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Abstract

Hispanic/Latino adults are a growing segment of the older U.S. population yet are 

underrepresented in brain aging research. We aimed to characterize brain aging among diverse 

Hispanic/Latino individuals. Hispanic/Latino individuals (unweighted n = 2273 ages 35–85 

years; 56% female) from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) 

population-based study underwent magnetic resonance imaging (MRI) as part of the SOL- 

Investigation of Neurocognitive Aging MRI (SOL-INCA-MRI) ancillary study (2018–2022). We 

performed linear regressions to calculate age associations with brain volumes for each outcome 

(total (global) brain, hippocampal, lateral ventricle, total white matter hyperintensity (WMH), 

individual cortical lobar, and total cortical gray matter) and tested modification by sex. Older 

age was associated with smaller gray matter volumes and larger lateral ventricle and WMH 

volumes. Age-related differences in global brain volumes and gray matter volumes in specific 

regions (i.e., the hippocampus and temporal and occipital lobes) were less pronounced among 

women. Our findings warrant further investigation into sex-specific mechanisms of brain aging 

using longitudinal studies.

Keywords

Brain; Aging; Hispanics; Latinos; Brain Volumes; White Matter Hyperintensities

1. Introduction

Hispanic/Latino individuals accounted for over 50% of the United States population growth 

in the past 10 years (Jones et al., 2021). Despite this growth across all age groups, 

little is known about the aging Hispanic/Latino brain. Therefore, the Study of Latinos-
Investigation of Neurocognitive Aging (SOL-INCA) and SOL-INCA Magnetic Resonance 

Imaging (SOL-INCA-MRI) were launched to identify biological underpinnings of healthy 

and neurodegenerative brain aging.

Our current understanding of brain aging is largely based on non-Hispanic/Latino White 

samples. Existing evidence, albeit mixed, largely points to differences in brain structure 

between non-Hispanic/Latino White and Hispanic/Latino adults (Brickman et al., 2008; 

Burke et al., 2018; DeCarli et al., 2008; Minagar et al., 2000; O’Bryant et al., 2021). For 

example, white matter hyperintensities (WMHs), a measure of cerebrovascular disease, is 

greater among U.S. Caribbean Hispanic/Latino adults (Brickman et al., 2008; Zahodne et 
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al., 2015) but similar or reduced in predominantly Mexican American samples (DeCarli et 

al., 2008; Mungas et al., 2009) when compared to non-Hispanic/Latino White individuals. 

More consistently, middle-aged and older Hispanic/Latino individuals have larger global 

brain volumes and/or smaller ventricle size compared to their non-Hispanic/Latino White 

counterparts which may indicate differences in underlying brain aging patterns (Brickman 

et al., 2008; Burke et al., 2018; DeCarli et al., 2008; Minagar et al., 2000; Stickel et al., 

2021). Despite these distinctions, other factors, such as sex differences which tend to favor 

larger global brain volumes and region-specific morphometrics in women when adjusting 

for head size (Cowell et al., 1994; Driscoll et al., 2009; Geerlings et al., 2010; Raz et al., 

2004a) remain relatively unexplored in the Hispanic/Latino aging brain (McKay et al., 2014; 

Prabhakaran et al., 2008).

Understanding age-related brain profiles in healthy middle-aged and older Hispanic/

Latino adults will lead to increased precision in differential diagnosis of healthy versus 

neurodegenerative disease. Thus, we conducted a characterization of brain volumes among a 

diverse Hispanic/Latino U.S. population using data from the SOL-INCA-MRI. We predicted 

that older age would be associated with smaller global gray matter, lobar, and hippocampal 

volumes and larger lateral ventricle and white matter hyperintensity volumes. Further, 

we predicted that age-related differences in global and lobar cortical volumes would be 

exacerbated in men relative to women.

2. Material and methods

2.1. Data

The Hispanic Community Health Study/Study of Latinos (HCHC/SOL) is an ongoing, 

population-based prospective cohort study of diverse Hispanic/Latino adults representative 

of 4 targeted U.S. metropolitan areas (Bronx, NY; Chicago, IL; Miami, FL and San Diego, 

CA). At the baseline Visit 1 (2008–2011), HCHS/SOL enrolled n = 16,415 individuals 

18–74 years of age. Detailed descriptions of the aims, scope, target population, and sampling 

design of the HCHS/SOL are published elsewhere (LaVange et al., 2010; Sorlie et al., 2010). 

The SOL-INCA (n = 6377; 2016–2018) is an HCHS/SOL ancillary study that evaluated 

the cognitive performance of individuals ages 50-years and older at HCHS/SOL Visit 2 

who also underwent cognitive assessment at Visit 1 and returned for a second parent study 

visit. The parent HCHS-SOL study used complex survey sampling designs, so that estimates 

can be generalizable to the target Hispanic/Latino metropolitan populations. A detailed 

discussion of the SOL-INCA study and its design have been published elsewhere (González 

et al., 2019a).

SOL-INCA-MRI leverages the HCHS/SOL cohort and neurocognitive data from the SOL-

INCA to examine brain health among the Hispanic/Latino population which is underserved 

and faces disparities in vascular risk factors. In particular, SOL-INCA-MRI seeks to 

examine brain health and the role of vascular risk factor burden on cerebrovascular 

pathology and Alzheimer’s disease risk using state of the science MRI techniques. 

Data collection is ongoing with an aim to collect brain MRIs on 2,800 participants. 

Approximately 2,400 participants will be recruited from SOL-INCA with participant 

selection enriched for individuals with cognitive impairment (González et al., 2019b) and 
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the remaining cognitively healthy subjects randomly sampled with sex and field center 

matching to the participants with cognitive impairment. Briefly, respondents scoring below 1 

SD on any of the cognitive test scores with complaints of decline in memory or thinking and 

no, or minimal functional impairment were considered impaired. Mild cognitive impairment 

status was based on National Institute on Aging and Diagnostic and Statistical Manual 

of Mental Disorders-5 criteria (American Psychiatric Association, 2013; González et al., 

2019b; McKhann et al., 2011). Additionally, 400 younger (between 35 and 50 years of 

age at Visit 2) participants will be randomly selected from the parent HCHS/SOL study to 

achieve a lifespan perspective on Hispanic/Latino brain health. For the current study, we 

used all available data, as of April 10, 2022, including unweighted n = 2273 participants 

(weightings male = 46%, female = 54%), ages 35–85 years, who had completed MRI 

imaging and relevant image processing; thus, these analyses represent a preliminary report 

of age and sex associates with brain aging. Supplemental Table 1 shows descriptives for 

the present SOL-INCA MRI sample 50+ years and the SOL-INCA sample from which 

participants were recruited.

2.2. MRI acquisition and analysis

Brain images were collected using 3T MRI scanners [GE 3T 750 (3 sites) or Philips 

3T Achieva TX (1 site)]. Sequences of interest for the current research included high-

resolution T1-weighted structural images (1 mm3 ) and fluid-attenuated inversion recovery 

(3DFLAIR). All images were processed using analysis pipelines developed in the Imaging 

of Dementia and Aging (IDeA) laboratory at UC Davis. The process included a number of 

steps.

1. Removal of nonbrain tissues: The skull is removed using a convolutional 

neural net method (Fletcher et al., 2021) followed by human quality control 

to provide generally minor cleanup if needed. Structural MRI brain images are 

then nonlinearly registered performed by a cubic B-spline deformation (Rueckert 

et al., 2006) to a minimal deformation template (MDT) synthetic brain image 

(Kochunov et al., 2001) optimized for 60 years and older age range.

2. Image intensity inhomogeneity correction: We utilize a template-based iterative 

method for correcting field inhomogeneity bias (Fletcher et al., 2012a).

3. Gray, white and cerebrospinal fluid measurement: Image segmentation is 

based on an Expectation-Maximization (EM) algorithm that iteratively refines 

segmentation estimates to produce outputs that are most consistent with the 

input intensities from the native-space T1 images along with a model of 

image smoothness (Fletcher et al., 2012b; Rajapakse et al., 1996). Like all EM 

algorithms, the system must be initialized with a reasonable estimate. The initial 

estimate is produced from the template-space warps of previously segmented 

images; because locations of gray matter/white matter/cerebrospinal fluid tissues 

are known in the template space, transforming these masks back to each image’s 

native space produces rough estimate 3-tissue segmentations. We then calculate 

the mean and standard deviation of the image intensities in locations labeled 

as each tissue type. These values form the initial parameters for a Gaussian 

model of image intensity for each class. At each iteration, the algorithm uses a 
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Gaussian model of T1-weighted image intensity for each tissue class to produce 

a segmentation. In the first iteration, these models are estimated as described 

above. The segmentation yielded by these appearance models alone is then 

refined using a Markov Random Field (MRF) model, a computational statistical 

method that efficiently produces a label map consistent with both the input 

intensities and image smoothness statistics. Inference in the MRF is computed 

using an adaptive priors model (Fletcher et al., 2012b). This refined segmentation 

from the MRF is then used to compute new Gaussian intensity models for each 

tissue class, and the algorithm repeats, iteratively switching between calculating 

Gaussian appearance models and MRF-based segmentation, until convergence. 

The MRF-based segmentation at the final iteration is used as the final output 

segmentation.

4. White matter hyperintensity (WMH): Assessment of WMH is performed on 

a combination of FLAIR and 3D T1 images using a modified Bayesian 

probability structure based on a previously published method of histogram fitting 

(DeCarli et al., 1999). Prior probability maps for WMH were created from 

more than 700 individuals with semi-automatic detection of WMH followed 

by manual editing. Likelihood estimates of the native image are calculated 

through histogram segmentation and thresholding. All segmentation is initially 

performed in standard space resulting in probability likelihood values of WMH 

at each voxel in the white matter. These probabilities are then thresholded at 

3.5 standard deviations above the mean to create a binary WMH mask. Further 

segmentation is based on a modified Bayesian approach that combines image 

likelihood estimates, spatial priors and tissue class constraints. The segmented 

WMH masks are then back transformed on to native space for tissue volume 

calculation. Volumes are log-transformed to normalize population variance.

5. Automatic hippocampal segmentation: MRI-derived hippocampal volumetry has 

been a widely used biomarker in Alzheimer’s disease to improve early diagnosis 

(Frisoni et al., 2013), enrich subject selection (Lorenzi et al., 2010), and monitor 

treatment efficacy (Hampel et al., 2010; Hampel et al., 2011). To address this 

need, the EADC-ADNI Working Group established a Delphi panel to determine 

the optimum protocol (Boccardi et al., 2014a), selected orientation parameters 

(Boccardi et al., 2014b) and developed the final, rigorously tested protocol along 

with making publicly available labels from over 100 ADNI subjects (Bocchetta 

et al., 2014). Our hippocampal segmentation method employs a standard 

atlas based diffeomorphic approach (Vercauteren et al., 2007) with the minor 

modification of label refinement. We further modified this approach to include 

the EADC-ADNI harmonized hippocampal masks to assure standardization 

across cohorts.

6. Region of interest-based analysis: We use the Desikan-Killiany-Tourville Atlas 

(Klein and Tourville, 2012) to parcellate the cerebral cortex. Lobar volumes 

are created by mask fusion. Regional measures are calculated by back 

transformation of the atlas into segmented image native space. A voting scheme 
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is used to assure precise labeling of each region after interpolation of the atlas 

into native space.

All MRI outcomes were residualized to total cranial volume. Standardized (z-scored) 

residualized values were used across models to facilitate interpretation across outcomes 

using a common scale. MRI outcomes of interest included total brain, hippocampal, lateral 

ventricle, total WMH, individual cortical lobar (frontal, parietal, temporal, occipital), and 

total cortical gray matter volumes. Lateral ventricle and total WMH measures were natural 

log transformed prior to residualization to normalize variance.

2.3. Primary exposures

Age (in years) at SOL-INCA-MRI and self-identified sex (male, female).

2.4. Covariables

Self-reported Hispanic/Latino heritage (Dominican, Central American, Cuban, Mexican, 

Puerto Rican, South American, Other/Mixed groups) and height (inches) at Visit 1.

2.5. Analytic strategy

First, we provided descriptive statistics for the SOL-INCA-MRI sample (Table 1). Second, 

we used linear regression models to separately model associations between age and sex 

with each brain outcome. In each case, we fit 2 models to determine crude and fully 

covariables adjusted associations (Tables 2A and B); see Supplemental Table 2 for raw 

brain volumes by age and stratified by sex). Age was modeled both as a linear (primary) 

and quadratic (Supplemental Tables 3A and B) exposures. To facilitate interpretation of 

these associations, we estimated and plotted average marginal estimates (AMEs; means/

probabilities) and their 95% confidence intervals across the age range (35–85 years) for 

men and women. Third, we tested if sex modified the relationships between age and brain 

structure and visualized resulting significant interactions (Table 3, Fig. 1). Finally, we 

performed 2 sets of sensitivity analyses. The first set of sensitivity analyses, examined 

the associations between age and sex with brain outcomes (second step above) specific to 

participants who were cognitively healthy (i.e., individuals that did not meet criteria for 

mild cognitive impairment; Supplemental Tables 4, 5A and B) (González et al., 2019b). 

The second set of sensitivity analyses reproduced the second step (above) while excluding 

individuals who were identified to have infarct on MRI, given that men were more likely 

to have infarct than women. All results were weighted to account for the non-probability 

sampling design and survey regression techniques used to incorporate the stratification and 

clustering of observations and allow for appropriate inferences to the target population.

3. Results

3.1. Descriptives of the target population

Average age was 63.8 years ± 11.5 and 56% were women, over two-thirds had achieved high 

school or equivalent education or higher, 11.6% were U.S. Born, 24.1% met criteria for high 

risk on the Framingham Cardiovascular Risk Score, (D’agostino et al., 2008) and 8.0% had 

MRI confirmed infarct(s). Women were slightly older, shorter, and had lower cardiovascular 
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disease risk (based on the Framingham Cardiovascular Risk Score; D’agostino et al., 2008) 

and lower prevalence of MRI-confirmed infarct(s) compared to males (Table 1).

3.2. Age-related differences

Adjusted for sex, height, and Hispanic/Latino heritage, we found significant and consistent 

linear associations between age and each of the brain volumes considered with evidence 

of linear decrements in total brain, hippocampal, and frontal, parietal, temporal, occipital, 

and combined cortical gray matter volumes with each additional year of age (Table 2A, B). 

Older age was associated with larger lateral ventricle and WMH volumes.

3.3. Sex differences

Adjusting for age, height, and Hispanic/Latino heritage, women had larger total brain 

volumes (β = 0.19 [0.33–0.04]; p < 0.01) and smaller lateral ventricle volumes (β = −0.25 

[−0.11 to −0.39]; p < 0.001) compared to men. We also found evidence for smaller occipital 

gray matter volumes among women. Men and women did not differ in hippocampal, frontal, 

parietal, temporal, total cortical gray matter, or WMH volumes (Table 2A, and B).

3.4. Sex modifications in brain aging outcomes

Tests of interactions between sex and linear age suggested more pronounced age-related 

differences in brain structure among men relative to women. Sex modification effects were 

evident for total brain (p < 0.001) and hippocampal volumes (p < 0.05) as well as occipital 

(p < 0.05), temporal (p < 0.05), with a trend evident for parietal gray matter (p = 0.058) 

volumes but not frontal, total cortical gray volumes, lateral ventricle, or WMH volumes 

(Table 3, Fig. 1).

3.5. Quadratic effects of age

We found evidence for a curvilinear decrease in total brain volumes and an increase in 

lateral ventricle and WMH volumes as a function of age (Supplemental Table 3A and B). 

The curvilinear age change was particularly notable for total brain volume starting around 

age 55-years (Supplemental Fig. 1).

3.6. Cognitively healthy sensitivity analysis

In analyses limited to individuals who were cognitively healthy (i.e., did not meet criteria for 

mild cognitive impairment; Supplemental Table 4; González et al., 2019b), results largely 

followed the same patterns (Supplemental Table 5A and B). Notably, sex significantly 

modified the association between age with WMH volumes such that age-related differences 

in WMH volumes were more pronounced among women compared to men (Supplemental 

Table 6).

3.7. Infarct exclusion analysis

In analyses limited to individuals who did not have infarct on MRI, results largely followed 

the same patterns (Supplemental Tables 7–9).
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4. Discussion

In this SOL-INCA-MRI preliminary report of 2273 diverse Hispanic/Latino adults ages 

35-85 years, we found that older age was largely associated with smaller whole brain and 

regional volumes and larger lateral ventricle and white matter hyperintensity volumes. Sex 

differences in brain volumes were detected, even after adjusting for differences in head 

size, where women tended to have less pronounced age-related differences in some brain 

measures than men. Our study goes beyond ethnic comparisons of clinic-based samples 

to provide information from the largest sample of community-dwelling individuals of 

Hispanic/Latino heritage with neuroimaging data. Thus, our findings set the foundation to 

study both healthy cognitive aging and ADRD risk among diverse Hispanic/Latino adults. 

Given the substantial and growing older Hispanic/Latino population (Colby and Ortman, 

2015), having detailed information on brain aging can inform normative brain data to 

compare and contrast to differences associated with vascular and degenerative diseases.

Consistent with existing literature (DeCarli et al., 2005; Fotenos et al., 2005), older age was 

associated with smaller global and lobar brain volumes among Hispanic/Latino individuals. 

Age-related atrophy in several brain regions has been confirmed in longitudinal studies 

of predominantly non-Hispanic/Latino White adults though patterns of volumetric decline 

vary by brain region (Driscoll et al., 2009; Pfefferbaum et al., 2013). Specifically, several 

studies have pointed to susceptibility to age-related atrophy in the frontal lobes and relative 

preservation in posterior regions, especially the occipital lobe (Cowell et al., 1994; DeCarli 

et al., 2005; Fjell et al., 2009; Jernigan et al., 2001; Pfefferbaum et al., 2013). In the 

present study, older age was associated with differences across all lobar cortices, but trends 

toward more pronounced aging differences (i.e., smaller volumes) at older ages were evident 

only in the parietal lobes. Curvilinear age-related changes in parietal lobe volumes were 

also detected among non-Hispanic/Latino White adults in the Framingham Heart Study 

(DeCarli et al., 2005). More pronounced aging differences in older age were evident for 

global brain volumes in both the present study and Framingham Heart Study, suggesting 

a cumulative pattern that emerges. Additionally, the patterns observed in the present study 

were maintained when excluding individuals with mild cognitive impairment, suggesting 

that these are robust patterns of normal aging.

The hippocampus has been shown to have greater age-related declines than other regions 

within (Foster et al., 2019; Raz et al., 2004b) and outside of the temporal lobe (Fjell 

et al., 2013; Jernigan et al., 2001), but other investigations, typically cross-sectional 

studies, have indicated minimal age-related differences in hippocampal volumes in middle-

age (Mu et al., 1999) and even older adulthood (Brickman et al., 2008). Physically 

healthy samples may demonstrate subtle age-related differences in hippocampal or overall 

temporal lobe volumes that are then difficult to detect in small samples (DeCarli et 

al., 1994; Mu et al., 1999). Although Caribbean Hispanic/Latino adults sampled in the 

Washington Heights–Inwood Columbia Aging Project (Brickman et al., 2008) did not show 

age-related differences in hippocampal volumes, we observed smaller volumes with older 

age across our diverse sample of Hispanic/Latino individuals, that may reflect differences 

in methods of hippocampal measures, with WHICAP being manual traces of the anterior 

portion, whereas SOL-INCA-MRI analysis was atlas based and included the entire length 
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of the hippocampus. Importantly, in the present study, the age-related differences in 

hippocampal volumes were observed when controlling for heritage, reducing the likelihood 

that population heterogeneity could explain these differences.

Sex differences in brain volumes exist among the Hispanic/Latino adults in our sample. 

Hispanic/Latina women had larger global brain volumes but smaller occipital gray 

matter volumes compared to men after controlling for head size. Additionally, women 

demonstrated more stability across the aging spectrum (i.e., less age-related differences) 

in global brain volumes and hippocampal, temporal, and occipital gray matter volumes 

compared to men. Thus, consistent with several cross-sectional and longitudinal studies 

(Brickman et al., 2008; Cowell et al., 1994; DeCarli et al., 2005; Driscoll et al., 2009; 

Geerlings et al., 2010; Raz et al., 2004a), we observed relative brain structure advantages 

among women compared to men, although the degree of sex differences was sometimes 

small (Fotenos et al., 2005). Small differences in brain aging within a cognitively healthy 

sample, as seen in the present study, could indicate differential risk for ADRD and 

preclinical stages of Alzheimer’s disease (Fotenos et al., 2005). Despite these seeming 

advantages, however, women tend to be at increased risk for ADRDs relative to men 

(Alzheimer’s Association, 2021) particularly among the oldest old (Mayeda et al., 2016). 

Animal studies suggest differential bioenergetic (metabolic) changes in aging by sex 

(e.g., in the hippocampus; Zhao et al., 2016), and risk factors for ADRD may differ by 

sex (Armstrong et al., 2019; Peterson and Tom, 2021). Therefore, our findings warrant 

longitudinal investigations into sex-specific risk factors for brain aging and ADRD among 

Hispanic/Latino adults which may manifest as the cohort ages.

In line with previous work, older age (Brickman et al., 2008; Fjell et al., 2009; Pfefferbaum 

et al., 2013) and male sex (DeCarli et al., 2005) were associated with larger lateral ventricle 

size, after controlling for head size. The lateral ventricle, and especially the inferior lateral 

ventricle, show faster increases with age relative to other ventricles (Fjell et al., 2009), 

suggesting more pronounced age-related atrophy in temporal regions of the brain. In 

particular, we detected increasingly pronounced associations between age and ventricle size 

with older age. Also consistent with previous findings (DeCarli et al., 2005), older age 

was linked to more pronounced WMH volumes possibly related to the accumulation of 

cardiovascular disease risk factors which are highly prevalent in this population (Daviglus et 

al., 2012). Although women in our sample had lower cardiovascular disease risk compared 

to men, we only detected sex differences in WMH volumes among our cognitively healthy 

subsample (data not shown). Specifically, women had lower WMH volumes compared 

to men at younger ages but similar WMH load in older ages. Our findings are similar 

to patterns found in other population-based cohorts (Brickman et al., 2008; DeCarli et 

al., 2005), suggesting greater susceptibility for WMH burden among women with aging 

(Sachdev et al., 2009). This may be due, in part, to men and women showing distinct 

vulnerability to specific risk factors for WMHs (e.g., smoking status, hypertension; Sachdev 

et al., 2009), and/or heritability for WMHs which may be slightly greater among women 

(Atwood et al., 2004). However, men have higher prevalence of other cerebrovascular risk 

markers (e.g., subclinical infarcts, cerebral microbleeds) than women (Graff-Radford et al., 

2017; Prabhakaran et al., 2008). These sex-based considerations should be studied further 

within the diverse Hispanic/Latino community. Importantly, several modifiable risk factors 
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(e.g., diet, physical activity, smoking status) may contribute to cardiovascular disease risk 

differences in heritage groups (Daviglus et al., 2012) which may then translate to differences 

in WMH volumes.

4.1. Strengths and limitations

Our results should be interpreted with some limitations in mind. First, despite having 

a substantial number of MRI analyzed scans from a representative sample of Hispanic/

Latino individuals, our results are preliminary and continued data collection will further 

strengthen inference. Second, the data are cross-sectional and do not reflect atrophy or other 

brain changes such as incident vascular injury. Third, we used a broad lens to examine 

brain structure (i.e., focusing on global and lobar volumes) with slightly more specificity 

for indicators of Alzheimer’s pathology (i.e., hippocampal volumes, lateral ventricular 

volumes). Examining other specific brain markers (e.g., other region-specific volumes 

including prefrontal and/or precuneus regions or levels of coincident plasma amyloid and 

phosphorylated tau biomarkers) (Bayram et al., 2018) may also prove useful in further 

characterizing the aging brain. Fourth, we did not test the association of brain measures with 

cognitive outcomes although we did conduct a sensitivity analysis excluding those with mild 

cognitive impairment (Dong et al., 2015; Fletcher et al., 2018). Fifth, we did not test for 

modification by social determinants of health (e.g., access to insurance, literacy; Rodriguez 

et al., 2022; Sadhu et al., 2019) which may point to potential modifiable factors related to 

brain aging. Further work will more completely address these issues.

5. Conclusions

Based on data from a diverse cohort of Hispanic/Latino adults, we found cross-sectional 

evidence of age-related differences in brain structure among 2,273 individuals, ages 35-85 

years. Older age was associated with smaller global and regional gray matter volumes and 

larger lateral ventricle and WMH volumes. Women had larger global brain yet smaller 

occipital gray matter volumes than men, and age-related differences in brain structure (i.e., 

global, hippocampal, temporal, and occipital volumes) were less pronounced among women. 

Given the relative paucity of brain aging information on Hispanic/Latino individuals, our 

work lays a foundation for researchers and clinicians to refer to when working with this 

population.
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Fig. 1. 
Linear associations between age and brain markers by sex, adjusted for Hispanic/Latino 

heritage and height. Models include interactions between sex and each of the model included 

covariates. Note: Covariates included self-reported Hispanic/Latino heritage (Dominican, 

Central American, Cuban, Mexican, Puerto Rican, South American, Other/Mixed groups) 

and height (inches) at Visit 1. Abbreviations: Std, standardized; WMH, white matter 

hyperintensities.
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