
UCLA
Posters

Title
Multi-hop Code Distribution for Sensor Networks

Permalink
https://escholarship.org/uc/item/53t615p0

Authors
Thanos Stathopoulos
John Heidemann
Deborah Estrin

Publication Date
2003

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/53t615p0
https://escholarship.org
http://www.cdlib.org/


Multihop Over the Air Programming: Supporting inMultihop Over the Air Programming: Supporting in--situ code updates for motessitu code updates for motes

Design and implementation details Design and implementation details 

Multihop Code Distribution for Sensor NetworksMultihop Code Distribution for Sensor Networks
Thanos Stathopoulos, John Heidemann and Deborah Estrin

Laboratory for Embedded Collaborative Systems http://lecs.cs.ucla.edu

Goals and Design Questions Goals and Design Questions 
Goals: Resource prioritization

• Energy: most important resource 
– Directly related to radio transmission and stable storage (EEPROM) access
– Motes must stay alive for as long as possible 

• Memory usage: secondary importance 
– Must limit usage to less than 1K of RAM, to leave enough for the real

application
• Latency: the least important. 

– Since there is no real-time requirement for this application, it can be traded 
off for energy. 

Design questions
• Transfer protocol: How is data propagated?

– Stream data to all nodes at the same time (flooding)
– Neighborhood-by-neighborhood dissemination (ripple-like)

• Segment management on the receiver: How to store, retrieve, 
keep track of segments?

– Treat RAM + EEPROM as a hierarchical data structure
– Use a SACK-like sliding window

• Retransmission policy: How are requests sent, how are replies 
generated?

– Requests: Unicast vs broadcast
– Suppression mechanisms

Useful for users…

Approach and analysis Preliminary results

UCLA UCLA –– UCR UCR –– Caltech Caltech –– USC USC –– CSU CSU –– JPL JPL –– UC MercedUC Merced

Center for Embedded Networked SensingCenter for Embedded Networked Sensing

Users need over-the-air code distribution to:
• Add new functionality
• Facilitate debugging
• Extend usefulness of the network
• Program nodes that are not physically reached
• Automate the process to support large network 

sizes

…and for researchers
• Special case of data dissemination

– Large volume of data
– All nodes in the network must be reached

• Strict reliability requirements
– Everything must be received

• Limited resources
– Low-power radios, limited memory and storage

• Helps explore sensor net design space for reliable 
communications

• Ripple transport protocol: One source per neighborhood
– Nodes periodically advertise their versions

– Interested nodes (not already attached to a source) subscribe

– Sources without subscribers are silent 
– Single-hop propagation from the source to all receivers.

– Local repairs

– Once a node has the complete image it sends publish messages and the 
process repeats itself

– Significant expected traffic reduction compared to flooding at the 
expense of latency 

• Segment mapping: SACK-like sliding window
–Problem: how does the node find which segments are missing?

• Retransmission policy: Energy-latency-complexity tradeoffs

Conclusions and future work
• Design choices for the current implementation

– Ripple data transfer, with a publish-subscribe interface and late-joiner support 
via periodic advertisement

– SACK-like sliding window for energy-efficient segment management and gap 
(loss) detection.

– Unicast repair requests and replies from the original source only provide a large 
(up to 20x) reduction in the number of duplicate replies at a very low complexity 
cost

– 950 Bytes RAM footprint 
– The most reasonable selection for a low-complexity, energy efficient mechanism, 
when loss probability is low

– Experimental results needed for qualitative comparisons: Ripple vs Flooding, 
Hierarchical segment mapping vs Sliding Window

• Several more to choose from!

– Choosing the right segment management scheme or retransmission policy 
depends on the resource prioritization and the expected loss rate

– As in many systems, there is no ‘one size fits all’

• Next step: Deployment at James Reserve, as part of ESS

•Comparison between two different retransmission polices

Design Alternatives


	Multihop Code Distribution for Sensor Networks



