
UCLA
UCLA Previously Published Works

Title

Association Between Whole Blood–Derived Mitochondrial DNA Copy Number, Low‐Density 
Lipoprotein Cholesterol, and Cardiovascular Disease Risk

Permalink

https://escholarship.org/uc/item/53v4q37c

Journal

Journal of the American Heart Association, 12(20)

ISSN

2047-9980

Authors

Liu, Xue
Sun, Xianbang
Zhang, Yuankai
et al.

Publication Date

2023-10-17

DOI

10.1161/jaha.122.029090
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/53v4q37c
https://escholarship.org/uc/item/53v4q37c#author
https://escholarship.org
http://www.cdlib.org/


Journal of the American Heart Association

J Am Heart Assoc. 2023;12:e029090. DOI: 10.1161/JAHA.122.029090 1

 

ORIGINAL RESEARCH

Association Between Whole Blood– Derived 
Mitochondrial DNA Copy Number, Low- Density 
Lipoprotein Cholesterol, and Cardiovascular 
Disease Risk
Xue Liu , MS; Xianbang Sun, PhD; Yuankai Zhang, MS; Wenqing Jiang, PhD; Meng Lai, MA; 
Kerri L. Wiggins , MS, RD; Laura M. Raffield , PhD; Lawrence F. Bielak , DDS, MPH; Wei Zhao , PhD; 
Achilleas Pitsillides , PhD; Jeffrey Haessler, MS; Yinan Zheng , PhD; Thomas W. Blackwell, PhD; 
Jie Yao , MS; Xiuqing Guo , PhD; Yong Qian, PhD; Bharat Thyagarajan , MD, PhD; 
Nathan Pankratz , PhD; Stephen S. Rich , PhD; Kent D. Taylor , PhD; Patricia A. Peyser , PhD; 
Susan R. Heckbert , MD, PhD; Sudha Seshadri, MD; Eric Boerwinkle , PhD; Megan L. Grove, MS; 
Nicholas B. Larson , PhD, MS; Jennifer A. Smith , PhD; Ramachandran S. Vasan , MD; 
Annette L. Fitzpatrick, PhD; Myriam Fornage , PhD; Jun Ding, PhD; April P. Carson , PhD; 
Goncalo Abecasis, PhD; Josée Dupuis , PhD; Alexander Reiner , MD; Charles Kooperberg, PhD;  
Lifang Hou , MD, PhD; Bruce M. Psaty , MD, PhD; James G. Wilson, MD; Daniel Levy , MD; 
Jerome I. Rotter , MD; Joshua C. Bis , PhD;  TOPMed mtDNA Working Group in NHLBI Trans- Omics for 
Precision Medicine (TOPMed) Consortium*; Claudia L. Satizabal , PhD†; Dan E. Arking , PhD†;  
Chunyu Liu , PhD†

BACKGROUND: The relationship between mitochondrial DNA copy number (mtDNA CN) and cardiovascular disease remains 
elusive.

METHODS AND RESULTS: We performed cross- sectional and prospective association analyses of blood- derived mtDNA CN and 
cardiovascular disease outcomes in 27 316 participants in 8 cohorts of multiple racial and ethnic groups with whole- genome 
sequencing. We also performed Mendelian randomization to explore causal relationships of mtDNA CN with coronary heart 
disease (CHD) and cardiometabolic risk factors (obesity, diabetes, hypertension, and hyperlipidemia). P<0.01 was used for 
significance. We validated most of the previously reported associations between mtDNA CN and cardiovascular disease 
outcomes. For example, 1- SD unit lower level of mtDNA CN was associated with 1.08 (95% CI, 1.04– 1.12; P<0.001) times 
the hazard for developing incident CHD, adjusting for covariates. Mendelian randomization analyses showed no causal ef-
fect from a lower level of mtDNA CN to a higher CHD risk (β=0.091; P=0.11) or in the reverse direction (β=−0.012; P=0.076). 
Additional bidirectional Mendelian randomization analyses revealed that low- density lipoprotein cholesterol had a causal effect 
on mtDNA CN (β=−0.084; P<0.001), but the reverse direction was not significant (P=0.059). No causal associations were ob-
served between mtDNA CN and obesity, diabetes, and hypertension, in either direction. Multivariable Mendelian randomiza-
tion analyses showed no causal effect of CHD on mtDNA CN, controlling for low- density lipoprotein cholesterol level (P=0.52), 
whereas there was a strong direct causal effect of higher low- density lipoprotein cholesterol on lower mtDNA CN, adjusting 
for CHD status (β=−0.092; P<0.001).
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CONCLUSIONS: Our findings indicate that high low- density lipoprotein cholesterol may underlie the complex relationships be-
tween mtDNA CN and vascular atherosclerosis.

Key Words: cardiometabolic risk factors ■ cardiovascular disease ■ low- density lipoprotein cholesterol ■ Mendelian randomization ■ 
mitochondrial DNA copy number ■ vascular atherosclerosis

Cardiovascular diseases (CVDs) are the leading cause 
of death globally.1 A large proportion of CVDs results 
from atherosclerosis, an inflammatory process in-

volving the endothelium and vascular wall.2,3 Mitochondria 
are primary sites for oxidative phosphorylation that gener-
ates energy via adenosine triphosphate (ATP) production.4 

Mitochondria have their own DNA (mitochondrial DNA 
[mtDNA]), a circular 16.6- kb molecule encoding essen-
tial proteins for ATP production and energy homeosta-
sis.5 In apolipoprotein E knockout mice, mtDNA damage 
accompanies the initiation of atherogenesis6; during this 
process, low- density lipoprotein cholesterol (LDL- C) is 
trapped and accumulates in the subendothelial space 
of the arterial walls.3,7,8 The accumulation of LDL- C in the 
arterial wall makes LDL- C more susceptible to oxidation. 
Oxidative stress induces mitochondrial fragmentation by 
inhibiting fusion and enhancing fission, which may cause 
disruption of mtDNA replication, and thus may reduce 
mtDNA copy number (CN).9,10

mtDNA CN is strictly regulated for energy homeosta-
sis. Each human cell contains hundreds (eg, in a blood 
cell) or thousands (eg, in a cardiac muscle cell) of mtDNA 
molecules, depending on the cell’s energy requirement. 
Thus, mtDNA CN may serve as a surrogate marker of 
mitochondrial function.11– 13 In epidemiologic studies, a 
lower level of mtDNA CN in blood has been found to be 
associated with a general decline in health,14 all- cause 
mortality,14– 16 and multiple cardiometabolic traits, includ-
ing a higher level of LDL- C.17,18 Recent prospective stud-
ies have also reported significant associations between 
lower mtDNA levels and CVD outcomes.15,19,20 However, 
the causal relationship between mtDNA CN and CVD 
remains to be determined.

To that end, this study pursued 2 aims to test the 
hypothesis that mtDNA CN is casually associated with 
CVD outcomes. The first aim was to validate the asso-
ciations of mtDNA CN with CVD outcomes and total 
mortality using blood- derived mtDNA CN estimated 
from whole- genome sequencing (WGS) in 8 cohorts of 
diverse races and ethnicity. Previous studies of mtDNA 
CN associations with CVD and mortality used mtDNA 
CN measured by array- based methods or by quanti-
tative polymerase chain reaction in fewer cohorts.15,19 
The second aim was to explore the causal relation-
ship between mtDNA CN and coronary heart disease 
(CHD) using Mendelian randomization (MR), a method 
that has been increasingly used to minimize issues of 
confounding and reverse causation with genetic vari-
ants as an instrumental variable (Figure 1).21

METHODS
This study was an observational study. All study par-
ticipants provided written informed consent for genetic 

CLINICAL PERSPECTIVE

What Is New?
• Although we validated the previously reported 

associations between mitochondrial DNA copy 
number (mtDNA CN) and cardiovascular dis-
ease outcomes, univariable and multivariable 
Mendelian randomization analyses found no 
causal associations between mtDNA CN and 
coronary heart disease status in either direction.

• A causal association was observed between 
low- density lipoprotein cholesterol and mtDNA 
CN, controlling for coronary heart disease 
status, indicating that high low- density lipo-
protein cholesterol may underlie the complex 
relationships between mtDNA CN and vascular 
atherosclerosis.

What Are the Clinical Implications?
• The strong direct causal effect of higher low- 

density lipoprotein cholesterol on lower mtDNA 
CN, independent of coronary heart disease sta-
tus, underscores the significance of optimizing 
lipid profiles to preserve mitochondrial function, 
in addition to mitigating cardiovascular disease 
risk.

Nonstandard Abbreviations and Acronyms

CMD cardiometabolic disease
CN copy number
IVW inverse variance weighted
LD linkage disequilibrium
MR Mendelian randomization
mtDNA mitochondrial DNA
MVMR multivariable Mendelian randomization
WGS whole- genome sequencing
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studies. The protocols for WGS were approved by the 
institutional review boards of the participating institu-
tions, including those involved in the following stud-
ies: ARIC (Atherosclerosis Risk in Communities) study, 
CARDIA (Coronary Artery Risk Development in Young 

Adults Study), CHS (Cardiovascular Health Study), 
FHS (Framingham Heart Study), GENOA (Genetic 
Epidemiology Network of Arteriopathy) study, JHS 
(Jackson Heart Study), MESA (Multi- Ethnic Study of 
Atherosclerosis), and WHI (Women’s Health Initiative) 

Figure 1. Study design.
Association analyses of mitochondrial DNA copy number (mtDNA CN) with cardiovascular disease traits were performed in 8 cohorts of 
multiple races and ethnicities (n=27 316). Meta- analysis was performed using the fixed- effects inverse variance method. Bidirectional 
univariable Mendelian randomization was performed to test for causality between mtDNA CN, coronary heart disease (CHD), and 
low- density lipoprotein cholesterol (LDL- C). Multivariable Mendelian randomization was performed to test the direct causal effect of 
LDL- C or CHD on mtDNA CN.
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study. All data and materials have been made publicly 
available at the database of genotypes and pheno-
types and can be accessed at https://www.ncbi.nlm.
nih.gov/gap/. Code used for analysis is available from 
the corresponding author on reasonable request for 
collaboration and reproducibility purposes.

Study Sample
This study included participants with WGS from 8 
prospective cohort studies of multiple racial and eth-
nic groups with WGS (Table  S1): the ARIC study22 
(n=3585), the CARDIA23 (n=3473), the CHS24 (n=3546), 
the FHS25– 27 (n=4133), the GENOA study28 (n=1253), 
the JHS29 (n=3286), the MESA30 (n=4596), and the 
WHI study31 (n=7197). Except for the WHI study, in 
which only female participants were included, the 
other 7 cohorts included both men and women. The 
CHS only included participants aged ≥65 years (mean 
age, 74 years), and the other cohorts included mostly 
middle- aged participants at blood draw for this study 
(mean age range, 58– 69 years). MESA excluded par-
ticipants with any clinically recognized CVD at the 
baseline visit,30 whereas the other cohorts contained 
prevalent CVD cases at baseline. Several of the co-
horts contained a small number of duplicate par-
ticipants (n=136) because of study design and data 
collection.22,28,29 We removed these duplicate partici-
pants from subsequent association analyses. We also 
excluded participants with missing values in the pre-
dictor and outcome variables. Participants with miss-
ing values in covariates were also removed.

Blood- Derived mtDNA CN Estimation in 
WGS
WGS was performed by the trans- omics for preci-
sion medicine (TOPMed) sequencing centers using 
blood- derived DNA for all participants in the 8 cohorts 
included in this study. The average genome- wide cov-
erage was ≈39- fold across samples in the TOPMed.32 
The TOPMed Information Research Center conducted 
analyses to estimate mtDNA CN across all TOPMed 
participants using the program fastMitoCalc of the 
software package mitoAnalyzer.33 Because nuclear 
DNA is diploid, whereas mtDNA is haploid, the average 
mtDNA CN per cell was estimated as twice the ratio of 
the average coverage of mtDNA/the average coverage 
of the nuclear DNA.33

CVD Traits and Total Mortality
The 8 longitudinal cohorts in this study have been 
established to investigate risk factors contributing 
to CVD, morbidity, and mortality. Each cohort used 
standardized definitions to adjudicate CVD outcomes. 
CHD was defined as the first incident myocardial 

infarction or death attributable to CHD and cardiac 
procedures (typically revascularization).34 Stroke was 
defined as the first nonfatal stroke or death attributable 
to stroke.35 Heart failure is a complex clinical syndrome 
resulting from a structural or functional cardiac disor-
der that impairs the ability of one or both ventricles to 
fill with or eject blood sufficiently to meet the needs 
of the body.36,37 CVD included CHD, stroke, and heart 
failure, and death attributable to CHD, stroke, and 
heart failure. All- cause mortality included deaths of all 
causes. We analyzed associations of mtDNA CN with 
prevalent and incident CVD outcomes (CHD, stroke, 
and CVD) and with all- cause mortality.

Covariates
In the primary analysis, age at blood draw, sex, study 
center (if applicable), and self- reported racial and ethnic 
group were adjusted for in the base model. Additional 
variables included body mass index (BMI; kg/m2), fast-
ing plasma lipid measures, including total cholesterol 
(mg/dL) and high- density lipoprotein cholesterol (mg/
dL), systolic blood pressure (mm Hg), treatment for 
high blood pressure or hypertension, current smoking 
status, and diabetes status. Diabetes was defined as 
fasting blood glucose level of ≥126 mg/dL or currently 
receiving medications to lower blood glucose levels to 
treat diabetes. This study used mtDNA CN calculated 
from WGS of blood- derived DNA. Different blood cell 
types (eg, neutrophils and lymphocytes) contain dif-
ferent levels of mtDNA CN.38,39 To minimize potential 
confounding, we accounted for white blood cell count, 
differential components (the proportions of neutrophils, 
lymphocytes, monocytes, eosinophils, and basophils), 
and platelet count in association analyses in cohorts in 
which these cell count variables were available.17

Statistical Analyses of mtDNA CN With 
CVD Outcomes and Total Mortality
For primary analyses, we generated mtDNA CN resid-
uals by regressing mtDNA CN on age, age squared, 
sex, and blood collection year (as a factor variable to 
reflect batch effect variable) in each cohort.17 For age- 
stratified analysis (<60 and ≥60 years), we generated 
mtDNA CN residuals by regressing mtDNA on sex 
and blood collection year in each cohort. For sex- 
stratified analysis, we generated mtDNA CN residuals 
by regressing mtDNA on age, age squared, and blood 
collection year in each cohort. The residuals were 
standardized to have a mean of 0 and an SD of 1. The 
standardized residuals were used as the main predic-
tor in all regression models.17 We removed participants 
whose mtDNA CN standardized residuals were >4 
SDs from the mean.

We performed cohort- specific association analyses 
between mtDNA CN and outcomes. We used logistic 

https://www.ncbi.nlm.nih.gov/gap/
https://www.ncbi.nlm.nih.gov/gap/
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regression to quantify the associations of mtDNA CN 
with prevalent CVD outcomes. We used a Cox propor-
tional hazards regression model to quantify the asso-
ciation of mtDNA CN with incident CVD outcomes and 
total mortality in all cohort- specific analyses. Because 
of a special study design in selecting participants for 
WGS in WHI study, we applied a weighted logistic re-
gression for cross- sectional outcomes or a weighted 
Cox proportional hazards regression for incident out-
comes in the WHI study (Data S1). We performed 3 
models for association analyses of mtDNA CN with 
both prevalent and incident outcomes. Model 1 in-
cluded age, sex, study center (if applicable), and race 
and ethnicity. In model 2, we additionally adjusted for 
several traditional covariates, including BMI, total cho-
lesterol, high- density lipoprotein cholesterol, systolic 
blood pressure, treatment for high blood pressure or 
hypertension, current smoking status, and diabetes, 
for CVD outcomes. For analyzing total mortality as the 
outcome, we excluded participants who have preva-
lent CHD or diabetes and adjusted for BMI, total cho-
lesterol, high- density lipoprotein cholesterol, systolic 
blood pressure, treatment for high blood pressure or 
hypertension, and current smoking status15 in model 
2. In model 3, white blood cell and differential counts 
as well as platelet counts were further adjusted in ad-
dition to covariates in model 2. We used an inverse 
variance meta- analysis with a fixed- effects model to 
summarize cohort- specific association analyses. An 
odds ratio (OR) or a hazard ratio (HR) was reported 
corresponding to 1- SD decrease in the mtDNA CN 
level. We used 0.05/4≈0.01 for significance to ac-
count for multiple testing with 4 different outcomes (ie, 
CHD, stroke, CVD, and total mortality) in association 
analyses.

In secondary analyses, we performed association 
analyses between mtDNA CN and outcomes in: (1) 
male-  and female- only samples and (2) in participants 
who were younger than 60 years and at least aged 
60 years at blood draw for WGS. We also performed 
several sensitivity analyses in FHS to investigate if dif-
ferent cardiometabolic disease status (ie, hyperten-
sion, diabetes, and hyperlipidemia) and medication (ie, 
lipid treatment) may result in different directionalities or 
effect sizes in associations of mtDNA CN with CVD.

Mendelian Randomization
To evaluate the causal relationship between mtDNA 
CN and CHD, we first conducted univariable bidirec-
tional 2- sample MR analyses between mtDNA CN 
and CHD.40 Because several cardiometabolic traits 
are leading risk factors for CVD and are associated 
with mtDNA CN, we conducted additional univari-
able bidirectional 2- sample MR analyses to evaluate 
the causal relationships between mtDNA CN and 

cardiometabolic traits (Figure 1), including BMI, type 
2 diabetes, hypertension, triglyceride, and LDL- C, 
because large genome- wide association studies 
(GWASs) were available for these cardiometabolic 
traits (Data  S1).17,40– 46 If a cardiometabolic trait dis-
played a causal relationship with mtDNA CN, we con-
ducted multivariable MR (MVMR)47– 49 to assess the 
direct effect of an exposure on an outcome, adjusting 
for another exposure. An MVMR analysis accounts 
for possible horizontal pleiotropy effect that may re-
sult from common single- nucleotide polymorphisms 
(SNPs) underlying the exposures, which violates the 
third assumption of MR.50– 52

In both univariable and multivariable MR analyses, 
we used independent SNPs (linkage disequilibrium 
[LD] r2<0.001 based on the European reference panel) 
that were significant (P<5e- 8) in several large GWASs 
and meta- analyses (Data S1). We also excluded SNPs 
with ambiguous allele information (ie, palindromic 
SNPs)40 and SNPs that are known to be pleiotropic 
(ie, the missense mutations rs7412 and rs429358 in 
apolipoprotein E).53 We used the inverse variance– 
weighted (IVW) method to combine the causal effects 
of independent SNPs in both univariable and multi-
variable MR analyses. We also performed several MR 
sensitivity analyses to minimize bias attributable to out-
liers and pleiotropic SNPs in assessing causal effects 
in univariable MR analyses. These methods included 
leave- one- out and Mendelian randomization pleiot-
ropy residual sum and outlier to detect and correct 
for potential outliers.54 Furthermore, we conducted 
MR- Egger regression, Cochran Q statistic, and funnel 
plots, and obtained median and mode estimates to 
test the validity of MR estimators.52,55– 58 For multivari-
able MR analyses, the sensitivity analyses included the 
extended framework of Mendelian randomization plei-
otropy residual sum and outlier to account for possible 
outliers and the generalized Cochran Q test to assess 
instrumental variable validity in the 2- sample summary 
data setting.47,59

In secondary analysis to test for possible causal-
ity of mtDNA CN to CHD, we conducted MR analy-
sis using selected SNPs identified by Gene Ontology 
PANTHER analysis. These selected SNPs are directly 
involved in mitochondrial functions (Table  S2).60 To 
assess the risk of type 2 error in MR analyses, we 
conducted power calculations using an online tool 
(https://shiny.cnsge nomics.com/mRnd/) (Data S1 and 
Table S3). TwoSampleMR package (version 0.5.0) in R 
(version 0.5.6) and the MVMR package (version 0.2.0) 
in R (version 0.5.6) were used for univariable and mul-
tivariable MR analyses. To account for multiple test-
ing, we used 0.05/6=0.0083 for significance in both 
univariable and multivariable MR analyses with 6 traits 
(CHD, BMI, LDL- C, triglycerides, hypertension, and 
type 2 diabetes).

https://shiny.cnsgenomics.com/mRnd/
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RESULTS
Participant Characteristics
This study included up to 27 316 participants (mean 
age, 62 years; age range, 20– 98 years; 68% women) 
with 16 636 (60.9%) White Americans, 8709 (31.9%) 
Black Americans, 1229 (4.5%) Hispanic or Latino 
Americans, and 728 (2.7%) East Asian Americans 
(Table S1). The prevalence of any CVD outcome was 
higher in Black individuals (13.4%) than in other ethnic 
and racial groups (White Americans, 9.4%; Hispanic or 
Latino Americans, 9.8%; and East Asian Americans, 
10.2%). During a median of 6 to 16 years (across the co-
horts) of follow- up, the prevalence and incidence rates 
of CVD outcomes varied across cohorts (Table S1).

Association Analyses of mtDNA CN in 
Blood With Prevalent CVD Outcomes

In total, 2158 (7.9%) participants had prevalent CHD, 
751 (4.2%) had prevalent stroke, and 3394 (12.4%) had 
prevalent CVD at baseline (Table  S1). Meta- analysis 
showed that 1- SD lower level of mtDNA CN was sig-
nificantly associated with 1.11 times the odds of CHD 
(95% CI, 1.07– 1.16; P<0.001), 1.13 times the odds of 
stroke (95% CI, 1.05– 1.22; P=0.0020), and 1.14 times 
the odds of CVD (95% CI, 1.11– 1.16; P<0.001), ad-
justing for age, sex, and race and ethnicity (Figure 2; 
model 1). The associations were slightly attenuated 
after further adjusting for traditional CVD risk factors 
(Figure S1; model 2) and white blood cell count in ad-
dition to traditional CVD risk factors (Figure S2; model 
3). The association directions were consistent across 
6 of the 7 cohorts, with 1 null association for CVD out-
comes (Figure 2).

Association Analyses of mtDNA CN in 
Blood With Incident CVD Outcomes and 
All- Cause Mortality
A total of 24 019 participants free of CVD at baseline 
were followed up for a median of 12 years (6– 14 median 
years across cohorts) (Table S1). During the follow- up, 
3975 (16.5%) developed incident CHD, 5208 (21.7%) 
developed incident stroke, and 8590 (35.4%) devel-
oped incident CVD. Meta- analysis showed that 1- SD 
lower in mtDNA CN at the baseline was significantly 
associated with 1.08 times the hazard for developing 
incident CHD (95% CI, 1.04– 1.12; P<0.001) and 1.07 
times the hazard for developing incident CVD (95% 
CI, 1.03– 1.10; P<0.001) when we adjusted for age, 
sex, and race and ethnicity in association analyses 
(Figure  3). The associations were slightly attenuated 
after further adjusting for traditional CVD risk factors in 
model 2 (incident CHD: HR, 1.05 [95% CI, 1.01– 1.09]; 
P=0.023; incident CVD: HR, 1.05 [95% CI, 1.02– 1.09]; 
P<0.001) (Figure S3). The associations also changed 
slightly after additionally adjusting for white blood cell 
count/differential count and platelet count in model 3 
(incident CHD: HR, 1.07 [95% CI, 1.02– 1.12]; P<0.001; 
incident CVD: HR, 1.06 [95% CI, 1.03– 1.10]; P<0.001; 
Figure S4). Incident stroke was not significantly associ-
ated with mtDNA CN in meta- analyses of the 3 models 
(Figures S3 and S4).

Examining the individual cohorts, we found that 
lower mtDNA CN was associated with higher hazards 
for developing incident CHD and incident CVD in 5 
cohorts, with the ARIC study displaying the strongest 
associations, whereas FHS and WHI study showed 
weak inverse associations or no association (Figure 3). 
A sensitivity analysis removing ARIC study showed 

Figure 2. Association and meta- analysis of mitochondrial DNA copy number (mtDNA CN) and prevalent cardiovascular 
disease (CVD) outcomes.
We performed a logistic regression analysis between each outcome and mtDNA CN residuals as the independent variable, adjusting 
for age, sex, study center (if applicable), and race and ethnicity. The size of the square represents the weight of each cohort in the meta- 
analysis. ARIC indicates Atherosclerosis Risk in Communities; CARDIA, Coronary Artery Risk Development in Young Adults Study; 
CHD, coronary heart disease; CHS, Cardiovascular Health Study; FHS, Framingham Heart Study; GENOA, Genetic Epidemiology 
Network of Arteriopathy; JHS, Jackson Heart Study; and WHI, Women’s Health Initiative.
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nonstatistically significant results (Figure S5). Additional 
sensitivity analyses demonstrated that several factors, 
including age, sex, hypertension status, diabetes sta-
tus, and hyperlipidemia status, were not the cause for 
the inverse effect or null association observed in FHS 
compared with other cohorts, although the magnitude 
of associations seemed different in stratified analyses 
(Tables  S4 and S5). The stratified analyses showed 
that participants with statin treatment had a much 
smaller effect size compared with those without statin 
treatment (Table S4).

A total of 8018 (33.3%) participants died attributable 
to any cause during a median of 14 years of follow- up 
(10– 19 median years across cohorts) (Table S1). A 1- SD 
decrease in mtDNA CN was significantly associated 
with 1.06 times the hazard for all- cause mortality (95% 
CI, 1.03– 1.09; P<0.001), adjusting for age, sex, race and 
ethnicity. All of the cohorts showed consistent direction-
ality between mtDNA CN and total mortality in model 1 
(ie, lower mtDNA CN was associated with higher rates 
of all- cause mortality) (Figure  S6). The associations 
were similar after further adjusting for multiple clinical 
covariates in model 2 (HR, 1.05 [95% CI, 1.02– 1.08]; 
P<0.001) and additionally adjusting for cell counts/dif-
ferential components and platelet count in model 3 (HR, 
1.06 [95% CI, 1.02– 1.10]; P=0.0011; Figure S6).

MR Analyses to Test Causality
Power Calculations

We conducted power calculations with continuous and 
binary outcomes in MR analyses at α=0.0083 (0.05/6). 
For example, for MR analyses using SNPs identified 
from a large GWAS of mtDNA CN and meta- analysis 
of a continuous outcome (n=550 000), we had 80% 

power to detect a significant causal relationship if 1- SD 
change in mtDNA CN resulted in at least 0.033- SD 
change in the continuous outcome. Similarly, when 
n=550 000 and α=0.0083, we had 80% power to 
detect a significant causal relationship if the per SD 
change in mtDNA CN resulted in an OR of 1.15 (binary 
outcome with 5% prevalence; Table S3).

Bidirectional Univariable MR Analyses Between 
Blood- Derived mtDNA CN and an Outcome

We selected 74 independent SNPs (LD r2<0.001) from 
the GWAS of blood- derived mtDNA CN as instrumen-
tal variables to infer a possible causal effect of mtDNA 
CN on CHD61 (Table S6). The MR IVW analyses yielded 
insufficient evidence (OR, 1.10 [95% CI, 0.98– 1.22]; 
P=0.11) to support a casual effect of lower mtDNA 
CN on higher odds of CHD (Table S7 and Figure S7). 
Sensitivity analyses and the secondary analysis with 18 
SNPs that are directly involved in mitochondrial func-
tion further showed no causal relationship of mtDNA 
CN on CHD (Tables S8 and S9 and Figure S8). To test 
for the reverse causal relationship from CHD to mtDNA 
CN, we used 142 significant CHD GWAS SNPs (LD 
r2<0.001; Table S10).62 The MR IVW analysis showed 
that having CHD was associated with a lower level of 
mtDNA CN; however, this causal association was not 
significant (β=−0.012 [95% CI, −0.025 to 0.00094]; 
P=0.076) (Table S7 and Figure S9). The MR- Egger test 
showed a nominally significant causal effect (P<0.05) 
of CHD on a lower level of mtDNA CN (β=−0.030 [95% 
CI, −0.055 to −0.0045]; P=0.029) (Table S7). Additional 
MR sensitivity analyses showed no statistically signifi-
cant causal effect of CHD on a lower level of mtDNA 
CN (Table S7).

Figure 3. Association and meta- analysis of mitochondrial DNA copy number (mtDNA CN) and incident cardiovascular 
disease (CVD) outcomes.
We performed a Cox proportional hazards regression between each outcome and mtDNA CN residuals as the independent variable, 
adjusting for age, sex, study center (if applicable), and race and ethnicity. The size of the square represents the weight of each cohort 
in the meta- analysis. Because of a limited number of stroke cases, a Cox proportional hazard regression was not performed for stroke 
in the GENOA (Genetic Epidemiology Network of Arteriopathy) study. ARIC indicates Atherosclerosis Risk in Communities; CHD, 
coronary heart disease; CHS, Cardiovascular Health Study; FHS, Framingham Heart Study; JHS, Jackson Heart Study; MESA, Multi- 
Ethnic Study of Atherosclerosis; and WHI, Women’s Health Initiative.
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We performed additional bidirectional MR analyses 
between blood- derived mtDNA CN and several car-
diometabolic traits that are major risk factors for CVD. 
We used 63 to 75 independent SNPs (LD r2<0.001) 
to test the causal relationships of mtDNA CN on car-
diometabolic traits (Tables S11– S15). We found no sig-
nificant causal effects of lower mtDNA CN on a higher 
level of BMI (MR IVW P=0.53), LDL- C (MR IVW P=0.059), 
or triglycerides (MR IVW P=0.22) (Tables S16– S18 and 
Figures S10– S12). Similarly, we found no causal effects 
of lower mtDNA CN on a higher risk of hypertension 
(MR IVW P=0.22) or type 2 diabetes (MR IVW P=0.89) 
(Tables S19 and S20 and Figures S13 and S14).

In the reverse direction, we selected cardiomet-
abolic trait– associated GWAS SNPs (LD r2<0.001; 
267 for BMI, 345 for LDL- C, 403 for triglycerides, 
53 for hypertension, and 181 for type 2 diabetes) to 

infer possible causal effects of these traits on lower 
mtDNA CN in MR analyses (Tables  S21– S25).40– 46 
We observed a significant causal effect of LDL- C on 
mtDNA CN using the MR IVW and other MR meth-
ods (Table S17 and Figure S15). The IVW MR analysis 
showed a strong causal association of a higher LDL- C 
level on a lower level of mtDNA CN (β=−0.084 [95% CI, 
−0.11 to −0.062]; P<0.001). All of the additional sensi-
tivity analyses presented a significant causal effect of 
LDL- C on mtDNA CN (P<0.001) (Table S17). We found 
no causal effects of a higher level of BMI (MR IVW 
P=0.59), a higher level of triglycerides (MR IVW P=0.78), 
a higher risk of hypertension (MR IVW P=0.85), and 
type 2 diabetes (MR IVW P=0.45) on lower mtDNA CN 
(Tables S16 and S18– S20 and Figures S16– S19).

Multivariable MR Analyses of LDL- C and CHD on 
mtDNA CN

Previous studies found that LDL- C plays a key role in 
CHD development.7,8 We observed a significant causal 
effect of LDL- C on CHD using the univariable MR 
IVW method (OR: 1.68 [95% CI, 1.54– 1.84]; P<0.001) 
with the selected SNPs (Tables S10 and S22). Given 
the findings from univariable MR analyses, we con-
ducted MVMR to estimate the direct effect of CHD 
with LDL- C on mtDNA CN, controlling for each other. 
After excluding SNPs with a pairwise r2>0.001, 346 
SNPs from GWASs of LDL- C and CHD were used in 
the MVMR analyses. We observed strong evidence 
for a direct causal effect of LDL- C on mtDNA CN, 
adjusting for CHD: 1- SD higher genetically predicted 
LDL- C level was causally associated with a 0.092- SD 
lower mtDNA CN level (IVW β=−0.092 [95% CI, −0.12 
to −0.067]; P<0.001) (Table and Figure 4). In contrast, 
the direct causal effect of CHD on mtDNA CN was not 

Table. Comparison of Causal Inference Between 
Univariable and Multivariable MR Analyses

Exposure No. of SNPs β SE P value

Univariable MR

CHD 142 −0.012 0.0066 0.076

LDL- C 345 −0.084 0.011 1.1E- 14

Multivariable MR

CHD 80 0.0057 0.0088 0.52

LDL- C 291 −0.092 0.013 6.0E- 13

Univariable MR was performed to infer possible causal effect of CHD 
or LDL- C on mitochondrial DNA copy number (mtDNA CN). Multivariable 
MR was performed to evaluate the direct causal effect of CHD or LDL- C 
on mtDNA CN. β, SE, and P values were obtained from inverse variance 
(univariable) or extended inverse variance (multivariable) weighted MR 
analyses. Results from additional sensitivity analyses were presented in 
Tables S7, S17, and S26 and Figures S9 and S15. CHD indicates coronary 
heart disease; LDL- C, low- density lipoprotein cholesterol; MR, Mendelian 
randomization; and SNP, single- nucleotide polymorphism.

Figure 4. The causal relationships between low- density lipoprotein cholesterol (LDL- C), coronary heart disease (CHD), and 
mitochondrial DNA copy number (mtDNA CN).
A, Mendelian randomization. B, Biological experiment (see study by Lee et al3). A 1- SD lower genetically predicted LDL- C was causally 
associated with 1.68 times (β=0.52) the odds (95% CI, 1.54– 1.84) of having CHD. Multivariable Mendelian randomization analysis 
demonstrated that 1- SD lower genetically predicted LDL- C was causally associated with 0.092- SD lower mtDNA CN (P=6.0E- 13), 
adjusting for CHD. However, multivariable Mendelian randomization showed that the direct effect of genetically predicted CHD was 
not associated with mtDNA CN (β=0.0057; P=0.52), adjusting for LDL- C. MPTP indicates mitochondrial permeability transition pore; 
OxLDL, oxidized LDL- C; and ROS, reactive oxygen species.
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significant, controlling for LDL- C level (IVW β=0.0057 
[95% CI, −0.012 to 0.023]; P=0.52) (Table). The MVMR- 
Egger test yielded consistent results as those from 
IVW MVMR analysis to test the relationship of LDL- C 
and CHD on mtDNA CN. Additional sensitivity analy-
ses by multivariable Mendelian randomization pleiot-
ropy residual sum and outlier yielded consistent results 
(Table S26).

DISCUSSION
In this study, we validated the association of blood- 
derived mtDNA CN with prevalent and incident CVD 
outcomes (except for incident stroke), as well as with 
all- cause mortality during a median of 12 (for CVD) or 
14 (for mortality) years of follow- up in up to 27 316 par-
ticipants from 8 cohort studies, including self- identified 
White Americans, Black Americans, Hispanic or Latino 
Americans, and East Asian Americans. The associa-
tions of mtDNA CN with the outcome variable remained 
statistically significant after further adjustment for tra-
ditional clinical variables (ie, total cholesterol and high- 
density lipoprotein cholesterol) and blood cell counts. 
More importantly, we performed comprehensive uni-
variable and multivariable MR analyses, using SNPs 
identified from the latest GWAS for CHD,62 mtDNA 
CN,61 and cardiometabolic disease (CMD) traits40– 46 to 
explore the causal relationships between mtDNA CN, 
CMD traits, and CHD. The MR analyses implicate that 
an elevated LDL- C level in blood is likely the primary 
driver for the observed significant association of blood- 
derived mtDNA CN with CHD.

It has always been challenging to assess causal-
ity in epidemiologic association analyses. The bidi-
rectional univariable MR analyses in this study found 
weak evidence that having CHD may be causally as-
sociated with lower mtDNA CN level rather than an 
opposite direction that lower mtDNA CN had a causal 
effect on CHD. CHD is a multifactorial endpoint dis-
ease that is characterized as the reduction of blood 
flow to the heart muscle attributable to a build- up of 
atherosclerotic plaque.3 Our recent study reported that 
higher levels of CMD traits are associated with lower 
mtDNA CN in blood.17 Thus, CMD traits may play a role 
in the observed association between CHD and mtDNA 
CN. Bidirectional MR analyses showed no causal re-
lationships between mtDNA CN and the 3 CMD traits 
(BMI, hypertension, and diabetes) in the forward or re-
verse directions. However, bidirectional MR analyses 
displayed that the higher LDL- C levels in plasma dis-
played a causal effect on lower mtDNA CN, whereas 
mtDNA CN had no causal effect on LDL- C. Recent ad-
vances have found that excess LDL- C levels initiated 
atherosclerosis, the key factor in the development of 
CHD.63 MR analysis has also displayed a causal effect 

of LDL- C on CHD.50 Because LDL- C and CHD share 
common genetic variants, we performed an MVMR 
analysis to assess the direct causal effect of CHD or 
LDL- C on mtDNA CN. We observed a significant, di-
rect causal effect of LDL- C on mtDNA CN, adjusting 
for CHD (Figure 4A), whereas the direct causal effect of 
CHD on mtDNA CN became nonsignificant, controlling 
for LDL- C. On the basis of these findings, it is reason-
able to speculate that the observed association be-
tween mtDNA CN and CVD outcomes (prevalent and 
incident) may be a manifestation of the causal effect of 
higher LDL- C levels on lower mtDNA CN and a higher 
risk for CVD. Our study showed strong evidence for a 
direct causal effect between higher LDL- C levels and 
lower mtDNA CN. A future study is needed to investi-
gate whether the statin treatment is associated with a 
higher- level mtDNA CN in blood.

Our findings and the recent advances in animal 
models supported each other. Animal models were 
developed to elucidate the role of oxidative stress and 
mitochondrial dysfunction in vascular inflammation and 
atherosclerosis in animal models.6,64,65 In these animal 
models, LDL- C in the plasma was the primary molecule 
that triggered a cascade of inflammation responses. 
The excess of LDL- C was oxidized into oxidized LDL- 
C, which attracts immune cells, like monocytes, into 
the arterial wall, gradually building up atherosclerotic 
plagues.6,64,65 CHD occurred when plaques were rup-
tured to form a large thrombus. On the other hand, 
the oxidized LDL- C and other factors result in reactive 
oxygen species production in mitochondria.66,67 This 
oxidative stress leads to damages in mtDNA replica-
tion enzyme and, in turn, results in lower mtDNA CN.9 
The MR analyses in our study supported that higher 
LDL- C levels may be the driver for the development of 
CHD and lower mtDNA CN levels in blood (Figure 4B). 
Nonetheless, the role of mtDNA CN in the atheroscle-
rotic formation, the pathogenesis of CVD, and inflam-
mation is complex and warrants further investigation.

Limitations of the Study
Heterogeneity was observed in the association es-
timates of CVD outcomes across cohorts, although 
we harmonized phenotypes and accounted for con-
founders and known batch effects in association anal-
yses with mtDNA CN. This observed heterogeneity 
may be partially attributable to different distributions 
in age, sex, and CVD phenotypes across study co-
horts. Experiment conditions for blood draws, DNA 
extraction, storage, and other unobserved confound-
ing factors may also have contributed to the hetero-
geneity.17 Another limitation was that our study was 
an epidemiologic study, and it used existing mtDNA 
CN data derived from WGS in whole blood for asso-
ciation analyses with CVD. Therefore, we were unable 
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to investigate whether mtDNA assayed in the blood 
adequately reflects other tissues that were involved 
in atherosclerosis. A few previous studies have pro-
vided indirect evidence that mtDNA CN level in whole 
blood may reflect the mtDNA CN level in other tissues 
to some extent. One study found a moderate correla-
tion (r=0.5) between mtDNA CN levels in whole blood 
and plasma in 18 participants.68 A more recent study 
(n=419) found that blood- derived mtDNA CN was 
associated with gene expression in several tissues 
(Including heart [left ventricle]).69 In addition, given our 
previous findings and the strong component of inflam-
mation in the pathogenesis of CVD, we have recog-
nized that the relationship between cell counts, mtDNA 
CN, and CVD is complex. We adjusted the cell count 
variables to minimize confounding in regression mod-
els. MR analyses help address the question of cau-
sality in the complex relationship. Further studies are 
warranted to investigate the role of cell counts in the 
relationship between mtDNA CN and CVD. Although 
we observed that blood- derived mtDNA CN had no 
causal effect on CHD, this result should be interpreted 
with caution. In this study, the total sample size used 
for 2- sample MR analyses of mtDNA CN with CHD 
was ≈550 000. Using this sample size, we can only re-
ject the null hypothesis that mtDNA CN had no causal 
effect on CHD if we observe an OR >1.12. If the OR was 
<1.12, we were unable to detect the causal relationship. 
In MR analyses, overlapping samples may be used in 
both exposure GWASs and outcome GWASs, which 
may violate the assumption of independent samples 
in 2- sample MR analyses. A previous study conducted 
extensive simulations to investigate the effects of 
overlapping samples in 2- sample MR analyses. They 
showed that multiple MR methods produced similar 
causal estimates with overlapping samples compared 
to independent samples if the total sample size in ex-
posure GWAS and outcome GWAS was large (ie, >300 
000), except for the MR- Egger method, in which the 
results should be interpreted with caution.70

Strength of the Study
The main strength of this study is that we adopted bi-
directional and multivariable MR analysis to disentan-
gle the complex relationship between mtDNA CN and 
CHD in cohort studies. Observational epidemiologic 
studies are susceptible to confounding, and subclini-
cal disease stage may impact observed associations 
between CVD outcomes and mtDNA CN.71 Robust 
genetic variants have been identified in large GWASs 
with mtDNA CN (n=465 809), CHD (n=547 261), and 
LDL- C (n=1 166 583).41,44,45,61 To minimize bias in MR 
analyses, we removed known pleiotropic SNPs (eg, 
APOE SNPs) that are associated with both mtDNA 
CN and CVD traits. We performed MR IVW as well 

as multiple sensitivity analyses, including MR- Egger, 
median, and mode methods, to provide evidence for 
the validity of MR estimators. Overall, the multivariable 
MR results provide evidence that higher LDL- C level 
is likely the driving factor for the observed associa-
tion between lower mtDNA CN and CHD. The inclu-
sion of participants of multiple races and ethnicities 
enhances the generalizability of the study results. An 
additional strength is that the CVD outcomes and all- 
cause death data have been regularly adjudicated and 
collected by physician endpoint review committees in 
most of the cohorts.72,73 The joint estimation of mtDNA 
CN in TOPMed cohorts, well- characterized outcome 
and predictor variables, and hierarchical association 
analyses with 3 models were likely to reduce potential 
confounding.

In summary, this study validated the previously re-
ported association of mtDNA CN with CVD outcomes 
and all- cause mortality. In addition, we used both 
univariable and multivariable MR analyses to demon-
strate an independent causal effect of LDL- C under-
lying the relationship between mtDNA CN and CHD. 
Findings from this study add to an increasing volume 
of evidence surrounding the harmful effects of high 
LDL- C in the complex relationships between vascular 
inflammation, atherosclerosis, and lower mtDNA CN, 
a biomarker for mitochondrial function. Therefore, the 
control for LDL- C and inflammation may be a feasible 
therapeutic strategy to improve mitochondrial function 
and cardiovascular health.
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