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Goals and Design Questions Goals and Design Questions 
Goals: Resource prioritization

• Energy: most important resource 
– Directly related to radio transmission and stable storage (EEPROM) access
– Motes must stay alive for as long as possible 

• Memory usage: secondary importance 
– Must limit usage to less than 1K of RAM, to leave enough for the real

application
• Latency: the least important. 

– Since there is no real-time requirement for this application, it can be traded 
off for energy. 

Design questions
• Transfer protocol: How is data propagated?

– Stream data to all nodes at the same time (flooding)
– Neighborhood-by-neighborhood dissemination (ripple-like)

• Segment management on the receiver: How to store, retrieve, 
keep track of segments?

– Treat RAM + EEPROM as a hierarchical data structure
– Use a SACK-like sliding window

• Retransmission policy: How are requests sent, how are replies 
generated?

– Requests: Unicast vs broadcast
– Suppression mechanisms

Useful for users…

Approach and analysis Preliminary results
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Users need over-the-air code distribution to:
• Add new functionality
• Facilitate debugging
• Extend usefulness of the network
• Program nodes that are not physically reached
• Automate the process to support large network 

sizes

…and for researchers
• Special case of data dissemination

– Large volume of data
– All nodes in the network must be reached

• Strict reliability requirements
– Everything must be received

• Limited resources
– Low-power radios, limited memory and storage

• Helps explore sensor net design space for reliable 
communications

• Ripple transport protocol: One source per neighborhood
– Nodes periodically advertise their versions

– Interested nodes (not already attached to a source) subscribe

– Sources without subscribers are silent 
– Single-hop propagation from the source to all receivers.

– Local repairs

– Once a node has the complete image it sends publish messages and the 
process repeats itself

– Significant expected traffic reduction compared to flooding at the 
expense of latency 

• Segment mapping: SACK-like sliding window
–Problem: how does the node find which segments are missing?

• Retransmission policy: Energy-latency-complexity tradeoffs

Conclusions and future work
• Design choices for the current implementation

– Ripple data transfer, with a publish-subscribe interface and late-joiner support 
via periodic advertisement

– SACK-like sliding window for energy-efficient segment management and gap 
(loss) detection.

– Unicast repair requests and replies from the original source only provide a large 
(up to 20x) reduction in the number of duplicate replies at a very low complexity 
cost

– 950 Bytes RAM footprint 
– The most reasonable selection for a low-complexity, energy efficient mechanism, 
when loss probability is low

– Experimental results needed for qualitative comparisons: Ripple vs Flooding, 
Hierarchical segment mapping vs Sliding Window

• Several more to choose from!

– Choosing the right segment management scheme or retransmission policy 
depends on the resource prioritization and the expected loss rate

– As in many systems, there is no ‘one size fits all’

• Next step: Deployment at James Reserve, as part of ESS

•Comparison between two different retransmission polices

Design Alternatives
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