and stored.

2. The scanning beam map of each detector d is transformed
into spherical harmonics:

bd
`s =

∫
drBd(r)Y`s(r), (E.2)

where Bd(r) is the beam map centred on the north pole,
and the Y`s(r) are the spherical harmonic basis functions.
Higher s indices describe higher degrees of departure from
azimuthal symmetry and, for HFI beams, the coefficients bd

`s
are decreasing functions of s at most multipoles considered.
It also appears that, for ` < 3000, the coefficients with |s| > 4
account for much less than 1% of the beam solid angle. Spot
checks where window functions are computed with |s| ≤ 6
show a difference of less than 10−4 for ` < 2000 at 100 GHz
and for ` < 3000 at 143 and 217 GHz. For these reasons,
only modes with |s| ≤ 4 are considered in the present anal-
ysis. Armitage-Caplan & Wandelt (2009) reached a similar
conclusion in their deconvolution of LFI beams.

3. For a given CMB sky realization t, described by its spherical
harmonics coefficients a`m =

∫
drt(r)Y`m(r), the bd

`s coeffi-
cients computed above are used to generate s-spin weighted
maps,

md
s (r) =

∑
`m

bd
`s a`m sY`m(r), (E.3)

as well as the first and second derivatives, using standard
HEALPix tools.

4. The spin-weighted maps and orientation hit moments of the
same order s are combined for all detectors involved, to pro-
vide an “observed” map

m(r) =

∑
d

∑
s

wd
s (r)md

s (r)

 /∑
d

wd
0(r). (E.4)
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Similarly the local spatial derivatives are combined with the
location hit moments to describe the effect of the non-ideal
sampling of each pixel (see Appendix F). In this combina-
tion, the respective number of hits of each detector in each
pixel is considered, as well as the detector weighting (gener-
ally proportional to the inverse noise variance).

5. The power spectrum of this map can then be computed, and
compared to the input CMB power spectrum to estimate the
effective beam window function over the whole sky, or over
a given region of the sky.

Monte Carlo (MC) simulations in which the sky realizations are
changed can be performed by repeating steps 3, 4 and 5. The
impact of beam model uncertainties can be studied by including
step 2 in the MC simulations.

E.2. Quickbeam

By decomposing the scanning beam into harmonic coefficients
B`m, each TOI sample can be modelled as (neglecting the con-
tribution from instrumental noise, which is independent of beam
asymmetry)

Ti =
∑
`ms

e−isαi B`sT̃`msY`m(θi, φi), (E.5)

where the TOI samples are indexed by i, and T̃`m is the underly-
ing sky signal. The spin spherical harmonic sY`m rotates the scan-
ning beam to the pointing location (θ, φ), while the e−isαi factor
gives it the correct orientation. Equation (E.5) may be evaluated
using techniques developed for convolution in Wandelt & Gorski
(2001) and Prezeau & Reinecke (2010), although manipulating
a TOI-sized object is necessarily slow.

On the small angular scales comparable to the size of the
beam, it is a good approximation to assume that the procedure
of mapmaking from TOI samples is essentially a process of
binning:

T (p) =
∑
i∈p

Ti/H(p), (E.6)

where H(p) is the total number of hits in pixel n̂.
Given a normalized, rescaled harmonic transform of the

beam B`m, sky multipoles T̃`m and a scan history object w(n̂, s)
given by

w(n̂, s) =
∑
j∈p

eisα j/H(n̂), (E.7)

where the sum is over all hits j of pixel p at location n̂p, and α j
is the scan angle for observation j. The harmonic transform of
this scan-strategy object is given by

swLM =

∫
d2n̂sY∗LM(n̂)w(n̂, s). (E.8)

The beam-convolved observation is then given by

T̃ (n̂) =
∑
s`m

w(n̂,−s)B`sT`msY`m(n̂). (E.9)

Taking the ensemble average of the pseudo-C` power spectrum
of these Tlm gives (Hanson et al. 2010; Hinshaw et al. 2007)

C̃TT
L =

∑
S S ′

∑
`1`2

(2`1 + 1)(2`2 + 1)
4π (−s−s′)W`1 B`2S B∗`2S ′C

TT
`2

×
(
`1 `2 L
s −s 0

)(
`1 `2 L
s′ −s′ 0

)
(E.10)
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Fig. E.1. Difference between effective beam window functions com-
puted with a real space method (FEBeCoP) and a harmonic space
method (Quickbeam). The shaded region denotes the RMS error at each
mutipole.

where

(ss′)WL =
1

2L + 1

∑
M

SwLMS ′w
∗
LM (E.11)

is a cross-power spectrum of scan history objects. Note that
the w(n, s) used here can also incorporate a position depen-
dent weighting to optimize the pseudo-C` estimate, such as
inverse-noise or a mask, the equations are unchanged. Writing
the pseudo-C` in position space (following Dvorkin & Smith
2009) with Wigner-d matrices gives

C̃TT
L =

1
8π

∑
S S ′

∫ 1

−1
dz dL

00(z)

×
∑
`1

d`1
−s−s′ (z)(−s−s′)W`1 (2`1 + 1)


×

∑
`2

d`2
ss′ (z)B`2S B∗`2S ′C

TT
`2

(2`2 + 1)

 . (E.12)

This integral can be implemented exactly using Gauss-Legendre
quadrature, at a cost of O(`2

maxs2
max). For simplicity, the equa-

tions here are written for the auto-spectrum of a single detec-
tor, but the generalization to a map made by adding several de-
tectors with different weightings is straightforward. The cost to
compute all of the necessary terms exactly in that case becomes
O(`2

maxs2
maxN2

det).
On the flat sky, beam convolution is multiplication in Fourier

space by a beam rotated onto the scan direction. Multiple hits
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with different scan directions are incorporated by averaging (as
the scan history objects above encapsulate).

A scan strategy which is fairly smooth across the sky
is nearly equivalent to observing many independent flat-sky
patches at high L. There is a fairly good approximation to
the beam convolved pseudo-power spectrum which is essen-
tially a flat-sky approximation. In the limit that L � `1, with
C`2 and B`2 is a slowly-varying function in `2, and using the
equality

∑
`2

(2`2 + 1)
(
`1 `2 L
s −s 0

)(
`1 `2 L
s′ −s′ 0

)
= δss′ , (E.13)

the pseudo-C` sum above can be approximated as

C̃TT
L = CTT

L

∑
M

〈∣∣∣w(n̂p,M)
∣∣∣2〉

p
|BLM |2, (E.14)

where the average 〈〉p is taken over the full sky. It is illustrative
to consider two limits of this equation. Firstly, for a “raster” scan
strategy in which each pixel is observed with the same direction:〈
|w(n̂,M)|2

〉
p

= 1, (E.15)

and the predicted transfer function is just the power spectrum
of the beam. Secondly, for a “best-case” scan strategy, in which
each pixel is observed many times with many different orienta-
tion angles,〈
|w(n̂,M)|2

〉
p

= δM0, (E.16)

and the transfer function is the azimuthally symmetric part of the
beam. Note that this is for a full-sky observation; in the presence
of a mask, the average above produces an fsky factor, as expected
but neglects the coupling between L multipoles (which can be
calculated with the more complete equations above).

Appendix F: Pixelization artefacts

PlanckHFI maps are produced at HEALPix resolution 11 (Nside =
2048), corresponding to pixels with a typical dimension of 1.′7.
With the resolution comparable to the spacing between scanning
rings (Planck Collaboration I 2011) there is an uneven distri-
bution of hits within pixels, introducing a complication in the
analysis and interpretation of the Planck maps. A sample of the
Planck distribution of sample hits within pixels is illustrated in
Fig. F.

The three effective beam codes may also be used to
simulate the effect of pixelization on the observed sky:
LevelS/TotalConvoler/Conviqt (Reinecke et al. 2006;
Wandelt & Gorski 2001; Prezeau & Reinecke 2010); FEBeCoP
(Mitra et al. 2011; and FICSBell (Appendix E).

For the measurement of CMB fluctuations, the effects of pix-
elization may be studied analytically. On the small scales rele-
vant to pixelization, the observed CMB is smooth, both due to
physical damping and the convolution of the instrumental beam.
Taylor expanding the CMB temperature about a pixel centre to
second order, the typical gradient amplitude is given by

〈|∇T |2〉 =
1

4π

∑
`

`(`+1)(2`+1)CT
` W` ≈ 1×109 µK2/rad2. (F.1)

-80 80µK

Fig. F.1. Illustration of TOI samples near the Galactic plane (grey dots),
over-plotted on a simulated CMB realization which has been convolved
with a Gaussian 7′ FWHM beam and pixelized at (Nside = 2048).
Associated scanning rings (grey lines) as well as centres of mass for
the hit distribution (black arrows) are also plotted.

Here the approximate value is calculated for a ΛCDM cosmol-
ogy with a 7′ FWHM Gaussian beam. The typical curvature of
the observed temperature, on the other hand is given by

〈|∇2T |2〉 =
1

4π

∑
`

[`(` + 1)]2(2` + 1)CT
` W` ≈ 7× 1014 µK2/rad4.

(F.2)

On the scales relevant to the maximum displacement from the
centre of a 1.7′ pixel, the maximum displacement is of order
1′(3 × 10−4rad)), and so the gradient term tends to dominate,
although the curvature term is still non-negligible. For each ob-
servation of a pixel, the displacement from the pixel centre can
be denoted as d = dθ + idφ. The average over all hits within a
pixel gives an overall deflection vector for a pixel centre located
at n̂ denoted as d(n̂). This represents the centre of mass of the hit
distribution; Fig. F shows these average deflections using black
arrows. The deflection field d(n̂) may be decomposed into spin-1
spherical harmonics as

dlm =

∫
4π

1Y∗`md(n̂). (F.3)

With a second-order Taylor expansion of the CMB temperature
about each pixel centre, it is then possible to calculate the av-
erage pseudo-C` power spectrum of the pixelized sky. This is
given by

CT
` =

[
1 − `(` + 1)Rd

]
CT
` W`+

1
2

∑
`1`2

`1(`1 + 1)(2`1 + 1)(2`2 + 1)
4π

×
(
`1 `2 `
1 −1 0

)2

CT
`1

W`1

[
Cd+
`2

+ (−1)`+`1+`2Cd−
`2

]
, (F.4)
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where Rd = 〈|d|2〉/2 is half the mean-squared deflection mag-
nitude (averaged over hits within a pixel, as well as over pix-
els), Cd+

`
is the sum of the gradient and curl power spectra of

d`m, and Cd−
`

is the gradient spectrum minus the curl spectrum.
The Rd term describes a smearing of the observed sky due to
pixelization. For uniform pixel coverage of Nside = 2048 pix-
els 〈|d|2〉1/2 = (2Rd)1/2 = 0.725′, while, for the hit distribution of
Planck frequency maps, Rd is within 0.2% of this value for CMB
channels, and 0.4% for all channels. This term is therefore accu-
rately described by the HEALPix pixel window function, which
is derived under the assumption of uniform pixel coverage, and
the resulting relative error on the beam window function is at
most 4 × 10−4 for ` ≤ 3000.

The effect of pixelization is degenerate with that of gravita-
tional lensing of the CMB, with the difference that it: (1) acts
on the beam-convolved sky, rather than the actual sky; and
(2) produces a curl-mode deflection field as well as a gradient
mode. This is discussed further in Planck Collaboration XVII
(2014), where the sub-pixel deflection field constitutes a poten-
tial source of bias for the measured Planck lensing potential.
Indeed, Eq. (F.4) is just a slightly modified version of the usual
first order CMB lensing power spectrum (Hu 2000), Lewis &
Challinor (2006) to accommodate curl modes.

A useful approximation to Eq. (F.4) which is derived in the
unrealistic limit that the deflection vectors are uncorrelated be-
tween pixels, but in practice gives a good description of the
power induced by the pixelization, is that the d(n̂) couples the
CMB gradient into a source of noise with an effective level given
by

σN ≈
√

RT 4π
Npix
〈|d(n̂)|2〉, (F.5)

where the average is taken over all pixels and RT is half the
mean-squared power in the CMB gradient:

RT =
1

8π

∑
`

`(` + 1)(2` + 1)C̃T
` . (F.6)

For frequency-combined maps,
√〈|d(n̂)|2〉 is typically on the

order of 0.′1, and so the induced noise σN is approximately
2 µK′. This is small compared to the instrumental contribution,
although it does not disappear when taking cross-spectra, de-
pending on the coherence of the hit distributions of the two maps
in the cross-spectra.

Appendix G: Beam window function error

G.1. Error eigenmodes

Consider two individual detectors or detection units (weighted
sum of detectors) X and Y for which sky maps are available.
Here X and Y can be the same or different. Putting aside the
instrumental noise and other contingencies for the time being,
the cross- (or auto-) angular power spectrum measured of the
observed maps CXY

obs(`) is on average related to the real input
signal CXY

sky(`) through

〈CXY
obs(`)〉 = CXY

sky(`)WXY
eff,true(`) (G.1)

where WXY
eff,true is the effective beam window function. Note that

because of the optical beam non-circularity and Planck scanning
strategy,

WXY (`) ,
[
WXX(`)WYY (`)

]1/2
if X , Y, (G.2)

as illustrated in Fig. 16, while WXY = WYX for any X and Y . It
also appears that in the ` range of interest, WXY (`) ≥ 0; therefore
WXY =

(
BXY

)2
, analogous to what is usually done for simple (cir-

cular) beam models. In what follows, the XY pair superscript is
dropped except when they are required for clarity. In most cases,
scientific analyses will be conducted on a best guess Cest(`) of
the sky power spectrum, in which the empirical Cobs(`) is cor-
rected from a nominal effective window Weff,nom(`)

Cest(`) = Cobs(`)/Weff,nom(`); (G.3)

therefore, on average,

〈Cest(`)〉 = Csky(`)Weff,true(`)/Weff,nom(`),

= Csky(`)
(
Beff,true(`)/Beff,nom(`)

)2 . (G.4)

The ratio Beff,true(`)/Beff,nom(`) which determines the uncertain-
ties on the angular power spectrum originating from our beam
knowledge is studied using the planet transit MC simulations
described in Sect. 5. The scanning beam map determined with
the B-Spline code described in Appendix C on each of these
simulations is turned into an effective beam window function
Wi(`) for i = 1, 2, . . . , nMC (where nMC = 100 is the number of
MC simulations) using the Quickbeam formalism described in
Appendix E.2.

Defining the means Bmean(`) and Wmean(`) as

Bmean(`) =

nMC∑
i=1

(Wi(`))1/2/nMC, (G.5)

and,

Wmean(`) =

nMC∑
i=1

Wi(`)/nMC, (G.6)

one can build the matrix of the deviations around the mean

∆i(`) = fs ln (Bi(`)/Bmean(`)) , (G.7)

where the factor fs has been applied. As discussed in Sect. 6,
fs = 2.7. This scaling factor is applied throughout the rest of
discussion and is included in the delivered products and plotted
error modes.

Sect. G.3 contains a discussion of how the MC average Bmean
and nominal beam Beff,nom are related and focus here on the dis-
persion around the mean.

Since the relative dispersion of the simulated Wi(`) generally
is very small (less than 1%), then Wmean(`) ' Bmean(`)2 to a very
good approximation (as illustrated in Fig. G.1) and the matrix ∆
is well approximated by

∆i(`) ' 1/2 fs ln [Wi(`)/Wmean(`)] ,
' 1/2 fs [Wi(`)/Wmean(`) − 1] . (G.8)

The quantity B(`) was preferred over W(`) in order to remain
consistent with the usual description of the beam in linear map
space, instead of quadratic space.

The statistical properties of the MC based beam window
functions can be summarized in the covariance of the deviations
∆, defined as

C ≡ ∆T · ∆/(nMC − 1), (G.9)

A7, page 26 of 31



Planck Collaboration: Planck 2013 results. VII.

0 500 1000 1500 2000 2500 3000 3500 4000
Multipole `

20

10

0

10

20

1
0

0
0

  
x
  
∆
B

(`
)/
B

(`
)

100ds1
(a)

k=1

k=2

k=3

k=4

k=5

k=6

σ` (k<6)

σ`〈
B 2
`

〉1/2〈
B`

〉 −1

0 500 1000 1500 2000 2500 3000 3500 4000
Multipole `

4

2

0

2

4

1
0

0
0

  
x
  
∆
B

(`
)/
B

(`
)

143ds2
(b)

0 500 1000 1500 2000 2500 3000 3500 4000
Multipole `

4

2

0

2

4

1
0

0
0

  
x
  
∆
B

(`
)/
B

(`
)

217-1x217-2
(c)

5 10 15
Mode k

10-6

10-5

10-4

10-3

10-2

10-1

100

σ
2

(k
)

(d)

100ds1
143ds2
217-1x217-2
353ds1
545-1
857-1x857-2

Fig. G.1. Beam window function error modes. Panels a), b) and c) show the first six eigenmodes defined in Eq. (G.11) for respectively the
effective auto-beam 100ds1 and 143ds2 and the effective cross-beam 217-1 × 217-2. The first five modes used in the current beam error modelling
are shown as solid coloured curves, while the 6th mode (the first one to be ignored) appears as yellow dashes. The grey dashes show the ±1σ
envelope obtained by adding the first five modes in quadrature, while the solid grey curve is the ±1σ envelope estimated from the simulations
(therefore including all eigenmodes). The black dashes show the relative difference between W1/2

mean(`) and Bmean(`) defined in Eqs. (G.6) and
(G.5), respectively. In panel d), for a selection of effective beams, the coloured symbols show (dk/d1)2 where dk is the kth eigenvalue of the
diagonal matrix D (Eq. (G.12)), while the coloured dashes show the error made on the quadratic sum of the eigenvalues by truncating it to nmodes:
1 −∑nmodes

k=1 d2
k/

∑∞
k=1 d2

k . The vertical dashes show the current nmodes = 5 value.

where ∆ is a matrix with nMC rows and `max + 1 columns, and C
is a square symmetric positive semi-definite matrix with `max + 1
rows and columns. It can be diagonalized into

C = V · D2 · VT/(nMC − 1),
= ET · E, (G.10)

where D is a diagonal matrix, with at most nMC positive eigen-
values, and the eigenmodes matrix

E ≡ D · VT/(nMC − 1)1/2 (G.11)

of the beam uncertainty. Alternatively, one can perform a singu-
lar value decomposition (SVD) of ∆, which reads

∆ = M · D · VT (G.12)
= M · E (nMC − 1)1/2, (G.13)

where M is an orthogonal nMC × nMC matrix (i.e., MT · M =
M ·MT = InMC ), D is a diagonal matrix with nMC non-negative

eigenvalues of decreasing amplitude, and V is a matrix with
`max + 1 rows whose nMC columns are orthonormal vectors
(i.e., VTV = InMC ), with InMC being the identity matrix of size
nMC × nMC. The diagonalization of the covariance matrix C
(Eq. (G.10)) has a numerical complexity scaling like `3

max, while
the SVD of ∆ (Eq. (G.12)) scales like `maxn2

MC. Since nMC �
`max the latter approach was prefered because it is much faster,
and it naturally provides the mixing matrix M. Equation (G.12)
has a degeneracy on the sign of M and V, which was lifted by
constraining the vectors of V (and therefore E) to all be positive
at ` = 200.

It appears that most of the statistical content of ∆ or C is
described by the first few modes nmodes with the largest eigenval-
ues, in which case the E matrix is truncated to its first nmodes rows
with little loss of information. For HFI, nmodes = 5 is chosen, as
illustrated in Fig. G.1.

The statistics of the elements of the mixing matrix M,
and therefore of the MC measured beam window function
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Fig. G.2. Effect of ` truncation on beam error modes for frequency-averaged beam window functions at 100, 143, 217 GHz and 143 × 217. For
clarity, only the three leading modes are shown, respectively, in blue, green and red, while the solid grey line shows the 1σ level, obtained by
adding all modes in quadrature. Dotted lines are the original eigenmodes computed on a wide `-range. Solid lines are the eigenmodes computed
directly from the MC simulations on the truncated `-range used for cosmological analysis. Dashed lines show the eigenmodes computed on the
truncated `-range with Eqs. (G.16) and (G.17), starting from the first five eigenmodes for the wide range. In all four cases considered, the first
leading mode on the truncated range, which dominates the error budget, is perfectly reconstructed out of the information available, while the
second leading mode is well estimated in all cases except for 217 GHz.

fluctuations, is shown in Fig. G.3 to be very close to Gaussian,
justifying the current analysis in terms of a covariance matrix.

The beam uncertainty model therefore is

B(`) = Bmean(`) exp
(
gT.E

)
`

(G.14)

= Bmean(`) exp

nmodes∑
k=1

gkek(`)

 , (G.15)

where g is a nmodes element vector of independant Gaussian vari-
ates of zero mean and unit variance and ek(`) is the kth row of E.

The SVD decomposition of the beam uncertainty was per-
formed for the ` range [`min, `max] with `min = 0 and `max depend-
ing on the frequencies of the two detectors involved in the beam
considered. Currently `max = 2500 when the lowest frequency
is 100 GHz, `max = 3000 when that frequency is 143 GHz, and
`max = 4000 at higher frequency.

If orthogonal error eigenmodes are needed for the range
[`′min, `

′
max], with `′min ≥ `min and `′max ≤ `max, the provided E

must first be truncated to the new range to give the Et matrix
with nmodes rows and `′max − `′min + 1 columns, and then singular
value decomposed into

Et = R′ · D′ · V′T, (G.16)

where the new set of orthogonal eigenmodes is

E′ ≡ D′ · V′T. (G.17)

This is illustrated in Fig. G.2, where the eigenmodes are trun-
cated to the frequency dependent ` ranges used in the Planck
C(`) likelihood (Planck Collaboration XV 2014).

G.2. Eigenmode covariance

The previous approach, dedicated to the study of the uncertainty
on the beam window function associated with a single pair of de-
tectors (or maps), can be generalized to the simultaneous char-
acterization of any number of pairs. For instance, for the three
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Fig. G.3. Distribution of the eigenmodes determined from MC simula-
tions, for all HFI detector sets, for the first nmodes = 5 modes, compared
to a Gaussian distribution of zero mean and unit variance.

disjoint pairs, a = {UV}, b = {XY} and c = {ZT }, one writes

(
∆a ∆b ∆c

)
=

(
Ma Mb Mc

)
.

Ea 0 0
0 Eb 0
0 0 Ec

 . (G.18)

and the covariance matrix reads

Cabc =
(
∆a ∆b ∆c

)T
.
(
∆a ∆b ∆c

)
=

Ea 0 0
0 Eb 0
0 0 Ec


T

.

 I MaTMb MaTMc

MbTMa I MbTMc

McTMa McTMb I

 .
Ea 0 0

0 Eb 0
0 0 Ec

 ,
= Ea,b,cT ·Ma,b,c · Ea,b,c, (G.19)

where Ma,b,c is a square symmetric matrix with 3nmodes rows,
and if one denotes La,b,c its Cholesky “root,” such that Ma,b,c =
La,b,c · La,b,cT , then

Ba(`) = Ba
mean(`) exp

(
gTLa,b,c (Ea 0 0)

)
`
, (G.20)

Bb(`) = Bb
mean(`) exp

(
gTLa,b,c

(
0 Eb 0

))
`
, (G.21)

Bc(`) = Bc
mean(`) exp

(
gTLa,b,c (0 0 Ec)

)
`
, (G.22)

where g is the 3nmodes element vector of independent Gaussian
deviates and is the same for Eqs. (G.20) to (G.22).

The Planck-HFI Reduced Instrument Model (RIMO) avail-
able at Planck Legacy Archive8 and described in Planck
Collaboration (2013) contains the correlation matrix Ma,b,c,d,...,
where a, b, c, d . . . each are a different element of the set of pairs
that can be built out of the detection units available. So, for nd
detection units, the number of pairs will be nd(nd + 1)/2 and
the correlation matrix will be square and symmetric, with the
value “1” on its diagonal and have nmodesnd(nd + 1)/2 rows and
as many columns. The nmodes relative to the same detector pair
form adjacent rows and columns in the matrix, and the order of
appearance of the pairs in the matrix is specified in the header of
the FITS extension containing the matrix. The nominal B` and
eigenmodes E are provided for each pair in a different extension.

8 http://www.sciops.esa.int/index.php?project=
planck&page=Planck_Legacy_Archive

The results above were obtained in the basis of eigenmodes
provided, if one wants to obtain a beam correlated model on a
different `-range, with the eigenmodes E′ defined in Eq. (G.17),
then the covariance matrix becomes

C′abc
=

E′a 0 0
0 E′b 0
0 0 E′c


T

·M′a,b,c.

E′a 0 0
0 E′b 0
0 0 E′c

 , (G.23)

with

M′a,b,c =

R′a 0 0
0 R′b 0
0 0 R′c


T

·Ma,b,c.

R′a 0 0
0 R′b 0
0 0 R′c

 , (G.24)

where the R′ matrices are obtained from the SVD in Eq. (G.16).

G.3. Monte Carlo bias

As discussed in Sect. 3.2, the Monte Carlo average of the
B-Spline reconstructed effective beam window function Bmean(`)
can be different from the effective beam that would be obtained
directly out of the simulation input beam map Beff,in(`), intro-
duces a bias

1 + εbias(`) ≡ Bmean(`) / Beff,in(`), (G.25)

which is interpreted as a consequence of the imperfect sampling
of the beam map by the planet, the effect of the instrumental
noise and pointing uncertainty and the smoothing feature of the
B-spline functions. It is found that |εbias(` = 500)| ≤ 2 × 10−4

and |εbias(` = 1000)| < 5 × 10−4 for all effective beams, making
it smaller than the relative dispersion on the beam window func-
tion described above. It is assumed that the beam reconstruction
on the real data suffers from the same bias, and its beam window
function Beff,raw(`) is corrected for this to provide the nominal
beam

Beff,nom(`) = Beff,raw(`) / [1 + εbias(`)] , (G.26)
= Beff,raw(`) Beff,in(`) / Bmean(`). (G.27)

In doing so, εbias is assumed to be perfectly determined by the
simulations, and no error is associated with this correction.
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