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Abstract

Quantum Criticality and Non-locality: A Field Theoretical Study

by

Yichen Xu

Quantum field theory(QFT), although initially developed nearly a century ago to

describe interactions between elementary particles, has proven to be a powerful tool

in condensed matter systems, where there are naturally huge collections of degrees of

freedom. It enables one to describe collective excitations, such as phonons and magnons,

understand phase transitions, predict transport properties, and more recently, study

topological phases. After a survey of QFT methodology in modern theoretical condensed

matter physics in Chapter 1, the dissertation covers four sets of exotic scenarios to which

quantum field theoretical methods can be applied:

In Chapter 2, we study boundary properties of several exotic quantum critical-

ities, including phase transition between symmetry protected topological(SPT) state,

topologically orders and states with spontaneous symmetry breaking. Renormalization

group(RG) studies show that in each case the bulk criticality can possibly give rise to

new boundary phases and phase transitions.

In Chapter 3, we discuss quantum phase transitions beyond Landau’s paradigm and

its interaction with Fermi surfaces. In particular, we constructed their underlying field

theories that can be studied using controlled perturbative RG approach. We found

interesting new fixed points with non-fermi liquid(NFL) behaviors and unusual dynamical

critical exponent.

In Chapter 4, field theoretical methods are applied to study strongly correlated physics

in Moiré materials, namely, various orbital orders, Chern insulators and NFLs. We also
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propose new mechanisms for interaction driven metal-to-insulator transitions in transition

metal dichalcogenides(TMD) Moiré bilayers that can explain its large critical resistivity.

And finally in Chapter 5, we study an “avoided” phase transition between a trivially

gapped fermionic state and an interaction trivialized fermionic SPT state. We point out

that the latter state can still be distinguished from the former one by zeroes of its Green’s

function.
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Chapter 1

Introduction

1.1 From Lattices to Fields: The Entry of Quantum

Field Theory in Condensed Matter

Quantum field theory (QFT), initially developed almost a century ago in the 1920s

and 30s, has been highly successful in describing the behavior of subatomic elementary

particles and their interactions. These developments have ultimately led to the Stan-

dard Model of particle physics, which contains both the building blocks of matter, i.e.

quarks and leptons, and also the mechanism of their interaction through gauge bosons.

Nevertheless, the past few decades have seen QFT making a major inroad into theo-

retical studies of condensed matter. Given their huge numbers of microscopic particles,

usually of order 1023, condensed matters provide an ideal playground for QFT: Instead

of performing extremely time-consuming quantum mechanical calculations for individual

particles, we can instead regard the constituent particles as local degrees of freedom of a

quantum field, while their interactions can also be translated into interactions between

fields. This viewpoint facilitates our theoretical treatment of condensed matter systems,
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Introduction Chapter 1

especially at low temperatures and with strong interactions.

The modern-day application of QFT in condensed matter can be roughly summarized

as follows:

1. Describe collective excitations or quasiparticles that arise in condensed matter sys-

tems. This includes phonons, magnons, and also electron modes in metals.

2. Predict transport properties of condensed matter systems, such as electrical con-

ductivity and thermal conductivity. These properties can be calculated using field

theoretical techniques such as the Kubo formula, which relates transport coefficients

to correlation functions of the excitations due to the applied external fields.

3. Study topological phases of matter, which are usually characterized by nontrivial

topological invariants that cannot be changed by local perturbations. These phases

can be described by field theoretical models such as the Chern-Simons theory. QFT

is also able to link topological invariants to the behavior of the excitations at the

edge of the material.

4. Understand phase transitions and critical phenomena in condensed matter systems,

such as the transition from a liquid to a solid or from a ferromagnetic to a para-

magnetic state. In QFT, phase transitions can be understood as a change in the

symmetry of the underlying field theory, which can lead to the appearance of new

quasiparticles or the breakdown of existing ones. For a condensed matter system

at criticality, QFT methods help one calculate the critical exponents.

In the rest of this section, we will demonstrate how QFT methods can be used to

describe microscopic models of condensed matter and their phase transitions. We will

also touch on the topology in QFT from a condensed matter point of view, which gives

rise to exotic phase transitions that do not have classical counterparts.

2



Introduction Chapter 1

1.1.1 Landau-Ginzburg Theory: A View From Field Theory

Statistical mechanics tells us that most of the macroscopic properties of a system can

be calculated once we obtain the partition function. For models of condensed matter,

which usually contain various degrees of freedom on lattices, this amounts to summing

over all possible local configurations of the system (or in a quantum model, tracing over

local Hilbert spaces). However, if the correlation length of the system, ξ, is much larger

than the lattice spacing a, it is then possible to approximately describe all the degrees of

freedom using a continuous field. The partition function will thus become a functional

integral (or functional path integral) of this field.

To achieve a faithful description of the system using fields, one needs to identify the

order parameter ϕ(x) of the system. In plain language, the order parameter ϕ(x) at

some spatial position should look like some local degrees of freedom on the lattice. More

precisely, if the system has certain global symmetries G, like Z2 or SO(n) symmetry for

various spin models, the field ϕ(x) should transform under the same representation of the

group G as the lattice degrees of freedom. After that, one can write down the Landau-

Ginzburg (LG) theory, which reflects the energy, and thus the statistical weight, of a

certain field configuration of ϕ(x). In doing so, we obtain the partition functional

Z =

∫
D[ϕ(x)]e−S[ϕ(x),{g}] (1.1)

and the LG action has the form

S[ϕ(x), {g}] =
∫
ddx(∂µϕ(x))

2 + g1ϕ(x) + g2ϕ
2(x) + . . . (1.2)

Here, d is the dimension of space and {g} = {g1, g2, . . . } represents the set of coupling

constants that reflect the various physical conditions of the system, such as temperature

3



Introduction Chapter 1

or pressure. Some of the coupling constants can be argued to vanish to preserve the

symmetry of the system. For example, if the system has an Ising symmetry that acts

as ϕ(x) → −ϕ(x), all the odd power terms of ϕ(x) should vanish. In other words, only

terms that are invariant under G action can appear in the LG action.

Let us showcase the logic above using the example of classical Heisenberg model in d

dimensions. The Hamiltonian of the model is given by

H = −J
∑
⟨i,j⟩

Si · Sj (1.3)

where J is the coupling constant between nearest neighbor sites i and j, multiplied

by 1/(kBT ) in the exponent of the partition function. Si are classical O(3) spins on a

d-dimensional hypercubic lattice that satisfies S2
i = 1, and S is the classical spin. The

partition function is thus

Z =

∫ ∏
i

DSi e
J
∑

⟨i,j⟩ Si·Sj (1.4)

The integral measure of the spins is DSi ≡ d3Si δ(S
2
i − 1). We now introduce the

Hubbard-Stratonovich transformation to decouple the Hamiltonian:

Z =

∫ ∏
i

DSidΦi e
− 1

4J

∑
⟨i,j⟩ Φi·Φj+

∑
i Φi·Si =

∫ ∏
i

dΦi e
− 1

4J

∑
⟨i,j⟩ Φi·Φj−

∑
i V (Φi) (1.5)

Here we introduced an auxiliary vector Φi on each lattice site that is not restricted to

a unit sphere in 3D. Nevertheless, in order to still preserve O(3) symmetry, Φi needs to

transform under O(3) in the same way as Si. In the final equivalence, DSi has been

formally carried out, and we are left with an on-site effective potential V (Φi). One can

further perform a Fourier transformation to diagonalize the exponent:

4
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Heff(Φ) =
1

4J

∑
⟨i,j⟩

Φi ·Φj +
∑
i

V (Φi) =
1

J

∑
k

(
d∑

µ=1

cos(akµ)

)
Φ(k) ·Φ(−k) + Ṽ (Φ(k))

(1.6)

Here, Ṽ (Φ(k)) consists of the Fourier transformation of the terms in V (Φi). Now comes

the important step towards field theory: one assumes that the spatial variation of {Si}

is much slower compared to the lattice scale, i.e., the correlation length ξ is much larger

than the lattice constant a. It is then possible to take the continuum limit of k and

focus on the small k part of the theory. Keeping the expansion of cos(akµ) up to the

quadratic order, taking the continuum limit of momentum and Fourier transforming the

whole theory back to coordinate space, we arrive at (1.2) with the vector order parameter

Φ.

1.1.2 Phase Transitions in Landau Paradigm

From the perspective of Landau-Ginzburg (LG) theory, a phase transition between

a G-ordered and disordered phase can be characterized by the expectation value ⟨ϕ(x)⟩

and its correlation function ⟨ϕ(0)ϕ(x)⟩. In the disordered phase, ⟨ϕ(x)⟩ = 0, and the

correlation function exhibits short-ranged behavior with exponential decay as a function

of distance: ⟨ϕ(0)ϕ(x)⟩ ∼ e−
|x|
ξ , where ξ is the correlation length. In the ordered phase,

⟨ϕ(x)⟩ ≠ 0, and the correlation function displays long-range behavior, approaching a

constant value even as |x| → ∞. By tuning the parameters gi from the disordered

phase, the system reaches criticality when ⟨ϕ(x)⟩ is on the verge of becoming nonzero,

or when the correlation length ξ diverges. The divergence behavior can be described

by ξ ∼ |g − g∗|−ν for a single tuning parameter g. For most common types of phase

transitions, the correlation function decays algebraically at the critical point, following

5
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a power law: ⟨ϕ(0)ϕ(x)⟩ ∼ 1

|x|2∆ϕ
, where ∆ϕ is known as the critical dimension of ϕ(x).

However, it is worth noting that in systems in two dimensions (2D) or in quantum systems

in 1 + 1 dimensions, such as the 2D boundary of a 3D system, the correlation function

can potentially exhibit logarithmic decay with respect to |x|.

It is widely accepted that the nature of a phase transition can be characterized by a

small set of critical exponents and the symmetry of the system. Consequently, systems

with different symmetry groups and critical exponents can be classified into universal-

ity classes. For instance, the 2D Ising model exhibits Z2 symmetry and has critical

exponents ν = 1 and η ≡ ∆ϕ − d + 2 = 1/4. The concept of universality class plays

a crucial role in condensed matter physics and statistical mechanics as it enables us to

make general predictions about the behavior of systems near a critical point, even in the

absence of detailed knowledge about the system’s microscopic properties. Moreover, it

provides a framework for classifying and comparing different types of phase transitions,

as well as studying their underlying symmetries and properties.

Conversely, given the microscopic model of a system, the use of renormalization

group (RG) techniques, developed by Kadanoff, Wilson, and many others in the 1960s

and 70s, allows for the systematic removal of microscopic details near the critical point,

enabling the calculation of corresponding critical exponents. RG provides a means to

investigate the properties of a system at different length scales by identifying the relevant

degrees of freedom at each scale and studying how their interactions change as the system

approaches the critical point.

1.1.3 Quantum Phase Transitions

It is well-known that, using the path integral formalism, the partition function of a d-

dimensional quantum system at temperature T can be connected to a (d+1)-dimensional

6
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Figure 1.1: A schematic phase diagram near the quantum critical point, from [13].

classical system, and the inverse temperature β ≡ 1/(kBT ) serves as the length of the

periodic imaginary temporal direction of the quantum system. The main difference is

that a quantum phase transition is driven by quantum fluctuations at zero temperature,

instead of thermal fluctuations. When the coupling g is tuned to its quantum critical

point (QCP) g∗, the energy gap ∆ of the quantum spectrum closes with the scaling

∆ ∼ |g− g∗|νz [12], and z is called the dynamical critical exponent. z is defined this way

so that the characteristic time of the quantum fluctuation τq ∼ 1/∆ ∼ ξz, in which ξ is

the correlation length.

For a quantum system at finite temperature, there are two energy scales in the system:

the energy gap ∆ and kBT . In the regime of ∆ > kBT , thermal fluctuations play a less

significant role. The thermal equilibrium time τeq is much longer than τq, and classical

dynamical equations can be used to describe its thermal equilibrium process. However,

when the temperature reaches ∆ < kBT , quantum and thermal fluctuations are equally

important. One can depict this quantum critical regime in a ”phase diagram” of g

and T as a fan above the QCP. See Figure 1.1.

In principle, one may write down the field theory for a quantum phase transition

at zero temperature in a similar fashion as classical statistical mechanics. However, this

task is not an easy one. The main difference for quantum criticality is the inclusion of

7



Introduction Chapter 1

Berry phases of different field configurations, which do not have classical equivalence.

These phases contribute to the imaginary part of the statistical weight and can give rise

to exotic quantum phase transitions that go beyond the Landau-Ginzburg paradigm. A

famous example is the path integral of the quantum Heisenberg model, which yields [14]

Z =

∫
D[ni(t)]e

−S[ni(τ)], S[ni(τ)] = −iS
∑
i

SWZ [ni(τ)] + J

∫ β

0

dτ
∑
⟨i,j⟩

ni(τ) · nj(τ),

(1.7)

in which J is the Heisenberg coupling.The Weiss-Zumino(WZ) term SWZ [n(τ)] is the

Berry phase of each lattice spin accumulated from the spin evolution along imaginary

time:

SWZ [n(τ)] =

∫ 1

0

du

∫ β

0

dτ n(τ, u) · (∂τn(τ, u)× ∂un(τ, u)) . (1.8)

n(τ, u), which satisfies n(τ, 0) = (0, 0, 1) and n(τ, 1) = n(τ), is the interpolation between

n(τ) and the north pole of the Bloch sphere.

There are several import applications of the theory. For anti-ferromagnetic Heisenberg

model in 1d, one can further take the continuous limit and obtain an effective action [14]

L =
1

2g

(
1

vs
(∂τm)2 − vs(∂xm)2

)
+ i

θ

8π
ϵµνm · (∂µm× ∂νm), (1.9)

in which m(x, τ) ∼ (−1)ini(τ) is the anti-ferromagnetic order parameter, g = 2/S,

vs = 2aJS(a is the 1d lattice constant) and θ = 2πS. The imaginary θ term captures the

winding number(or skyrmion number) of m configuration around the whole τ − x plane:

Q =
1

8π
ϵµνm · (∂µm× ∂νm) ∈ Z. (1.10)

Thus, for half-integer spin S, the winding number of m(τ, x) along each path in the

8
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path integral contributes (−1)Q phase factor in the overall partition function, while for

integer spin there is no such effect. This ultimately leads to different universality class

of half-integer spin and integer spins, which is known as the Haldane’s conjecture. It

has hence been confirmed numerically later that the integer spin case are found to be

massive, with a gap of spin excitations, and the half-integer spin case is gapless.

A more relevant case to this thesis is the 2D S = 1/2 Heisenberg antiferromagnet

on a square lattice. In two spatial dimensions, the analogue of the θ term is related to

the hedgehog (or monopole) configuration of the antiferromagnetic Néel order parameter

N(x). The hedgehog configuration again changes Q by 1. In the disordered phase of N,

we can alternatively view it as a condensate of monopoles of N. However, due to the

non-trivial Berry phase carried by the monopoles from the topological term of N, we

find that the path integral again contains phase factors for different Q. This factor is 1

only if Q is a multiple of 4. In other words, the four-fold lattice rotation symmetry of

the square lattice is spontaneously broken in the monopole condensate, resulting in the

so-called valence bond solid (VBS) order. A schematic phase diagram and a sketch

of Néel and VBS orders are shown in Fig. 1.2. As conjectured by Senthil et al. [15, 16]

and further supported by numerics [17, 18, 19, 20], there should be a direct second-order

phase transition between Néel and VBS orders based on the fact that the monopole

tunneling operator is suppressed near the critical point of the transition, leading to the

notion of deconfinement. Such a critical point is thus dubbed a deconfined quantum

critical point (DQCP), and it is an example of quantum criticality that does not have

classical counterparts, as both the Néel and VBS states break certain symmetries of the

entire Hamiltonian.

The field theoretical description of the Néel-to-VBS transition is the non-compact

9
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Figure 1.2: A schematic phase diagram and lattice configurations of the Néel and VBS
orders, from [21]. g = gc is conjectured to be a deconfined quantum critical point.

CP 1 model:

LNCCP 1 =
∑
α=1,2

|(∂µ − iaµ)zα|2 + r|zα|2 + u(|z1|2 + |z2|2)2 + . . . . (1.11)

Here the two component complex bosonic field zα is the CP 1 representation of Néel order

parameter:

Ni = z∗ασ
i
αβzβ, (1.12)

and the phase transition is driven by r. The two components are coupled to a dynamical

U(1) gauge field aµ, hence the monopole tunneling operator of N now becomes the

monopole operatorM of aµ. The monopoles are suppressed at the critical point, meaning

aµ is then a non-compact gauge field. The ellipse here consists of the Maxwell term that

provides the dynamics of aµ and other symmetry allowed interactions. For example,

the four-vortex tunneling operator λ4M4 is allowed for square lattice. Even though

the scaling dimension of M is likely to make λ4 irrelevant at the critical point, it will

quickly become relevant once one enters the disordered phase of N, which condenses

10
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the monopoles, breaking four-fold lattice rotation symmetry as we enter the VBS phase.

Such operator is thus dubbed a “dangerously irrelevant” operator.

There is also a simpler case of the DQCP if one breaks the SO(3) rotation symmetry

of N down to U(1) by introducing easy-plane anisotropies like J ′N2
z . The residual U(1)

is the rotation symmetry of Nx and Ny in the xy plane, and terms like |z1|2|z2|2 in the

ellipse of (1.11) will be allowed. The field theory in the easy-plane case is

LEP−NCCP 1 =
∑
α=1,2

|(∂µ − iaµ)zα|2 + r|zα|2 + u(|z1|4 + |z2|4) + . . . . (1.13)

We note that the theory is self-dual, in the sense that one can rewrite the theory using

vortex of (Nx, Ny) as order parameters:

LdEP−NCCP 1 =
∑
α=1,2

|(∂µ − iãµ)ψα|2 − r|ψα|2 + ũ(|ψ1|4 + |ψ2|4) + . . . . (1.14)

The monopole operator is now identified as M ∼ ψ∗(σx + iσy)ψ. In the VBS phase,

r > 0, ψ is condensed, giving M a non-zero expectation value.

Recently it has been shown that the 2+1d NCCP 1 theory is in a so-called “duality

web” along with several other theories, including fermionic ones, meaning that even these

set of theories have different mathematical forms and describe phase transitions with

different physical nature, they share same universal features near the quantum critical

points [22, 23]. In Chapter 3 of this thesis, we will utilize these dualities and study the

fate of DQCPs that exist with other degrees freedom in the system that posses long-range

interaction.

11
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1.2 Boundary Critical Phenomena and Field Theo-

ries

We know move on to the boundary of a critical system. Experimentally, the boundary

of a sample is much easier to probe, as the bulk is usually encapsulated in a fabricated

device. The theoretical study of boundary physics is important in its own right, especially

when the bulk is tuned to criticality. As we reviewed in the last section, a system at

criticality exhibits scale invariance capitulated by various critical exponents, and such

system can usually be studied using a conformal field theory (CFT). However, the

presence of a boundary introduces additional degrees of freedom and boundary conditions

that need to be taken into account. These boundary conditions determine how the fields

in the bulk CFT behave near the boundary. The study of CFT with a boundary is known

as boundary CFT (BCFT)[24, 25].

One of the earliest rigorous field-theoretical study of boundary critical phenomena

was done by Diehl and Dietrich[26, 27]. Quite remarkably, they found that the surface of

D-dimensional O(n) spin model at bulk order-to-disorder transition can exhibit several

boundary universality classes. To study the surface criticality using field theory, the

authors considered the following action

S =

∫
dD−1x∥

∫ ∞

0

dx⊥

[
1

2
(∂ϕ⃗)2 +

τ

2
ϕ⃗2 +

g

24
(ϕ⃗2)2

]
+

∫
dD−1x∥

c

2
ϕ⃗2(x∥, x⊥ = 0). (1.15)

The final term above is a surface term that describes an enhancement of interactions

near the surface. Using RG with D = 4−ϵ dimensional regularization, the authors found

three distinct types of surface phase transitions near bulk criticality: the ordinary, the

special and the extraordinary, when d exceeds the surface lower critical dimension. From

Mermin-Wagner theorem, the surface can only be ordered if D − 1 > 2 − δn,1. Thus

12
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for D = 3, we would expect only ordinary surface transition, i.e. the surface develops

order simultaneously with the bulk. Nevertheless, the surface criticality will have very

different critical exponent, comparing to the bulk counterparts. A study of O(n) model

using BCFT is done by Cardy in [25, 24]. A important message from the work is that

the fluctuation of the order parameter on the boundary near the ordinary transition can

be effectively captured by Φ⃗(x∥) = ∂x⊥ϕ(x∥, x⊥)|x⊥=0. As we will see in Chapter 2, this

result is a useful starting point of modelling various surface and interface criticality.

As recently revisited by Metlitski, el al., the O(n) model in D = 3 with n < nc

is still able to support a quasi long-range order[28, 29, 30], whose order parameter has

logarithmic correlations:

⟨ϕ⃗(0)ϕ⃗(x)⟩ ∼ 1

(log |x|)q
. (1.16)

Hence such surface transition is dubbed “extraordinary-log” universality class. These

field-theoretical and numerical results opens the door to a new series of exotic criticalities,

which could have deep implications in quantum magnetism. In Sec. 2.3, we show that for

a 2+1d system with SO(3) and translation symmetry, the 1+1d boundary can support

a Néel-to-VBS transition similar to the one reviewed in the last subsection.

1.3 Field Theories in Fermionic Matters

1.3.1 Landau’s Theory of Fermi Liquid

Landau’s Fermi liquid theory, developed by the Soviet physicist Lev Landau in the

1950s, is a theoretical framework that is able to describe the behavior of weakly inter-

acting fermions, such as electrons in a metal, at low temperatures. The key idea of the

theory is that in a Fermi liquid, the interactions between the fermions are weak enough

that the quasiparticles, which are essentially the electrons dressed with their interactions

13
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Figure 1.3: The phase diagram of surface near bulk critical point, from [31]. Here
SO(BO) stands for surface (bulk) ordered, and SD(BD) stands for surface (bulk) dis-
ordered. The x axis is the negative surface-enhancement −c, and y axis is temperature
T ∼ τ .

with other electrons, behave in many respects as if they were non-interacting, although

physical parameters like the effective mass of the electron might be modified. This al-

lows the Fermi liquid to be treated as a collection of nearly free particles, each with a

well-defined momentum and energy. The quasiparticles in a Fermi liquid obey the same

statistics as the underlying fermions, and they fill up the available energy states up to

the chemical potential of the system.

Due to their weakly interacting nature, we can use momentum k as a good quantum

number to label the electrons in a Fermi liquid, along with the electron spin. If we

use the imaginary time path integral approach of a second-quantized Hamiltonian of the

electron, we have the following field theory:

Lf = c†kα(∂τ + ϵ(k)− µ)ckα, (1.17)
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where µ is the chemical potential. At low temperatures, one is mostly interested in the

physics around the energy µ. In d-dimensional space, the solution of ϵ(k)−µ = 0 gives us

a Fermi surface of dimension d− 1. The low energy physics of the Fermi liquid is then

effectively one-dimensional: on each point of the Fermi surface, the electron is excited in

the direction perpendicular to the Fermi surface. Expanding the theory near the Fermi

surface, we obtain the following low-energy effective theory:

Lpatch =
∑
θ

c†θkα(∂τ + vf (θ) · (k− kf (θ)) + . . . )cθkα, (1.18)

where θ is a set of d − 1 generalized coordinates that parameterize the Fermi surface,

vf (θ) = ∂kϵ(k)|k=kf (θ) is the local Fermi velocity, and the ellipsis consists of higher-order

terms from the Taylor expansion of k− kf (θ).

The Fermi liquid theory is able to explain many of the observed properties of metals,

including the low-temperature behavior of the electrical resistivity ρ−rho0 ∼ T 2 and the

specific heat CV ∼ T . It has also been used to describe the behavior of other interacting

fermion systems, such as neutron stars and quark-gluon plasma. From the Fermi liquid

theory, it is possible to reach other fermionic phases when strong interactions are added,

as we will see in the next subsection.

1.3.2 Theories of Non-Fermi Liquid and Phase Transitions of

Fermions

In gapless fermionic systems with strong enough interactions between fermions, the

properties of the system will deviate from the prediction by Landau’s Fermi liquid theory.

In these systems, dubbed non-Fermi liquids(NFL), interactions between fermions are

strong enough to significantly alter the properties of the Landau quasiparticles, leading to
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unconventional behaviors at low temperatures. For example, the strange metal phase

in the phase diagram of high-temperature superconductor near quantum criticality has

resistivity that increases linearly with temperature, and such relation persists to high

temperatures. In strange metals, the concept of well-defined quasiparticles, which are

characteristic excitations in Landau’s theory, breaks down. The interactions between

particles are strong, and the system lacks a clear Fermi surface. Instead, the electronic

excitations are believed to be highly entangled and non-local.

From the low energy effective theory of the fermi surface, one famous way of obtaining

non-Fermi liquid is through the Hertz-Millis theory[32, 33]. Starting from (1.18), one

couples the bilinear mass to bosonic degress of freedom at criticality:

L = Lpatch + gΦαβc
†
θkαcθkβ + LB, (1.19)

in which LB = |∂Φαβ|2+V (Φαβ) is a bosonic theory whose potential is tuned to criticality.

The g term couples the bosonic field to a fermionic bilinear. If g is a relevant coupling,

then when we tune the bosonic criticality from an disordered phase ⟨Φab⟩ = 0 to an

disordered phase ⟨Φαβ⟩ ≠ 0, the term induces a phase transition of the fermions from

a metal phase to certain fermionic ordered phase, depending on the actual form of the

interaction. The above model is a useful starting point for field-theoretical studying

of novel fermionic phases like quantum spin liquids, and interaction driven fermionic

transitions, including metal-to-insulator transition(MIT) or Ising-nematic transition.

In the U(1) spin liquid state, a candidate ground state for 2d frustrated magnets, the

fermionic degree of freedom carries spin-1
2
but is charge neutral. The fermion forms a

spinon Fermi surface and is coupled to an emergent U(1) gauge field. Such theory can

be studied using a similar theory as (1.19), in which g describes the minimal coupling

between fermion and the gauge field, and LB generates the dynamics of the gauge field.
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In order to perform a RG analysis of the coupling constant, Sung-Sik Lee considered the

large-N scheme by writing g = e√
N
. However, such theory is strong coupled even in the

infrared, because the vertex correction and fermion self-energy involves infinite number

of Feynmann diagrams. This is ultimately caused by strong quantum fluctuations caused

by the large collection of low energy excitations. Similar problem is encountered in the

study of Fermi liquid near the onset of Ising-nematic and spin density wave order by

Metlitski and Sachdev[34, 35], whose RG corrections contain singular contributions that

cannot be controlled. A controlled perturbative expansion study is pioneered by Nayak

and Wilczek, who studied fermions with a quartic interaction 1
|k|x , and (1− x) is a small

parameter can be used to control the RG equation[36]. Mross, McGreevy, Liu and Senthil

proposed a similar modified bosonic action[37]:

LB =

∫
dkdω

(2π)3
|k|zb−1|Φ(k, ω)|2. (1.20)

Such expansion is shown to be controlled in the limit of small ϵ = zb − 2. However, in

most of the physical scenarios, zb = 3 (or ϵ = 1), so the validity of such perturbation

is limited in these situations to recover actual physical properties like various scaling

behaviors. Nevertheless, as will see in Chapter 3 and 4, the critical bosonic theory can

be replaced by more exotic bosonic criticalities, in which the Φ correlation function can

be effectively reproduced by such term with zb around 2. In such cases the perturbative

RG results will be more realistic in a considerable energy window.

Another important application of such theory is the interaction driven continuous

metal-to-insulator transition(MIT)[38]. The physical picture of such transition is

that the electron cα in the system fractionalizes into a bosonic charge carrier b and neutral

fermionic spinon fα. Both b and fα are coupled to an emergent U(1) gauge field. The

MIT is driven by an order-to-disorder transition of b. In the disordered phase of b, the
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system is gapped with large resistance and a hidden spinon fermi surface, while in the

ordered phase we recover the physical electron cα ∼ ⟨b⟩fα, and the system is conductive.

In 2d, the electrical resistance is a dimensionless quantity multiplied by h
e2
. Thus, when

the transition is tuned from the metallic side to the critical point, the resistivity should

jump by ρb = R h
e2
, in which R is the dimensionless critical resistance of boson at the 2+1d

XY universality class. In Chapter 4, we propose several alternative candidate theories

of MIT that can potentially explain recently observed large critical resistance of MIT in

Moiré transition metal dichalcogenides[39, 40].
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Chapter 2

Boundary Criticalities

2.1 Boundary Criticality of Deconfined Quantum Phase

Transitions in 2d systems

2.1.1 Introduction

Two dimensional quantum many body systems at zero temperature gave us a plethora

of exotic phenomena beyond the classical wisdom of phases of matter. These phenom-

ena include topological orders [41, 42], symmetry protected topological orders [43, 44]

(generalization of topological insulators), and unconventional quantum phase transitions

beyond the Landau’s paradigm [15, 16, 45, 46, 47, 48]. The unconventional quantum

phase transitions usually have very distinct universal scalings compared with the ordi-

nary (2 + 1)d Landau’s transitions. These unconventional quantum phase transitions,

or unconventional quantum critical points (QCP), could happen between two ordinary

Landau’s phases with different patterns of spontaneous symmetry breaking [15, 16], they

can also happen between a topological order and an ordered phase [45, 46, 47]. Al-

though many appealing numerical evidences of these unconventional QCPs have been
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found [49, 50, 51, 52], direct clear experimental observation of these unconventional QCPs

is still demanded.

To identify an unconventional QCP in an experimental system, we need to measure

the correlation functions and scaling dimensions of various operators at this QCP, and

compare the results with analytical predictions. In this section we do not attempt to

propose a particular experimental system that realizes one of the unconventional QCPs,

instead we try to address one general issue that many experimental platforms would

face, platforms where potentially these unconventional QCPs can be found. In numerical

simulations of a QCP, correlation functions and scalings in the bulk can be directly com-

puted. But experimentally many purely 2d systems of interests are sandwiched between

other auxiliary layers in a Van der Waals heterostructure [53]. Hence the bulk of the 2d

system is often not exposed for probing for many experimental techniques. Instead, the

1d boundary of the 2d system is exposed and can often be probed directly. Based on

the early studies of the boundary of Wilson-Fisher fixed points [54, 27, 26, 55] and the

boundary of two dimensional conformal field theories [25], we learned that the scaling

of operators at the boundary of a system can be very different from the bulk, hence the

previous calculations about unconventional QCPs in the bulk may not be so relevant

to many experimental platforms. We need to restudy the critical exponents at the 1d

boundary of the system in order to compare with future experimental observations.

2.1.2 Boundary Criticality of Z2 topological quantum phase tran-

sitions

In this section we discuss the boundary critical behaviors of a 2d topological quantum

phase transition between a fully gapped Z2 topological order, and an ordered phase which

spontaneously breaks the global symmetry of the system and has no topological order.
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We assume that the “electric gauge particle” (the so called e−anyon) of the Z2 topological

order is an N−component complex boson ba. This topological transition is described by

the following field theory:

S =

∫
dτd2x

N∑
a=1

|∂ϕa|2 + r|ϕa|2 + g(
N∑
a=1

|ϕ|2a)2, (2.1)

where the complex scalar ϕa is the low energy field of anyon ba, and it is coupled to a

Z2 gauge field which is not written explicitly. Because a Z2 gauge field does not have

gapless gauge boson, it does not contribute any infrared corrections to gauge invariant

operators. When r > rc, ϕa is disordered and the system is a Z2 topological order which

is also the deconfined phase of the Z2 gauge field; when r < rc, ϕa condenses and destroy

the Z2 topological order through the Higgs mechanism, and the condensate of ϕa has

ground state manifold S2N−1/Z2, where S
2N−1 is a 2N − 1 dimensional sphere.

This theory Eq. 4.8 with different N can be realized in various scenarios. For N = 1,

this theory can be realized as the transition between a 2d superconductor and a Z2 spin

liquid. Similar unconventional topological transitions have been observed in numerical

simulations in lattice spin (or quantum boson) models [45, 46], and theoretical predictions

of the bulk critical exponents have been confirmed quantitatively. In this realization the

boson b can be introduced by formally fractionalizing the electron operator on the lattice

as

cj,α = fj,αbj, (2.2)

where bj is a charge-carrying bosonic “rotor”, fj,α is the fermionic parton that carries

the spin quantum number. fj,α and bj share a U(1) gauge symmetry, and the Z2 topo-

logical order is constructed by assuming that bj has a finite mass gap, while fj,α forms a
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superconductor at the mean field level, which breaks the U(1) gauge symmetry down to

Z2. The quantum phase transition between the superconductor and the Z2 topological

is described by Eq. 4.8 with N = 1. In the condensate of ϕ (r < rc), the physical pairing

symmetry of the superconductor is inherited from the mean field band structure of fα.

The long range Coulomb interaction between charge carriers is often screened by auxil-

iary layers such as metallic gages in experimental systems, hence in Eq. 4.8 there is only a

short range interaction. Eq. 4.8 with N = 1 is often referred to as the “XY∗” transition.

In the dual picture, starting from the superconducing phase, the XY∗ transition can also

be viewed as the condensation of double vortices of the superconductor.

Eq. 4.8 with even N and N ≥ 2 can be realized in Sp(N) spin systems, as the Z2

spin liquid can be naturally constructed in Sp(N) spin systems. ba ∼ ϕa is introduced

as the fractionalized Schwinger boson of the spin system, and the Z2 topological order

emerges when a pair of ba (which forms a Sp(N) singlet) condenses on the lattice [56, 57].

In particular, when N = 2, the theory Eq. 4.8 can be realized as the quantum phase

transition between a Z2 topological order and a noncollinear spin density wave of spin-

1/2 systems on a frustrated lattice, for example the so-called 120◦ antiferromagnetic state

on the triangular lattice [47]. The order parameter of the noncollinear spin order of a

fully SU(2) invariant Hamiltonian will form a ground state manifold SO(3), which is

equivalent to SU(2)/Z2 = S3/Z2, where the Z2 is identified as the Z2 gauge group, and

also the center of the spin SU(2) group. The gauge invariant order parameter can be

constructed with the low energy field ϕa as

N⃗1 = Re[ϕtiσ2σ⃗ϕ], N⃗2 = Im[ϕtiσ2σ⃗ϕ], N⃗3 = ϕ†σ⃗ϕ, (2.3)

and one can show that N⃗i are three orthogonal vectors. In this case theory Eq. 4.8 is

referred to as the O(4)∗ transition, because there is an emergent O(4) symmetry that
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rotates between the four component real vector (Re[ϕ1], Im[ϕ1],Re[ϕ2], Im[ϕ2]). Other

systems can potentially realize the theory with larger−N , for instance spin systems with

Sp(4) symmetry can be realized in spin-3/2 cold atom systems [58].

We are most interested in the composite operator
∑

a ϕ
2
a, which is invariant under the

Z2 gauge symmetry, but transforms nontrivially under the physical symmetry, hence it

is a physical order parameter. When N = 1, in the condensate of ϕ (or bj), the electron

operator has a finite overlap with the fermionic parton operator cj,α ∼ fj,α⟨ϕ⟩, hence

the superconductor order parameter ∆ ∼ ⟨ϕ2⟩. In the bulk the scaling dimension of ϕ2

can be extracted through the standard ϵ expansion or numerical simulation [59]. Near

the critical point the superconductor order parameter should scale as ∆ ∼ |r|β, where

β = [ϕ2]ν and [ϕ2] is the scaling dimension of operator ϕ2. At the XY∗ critical point the

exponent ν ∼ 2/3. When N = 2, the composite operator
∑

a ϕ
2
a is one component of the

spin order parameter of the noncollinear spin density wave.

All the results above are only valid in the 2d bulk. But in experiments on the boundary

(as we discussed previously, it is the boundary that is exposed and hence can be probed

conveniently), many of the critical exponents are modified. We now consider a system

whose 2d bulk is in the semi-infinite xz plane with z > 0, with a 1d boundary at z = 0.

For simplicity, let us tentatively ignore the Z2 gauge field, and view ϕa as a physical order

parameter. The most natural boundary condition is the Dirichlet boundary condition, i.e.

the field vanishes at the boundary and also outside of the system z ≤ 0. The boundary

condition of the system can be imposed by turning on a large c|ϕa|2 term along the

boundary, which fixes ϕa(x, z = 0) = 0, where x = (τ, x).

At the mean field level, the correlation function of the ϕa field near the boundary can

be computed using the “image method” [54]:

G(x1 − x2, z1, z2) = ⟨ϕa(x1, z1)ϕ
∗
a(x2, z2)⟩ =
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G(x1 − x2, z1 − z2)bulk −G(x1 − x2, z1 + z2)bulk. (2.4)

Gbulk = ⟨ϕa(x1, z1)ϕ
∗
a(x2, z2)⟩bulk is the bulk correlation function far from the boundary.

Notice that the boundary breaks the translation symmetry along the z direction, hence

the full expression of the correlation function near the boundary is no longer a function

of z1 − z2. The expression in Eq. 2.4 guarantees that the correlation function satisfies

G(x1−x2, 0, z2) = G(x1−x2, z1, 0) = 0, which is consistent with the boundary condition.

The fact that the correlation function of the ϕa field vanishes at the boundary means

that ϕa itself is no longer the leading representation of the field at the boundary z = 0.

Instead, another field with the same symmetry and quantum number at the boundary,

Φ1,a = ∂zϕa, (2.5)

should be viewed as the leading representation of the field near the boundary. In fact,

since Φ1,a and ϕa have the same symmetry transformation near the boundary, an external

field that couples to ϕa should also couple to ∂zϕa. At the mean field level, a typical

configuration of ϕa scales as ϕa(x, z) ∼ z near the boundary, hence Φ1,a = ∂zϕa is

not suppressed by the boundary condition. Also, the correlation function of Φ1,a at

the boundary does not vanish, and at the mean field level it has scaling dimension

[Φ1,a] = [ϕa] + 1 = D/2, where D is the total space-time dimension of the bulk.

Figure 2.1: The diagrams that renormalize Φ2 at the first order of ϵ. In the bulk the
first diagram only shifts the mass of ϕa, but at the boundary it makes a nontrivial
contribution to the wave function renormalization.
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The gauge invariant order parameter
∑

a ϕ
2
a we are interested in reduces to Φ2 =∑

aΦ
2
1,a at the boundary, and it has scaling dimension [Φ2] = D at the mean field level.

If the Z2 gauge field is ignored, the correlation function of Φ1,a at the boundary reads

⟨Φ1,a(x1)Φ
∗
1,a(x2)⟩ = lim

z1,z2→0
∂z1∂z2G(x1 − x2, z1, z2), (2.6)

where G(x1 − x2, z1, z2) is still given by the image method Eq. 2.4. If we assume that

Gbulk takes the standard form at the Gaussian fixed point

⟨ϕa(x1, z1)ϕ
∗
a(x2, z2)⟩bulk

=
1

(|x1 − x2|2 + (z1 − z2)2)
D−2
2

, (2.7)

the boundary correlation function of Φ1,a at the mean field level reads

⟨Φ1,a(x1)Φ
∗
1,a(x2)⟩ =

2(D − 2)

|x1 − x2|D
. (2.8)

At the Gaussian fixed point, the correlation function of Φ2 can be derived using the Wick

theorem:

⟨Φ2(x1)Φ
∗
2(x2)⟩ =

∑
a

⟨Φ1,a(x1)Φ
∗
1,a(x2)⟩2

∼ 1

|x1 − x2|2D
. (2.9)

The scaling dimension of Φ2 will acquire further correction from interaction, which

can be computed through the ϵ = (4 − D) expansion. Interestingly, at the leading ϵ

order, [Φ2] will receive corrections from both wave function renormalization and vertex
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corrections:

[Φ2] = D + 2δwf + δv. (2.10)

The wave function renormalization δwf can be extracted from the previously calculated

ϵ−expansion of the anomalous dimension at the boundary of the Wilson-Fisher fixed

points, i.e.

[Φ1,a] =
D

2
+ δwf =

D

2
− N + 1

2(N + 4)
ϵ. (2.11)

In contrast, in the bulk renormalization group (RG) analysis of the Wilson-Fisher fixed

point, the wave function renormalization only appears at the second and higher order of

ϵ expansion.

The vertex correction is most conveniently computed using the standard real-space

RG, since now the momentum along the ẑ direction is no longer conserved. We will use

the following operator-product-expansion (OPE) between Φ2(x, 0) and the interaction

term in Eq. 4.8 (Fig. 2.1b), where Φ2(x, 0) is defined as Φ2(x, 0) = limz→0 (∂zϕ(x, z))
2:

Φ2(x, 0)g

(∑
a

ϕ∗
a(x

′, z′)ϕa(x
′, z′)

)2

= 2g lim
z→0

(∂zG(x− x′, z, z′))2
∑
a

ϕ2
a(x

′, z′)

∼ 32z′4g

((x− x′)2 + z′2)4
lim
z→0

(∂zϕ(x, z))
2 . (2.12)

Notice that like all the 4− ϵ expansions, the OPE and loop integrals were performed by

assuming the bulk system is in a four dimensional space-time. Under rescaling x → x/b,
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through the vertex correction the operator Φ2 will acquire a correction

δΦ2 = −Φ2

∫ a

a/b

4πr2dr

∫ +∞

0

dz′
32z′4g

(r2 + z′2)4

= −4gπ2 (ln b) Φ2. (2.13)

The integral of z′ is within the upper semi-infinite plane z′ > 0.

Using epsilon expansion, g will flow from the noninteracting Gaussian fixed point to

an interacting fixed point g∗ = ϵ/(4(N + 4)π2). Plugging the fixed point value of g into

Eq. 2.13, we obtain the vertex correction

δv =
ϵ

N + 4
. (2.14)

The wave function renormalization δwf can be reproduced in the same way through OPE

(Fig. 2.1a). Eventually the scaling dimension of the gauge invariant order parameter Φ2

at the boundary is

[Φ2] = D − Nϵ

N + 4
. (2.15)

We have also confirmed these calculations through direct computation of the correlation

function of Φ2 near the boundary (with diagrams in Fig. 2.2).

As we discussed before, the case with N = 1 can be realized as the transition between

a Z2 topological order and a superconductor. If the system is probed from the boundary,

in the ordered phase but close to the critical point, the superconductor order parameter

should scale with the tuning parameter r as

∆ ∼ |r|[Φ2]ν ∼ |r|1.87, (2.16)
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and we have taken ν ∼ 2/3 for the XY∗ fixed point [59].

For N = 2, the Φ2 operator is one component of the noncollinear spin order of a

SU(2) spin system, which scales as

⟨S⃗⟩ ∼ Φ2 ∼ |r|[Φ2]ν = |r|1.97 (2.17)

Again, we have taken ν = 0.74 for the O(4)∗ fixed point [59]. As a comparison, in the 2d

bulk Φ2 should scale with r as Φ2 ∼ |r|0.82(N = 1) and Φ2 ∼ |r|0.87(N = 2) respectively,

which is significantly different from the boundary scaling.

Figure 2.2: The renormalization of operator Φ2 at the leading order of ϵ can also be
computed directly using the correlation functions in this figure.

When N = 1, the action Eq. 4.8 may or may not allow an extra chemical potential

term µϕ∗∂τϕ, depending on whether the system has a (emergent) particle-hole symmetry

ϕ → ϕ∗ or not. With nonzero µ the system has the same scaling as a mean field

transition (with logarithmic corrections) as the total space-time dimension is effectively

D = 2 + d = 4, and g is marginally irrelevant. In this case the scaling dimension of the

Cooper pair at the boundary becomes [Φ2]µ̸=0 = D = 4, and ν = 1/2 as in the mean field

transition.

The boundary scaling is valid as long as we consider correlation function G(x1 −

x2, z1, z2) with |x1−x2| ≫ z1, z2. Right at the boundary of a 2d Z2 topological order, the

gauge field is confined, due to the condensation of the m−anyons of the Z2 topological

order at the boundary (the boundary of a Z2 topological order can also have e−anyon
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condensate, but since in our case the e−anyons carry nontrivial symmetry transforma-

tions, we assume our boundary always has m−anyon condensate). Near the boundary,

the system still has a finite confinement length ξ(z) as a function of z, i.e. the distance

from the boundary, due to the “proximity effect” of the m−condensation at the bound-

ary. In order to guarantee that we can approximately assume a deconfined Z2 gauge field

near the boundary, we need ξ(z) ≫ z.

The most convenient way to estimate the confinement length ξ(z) close to the bound-

ary, is to evaluate the energy cost of two gauge charged particles separated with distance

x near the boundary. This energy cost can be estimated in the “dual” Hamiltonian

of a Z2 gauge theory, which is a (2 + 1)d quantum Ising model: Hdual =
∑

j̄ −hτxj̄ −∑
µ=x,y Jj̄,µτ

z
j̄ τ

z
j̄+µ, where τ

x
j̄ , τ

z
j̄ are a pair of Pauli operators defined on the dual lattice

sites j̄. The dual Ising operator τ zj̄ is a creation/annihilation operator of the Z2 gauge

flux. A confined (and deconfined) phase of the Z2 gauge field corresponds to the ordered

(and disordered) phase of the dual quantum Ising model with nonzero (and zero) ex-

pectation value ⟨τ z⟩ [60]. If there is a pair of static e−particles with Z2 gauge charges

separated with distance x, this system is dual to a frustrated Ising model with Jj̄,µ = −J

on the links along the branch-cut that connects the two particles, while Jj̄,µ = +J ev-

erywhere else. The energy cost of the two separated static particles corresponds to the

energy difference between this frustrated Ising model nonuniform Jj̄,µ, and the case with

uniform Jj̄,µ. Then if τ zj̄ has a nonzero expectation value ⟨τ z⟩, the pair of Z2−gauge

charges will approximately cost energy E ∼ J⟨τ z⟩2x, i.e. the system is in a confined

phase with a linear confining potential between the two Z2 gauge charges, and the con-

finement length is roughly ξ ∼ 1/(J⟨τ z⟩2). In our system with a boundary at z = 0,

although ⟨τ z⟩ is nonzero at the boundary, its expectation value decays exponentially with

z because the Z2 gauge field is in a deconfined phase deep in the bulk with ⟨τ z⟩ = 0.

Hence the confinement length ξ(z) also increases with z exponentially, and we can safely
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assume that the Z2 gauge field is still approximately deconfined near the boundary.

2.1.3 Continuous Metal-Insulator transition

Another unconventional quantum phase transition that can happen in 2d systems is

the continuous metal-insulator transition, where the insulator is a U(1) liquid phase with

a fermi surface of the fermionic parton fj,α. Both fj,α and bj are coupled to an emergent

U(1) gauge field, which is presumably deconfined in the 2d bulk due to the existence of

the Fermi surface and finite density of states of the matter fields. The critical behavior

of this transition in the bulk was studied in Ref. [38], and it is again described by the

condensation of bj, but in this case bj is coupled to an dynamic U(1) gauge field aµ.

Although there is a gapless gauge field aµ in the bulk, the gauge field dynamics is

over-damped by the fermi surface of fα through a term Sdamp ∼ 1
e2

∑
ω,q⃗ |atω,q|2

|ω|
|q| based

on the standard Hertz-Millis formalism [32, 33], where at is the transverse mode of the

gauge field. A simple power-counting would suggest that the gauge coupling e2 becomes

irrelevant at the transition where bj condenses, for both µ = 0 and µ ̸= 0. Hence the

universality class of this transition does not receive relevant infrared corrections from the

gauge field. Moreover, the direct density-density interaction between the bosonic and

fermionic partons also does not lead to relevant effects [38]. Hence the metal-insulator

transition can still be described by Eq. 4.8. The quasiparticle residue is proportional to

|⟨b⟩|, and the electron Green’s function is proportional to |⟨b⟩|2. Hence if one probes from

the boundary, the local density of states of electrons at low energy, which is proportional

to the electron Green’s function, scales with the tuning parameter r as

ρ ∼ |⟨Φ1⟩2| ∼ |r|2[Φ1]ν . (2.18)

For µ = 0, [Φ1] is calculated in Eq. 2.11, and ν ∼ 2/3; for µ ̸= 0, [Φ1] = 2 and ν = 1/2.
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Again we need to address the question of confinement length near the boundary, and

demonstrate that ξ(z) ≫ z. A pure U(1) gauge field in (2+ 1)d is dual to a scalar boson

φ ∼ exp(iθ) which physically is the Dirac monopole operator, and the confined phase of

a U(1) gauge field corresponds to a phase with a pinned nonzero expectation value of φ.

A U(1) gauged particle becomes a vortex of θ in the dual formalism, and in a deconfined

phase a vortex costs logarithmically divergent energy; but if φ has a pinned nonzero

expectation value, a vortex will cost linearly diverging energy and hence confined. Now

suppose we consider a pair of gauge charged particles separated at distance x, the energy

cost will be roughly x⟨φ⟩2. Hence we need to evaluate ⟨φ(z)⟩ as a function of z away

from the boundary, assuming a nonzero expectation value of φ at the boundary φ0 =

⟨φ(z = 0)⟩. ⟨φ(z)⟩ can be inferred from the correlation function ⟨φ(z)⟩ ∼ ⟨φ(z)φ(0)∗⟩ ∼

exp(⟨θ(z)θ(0)⟩).

A (2 + 1)d pure U(1) gauge field without the matter field is dual to a scalar boson

model with an ordinary action S ∼
∫
d2xdτρs(∂µθ)

2, then θ has a positive scaling dimen-

sion [θ] = 1/2. The correlation function of θ reads ⟨θ(r)θ(0)⟩ ∼ 1/r, which makes the

correlation function of the monopole operator saturates to a nonzero value as r → ∞.

Hence a positive scaling dimension of θ in the dual action renders the confinement of

the compact gauge field in (2 + 1)d. If θ has a negative scaling dimension in its (dual)

action, the correlation function of φ will decay exponentially. Then the confinement

length ξ(z) ∼ 1/⟨φ(z)⟩2 ∼ 1/⟨φ(z)φ(0)∗⟩2 will grow exponentially with z in the bulk

away from the boundary. And since ξ(z) ≫ z, the boundary scaling behavior calculated

in this section can be applied under the assumption that the gauge field is sufficiently

deconfined near the boundary since the confinement length is long enough in the vicinity

of the boundary.

Now we need to derive the dual action for θ more carefully. Schematically the action
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for the transverse gauge field is

S =
∑
ω,q⃗

1

2

(
1

e2
|ω|
q

+ c2q2
)
|at|2. (2.19)

The canonical conjugate field of a⃗, i.e. the electric field of the gauge field is defined as

E⃗ = δL/δ ˙⃗a, hence E⃗ω,q⃗ ∼ a⃗ω,q⃗/(e
2q), hence the action can also be written as

S =
∑
ω,q⃗

e2

2
|ω||q⃗||E⃗ω,q⃗|2 +

c2

2
q2|atω,q⃗|2. (2.20)

Then we can use the standard duality transformation that preserves the commutation

relation between the canonical conjugate variables E⃗ and A⃗: E⃗ = ∇⃗θ, ∇⃗ × a⃗ = n, where

n is the flux density, or the particle density conjugate to θ. Eventually the dual action

reads

Sd =
∑
ω,q⃗

1

2

(
e2|ω|q3 + 1

c2
ω2

)
|θω,q⃗|2. (2.21)

Indeed, θ(x, τ) has a negative scaling dimension in this dual action, which is consistent

with our expectation that ⟨φ(z)⟩ decays exponentially in the bulk, hence the gauge field

is still approximately deconfined in the vicinity of the boundary.

2.1.4 Discussion

In this section we computed the boundary universal scaling behaviors of a class of

deconfined quantum phase transitions, which is relevant to future realization of these ex-

otic transitions in experimental systems. From the perspective of the pure Laudau’s

paradigm, the cases we study correspond to the “ordinary transitions” of boundary

CFT [54], meaning the bulk will enter an ordered phase before the boundary, which
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we believe is the most natural case in real systems. Measurement of the scaling laws

we calculated depends on the specific realization of the theory Eq. 4.8. For example, if

the N = 1 theory is realized (as we proposed in this section) as the transition between

the Z2 spin liquid to superconductor, the amplitude of the Cooper pair at the boundary

predicted in our calculation can be measured through the Josephson effect by building a

junction between the boundary of the system and another ordinary bulk superconductor,

as the Josephson current is proportional to the amplitude of the superconductor order

parameter near the boundary. The Josephson current should follow the same scaling law

as Eq. 4.9.

The studies in this section can be naturally generalized to higher dimensions. If there

is a deconfined QCP between the Z2 topological order and an ordered phase in the (3+1)d

bulk, at its (2+1)d boundary the gauge invariant order parameter Φ2 has precise scaling

dimension [Φ2] = 4, since in the bulk this transition is described by a mean field theory

and received no extra corrections.

The direct transition between the Néel and valance bond solid (VBS) order is another

type of deconfined QCP that has attracted a great deal of attentions. The boundary effect

of this deconfined QCP is more complex than the situations we have considered because

the boundary breaks the lattice symmetry, hence the boundary condition would couple to

the VBS order parameter. Another interesting scenario worth studying is the boundary

scaling of a bulk transition between a symmetry protected topological (SPT) states and

an ordered phase which spontaneously breaks part of the defining symmetries of the

SPT phase. Although the bulk transition should belong to the same universality class as

the ordinary Ginzburg-Landau transition, its boundary is expected to be very different

due to the existence of symmetry protected nontrivial boundary states even in the SPT

phase. Efforts have been made along this direction including numerical simulation [61]

and construction of exactly soluble models [62]. We will leave these subjects to future
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studies.

2.2 Topological Edge and Interface states at Bulk

disorder-to-order Quantum Critical Points

2.2.1 Introduction

The most prominent feature of topological insulators (TI) [63, 64, 65, 66, 67, 68, 69]

and more generally symmetry protected topological (SPT) states [43, 44] is the contrast

between the boundary and the bulk of the system. In particular the 2d edge of 3d SPT

states hosts the most diverse zoo of exotic phenomena that keep attracting attentions

and efforts from theoretical physics. It has been shown that many exotic phenomena

such as anomalous topological order [70, 71, 72, 73, 74, 75, 76], deconfined quantum

critical points [77], self-dual field theories [78, 79, 80, 81] can all occur on the 2d edge of

3d SPT stats. Sometimes the symmetry of the system is secretly realized as a self-dual

transformation of the field theories at the boundary [82, 22]. All these suggest that the

2d boundary of a 3d system is an ideal platform of studying physics beyond the standard

frameworks of condensed matter theory.

On the other hand, even the boundary of an ordinary Landau-Ginzburg type of

quantum phase transition can have nontrivial behaviors. It was studied and understood

in the past that the boundary of a bulk conformal field theory (CFT) follows a very

different critical behavior from the bulk [24, 25, 27, 26, 55, 31], due to the strong boundary

condition imposed on the CFT. The boundary fluctuations (or the boundary CFT) of

the Landau-Ginzburg phase transitions were studied through the standard ϵ−expansion,

and it was shown that the critical exponents are very different from the bulk. Hence

if experiments are performed at the boundary of the system, one should refer to the
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predictions of the boundary instead of the bulk CFT. These two different boundary

effects were studied separately in the past. In this section we will study the interplay of

these two distinct boundary effects. Our goal is to seek for new physics, ideally new fixed

points under renormalization group (RG) flow due to the coupling of the two boundary

effects.

Figure 2.3: We view the system under study as a two layer system. Layer-1 is a
SPT or TI with nontrivial edge states; layer-2 is an ordinary disorder-to-order phase
transition whose order parameter at the boundary follows the scaling of boundary
CFT. The boundary of the entire system may flow to new fixed points due to the
coupling between the two layers.

For our purpose we give the system under study a virtual two-layer structure Fig. 2.3:

layer-1 is a SPT state with nontrivial edge states, and it is not tuned to a bulk phase

transition; layer-2 is a topological trivial system which undergoes an ordinary Landau-

Ginzburg disorder-to-order phase transition. Then as a starting point we assume a weak

coupling between the boundary of the two layers, and study the RG flow of the coupling.

Besides the edge state localized at the boundary of a SPT state, we will also consider

symmetry protected gapless states localized at a 2d interface embedded in a 3d bulk. We

will demonstrate that in several cases, including the edge state of a prototype bosonic

SPT state, the 2d boundary or interface will flow to a new fixed point due to the bulk

quantum phase transition.

Previous works have explored related ideas with different approaches. Exactly soluble
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1d and 2d Hamiltonians have been constructed for gapless systems with protected edge

states [83]; fate of edge states was also studied for 1d and 2d SPT states [84, 85, 86, 87, 88].

But the 2d edge of 3d bosonic SPT systems coupled with boundary modes which originate

from bulk quantum critical points, i.e. the situation that potentially hosts the richest

and most exotic phenomena, have not been studied to our knowledge. We note that the

interaction between bulk quantum critical modes and the boundary of free or weakly

interacting fermion topological insulator (or topological superconductor) was studied in

Ref. [89], but the coupling in that case was strongly irrelevant hence will not lead to new

physics in the infrared (we will review the interplay between the bulk quantum critical

modes and the edge states of free fermion topological insulator in the next section). We

will focus on bosonic SPT state with intrinsic strong interaction in this section. We use

the generic long wavelength field theory description of both the bulk bosonic SPT states

and the edge states. Due to the lack of exact results of strongly interacting (2+ 1)d field

theories, we seek for a controlled calculation procedure that allows us to identify new

fixed points under RG flow. Indeed, in several scenarios we will explore in this section,

new fixed points are identified based on controlled calculations.

2.2.2 Edge States of 3d SPT at Bulk QCP

Edge states of noninteracting 3d TIs

We first consider the edge state of 3d topological insulator (TI) and symmetry pro-

tected topological states. The edge state of free fermion TI is described by the action

S =

∫
d2xdτ

Nf∑
α=1

ψ̄αγµ∂µψα, (2.22)
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with γ1 = σ2, γ2 = −σ1, γ0 = σ3, ψ̄ = ψ†γ0. Based on the “ten-fold way classifica-

tion” [67, 68, 69], for the AIII class, at the noninteracting level the TI is always nontrivial

and topologically different from each other for arbitrary integer−Nf ; while for the AII

class the TI is nontrivial only for odd integer Nf , and they are all topologically equiv-

alent to the simplest case with Nf = 1. In both cases the fermion mass term
∑

α ψ̄αψα

is forbidden by the time-reversal symmetry. Hence let us consider the disorder-to-order

phase transition in the 3d bulk associated with a spontaneous time-reversal symmetry

breaking, which is described by an ordinary (3 + 1)d Landau-Ginzburg quantum Ising

theory:

Sb =
∫
d3xdτ (∂ϕ)2 + uϕ4. (2.23)

Because u is a marginally irrelevant coupling at the (3 + 1)d noninteracting Gaussian

fixed point, the scaling dimension of ϕ in the bulk is precisely [ϕ] = 1.

Here we stress that the disorder-to-order transition is driven by the physics in the

bulk. Without the bulk, the boundary alone does not support an ordered phase. To

study the fate of the edge state when the bulk is tuned to the quantum critical point, we

view the bulk as a “two layer” system (Fig. 2.3): layer-1 is a 3d TI which is not tuned

to the quantum phase transition; while layer-2 is at the disorder-to-order bulk quantum

phase transition between a time-reversal invariant trivial insulator and a spontaneous

time-reversal symmetry breaking phase. Now both layers have nontrivial physics at

the edge. The quantum critical fluctuation (from layer-2) at the 2d boundary must

satisfy the boundary scaling law. When we impose the most natural boundary condition

ϕ(z ≥ 0) = 0, the leading field at the boundary which carries the same quantum number

as ϕ is Φ ∼ ∂zϕ. Since ϕ has scaling dimension 1, Φ should have scaling dimension
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[Φ] = 2, i.e.

⟨Φ(x, z = 0)Φ(0, z = 0)⟩ ∼ 1/|x|4, (2.24)

where x = (τ, x, y). Eq. 2.74 is a much weaker correlation than ϕ in the bulk (more

detailed derivation of boundary correlation functions can be found in Ref. [24, 27, 26, 55]).

Now we turn on coupling between the 2d boundaries of the two layers. The edge

state of the TI in layer-1 is affected by the boundary fluctuations of layer-2 through the

“proximity effect”. The coupling between the two layers at the 2d boundary is described

by the following term in the action:

Sc =
∫
d2xdτ

∑
α

gΦψ̄αψα. (2.25)

Since Φ ∼ ∂zϕ has scaling dimension 2, g will have scaling dimension [g] = −1, i.e. it

is strongly irrelevant. This conclusion is consistent with previous study Ref. [89]. A

negative “mass term” Φ2 will be generated through the standard fermion loop diagram,

but since Φ has scaling dimension 2, this mass term will be irrelevant. Hence the edge

state of a 3d TI is stable even at the bulk quantum critical point where the time-reversal

symmetry is spontaneously broken, and the properties of the edge states (such as electron

Green’s function) should be identical to the edge state of TI in the infrared. To make the

coupling g relevant, the quantum critical modes also need to localize on the boundary,

which is one of the situations studied in Ref. [89].

Edge states of bosonic SPT states

The situation of bosonic SPT phases can be much more interesting. The bosonic SPT

state can only exist in strongly interacting systems. We use the prototype 3d bosonic
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SPT phase with (U(1) × U(1)) × ZT
2 symmetry as an example, since this phase can be

viewed as the parent state of many 3d bosonic SPT phases by breaking the symmetry

down to its subgroups, without fully trivializing the SPT phase. The topological feature

of this phase can be conveniently captured by the following nonlinear sigma model in the

(3 + 1)d bulk [77, 90]:

S =

∫
d3xdτ

1

g
(∂n)2 +

i2π

Ω4

ϵabcden
a∂xn

b∂yn
c∂zn

d∂τn
e, (2.26)

where n is a five component vector field with unit length, and Ω4 is the volume of the four

dimension sphere with unit radius. (n1, n2), and (n3, n4) transform as a vector under the

two U(1) symmetries respectively, and the ZT
2 changes the sign of all components of the

vector n. The nonlinear sigma model Eq. 2.26 is invariant under all the transformations.

The 2d edge state of this SPT phase can be described by the following (2+1)d action:

S =

∫
d2xdτ

∑
α=1,2

|(∂ − ia)zα|2 + r|zα|2 + u|zα|4

+
1

e2
(da)2, (2.27)

where aµ is a noncompact U(1) gauge field. The theory Eq. 2.27 is referred to as the

“easy-plane noncompact CP1” (EP-NCCP1) model. We are most interested in the point

r = 0. The term
∑

α r|zα|2 would be forbidden if there is an extra Z2 self-dual symmetry

that exchanges the two U(1) symmetries [91], while without the self-duality symmetry r

needs to be tuned to zero, and the point r = 0 becomes the transition point between two

ordered phases that spontaneously breaks the two U(1) symmetries respectively [15, 16].

At r = 0, starting with the UV fixed point with noninteracting zα and aµ, both u and e

are expected (though not proven) to flow to a fixed point with u = u∗, e = e∗.
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The putative conformal field theory at r = 0 and its fate under coupling to the

boundary fluctuations (boundary modes) of the bulk quantum critical points is the goal

of our study in this section. As was discussed in previous literatures, it is expected that

there is an emergent O(4) symmetry in Eq. 2.27 at r = 0, when we fully explore all the

duality features of Eq. 2.27 [91, 78, 79, 92, 80, 81, 22]. In the EP-NCCP1 action, the

following operators form a vector under O(4):

(n1, n2, n3, n4) ∼ (z†σ1z, z†σ2z, Re[Ma], Im[Ma]), (2.28)

whereMa is the monopole operator (the operator that annihilates a quantized flux of aµ).

In the equation above, (n1, n2) and (n3, n4) form vectors under the two U(1) symmetries

respectively. The emergent O(4) includes the self-dual Z2 symmetry of the EP-NCCP1,

i.e. the operation that exchanges the two U(1) symmetries.

Now we consider the 3d bulk quantum phase transition between the SPT phase and

the ordered phases that break part of the defining symmetries of the SPT phase. We

first consider two order parameters: ϕ0, ϕ3. ϕ0 is the order parameter that corresponds

to the self-dual Z2 symmetry; and ϕ3 is a singlet under the emergent SO(4) but odd

under the improper rotation of the emergent O(4), and also odd under ZT
2 . Again we

view our system as a two layer structure: layer-1 is a SPT phase with solid edge states

described by Eq. 2.27; layer-2 is a topological-trivial system that undergoes the transition

of condensation of either ϕ0 or ϕ3. Both order parameters have an ordinary mean field

like transition in the bulk of layer-2. Again at the boundary, both order parameters will

have very different scalings from the bulk. We assume that system under study fills the

entire semi-infinite space at z < 0, then at the boundary plane z = 0, the most natural

boundary condition is that ϕ0(z ≥ 0) = ϕ3(z ≥ 0) = 0, hence all order parameters

near but inside the bulk should be replaced by the following representations: Φ0 ∼ ∂zϕ0,
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Φ3 ∼ ∂zϕ3. Both order parameters have scaling dimensions 2 at the (2 + 1)d boundary

of layer-2.

Now we couple Φ0 and Φ3 to the edge states of layer-1. The coupling will take the

following form:

Lc0 =
∑
α

g0Φ0|zα|2, Lc3 = g3Φ3z
†σ3z. (2.29)

The RG flow of coupling constants g0,3 can be systematically evaluated in certain large−N

generalization of the action in Eq. 2.27:

S =

∫
d2xdτ

∑
α=1,2

N/2∑
j=1

|(∂ − ia)zj,α|2 + u(
∑
j

|zj,α|2)2. (2.30)

The large−N generalization facilitate calculations of the RG flow, but the down side is

that the duality structure and emergent symmetries no longer exist for N > 2. In the

large−N limit of Eq. 2.30, the scaling dimension of the operators under study is

N → +∞ : [z†σ3z] = [|z|2] = 2. (2.31)

In the equation above, each operator has a sum of index j, which was not written ex-

plicitly. Apparently coupling constants g0,3 are both irrelevant with large−N due to the

weakened boundary correlation of Φ0 and Φ3.

We are seeking for more interesting scenarios when the boundary is driven to a new

fixed point due to the bulk quantum criticality. For this purpose we consider another

order parameter ϕ⃗ which transforms as a vector under one of the two U(1) symmetries.

Here we no longer assume the Z2 self-dual symmetry on the lattice scale. Again at the

boundary ϕ⃗ should be replaced by Φ⃗ ∼ ∂zϕ⃗. At the 2d boundary, the coupling between
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Φ⃗ and the edge state of layer-2 reads

Lcv = gv
(
Φ1z

†σ1z + Φ2z
†σ2z

)
. (2.32)

In the large−N limit of Eq. 2.30, the scaling dimension of the operators under study is

N → +∞ : [z†σ1z] = [z†σ2z] = 1. (2.33)

Hence gv is marginal in the large−N limit, and there is a chance that gv could drive the

system to a new fixed point with 1/N corrections.

We introduce the following action in order to compute the RG flow of gv with finite

but large N :

S =

∫
d2xdτ

∑
α=1,2

N/2∑
j=1

|(∂ − ia)zj,α|2 + iλ+|zj,α|2

+ iλ−z
†
jσ

3zj + igvΦ⃗ · z†j σ⃗zj +
1

2
Φ⃗ · 1

|∂|
Φ⃗. (2.34)

The λ± are two Hubbard-Stratonovich (HS) fields introduced for the standard 1/N cal-

culations [93, 94]. The scaling of |z|2 and z†σ3z in Eq. 2.30 are replaced by the HS fields

λ+, λ− in the new action Eq. 4.20 respectively. A coefficient “i” is introduced in the

definition of gv by redefining Φ → iΦ for convenience of calculation.

The schematic beta function of gv reads

dgv
d ln l

= (1−∆v)gv −Bg3v +O(v5). (2.35)

∆v is the scaling dimension of z†j σ⃗zj in the large−N generalization of the EP-NCCP1
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Figure 2.4: (a, b) the 1/N contribution to z†σ1,2z and ψ̄τ1,2ψ from the gauge field
fluctuation, the solid lines represent either the propagator of zα or ψα, the wavy line
represents the propagator of the photon; (c, d) the 1/N contribution to z†σ⃗z from λ±
in Eq. 4.20; (e, f) the contribution to B in Eq. 2.35.

model Eq. 2.30, with σ⃗ = (σ1, σ2). The standard 1/N calculation leads to

∆v = 1− 56

3π2N
+O(

1

N2
). (2.36)

The 1/N correction of ∆v comes from diagram Fig. 2.4(a − d), where the wavy line is

the gauge boson propagator, and the dashed line represents propagators of both λ±. The

first term of Eq. 2.36 implies that gv is indeed weakly relevant with finite but large−N .

The constant B in the beta function arises from the operator product expansion

of the coupling term Eq. 2.32, which is equivalent to the diagrams Fig. 2.4e, f . This

computation leads to B = 1/(3π2). The two diagrams in Fig. 2.5 which are also at g3v

order cancel each other for arbitrary gauge choices. Similar two-loop diagrams at the
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Figure 2.5: The two diagrams at g3v order which cancel each other for arbitrary gauge choices.

same order of 1/N do not enter the RG equation due to lack of logarithmic contribution,

as was explained in Ref. [94]. Φ⃗ does not receive a wave function renormalization due to

the singular form of its action. Hence with finite but large−N , gv indeed flows to a new

fixed point:

g2v∗ =
56

N
+O(

1

N2
). (2.37)

We stress that this result is drawn from a controlled calculation and it is valid to the

leading order of 1/N .

Figure 2.6: The g2v diagrams that contributes to the scaling dimension of [λ+]. Here
the solid line represents the propagator of zj,α, the dotted line represents the vector

operator Φ⃗, and the dashed line represents λ+.

As we explained before, the point r = 0 is a direct transition between two ordered

phases that spontaneously break the two U(1) symmetries. This transition will be driven

to a new fixed point by coupling to the boundary fluctuations of bulk critical points as

we demonstrated above. At this new fixed point, the critical exponent ν follows from the
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relation

ν−1 = 3− [λ+]. (2.38)

To evaluate the scaling dimension [λ+] we have to incorporate the contributions of g2v

from the diagrams shown in Fig. 2.6, and combined with 1/N calculations performed

previously [95, 94]. Then in the end we obtain

ν−1
∗ = 1 +

160

3π2N
+

4g2v∗
3π2

+O(
1

N2
)

= 1 +
128

π2N
+O(

1

N2
). (2.39)

Again, there are other loop diagrams which appear to be at the same order of 1/N but

do not make any logarithmic contributions [94].

2.2.3 Interface States Embedded in 3d bulk

Interface states of noninteracting electron systems

In previous examples we studied topological edge states at the boundary of a 3d

system. In this section we will consider the 2d states localized at an interface (z = 0)

in a 3d space, when the entire 3d bulk (for both z > 0 and z < 0 semi-infinite spaces)

undergoes a phase transition simultaneously. Without fine-tuning, we need to assume

an extra reflection symmetry z → −z that connects the two sides of the interface, which

guarantees a simultaneous phase transition in the entire system. In this case there is no

physical reason to impose the strong boundary condition at the interface embedded in

the 3d space, hence the quantum critical modes at the interface follow the ordinary bulk

scalings, instead of the weakened correlation of boundary CFT.
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Figure 2.7: We consider a SU(N) antiferromagnet with self-conjugate representation
on each site. The system forms a background VBS pattern, with opposite dimeriza-
tions between semi-infinite spaces z > 0 and z < 0. There is a 2d antiferromagnet
localized at the interface z = 0, and the entire bulk can undergo phase transition
simultaneously due to the mirror (reflection) symmetry that connects the two sides of
the domain wall.

Again we will consider free fermion systems first. Let us first recall that the AIII

class TI has a Z classification which is characterized by a topological index nT . nT will

appear as the coefficient of the electromagnetic response of the TI: L ∼ iπnTE · B. nT

must change sign under spatial reflection transformation Mz : z → −z. To construct

the desired system, we assume the semi-infinite space z < 0 is occupied with the AIII

class TI with Hamiltonian Ĥ, whose topological index is nT ; and its “reflection conjugate”

M−1
z ĤMz fills the semi-infinite space z > 0. Then there are Nf = 2nT flavors of massless

Dirac fermions localized at the 2d plane z = 0, which are still protected by time-reversal

symmetry. Now we assume the entire bulk undergoes a quantum phase transition with

a spontaneous time-reversal symmetry breaking, whose order parameter couples to the
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domain wall Dirac fermions as

S =

∫
d2xdτ

Nf∑
α=1

ψ̄αγµ∂µψα + gϕψ̄αψα

+
1

2
ϕ(−∂2)1/2ϕ. (2.40)

The last term in the action is still defined in the (2 + 1)d interface, and it reproduces

the correlation of ϕ in the bulk: ⟨ϕ(0)ϕ(r)⟩ ∼ 1/r2. We stress that, since now the

order parameter resides in the entire bulk, ϕ no longer obeys the boundary scaling as

we discussed in previous examples. A negative boson mass term −rϕ2 can be generated

through the standard fermion mass loop diagram, hence we need to tune an extra term

at the interface to make sure the mass term of ϕ vanishes.

In this case the coupling constant g is a marginal perturbation based on simple

power-counting. But g will flow under renormalization group (RG) with loop corrections

in Fig. 2.4(e, f):

β(g) =
dg

d ln l
= − 2

3π2
g3 +O(g5). (2.41)

Hence even in this case, the coupling between the domain wall states and the bulk

quantum critical modes is perturbatively marginally irrelevant.

So far we have assumed that the velocity of the interface state is identical with the

bulk. Now let us tune the velocity of the domain wall Dirac fermions slightly different,

which can be captured by the following term in the Lagrangian:

∑
α

δψ̄α(γ
1∂x + γ2∂y − 2γ3∂3)ψα. (2.42)

δ defined above is an eigenvector under the leading order RG flow. With the loop dia-
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grams in Fig. 2.8, we obtain the leading order beta function of δ:

β(δ) =
dδ

d ln l
= − 1

5π2
g2δ. (2.43)

Together with β(g), the velocity anisotropy is also perturbatively irrelevant.

Figure 2.8: The Feynman diagrams that renormalizes the extra velocity δ in Eq. 2.42.
The box represents the vertex δ, and all three diagrams contributes to the fermion
self-energy and renormalize δ.

Figure 2.9: The extra diagrams that contribute to the scaling dimension of
∑

α ψ̄αψα
at the leading order of 1/Nf in QED3. Again the wavy lines are photon propagators.

Interface states of quantum antiferromagnet

We now consider a SU(N) quantum antiferromagnet on a tetragonal lattice with a self-

conjugate representation on each site (we assume N is an even integer). With large−N ,

an antiferromagentic Heisenberg SU(N) model has a dimerized ground state [96, 97]

where the two SU(N) spins on two nearest neighbor sites form a spin singlet (valence

bond). We consider the following background configuration of valence bond solid (VBS):

the spins form VBS along the ẑ direction which spontaneously break the translation

symmetry, while there is a domain wall between two opposite dimerizations at the 2d XY

plane z = 0, namely z = 0 is still a mirror plane of the system (Fig. 2.7). In each 1d chain
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along the ẑ direction, there is a dangling self-conjugate SU(N) spin localized on the site

at the domain wall. Hence the 2d domain wall is effectively a SU(N) antiferromagnet on

a square lattice.

One state of SU(N) antiferromagnet which is the “parent” state of many orders and

topological orders on the square lattice, is the gapless π−flux U(1) spin liquid [98, 99].

At low energy this spin liquid is described by the following action of (2 + 1)d quantum

electrodynamics (QED3):

S =

∫
d2xdτ

Nf∑
α=1

ψ̄αγµ(∂µ − iaµ)ψα + · · · (2.44)

ψα is Nf = 2N flavors of 2−component Dirac fermions, and they are the low energy

Dirac fermion modes of the slave fermion fj,α defined as Ŝbj = f †
j,αT

b
αβfj,β, T

b with b =

1 · · ·N2 − 1 are the fundamental representation of the SU(N) Lie Algebra. Besides the

spin components, there is an extra two dimensional internal space which corresponds to

two Dirac points in the Brillouin zone. There is an emergent SU(Nf ) flavor symmetry in

QED3 which includes both the SU(N) spin symmetry and discrete lattice symmetry.

It is known that when Nf is greater than a critical integer, the QED3 is a conformal

field theory (CFT). We will consider the fate of this CFT when the three dimensional bulk

is driven to a quantum phase transition. We will first consider a disorder-to-order quan-

tum phase transition, where the ordered phase spontaneously breaks the time-reversal

and parity symmetry of the XY plane. Notice that due to the reflection symmetry

z → −z of the background VBS configuration, the two sides of the domain wall will

reach the quantum critical point simultaneously. The bulk transition is still described

by Eq. 2.23. When we couple the Ising order parameter ϕ to the domain wall QED3, the
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total (2 + 1)d action reads

S =

∫
d2xdτ

Nf∑
α=1

ψ̄αγµ(∂µ − iaµ)ψα

+ gϕψ̄αψα +
1

2
ϕ(−∂2)1/2ϕ. (2.45)

If the gauge field fluctuation is ignored, or equivalently in the large−Nf limit, the scaling

dimension of ψ̄ψ is [ψ̄ψ] = 2, and hence the scaling dimension of g is [g] = 0, i.e. g is

a marginal perturbation. The 1/Nf correction to the RG flow arises from the Feynman

diagrams (Fig. 2.4(a, b) and Fig. 2.9) which involves one or two photon propagators:

Ga
µν(p⃗) =

16

Nfp

(
δµν −

pµpν
p2

)
. (2.46)

Again in this case the fermions will generate a mass term for the order parameter at the

interface, which we need to tune to zero. At the leading order of 1/Nf the corrected beta

function for g reads

β(g) =
dg

d ln l
= − 128

3π2Nf

g − 2

3π2
g3 +O(g3). (2.47)

But this beta function does not lead to a new unitary fixed point other than the decoupled

fixed point g = 0. Hence in this case the domain wall state is decoupled from the bulk

quantum critical modes in the infrared limit.

A more interesting scenario is when the bulk undergoes a transition which sponta-

neously breaks the translation and C4 rotation symmetry by developing an extra VBS

order within the XY plane. The inplane VBS order parameters are Vx ∼ ψ̄τ 1ψ, and

Vy ∼ ψ̄τ 2ψ, where τ 1,2 are the Pauli matrices operating in the Dirac valley space. The
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coupling between the VBS order parameter and the domain wall QED3 reads

Sc =
∫
d2xdτ g

(
ϕ∗ψ̄τ−ψ + ϕψ̄τ+ψ

)
+ ϕ∗(−∂2)1/2ϕ. (2.48)

Here τ± = (τ 1± iτ 2)/2. The scaling dimension of the VBS order parameter at the QED3

fixed point has been computed previously [99, 100, 101]: [ψ̄τaψ] = 2− 64/(3π2Nf ), and

the beta function of g to the leading order of 1/Nf reads

β(g) =
64

3π2Nf

g − 1

6π2
g3 +O(g3). (2.49)

In the large−Nf limit, the coupling g is marginally irrelevant; but with finite and

large−Nf , g is weakly relevant at the noninteracting fixed point, and it will flow to

an interacting fixed point

g2∗ =
128

Nf

+O(
1

N2
f

). (2.50)

This new fixed point will break the emergent SU(Nf ) flavor symmetry down to

SU(N) × U(1) symmetry, where U(1) corresponds to the rotation of the Dirac valley

space. The following gauge invariant operators receive different corrections to their scal-

ing dimensions from coupling to the bulk quantum critical modes:

[ψ̄ψ] = 2 +
128

3π2Nf

+
2

3π2
g2∗ +O(

1

N2
f

);

[ψ̄T bψ] = 2− 64

3π2Nf

+
2

3π2
g2∗ +O(

1

N2
f

);

[ψ̄τ 3ψ] = 2− 64

3π2Nf

− 1

3π2
g2∗ +O(

1

N2
f

);
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[ψ̄τ 1,2ψ] = 2− 64

3π2Nf

+
1

6π2
g2∗. (2.51)

The operators ψ̄τ 1,2ψ have exactly scaling dimension 2, the Feynman diagram contribu-

tions from Fig. 2.4 cancel each other for operator ψ̄τ 1,2ψ as they should. Notice that the

last three operators in Eq. 2.51 should have the same scaling dimension in the original

QED3 fixed point due to the large SU(Nf ) flavor symmetry, but at this new fixed point

they will acquire different corrections.

Another interesting scenario is that the bulk is at a critical point whose order pa-

rameter couples to the Ising like operator ψ̄τ 3ψ, which breaks the inplane parity but

preserves the time-reversal:

Sc =
∫
d2xdτ gϕψ̄τ 3ψ +

1

2
ϕ(−∂2)1/2ϕ. (2.52)

The microsopic representation of the operator ψ̄τ 3ψ can be found in Ref. [99]. The beta

function of the coupling g reads

β(g) =
64

3π2Nf

g − 2

3π2
g3 +O(g3), (2.53)

and once again there is new stable fixed point g2∗ = 32/Nf +O(1/N2
f ). And at this fixed

point,

[ψ̄ψ] = 2 +
128

3π2Nf

+
2

3π2
g2∗ +O(

1

N2
f

);

[ψ̄T bψ] = 2− 64

3π2Nf

+
2

3π2
g2∗ +O(

1

N2
f

);

[ψ̄τ 1,2ψ] = 2− 64

3π2Nf

− 1

3π2
g2∗ +O(

1

N2
f

);
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[ψ̄τ 3ψ] = 2− 64

3π2Nf

+
2

3π2
g2∗. (2.54)

The domain wall state considered here is formally equivalent to the boundary state

of a 3d bosonic SPT state with pSU(N)× U(1) symmetry, which can also be embedded

to the 3d SPT with pSU(Nf ) symmetry discussed in Ref. [102]. This SPT state can be

constructed as follows: we first break the U(1) symmetry in the 3d bulk by driving the

bulk z < 0 into a superfluid phase, and then decorate the vortex loop of the superfluid

phase with a 1d Haldane phase with pSU(N) symmetry [103, 104, 105, 106]. Eventually

we proliferate the decorated vortex loops to restore all the symmetries in the bulk. A 1d

pSU(N) Haldane phase can be constructed as a spin-chain with a pSU(N) spin on each

site, and there is a dangling self-conjugate representation of SU(N) on each end of the

chain. And this dangling spin will also exist in the U(1) vortex at the boundary of the

pSU(N) × U(1) SPT state. Notice that the self-conjugate representation of SU(N) is a

projective representation of pSU(N).

2.2.4 Discussion

In this section we systematically studied the interplay of two different nontrivial

boundary effects: the 2d edge states of 3d symmetry protected topological states, and

the boundary fluctuations of 3d bulk quantum phase transitions. New fixed points were

identified through generic field theory descriptions of these systems and controlled cal-

culations. We then generalized our study to the 2d states localized at the interface

embedded in the 3d bulk.

The last case studied in Eq. 2.53, 2.54 is special when Nf = 2, and when the gauge

field is noncompact. This is the theory that has been shown to be dual to the EP-NCCP1

model [92, 81] studied in Eq. 2.27, the operator
∑

α r|zα|2 is dual to rψ̄τ 3ψ, and both
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theories are self-dual. By coupling the operator ψ̄τ 3ψ to the bulk critical modes (rather

than the boundary fluctuations of the bulk critical points), we have shown that this

(2 + 1)d theory is driven to a new fixed point, and the self-duality structure still holds.

The self-duality transformation of Eq. 2.27 now is combined with the Ising symmetry of

the order parameter ϕ. However, the O(4) emergent symmetry no longer exists at this

new fixed point, due to the nonzero fixed point of g in Eq. 2.52.

The methodology used in this section can have many potential extensions. We can

apply the same field theory and RG calculation to the 1d boundary of 2d SPT states (for

instance the AKLT state), which was studied through exactly soluble lattice Hamiltoni-

ans [83] and also numerical methods [86, 87, 88]. Also, 1d defect in a 3d topological state

can also have gapless modes [107, 108], it would be interesting to investigate the fate

of a 1d defect embedded in a 3d bulk at the bulk quantum phase transition. Defects of

free or weakly interacting fermionic topological insulator and topological superconductor

coupled with bulk critical modes was studied in Ref. [89], but we expect the defect of

an intrinsic strongly interacting topological state can lead to much richer physics. Last

but not least, the “higher order topological insulator” has nontrivial modes localized at

the corner instead of the boundary of the system [109]. The coupling between the bulk

quantum critical points and corner topological modes is also worth exploration.

2.3 Continuous Néel-VBS Quantum Phase Transi-

tion in Non-Local one-dimensional systems with

SO(3) Symmetry

Our understanding of one dimensional (1d) quantum many-body systems with lo-

cal Hamiltonians is far more complete compared with higher dimensional systems, since
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many powerful analytical methods such as Bethe ansatz [110], Virasoro algebra [111],

etc. are applicable only to 1d systems (or (1+ 1)d space-time). We also understand that

1d systems have many unique features that are fundamentally different from higher di-

mensions. For example, with local Hamiltonians, generally there can not be spontaneous

continuous symmetry breaking in (1 + 1)d even at zero temperature (with exceptions of

the scenarios when a fully polarized ferromagnet is the exact ground state), the closest

one can possibly get is a quasi-long range power-law correlation of order parameters that

transform nontrivially under a continuous symmetry. There is also no topological order

in 1d systems analogous to fractional quantum Hall states which have a gap and simul-

taneously ground state topological degeneracy [42]. This means that many phenomena

that are found in higher dimensions do not occur in 1d systems.

To seek for richer physics in one dimensional systems, we need to explore beyond the

restriction of local Hamiltonians. One way to get around this restriction is to consider

1d systems at the boundary of a 2d systems, and drive the 2d bulk to a quantum phase

transition. The physics becomes especially interesting when the disordered phase in the

phase diagram of the 2d bulk is a symmetry protected topological (SPT) phase, which

already has topologically protected 1d edge state. The interplay between the topological

edge state and gapless quantum critical modes can lead to very nontrivial physics, which

has been studied through numerical methods recently [112, 113, 87, 88]. One can also

directly turn on nonlocal spatial interaction in a 1d Hamiltonian. 1d quantum spin chains

with nonlocal spatial interactions have also been studied recently, and very intriguing

physics was found [114, 115]. We will discuss the results of these numerical works later

in this section.

In this section we investigate the 2d SPT state protected by symmetry SO(3) × G,

where SO(3) is the ordinary spin symmetry, while G is a discrete symmetry, which could

be an onsite unitary Z2 symmetry, or an anti-unitary time-reversal ZT
2 . G can also be a
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lattice symmetry such as translation by one lattice constant. For example, when G is the

translation along the x̂ axis (Tx), this state can be realized as the Affleck-Kennedy-Lieb-

Tasaki (AKLT) state of the spin-2 system on a 2d square lattice [116]. In the example of

spin-2 AKLT state, there is a chain of dangling spin-1/2 at the boundary of the system,

as long as the boundary is along the x̂ axis and preserves the translation symmetry Tx.

The nature of the SPT states, and the Lieb-Shultz-Mattis (LSM) theorem [117, 118, 119]

guarantee that this boundary system cannot be trivially gapped, i.e. it must be either

gapless, or gapped but degenerate (For a closed 1d system without 0d boundaries, a

generic ground state degeneracy can only originate from spontaneous discrete symmetry

breaking [42]). In this section we will take the AKLT state as an example, but our results

can be straightforwardly generalized to other discrete symmetries G.

Our study will mainly focus on the 1d boundary of strongly interacting 2d bosonic

SPT phases, using a controlled renormalization group method. We would like to men-

tion that previous literature has discussed the coupling between quantum criticality and

topologically localized gapless states in various fermionic topological insulators [89]; other

approaches such as constructing soluble models and various numerical methods have also

been used to study edge states of interacting SPT states at a bulk quantum critical-

ity [83, 84, 85]. Our main finding is that there is a generic continuous quantum phase

transition between a long range antiferromagnetic Néel order which spontaneously breaks

the SO(3) spin symmetry, and a valence bond solid state, at the 1d boundary of an AKLT

state that couples to the bulk quantum critical modes. The bulk quantum critical modes

effectively yield nonlocal interactions at the 1d boundary, which makes the long range

Néel order possible.

In principle the 1d boundary of this AKLT state should be effectively described by
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an extended Heisenberg model

H =
∑
j

JS⃗j · S⃗j+1 + · · · (2.55)

where S⃗j is the spin-1/2 operator, and the ellipsis includes other possible terms allowed

by SO(3)× Tx. The ground state of Eq. 2.55 depends on the entire lattice Hamiltonian.

But a useful starting point of analyzing this boundary system is the SU(2)1 conformal

field theory (CFT) described by the following Hamiltonian in the infrared limit:

H0 =

∫
dx

1

3 · 2π

(
J⃗L · J⃗L + J⃗R · J⃗R

)
. (2.56)

The SU(2)1 CFT has a larger symmetry than the lattice Hamiltonian Eq. 2.56, since J⃗L

and J⃗R generate the SU(2)L,R symmetries for the left and right chiral modes respectively.

The relation between the microscopic operator S⃗ and the low energy field is [120]

S⃗(x) ∼ 1

2π

(
J⃗L(x) + J⃗R(x)

)
+ (−1)xn⃗(x), (2.57)

where n⃗(x) is the Néel order parameter at the boundary. J⃗L,R both have scaling dimension

+1 at the SU(2)1 CFT fixed point, while n⃗(x) has scaling dimension 1/2 at the SU(2)1

CFT.

The diagonal SU(2) symmetry (simultaneous SU(2) rotation between the left and

right modes) corresponds to the original SO(3) spin symmetry on the lattice scale. And

because the lattice Hamiltonian has a lower symmetry than the infrared theory Eq. 2.56,

another term is allowed in the low energy Hamiltonian:

H1 =

∫
dx λJ⃗L · J⃗R. (2.58)
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Since J⃗L,R have scaling dimension +1, power-counting indicates the coefficient λ has

scaling dimension 0. Depending on the sign of λ, this term can be either marginally

relevant or marginally irrelevant. When λ is negative and marginally irrelevant the system

flows back to the SU(2)1 CFT with an enlarged SU(2)L × SU(2)R symmetry. When this

term is positive and marginally relevant, it will flow to infinite (nonperturbative) and

generate a mass gap, which based on the nature of the SPT phase would imply that the

system spontaneously breaks the discrete symmetry G. For example, when this system

is realized as the AKLT state, and G is the translation Tx, the LSM theorem demands

that when the boundary of the system generates a mass gap, it spontaneously breaks the

translation symmetry and develops a nonzero expectation value of a dimerized valence

bond solid (VBS) order: v ∼ (−1)jS⃗j · S⃗j+1. As a side-note, we emphasize that the state

we are studying here is different from the SO(3) or SU(2) SPT state defined through the

group cohomology of SO(3) or SU(2) [43, 44, 121], since in those states the symmetry

acts chirally, i.e. it only acts on either the left or right modes. While in our case the

spin symmetry acts on both the left and right modes of the 1d boundary, and another

discrete symmetry such as translation is demanded.

Our goal is to study the edge states when the bulk undergoes a disorder-order quantum

phase transition, and the disordered phase of the bulk phase diagram is the AKLT state.

The quantum critical fluctuation in the bulk may affect the edge of the AKLT state. To

study the interplay between the topologically protected edge states, and the quantum

critical modes, we adopt the “two layer” picture used in Ref. [122]: in layer-1, the system

remains a gapped AKLT state in the bulk with solid edge states described by Eq. 2.55

and Eq. 2.56; in layer-2 the system undergoes a phase transition between an ordinary

trivial disordered phase and an ordered phase. These two systems are glued together

at the boundary. We have used the common wisdom that the transition between the

SPT phase and the ordered phase is generically in the same universality class as the
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transition between an ordinary disordered phase and an ordered phase 1. We will discuss

two kinds of ordered phases: an SO(3) antiferromagnetic order, and an Ising-like VBS

order that spontaneously breaks Tx, assuming the boundary is at y = 0. In the bulk the

two disorder-order transitions under discussion correspond to the three dimensional (3D)

SO(3) and Ising Wilson-Fisher transitions respectively, which can be studied through a

standard ϵ = 4−D expansion, where D = 2+1 is the space-time dimension in the bulk.

We only extend the bulk dimensionality of layer-2 to 3− ϵ spatial dimensions, while the

layer-1 still has a two-dimensional bulk and one-dimensional boundary.

We denote the bulk SO(3) antiferromagnetic order parameter, and the Ising-VBS

order parameter in layer-2 as ϕ⃗ and ϕ respectively, which should couple to the Néel

order parameter n⃗ and the VBS order parameter v at the boundary theory of layer-1,

and this coupling could lead to new physics in the infrared. However, ϕ⃗ and ϕ do not

directly couple to n⃗ and v due to the boundary condition of the Wilson-Fisher fixed

point. Assuming the boundary of the 2d system is at y = 0, the most natural boundary

condition for fields ϕ⃗, ϕ would be ϕ⃗(y = 0) = ϕ(y = 0) = 0 2. Then the leading

nonvanishing boundary fields with the same quantum number as ϕ⃗ and ϕ are Φ⃗ ∼ ∂yϕ⃗

and Φ ∼ ∂yϕ [24].

The SO(3) order parameter ϕ⃗ and the Ising order parameter ϕ will not become critical

simultaneously without fine-tuning, but they can be treated in the same framework. The

boundary quantum critical modes Φ⃗ and Φ couple to the fields at the boundary of layer-1

1This statement can be inferred based on the observation that, the topological effects of many of the
SPT states can be captured by a nonlinear Sigma model plus a topological Θ−term at Θ = 2π [77, 102].
The Θ = 2π topological term reduces precisely to a boundary term, and we do not expect this topological
term to change the bulk universality class.

2This boundary condition corresponds to the “ordinary transition” in the standard boundary criti-
cality literatures; other possibilities can also occur such as special and extraordinary boundary transi-
tions [24].
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through the following terms in the action

S =

∫
d2x gnΦ⃗(x) · n⃗(x) + gvΦ(x)v(x)

+

∫
d2xd2x′ 1

2
Φa(x)C−1

n (x,x′)abΦ
b(x′)

+

∫
d2xd2x′ 1

2
Φ(x)C−1

v (x,x′)Φ(x′), (2.59)

where x = (x, τ) is the space-time coordinate. Cn(x,x
′)ab and Cv(x,x

′) are the normal-

ized correlation functions of Φa and Φ at the boundary:

Cn(x, 0)ab = ⟨Φa(x, τ)Φb(0, 0)⟩ = δab
(x2 + τ 2)3/2−ϵn

,

Cv(x, 0) = ⟨Φ(x, τ)Φ(0, 0)⟩ = 1

(x2 + τ 2)3/2−ϵv
. (2.60)

The scaling dimension of Φ⃗ and Φ is ∆n = D/2− ϵn+O(ϵ2) and ∆v = D/2− ϵv +O(ϵ2),

where D = 3 is the bulk space-time dimension. ϵn/v can be computed again through the

ϵ = (4 − D) expansion, following the calculation of boundary criticality of the Wilson-

Fisher fixed points [24, 27, 26, 55, 31]: for an O(N) Wilson-Fisher fixed point in the bulk,

the scaling dimension of the boundary modes of the order parameter is

∆O(N) =
D

2
− N + 2

2(N + 8)
ϵ+O(ϵ2). (2.61)

In our case ϵn/v = ϵ(N + 2)/(2(N + 8)) with N = 3, 1 respectively. We again stress that

the ϵ dimensionality was introduced for layer-2 only. The effective action of Φ⃗ and Φ

in Eq. 2.59 already received leading order correction from the ϵ−expansion due to the

self-interaction of the bulk critical modes. These effective actions can in principle receive
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further corrections from the gv and gn couplings with the boundary fields n⃗ and v, but

this correction should be at least at the order of g2n, g
2
v , which will be at higher order of

ϵ−expansion. As we can see later, the main physics we will discuss is at the vicinity of

a fixed point where gn, gv ∼ ϵ.

Eq. 2.56, 2.58, 2.59 together can be viewed as an effective non-local 1d theory, and

this theory will be the starting point of our discussion hereafter. Considering the fact

that the scaling dimension of both the Néel and VBS order parameter at the SU(2)1

CFT is 1/2, to the leading order of ϵ expansion, the scaling dimensions of the coupling

constants must be

∆gn = ϵn +O(ϵ2), ∆gv = ϵv +O(ϵ2)

ϵn =
5

22
ϵ, ϵv =

1

6
ϵ. (2.62)

gn/v are hence weakly relevant assuming a small parameter ϵ. Hence the SU(2)1 CFT

at the boundary of the AKLT state will be unstable against coupling to the quantum

critical modes, while fortunately due to the weak relevance of the coupling constants,

this effect can be studied perturbatively.

To proceed we need to compute the coupled renormalization group (RG) flow of λ and

gn/v in Eq. 2.58 and Eq. 2.59. The RG equations can be derived based on the following

operator product expansion (OPE):

JaL(z)n
b(w, w̄) ∼ 1

2

1

z − w
(iδabv(w, w̄) + iϵabcn

c(w, w̄)) ,

JaR(z̄)n
b(w, w̄) ∼ 1

2

1

z̄ − w̄
(−iδabv(w, w̄) + iϵabcn

c(w, w̄)) ,
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Figure 2.10: The coupled RG flow of λ and gn based on Eq. 2.65. A new fixed point
(λ∗, g∗n) = (2ϵnπ ,

4ϵn
π ) is found, which separates two phases: the phase where λ→ +∞

is the VBS phase, and the phase with (λ, gn) → (−∞,+∞) is the long range Néel
order at the 1d boundary. But on the Néel order side of the phase diagram, the RG
flow is complicated and nonmonotonic, hence it may take a long RG scale, or a large
system size to finally reveal the true long range order.

JaL(z)v(w, w̄) ∼ −1

2

i

z − w
na(w, w̄),

JaR(z̄)v(w, w̄) ∼
1

2

i

z̄ − w̄
na(w, w̄).

(∑
a

na(z, z̄)Φa(z, z̄)

)(∑
b

nb(w, w̄)Φb(w, w̄)

)

∼ 3

2

1

|z − w|4
+

1

2

1

|z − w|2
∑

a=1,2,3

JaL(w)J
a
R(w̄),

+
3

4

1

(z̄ − w̄)2
TL(w) +

3

4

1

(z − w)2
TR(w̄) + ...,

(v(z, z̄)Φ(z, z̄)) (v(w, w̄)Φ(w, w̄))

∼ 1

2

1

|z − w|4
− 1

2

1

|z − w|2
∑

a=1,2,3

JaL(w)J
a
R(w̄)
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+
1

4

1

(z̄ − w̄)2
TL(w) +

1

4

1

(z − w)2
TR(w̄) + ...,

( ∑
a=1,2,3

JaL(z)J
a
R(z̄)

)( ∑
b=1,2,3

J bL(w)J
b
R(w̄)

)

∼ 3

4

1

|z − w|4
− 2

|z − w|2
∑

a=1,2,3

JaL(w)J
a
R(w̄)

+
3

2

1

(z̄ − w̄)2
TL(w) +

3

2

1

(z − w)2
TR(w̄) + ... (2.63)

In these equations, z and w are the chiral coordinates (z = τ + ix); and the ellipsis

contains less singular terms of the OPEs. The fields TL/R are the energy-momentum

tensor of the left and right movers, which are given via the Suguwara construction by

TL = 1
3

∑
a : JaLJ

a
L : and TR = 1

3

∑
a : JaRJ

a
R :. Notice the form of energy-momentum

tensors is similar to the Hamiltonian Eq. 2.56 but with an extra factor of 2π. The OPEs

above involving the fields Φa and Φ are derived to the leading order of ϵn/v.

These OPEs are sufficient to derive the desired RG equations to the second order of

the coupling constants. For example, using the first two lines of Eq. 2.63, we can derive

another set of secondary OPEs:

( ∑
a=1,2,3

JaL(z)J
a
R(z̄)

)(∑
b

nb(w, w̄)Φb(w, w̄)

)

∼ 1

4

1

|z − w|2

(∑
b

nb(w, w̄)Φb(w, w̄)

)
,
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( ∑
a=1,2,3

JaL(z)J
a
R(z̄)

)
(v(w, w̄)Φ(w, w̄))

∼ −3

4

1

|z − w|2
(v(w, w̄)Φ(w, w̄)) . (2.64)

The coupled RG equations (beta functions) for λ and gn/v then read

β(λ) =
dλ

d ln l
= 2πλ2 − π

2
g2n +

π

2
g2v ,

β(gn) =
dgn
d ln l

= ϵngn −
π

2
λgn,

β(gv) =
dgv
d ln l

= ϵvgv +
3π

2
λgv. (2.65)

These RG equations are valid as long as we restrict our analysis to the parameter region

with λ, gn, gv ∼ ϵ, since every term in the RG equations Eq. 2.65 would be at the same

order of ϵ2.

As we explained before, there is no general reason for ϕ⃗, ϕ to become critical simul-

taneously in the bulk. Hence let us ignore the Φ field first, and consider the coupled RG

equation for λ, gn only. If there is no bulk quantum critical modes, an initial positive

value λ = λ0 will be marginally relevant, and open up an energy gap when it flows to

positive infinite. According to the LSM theorem, and the nature of the SPT state, this

1d boundary cannot be trivially gapped, hence a nonperturbative positive λ would drive

the system into an SO(3) invariant VBS state with spontaneous symmetry breaking of

translation symmetry Tx. But by coupling to the boundary modes Φ⃗ of quantum critical

fluctuation, the beta functions have an new unstable fixed point at

(λ∗, g∗n) =

(
2ϵn
π
,
4ϵn
π

)
. (2.66)
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The two eigenvectors of RG flow expanded at the new fixed point have scaling dimensions

(8.9ϵn,−0.89ϵn).

Of course the RG analysis above is only at the leading nontrivial order of ϵ−expansion,

and at this order of accuracy, no other fixed point is found in the phase diagram. The new

fixed point found above separates two phases: phase I where λ flows to positive infinity,

and phase II where λ and gn flow to negative and positive infinity respectively. Then

both phases no longer have scaling invariance, so both phases should have certain long

range order considering the fact that there is no topological order in one dimension [42].

Phase I with λ → +∞ is the dimerized VBS phase as we discussed before; phase II

with (λ, gn) → (−∞,+∞) should be a Néel ordered phase, i.e. the 1d boundary can

develop the Néel order before the bulk, even though the bulk is still at a quantum critical

point. A negative λ would enhance the correlation of the Néel order parameter, and after

integrating out Φ⃗, a long range interaction proportional g2 would be generated between

the Néel order parameters. Hence the infrared limits λ→ −∞ and g → +∞ of phase II

both favor the long range Néel order.

The correlation length critical exponent ν of this Néel-VBS transition is ν ∼ 1/(8.9ϵn).

At the transition point (λ∗, g∗n) = (2ϵn/π, 4ϵn/π), the scaling dimensions of the Néel and

VBS order parameters can again be computed to the leading order of ϵ−expansion:

∆n⃗ =
1

2
+
πλ∗

2
=

1

2
+ ϵn,

∆v =
1

2
− 3πλ∗

2
=

1

2
− 3ϵn. (2.67)

One can see that compared with the SU(2)1 CFT, the Néel order correlation is suppressed

while the VBS order correlation is enhanced at the new transition fixed point, since

λ∗ > 0. This also implies that this Néel-VBS transition has no enlarged symmetry of
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SU(2)L × SU(2)R. An enlarged SU(2)L × SU(2)R ∼ SO(4) symmetry would guarantee

that the Néel and VBS order parameters have the same scaling dimension, because

(n⃗, v) transform as a vector under SO(4). Many previous studies suggest that at an

unconventional quantum critical point between two phases with different spontaneous

symmetry breaking, an enlarged emergent symmetry in the infrared is often expected

due to a series of dualities [78, 80, 79, 81, 92, 22, 123]. But in our current case we expect

the infrared symmetry at the Néel-VBS transition is still the microscopic symmetry

SO(3)×G.

As we mentioned before, suppose we integrate out the field Φ⃗ in Eq. 2.59, a long

range interaction in space-time will be generated between the Néel order parameter. The

scenario is similar to the spin-1/2 chain with a long range spin-spin interaction, the

only difference is that in the latter case the long range interaction is instantaneous and

only nonlocal in space. Recently a direct transition between the Néel and VBS order

was found in a spin-1/2 chain with nonlocal two-spin interaction and local four-spin

interaction [114, 115]. It was found numerically that at the direct Néel-VBS transition the

scaling dimension of the Néel order parameter is greater than the VBS order parameter,

which is fundamentally different from the SU(2)1 CFT, but consistent with our RG

calculations Eq. 4.9. We also note that a previous RG analysis was performed for 1d spin-

1/2 system with an instantaneous nonlocal spin interaction, but the Néel-VBS transition

was not found therein. Instead the previous analysis identified a transition between the

true long range Néel order and a quasi-long range order at the parameter region ϵn < 0

and λ < 0 with our notation [124].

So far we have assumed that the fields n⃗, v and Φ⃗,Φ have the same velocity in our

effective 1d theory Eq. 2.59, hence the theory we considered so far has a Lorentz invari-

ance. We can also turn on a weak velocity difference between these two sets of fields,

and analyze how it flows under RG. This velocity anisotropy corresponds to modifying
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the correlation function of Φ⃗:

Cn(x, 0)ab = ⟨Φa(x, τ)Φb(0, 0)⟩

=
δab(

(1− δv
2
)2x2 + (1 + δv

2
)2τ 2

)3/2 . (2.68)

Here we have assumed that the velocity of Φ⃗ exceeds the velocity of n⃗ by a factor of

(1+ δv) (to the first order of δv). We have taken ϵn = 0 for the leading order calculation.

δv can flow under RG as it is the “seed” for velocity difference. Based on symmetry, the

RG flow of δv should look like

dδv

d ln l
= −αg2nδv. (2.69)

And eventually we will plug in the fixed point value of gn = g∗n. Based on previous

experience, at an interacting fixed point, a weak velocity anisotropy is often irrelevant [99,

125], since intuitively in the infrared all the interacting modes are expected to have the

same velocity. Hence we expect α > 0, i.e. a weak velocity difference between the

boundary and bulk will be irrelevant at the Néel-VBS transition fixed point.

To evaluate α, we expand the correlation function of Φ⃗ to the leading order of δv:

Cn(x, 0) =
1

|z|3
− 3

2

δv

|z|5
z2 + z̄2

2
+O(δv2) (2.70)

Using the OPEs in Eq. 2.64, the second order perturabtion of gn would generate the

following term:

−1

2
g2n

(∑
a

na(z, z̄)Φa(z, z̄)

)(∑
b

nb(w, w̄)Φb(w, w̄)

)
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∼ − 3g2n
4|z − w|4

− g2n
1

4

1

|z − w|2
∑

a=1,2,3

JaL(w)J
a
R(w̄)

+ g2nδv
9

32

1

|z − w|2
(TL(w) + TR(w̄)) + · · · (2.71)

Here we only kept the terms that will lead to nonzero effect under real space RG. The

last term in Eq. 2.71 would contribute a renormalization (or acceleration) for the velocity

of n⃗. Under rescaling, the ratio between the two velocities reduces by a factor:

1 + δv → 1 + δv

1 + g2nδv
9π2

8
ln l

, (2.72)

which leads to the RG equation for δv:

dδv

d ln l
= −9π2

8
(g∗n)

2δv, (2.73)

which confirms our expectation that δv is an irrelevant perturbation at the Néel-VBS

transition fixed point.

Suppose we start with δv > 0, namely the velocity of n⃗ is smaller than Φ⃗, the velocity

of n⃗ will increase under RG. This means that in this case the system will qualitatively

behave like z < 1, where z is the dynamic critical exponent (not to confuse with the chiral

coordinate). On the contrary, if we start with δv < 0, the velocity of n⃗ would decrease

under RG, which means that effectively z > 1. The former scenario is analogous to a

spin chain with instantaneous spatial nonlocal interaction [115], which is equivalent to

taking the velocity of the effective action of Φ⃗ and Φ to infinity in our effective 1d theory

Eq. 2.59. Although our calculation is for δv > 0, rather than taking the velocity in the

Φ⃗ action to be infinity, the “acceleration” of the modes derived here (including z < 0) is

qualitatively consistent with what was observed in Ref. [115] at the Néel-VBS transition
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in a spin-1/2 chain with nonlocal spatial interactions.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1

2

3

4

Figure 2.11: The plot of ln[3πGn(k)(1 + A(g∗′n )
2)] against ln[1/|k|], where Gn(k) is

given by Eq. 2.74. From top to bottom, A(g∗′n )
2 = 0, 1/2, 2, and 5.

Figure 2.12: The RG flow of (λ, gv). As long as the initial value gv is nonzero, both
parameters will flow to positive infinity, which implies that the boundary will likely
develop the Ising-VBS order before the bulk.

In the phase diagram Fig. 2.10, on the side of the Néel order, the path of the RG flow

towards the long range order can be complicated. It may take a long RG scale and hence

large system size to reveal the true long range order. For example, on part of the phase

diagram, λ changes its sign and eventually flow away to the negative nonperturbative

regime. While λ changes sign, gn first decreases its magnitude from the initial value g0,

then after reaching its minimum g∗′n along the RG flow, gn keeps increasing and eventually

become nonperturbative. Hence it is possible that for a relatively large intermediate

scale, the system behaves like gn ∼ g∗′n . The effect of this nonmonotonic RG flow can be
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illustrated by a simple perturbation theory to the correlation function of the Néel order

parameter:

Gn(x) = ⟨n⃗(x) · n⃗(0)⟩

∼ 3

2

1

|x|
+

3

4

∫
d2x1d

2x2
(g∗′n )

2

|x− x1||x1 − x2|3−2ϵn|x2|

+ O(g∗′n )
4 + · · · . (2.74)

Hence Gn(k) in the momentum-frequency space k = (k, ω) reads

Gn(k) ∼
1

G(0)(k)−1 − Σ(k)
, (2.75)

where G(0)(k) = 3π/|k|, Σ(k) = −A(g∗′n )2|k|1−2ϵn/(3π), and A > 0 for 0 < ϵn < 1/2. The

system will have enhanced spin-spin correlation function compared with the SU(2)1 CFT

of the spin-1/2 chain, as was observed in numerical simulations [112, 87, 88]. The mixture

of the two terms in G−1(k) may yield results that appear to be power-law correlation

with different scaling dimensions, which is illustrated in Fig. 2.11, where we have fixed

ϵn = 5/22ϵ but chosen different g∗′n . This nonuniversal power-law like scaling of spin

correlation was also observed in recent numerics concerning the edge states of the AKLT

state during a bulk phase transition [87, 88].

Now we briefly consider the situation when the bulk undergoes a disorder-order quan-

tum phase transition between the AKLT state and the Ising like VBS order, which is

described by order parameter ϕ. The boundary mode of ϕ is Φ ∼ ∂yϕ, and it couples

to the VBS order parameter v at the boundary CFT. In this case, the coupled RG flow

of λ and gv in Eq. 2.59 is relatively simple: as long as we start with nonzero (λ0, gv0),
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both gv and λ quite generally flow to positive infinity, which corresponds to a nonzero

long range order of v. Hence the 1d boundary of the system should develop the Ising-

VBS order before the bulk. when the bulk is tuned closer and closer to a VBS (Ising)

transition, the boundary will go through a transition between the gapless SU(2)1 CFT

state to a VBS phase, before the bulk actually hits criticality. This boundary transition

should be in the same universality class as the transition from an SU(2)1 CFT to a VBS

phase in a purely one-dimensional spin-1/2 chain with both nearest and next nearest

neighbor Heisenberg interactions (see, for example, Ref. [126] for the one-dimensional

transition). We note that this transition is not an ordinary 1 + 1d Ising transition and,

hence, is different from the “extraordinary transition” studied in the standard boundary

criticality literature. But if we start with a negative initial value λ0, it may take a long

RG time before the coupling constants become positive and nonperturbative. Hence the

VBS order parameter may still appear to have quasi long range correlation for a finite

system.

In conclusion, we have found that there can be a direct continuous quantum phase

transition between the long range antiferromagnetic Néel order, and the VBS order, in an

effective 1d spin-1/2 system with nonlocal interactions (Eq. 2.59). Due to the nonlocality

of the model, even in a 1d system with a continuous SO(3) spin symmetry there can be a

long range Néel order. Within the accuracy of our method, the effective spin-1/2 system

Eq. 2.59 arises from coupling the 1d boundary of a 2d SPT phase to bulk quantum critical

modes. Our results were drawn from a controlled renormalization group study, and the

critical exponents extracted (including the anomalous dimensions of order parameters

and the dynamical exponent) are qualitatively consistent with the Néel-VBS transition

found numerically in recent simulation of a spin-1/2 chain with spatially instantaneous

nonlocal interactions [114, 115]. If a 1d system has local interactions only, there can

only be spontaneous discrete symmetry breaking. Previous numerical and analytical
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works [127, 128, 129] have studied the analogue of deconfined quantum critical point

between two phases that spontaneously break different discrete symmetries.
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Chapter 3

Interactions between exotic

criticalities and Fermi surface

3.1 Non-Landau Quantum Phase Transitions and nearly-

Marginal non-Fermi Liquid

3.1.1 Introduction

In the past few decades, a consensus has been gradually reached that quantum many-

body physics with strong quantum entanglement can be much richer than classical physics

driven by thermal fluctuations [130, 131]. Classical phase transitions usually happen

between a disordered phase with high symmetries, and an ordered phase which spon-

taneously breaks such symmetries. Typical classical phase transitions can be well de-

scribed by the Landau’s paradigm, but the Landau’s paradigm may or may not apply

to quantum phase transitions that happen at zero temperature. Generally speaking, the

Landau’s formalism can only describe the quantum phase transition between a direct-

product quantum disordered state and a spontaneous symmetry breaking state; but it
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can no longer describe the quantum phase transition between two states when at least

one of the states cannot be adiabatically connected to a direct product states, i.e. when

this state is a topological order [95]; nor can the Landau’s paradigm describe generic con-

tinuous quantum phase transitions between states with different spontaneous symmetry

breakings [15, 16, 123].

Phenomenologically, in contrast with the ordinary Landau’s transitions, non-Landau

transitions often have a large anomalous dimension of order parameters, due to frac-

tionalization or deconfinement of the order parameter [49, 50, 51, 52]. The ordinary

Wilson-Fisher (WF) fixed point in (2 + 1)d space-time (or three dimensional classical

space) has very small anomalous dimensions [59], meaning that the Wilson-Fisher fixed

point is not far from the mean field theory. In particular, in the large−N limit, the

anomalous dimension of the vector order parameter of the O(N) Wilson-Fisher fixed

point is η ∼ 0; while the CPN−1 model, the theory that describes a class of non-Landau

quantum phase transition [15, 16], has η ∼ 1 in the large-N limit [93]. Numerically it was

also confirmed that the quantum phase transition between the Z2 topological order and

the superfluid phase has η ∼ 1.5 [45, 46], as was predicted theoretically. The large anoma-

lous dimension has been used as a strong signature when searching for unconventional

QCPs numerically.

In this section we propose that the unique physics described above about the uncon-

ventional QCPs with strong fractionalization can be used to construct another broadly

observed phenomenon beyond the classic Landau’s theory: the non-Fermi liquid whose

fermion self-energy scales Σf (iω) ∼ isgn(ω)|ω|α with α < 1. When α = 1, this non-

fermi liquid is referred to as marginal fermi liquid [132]. Signature of marginal fermi

liquid and nearly-marginal fermi liquid have been observed rather broadly in various

materials [133, 134, 135]. In this section we will focus on the non-Fermi liquid that is

“nearly-marginal”, meaning α is close to 1.
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We assume that there exists a field O(x, τ) in the unconventional QCP that carries

zero momentum, and it couples to the fermi surface in the standard way:
∫
d2xdτ gψ†TψO,

where T is a flavor matrix of the fermion. We assume that we first solve (or approxi-

mately solve) the bosonic part of the theory, i.e. the strongly interacting QCP without

coupling to the fermi surface, and calculate the anomalous dimension η at the QCP:

⟨O(q, ω)O(−q,−ω)⟩ ∼ 1

Ω2−η (3.1)

where Ω ∼
√
v2q2 + ω2. Then the fermion self-energy, the quantity of central interest to

us, is computed perturbatively with the boson-fermion coupling g.

When the anomalous dimension η is close to 1, we can take η = 1 − ϵ with small

ϵ. Ref. [36, 136, 37] developed a formalism for the boson-fermion coupled theory with

an expansion of ϵ, though eventually one needs to extrapolate the calculation to ϵ = 1

for the problems studied therein [36, 136, 37], and the convergence of the ϵ−expansion

at ϵ = 1 is unknown, i.e. even if we start with a weak boson-fermion coupling, it would

become nonperturbative under renormalization group (RG). But we will demonstrate in

the next section that in the cases that we are interested in, ϵ is naturally small when

η is close to 1, due to the fractionalized nature of many unconventional QCPs. To the

leading nontrivial order, our problem can be naturally studied by the previously proposed

perturbative formalism with small ϵ.

Here we stress that our goal is to construct a scenario in which a non-Fermi liquid

state within an energy window can be constructed using a controlled method. Recently

many works have taken a similar spirit, and various non-Fermi liquid states especially a

state that mimics the strange metal were constructed by deforming the soluble Sachdev-

Ye-Kitaev (SYK) and related models [137, 138, 139, 140, 141]. Then within the energy

window where the deformation remains perturbative, the system resembles the non-Fermi
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liquid [142, 143, 144, 145, 146, 147]. Our current section also starts with (approximately)

soluble strongly interacting bosonic systems (in the sense that the gauge invariant order

parameters in these systems are bosonic), and then we turn on perturbation, which in

our case is the boson-fermion coupling. We will demonstrate that a non-Fermi liquid can

be constructed based on the unique nature of the strongly interacting bosonic system.

3.1.2 Expansion of ϵ

A controlled reliable study of the non-Fermi liquid problem is generally considered as

a very challenging problem, one example of the difficulties was discussed in Ref. [148].

Over the years various approximation methods were proposed. We begin by reviewing

the ϵ−expansion developed in Ref. [36, 136, 37], and demonstrate how perturbation of

ϵ is naturally justified for some unconventional QCPs. It is often convenient to study

interacting fermions with finite density by expanding at one patch of the Fermi surface.

The low-energy theory of the fermions expanded at one patch of the fermi surface is

Lf = ψ† (ξ∂τ − ivF∂x − κ∂2y
)
ψ, (3.2)

where x is perpendicular to the fermion surface and y is the tangent direction. The

initial value of ξ is ξ0 = 1, and it will be renormalized by the fermion self-energy. Our

main goal is to evaluate the fermion self-energy to the leading nontrivial order of the

boson-fermion coupling. We will show that this is equivalent to the leading nontrivial

order of ϵ = 1 − η. At this order of expansion of ϵ, for our purpose it is sufficient to

consider a simple “effective action” of O(x, τ):

Seff ∼
∫
d2xdτ O(x, τ)(−∂2τ − v2∇2)1−

η
2O(x, τ) (3.3)
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which will reproduce the correlation function of O(x, τ), assuming we have fully solved

the interacting bosonic system first.

When the boson-fermion coupling is zero, i.e., g = 0, the system is at a Gaussian

fixed point with the following scaling dimensions of spacetime coordinates and fields

[τ ] = −2, [x] = −2, [y] = −1,

[ψ (x, τ)] =
3

2
, [O(x, τ)] =

3

2
+
η

2
= 2− ϵ

2
. (3.4)

We then turn on the boson-fermion interaction

∫
d2xdτ gψ†TψO (3.5)

and consider the perturbative RG at the Gaussian fixed point. We find that the scaling

dimension of g is [g] = ϵ/2, hence it is weakly relevant if ϵ is naturally small, and it may

flow to a weakly coupled new fixed point in the infrared which facilitates perturbative

calculations with expansion of ϵ. Indeed, the beta function of g2 at the leading order of

ϵ was derived in Ref. [36, 136, 37]:

dg2

d log b
=
ϵ

2
g2 −Υg4. (3.6)

Thus there is a fixed point at weak coupling g2∗ = ϵ/(2Υ), where the parameter Υ ∼

1/(4π2vFv).

Under the rescaling x′ = xb−1, namely after integrating out the short scale degrees of

freedom, the fermion acquires a one-loop self-energy

δΣf (iω,p) ∼ g2
∫
dνdq⟨O∗

q,νOq,ν⟩Gf (iω + iν, q + p)
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∼ g2
∫
dνdqx

∫ Λ

Λ√
b

dqy
1∣∣v2q2x + v2q2y + ω2

∣∣ 1+ϵ
2

× 1

i (ω + ν)− vF (px + qx)− κ (py + qy)
2 . (3.7)

In the boson correlation function, v2q2x and ω
2 are irrelevant compared with v2q2y , hence we

first integrate over qx, and the fermion propagator contributes a factor sgn (ω + ν) i/(2vF ).

We then perform the ν integral and finally integrate qy over the momentum shell Λb−1/2 <

|qy| < Λ. The last integral is evaluated at ϵ = 0, which is valid at the leading order per-

turbation of ϵ. This procedure leads to

δΣf (iω,p) = −iωg2Υ log b+O
(
ϵ2
)
. (3.8)

Combining the calculations above, at the fixed point g2∗, the renormalized iξ(ω)ω in the

Fermion Green’s function reads

iξ(ω)ω ∼ −isgn (ω) |ω|1−ϵ/2 . (3.9)

The fermion self-energy, hence the decay rate of the fermion, scales in the same way as

Eq. 3.9. The calculation above gives a nearly-marginal non-Fermi liquid behavior for

small but finite ϵ. For small η such as the cases in the Wilson-Fisher fixed points, the

calculation of the scaling of fermion self-energy is not reliable with the leading order

expansion of ϵ described above.

Here we stress that, our main purpose is to compute iξ(ω)ω, or the fermion self-energy

to the leading order of boson-fermion coupling g2∗ ∼ ϵ, assuming a weak initial coupling g.

At higher order expansion of the boson-fermion coupling, corrections to the boson field
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self-energy (for example the standard RPA diagram) from the boson-fermion coupling

needs to be considered. The RPA diagram is proportional to LRPA ∼ |Oω,q|2g2|ω|/(vFκq).

Several parameters can be tuned, including the weak coupling fixed point value of g2∗, to

make this term weak enough to allow an energy window where the calculations in this

section apply. At the elementary level, we need the terms in Eq. 4.8 to dominate the

RPA effect |Oω,q|2g2|ω|/(vFκq). A field O at momentum q should correspond to energy

scale ω ∼ vq. For Eq. 4.8 at η = 1 to dominate the RPA effect, we need q > g2/(vFκ),

or ω > g2v/(vFκ). If we start with a weak initial bare coupling constant g0, and also

ϵ ≪ 1 hence the fixed point value of g∗ is also perturbative, there is a sufficiently large

energy window for our result. Tuning the parameter v/vF and κ can further expand the

energy window. A full analysis of the term LRPA ∼ |Oω,q|2g2|ω|/(vFκq) in the bosonic

sector of the theory in the infrared limit requires more detailed analysis because Oω,q is

a composite operator in the field theories discussed in the next section.

3.1.3 Candidate unconventional QCPs

(1) Bosonic-QED-Chern-Simons theory

In the following we will discuss candidate QCPs which suffice the desired condition

η ∼ 1, or ϵ ≪ 1. When we study the pure bosonic sector of the theory, we ignore

the coupling to the fermions, assuming the boson-fermion coupling is weak, which is

self-consistent with the conclusion in the previous review section that the boson-fermion

interaction will flow to a weakly coupled fixed point g2∗ ∼ ϵ. As we stated in the previous

section, we will start with a weak boson-fermion coupling g, and eventually we only com-

pute the fermion self-energy to the leading nontrivial order of the fixed point g2∗ ∼ ϵ. In

the purely bosonic theory, the scaling of the space-time has the standard Lorentz invari-

ance. To avoid confusion, we use “[ ]” to represent scaling dimensions under the scaling
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Eq. 4.9 of the one-patch theory in the previous section, and “{ }” represent the scaling

dimension in the Lorentz invariant purely bosonic theory. At a QCP, multiple operators

will become “critical”, namely multiple operators can have power-law correlation. We

will demand that the operator with the strongest correlation (smallest scaling dimen-

sion) satisfy the desired condition, since this is the operator that provides the strongest

scattering with the electrons.

We consider (2 + 1)d bosonic quantum electrodynamics (QED) with N flavors of

bosons coupled to a noncompact U(1) gauge field with a Chern-Simons term:

LbQED =
2∑

α=1

N/2∑
a=1

|(∂µ − ibµ)zα,a|2 + r(z†α,azα,a)

+ u(
∑
α,a

|zα,a|2)2 + u′
2∑

α=1

(

N/2∑
a=1

|zα,a|2)2

+
ikN

4π
b ∧ db. (3.10)

The following operators are gauge invariant composite fields, which we assume are all at

zero momentum:

O0 =
2∑

α=1

N/2∑
a=1

z†α,azα,a, O1,3 =

N/2∑
a=1

z†aσ
1,3za. (3.11)

Potential applications of this field theory to strongly correlated systems will be discussed

later.

To compute their scaling dimensions, we introduce two Hubbard-Stratonovich(HS)

fields to decouple the quartic potentials:

L′
bQED =

2∑
α=1

N/2∑
a=1

|(∂µ − ibµ)zα,a|2 + r(z†α,azα,a)
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Figure 3.1: The self-energy of field σ+ and gauge field bµ in the large−N limit.

+ iσ+O0 + iσ−O3 +
1

2u′ + 4u
σ2
+ +

1

2u′
σ2
−

+
ikN

4π
b ∧ db. (3.12)

We will consider the following two scenarios: (1) u′ → 0, u > 0, where σ− is fully

suppressed and the system has a full SU(N)× U(1)T symmetry, where the U(1)T is the

“topological symmetry” that corresponds to the conservation of the gauge flux; and (2)

u, u′ > 0 when the SU(N) symmetry is broken down to SU(N/2)×SU(N/2)×U(1)⋊Z2,

where the U(1)⋊ Z2 is the symmetry within the Pauli matrix space in Eq. 3.11.

In scenario (1) with a full SU(N) symmetry, at the critical point r = 0, the field σ+

acquires a self-energy in the large−N limit

Σσ+(p) = N

∫
d3q

(2π)3
1

q2(q + p)2
=
N

8p
. (3.13)

Hence the propagator of field σ+ in the large−N limit reads

Gσ+(p) = 1/Σσ+ =
8p

N
. (3.14)
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Similarly, for the gauge field, the self-energy in the large−N limit is

Σb,µν(p) = −N
∫

d3q

(2π)3
(2q + p)µ(2q + p)ν

q2(q + p)2

=
N

16p
(p2δµν − pµpν). (3.15)

When combined with the Chern-Simons term, in the Landau gauge, the gauge field has

the following large−N propagator [95]

Gb,µν(p) =
1

Np

(
F

(
δµν −

pµpν
p2

)
+H

ϵµνρp
ρ

p

)
, (3.16)

where

F =
16π2

π2 + 64k2
, H = − 128πk

π2 + 64k2
. (3.17)

After introducing the HS fields, the scaling dimension of the composite operator O0

of the original field theory Eq. 3.10 is “transferred” to the scaling dimension of the HS

fields σ+. To the order of O(1/N), the Feynman diagrams in Fig. 3.2 contribute to the

σ+ self energy, which was computed in Ref. [95].

But it is evident that in the large−N limit, the scaling dimension of σ+ (and the

scaling dimension of operatorO0 of the original field theory Eq. 3.10) is limN→∞{O0} = 2,

hence it does not meet the desired condition. When O0 couples to the Fermi surface,

the boson-fermion coupling will be irrelevant in the one patch theory discussed in the

previous section according to the scaling of space-time Eq. 4.9.

The scaling dimension of σ1,3 equal to each other with a full SU(N) symmetry, and

unlike O0, they have scaling dimension 1 in the large−N limit. The 1/N corrections

to their anomalous dimensions come from diagram (a) − (d) in Fig. 3.2, or equivalently
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Figure 3.2: In scenario (1), diagrams (a)−(e) contribute to the anomalous dimension of
O0 in Eq. 3.10 or equivalently σ+ in Eq. 3.12; while only diagrams (a)−(d) contribute
to the anomalous dimension of O1,3. The solid line represents the propagator of
zα,a, the dashed and wavy lines represent the large−N propagators of σ+ and bµ
respectively.

through the standard momentum shell RG:

{O1,3} = 1 +
16

3π2N
− 4

3π2N
F. (3.18)

Ref. [93] and references therein have computed scaling dimensions of gauge invariant

operators for theories with matter fields coupled with a U(1) gauge field, without a Chern-

Simons term. Our result is consistent with these previous references, since limk→0{O1,3} =

1 − 16/(π2N), which is the result of the CPN−1 model with a noncompact gauge field.

Also, in the limit of k → +∞, our result is consistent with Ref. [93] when the fermion

component is taken to be infinity, since both limits suppress the gauge field fluctuation

completely. In general operators O1,3 have stronger correlations than O0, hence they will

make stronger contributions to scattering when coupled with the fermi surface. As an
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example, the anomalous dimension of O1,3 with k = 1/2 reads

η1,3 ∼ 1− 0.57

N
, (3.19)

which is reasonably close to 1 even for the most physically relevant case with N = 2.

In scenario (2) we should keep both σ+ and σ− in the calculation, and both σ± (op-

erator O0 and O3 in theory Eq. 3.10) have scaling dimension 2 in the large−N limit [94].

Now O1 has the strongest correlation, and at the order of O(1/N), its scaling dimension

reads:

{O1} = 1 +
8

3π2N
− 4

3π2N
F. (3.20)

When k = 1, its anomalous dimension reads

η1 ∼ 1− 0.037

N
, (3.21)

which is always very close to 1. Using the formalism reviewed in the previous section, by

coupling to O1, the fermion self-energy would scale as Σf (iω,p) ∼ −isgn (ω) |ω|0.99 for

N = 2.

The field theory Eq. 3.10 describes a quantum phase transition from a topological

order with Abelian anyons to an ordered phase that spontaneously breaks the global

flavor symmetry. The flavor symmetry can be either a full SU(N) symmetry (scenario 1)

or SU(N/2)×SU(N/2)×U(1)⋊Z2 (scenario 2). So far we have assumed that the gauge

invariant O1,3 have zero momentum, hence they cannot be the ordinary antiferromag-

netic Néel order parameter. They must be translational invariant order parameters with

nontrivial representation under the internal symmetry group, for example they could be

the quantum spin Hall order parameter for N = 2.
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The topological order described by the Chern-Simons theory with N = 2, k = 1 is

the most studied state in condensed matter theory. This topological order is the U(1)2

or equivalently the SU(2)1 topological order with semionic anyons. It is the most natural

topological order that can be constructed from the slave particle formalism [149]. And

recently it was conjectured that this topological order is also related to the parent state

of the cuprates high temperature superconductor [150] motivated by the giant thermal

Hall signal observed [151].

Another interesting scenario is when N = 2, k = 0 and u > 0. In this case Eq. 3.10

is the same field theory as the easy-plane deconfined QCP between the inplane antifer-

romagnetic Néel order and the valence bond solid state on the square lattice. Recent

numerical studies have shown that this quantum phase transition may be continuous,

and the scaling dimension of both O0 and O3 are fairly close to 1 based on numerical

results [52, 152]. It has been proposed that this field theory is self-dual [91], and it is

dual to the transition between the bosonic symmetry protected topological (SPT) phase

and the trivial phase [81, 92], which is directly describe by a noncompact QED with

N = 2 flavors of Dirac fermion matter fields [153, 154]. The tuning parameter for this

topological transition is instead coupled to O3. Hence this SPT-trivial transition is also

a candidate quantum phase transition which meets the desired criterion proposed in this

section that leads to a nearly-marginal fermi liquid. But in these cases there are other

fields (for example the inplane Néel order parameter) with smaller scaling dimensions,

and we need to assume that these operators carry finite lattice momentum hence couple

to the Fermi surface differently.

(2) Gross-Neveu-Yukawa QCP

Another candidate QCP that likely suffices the desired condition η ∼ 1 is the Gross-
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Neveu-Yukawa QCP with N−flavors of Dirac fermion:

LGNY =
N∑
a=1

χ̄aγµ∂µχa + gϕχ̄aχa

+ (∂ϕ)2 + rϕ2 + uϕ4. (3.22)

At the critical point r = 0, both u and g flows to a fixed point. In our context, the QCP

describes a bosonic or spin system, hence χ is viewed as a fermionic slave particle of spin,

i.e. the spinon, and we assume that χ is coupled to a Z2 gauge field, namely the system

is a Z2 spin liquid with fermionic spinons. But the dynamical Z2 gauge field does not

lead to extra singular corrections to low energy correlation functions of gauge invariant

operators, hence the universality class of Eq. 3.22 is still identical to the Gross-Neveu-

Yukawa (GNY) theory, as long as we only focus on gauge invariant operators.

The GNY QCP can still be solved in the large−N limit, and the cases with finite N

can approached through a 1/N expansion. At the GNY QCP coupled with a Z2 gauge

field, the gauge invariant operator with the lowest scaling dimension is ϕ, and its scaling

dimension can be found in Ref. [155] and references therein:

{ϕ} ∼ 1− 16

3π2N
. (3.23)

Other gauge invariant operators such as χ̄Tχ with a SU(N) matrix T have much larger

scaling dimension at the GNY QCP, for example {χ̄Tχ} = 2 in the large−N limit. If we

replace the Z2 gauge field by a U(1) gauge field, the U(1) gauge fluctuation will enhance

the correlation of ϕ, hence increases ϵ = 1 − η compared with the situation with only a

Z2 gauge field. Hence a GNY QCP with a U(1) gauge field is less desirable according to

our criterion.
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The GNY QCP coupled with a Z2 gauge field can be realized in various lattice model

Hamiltonians for quantum antiferromagnet. For example, for SU(M) spin systems on the

triangular lattice with a self-conjugate representation on each site, using the fermionic

spinon formalism, when there is a π−flux through half of the triangles, there are N = 2M

components of Dirac fermions at low energy [156]. SU(M) quantum magnet may be re-

alized in transition metal oxides with orbital degeneracies [157, 158, 159], and also cold

atom systems with large hyperfine spins [160, 161, 162, 163]. Recently it was also pro-

posed that an approximate SU(4) quantum antiferromagnet can be realized in some of the

recently discovered Moiré systems [164, 165, 166], and a SU(4) quantum antiferromagnet

on the triangular lattice may realize the Z2−gauged GNY QCP with N = 8 (with lower

spatial symmetry compared with SU(2) systems as was pointed out in Ref. [167]). On

the other hand, a SU(M) spin systems on the honeycomb lattice can potentially realize

the GNY QCP with N = 2M (with zero flux through the hexagon) or N = 4M (with

π−flux through the hexagon).

The operator ϕ is odd under time-reversal and spatial reflection, hence physically ϕ

corresponds to the spin chirality order. Hence the Z2−gauged GNY QCP is a quantum

phase transition between a massless spin liquid and a chiral spin liquid.

Non-Fermi liquid is often observed only at a finite temperature/energy window in

experiments. At the infrared limit, the non-Fermi liquid is usually preempted by other

instabilities, for example a dome of superconductor [168, 169, 170]. In Ref. [168] the insta-

bility of non-Fermi liquid towards the superconductor dome was systematically studied

in the framework of the ϵ−expansion. According to Ref. [168], when O is an order pa-

rameter at zero momentum, at ϵ = 0 the superconductor instability will occur at an

exponentially suppressed temperature/energy scale ∆sc ∼ Λω exp(−A/|g0|), where g0 is

the bare boson-fermion coupling constant. In our case the estimate of the superconduc-

tor instability is complicated by the fact that O is a composite field, but the qualitative
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exponentially-suppressed form of ∆sc is not expected to change because g is still at most

a marginally relevant coupling. When ϵ = 0, the imaginary part of the fermi self-energy

(the inverse of quasi-particle life-time) scales linearly with ω. Because the bare electron

dispersion has no imaginary part at all, the imaginary part of the self-energy should be

much easier to observe compared with the real part, assuming other scattering mecha-

nisms of the fermions are weak enough. The scaling behavior of the fermion self-energy is

also observable numerically like Ref. [171]. This linear scaling behavior of the imaginary

part of self-energy is observable for fermionic excitations at energy scale ω > ∆sc, . Hence

above the superconductor energy scale ∆sc, the non-Fermi liquid behavior is observable.

This result should still hold for small enough ϵ. 1

3.1.4 Conclusion

In this section we proposed a mechanism based on which a nearly marginal non-fermi

liquid can be constructed with a controlled method in an energy window. This mechanism

demonstrates that two exceptional phenomena beyond the standard Landau’s paradigm,

i.e. the non-Landau quantum phase transitions and the non-fermi liquid may be con-

nected: a non-Landau quantum phase transition can have a large anomalous dimension

η ∼ 1, which physically justifies and facilitates a perturbative calculation of the Boson-

Fermion coupling fixed point. Several candidate QCPs that suffice this condition were

proposed, including topological transitions from Abelian topological orders to an ordered

phase, and a Gross-Neveu-Yukawa transition of Z2 spin liquids.

We would like to compare our construction of non-fermi liquid states and the con-

1In Ref. [168], the non-Fermi liquid energy scale Enfl is defined as the energy scale where the fermi
velocity vF is renormalized strongly from its bare value, hence Enfl was defined based on the real part of
the fermion self-energy. In other words the Enfl was defined as the scale where the real part of self-energy
dominates the bare energy in the Green’s function. But since the bare dispersion of fermion is difficult
to observe, and the bare fermion energy has no imaginary part at all, we prefer to use the imaginary
part of fermion self-energy as a characteristic definition of non-Fermi liquid state.
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structions based on the SYK related models. In the constructions based on SYK-like

models, the existence of a strange-metal like phase was based on the fact that in the

soluble limit, i.e. in the SYK model the scaling dimension of fermion is 1/4 (scaling with

time only). But since the definition of the electric current operator in these construc-

tions is proportional to the perturbation away from the SYK model, the current-current

correlation function and the electrical conductivity is small in the energy window where

the construction applies. Recently an improved construction was proposed which can

produce the Planckian metal observed in cuprates materials [172]. In our construction,

since the boson-fermion coupling will flow to a weakly coupled fixed point, the scattering

rate of the fermion due to the boson-fermion coupling is expected to be low. We will

further study if a Planckian metal like state can be constructed by developing our current

approach. In this future exploration, a mechanism of momentum relaxation, for instance

the disorder, or Umklapp process, needs to be introduced.

3.2 Deconfined Quantum Critical Point with Non-

locality

A deconfined quantum critical point (DQCP) occurs between two phases that spon-

taneously break two different symmetries that do not contain each other as a subgroup.

The original DQCP was proposed as a direct unfine-tuned continuous quantum phase

transition between the collinear Néel and the valence bond solid (VBS) orders on the

square lattice [15, 16]. Various analogues of the original DQCP were studied, for exam-

ple the transition between the superfluid and various density waves of a quantum boson

system can be described in a similar framework as that of the DQCP with an easy-plane

anisotropy [173, 174]; later the DQCP was also generalized to lattices where the spin
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order and VBS order both have different structure from the original DQCP [123]. In

all these examples the two ordered phases separated by the DQCP break very different

0-form symmetries; but nowadays one can generalize the notion of DQCP to situations

that involve higher-form symmetries. For example a direct transition between a magnetic

order and a topological order can be viewed as a DQCP between a phase with sponta-

neous breaking of a 0-form symmetry and another phase with spontaneous breaking of

a (emergent) 1-form symmetry [175, 176, 177, 178, 179, 180, 181, 182, 183, 184]. In

the past two decades, a lot of progress has been made towards understanding various

aspects of the DQCP, including its connection to mixed ’t Hooft anomaly and higher

dimensional symmetry protected topological phases [77], as well as a duality web that

connects different Lagrangian descriptions of the DQCP [185, 78, 79, 92, 80, 81, 22, 186],

etc.

Despite all the theoretical progresses, the nature of the original DQCP proposed

on the square lattice has always remained controversial. Very encouraging evidences

of DQCP were found in numerics on a 2D lattice quantum spin model dubbed the

“J −Q” model [17, 18], as well as loop models in the 3D Euclidean space [187, 188], but

numerical simulations have also observed unusual scaling behaviors [19, 20] and other

complexities [189]. Recently the DQCP has also been challenged by the “conformal

bootstrap” method of analyzing conformal field theories (CFT): the critical exponents

obtained from numerical simulations seem incompatible with the bounds given by con-

formal bootstrap [190, 191]. Though these should not exclude the possibility that the

DQCP still exists in other lattice models with critical exponents that are consistent with

the conformal bootstrap bounds, a consensus on the nature of the DQCP awaits further

efforts.

In this section, rather than trying to address the infrared nature of the original DQCP,

we explore a possible continuous quantum phase transition close to the originally pro-
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posed DQCP, starting with the transition between the easy-plane Néel order and the

VBS order. In particular, we will discuss the effect of nonlocality on DQCP. Nonlocality

of a system can directly arise from a long range instantaneous interaction in the Hamilto-

nian [114, 115], or from coupling to the gapless modes in one higher dimension, when the

system is realized at the boundary of a bulk [89, 112, 113, 87, 88, 192, 193, 28, 194, 29,

30, 195]. It was shown that, by coupling to the bulk quantum critical modes, the tran-

sition between the Néel and VBS order could be driven to a new fixed point [192, 193].

Nonlocality arising from holography was also explored in Ref. [196].

Here we explore nonlocality arising from a more realistic mechanism. Nonlocality

in space-time usually translates to nonanalyticity in the momentum-frequency space.

It is well-known that, based on the Hertz-Millis theory [32, 33], by coupling an order

parameter ϕ to a Fermi surface, the dynamics of the order parameter acquires a singular

contribution in the momentum-frequency space. In particular, when the order parameter

carries a finite momentum that connects two “hot spots” of the Fermi surface, after

formally integrating out the fermions, the order parameter acquires a singular term ∼∑
ω,q |ω||ϕω,q|2. Within the framework of the Hertz-Millis theory, this singular term

renders the original
∑

ω,q ω
2|ϕω,q|2 term in the Lagrangian irrelevant, and leads to a z = 2

Landau-Ginzburg theory of the order parameter ϕ. But the effect of the coupling to the

hot spots will be more complex in the case of DQCP, as the physical order parameter

ϕ is now a composite operator of the deconfined degrees of freedom at the DQCP. We

note that novel physics arising from coupling to a background Fermi surface in a one

dimensional setup was explored recently [197].
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3.2.1 Easy plane DQCP coupled with hot spots

Let us first inspect the easy-plane DQCP between the inplane Néel order and a VBS

order on a square lattice. The order parameters involved in this transition include a

two component inplane Néel order (Nx, Ny) at momentum (π, π), and a two component

VBS order parameter (Vx, Vy) at momentum (π, 0) and (0, π) respectively. Since all these

order parameters carry a finite momentum, in principle they would acquire a singular

term in the form sketched above when the easy-plane DQCP occurs with a background

Fermi surface, assuming their momenta connect hot spots of the Fermi surface. The

Lagrangian that describes the easy-plane DQCP is an easy-plane CP1 model, and it is

known that this theory enjoys a self-duality [185], i.e. the inplane Néel order parameter

(Nx, Ny) is a bilinear of the CP1 field (Nx, Ny) ∼ (z†σxz, z†σyz), and the VBS order

parameter along the x and y direction is a bilinear of the dual CP1 field (the vortex

of z1 and z2 respectively): (Vx, Vy) ∼ (v†σxv, v†σyv). Then after we integrate out the

background Fermi surface according to the Hertz-Millis theory, the action that describes

the transition becomes

S =

∫
d2xdτ

∑
α=1,2

|(∂ − iA)zα|2 + r|zα|2 + u|zα|4

+
∑
ω,q

∑
i=x,y

g|ω||(z†σiz)ω,q|2; (3.24)

and the dual action reads

Sd =

∫
d2xdτ

∑
α=1,2

|(∂ − iÃ)vα|2 + r̃|vα|2 + ũ|vα|4

+
∑
ω,q

∑
i=x,y

g̃|ω||(v†σiv)ω,q|2, (3.25)
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where r̃ = −r. The actions above will be the starting point of our study; higher order

singular terms beyond the Hertz-Millis theory that also arise from integrating out the

background fermions will be briefly discussed later. In this section we will show that, al-

though the bare values of g and g̃ can differ, they may actually flow to a fixed point where

g∗ = g̃∗. Hence this fixed point not only corresponds to a direct inplane Néel-to-VBS tran-

sition, our calculation suggests that this new fixed point may still have the self-duality as

the originally proposed easy-plane DQCP [185]; but we do not make a statement about

the presence of the enlarged emergent O(4) symmetry that can be perceived through the

low energy effective nonlinear Sigma model of the easy-plane DQCP [198], as well as the

duality web [78, 79, 92, 80, 81, 22, 186].

In order to study the theory Eq. 3.24 in a controllable fashion, we follow the stan-

dard procedure (see for example Ref. [93, 94]) by introducing the Hubbard-Stratonovich

auxiliary fields λα and Φi to decompose the two quartic terms of zα, and consider the

following large-N generalization of Eq. 3.24 at the critical point r = 0:

S =

∫
d2xdτ

N∑
a=1

∑
α=1,2

|(∂ − iA)za,α|2 + iλα|za,α|2

+ i
∑
i=x,y

Φi(z†aσ
iza) (3.26)

With large-N , the correlators of the Hubbard-Stratonovich fields, and the gauge field

read

⟨λα(q⃗)λα′(−q⃗)⟩ = 8

N
|q⃗|δα,α′ ,

⟨Aµ(q⃗)Aν(−q⃗)⟩ =
16

2N

(
δµν − qµqν/q

2

|q|

)
,
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Figure 3.3: One-loop Feymann diagrams that contribute to β(g). Here the solid,
dashed, dotted and wavy lines represent the correlators of za,α, λα, Φ

i and gauge field
Aµ, respectively.

⟨Φi(q⃗)Φi′(−q⃗)⟩ = g|ν|δi,i′ , (3.27)

where q⃗ = (ν, q). We assume that g is at the order of 1/N .

We proceed by calculating the renormalization group (RG) flow of g using the momentum-

shell RG by integrating out the modes with momentum within Λ/b < |k| < Λ (the cal-

culations are repeated with the dimensional regularization as well); the most relevant

Feynman diagrams are listed in Fig. 3.3. The diagrams (a-d) are the standard contri-

butions to the leading order 1/N expansion of the CPN−1 model [94]. The key of the

calculation is the following: in the large-N limit, the parameter g is exactly marginal,

as z†aσ
iza has scaling dimension [z†aσ

iza] = 1 for i = x, y, while Φi has scaling dimension

[Φi] = 2. With finite N , the scaling dimension of z†aσ
iza receives a negative correction at
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the order of 1/N : [z†aσ
iza] = 1 − 28/(3π2N), which makes g weakly relevant with large

but finite N . Hence the beta function of g should take the form

dg

d ln b
= β(g) =

56

3π2N
g − Cg2. (3.28)

When C is positive and order unity, g will flow to a fixed point at the order of g∗ ∼ 1/N .

Diagram Fig. 3.3(e) and (f) potentially contribute to the coefficient C in the beta

function above. Diagram (e) has vanishing contribution at the easy-plane DQCP under

consideration right now, due to the matrix identity
∑

j=x,y σ
jσiσj = 0 for i = x, y.

Diagram (f) can be interpreted as the self-energy correction to za,α

Σ(ω,k) =
∑
j=x,y

gσjσj
∫ Λ

Λ/b

d3q

(2π)3
|ν|

(q + k)2

= g
ω2

2π2
ln b× σ0 + . . . . (3.29)

Here q⃗ = (ν, q), k⃗ = (ω,k). The ellipses in the equation represent terms which do not

contribute at order ln b. This self-energy correction will modify the Gaussian part of the

action of za,α to

L = z∗a,α

(
|∂τ |2(1−g/(4π

2)) − ∂2x

)
za,α + · · · (3.30)

This result implies that after coupling to the background Fermi surface, the space-time

scaling of the original easy-plane DQCP is modified, which should now be

τ → b−zτ, x → b−1x, (3.31)

where z = 1+ g
4π2 +O(g2) is the dynamical exponent. Here we remind the readers that,

96



Interactions between exotic criticalities and Fermi surface Chapter 3

in the original Hertz-Millis theory, when an order parameter is coupled to hot spots of a

Fermi surface, the Gaussian part of the Landau-Ginzburg theory of the order parameter

has dynamical exponent z = 2. Here although the order parameter is a composite

operator of za,α, the dynamical scaling exponent z is still modified due to its coupling to

the Fermi surface.

The wave function renormalization in diagram (f) is in fact equivalent to the mod-

ification of the space-time scaling, plus a correction to the scaling dimension of za,α:

∆[za,α] = g/(8π2). Eventually the beta function of g reads

β(g) ≡ dg

d ln b
=

(
56

3π2N
− g

2π2

)
g, (3.32)

where the first term arises from diagrams (a-d), while the second term is the additional

wave-function renormalization from (f) as described above. Indeed, for g > 0, the theory

flows to a new fixed point g∗ = 112
3N

+ O( 1
N2 ). Several two-loop diagrams such as the

Aslamazov-Larkin diagrams appear to be also at the 1/N order, but careful evaluation

shows that these diagrams either do not contribute to the beta function as they do not

lead to a logarithmic divergence, or their contributions cancel out with each other [94].

The same calculation applies to g̃ in Eq. 3.25. Hence although the bare values of g

and g̃ in Eq. 3.24 and Eq. 3.25 can be different, the RG equations above suggest that

they would flow to a fixed point where g∗ = g̃∗. Hence our calculation suggests that

at this fixed point the self-duality of the original easy-plane DQCP still holds. Another

more technical note is that, the VBS order parameter Vx ∼ v†σxv is also the monopole

operator of gauge field Aµ in Eq. 3.24, hence the g̃ term in Eq. 3.25 also corresponds to

a correction to the action of the gauge field Aµ. But since we expect g̃ to flow to a fixed

point at order 1/N , at the self-consistent level we can ignore this singular correction and

use the gauge field propagator in the large-N limit for our calculation.
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At this new RG fixed point, we obtain scaling dimensions for the following operators:

[λ+] = 2− 80

3π2N
− 3g∗

4π2
= 2− 164

3π2N
+O(

1

N2
),

[λ−] = 2 +
16

3π2N
+

g∗
4π2

= 2 +
44

π2N
+O(

1

N2
),

[z†aσ
x,yza] = 1. (3.33)

Here we have defined operators λ± = (λ1 ± λ2)/2. Some two-loop diagrams like the ones

considered in Ref. [199] contribute to the evaluation of [λ+]. The critical exponent ν is

inferred from the scaling dimension of λ+:

ν−1 = 2 + z − [λ+] = 1 +
64

π2N
+O(

1

N2
). (3.34)

These standard 1/N expansion may not be extremely reliable at the physically relevant

case with small N , but the scaling dimensions of z†aσ
x,yza should be exactly 1 at g = g∗.

This is due to the fact that the system remains scaling invariant at the fixed point with

nonzero g∗, and the singular frequency dependence |ω| in Eq. 3.24 cannot be renormalized,

then to keep the system scaling invariant the inplane Néel order parameter (Nx, Ny) must

have scaling dimension 1 in the Euclidean space-time.

We note that based on the Hertz-Millis theory there is another singular interaction

|ω||(z†σzz)ω,q|2 that would also be generated by coupling the z−component of the Néel

order to the background Fermi surface, but this term is irrelevant with the large-N

generalization of the easy-plane DQCP, as the scaling dimension of z†σzz is 2 with large-

N .

We would also like to comment on the validity of the Hertz-Millis theory. It was
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noted in Ref. [200] that, when we couple an order parameter ϕ to a Fermi surface,

besides generating singular terms at the quadratic order of ϕ, similar higher order terms

∼ ϕn with space-time singularity is also generated after integrating out the fermions. It

was shown in Ref. [200] that direct power-counting suggests these higher order terms are

marginal at the z = 2 Gaussian fixed point of the Hertz-Millis theory, hence it is no

longer justified to ignore these terms. In fact, in our case, once we identify ϕ as z†σiz,

the higher order terms pointed out in Ref. [200] are still marginal at the new fixed point,

since the scaling dimension [z†σiz] is precisely 1. But this does not mean that the physics

at the new fixed point we derived is not observable. Let us return to the original theory

with a bosonic field ϕ coupled with NF copies of Fermi surfaces:

LBF =

NF∑
l=1

f †
l1(∂τ − iv1 · ∇)fl1 + f †

l2(∂τ − iv2 · ∇)fl2

+uϕ

[∑
l

(f †
l1Tfl2 + (1 ↔ 2))

]
, (3.35)

where 1, 2 label two points of the Fermi surface connected by the momentum of ϕ, and T

is a flavor matrix. The parameter g in Eq. 3.24 is about g ∼ NFu
2, and since g ∼ 1/N ,

we need u ∼
√

1/(NNF ). If we fix N , the higher order singular terms considered in

Ref. [200] will be at the order of 1/N
n/2−1
F . Hence with large-NF , although the ultimate

fate of these higher order singular terms in the infrared limit is unclear, there could be a

large energy window where the physics is controlled by the fixed point g∗ derived above.

We can also compute the self-energy of the fermions at the hot spot to the leading

nontrivial order of u:

ΣF (ω,k) ∼ 2u2σ0

∫
dνd2q

(2π)3
1

i(ω − ν)− v2 · (k − q)
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× 1

(ν2 + q2)1−η/2
. (3.36)

We have taken the correlator of the bosonic field Nx,y(q⃗) ∼ z†σx,yz to be 1/(ν2+q2)1−η/2,

where η is the anomalous dimension of the inplane Néel order parameterNx,y at the purely

bosonic easy-plane DQCP. Carrying out the integral, we obtain

ΣF (ω, 0) ∼ −iu2sgn(ω)|ω|ησ0. (3.37)

Generally we expect the fermions at the hot spots to have non-Fermi liquid like self-energy

for a considerable energy window.

3.2.2 SU(2) invariant DQCP coupled with hot spots

Here we briefly discuss the SU(2)-invariant DQCP coupled to a background Fermi

surface, which can be studied in the same way as the easy-plane case. Here we only need

one Hubbard-Stratonovich field λ+ to decompose the quartic term, and we obtain the

following large-N theory at the critical point:

S =

∫
d2xdτ

N∑
a=1

∑
α=1,2

|(∂ − iA)za,α|2 + iλ+|za,α|2

+ i
∑
i=x,y,z

Φi(z†aσ
iza). (3.38)

Now the Fermi surfaces are coupled to all three components of the Néel order parameter

N⃗ = z†σ⃗z. The new dynamic exponent is now z = 1+ 3g
8π2 +O(g

2), and the beta function

of g is

β(g) ≡ dg

d ln b
=

16

π2N
g − g2

4π2
. (3.39)
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If g > 0, the theory flows to a new RG fixed point at g∗ = 64
N
. At the new RG fixed

point, we have the following scaling dimensions

[λ+] = 2− 24

π2N
− 9g∗

8π2
= 2− 96

π2N
+O(

1

N2
),

[z†aσ
x,y,zza] = 1, (3.40)

and the critical exponent

ν−1 = 2 + z − [λ+] = 1 +
120

π2N
+O(

1

N2
). (3.41)

Again, the Néel order parameter has scaling dimension [N⃗ ] = 1 exactly at the new fixed

point. Though it is not so convenient to directly compute the RG flow of the singular

term of the VBS order parameter due to the lack of a dual Lagrangian for the SU(2)

invariant DQCP, we expect the scaling dimension of the VBS order parameter should

also be 1 at the new fixed point. To elaborate, the VBS order parameter Vx, Vy should

still acquire a singular term Vx|∂τ |Vx + (x → y) from coupling to the Fermi surface.

This term is singular (nonanalytic) in the frequency space, and also long range in the

temporal direction. The form of the singular term |∂τ | cannot be renormalized under

RG. And if this term flows to a fixed point, this term Vx|∂τ |Vx+(x→ y) remains scaling

invariant at the fixed point, hence the VBS order parameter V x should have precisely

scaling dimension 1.

Ref. [16] pointed out that at the DQCP there are two length scales, one for the

correlation length ξ of the order parameter Nx, the other is the thickness of the VBS

domain wall (ξVBS). In our system these two length scales still exit, and the relation

between these two length scale should be similar to what was pointed out in Ref. [16]:
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ξVBS ∼ ξf(λξd+z−∆), where λ is the strength of the four-fold monopole operator of the

gauge field that is the minimal topological defect allowed by symmetry on a square lattice,

and ∆ is the scaling dimension of the four-fold monopole, which we assume is greater

than d + z (which means that the four-fold monopole is irrelevant at the DQCP). z is

the dynamical exponent computed in this section. Following the discussions in Ref. [16],

one can further infer that ξVBS ∼ ξ(∆−z)/2 close to the DQCP. Since we expect ∆ to be

greater than 2 + z, ξVBS diverges faster than ξ near the DQCP.

The quantum critical modes at the new fixed point with z > 1 will make a contribution

C ∼ T 2/z to the specific heat, which is different from ordinary (2 + 1)d QCP with

z = 1. But the background Fermi surface would contribute a specific heat linear with

temperature T , hence we expect that the contribution from the quantum critical modes

will be overshadowed by the background Fermi surface.

3.2.3 Discussion

In this section we discussed the fate of the DQCP when it occurs with a background

Fermi surface. We demonstrated that with a large number of copies of Fermi surfaces,

there is a substantial energy window where the easy-plane DQCP is controlled by a

self-dual fixed point with dynamical exponent z > 1. We did not pursue a full renor-

malization group analysis of the boson-fermion coupled theory, but such analysis like the

ones discussed in Ref. [35, 201] when the order parameter ϕ is a composite operator of

deconfined degrees of freedom is very much worth studying in the future.

Many insights of the DQCP, including the emergent symmetry, ’t Hooft anomaly, as

well as possible phase diagram and RG flow, can be gained from the nonlinear sigma

model (NLSM) approach that unifies all the order parameters in one action [198, 202,

203, 204, 205, 206, 207]. The very key term in the NLSM is a topological term. The
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Néel and VBS order parameters can also be treated on an equal footing in the U(1) and

SU(2) spin liquid language [81]. In the future it is also worth to explore the consequence

of coupling the DQCP to a Fermi surface using these different formalisms.

Besides the DQCP, our study is also meaningful to the interaction-driven Metal-

insulator transition (MIT) where the insulator phase has certain density wave order. The

basic formalism of the theory describing this MIT involves introducing bosonic partons

that carry the electric charge, and fermionic partons that carry the spin. This MIT

is interpreted as a superfluid-to-density wave transition of the charged bosonic parton

sector [208, 209] (The “superfluid” phase of the bosonic sector of the phase diagram

corresponds to the metallic phase [38]), which is also described by a CPN−1 model in

which the bosonic matter fields are vortices of the charged bosonic parton. There are

multiple components of the vortex fields whose condensate corresponds to the degenerate

density wave patterns of the insulator phase. When the density wave order parameter

couples to the hot spots of the Fermi surface of the fermionic spinon sector, the same

singular terms like the one considered in our current section will arise. Our study indicates

that the physics at this MIT could be controlled by a new fixed point with dynamical

exponent z > 1.
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Chapter 4

Field Theoretical Study of Moiré

Systems

4.1 Orbital Orders and Possible non-Fermi Liquid in

Moiré systems

Systems with Moiré superlattice have surprised the condensed matter community with

a plethora of correlated phenomena, supposedly due to the strong Coulomb interaction

and the narrowness of the minibands in the Moiré mini Brillouin zone [210, 211, 212, 213,

214, 215, 216]. Correlated insulator at fractional fillings [217, 218], high temperature su-

perconductor (compared with the miniband width) [219, 220, 221, 222, 223, 224, 214, 215,

216], quantum anomalous Hall effect [225, 167, 226, 227], strange metal (non-Fermi liq-

uid) [134, 135], competing orders [228, 229], spin-triplet pairing [214, 215, 216, 230] have

all been reported in recent experiments on Moiré systems. Many of these phenomena may

have to do with order parameters with nontrivial transformations under spatial symme-

tries, i.e. the orbital orders. For example, the quantum anomalous Hall effect definitely
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requires valley polarization because the Chern numbers of two degenerate minibands

from two different valleys must cancel each other due to symmetry [225, 167, 226, 227].

Also, strong signature of nematic anisotropy was found in recent experiments on twisted

bilayer graphene, in both the superconductor phase and the metallic phase [228, 229].

Mean field analysis of orbital orders in lattice models related to Moiré systems have also

been studied [231].

Motivated by the experimental observations, in this section we discuss possible or-

bital orders in Moiré systems. We will explore novel generic physics at the order-disorder

transition of the orbital orders, based on the spatial symmetries of the systems. Three

different kinds of orbital orders, i.e. (1) the nematic order, (2) valley polarization, and

(3) “compass order”, which spontaneously break different subgroups of the entire spatial

symmetries will be discussed. These orders should be viewed as possible instability of

Fermi surface due to interactions. We will focus on the order-disorder quantum phase

transition of these order parameters, and especially how the quantum fluctuations of these

order parameters may affect the electrons. We demonstrate that, due to the unique sym-

metry of the systems, the nematic order fluctuation may lead to a special non-Fermi

liquid behavior, different from what is usually expected at the quantum critical regime of

an orbital order. The interplay between these order parameters allows a very rich phase

diagram at zero and finite temperature. Within these three orbital orders, the valley

polarization and “compass order” can potentially strongly compete with the supercon-

ductor.

4.1.1 Three orbital orders

In all the Moiré systems discovered so far, the most general microscopic symmetry is

C3 × T , where T is an effective time-reversal symmetry which is a product between the
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ordinary time-reversal and a spin-flipping, hence this effective time-reversal symmetry

still holds even with a background Zeeman field (inplane magnetic field). Under this

symmetry, the Fermi surface of the miniband emerging from each valley only has a C3

symmetry, and T interchanges the two valleys. The dispersion of the minibands from

the two valleys satisfy ε1(k⃗) = ε2(−k⃗), where the subscript is the valley index. Different

Moiré systems have different extra symmetries, for example the twisted bilayer graphene

(TBG) without alignment with the BN substrate has an inversion symmetry I, while

the trilyer graphene and h-BN heterostructure has a reflection symmetry P [232]. Both

I and P interchange the two valleys [232, 233, 234]. We assume that the system under

study has the symmetry C3 ×T ×I. Under these spatial symmetries, the momenta and

electron operators transform as

C3 : (kx + iky) → ei2π/3(kx + iky);

T : ca,⃗k → τ 1abcb,−k⃗, I : ca,⃗k → τ 1abcb,−k⃗, (4.1)

where a, b are the valley indices. In this section we will discuss three different orbital

orders, each breaking different subgroups of the entire symmetry C3 × T × I.

The first orbital order we will consider is the nematic order ϕ, which is a complex

scalar order parameter. The microscopic operator of the nematic order parameter in a

two dimensional (2d) rotational invariant system can be written as [235]

ϕ̂(x⃗) ∼ ψ†(x⃗)(∂2x − ∂2y + i2∂x∂y)ψ(x⃗), (4.2)

where ψ(x) is the real space electron operator. ϕ̂ is an operator with zero or small

momentum compared with the Fermi wave vector. In a system with symmetry C3×T ×I,
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the zero momentum nematic operator can be represented as

ϕ̂ ∼
∑
k⃗

c†
1,⃗k

(
k2x − k2y + 2ikxky + α(kx − iky)

)
c1,⃗k

+
∑
k⃗

c†
2,⃗k

(
k2x − k2y + 2ikxky − α(kx − iky)

)
c2,⃗k (4.3)

with real number α. Since the Fermi surface on each valley only has a C3 symmetry,

the dx2−y2 + idxy order parameter with angular momentum (+2) will mix with a px− ipy

order parameter with angular momentum (−1). The nematic order parameter ϕ ∼ ⟨ϕ̂⟩

transforms under the symmetries as

C3 : ϕ→ ei2π/3ϕ; T : ϕ→ ϕ∗, I : ϕ→ ϕ. (4.4)

A nonzero condensate of ϕ will break the spatial symmetries down to T and I only, and

in this sense we can still refer to ϕ as a nematic order parameter. Nematic order has

been found in many condensed matter systems (for a review see Ref. [236]), and strong

signature of the existence of nematic order in both the superconducting phase and the

normal metallic phase was recently reported in TBG [228, 229].

The second orbital order we will discuss is the valley polarization Φ, which corresponds

to an operator

Φ̂ ∼
∑
k⃗

c†
1,⃗k
c1,⃗k − c†

2,⃗k
c2,⃗k. (4.5)

A valley polarization Φ ∼ ⟨Φ̂⟩ is an Ising like order parameter. A nonzero Φ will cause

imbalance of the electron density between the two valleys, i.e. the electron has higher

population at one valley than the other, and it may lead to the quantum anomalous Hall
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effect [225, 167, 226, 227]. Φ preserves the C3 symmetry, but breaks both T and I.

The last order parameter is the “compass order” which is again a complex scalar

order parameter. The microscopic compass order operator is represented as

φ̂ ∼
∑
k⃗

c†
1,⃗k

(
k2x − k2y + 2ikxky + α(kx − iky)

)
c1,⃗k

−
∑
k⃗

c†
2,⃗k

(
k2x − k2y + 2ikxky − α(kx − iky)

)
c2,⃗k. (4.6)

Under the symmetry actions, the compass order parameter φ ∼ ⟨φ̂⟩ transforms as

C3 : φ→ ei2π/3φ; T : φ→ −φ∗, I : φ→ −φ. (4.7)

The symmetry transformation of φ can be viewed as the definition of the order parameter.

φ also has the same symmetry transformation as the composite field ϕΦ.

The full symmetry C3 × T × I guarantees that, a nonzero nematic order leads to

three different degenerate ground states, while a compass order can take six different

expectation values with degenerate energy. The compass order and valley polarization

both break time-reversal symmetry T , hence both orders can lead to anomalous Hall

effect, as was observed in Ref. [226, 227]. Since the nematic order preserves T , a nematic

order alone cannot lead to the anomalous Hall signal. But a nematic order breaks the

rotation symmetry, hence it directly couples to the background strain of the system.

4.1.2 Order-Disorder Transition of the Nematic Order

Normally when an order parameter with zero or small momentum couples to the

Fermi surface, the dynamics of the order parameter is over-damped at low frequency

according to the standard Hertz-Millis theory [32, 33]. The nematic order parameter is
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slightly more complicated, when coupled to a circular Fermi surface, the dynamics of the

nematic order parameter is decomposed into a transverse mode and longitudinal mode,

and only the longitudinal mode is over-damped. The separation of the two modes was

computed explicitly in Ref. [235], whose physical picture can be understood as following.

Consider a general order parameter with a small momentum q⃗, the over-damping of

this mode comes from its coupling with the patch of Fermi surface where the tangential

direction is parallel with q⃗. For a circular Fermi surface, without loss of generality, let us

assume q⃗ = (qx, 0), then the Fermi patches that cause over-damping locate at k⃗f ∼ ±ŷ.

But ℑ[ϕ] defined previously has nodes along the ±ŷ direction (rotational invariance

guarantees that the “tangential patch” of the Fermi surface coincides with the node of

the transverse mode), hence ℑ[ϕ]q⃗ with q⃗ = (qx, 0) is not over-damped.

But now the symmetry of the system, especially the fact that the d−wave order

parameter mixes with the p−wave order parameter, no longer guarantees that for any

small momentum q⃗ the “tangential patch” of the Fermi surface coincides with the node

of the order parameter, hence ϕ is always over-damped, which can be shown with explicit

calculations following Ref. [235]. Thus we will start with the following Hertz-Millis type

of action for the nematic order parameter ϕ, which is invariant under the symmetry

C3 × T × I:

Sb = S0 +

∫
d2xdτ u(ϕ3 + ϕ∗3) + g|ϕ|4,

S0 =
∑
q⃗,ω

ϕ∗
q⃗,ω

(
|ω|
q

+ q2 + r

)
ϕq⃗,ω (4.8)

For convenience we have written the free part of the action S0 in the momentum and

Matsubara frequency space, but the interaction terms of the action in the Euclidean

space-time. Also, since the U(1) rotation of ϕ is in fact a spatial rotation, there should be
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coupling between the direction of ϕ⃗ = (Re[ϕ], Im[ϕ]) and direction of momentum, which

we have ignored for simplicity 1. Following the standard Hertz-Millis theory [32, 33], the

action Eq. 4.8 is scaling invariant if we assign the following scaling dimensions to the

parameters and field:

[ω] = 3, [qx] = [qy] = 1, [r] = 2,

[ϕ(x⃗, τ)] =
3

2
, [u] =

1

2
, [g] = −1. (4.9)

At the level of the Hertz-Millis theory, normally the total space-time dimension is greater

than the upper critical dimension, hence the self-interaction of the order parameter is

usually irrelevant, and the theory will lead to an ordinary mean field transition (for a

review see Ref. [133]). However, unlike the ordinary Hertz-Millis theory, in our current

case there is an extra symmetry-allowed term u(ϕ3 + ϕ∗3) that is relevant even though

the total space-time dimension is D = d + z = 5. Thus we need to perform analysis

beyond the mean field theory, and explore the possible new physics led by the new term.

The relevant u term breaks the U(1) symmetry of ϕ down to a Z3 symmetry, which is

the symmetry of a three-state clock model [237]. A mean field analysis of such Ginzburg-

Landau theory would lead to a first order transition which occurs at rc = u2/g, but a

two dimensional three-state clock model (equivalent to a three-state Potts model) has a

continuous transition and can be potentially described by the Ginzburg-Landau theory

with a Z3 anisotropy on a U(1) order parameter [238]. Ref. [239, 240] also presented

examples of first order quantum phase transitions at the mean field level (precisely due

to a cubic term like our u−term in the action) being driven to continuous transitions by

1The simplest nonzero term of this type would be
∫
d2xdτϕ(∂x − i∂y)

2ϕ, which has the same scaling
as the rest of the quadratic terms, hence it is not expected to lead to more singular contribution to the
physical quantities to be calculated.
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Figure 4.1: a, the one-loop correction to the boson propagator from the u term in
Eq. 4.8; b, the one-loop correction (Eq. 4.14) to the fermion propagator through the
boson-fermion coupling g′ in Eq. 4.12.

fluctuations, especially when the order parameter is coupled to gapless fermions [239],

which is analogous to our situation.

Without knowing for sure the true nature of the transition described by Eq. 4.8, at

least the scaling analysis in the previous paragraph applies when r is tuned close to while

greater than rc, and in the energy scale ω ≫ (u2/g)3/2 the order parameter ϕ can always

be viewed as a massless scalar field with self-interaction u and g in Eq. 4.8.

If we further assume that (u2/g)3/2 ≪ 1/g3 and only look at energy scale ω < 1/g3,

the irrelevant coupling g is renormalized small enough. Hence when the parameters in

Eq. 4.8 satisfy (u2/g)3/2 ≪ 1/g3, there is a finite energy window ω ∈
(
(u2/g)3/2, 1/g3

)
where we can view ϕ as a massless scalar field which interacts with itself mainly through

the u term in Eq. 4.8, and the ordinary |ϕ|4 interaction is irrelevant and renormalized

perturbatively weak. We expect that the action Eq. 4.8 with the relevant interaction u

can lead to new universal physics that is beyond the standard Hertz-Millis theory.

Based on Eq. 4.8, if we take into account of the relevant perturbation u, in general
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the boson propagator reads

Gb(ω, q⃗) =
1

G−1
b0 (ω, q⃗) + Σb(ω, q⃗)

,

G−1
b0 (ω, q⃗) =

|ω|
q

+ q2. (4.10)

A full reliable analysis of Eq. 4.8 with the relevant perturbation u is difficult, we will first

limit our study to the lowest nontrivial order of perturbation of u, later we will discuss

other analysis. At the one-loop level (Fig. 4.1a), the boson self-energy Σb(ω, p⃗) reads

Σb(ω, q⃗) ∼ u2
∫
d2kdν Gb0(ν, k⃗)Gb0(ω + ν, q⃗ + k⃗),

∼ Const + Au2
√

|ω|2/3 + cq2 + · · · (4.11)

A and c are both order one constants. The behavior of the boson self-energy is consistent

with power-counting of the loop integral, and at low energy it dominates other quadratic

terms S0 in the standard Hertz-Millis theory, due to the fact that u is a relevant per-

turbation. The cut-off dependent constant can be reabsorbed into r, and the ellipsis

includes terms that are less dominant in the infrared 2.

For our purpose we need to analyze the effects of the boson-fermion coupling on

the electrons. In the standard Hertz-Millis theory without the relevant u term in the

boson action, the one loop self-energy of the electron scales as Σf (ω) ∼ isgn[ω]|ω|2/3.

We will analyze how the u term may change the behavior of the fermion self-energy.

Following the formalism used in Ref. [36, 136, 37, 148, 34], we expand the system at

one patch of the Fermi surface. The “one-patch” theory is a very helpful formalism to

2The loop integral is performed numerically, and it fits best with the expression in Eq. 4.11.
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systematically evaluate loop diagrams in a boson-fermion coupled theory. This “one-

patch theory” breaks the C3 symmetry, hence the real and imaginary parts of ϕ are no

longer degenerate. Since we are most interested in the scaling behavior of the Fermion

self-energy, we will consider a one component boson field with the dressed propagator

and self-energy given by Eq. 4.11. The one-patch theory reads

Sbf =
∑
ω,⃗k

ψ†
ω,⃗k

(iω − vfkx − vk2y)ψω,⃗k

+ S0 +
∑
ω,q⃗

Σb(ω, q⃗)|ϕω,q⃗|2

+

∫
d2xdτ g′ϕψ†ψ, (4.12)

Where S0 is given by Eq. 4.8, and Σb(ω, q⃗) given by Eq. 4.11.

For this “one-patch” boson-fermion coupled theory we need to use a different assign-

ment of scaling dimensions, which was introduced in Ref. [36, 136, 37, 148, 34] for a better

controlled analysis of the boson-fermion coupled theory. In order to avoid confusion, we

use “[ ]” to denote the scaling dimension of the original pure boson theory Eq. 4.8, but

“{ }” to denote the scaling dimension of the “one-patch” boson-fermion coupled theory:

{ω} = 3, {kx} = 2, {ky} = 1,

{ϕ(x⃗, τ)} =
5

2
, {ψ} = 2, {g′} = −1

2
. (4.13)

Under the new scaling relation Eq. 4.13, S0 becomes irrelevant compared with Σb(ω, q⃗) in

Eq. 4.11. We will first ignore the irrelevant term S0 completely (which will be revisited

later) to reveal the main effect of the new u−term in Eq. 4.8. The one-loop fermion
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self-energy (Fig. 4.1b) reads

Σf (ω) ∼
∫
d2kdν Gf0(ν, k⃗)Gb(ω + ν, k⃗)

∼
∫
d2kdν

1

iν − vfkx − vk2y

1√
|ω + ν|2/3 + ck2

∼ iω log

(
Λ

|ω|

)
. (4.14)

This behavior of fermion self-energy is similar to the marginal fermi liquid, and it is

consistent with the simple power-counting of the loop integral. The marginal fermi

liquid was proposed as a phenomenological theory for the strange metal phase (a non-

Fermi liquid phase) of the cuprates high temperature superconductor [132]. A similar

strange metal behavior was observed in the TBG [228, 134, 135]. Our goal here is

not to directly address the observed strange metal bahavior 3, instead we stress that

the electrons at the order-disorder transition of the nematic order in the Moiré systems

should behave differently from what is usually expected at a nematic quantum critical

point. This difference originates from the unique symmetry of the Moiré systems.

Because g′ is an irrelevant perturbation in Eq. 4.12 according to the scaling convention

of the “one-patch” theory Eq. 4.13, higher order perturbation of g′ in theory Eq. 4.12

is not expected to lead to more dominant correction to the fermion self-energy in the

infrared, hence we no long need to worry about the infinite “planar diagram” problem in

ordinary cases when an order parameter is coupled with a Fermi surface [148].

The results above are based on the one-loop calculation in the expansion of u, and

higher order expansion of u will modify the results in the infrared limit. If eventually

3It was suggested that a pure phonon-electron coupling can lead to a linear−T resistivity in Moiré
systems [241, 135], but it was argued in Ref. [134] that other mechanisms may be demanded to explain
the observed data.
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Figure 4.2: a, the schematic representation of the Schwinger-Dyson equation; b, the
example of vertex correction that is not summed in the Schwinger-Dyson equation.

the nematic transition is driven continuous by fluctuations as the examples given in

Ref. [239, 240], then a full analysis for the infrared limit is desired. Although we cannot

completely solve the strongly interacting theory Eq. 4.8 analytically beyond the pertur-

bation expansion, an approximate solution can be obtained through the Schwinger-Dyson

(SD) equation, which sums a subset of the Feynman diagrams Fig. 4.2a:

Σb ∼ u2
∫
d2kdν Gb(ν, k⃗)Gb(ω + ν, q⃗ + k⃗),

G−1
b = G−1

b0 + Σb. (4.15)

Here we have ignored the vertex correction from the full SD equation (For example,

vertex correction Fig. 4.2b). We also take a simple ansatz that at the order-disorder

transition the boson self-energy is approximated by the scaling form

Σb(ω, q⃗) ∼ u2ηQ2−η (4.16)

with anomalous dimension η, where Q is the infrared cut-off that can be taken as
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Max[|ω|1/3, |q⃗|]. The previous one-loop result simply yields η = 1. Now the bosonic part

of the boson-fermion coupling action Eq. 4.12 is replaced by Sb = S0+
∑

ω,p⃗Σb(ω, q⃗)|ϕω,q⃗|2.

Again, if we tentatively ignore S0, the scaling of the boson-fermion coupling theory is

modified as

{ω} = 3, {kx} = 2, {ky} = 1,

{ϕ(x⃗, τ)} =
4 + η

2
, {ψ} = 2, {g′} = −η

2
. (4.17)

The one-loop fermion self-energy should then scale as

Σf (ω) ∼ iω|ω|
η−1
3 . (4.18)

As long as η > 0, the boson-fermion coupling g′ in Eq. 4.12 is still irrelevant, hence

higher order fermion self-energy diagrams from the boson-fermion coupling theory are

not expected to change Eq. 4.18 in the infrared.

The solution of the approximate SD equation would yield η = 1/3, which will lead to

a non-fermi liquid behavior that is in-between the standard Hertz-Millis theory and also

the marginal fermi liquid. After we convert the Matsubara frequency to real frequency,

the imaginary part of the fermion self-energy (inverse of the fermion life-time) is a very

characteristic property of the non-Fermi liquid. And the analysis above suggests that

the imaginary part of fermion self-energy should scale as Im(Σf ) ∼ sgn(ω)|ω|β with

2/3 < β < 1.

If eventually the transition in Eq. 4.8 is driven continuous by fluctuation (like the

examples given in Ref. [239, 240]), then the field ϕ is indeed massless even in the infrared

limit at the transition. Then the difference of our results described above from the stan-
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dard Hertz-Millis theory should be obvious in the infrared limit. But even if the transition

is first order at rc = u2/g, as we discussed previously, when the parameters in Eq. 4.8

satisfy (u2/g)3/2 ≪ 1/g3, at least there is a finite energy window |ω| ∈
(
(u2/g)3/2, 1/g3

)
where ϕ can be viewed as a massless scalar field with strong self-interaction mainly

through the u term, while other interactions in Eq. 4.8 can be ignored. In this case,

the calculations in this section were simplified by assuming that the boson self-energy

Σb dominates the other quadratic term, i.e. S0 in Eq. 4.8, because S0 is irrelevant com-

pared with Σb. But in the finite energy window described above, since we are not in the

infrared limit, one should keep a nonzero S0 together with Σb in the calculation of the

fermion self-energy. Then the loop integral in the evaluation of Σf (ω) is more compli-

cated. The fermion self-energy is no longer a simple scaling form Im(Σf ) ∼ sgn(ω)|ω|β

with a constant exponent β. Instead, the exponent β is expected to increase from the

standard Hertz-Millis result β = 2/3 while decreasing ω, i.e. in other words the system

should crossover back to the standard Hertz-Millis result at higher energy scale. We have

numerically calculated the fermion self-energy by keeping a nonzero S0 in the bosonic

theory, and confirmed this expectation of crossover.

Recently the standard result of the fermion self-energy scaling of the Hertz-Millis

theory was confirmed in numerical simulation [171] on nematic transitions on a square

lattice. We expect that our qualitative prediction of the fermion self-energy under the

symmetry of the Moiré systems can also be seen in future numerical simulations.

4.1.3 Valley Polarization and Compass order

The effective theory of the valley polarization order Φ and compass order φ are

more conventional Hertz-Millis theories whose analysis can be quoted from Ref. [133]. A

cubic self-interaction term is not allowed for either order parameters. But the symmetry
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transformation of the compass order φ allows a term

u6(φ
6 + φ∗6) (4.19)

in the Ginzburg-Landau-Hertz-Millis theory of φ, which is irrelevant in the infrared at

the total space-time dimension D = 5. The three order parameters are coupled together

in the effective theory, and the lowest order symmetry-allowed couplings are:

Lmix = · · ·+ rϕ|ϕ2|+ rφ|φ|2 + rΦ|Φ|2

+ v1(Φϕφ
∗ + h.c.) + v2(Φφ

3 + h.c.)

+ v3Φ
2|ϕ|2 + v4Φ

2|φ|2. (4.20)

A full exploration of the multi-dimensional parameter space will lead to a very complex

and rich phase diagram. The specific values of the parameters in Eq. 4.20 depend heavily

on the microscopic physics of the system.

Recently evidence of strain that breaks the C3 rotation symmetry has been reported

in Moiré systems [242], and the strain can potentially strongly affect the band struc-

ture [243]. With a background strain field, the nematic order parameter ϕ acquires a

nonzero expectation value, and hence Φ and φ become the same order parameter through

the coupling v1 in Lmix.

At finite temperature, the nematic order and valley polarization will go through

continuous transitions which correspond to the three-state potts and Ising conformal

field theory with central charges 4/5 and 1/2 respectively. While if we start with a

zero temperature compass order, the finite temperature physics can be mapped to a
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Figure 4.3: a, the phase diagram when there is a compass order at zero temperature,
there are two consecutive Kosterlitz-Thouless transitions at finite temperatures and
an algebraic phase in between; b, once there is a background strain in the system, the
compass order is identical to the valley polarization (VP) order, and hence there is
only one Ising transition at finite temperature.

six-state clock model due to the u6 term mentioned previously in the Ginzburg-Landau

theory of the compass order. In this case while raising temperature the system will

undergo two consecutive continuous Kosterlitz-Thouless transitions with an algebraic

quasi-long range order in between. Within the algebraic phase, the scaling dimension

of the compass order parameter [φ] is temperature dependent, and 1/18 < [φ] < 1/8.

The nematic order parameter ϕ ∼ φ∗2 and valley polarization Φ ∼ φ3 + φ∗3 also have

power-law correlation function in the algebraic phase, and their scaling dimensions are

[ϕ] = 4[φ], and [Φ] = 9[φ]. Hence even a weak background strain which pins ϕ is always a

relevant perturbation in the algebraic phase, and will collapse the two Kosterlitz-Thouless

transitions of φ into a single Ising transition of Φ.

Signature of a hidden order which strongly competes with superconductor was ob-

served experimentally [228, 229]. Within the three orbital orders that we have discussed

in this section, the valley polarization and compass order both obviously compete with
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the superconductor. The reason is that both these two order parameters break T and

I, hence break the degeneracy between electrons at k⃗ and −k⃗ (the C3 symmetry alone

does not protect this degeneracy), hence a nonzero Φ or φ makes it difficult to form

zero momentum Cooper pair. Indeed, experiments so far have not found superconduc-

tivity near the quantum anomalous Hall state in Moiré systems which at least require

either valley polarization or the compass order. We stress that the competing order men-

tioned here does not necessarily mean it is the nature of the correlated insulator observed

experimentally.

4.1.4 Final remarks

In this section we studied three different orbital orders that may occur in Moiré

systems. We demonstrate that at the order-disorder transition of the nematic order pa-

rameter (one of the three orbital orders), a special non-Fermi liquid behavior is expected

in a finite energy window, due to the symmetry of the system. We focused on the metallic

phase at the disorder-order transition of the orbital order, since experimentally a nematic

metallic phase was observed [229] above the nematic superconducting phase. Since the

three different orbital orders can interact with each other in the effective theory and lead

to a complex and rich phase diagram, depending on the parameters the Moiré systems

under different conditions may display different orbital orders. We demonstrate that the

effective theory for the nematic order is beyond the standard Hertz-Millis theory. Nu-

merical methods such as Ref. [244, 245, 246, 171] are demanded to verify the results in

the current section.

We focused on the generic field theory analysis of the phase transitions of the orbital

orders, based on the symmetry of the system. The parameters of the field theory can be

estimated through a calculation based on the lattice models, but this estimate depends
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on the microscopic details of the systems, and it may vary strongly between different

systems. For example, the parameter u stems from the C3 symmetry of the Fermi surface

at each valley, and its value depends on the extent of the C3 deformation from the

ordinary circular Fermi surface, which likely strongly depends on the microscopic model

as well as the charge density. Due to the complexity and subtlety of the microscopic

analysis, we plan to leave it to future studies. In the future we will also pursue a

proper generalized renormalization group expansion such as Ref. [36, 136, 37], as well

as analysis of the stability of the nematic order transition towards other orders such as

superconductivity [168, 169, 170, 247] in Moiré systems.

4.2 Interaction driven Metal-Insulator Transition with

Charge Fractionalization

4.2.1 Introduction

Many correlated phenomena have been observed in graphene-based moiré systems,

such as high temperature superconductivity (compared with the bandwidth of the moiré

bands), correlated insulators [248, 249, 250, 251, 252, 224, 253, 254, 255], and the strange

metal phase [256, 135], etc. The most fundamental reason for the emergence of these

correlated physics is that the slow modulating moiré potential leads to very narrow

bandwidths [257, 258]. Great theoretical interests and efforts have been devoted to the

graphene based moiré systems [259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 225, 269,

270, 271, 272, 273, 274, 275]. But the theoretical description and understanding of the

graphene based moiré systems may be complicated by the fact that in the noninteracting

limit the moiré mini bands can have various types of either robust or fragile nontrivial

topologies [276, 277, 278, 279, 280, 281, 282, 283, 284, 285], although the exact role of
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the band topology to the interacting physics at fractional filling is not entirely clear.

Hence similar narrow band systems with trivial band topology and unambiguous concise

theoretical framework would be highly desirable. It was proposed that much of the

correlated physics of the transition metal dichalcogenide (TMD) moiré heterostructure

can be captured by an extended Hubbard model with an effective spin-1/2 electron on a

triangular moiré lattice [286]

H =
∑
r,r′,α

−tr,r′c†r,αcr′,α +H.c.+
∑
r

Unr,↑nr,↓ + · · · (4.21)

The electron operator cr,α is constructed by states within a topologically trivial moiré

mini band. Due to the strong spin-orbit coupling, the spin and valley degrees of freedom

are locked with each other in the TMD moiré system. We will use α =↑, ↓ or 1, 2 to

denote two spin or equivalently two valley flavors. When a moiré band is partially filled,

the correlated physics within the partially filled moiré mini bands may be well described

by Eq. 4.21, which only contains half of the degrees of freedom of a mini band in a

graphene based moiré system. The ellipsis in Eq. 4.21 can include further neighbor

hopping, “spin-orbit” coupling terms allowed by symmetry [287], and further neighbor

interaction. Note the “spin-orbit” coupling here refers to the hopping terms in Eq. 4.21

that depend on the spin index α and should not be confused with the bare spin-orbit

coupling within the TMD system before the moiré superlattice is imposed. The TMD

moiré systems are hence considered as a simulator for the extended Hubbard model on

a triangular lattice [288].

Like the graphene-based moiré systems, the TMD moiré heterostructure is a platform

for many correlated physics. This section mainly concerns the metal-insulator transition

(MIT) driven by interaction. The MIT of the Hubbard model on a triangular lattice has

attracted much numerical efforts recently [289, 290]. The symmetry of the TMD moiré
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heterostructure is different from the simplest version of the Hubbard model, hence even

richer physics can happen in the system. Continuous MIT has been reported at half-filling

of the moiré bands (electron filling ν = 1/2, or one electron per moiré unit cell on average)

in the TMD moiré system [39, 40]. The experimental tuning parameter of the MIT in

the TMD heterostructure is the displacement field, i.e. an out-of-plane electric field,

which tunes the width of the mini moiré bands, and hence the ratio between the kinetic

and interaction energies in the effective Hubbard model. Correlated insulators have also

been observed at various other fractional electron fillings, though the nature of the MITs

at these fractional fillings have not been thoroughly inspected experimentally [291, 292,

293, 294]. In this section we will mainly focus on ν = 1/2, but other fractional fillings

will also be briefly discussed.

The nature of an interaction driven MIT depends on the nature of the insulator phase

near the MIT. The Hubbard model on the triangular lattice has one site per unit cell,

which based on the generalized Lieb-Shultz-Matthis theorem [117, 119] demands that the

insulator phase at half-filling should not be a trivial incompressible (gapped) state which

preserves the translation symmetry. If the insulator phase has a semiclassical spin order

that breaks the translation symmetry, the evolution between the metal and insulator

could involve two transitions: at the first transition a semiclassical spin order develops,

which reduces the Fermi surface to several Fermi pockets; and at the second transition

the size of the Fermi pockets shrink to zero, and the system enters an insulator phase. A

more interesting scenario of the MIT only involves one single transition [295, 296, 297],

but then the insulator phase is not a semiclassical spin order, instead it is a spin liquid

state with a spinon Fermi surface. An intuitive picture for this transition is that, at the

MIT, the charge degrees of freedom are gapped, but the spins still behave as if there is a

“ghost” Fermi surface. The spinon Fermi surface can lead to the Friedel oscillation just

like the metal phase [298]. The structure of the Fermi surface does not change drastically
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across the transition.

In a purely two dimensional system, conductivity (or resistivity) is a dimensionless

quantity, hence it can take universal value at the order of e2/h (or h/e2) in various

scenarios. For example, the Hall conductivity of the quantum Hall state is precisely

σH = νe2/h; the conductivity (or resistivity) at a (2 + 1)d quantum critical point also

takes a universal value at the order of e2/h (or h/e2) [299]. One central prediction given

by the theory above for interaction driven continuous MIT is that, there is a universal

resistivity jump at the order of ∼ h/e2 at the MIT compared with the metal phase; and

the critical resistivity at the MIT should also be close to the order of h/e2 (we will review

these predictions in the next section). In this section we will argue that the current

experimental observations suggest that the nature of the MIT in MoTe2/WSe2 moiré

superlattice without twisting [39] is beyond the previous theory [295, 296, 297], and we

propose an alternative candidate theory of MIT with further charge fractionalizations.

We will discuss how the alternative theory can potentially address the experimental

puzzles, and more predictions based on our theory will be made. Our assumption is that

the MIT in this system is indeed driven by electron-electron interaction (as was suggested

by Ref. [39]); If the disorder plays the dominant role in this system, the MIT may be

described by the picture discussed in Ref. [300].

The section is organized as follows: In section 4.2.2 we introduce an alternative

parton construction for systems described by the extended Hubbard model with a spin-

orbit coupling, which naturally leads to charge fractionalization at the interaction-driven

MIT even at half-filling; we also give an intuitive argument of physical effects caused by

charge fractionalization at the MIT. In section 4.2.3, we will discuss the theory for MIT

when the insulating phase spontaneously breaks the translation symmetry. Section 4.2.4

studies the theory of MIT when the insulating phase has different types of topological

orders. In section 4.2.5 we discuss various experimental predictions based on our theory,
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for the MIT and also the phases nearby. We present the details of our theory in the

appendix, including the projective symmetry group, field theories, and calculation of DC

resistivity, etc.

4.2.2 Two Parton constructions

The previous theory for the interaction-driven continuous MIT for correlated electrons

on frustrated lattices was based on a parton construction. The parton construction splits

the quantum number of an electron into a bosonic parton which carries the electric charge,

and a fermionic parton which carries the spin. In the current section we compare two

different parton constructions:

I : cr,α = brfr,α, II : cr,α = br,αfr,α. (4.22)

In parton construction-I only one species of charged bosonic parton b is introduced for

electrons with both spin/valley flavors; while in parton construction-II a separate charged

bosonic parton bα is introduced for each spin/valley flavor. As we will see later, the

two different parton constructions will lead to very different observable effects. The

construction-I is the standard starting point of the theory of MIT that was used in

previous literature [295, 296, 297]; construction-II is usually unfavorable for systems

with a full spin SU(2) invariance, because the parton construction itself breaks the spin

rotation symmetry. But the construction-II is a legitimate parton construction for the

system under study, whose band structure in general does not have full rotation symmetry

between the two spin/valley flavors.

The time-reversal symmetry of the microscopic TMD system relates the two spin/valley

flavors. But it is not enough to guarantee a full SU(2) rotation symmetry between the

two flavors. In fact, since the two flavors can be tied to the two valleys of the TMD
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material, the trigonal warping of the TMD bands, which takes opposite signs for the

two different valleys, can lead to the breaking of such an SU(2) rotation symmetry. To

estimate the trigonal warping effect in the Hubbard model, one can compare the k2 term

and the k3x − 2kxk
2
y term in the electron dispersion of one of the two layers in the het-

erostructure expanded at one valley. Then the relative strength of the trigonal warping

compared to the SU(2)-invariant hopping in Eq. 4.21 is given by the ratio between the

lattice constant of the original TMD material and that of the morié superlattice. In addi-

tion, the natural microscopic origin of the interactions in the Hamiltonian Eq. 4.21 is the

Coulomb interaction between the electrons. The Coulomb interaction when projected to

the low-energy bands relevant to the moiré-scale physics is expected to contain SU(2)-

breaking interaction terms. The momentum conservation only guarantees the valley U(1)

symmetry. Assuming the unscreened Coulomb interaction between electrons before the

projection to the low-energy bands, further neighbor interaction will appear in the ex-

tended Hubbard model. The relative strength of the SU(2)-breaking interaction terms

obtained from the projection compared to the SU(2)-invariant interactions can again be

estimated by the ratio between the lattice constant of the original TMD material and

the moiré superlattice, as the Fourier transform of unscreened Coulomb interaction in 2d

space is Vq ∼ 1/q.

The most important difference between these two parton theories resides in the filling

of the bosonic partons. Since each bosonic parton carries the same electric charge as an

electron, the total number of bosonic partons should equal to the number of electrons.

Hence at electron filling ν (meaning 2ν electrons per unit cell), the filling factor of boson

b in construction-I is νb = 2ν, i.e. 2ν bosonic parton per unit cell; in construction-II

the filling factor of boson bα has filling factor ναb = ν for each spin/valley flavor. Hence

even with one electron per site (half-filing or ν = 1/2 of the extended Hubbard model),

the bosonic parton in construction-II is already at half filling for each spin/valley flavor.

126



Field Theoretical Study of Moiré Systems Chapter 4

The half-filling will lead to nontrivial features inside the Mott insulator phase, as well

as at the MIT. Another more theoretical difference is that, in construction-I there is

one dynamical emergent U(1) gauge field aµ which couples to both b and fα; while in

construction-II there are two dynamical U(1) gauge fields aα,µ, one for each spin/valley

flavor.

In construction-I, the bosonic parton b is at integer filling, and the MIT is naturally

interpreted as a superfluid to Mott insulator (SF-MI) transition of boson b. At the MIT,

using the Ioffe-Larkin rule [301], the DC resistivity of system is ρ = ρb+ρf , where ρb and

ρf are the resistivity contributed by the bosonic and fermionic partons respectively. ρf

caused by disorder or interaction such as the Umklapp process is a smooth function of

the tuning parameter, the drastic change of ρ across the MIT arises from ρb. In the metal

phase, i.e. the “superfluid phase” of b, ρb is zero, and the total resistivity is just given by

ρf . Also, in the superfluid phase of b, the U(1) gauge field aµ that couples to both b and

fα is rendered massive due to the Higgs mechanism caused by the condensate of b. In

the insulator phase, ρb and ρ are both infinity, and the system enters a spin liquid phase

with a spinon Fermi surface of fα that couples to the dynamical U(1) gauge field aµ.

The MIT which corresponds to the condensation of b belongs to the 3D XY universality

class. The dynamical gauge field aµ is argued to be irrelevant at the transition due to

the overdamping of the gauge field that arises from the spinon Fermi surface [296, 297],

and hence does not change the universality class of the SF-MI transition of b.

In parton construction-I, at the MIT the bosonic parton contribution to the resistivity

ρb is given by ρb = Rh/e2, where R is an order-1 universal constant. In the order

of limit T → 0 before ω → 0, R is associated to the 3D XY universality class [302],

because the gauge field aµ is irrelevant as mentioned above. This universal conductivity

at the 3D XY transition has been studied through various analytical and numerical

methods [299, 303, 304, 305, 306, 307, 308, 309, 310]. At finite T and zero frequency,
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the gauge field aµ can potentially enhance the value R to R′ > R, based on a large-

N calculation in Ref. [311] (N is different from N in this section). The evaluation in

Ref. [311] gave R′ ∼ 7.92, while we evaluate the same quantity to be R′ ∼ 7.44. Hence

the prediction of the construction-I is that, the DC resistivity of the system right at the

MIT has a universal jump compared with the resistivity at the metallic phase close to

the MIT [296, 297], i.e. ∆ρ = ρb = R′h/e2. With moderate disorder, at the MIT ρb of

the bosonic parton is supposed to dominate the resistivity ρf of the fermionic parton fα,

hence the total resistivity ρ = ρb + ρf should be close to ρb.

In the experiment on the MoTe2/WSe2 moiré superlattice, it was reported that dis-

order in the system is playing a perturbative role, and the continuous MIT is mainly

driven by the interaction [39]. However, the reported resistivity ρ increases rapidly with

the tuning parameter (the displacement field) near the MIT. The bare value of ρ near and

at the MIT is significantly greater than h/e2 (and significantly larger than the computed

value of ρb ∼ R′h/e2 mentioned above), and it is clearly beyond the Mott-Ioffe-Regel

limit, i.e. the system near and at the MIT is a very “bad metal” [312, 313]. This sug-

gests that the MIT is not a simple SF-MI transition of b, or in other words b should be

“much less conductive” compared with what was predicted in construction-I considered

in previous literature. We will demonstrate that construction-II can potentially address

the large resistivity at the MIT. The most basic picture is that, since b1 and b2 are both

at half-filling, the LSM theorem [117, 119] dictates that the Mott insulator phase of each

flavor of boson cannot be a trivial insulator, namely the Mott insulator must either be

a density wave that spontaneously breaks the translation symmetry, or have topological

order. In either case, the MIT is not a simple 3D XY transition, and the most prominent

feature of the transition is that, the bosonic parton number (or the electric charge) must

further fractionalize.

The MIT with charge fractionalization will be discussed in detail in the next section
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using the dual vortex formalism, but the consequence of this charge fractionalization can

be understood from a rather intuitive picture. Suppose b fractionalizes into N parts at

the MIT, meaning the charge carriers at the MIT have charge e∗ = e/N , then each charge

carrier will approximately contribute a resistivity at the order of h/e2∗ ∼ N2h/e2 at the

MIT; and if there are in total Nb species of the fractionalized charge carriers, at the MIT

the bosonic parton will approximately contribute resistivity

ρb ∼
N2h

Nbe2
. (4.23)

There is a factor of Nb in the denominator because intuitively the total conductivity of

b will be a sum of the conductivity of each species of fractionalized charge carriers, i.e.

σb =
∑Nb

j=1 σj, in the unit of e2/h (a more rigorous rule of combining transport from

different partons will be discussed later). Hence when N2/Nb > 1, the construction-II

with inevitable charge fractionalization can serve as a natural explanation for the large

ρ at the MIT, and it will also predict a large jump of resistivity ∆ρ at the MIT.

4.2.3 Mott insulator with translation symmetry breaking

General Formalism

In this section we will discuss the MIT following the parton construction-II discussed

in the previous section. The MIT is still interpreted as the SF-MI transition of both

spin/valley flavors of the bosonic parton bα, although as we discussed previously the

insulator cannot be a trivial incompressible state of bα. In the superfluid phase of bα,

both U(1) gauge fields a1,µ and a2,µ that couple to the two flavors of partons are gapped

out by the Higgs mechanism, and the system enters a metal phase of the electrons; b1 and

b2 must undergo the SF-MI transition simultaneously, since the time-reversal or spatial
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Figure 4.4: The triangular moiré lattice, and its dual honeycomb lattice. In the
parton construction-II, the bosonic parton bα is at half-filling for each spin/valley
flavors, which becomes a π−flux of the dual gauge field Aµ through the hexagon of
the dual honeycomb lattice. Hence the vortex ψ defined on the dual honeycomb lattice
does not have a uniform hopping amplitude, the dashed links on the dual honeycomb
lattice have negative hopping amplitudes. The symmetry of the lattice will be realized
as a projective symmetry group. There are eight dual sites per unit cell (shaded area)
in this gauge choice. At each spin/valley flavor, there are translation symmetries T1,2,
a rotation symmetry R 2π

3
, and a product of reflection Px(x → −x) and time-reversal

T . We also argue that Py is a symmetry of the system as long as there is no valley
mixing; and the six-fold rotation Rπ/3 becomes a good approximate symmetry of the
Hubbard model in the case of long moiré lattice constant.

reflection symmetries both interchange the two flavors of partons due to the spin-valley

locking.

The dual vortex theory [314, 315, 316] is the most convenient formalism that describes

a transition between a superfluid and a nontrivial insulator of a boson at fractional filling.

If we start with a boson b, after the boson-vortex duality, a vortex of the superfluid phase

of b becomes a point particle that couples to a dynamical U(1) gauge field Aµ, which

is the dual of the Goldstone mode of the superfluid (not to be confused with the U(1)

gauge field aµ mentioned before that couples to the bosonic parton b). In the dual picture,

the superfluid phase of b (which corresponds to the metal phase of the electron) is the

insulator phase of the vortex field; while the Mott insulator phase of b corresponds to
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the condensate of the vortices, which “Higgses” the U(1) gauge field Aµ, and drives the

boson b into a gapped insulator phase. If at low energy there is only one component of

vortex field with gauge charge 1 under Aµ (which corresponds to integer filling of boson

b), the insulator phase of b is a trivial insulator without any further symmetry breaking

or topological order; if there are more than one component of the vortex fields at low

energy, or if the vortex field carries multiple gauge charges of Aµ, the insulator must be

of nontrivial nature.

For example, when b has a fractional filling νb = 1/q with integer q, Ref. [317, 174]

studied the quantum phase transition between the bosonic SF and various MIs with

commensurate density waves which spontaneously break the translation symmetry but

have no topological order. The study is naturally generalized to filling factor νb = p/q

with coprime integers (p, q). We can use this formalism in our system. Hereafter we

focus on one spin/valley flavor α, and the index α will be hidden for conciseness. In this

case the theory for the SF-MI transition at one spin/valley flavor is:

L(1) =
N−1∑
j=0

(|(∂µ − iAµ)ψj|2 + r|ψj|2) + u(
N−1∑
j=0

|ψj|2)2

+
i

2π
A ∧ d(a+ eAext) + · · · (4.24)

Here ψj with j ∈ {0, · · ·N − 1} are N flavors of vortex fields of the boson b at low

energy, and Aµ is the dual gauge field of boson b: 1
2π
dA = Jb, where Jb is the current

of boson b. aµ is the gauge field that couples to both b and f , and Aext is the external

electromagnetic field. The reason there are N flavors of the vortex field is that, the

vortex which is defined on a dual honeycomb lattice will view the partially filled boson

density as a fractional background flux of the dual gauge field Aµ through each hexagon,

and the band structure of the vortex will have multiple minima in the momentum space.
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The degeneracy of the multiple minima is protected by the symmetry of the triangular

lattice. ψj transforms as a representation of the projective symmetry group (PSG) of

the lattice. Notice that since Eq. 4.24 describes one of the two spin/valley flavors, the

PSG that constrains Eq. 4.24 should include translation, and 2π/3 rotation of the lattice

(R 2π
3
). There is another more subtle symmetry PxT for each spin/valley flavor of the

boson and vortex fields. Px that takes x → −x, and time-reversal T both exchange the

two spin/valley indices, but their product will act on the same spin/valley species, and

part of its role is to take momentum ky to −ky.

In the appendix we will argue that Py which takes y to −y within each valley is also a

good symmetry of the system, as long as valley mixing is negligible. One consequence of

the Py symmetry is that the expectation value of gauge flux da can be set to zero for the

theory Eq. 4.24, or equivalently the Py symmetry ensures that the “chemical potential”

term ψ∗
j∂τψj does not appear in Eq. 4.24, as Py transforms a vortex to anti-vortex:

ψa → Uabψ
∗
b . Also, with long moiré lattice constant, the trigonal warping k3x − 3kxk

2
y in

each valley of the original BZ of the system becomes less important compared with the

leading order quadratic dispersion expanded at each valley, hence the six-fold rotation

Rπ/3 becomes a good approximate symmetry of the effective Hubbard model with long

moiré lattice constant.

The theory in Eq. 4.24 also has an emergent particle-hole symmetry. The simplest

choice of the particle-hole symmetry is ψa → Uabψ
∗
b , A→ −A, a→ −a and Aext → −Aext.

Although we used the same transformation matrix Uab as Py, this emergent particle-hole

symmetry is different from Py as it does not involve any spatial transformations. Note

that any (spatially uniform) Py-symmetric terms involving only the “matter fields” ψj

must also preserve this emergent particle-hole symmetry. Another potentially relevant

particle-hole-symmetry-breaking perturbation that needs to be examined is given by the

finite density of the fluxes dA. dA is tied to the physical U(1) charge density (compared
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to the charge density set by the fixed electron filling ν = 1/2) and hence should have

a vanishing spatial average. At the SF-MI transition point, the translation symmetry

of the theory Eq. 4.24 and the fact that dA has a vanishing spatial average guarantee

that dA has a vanishing expectation value everywhere, which respects the particle-hole

symmetry. Therefore, the particle-hole symmetry is a valid emergent symmetry at the

SF-MI critical point described by Eq. 4.24. The same argument would also conclude the

emergent particle-hole symmetry at the ordinary SF-MI transition in the Bose-Hubbard

model.

For parton construction-II, when the electron has filling ν = 1/2, both b1 and b2 are

at filling ναb = 1/2. For each flavor of bα, the formalism in Ref. [174] would lead to a

dual vortex theory with N = 4 components of vortex fields, i.e. there are four degenerate

minima of the vortex band structure in the momentum space for each spin/valley index.

This calculation is analogous to the frustrated Ising model on the honeycomb lattice [318,

319]. Using the gauge choice of Fig. 4.4, the four minima are located at the K and K ′

points of the reduced Brillouin zone (BZ), with two fold degeneracy at each point.

From N = 4 to “N = ∞”

Ref. [174] considered a specific band structure of the vortex, which only involved

the nearest neighbor hopping of vortices on the dual honeycomb lattice. But there is no

fundamental reason that further neighbor hopping of vortices should be excluded. Indeed,

once we take into account of further neighbor hopping, the dual vortex theory has a much

richer possibility. We have explored the phase diagram of the dual vortex theory up to

seventh neighbor hopping, and we obtained the phase diagram in Fig. 4.5a. Further

neighbor hopping of the vortex field can modify the band structure, and lead to N = 6

or N = 12 components of vortex fields by choosing different hopping amplitudes. The

N = 6 minima are located at three inequivalent M points of the reduced BZ (Fig. 4.5),
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Figure 4.5: (a) The minima of the vortex band structure. With nearest neighbor
vortex hopping on Fig. 4.4, the minima locate at the K and K ′ points of the Brillouin
zone, each K point has two fold degeneracy; with further neighbor hoppings, the
minima can shift to the threeM points, still with two fold degeneracy at eachM point.
(b) The phase diagram of vortex modes with seventh neighbor hopping t7 = 0.1t1,
and by tuning t2 there are two regions in the phase diagram with N = 12 vortex
modes at low energy. The 12 vortex modes are located either on the lines between Γ
and K/K ′ or Γ and M . (c) With only t1 and t2, there is a large region of the phase
diagram where there is a ring degeneracy of the vortex band structure. (d) All the
symmetries (including approximate symmetries) of the system can protect up to 24
degenerate vortex modes, which locate at 12 incommensurate momenta in the BZ.

each M point again has two-fold degeneracy. The two-fold degeneracy at each M point

is protected by the translation symmetry of the triangular moiré lattice only, which is

required by the LSM theorem. The shift of the vortex field minima from the K points

to M points is similar to what was discussed in the context of frustrated quantum Ising

models with further neighbor couplings [320, 321]. With symmetries T1,2, R 2π
3
and PxT

at each spin/valley flavor, the degeneracy of the N = 6 minima at the M points are

protected.

There are two regions in the phase diagram in Fig. 4.5b with N = 12 modes of vortex,

two at each momentum. The six incommensurate momenta at the minima of the vortex

band structure can be located either on the lines between Γ and K/K ′ or Γ andM . With

the Rπ/3 symmetry that becomes a good approximate symmetry with long moiré lattice

134



Field Theoretical Study of Moiré Systems Chapter 4

constant, the degeneracy of the N = 12 vortex modes is protected. In principle, all the

symmetries together including Rπ/3 can protect up to N = 24 degenerate minima, as

shown in Fig. 4.5d.

For a theory with N components of vortex fields, the electric charge carried by the

boson b will fractionalize. Under the boson-vortex duality 1
2π
dA = Jb, the boson number

of b becomes the flux number of the dual gauge field Aµ. The gauge flux of Aµ is trapped

at the vortex core of each field ψj (we denote the vortex of ψj as φj). With N components

of the vortex fields, the vortex of each ψj field will carry 1/N flux quantum of the gauge

field Aµ, hence the charge e∗ of each fractionalized charge carrier should be e/N at the

MIT. And there are in total Nb = 2N species of the charge carriers (the factor of 2 comes

from the two spin/valley flavors).

With just t1 and t2 (first and second neighbor vortex hopping), there is a large region

of the parameter space where the minima of the vortex band structure form a ring.

This one dimensional ring degeneracy is not protected by the symmetry of the system,

but its effect may still be observable for a finite energy range. A ring degeneracy is

analogous to N = ∞ in Eq. 4.24. Condensed matter systems with a ring degeneracy

have attracted considerable interests [322, 323, 324, 325]. By integrating out the vortices

with ring degeneracy, a “mass term” for the transverse component of Aµ is generated

in the infrared limit [325] (in the limit of momentum goes to zero before frequency),

meaning the fluctuation of Aµ is highly suppressed, which is consistent with the intuition

of N = ∞.

The ellipsis in Eq. 4.24 includes other terms allowed by the PSG of the triangular

lattice, but break the enlarged flavor symmetry of the CPN−1 model field theory. More

details about PSG, extra terms in the Lagrangian, coupling to fermionic parton fα [326],

and the possible valence bond solid orders with N = 6 will be discussed in appendix A

and B. The exact fate of the critical theory in the infrared is complicated by these extra
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perturbations. It was shown previously that nonlocal interactions can drive a transition

to a new fixed point [89, 192, 193], and here nonlocal interactions arise from coupling to

the fermionic partons [326]. Hence the transition may eventually flow to a CFT different

from the CPN−1 theory in Eq. 4.24, or be driven to a first order transition eventually.

But as long as the first order nature is not strong, the charge fractionalization and

large resistivity to be discussed in the next subsection is expected to hold at least for a

considerable energy/temperature window.

So far we have not paid much attention to the dynamical gauge fields aµ in parton

construction-I or aα,µ in construction-II shared by the bosonic and fermionic partons, as

the gauge coupling between b (bα) and the gauge field is irrelevant at the MIT with a

background spinon Fermi surface. Here we briefly discuss the fate of the spinon Fermi

surface in the insulator phase. When the bosonic parton b is gapped, the theory of

spinon Fermi surface coupled with the dynamical U(1) gauge field is a problem that has

attracted a great deal of theoretical efforts [327, 328, 329, 330, 331, 332, 333]. These

studies mostly rely on a “patch” theory approximation of the problem, which zooms in

one or two patches of the Fermi surface. Then an interacting fixed point with a nonzero

gauge coupling is found in the IR limit based on various analytical perturbative expansion

methods.

Previous studies have also shown that the non-Fermi liquid obtained through coupling

a Fermi surface to a dynamical bosonic field can be instable against BCS pairing of

fermions [334, 335, 336, 337, 338, 339, 340]. If there is only one flavor of U(1) gauge

field, the low energy interacting fixed point is expected to be robust against this pairing

instability, because the U(1) gauge field leads to repulsive interaction between the spinons.

However, when there are two flavors of U(1) gauge fields [340, 341], like the case in our

parton construction-II, the two U(1) gauge fields can lead to interflavor spinon pairing

instability. This interflavor pairing can still happen at the MIT. But depending on the
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microscopic parameters this instability can happen at rather low energy scale.

Resistivity at the MIT

For low frequency and temperature, the resistivity of a system is usually written as

ρ(x) with x = ω/T . The DC conductivity at zero temperature corresponds to x = 0,

i.e. the limit ω → 0 before T → 0. As we have mentioned, the interaction driven MIT

has a jump of resistivity at the MIT compared with the metal phase near MIT, and this

jump is given by the resistivity ρb of the bosonic parton bα. For a bosonic system with

an emergent particle-hole symmetry in the infrared, ρb(x) with x = 0 or x = ∞ have

attracted most studies. In general both ρb(0) and ρb(∞) should be universal numbers at

the order of ∼ h/e2. The reason ρb(0) could be finite even without considering disorder

and Umklapp process is that, with an emergent particle-hole symmetry in the infrared

discussed in the previous subsection, there is zero overlap between the electric current

and the conserved momentum density (extra subtleties about this from hydrodynamics

will be discussed in section VI). The universal ρb(0) was evaluated in Ref. [311] for the

interaction-driven MIT without charge fractionalization. The calculation therein was

based on Boltzmann equation in a theoretical large−N limit and eventually N was taken

to 1 (we remind the readers that the N introduced in Ref. [311] was for technical reasons,

it is not to be confused with N used in this section).

We have generalized the computation in Ref. [311] to our case with N−components of

vortex fields and charge fractionalization. To proceed with the computation we need to

turn on “easy plane” anisotropy to Eq. 4.24 and perform duality to the basis of fractional

charge carriers φj (Eq. A.29). The φj will be coupled to multiple gauge fields which are

the dual of the ψj fields. Eventually the total resistivity ρb(0) is obtained through a
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generalized Ioffe-Larkin rule, which combines the resistivity of each parton φj into ρb:

ρb =
ℏ
e2

(
N−1∑
j=0

ρb,j

)
. (4.25)

ρb,j is the resistivity of each charge carrier φj when its charge is taken to be 1. The detail

of the computation is presented in the appendix, and we summarize the results here.

For N flavors of vortices in Eq. 4.24, the resistivity ρb(0) at the MIT roughly increases

linearly with N , as was expected through the intuitive argument we gave before:

ρb(0) = ∆ρ =
(
R(0) +R(1)(N − 1)

) h
e2
, (4.26)

where R(0) ∼ 3.62, R(1) ∼ 1.68. We would like to compare our prediction with the

previous theory of MIT without charge fractionalization. In the previous theory, the DC

resistivity jump is evaluated to be ∆ρ ∼ 7.92h/e2 [311] (we reproduced this calculation

and our result at N = Nb = 1 is 7.44h/e2). Eq. 4.23 suggests that when N ≥ 4, the

resistivity jump in our case is indeed larger than that predicted by the previous theory

of MIT.

We would also like to discuss the AC resistivity ρb(∞). One way to evaluate ρb(∞) is

to again start with Eq. A.29, and follow the same strategy as the calculation of the DC

resistivity. According to the generalized Ioffe-Larkin rule, the AC resistivity contributed

by each valley is given by

ρb = N
1

σφ

ℏ
e2
, σφ = lim

ω→0

1

iω
⟨JφωJ

φ
−ω⟩p⃗=0, (4.27)

where Jφ = iφ∗
j∇φj + h.c. is the current of the charge carrier φj. With the theoretical

large-N limit mentioned above, the effects of all the dynamical gauge fields are sup-
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pressed, and φj will contribute conductivity σφ(∞) = 1
16

(contrary to DC transport,

σφ(∞) does not need collisions; the effects of dynamical gauge fields can be included

through the 1/N expansion). Eventually one would obtain resistivity from each valley

ρb =
8N

π

h

e2
, (4.28)

the final resistivity of the system is half of Eq. 4.28 due to the two spin/valley flavors.

With N = 1, the transition should belong to the ordinary 3D XY universality class, and

the value given by Eq. 4.28 is not far from what was obtained through more sophisti-

cated methods (see for instance Ref. [305, 304, 306], ρb ∼ 2.8h/e2). This should not be

surprising as the 3D XY universality class can be obtained perturbatively from the free

boson theory. In our current case with charge fractionalization, with N ≥ 4, the total

AC resistivity which is half of the value in Eq. 4.28 is larger than the universal resistivity

at the 3D XY transition.

Another way to evaluate the resistivity of Eq. 4.24 is by integrating out ψj from

Eq. 4.24, and an effective Lagrangian for Aµ is generated

L =
∑
pµ

Np

16

(
δµν −

pµpν
p2

)
Aµ(p)Aν(−p). (4.29)

This effective action is supposed to be accurate in the limit of N → ∞. The electric

current carried by b is J b = e
2π
dA, hence the current-current correlation can be extracted

from the photon Green’s function based on the effective action Eq. 4.29:

ρb,N→∞ =
πN

8

h

e2
. (4.30)

Again the final resistivity of the system is half of Eq. 4.30 due to the two spin/valley

flavors. The evaluation Eq. 4.30 is still proportional to N just like Eq. 4.28. These two
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different evaluations discussed above give different values for N = Nb = 1, and compared

with the known value of the universal resistivity at the 3D XY transition, the evaluation

in Eq. 4.28 is much more favorable, though the evaluation Eq. 4.30 based on Eq. 4.29 is

supposed to be accurate with large N .

When there is a ring of degeneracy in the vortex band structure, as we mentioned

before the gauge field Aµ will acquire a “mass term” after integrating out ψj [325]. In

this case the resistivity of the system at the MIT will be infinity, as the dynamics of Aµ is

fully suppressed by the mass term in the infrared. One can also integrate out the action

of Aµ with the mass term, and verify that the response theory of Aext is no different from

that of an insulator in the infrared limit. This is consistent with both Eq. 4.28,4.30 by

naively taking N to infinity. In Ref. [325] when the boson field has a ring degeneracy,

the phase is identified as a bose metal; this is because in Ref. [325] it is the boson with

ring degeneracy that carries charges. But in Eq. 4.24 the electric charge is carried by the

flux of Aµ.

4.2.4 Mott insulator with topological order

As we explained in the previous subsection, due to the fractional filling of boson bα,

the vortex dynamics is frustrated by the background fractional flux through the hexagons.

To drive the system into an insulator phase, the vortex can either condense at multiple

minima in the BZ as was discussed in the previous section, or form a bound state that

carries multiple gauge charge of Aµ and become “blind” to the background flux. In

parton construction-II, with electron filling ν = 1/2, each flavor of boson is at filling

νb = 1/2. The double-vortex, i.e. bound state of two vortices, or more generally the

bound state of N vortices with even integer N , no longer see the background flux. Hence

the N -vortex can condense at zero momentum, and its condensate will drive the system
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into a ZN topological order.

After the boson-vortex duality, the theory for the N -vortex condensation at one of

the two spin/valley flavors is

L(2) = |(∂µ − iNAµ)ψ|2 + r|ψ|2 + g|ψ|4

+
i

2π
A ∧ d(a+ eAext) + · · · (4.31)

The condensate of ψ will break the U(1) gauge field to a ZN gauge field, whose deconfined

phase has a nontrivial ZN topological order. In the ZN topological order as well as at

the MIT, the charge carrier is an anyon of the ZN topological order, and it carries charge

e∗ = e/N . We still label the fractional charge carrier as φ. φ carries charge e/N , and

is coupled to a ZN gauge field originated from the ZN topological order discussed in the

previous paragraph.

In our case, in order to preserve the time-reversal symmetry, both spin/valley flavors

should form a ZN topological order simultaneously. Hence there is one species of φα

field for each spin/valley flavor. The MIT can equally be described as the condensation

of the φα field, and since the ZN gauge field does not lead to singular correction in the

infrared, the condensation of φα is a 3D XY∗ transition, and the transition for N = 2 was

discussed in Ref. [59, 342, 119, 15, 16, 343]. The bα field is now a composite operator of

φα. In the condensate of φα, the electron operator cα is related to the fermionic parton

operator fα through cα ∼ ⟨bα⟩fα ∼ ⟨φNα ⟩fα. The coupling between the two flavors of φα,

i.e. the coupling |φ1|2|φ2|2 is irrelevant at the decoupled 3D XY∗ transition according

to the known critical exponents of the 3D XY∗ transition. There are also couplings

such as |φα|2f †
αfα allowed by all the symmetries, but after formally integrating out the

fermions, the generated couplings for φα is also irrelevant at the two decoupled 3D XY∗
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universality class. The reason is that after formally integrating out the fermions, terms

such as |ω|
q
|φα|2ω,q⃗|φβ|2−ω,−q⃗ can be generated, but this term is irrelevant knowing that the

standard critical exponent ν > 2/3 for the 3D XY∗ transition.

Following the large−N calculation discussed before, the DC resistivity jump ρb(0)

would be N2/2 times that of the previous theory [311], namely

ρb(0) ∼ R(2)N2 h

e2
, (4.32)

where R(2) = R′/2 ∼ 3.7 based on our evaluation. The AC resistivity jump at the MIT

is enhanced by the same factor compared with the previous theory. We also note that

the fractional universal conductivity at the transition between the superfluid and a Z2

topological order was observed numerically in Ref. [343].

Another set of natural topological orders a boson at fractional filling can form are

bosonic fractional quantum Hall (bFQH) states which are close analogues to the bosonic

Laughlin’s wave function. We would like to discuss this possibility as a general explo-

ration, although this state breaks the Py symmetry (but it still preserves the product PxT

symmetry). If we interpret the half-filled boson at each site as a quantum spin-1/2 sys-

tem, this set of states are analogous to a chiral spin liquid [344, 345]. The Chern-Simons

theory for this set of states at each valley reads

Lcs = − ik

4π
A ∧ dA+

i

2π
A ∧ d(a+ Aext), (4.33)

with an even integer k and a dynamical Spinc U(1) gauge field A. The topological order

characterized by this theory is the SU(k)1 topological order. Here, the integer k needs to

be even so that this theory is compatible with the LSM constraint imposed by the boson

filling 1/2 on the lattice [346]. This is because the boson filling 1/2 requires the topological
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phase to contain an Abelian anyon that carries a fractional charge 1/2 (modulo integer).

There should be one such anyon per unit cell to account for the boson filling 1/2 on the

lattice. The fact that such an anyon carries a fractional charge 1/2 implies that this

anyon should generate under fusion an Abelian group Zp with p an even number. Such

a fusion rule is incompatible with any odd value of k. Therefore, k needs to be even in

the theory given by Eq. 4.33. The time-reversal of the TMD moiré system demands that

the bosonic parton bα with opposite spin/valley index α forms a pair of time-reversal

conjugate bFQH states. Or in other words if we take both spin/valley flavors together,

this state is a fractional topological insulator, like the state discussed in Ref. [? ].

The MIT is now a direct transition between the bFQH state and the superfluid of

bα. When the even integer k is k = 2n2 with odd integer n, there is a natural theory

for this direct continuous transition, and its simplest version with n = 1 was proposed

in Ref. [347]. The transition is a 3D QED with two flavors of Dirac fermions coupled to

the dynamical U(1) Spinc gauge field Aµ (the dual of the Goldstone mode of the boson

superfluid) with a Chern-Simons term at level-n2, and the fermions have gauge charge-n:

L(3) =
2∑
j=1

χ̄jγ · (∂ − inA)χj +Mχ̄jχj −
in2

4π
A ∧ dA

+
i

2π
A ∧ d(a+ eAext) + · · · (4.34)

In this theory, the fact that A is a Spinc U(1) gauge field and that n is odd guarantee

that this theory describes the phases of a boson. A Spinc connection Aµ means a U(1)

gauge field with a “charge-statistics relation”: there is no fermionic object that is neutral

under Aµ. When Aµ is a Spinc U(1) gauge field, and n is an odd integer in Eq. 4.34,

Eq. 4.34 describes an interacting state of bosons that carries electric charge e. The

charge−e object of Eq. 4.34 that is also neutral under Aµ, is a composite of 2π flux of
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Aµ and n fermions χ. This composite is a boson as long as n being an odd integer, and

this composite should be identified as bα in Eq. 4.22. The ellipsis in this Lagrangian

includes other terms such as the Maxwell term of the gauge field Aµ. Please note that

this equation is for one of the two spin/valley flavors of the physical system. The mass

M of the Dirac fermions is the tuning parameter of the transition. With one sign of

the mass term, after integrating out the Dirac fermions, the Spinc U(1) gauge field A

will acquire a Chern-Simons term at level −2n2, which describes the SU(k)1 topological

order with k = 2n2. With the opposite sign of M , there is no Chern-Simons term of

the gauge field A after integrating out the Dirac fermions, and the Maxwell term of the

gauge field A is the dual description of the superfluid phase. Hence by tuning M the

system undergoes a transition between the k = 2n2 bFQH state and the superfluid state

of b (the metal phase of the original electron system).

The translation symmetry of the system actually guarantees that the two flavors of

Dirac fermions are degenerate in Eq. 4.34. If these two Dirac fermions are not degenerate,

an intermediate topological order is generated by changing the sign of the mass of one of

the Dirac fermions in Eq. 4.34. Then after integrating out the fermions, the gauge field

A acquires a total CS term with an odd level −n2, which violates the LSM constraint

imposed by the boson filling 1/2. Therefore, the masses of the two flavors of the Dirac

fermions in Eq. 4.34 should be the same. In fact, for the simplest case with n = 1 (k = 2),

an explicit parton construction of this transition can be given following the strategy in

Ref. [347], and the two Dirac fermions in Eq. 4.34 are two Dirac cones of a π−flux state

of χ on the triangular lattice. The degeneracy of these two Dirac fermions is protected

by the translation symmetry of the triangular lattice. From the parton formalism one

can also see that the boson b is constructed as a product of the two fermions χi.

At the transition M = 0, though it is difficult to compute the resistivity of Eq. 4.34

exactly, the resistivity ρ(x) should scale as 1/k with large k ∼ n2, as after integrating

144



Field Theoretical Study of Moiré Systems Chapter 4

out χj the entire effective action of A scales linearly as k. Then after integrating out A,

the response theory to Aext is proportional to 1/k.

4.2.5 Summary of Predictions

So far we have discussed three different kinds of possible Mott insulators at half filling

of the extended Hubbard model, based on the parton construction-II: (1) Mott insulators

with translation symmetry breaking; (2) a ZN topological order at each spin/valley flavor

with even integer N ≥ 2; and (3) a pair of conjugate bFQH states at two spin/valley

flavors. For all scenarios, we have evaluated the bosonic parton contribution to the

resistivity ρb at the MIT, which is also the universal jump of resistivity ∆ρ. The predicted

resistivity jump for the three scenarios are summarized in the table below.

Nature of Insulator ∆ρ, or ρb

(1) Density wave ρb(0) ∼ (R(0) +R(1)(N − 1)) h
e2

(2) ZN TO each flavor ρb(0) = R(2)N2 h
e2

(3) Conjugate bFQH ρb(x) ∼ 1
k
h
e2

Another observable effect predicted by the previous theory of interaction-driven MIT

is the scaling of quasi-particle weight
√
Z near the MIT [296, 297], where

√
Z ∼ rβ1 ∼

|r|0.33. Our theory also gives a different prediction of the quasi-particle weight compared

with the previous theory, and this is most conveniently evaluated for scenario (2). In the

metal phase but close to the MIT, the quasi-particle weight scales as

√
Z ∼ ⟨φNα ⟩ ∼ |r|βN , (4.35)

where βN = ν∆N . ν ∼ 0.67 is the standard correlation length exponent at the 3D XY∗

transition (it is the same as the 3D XY transition) and ∆N is the scaling dimension of φN
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at the 3D XY transition. These exponents can be extracted from numerical simulation

on the 3D XY and XY∗ transitions. For example, when N = 2, β2 should be close to

0.8 [59, 342, 348], hence
√
Z ∼ |r|0.8. The scaling of quasi-particle weight can be checked

in future experiments through the measurement of local density of states of electrons.

For scenario (1), i.e. where the insulator has translation symmetry breaking, the

scaling of quasiparticle weight can be estimated with large-N in Eq. 4.24. The boson

creation operator b† is a monopole operator of Aµ which creates a 2π gauge flux. With

large-N in Eq. 4.24 the monopole operator has scaling dimension proportional to N [349,

350], hence the critical exponent β in the quasiparticle weight
√
Z ∼ |r|β is expected

to be proportional to N . The similar evaluation applies to Eq. 4.34, and the creation

operator b† has a scaling dimension proportional to k, which is also proportional to
√
Z.

As we explained, our theory provides a natural explanation of the anomalously large

resistivity at the MIT. Another qualitative experimental feature reported in Ref. [39] is

that, the resistivity drops rapidly as a function of temperature at the MIT where the

charge gap vanishes. Our theory also provides a natural explanation for the temperature

dependence of the critical resistivity. At zero temperature the bosonic chargeon parton b

fractionalizes into multiple partons with smaller charges, and these partons will couple to

extra gauge fields. These extra gauge fields will all confine at finite temperature. Hence

at finite temperature, there is a crossover from transport with fractionalized charge to

unfractionalized charge, which will cause a significant drop of resistivity with increasing

temperature.

In the following paragraphs we discuss physics in phases near the MIT, based on our

theory. These analysis can distinguish the three possible scenarios discussed to this point.

Let us first discuss the insulator phase at fixed electron filling ν = 1/2. The scenario

(3) describes a topological order that is essentially a topological fractional quantum spin

Hall insulator, hence this insulator phase, if does exists, must have nonchiral gapless
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modes localized at the boundary of the system. This nonchiral edge gapless modes

should lead to similar experimental phenomena as the experiments on quantum spin Hall

insulator [351]; but rather than edge conductance 2e2/h, the edge conductance of the

fractional quantum spin Hall insulator should be 2e2/(kh), which is twice of the edge

conductance of the bFQH state with CS level-k. Also, the edge conductance should be

suppressed by external magnetic field, also analogous to what was observed in Ref. [351].

The insulating phase of scenario (1) and scenario (2) also lead to distinctive pre-

dictions. In scenario (1), the electric charges are only deconfined at the MIT, but still

confined in the insulating phase, which has no topological order. Hence the charge de-

confinement of scenario (1) is analogous to the original deconfined quantum critical point

discussed in Ref. [15, 16]. The confinement of fractional charges in scenario (1) happens

even at zero temperature in the insulating phase. However, in scenario (2), the insula-

tor phase has a ZN topological order that supports deconfined fractional charge at zero

temperature even in the insulator phase. While at finite temperature, the ZN gauge field

will lead to confinement of fractional charges with confinement length ξ ∼ exp(c∆m/T ),

where ∆m is the gap of the fractionalized ZN gauge fluxes, which is an anyon with non-

trivial statistics with the fractional charges. If we look at the insulator phase close to

the MIT, the gap of the fractional charge, i.e. the e−anyon of the ZN topological order

is suppsosed to be smaller than ∆m, as the MIT corresponds to the condensation of the

e−anyon, hence at very low temperature the thermally activated e−anyon has a much

smaller distance le with each other compared with ξ. Then at low but finite temperature

the transport is governed by charge carriers with gap ∆e and charge e∗ = e/N . The

gap ∆e can be extracted from fitting the low temperature transport data versus tem-

perature. However, if one measures the tunnelling gap through tunnelling spectroscopy,

since the external device can only inject a single electron which fractionalizes into multi-

ple e−anyons, the tunneling gap should be approximately N∆e. This contrast between
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tunneling gap and the thermally activated transport gap happens in scenario (2) but not

scenario (1).

We also consider the metallic phase next to the insulator after charge doping, and we

will see the scenario (2) also leads to very nontrivial predictions due to the deconfined

nature of the ZN topological order. In scenario (2), after some charge doping, we expect

a metallic state with charge fractionalization at low temperature. The bosonic charge

carriers are coupled to the ZN gauge field as well as the U(1) gauge field aµ that are shared

with the fermionic partons fα. When the temperature is increased, the ZN gauge field will

confine, and due to the time-reversal symmetry, the confine-deconfine crossover should

happen for both spin/valley flavors simultaneously. In the following, we shall only focus

on one spin/valley. According to the Ioffe-Larkin composition rule, the total resistivity is

composed of contributions from both bosonic and fermionic partons ρ = σ−1 = σ−1
b +σ−1

f .

Let us assume the resistivity of both the bosonic and fermionic sectors are dominated

by the scattering with the gauge field aµ (this of course assumes that the momentum of

the gauge field aµ can relax through other mechanism such as disorder). This scattering

mechanism was first evaluated in Ref. [352]. The gauge-field propagator can be written

as D(ω, q)−1 = iγω/q+χdq
2, where the ω/q term is due to the Landau damping from the

fermi-surface, and the “diamagnetic” χd is roughly a constant within the temperature

window of interest. The scattering rate can then be estimated using the imaginary part

of the boson/fermion self-energy:

ImΣb,f (ω,k) =

∫ ∞

0

dω′
∫

d2k′

(2π)2
(1 + nb(ω

′))(1± nb,f (ωk′))

(kα + k′α)(kβ + k′β)

2mb,f

δαβ − qαqβ
q2

δ(ω − ωk′ − ω′)ImD(ω′, q),

where q = k′−k, nb,f (ω) denotes the Bose-Einstein (Fermi-Dirac) distribution function,

and mb,f is the boson/fermion mass. We must stress that the expression of Σb,f is valid
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for partons with gauge charge-1. When the ZN gauge field is deconfined, each boson

carries the gauge charge-1/N of the gauge field aµ, and therefore there is an additional

factor 1/N2 in the self-energy. The integral was evaluated in Ref. [352], and the time-

scale responsible for transport has an extra factor proportional to q2 in the integral. After

taking these into account, we obtain the “transport” scattering rate for boson/fermion

1

τf
∼ T 4/3,

1

τb
≈ kBT

mbχd
. (4.36)

Comparing 1/τb and 1/τf , we can see that the resistivity is dominated by the boson-

gauge scattering at low temperature, and the bosonic partons are in a disordered phase

rather than a quasi long range order at finite temperature due to their coupling to the

dynamical gauge field aµ. We take the Drude formula for the dilute Bose gas that we use

to model the bosonic partons at finite temperature:

ρ ∼ mb

n∗e2∗

1

τb
∼ g2∗
n∗e2∗

kBT

χd
, (4.37)

where e∗ = e/N and g∗ = 1/N denote the electric and gauge charges of bosons, and n∗e∗

is the doped physical electric charge density. Here, we have assumed that the resistivity

ρ is dominated by the boson contribution because (i.) the scattering rate of the boson is

bigger compared to the fermions at low temperature as shown in Eq. 4.36, and (ii.) the

bosons have much lower density at low charge doping compared to the fermions which

already has finite fermi surface at zero charge doping. In the following discussion, we

will work under these assumptions at least up to the temperature scale Tc around which

the ZN gauge becomes fully confined.

The ZN gauge field is fully confined when ξ is at the same order as the lattice constant;

i.e. T > Tc ∼ ∆m. Here we assume that the gauge field aµ that is coupled to the fermionic
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parton is less prone to confinement due to its coupling to the large density of gapless

fermoins. Above Tc, the charge carriers in the system carry charge-e. The equation

above still hold with the substitutions e∗ → e = Ne∗, g∗ → g = Ng∗, n∗ → n = n∗/N .

We expect there is a crossover from the deconfined value of resistivity ρ(T ∼ 0) to the

confined value ρ(T ≥ Tc):

(dρ/dT )T≥Tc
(dρ/dT )T∼0

∼ N, (4.38)

This is an observable effect of scenario (2) that can be experimentally verified. Note that

the crossover caused by confinement at the metallic phase is different from the critical

point of the MIT; as transport at the critical point originates from rather different physics;

for example both particles and holes will contribute to the charge transport at the critical

point [? ].

Contrary to the Ioffe-Larkin rule, the total thermal conductivity of the system is a sum

of the contribution from the bosonic parton, fermionic parton, and also the gauge boson.

With low charge doping away from ν = 1/2, we expect the fermionic partons dominates

the thermal transport according to Ref. [353]: κf ∼ T 1/3. As we discussed above, in

scenario (2) the low-temperature charge transport is dominated by the boson contribution

σb ∼ 1/T , while the thermal transport is dominated by the fermion contribution κf ∼

T 1/3. Due to the crossover of charge transport at finite temperature caused by the

confinement of the ZN gauge field in scenario (2), there is also an observable prediction

one can make for the Lorentz number L = κ/(Tσ) ≈ κf/(Tσb):

(L/T 1/3)T≥Tc
(L/T 1/3)T∼0

∼ N. (4.39)
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4.2.6 Summary, Discussion, and Other fractional fillings

In this section we proposed a theory for a potentially continuous metal-insulator tran-

sition for the extended Hubbard model on the triangular lattice at half-filling (one electron

per unit cell). The extended Hubbard model is simulated by the TMD moiré systems.

We introduce a different parton construction from the previous literature, which leads

to a series of observable predictions. We demonstrated that our theory is more favorable

given the current experiments on the heterobilayer TMD moiré systems. Although our

theory was motivated by the recent experiments on MoTe2/WSe2 moiré superlattice [39],

we envision our theory can have broad application given the recent rapid progresses in

synthesizing pure two dimensional systems.

The moiré potential in the MoTe2/WSe2 moiré superlattice with no twisting is formed

due to the mismatch of the lattice constants of the two layers. There is another experi-

ment on MIT in twisted WSe2 [40]. The situation in twisted WSe2 seems rather different

from MoTe2/WSe2 moiré superlattice. Inside the “insulator phase”, the resistivity ρ(T )

at some displacement fields first increases with decreasing temperature, and eventually

the plot seems to saturate at a finite value, which is much lower than the resistivity ob-

served in the MoTe2/WSe2 moiré superlattice near the MIT. Hence the MIT of twisted

WSe2 could be of a different nature, between the metallic phase and the insulator phase,

there could be an intermediate phase with an order at nonzero momentum and reduced

size of electron Fermi pockets.

Correlated insulators at other fractional fillings ν = p/q have been reported in various

TMD moiré systems [291, 292, 293, 294]. Although the nature of the MIT at these fillings

has not been looked into carefully, here we briefly discuss the theory for the possible

continuous MIT at general fractional filling ν = p/q. As long as q > 2, even for parton

construction-I, the bosonic parton b will have fractional filling, and hence the insulator
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phase of b cannot be a trivial incompressible state without translation symmetry breaking

or topological order. Here we would like to acknowledge that charge fractionalization for

interacting electron system at fractional electron number per unit cell was discussed in

previous literature [354], using similar formalism as the parton construction-I. At electron

filling ν = 1/q, the boson filling νb = 2/q; if we only consider nearest neighbor hopping of

the vortex, the insulator has commensurate density wave that spontaneously breaks the

translation symmetry, and the MIT is described by Eq. 4.24 with N = q for odd integer

q; N = q/2 for q = 4k + 2; and N = q for q = 4k. The electron charge will further

fractionalize at the continuous MIT. In parton construction-I, there are in total N species

of the charge carriers each carrying electric charge e∗ = e/N . Hence the estimate of ρb is

ρb ∼ Nh/e2.

For parton construction-II, with electron filling ν = 1/q, the boson filling for each

spin/valley flavor is νb = 1/q. Again, if only nearest neighbor hopping of the vortices

is considered, the MIT is described by Eq. 4.24 with N = q for odd integer q; N = 2q

for even integer q. The field theory describing the MIT is two copies of Eq. 4.24: ψj,

Aµ and aµ should all carry a spin index α. There are in total Nb = 2N species of

the charge carriers each carrying electric charge e∗ = e/N . Hence the estimate of ρb is

ρb ∼ Nh/(2e2). If we consider further neighbor hopping like section 4.2.3, the charge

carriers may carry even smaller fractional charge, and hence larger ρb.

Here, we would like to discuss some subtlety regarding the conductivity σb of the

bosonic parton. In a generic theory with momentum conservation, one expects a finite

overlap between the electric current and the conversed momentum. Such a finite overlap

would lead to a Drude peak in the (optical) conductivity (see Ref. [? ] for a review)

σ(ω) = σQ+D
(
i
ω
+ δ(ω)

)
where D > 0 is the Drude weight and ω is the frequency. In a

theory with an exact particle-hole symmetry, this overlap between the electric current and

momentum is strictly zero and, consequently, the Drude weight D vanishes. In the MIT
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considered in this section and previous literature such as Ref. [295, 296, 311], the theories

that govern the bosonic partons all have an emergent particle-hole symmetry. This

emergent particle-hole symmetry is expected to produce a Drude weight that vanishes

at zero temperature, namely D → 0 as T → 0. If there is a finite momentum relaxation

time τp induced by for example disorder, the Drude peak should take the form D
τ−1
p −iω and

should be viewed as an extra correction, when we take ω → 0, to the bosonic parton DC

conductivity σb calculated for the MIT. Since D vanishes as T → 0 due to the emergent

particle-hole symmetry, the DC limit, i.e. ω → 0, of the Drude peak becomes a small

correction to the bosonic parton DC conductivity σb at low temperature.

There is another subtlety associated with the bosonic parton conductivity due to ex-

tra hydrodynamical corrections and the purely two dimensional nature of the system. It

was known (see, for example, Ref. [355] for a review) that, when momentum is strictly

conversed, even in the presence of particle-hole symmetry, hydrodynamical fluctuations

lead to a logarithmic correction to the optical conductivity that scale as log(τthω). Here,

τth is the time scale of local thermalization [356] and can be estimated as ∼ T−1. This

hydrodynamical correction to the conductivity diverges in the DC limit. This divergence

is due to the long-lived hydrodynamical mode associated with the conserved momentum.

As we mentioned before, in real systems disorder and Umklapp process always induce a

finite momentum relaxation time τp. The diverging hydrodynamical correction is only

valid when τp ≫ τth ∼ T−1, meaning momentum is strictly conserved over the thermal-

ization time scale, where the hydrodynamical description becomes applicable. When the

temperature T is low compared to τ−1
p , hydrodynamical corrections are cut-off by τ−1

p and

are again expected to be small corrections to the bosonic parton conductivity calculated

in the rest parts of this section. In fact the divergent hydrodynamical correction may

be already cut-off at a higher temperature scale that is favorable to us, as the crossover

scale is suppressed by a large factor depending on the dimensionless entropy density of
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the system [356].

We would like to stress that the optical conductivity σ(∞) which is much easier to

evaluate theoretically (see section.III for an example) is free of these subtleties, and we

encourage future experiments to measure the optical conductivity at the MIT as well.

In recent years very impressive progresses have been made on numerically simulating

interacting fermionic systems (for examples see Ref. [357, 358, 359, 360]). It is conceivable

that an extended Hubbard model with spin-orbit coupling can be constructed on the

triangular lattice, and by changing the parameter (for example the strength of the spin-

orbit coupling), two types of interaction-driven MIT may be realized, one described by the

original theory [295, 297], the other described by our current theory. Predictions made

in these two theories, such as different universality classes and transport properties at

the MIT, different scalings of quasiparticle weight, and the existence of the spinon Fermi

surface in the insulator phase, can potentially be directly tested through various numerical

methods on the extended Hubbard model. We will leave this to future exploration.
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Chapter 5

Green’s function Zero and

Symmetric Mass Generation

5.1 Introduction

Short range interactions can modify the classification of topological superconductors

(TSC) and topological insulators (TI) in the classic “ten-fold way” table for free elec-

trons [67, 68, 69]. The most prominent feature of a TSC or a TI is at its boundary, i.e

in the noninteracting limit, the boundary of a TSC or TI should be gapless unless the

boundary breaks the defining symmetry of the system. A short range interaction can

enrich the phenomena at the boundary of a TSC and TI: it can drive the boundary into

a spontaneous symmetry breaking phase, or a gapped topological phase which preserves

all the symmetries [361, 362, 363, 364]. But it has also been realized that, a short range

interaction may trivialize some of the TSCs and TIs, in the sense that short range in-

teraction can “trivially” gap out the boundary of some TSCs and TIs without breaking

any symmetry or leading to any ground state degeneracy. The first 1d example of this

interaction-trivialized TSC was found in Ref. [365, 366], and soon other examples were
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found in all dimensions [367, 368, 369, 363, 370, 371, 372, 373, 374, 375], For example,

now it is known that 16 copies of the TSC 3He-B phase is trivialized by interaction, hence

although this TSC in the noninteracting limit has a Z classification, under interaction

3He-B has a Z16 classification [363, 370].

Interaction trivialized TSC and TI has a deep relation with another phenomenon

called “symmetric mass generation” (SMG). In the noninteracting limit the boundary of

a (d+1)-dimensional TSC is described by a d-dimensional gapless Majorana fermion (or

chiral Majorana fermion depending on the dimensionality), which carries with it certain

’t Hooft anomaly of the defining symmetries of the TSC. A mass term of the boundary

fermion will explicitly break the symmetry, and hence is prohibited to exist. When

interaction reduces the classification of a TSC from Z to ZN , it means that for N copies of

the d-dimensional Majorana fermions, it is possible to generate a gap through interaction

without any degeneracy at the d-dimensional boundary, and the expectation value of any

fermion bilinear mass operator is zero. The mechanism of SMG is in stark contrast with

the ordinary mass generation of a Dirac or Majorana fermion (the well-known Gross-

Neveu-Yukawa-Higgs mechanism [376]), which is caused by the condensation of a boson

that couples to the fermion bilinear mass term. The condensation of the boson will break

the symmetry of the system, and lead to a nonzero expectation value of a fermion mass

term. The SMG has attracted broad attentions from both the condensed matter [377,

378, 379, 380] and high energy communities [381, 382, 383, 384, 385, 386, 387, 388] in

the last few years, partly motivated by the observation that the SMG mechanism may

be related to the lattice regularization of chiral gauge theories such as the Grand Unified

Theories [389, 390, 391, 392, 393, 394, 395, 396].

A natural question one may ask is that, after the interaction “trivializes” the system,

or after the SMG, is there still any remaining trace of the nontrivial topology of the

original noninteracting system? Or for a system with a fully gapped spectrum, how do we
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know the gap originates from the mechanism of SMG? The two most important features

of TSCs or TIs are their stable boundary states, and the unavoidable bulk topological

phase transition from the trivial insulator. When a TSC or TI is trivialized by interaction,

both features mentioned above no longer robustly hold. It has been proposed before that

strongly interacting TIs and TSCs may have a close relation with the zero of fermion

Green’s functions [397, 398, 377, 399, 400, 385, 379, 380]. In this work we use the general

“decorated defect” construction of symmetry protected topological (SPT) states [401],

and map the computation of the fermion Green’s function to a problem of single particle

path integral. Our method demonstrates in arbitrary dimensions the existence of fermion

Green’s function zero, after the interaction trivializes the TSC and TI, i.e. after the

symmetric mass generation. One of the previous arguments (which will be reviewed

later) for the existence of the Green’s function zero relies on the quantized topological

number defined with fermion Green’s function in the momentum space. Our method can

be generalized to the cases without translation symmetry, where a momentum space is

no longer meaningful.

5.2 Green’s function “zero” from decorated defects

Intuitively the decorated defect construction of a SPT state follows three steps: (1)

one starts with a bosonic system with certain symmetry G, and drive the bosonic system

into an ordered state with spontaneous symmetry breaking of the symmetry G, which

allows topological defects; (2) decorate the topological defects with a lower dimensional

SPT state, and (3) eventually proliferate the defects to restore the symmetry G. This

decorated defect construction was originally designed for bosonic SPT states [401], but

it also applies to fermionic TSCs and TIs. For example, the 2d TSC with the Z2 × ZT
2

symmetry (p ± ip TSC) can be constructed by decorating the Z2 domain wall with a
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1d TSC with the time-reversal (ZT
2 ) symmetry (the 1d BDI class TSC or the so called

Kitaev’s chain); The 3d TSC (or TI) of the AIII class can be constructed by decorating

a U(1) vortex line with the Kitaev’s chain.

We will start with the example of 2d TSC with Z2 × ZT
2 symmetry, and first com-

pute the fermion Green’s function at the 1d boundary of the system. Consider a 2d

Ising magnet in a ferromagnetic phase (SSB of the Z2 spin symmetry). We perform the

“decorated domain wall” construction by decorating each Ising domain wall with a 1d

Kitaev chain with time-reversal symmetry ZT
2 . The parameters of the Hamiltonian are

then tuned to proliferate these decorated domain walls. When a 1d Z2 domain wall meets

(or intersect) with the 1d boundary of the system, the domain wall becomes a 0d object

decorated with Majorana zero modes coming from the boundary of the Kitaev’s chain.

These Majorana zero modes transform under the time-reversal ZT
2 as γa → γa, hence any

Hermitian fermion bilinear operator iγaγb would break the time-reversal symmetry and

hence prohibited. For decoration number ν = 8, with a proper flavor symmetry between

the Majorana fermion operators γa, the interaction will induce a many-body symmetric

gap between the Majorana modes, and drive the fermion Green’s function at each 0d

intersection to the following form [400, 377]:

Gab(iω) ∼
iωδab

(iω)2 −m2
, (5.1)

in which m is proportional to the strength of the fermion interaction. There is a uniform

gap energy scale in the Green’s function, as long as the eight Majorana fermion operators

γa form an irreducible representation of the flavor symmetry, such as a spinor represen-

tation of SO(7) or SO(5). Gab approaches zero when ω → 0. Notice that this Green’s

function takes a different form from a free massive 0d fermion, where a mass term would

explicitly break the time-reversal.
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After being gapped by interaction through the SMG, in the Euclidean time the Ma-

jorana modes (MM) Green’s function reads

Gab(τ) = GMM(τ)δab ∼ sgn(τ)e−m|τ |δab. (5.2)

Our goal is to compute the fermion Green’s function after the proliferation of Ising

domain wall. To do this we map the computation of the Green’s function to the following

Feynmann path-integral problem in the (1 + 1)d space-time, and the different choice of

path x(τ) physically represents the fluctuation of the domain wall configuration:

Gab(β, x) = δabG(β, x),

G(β, x) ∼ sgn(β)

∫
D[x(τ)]

N∏
i=1

G0(δτ, δxi)ρ(δτ, δxi), (5.3)

Where δxi = xi − xi−1. Here we have inserted N − 1 intermediate steps between the

starting point (τ = 0, x0 = 0) and the end point (τ = β, xN = x). xi is the spatial

coordinate along the 1d boundary space with lattice constant a (Fig. 5.1). δτ = |β|
N

is

the time interval for each intermediate step.

The physical picture behind Eq. 5.3 is shown in Fig. 5.1. D[x(τ)] ∼
∏N−1

i=1 (dxi/a)

is the integral measure of Feynmann path integral, which should arise from summing

over xi along the 1d space with lattice constant a:
∑

x f(x) =
1
a

∫
dxf(x). G0(δτ, δx) =

e−m
√
δτ2+δx2 is the intermediate step short range propagation of the MM, inherited from

Eq. 5.2. Here we take the simplest possible form of G0(δτ, δx) as a generalization of

Eq. 5.2, which has a Lorentz invariance between δτ and δx. ρ(δτ, δxi) with δxi = xi−xi−1

is an extra factor to control the fluctuation between intermediate steps, whose form

depends on the microscopic details of domain wall proliferation. We will first consider
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Figure 5.1: Physical picture of the path integral in Eq. 5.3. Here each plane represents
the 2d bulk at an intermediate time, the solid lines are the decorated domain walls,
the circles are gapped Majorana modes at the boundary. The Majorana modes are
connected by dashed lines, which stand for the local Green’s function G0(δτ, xi−xi−1).

the simplest scenario with ρ(δτ, δxi) = 1.

A direct path integral of Eq. 5.3 is a bit awkward. We could change the variables

inside each Green’s function using the following trick:

G(β, x) = sgn(β)

∫
D[x(τ)]

N∏
i=1

dλidϕi
2π

N∏
j=1

G0(δτ, ϕj)

× exp

(
i
N∑
k=1

λk(xk − xk−1 − ϕk)

)
. (5.4)

Here we introduced two sets of auxiliary variables: λi are Lagrangian multipliers; ϕi

substitute the coordinate differences. Now we can integrate out x(τ) first, which generates

a product of delta functions
∏N

i=2 δ(λi−λi−1), i.e. all λi should equal. Then we can further

integrate out λi,

G(β, x) = sgn(β)

(
1

a

)N−1 ∫ N∏
i=1

dϕiG0(δτ, ϕi)

× δ(x−
N∑
k=1

ϕk). (5.5)
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Now we can perform a Fourier transformation of the spatial coordinate x, and

G(β, k) ∼ 1

a

∫
dx eikxG(β, x)

= sgn(β)

(
1

a

∫
dϕ eikϕG0(δτ, ϕ)

) |β|
δτ

. (5.6)

Here we have replace all N in the expression by |β|/δτ , and view δτ as an independent

variable, unrelated to β. G(β, k) takes an exponential form just like GMM(τ), and this

comparison allows us to define an effective mass gap for G(β, k) as follows

m′(k) ≡ −
ln
(
1
a

∫
dϕ eikϕG0(δτ, ϕ)

)
δτ

= −
ln
(

2mδτ
a
√
m2+k2

K1(δτ
√
m2 + k2)

)
δτ

, (5.7)

so that G(β, k) ∼ sgn(β)e−m
′(k)|β|. K1(x) is the modified Bessel function of the second

kind.

With large m or k, the effective mass m′(k) is proportional to m′(k) ∼
√
m2 + k2.

Hence with large m, k in the momentum and Matsubara frequency space, the fermion

Green’s function takes the approximate form

G(iω, k) ∼ iω

ω2 +m2 + k2
. (5.8)

This form of Green’s function after SMG is consistent with the fermion Green’s func-

tions obtained in different models [377, 400, 385, 379, 380], after taking the trace of the

Green’s functions in these literature, since in our formalism there is a single component

of Majorana fermion in the Dirac space. As long as m′(k) > 0, i.e. the fermion Green’s

function decays exponentially in the long time limit, the Fourier transformation of the
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Figure 5.2: Effective mass gap ratio m′(0)/m as a function of δτ . The sign of m′(0)
changes from positive to negative while decreasing δτ , suggesting a phase transition
caused by domain wall fluctuation. Here we set m = a = 1.

Figure 5.3: Effective mass ratio versus δτ for different control parameter A with
m = a = 1. From top to bottom A = 1, 2, · · · 5.

Green’s function to the Matsubara frequency space will have zero at ω = 0.

The ratio between effective mass gap m′(0) and m as a function of δτ is shown in

Fig. 5.2, in which we set m = a = 1. When δτ ≪ a (meaning there are many intervals in

the path integral), the effective mass m′ becomes negative, this means that in the long

time limit the Green’s function of the Majorana fermion no longer exponentially decays.

The sign change of m′ signals a phase transition, which is caused by increased steps of

intervals, or physically stronger fluctuation of the domain wall.

Now we turn on the control function ρ(δτ, δxi) in the Green’s function path integral.

For example, we can turn on a Gaussian control function of the fluctuation of the domain
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wall: ρA(δτ, δxi) = exp(−(δxi/δτ)
2/A), It is not hard to see, from Eqs. 5.4 to 5.7, that

adding such control factor will not alter the exponential form of the outcome, while the

effective mass gap now reads

m′
A = −

ln
(

1
a

∫
dϕ G0(δτ, ϕ)e

−ϕ2/(Aδτ2)
)

δτ
. (5.9)

Results of numerical integral of ϕ with different A are plotted in Fig. 5.3. Again all m′
A

approaches to m when δτ → ∞. And as expected, smaller A will lead to a larger m′,

because a smaller A suppresses proliferation of the domain walls more strongly.

5.3 Higher spatial dimensions

“Decorated defect construction” of TSCs and TIs, or more generally SPT states can

be generalized to higher dimension. As we mentioned in the introduction, the 3d TI in

the AIII class can be constructed by starting with a superfluid with spontaneous U(1)

symmetry breaking in the 3d bulk, then decorate each vortex line with a Kitaev’s chain,

and eventually proliferate the vortex line to restore the U(1) symmetry in the bulk. A

4d TSC with SO(3) and time-reversal symmetry can be constructed in a similar way: in

the 4d space, the hedgehog monopole of a SO(3) vector order parameter is a line defect;

one can start with an ordered phase with a SO(3) vector order parameter, and decorate

the hedgehog monopole line with a 1d Kitaev’s chain, and then eventually proliferate the

monopole line.

In general one can start with a d−dimensional system with symmetry group G (for

example SO(d − 1)) that allows one dimensional topological defect line. In this case

each defect line could be decorated with Kitaev chains, and when these line defects are

proliferated we again presumably obtain gapped TSC with symmetry G × ZT
2 . When
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Figure 5.4: m′
d−1/m as functions of δτ with m = a = 1. From top to bottom d = 2, 3, 4, 5.

Figure 5.5: m′
d−1/m under Gaussian control function as functions of δτ , with

m = a = 1, d = 2 to 5 and A = 1.

the decorated line defects meet the (d− 1)−dimensional boundary, the 0d intersection is

decorated with Majorana zero modes. When eight copies of Kitaev’s chains are decorated

on the 1d defect line, the Majorana modes at the intersection is gapped by interaction

through the SMG mechanism, and their Green’s function is given by Eq. 5.1.

Once we proliferate the defects, the fermion Green’s function at the (d−1)−dimensional

boundary can still reduce to a path integral problem:

G(d−1)(β,x) = sgn(β)

∫
D[x(τ)]

N∏
i=1

G
(d−1)
0 (δτ, δxi)

×ρ(δτ, δxi) (5.10)

where δxi = xi−xi−1, and xi are intermediate positions at the d−1 dimensional boundary
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(with x0 = 0 and xN = x) and G
(d−1)
0 (δτ, δxi) = exp

(
−m

√
δτ 2 + δx2

i

)
is the simplest

extension of Eq. 5.1 to (d−1)−dimensional space. The same trick of variable substitution

applies here:

G(d−1)(β,x) = sgn(β)

∫
D[x(τ)]

N∏
i=1

dλ⃗idϕ⃗i
(2π)d−1

×G(d−1)
0 (δτ, ϕ⃗i)ρ(ϕ⃗i) exp

(
i

N∑
k=1

λ⃗k · (xk − xk−1 − ϕ⃗k)

)
.

(5.11)

Again, integrating out x(t) and λ⃗i leaves us with a single constraint δ(d)(x −
∑N

i=1 ϕ⃗i).

After integrating over x, we are left with
∫
dxG(d−1)(β,x) ∝ sgn(β)e−m

′
d−1|β|, in which

m′
d−1 ≡− 1

δτ
ln

{(
1

a

)d−1 ∫
dd−1ϕ⃗

×G(d−1)
0 (δτ, ϕ⃗)ρ(ϕ⃗)

}
=−

ln
(
ma
π

(
2πδτ
ma2

) d
2 Kd/2(mδτ)

)
δτ

(for ρ(ϕ⃗) = 1)

(5.12)

is the new effective mass gap. The ratios between m′
d−1 and m is plotted in Fig. 5.4, and

we can see from the plot that increasing spatial dimension makes the effective mass gap

smaller, indicating that fluctuation is stronger for higher dimensions. Indeed, for higher

dimensions there is more space for the proliferation of path x(τ). When the Gaussian

control function ρA(δτ, δxi) = exp(−(δxi/δτ)
2/A) is turned on, the stronger fluctuation

for higher dimensions makes the Gaussian suppression less effective (see Fig. 5.5). Never-

theless, for nonzero A, m′
d−1 can still be positive (and hence there is a zero in the Green’s

function) for a broad range of parameters.
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5.4 Scenarios without Translation symmetry

One of the previous observations and arguments for the existence of fermion Green’s

function zero, is based on the quantized topological number for TSC and TI defined with

the fermion Green’s function [397, 398]. A typical topological number can be defined

in the Matsubara frequency and momentum space of the Euclidean space-time fermion

Green’s function [402, 403, 404, 405, 406]: n ∼
∫
dωddk tr[B(G−1∂G) ∧ (G−1∂G) · · · ],

where G is the matrix of the fermion Green’s function, and B is a matrix in the flavor

space. The number n must be a quantized integer mathematically, and it can only change

when the Green’s function has singularity.

The number n can change through two types of “transitions”. The first type of tran-

sition is a physical transition where G−1(iω = 0) vanishing to zero at certain momentum,

i.e. the fermions become gapless. In this case the physical topological transition co-

incides with the transition of the topological number. However, one can easily notice

that in the definition of n, G−1 and G are on an equal footing, hence theoretically the

topological number mentioned above can also change when G(iω = 0) = 0, i.e. when the

Green’s function has a zero. Hence when the TSC or TI is trivialized by the interaction,

although there is no unavoidable phase transition between the TSC (or TI) and a trivial

insulator, the topological number n still has to change discontinuously somewhere in the

phase diagram, and since there is no real physical transition, the number n has to change

through zero of the Green’s function.

This argument for Green’s function zeros relies on the quantized topological number

in the momentum space, hence it requires the translation symmetry. But none of the

TSC and TI in the “ten-fold way” classification requires translation symmetry, hence

it is natural to ask whether the Green’s function zeros persist when the translation

symmetry is broken. Normally the translation symmetry breaking is caused by disorder,
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i.e. a random potential energy. But a fermion bilinear potential term iγaγb breaks

the time-reversal symmetry of the decorated Kitaev’s chain. Hence the most natural

translation symmetry breaking perturbation that can be turned on in the system, is a

spatial dependent random four-fermion interaction, i.e. a randomized m(x) in Eq. 5.2,

Eq. 5.3.

Now Eq. 5.3 is modified to

G(β, x) = sgn(β)

∫
D[x(τ)]e

∑N
i=1 −m(xi)

√
δτ2+δx2i ρA(δτ, δxi). (5.13)

m(xi) is a space-dependent but time-independent function. In principle m(xi) could be

any function of space. Here we focus on the situation when m(xi) = m+ δm(xi), where

m is a positive constant, while δm(xi) is random function of space with zero mean and

Gaussian distribution. After disorder average, the expression for the Green’s function is

G(β) = sgn(β)

∫
D[x(τ)]

×e
∑N

i=1 −m
√
δτ2+δx2i+

∑
j,k ∆δ(xj−xk)

√
δτ2+δx2j

√
δτ2+δx2k × ρA(δτ, δxi). (5.14)

∆ is given by the Gaussian distribution of δm(xi):

δm(xj) δm(xk) ∼ ∆δ(xj − xk). (5.15)

The delta function δ(xj − xk) is only nonzero when xj = xk. This condition auto-

matically satisfies when j = k, but may still happen when j ̸= k, meaning the path x(τ)

returns to the same spatial location at different time instances. We first consider the
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Figure 5.6: Effective mass gaps m
(2)
A,∆ for the lowest order of disorder averaged Green’s

function G(β)0 as functions of δτ . Here we set m = a = A = 1, ∆ = 0, 0.05, 0.1, 0.15
from the top to bottom.

contribution from disorder average when j = k:

G(β)0 = sgn(β)

∫
D[x(τ)]e

∑N
i=1 −m

√
δτ2+δx2i+

∑
i ∆(δτ2+δx2i )ρA(δτ, δxi).

= sgn(β) exp
(
−β(m′

Ã
−∆δτ)

)
. (5.16)

Here m′
Ã
with Ã = A

1−A∆ is the effective mass gap defined in Eq. 5.9 with a new Gaussian

control parameter Ã = A
1−A∆ . Thus G(β)0 behaves identically to the previously computed

Gaussian suppressed Green’s function, albeit with a slower decaying rate, m
(2)
A,∆ ≡ m′

Ã
−

∆δτ . The effect of disorder on the effective mass m
(2)
A,∆ is plotted in Fig. 5.6.

For the contribution from j ̸= k (we assume that j < k hereafter), we can expand

the Green’s function into powers of ∆. The first order of this expansion is

G(β)1 ≡ ∆sgn(β)eβ∆δτ
∑
j ̸=k

∫
D[x(τ)]e

∑N
i=1 −m

√
δτ2+δx2i

×
∑
j ̸=k

δ(xj − xk)
√
δτ 2 + δx2j

√
δτ 2 + δx2k
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×
N∏
i=1

ρÃ(δτ, δxi). (5.17)

Again using the previous variable substitution, we obtain

G(β)1 = ∆sgn(β)eβ∆δτ
∑
j ̸=k

∫
D[x(τ)]

N∏
i=1

dλidϕi
2π

× e−
∑

im
√
δτ2+ϕ2i−iλi(xi−xi−1−ϕi)δ(xj − xk)

×
√
δτ 2 + ϕ2

j

√
δτ 2 + ϕ2

k

N∏
i=1

ρÃ(δτ, ϕi). (5.18)

Integrating over all xi and x0, we obtain the product of a series of delta functions

j−1∏
i=1

δ(λi − λi+1)
k−1∏
i=j+1

δ(λi − λi+1)
N−1∏
i=k+1

δ(λi − λi+1)

× δ(λN)δ(λk − λk+1 + λj − λj+1). (5.19)

For example δ(λN) comes from
∫
dxN . Integrating out other xi will enforce λi = 0 for

all i > k; λi = λ1 for all i ≤ j; and λi = λk for all j < i ≤ k. The final delta function

above thus also enforces λi = λ1 = 0 with all i ≤ j. Notice that λk is unconstrained here,

because δ(xj − xk) effectively removes one δ function constraint for λi’s. So we are left

with the a single integral of λk ≡ λ, and the result is

G(β)1 = 2∆sgn(β)eβ∆δτ
∑
j<k

(G̃∆(0))
N−(k−j)−1∂mG̃∆(0)

×
∫
dλ(G̃∆(λ))

k−j−1∂mG̃∆(λ)
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= G(β)0 × 2∆
∂mG̃∆(0)

G̃∆(0)

N−1∑
h=1

(N − h)

×
∫
dλ

(
G̃∆(λ)

G̃∆(0)

)h−1
∂mG̃∆(λ)

G̃∆(0)
. (5.20)

Here G̃∆(λ) =
∫

dϕ
a
eiλϕ−m

√
δτ2+ϕ2ρÃ(δτ, ϕ).

Numerical integration of λ in the expression above shows that the ratio between the

first two orders of the ∆ expansion, i.e. G(β)1/G(β)0 approaches β3/2 for large β (see

Fig. 5.7). Thus at large β the overall behavior of the first order term in the ∆ expansion

still exponentially decays with β. The behavior of large β can be understood in the

following way: The integral of G̃∆(λ) can be approximated by replacing
√
δτ 2 + ϕ2 by

δτ + |ϕ| in the exponent, which means G̃∆(λ)

G̃∆(0)
and ∂mG̃∆(λ)

G̃∆(0)
behaves approximately as

e−
A

4(1−A∆)
λ2 . The λ integral gives a 1√

h
factor in each term of the summation of Eq. 5.20.

Eventually G(β)1/G(β)0 is evaluated as

N∑
h=1

N − h√
h

∼
∫ β

0

dx
β − x√

x
∼ β3/2. (5.21)

And as long as the overall behavior of G(β) decays exponentially with β, the Fourier

transformation of G(β) has a zero at ω = 0.

At higher dimensions, it is less likely for xj = xk at j ̸= k, i.e. it is less likely for a path

x(τ) to return to exactly the same spatial location at two different time instances. Hence

we expect that for higher spatial dimensions the zeroth order G(β)0 in the formulation

above should be even more accurate.
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Figure 5.7: Log-log plot of numerical integration of G(β)1/G(β)0. Here we set
m = a = A = 1, δτ = 0.3 and ∆ = 0.1. The dashed line is a guide to the eye
with slope 3/2.

5.5 The “avoided” topological transition in the bulk

As we discussed in the introduction, besides the nontrivial boundary state, there is

another prominent feature of a TI and TSC: there must be an unavoidable bulk topologi-

cal transition between the TI or TSC and the trivial insulator when tuning the parameter

of the bulk Hamiltonian. However, once the TI or TSC is trivialized by interaction, not

only can the boundary state be trivially gapped, the bulk topological transition also be-

comes avoidable [365, 366]: there is an adiabatic path in the phase diagram connecting

the original TI (or TSC) phase and the original trivial insulator phase without closing

the gap at all. In this case the original topological transition is also called “unneces-

sary transition” [407, 408]. In fact there is a close relation between the boundary state

and the bulk topological transition. The simplest model to visualize such relation is the

Chalker-Coddington model [409, 410], which was first developed for the integer quantum

Hall transition. This boundary-bulk relation can be made much more general for strongly

interacting symmetry protected topological states [411]. In general the bulk topological

transition between the trivial phase and the SPT phase can be viewed as growing islands

of the SPT phase inside a trivial phase, and the unavoidable topological transition orig-
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inates from the nontrivial interface states between the trivial and SPT phases. When

the interfaces percolate, the bulk is at the topological transition. Using this picture, our

real-space calculation for Green’s function in the previous sections for a d−dimensional

boundary, also applies to the avoided bulk topological transition at d−dimensions.

5.6 Summary

In this chapter we demonstrate the existence of the Green’s function zero as a re-

maining trace of nontrivial topology, after the system acquires a fully gapped spectrum

after the mechanism of symmetric mass generation. Our method mostly relies on the real

space decorated defect construction of the SPT states, and it does not require spatial

symmetries such as translation.
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Appendix

A.1 Appendix to Section 4.2

A.1.1 Field theories for N = 6 and N = 12 of scenario (1)

In the next section we will derive the projective symmetry group transformation

for the low energy vortex modes of scenario (1). For N = 6, with symmetries R2π/3,

translation, PxT , and Py, the PSG-invariant interactions between the vortex fields ψa

beyond Eq. 4.24 take the following form:

L(1)′[ψa] =u1

2∑
a=0

(|ψ2a|2 + |ψ2a+1|2)2 + u2

(
5∑

a=0

|ψa|2
)2

+ v1

(
5∑

a=0

ψ2
a

)(
5∑

a=0

(ψ∗
a)

2

)
+ v2

2∑
a=0

(ψ2
2a + ψ2

2a+1)((ψ
∗
2a)

2 + (ψ∗
2a+1)

2)

+ w1

2∑
a=0

(|ψ2a|2 − |ψ2a+1|2)(ψ2a+2ψ
∗
2a+3 + ψ∗

2a+2ψ2a+3)

+ w2

{
2∑

a=0

(ψ2
2a − ψ2

2a+1)ψ
∗
2a+2ψ

∗
2a+3 + c.c.

}
+ . . .

(A.1)
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Here the dots stand for terms higher than the quartic order. The parameters {u1, u2, v1, v2, w1, w2}

in (A.1) are all real, and the index a for ψa is regarded as cyclic modulo 6.

In addition to the quartic terms, the gauge invariant density wave order parameter

can couple to the Fermi surface of the fermionic partons, and quartic terms of ψa with

singularity in the frequency space can be generated as was pointed out by Ref. [326],

such as |ω||Sω,q|2, where Sω,q is a bilinear of ψa. This coupling only arises for scenario

(1). For scenario (2) discussed in the main text, the 3D XY∗ fixed point should be stable

against symmetry allowed perturbations; the field theory Eq. 4.34 is also stable against

coupling to the fermionic parton Fermi surface.

Although we do not aim to give a full discussion of the fate of the infrared limit

of scenario (1), in the current section we establish the formalism for this problem that

one can use in the future. As we explained in the previous paragraph, after integrating

out the fermion that is connected by the finite momentum of the density wave order

parameter, a term is generated ∼ |ω||Sω,q|2, where S = ψ†Tψ and T is an N ×N matrix.

One can introduce a new field Φ through the Hubbard-Stratonovich transformation, and

ψa will interact with the Φ field [412]. We start with the first line of Eq. A.1. The field

theory Eq. 4.24 with u1 and u2 in Eq. A.1 can be reformulated by introducing multiple

Lagrange multipliers λi:

L(1) =
N−1∑
a=0

|(∂ − iA)ψa|2 + i

N1∑
i=1

λi

(
N2∑
τ=1

|ψτ,i|2
)

+ iΦψ†Tψ;

⟨λi(q⃗)λi′(−q⃗)⟩ =
8

N2

|q|δi,i′ ,

⟨Aµ(q⃗)Aν(−q⃗)⟩ =
16

N

(
δµν − qµqν/q

2

|q|

)
,

⟨Φ(q⃗)Φ(−q⃗)⟩ = g|ω|. (A.2)
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Here N = N1N2, and for the real system with N = 6, N1 = 3 and N2 = 2. Introducing

λi for each index i physically means that we are investigating the theory near the point

with a SU(N2) symmetry for each index i, rather than the original CPN−1 theory with

a large SU(N) flavor symmetry. This is analogous to the “easy-plane bosonic QED3”

considered in Ref. [94]. The actions of λi and the transverse component of gauge field

A are generated by integrating out the fields ψa. One possible way to proceed with

the calculation is that, we can fix N1, and take 1/N2 as a small parameter. When g

is the same order of 1/N2, the interaction between ψa and the Φ field will lead to the

contribution comparable with that arising from coupling to λi and A. The calculation

would be analogous to the one formulated in Ref. [193], where the nonlocal interaction on

top of a bosonic QED flows to a new fixed point. One can evaluate the scaling behaviors

(such as relevance/irrelevance in the IR) of the v and w terms in the second and third

lines in Eq. A.2 at this new fixed point. By exploring the parameter space of g, 1/N2,

and different choice of matrix T , it is possible to identify a finite region where Eq. A.2

corresponds to a stable fixed point where the v and w terms in Eq. A.1 are irrelevant.

The same strategy can be applied to the situation with N = 12. With long moiré

lattice constants, the 6-fold rotation Rπ/3 also becomes a good approximate symmetry.

Together with Rπ/3, the quartic terms in the field theory for N = 12 (please refer to the

phase diagram in Fig. 4.5) are:

L(1)′[ψσ,τ,i] = u1
∑
σ,i

(∑
τ

|ψσ,τ,i|2
)2

+ u2

(∑
στi

|ψστi|2
)2

+ v1
∑
σ,i̸=i′

(∑
τ

|ψσ,τ,i|2
)(∑

τ ′

|ψσ,τ ′,i′ |2
)

+ v2
∑
i

(∑
τ

|ψ+,τ,i|2
)(∑

τ ′

|ψ−,τ ′,i|2
)

+ w1

∣∣∣∣∣∑
i,τ

ψ+,τ,iψ−,τ,i

∣∣∣∣∣
2

+ iw2

(∑
i,τ,τ ′

ψ∗
+,τ,i+1ψ

∗
−,τ,i+1ψ+,τ ′,iψ−,τ ′,i − h.c.

)
(A.3)
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Here the 12 modes are labelled by ψσ,τ,i in which τ = ± labels two degenerate modes

at the same momentum, σ = ± labels two sets of momenta that are each connected by

R2π/3, and i = 0, 1, 2 mod 3 labels these three momenta within each set.

We can again start with the first line of Eq. A.3, and introduce Lagrange multiplier

λσ,i which couples to the ψa fields as
∑N2

τ=1 λσ,i|ψσ,τ,i|2. Notice that we have generalized

τ to 1 · · ·N2. Then the Hubbard-Stratonovich transformation can introduce new fields

that couple to ψa to account for the singular terms generated through interacting with

the Fermi surface. A combined perturbation theory of 1/N2 and g can again determine

the relevance/irrelevance of the second and third lines of Eq. A.3. In particular, the two

terms in the second line of Eq. A.3 are indeed irrelevant with large-N2, as the scaling

dimension of
∑

τ |ψσ,τ,i|2 is 2 with large-N2.

A.1.2 The PSG transformation for N = 6 in scenario (1)

Under the boson-vortex duality, the dual vortex theory on the hexagonal lattice takes

the form

H =
∑
⟨ij⟩

−tijϕ∗
iϕj +H ′

ϕ + Vϕ + . . . , tij = te−iAij (A.4)

Here H ′
ϕ describes hopping terms between further neighbors. The potential Vϕ includes

a quadratic term
∑

i r|ϕi|2 which tunes through the phase transition.

When tij is nonzero only for nearest neighbor links on the dual honeycomb lattice,

and it takes positive sign on the solid links and negative sign on the dashed links in

Fig. 4.4 due to the π flux of Aµ through each hexagon, there are four minima of the

vortex band structure in the Brillouin zone (Fig. 4.5). We label the four minimum modes

from 0 to 3, each have momentum (kx, ky)

Q0,1 = K =

(
2π

3
√
3
, 0

)
, Q2,3 = K′ =

(
π

3
√
3
,
π

3

)
. (A.5)

176



Appendix Chapter A

Figure A.1: Crystal symmetry of the triangular lattice, the nearest neighbor hopping
amplitudes of the vortices, and the unit cell after taking into account of the sign of
tij .

With further neighbor vortex hopping (please refer to the phase diagram in Fig. 4.5),

the minima of the vortex band structure can shift to the M points, similar to Ref. [320].

When the degenerate minima are shifted to theM points (Fig. 4.5), the six corresponding

momenta are

Q0,1 =

(
π

2
√
3
,−π

6

)
, Q2,3 =

(
π

2
√
3
,
π

6

)
, Q4,5 =

(
0,
π

3

)
. (A.6)

Similar to the four minima case, the vortex field can be expanded using these six modes

as

ϕn,r ∼
5∑

a=0

ψava,ne
iQa·r. (A.7)

The coefficients va,n are solved from the band structure.

The symmetries of the theory for one single valley must include translation T1, T2,

three-fold rotation R2π/3, PxT . These transformations do not mix the two valleys. In

the following we derive the PSG matrices of these symmetries. We first need the form of
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the transformations when acting on the 8 sites in each unit cell:

T1,2(ϕn,k) =
∑
m

(t1,2)nmϕm,k, t1 =



0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0



, (A.8)

t2 =



0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 0 −1 0 0



(A.9)
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R2π/3(ϕn,k) = (rπ/3)nmϕm,R2π/3k, r2π/3 =



1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1



, (A.10)

PxT (ϕn,k) = (pxt)nmϕm,−Pxk, (pxt)ab =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1



, (A.11)

Besides these symmetries, here we argue that, if the system does have an effective

Hubbard model description with two local Wannier orbitals per unit cell (one for each

valley), Py is also a good symmetry of the Hubbard model, as long as the valley mix-

ing is negligible, which is a justified assumption with long wavelength moiré potential

modulation. Let us first assume there is no valley mixing, then for each valley the band

structure of the moiré mini band is described by a tight binding model with one orbital

per site on the moiré triangular lattice. The hopping amplitude t(θ) along angle θ must
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satisfy the following relations based on the explicit PxT and translation symmetry:

t(θ) = t∗(π − θ), t∗(θ) = t(π + θ), (A.12)

we can easily show that t(θ) = t(−θ), namely the system should have a Py symmetry.

However, when there is valley mixing, t becomes a 2 × 2 matrix with off-diagonal

terms that mix two valleys. A 2×2 hopping matrix t should satisfy four symmetries, Px,

T , translation, and R2π/3 rotation. A natural choice of Px and T on t is

Px : t(θ) → σxt(π − θ)σx; T : t(θ) → (iσy)t∗(−iσy); (A.13)

and the translation symmetry plus hermicity demands t†(θ) = t(π + θ). Py does not

change the valley indices; if Py takes t(θ) to t(−θ), there exists a valley mixing term

t(θ) ∼ iσx sin(3θ) that preserves all the symmetries mentioned above, but breaks Py;

while if Py takes t(θ) to σzt(−θ)σz this term becomes t(θ) ∼ iσy cos(3θ).

Py acts on the ϕ bosons as

Py(ϕn,k) = (py)nmϕ
∗
m,−Pyk, (py)ab =



0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0



. (A.14)

Furthermore, in the case with long moiré lattice constant, we additionally have the
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six-fold rotation Rπ/3

Rπ/3(ϕn,k) = (rπ/3)nmϕm,Rπ/3k, (rπ/3)ab =



0 0 0 0 0 0 0 −1

0 0 −1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0



. (A.15)

In the position space, the transformation rules can be summarized as

G(ϕn,r) =
8∑

m=1

gn,mϕm,r′m (A.16)

in which r′m is the center of the unit cell of field ϕm which is obtained by certain site in the

original unit cell (centered at r) after transformation under symmetry operation G. For

example, under T1, r
′
7 = r′8 = r+2a2, because sites 1 and 2 at unit cell r are transformed

into sites 7 and 8 in the nearby enlarged unit cell which is centered at r+2a2. In general,

we can write the transformation as r′m = Gr + ∆⃗G,m, in which ∆⃗G,m is a constant that

does not depend on r, and Gr is the coordinate of the center of the unit cell after spacial

symmetry G.

Now we plug in the low energy expansions of ϕnk
around the minima into the equation,

which yields
N−1∑
a=0

G(ψa)va,ne
iQa·r =

N−1∑
a=0

8∑
m=1

ψagnmvm,ae
iQa·r′m . (A.17)

The relation can be viewed as a vector identity with n being the vector index on both
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sides. Because all the vectors va,n(a = 0, . . . , N −1) are orthogonal to each other, we can

multiply the conjugated vector v∗b,n on both sides and sum over n:

G(ψb)e
iQb·r =

N−1∑
a=0

8∑
m,n=1

ψav
∗
b,ngn,mva,me

iQa·r′m . (A.18)

For this equation to hold for all r, the RHS needs to have the same momentum. This

requires Qb = G−1Qa, which can only be satisfied by two possible choices of a (recall

that in the convention of eight-site unit cell, each momentum Qa always has two fold

degeneracy for all N), denoted by a1 and a2. Thus we eventually have

G(ψb) =
8∑

m,n=1

v†b,ngnmva1,me
iQa1 ·∆⃗G,m × ψa1 +

8∑
m,n=1

v†b,ngnmva2,me
iQa2 ·∆⃗G,m × ψa2 (A.19)

The final results can be organized into N ×N matrices. For N = 6, the transformations

read

T1,2(ψa) = (t1,2)abψb, (t1)ab =



−1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0


, (t2)ab =



0 1 0 0 0 0

−1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 −1

0 0 0 0 −1 0


,

(A.20)
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R2π/3(ψa) = (R2π/3)abψb, (R2π/3)ab =



0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0


, (A.21)

PxT (ψa) = (PxT)abψb, (PxT)ab =
1√
2



0 0 1 −1 0 0

0 0 −1 −1 0 0

1 −1 0 0 0 0

−1 −1 0 0 0 0

0 0 0 0 1 −1

0 0 0 0 −1 −1


. (A.22)

Py(ψa) = (Py)abψ
∗
b , (Py)ab =

1√
2



0 0 1 1 0 0

0 0 1 −1 0 0

1 1 0 0 0 0

1 −1 0 0 0 0

0 0 0 0 1 1

0 0 0 0 1 −1


. (A.23)
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Figure A.2: Some possible density wave patterns of the original boson that correspond
to different condensate of ψa with a = 0, · · · 5. The left and right patterns correspond
to Ψ⃗ ∼ (1, 0, 0, 0, 0, 0) and Ψ⃗ ∼ (0, 1/

√
2, 1/2,−1/2, 0, 0) respectively.

Rπ/3(ψa) = (Rπ/3)abψb, (Rπ/3)ab =



0 0 0 −1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

0 1 0 0 0 0

−1 0 0 0 0 0


. (A.24)

Deep inside the vortex condensate phase with r ≪ 0 in equation Eq. 4.24, the vector

Ψ⃗ = (ψ0, ψ1, ψ2, ψ3, ψ4, ψ5) can have different condensates depending on the parameters

in Eq. A.1. Without loss of generality we set
∑5

a=0 |ψa|2 = 1. The two figures in Eq. A.2

illustrate the density waves of the bosonic parton centered at the bonds and the sites

on the moiré triangular lattice that correspond to two different possible condensates of

Ψ⃗. The density on the bond l is inferred from tij⟨ϕ∗
iϕj⟩, with ij being the link on the

dual honeycomb lattice that is dual to l, and tij takes the sign according to the gauge

convention of Fig. 4.4. The operator tij⟨ϕ∗
iϕj⟩ is the energy density in terms of vortex

fields, and the modulation of this operator should correspond to the valence bond solid

of the original bosonic parton. We also consider an operator centered on site p of the

original lattice (plaquette of the dual lattice):
∑

⟨ij⟩∈p tij⟨ϕ∗
iϕj⟩, with the summation over
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the links that surround the plaquette p on the dual honeycomb lattice, whose center

hosts the site p of the original moiré triangular lattice. In both cases, ⟨ϕ∗
iϕj⟩ is evaluated

using Eq. A.7 and the value of Ψ⃗ which minimizes the quartic energy. The left pattern in

Eq. A.2 is a rather common valence bond solid configuration for either spin-1/2 system

or hard core boson on the triangular lattice. If one started with the construction-I of the

parton construction, the discussion in this section corresponds to the original electron

system with an average 1/2 electron per unit cell (the filling considered in Ref. [292]);

while for construction-II, the discussion here applies to one electron per unit cell, and the

analysis in this section corresponds to one of the two spin/valley flavors of the system.

A.1.3 Dual of the vortex theory

Here we derive the Lagrangian written in terms of the fractionally charged bosonic

partons for scenario (1). We start with Eq. 4.24 in this section:

L(1) =
N−1∑
j=0

|(∂µ − iAµ)ψj|2 + r|ψj|2 +
i

2π
A ∧ d(a+ eAext) + · · · (A.25)

To facilitate the calculation of the DC resistivity which will be discussed in the next

subsection, we need to “dual back” to the charge-carriers, which requires deforming

Eq. A.25 with an easy-plane anisotropy
∑

j |ψj|4. The bosonic fractional charge carriers

φj are the vortices of the vortex fields ψj. We first take the standard duality for ψj, and

Eq. A.25 becomes:

L(1) =
N−1∑
j=0

|(∂ − iÃj)φj|2 + r̃|φj|2 +
i

2π
Ãj ∧ dA+

i

2π
A ∧ d(a+ eAext) + · · · (A.26)
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The basic duality relation is that the current of ψj, i.e. Jψj
∼ dÃj. Now integrating out

A would lead to the following constraint for the rest of the gauge fields:

∑
j

Ãj − a− eAext = 0. (A.27)

From this constraint we can take Ãj as

Ãj = ãj +
1

N
a+

e

N
Aext,

∑
j

ãj = 0. (A.28)

Hence the dual of the dual theory becomes

L(1) =
N−1∑
j=0

|(∂ − iãj − i
1

N
a− i

e

N
Aext)φj|2 + r̃|φj|2 + · · · . (A.29)

The gauge fields ãj are still subject to the constraint
∑

j ãj = 0. φj carries e/N charge

of external EM gauge field; it also carries charge 1/N of gauge field a which is shared

with the fermionic parton fα.

For scenario (2) the theory in terms of fractional parton φ is much simpler: there

is only one flavor of φ for each valley, and there is no extra continuous gauge fields ã

besides gauge field a: Following the calculation in Ref. [311], one can generalize this one

flavor of φ in each valley to an N component of bosons:

L(2) =
N∑
l=1

|(∂ − i
1

N
a− i

e

N
Aext)φ

l|2 + iλ|φl|2 + · · · (A.30)

and the bosons will scatter with both gauge field a and field λ which is introduced as

a Lagrange multiplier. The fact that φl carries charge 1/N of gauge field a does not

change the scattering rate through the large-N calculation, as the gauge charge cancels

out in the calculation of scattering rate through the large-N approach. Compared with
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scenario (2), in scenario (1) the parton φj is also coupled to extra gauge fields ãj, which

will lead to extra scattering to the charge carriers.

When computing the resistivity, especially the DC resistivity of scenario (1), we also

rely on a large−N generalization, namely we need to introduce an extra l = 1 · · ·N index

for each component of fractional charge field: φlj.

A.1.4 DC resistivity jump in scenario (1)

In this section we present a detailed computation of the DC resistivity jump in the

scenario (1) of MIT, i.e. the scenario when the insulator has a density wave. We start

with Eq. A.29. The resistivity jump at the MIT is given by the universal resistivity of

the bosonic sector of the system ρb at the MIT. First of all, one can prove a generalized

Ioffe-Larkin rule, which combines the resistivity of each parton φj into ρb:

ρb =
ℏ
e2

(
N−1∑
j=0

ρb,j

)
, (A.31)

where ρb,j is the resistivity of each parton φj, when the charge of φj is taken to be 1.

This generalized Ioffe-Larkin rule can be proven by formally integrating out φj, gauge

fields ãj and a from Eq. A.29, and eventually arriving at a response function of Aext. At

each level of the path integral, we keep a quadratic form of the action, i.e. the random

phase approximation. This Ioffe-Larkin rule is independent of the assignment of electric

charges on each parton.

To compute ρb, we formulate the quantum Boltzmann equation (QBE) for the φj

fields of a given valley. The computation follows that for ρb at the MIT without charge

fractionalization [311], where the gauge field dynamics needs to be modified due to the

charge fractionalization, which we explain in detail below for comparison. Note that ρb

can be finite without momentum relaxation due to the emergent particle-hole symmetry.
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Furthermore, the two-in two-out scatterings among the φj fields are enough to relax

the current and generate finite DC resistivity. For simplicity, we consider the scattering

between the φj and emergent gauge fields in Eq. (A.29), where the gauge fields are in

thermal equilibrium and their dynamics is acquired due to the coupling with the matter

fields φj and f . Here, we argue that treating the gauge fields as in thermal equilibrium is

a legitimate approximation. First, the gauge field a couples to the spinon field f , which is

sensitive to impurities and relaxes momentum fast. Second, diagrammatically, the two-in

two-out scatterings between the φj fields that give finite DC resistivity can be captured

by the φj scattering with the emergent gauge fields.

To simplify the computation of the gauge field dynamics, it is convenient to express

Eq. A.29 in terms of the gauge field Ãj (Eq. A.27), together with the effective action for

the spinon field, the dual theory reads

L(1) =
N−1∑
j=0

|(∂ − iÃj)φj|2 + r̃|φj|2+ (A.32)

f̄

(
∂τ − µ− i

N−1∑
j=0

Ãj,0 + ieAext,0 +
1

2m
(∇− i

N−1∑
j=0

Ãj + ieAext)
2

)
f + · · · . (A.33)

Integrating out φj and f fields, the gauge field propagators read

D
(Ã)
ij = −i⟨TtÃiÃj⟩ =


ΠJ

b +(N−1)ΠJ
f

(ΠJ
b )

2+NΠJ
b Π

J
f

if i = j

−ΠJ
f

(ΠJ
b )

2+NΠJ
b Πf

if i ̸= j

, (A.34)

where ΠJ
b ,Π

J
f is the current-current correlation function for φj and f fields, respectively.

For a controlled systematic calculation of transport, we introduce a large number of

(complex) rotor and spinon flavors N with the constraint
∑N

l=1 |φlj|2 = 1 for all j =

0, 1, ..., N − 1, and only the l = 1 component couples to Aext. The N = 1 limit will be
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taken at the end. The effective action for the extended model becomes

L =
N−1∑
j=0

(
N∑
l=1

|(∂ − iÃj)φ
l
j|2 + iλj(

N∑
l=1

|φlj|2 − 1) +
1

2g2
(ϵµνλ∂νÃj,λ)

2

)

+
N∑
l=1

f̄l

(
∂τ − µ− i

N−1∑
j=0

Ãj,0 + ieAext,0δl,1 +
1

2m
(∇− i

N−1∑
j=0

Ãj + ieAextδl,1)
2

)
fl + · · · .

(A.35)

Using the Fourier expansion for the electrically charged rotor φl=1
j in terms of the holons

(+) and doublons (-),

φl=1
j =

∫
k

α+,j(t,k)e
ik·x + α−,j(t,k)e

−ik·x, (A.36)

the conductivity σb,j = ρ−1
b,j can be obtained as

σb,j = ⟨Jx,j⟩/Ex, ⟨Jx,j⟩ =
∫
k

∑
s=±

s
k

ϵk
fs,j(t,k), (A.37)

where we define the distribution for holon (s = +) and doublon (s = −) as fs,j =

⟨α†
s,j(t,k)αs,j(t,k)⟩, and they satisfy the QBE as

(∂t + sE · ∂k)fs,j(t,k) =
1

2N
(Iλj [f±,j] + IÃj

[f±,j]). (A.38)

Note that the gauge choice in Eq. A.33 ensures that fs,j are decoupled and equal for

different j within the approximation that Ãj is in thermal equilibrium, so the subindex

j will be dropped unless there is ambiguity. The RHS of Eq. A.38 reads
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RHS =
1

2N

∫ ∞

0

dΩ

π

∫
d2q

(2π)2
{τλℑD(λ)(Ω, q) + τÃℑD

(Ã)
ii (Ω, q)}

× {2πδ(ϵk − ϵk+q + Ω)

4ϵkϵk+q

[fs(t,k)(1 + fs(t,k + q))nq(Ω)− (1 + fs(t,k))fs(t,k + q)(1 + nq(Ω))]

+
2πδ(ϵk − ϵk+q − Ω)

4ϵkϵk+q

[fs(t,k)(1 + fs(t,k + q))(1 + nq(Ω))− (1 + fs(t,k))fs(t,k + q)nq(Ω)]

+
2πδ(−ϵk − ϵk+q + Ω)

4ϵkϵk+q

[fs(t,k)fs(t,k + q)(1 + nq(Ω))− (1 + fs(t,k))(1 + fs(t,k + q))nq(Ω)]},

(A.39)

where τλ = −1 and τÃ = (2k × q̂)2 come from the bare vertex functions.

N 1 2 3 4 5 6 ... ∞
σb,j(e

2/ℏ) 0.021 0.029 0.034 0.036 0.038 0.039 0.047
ρb(h/e

2) 3.72 5.41 7.09 8.76 10.44 12.11 (3.62 + 1.68(N − 1))

Table A.1: Rotor conductivity (σb,j) and resistivity jump ρb at the MIT with frac-
tionally charged bosonic parton e∗ = e/N .

ℑD(λ),ℑD(Ã) physically denote the density of states of the emergent fields that scatter

with φ, which are broad in the (Ω, q) space due to the couplings with the φ fields. Below,

we ignore the bare dynamics. D(λ),(Ã) in the large-N limit reads

D(λ)(Ω, q) =
1

Πb

,

D
(Ã)
ii (Ω, q) =

ΠJ
b + (N − 1)ΠJ

f

(ΠJ
b )

2 +NΠJ
bΠ

J
f

=
N − 1

N

1

ΠJ
b

+
1

N

1

ΠJ
b +NΠJ

f

, (A.40)

where D
(Ã)
ii reduces to the MIT without charge fractionalization as discussed in Ref. [311]

when N = 1. For N > 1, as only the linear combination of Ãj, i.e.
∑N−1

j=0 Ãj couples to

the spinon field f and is Landau damped, there is a factor 1
N

for the Landau damped

component of the gauge field propagator D
(Ã)
ii , which may also be understood as the a
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component of gauge field in Eq. (A.29). The rest part is not Landau damped, and is

determined solely by ΠJ
b . Note that as ℑΠJ

f ≫ ℑΠJ
b in the limit µ ≫ T , the Landau

damped component can be approximated as 1
N

1
ΠJ

b +NΠJ
f
≈ 1

N
1

ΠJ
b (Ω=0,q)+NΠJ

f (Ω,q)
, and be

treated in the same way as Ref. [311] for the gauge field a. On the other hand, the first

term in D
(Ã)
ii should be determined for generic Ω, q. Using the standard expression for

polarizations Π,

Πb(Ω, q) =
T

2

∑
m

∫
k

τλ
1

(νm + Ωn)2 + ϵ2k+q

1

ν2m + ϵ2k
|iΩn→Ω+iδ

ΠJ
b (Ω, q) =

T

2

∑
m

∫
k

τÃ
1

(νm + Ωn)2 + ϵ2k+q

1

ν2m + ϵ2k
|iΩn→Ω+iδ

ΠJ
f (Ω, q) = −T

2

∑
m

∫
k

(2k × q̂)2

(2m)2
1

i(ωm + Ωn)− ξk+q

1

iωm − ξk
|iΩn→Ω+iδ, (A.41)

Eq. (A.38) can be solved self-consistently. In Tab. A.1, we show σb,j and the final resistiv-

ity ρb = (Nσ−1
b,j )/2 at different N , again the factor of 1/2 arises from the two spin/valley

flavors. ρb increases roughly linearly with N , and the fit of the data points at different

N gives

ρb =
(
R(0) +R(1)(N − 1)

) h
e2

= (3.62 + 1.68(N − 1))
h

e2
. (A.42)
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[133] Hilbert v. Löhneysen, Achim Rosch, Matthias Vojta, and Peter Wölfle. Fermi-liquid
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graphene. Proceedings of the National Academy of Sciences, 108(30):12233–12237,
2011.

[258] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro Neto. Continuum
model of the twisted graphene bilayer. Phys. Rev. B, 86:155449, Oct 2012.

210



[259] Cenke Xu and Leon Balents. Topological superconductivity in twisted multilayer
graphene. Phys. Rev. Lett., 121:087001, Aug 2018.

[260] Noah F. Q. Yuan and Liang Fu. Model for the metal-insulator transition in
graphene superlattices and beyond. Phys. Rev. B, 98:045103, Jul 2018.

[261] Hiroki Isobe, Noah F. Q. Yuan, and Liang Fu. Unconventional superconductivity
and density waves in twisted bilayer graphene. Phys. Rev. X, 8:041041, Dec 2018.

[262] Mikito Koshino, Noah F. Q. Yuan, Takashi Koretsune, Masayuki Ochi, Kazuhiko
Kuroki, and Liang Fu. Maximally localized wannier orbitals and the extended
hubbard model for twisted bilayer graphene. Phys. Rev. X, 8:031087, Sep 2018.

[263] Alex Thomson, Shubhayu Chatterjee, Subir Sachdev, and Mathias S. Scheurer. Tri-
angular antiferromagnetism on the honeycomb lattice of twisted bilayer graphene.
Phys. Rev. B, 98:075109, Aug 2018.

[264] J. F. Dodaro, S. A. Kivelson, Y. Schattner, X. Q. Sun, and C. Wang. Phases of
a phenomenological model of twisted bilayer graphene. Phys. Rev. B, 98:075154,
Aug 2018.

[265] Hoi Chun Po, Liujun Zou, Ashvin Vishwanath, and T. Senthil. Origin of mott
insulating behavior and superconductivity in twisted bilayer graphene. Phys. Rev.
X, 8:031089, Sep 2018.

[266] Jian Kang and Oskar Vafek. Symmetry, maximally localized wannier states, and
a low-energy model for twisted bilayer graphene narrow bands. Phys. Rev. X,
8:031088, Sep 2018.

[267] Ya-Hui Zhang and T. Senthil. arXiv:1809.05110, 2018.

[268] Yi-Zhuang You and Ashvin Vishwanath. Superconductivity from valley fluctuations
and approximate so (4) symmetry in a weak coupling theory of twisted bilayer
graphene. npj Quantum Materials, 4(1):16, 2019.

[269] Nick Bultinck, Shubhayu Chatterjee, and Michael P. Zaletel. Mechanism for anoma-
lous hall ferromagnetism in twisted bilayer graphene. Phys. Rev. Lett., 124:166601,
Apr 2020.

[270] Fengcheng Wu and Sankar Das Sarma. arXiv:1906.07302, 2019.

[271] Biao Lian, Zhijun Wang, and B. Andrei Bernevig. Twisted bilayer graphene: A
phonon-driven superconductor. Phys. Rev. Lett., 122:257002, Jun 2019.

211



[272] Jong Yeon Lee, Eslam Khalaf, Shang Liu, Xiaomeng Liu, Zeyu Hao, Philip Kim,
and Ashvin Vishwanath. Theory of correlated insulating behaviour and spin-triplet
superconductivity in twisted double bilayer graphene. Nature communications,
10(1):5333, 2019.

[273] Eslam Khalaf, Shubhayu Chatterjee, Nick Bultinck, Michael P Zaletel, and Ashvin
Vishwanath. Charged skyrmions and topological origin of superconductivity in
magic-angle graphene. Science advances, 7(19):eabf5299, 2021.

[274] Yichen Xu, Xiao-Chuan Wu, Chao-Ming Jian, and Cenke Xu. Orbital order and
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121:026402, Jul 2018.

[287] Haining Pan, Fengcheng Wu, and Sankar Das Sarma. Band topology, hubbard
model, heisenberg model, and dzyaloshinskii-moriya interaction in twisted bilayer
wse2. Phys. Rev. Research, 2:033087, Jul 2020.

[288] Yanhao Tang, Lizhong Li, Tingxin Li, Yang Xu, Song Liu, Katayun Barmak, Kenji
Watanabe, Takashi Taniguchi, Allan H MacDonald, Jie Shan, and Kin Fai Mak.
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