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The role of mitochondria within injured neurons is an area of active interest since these

organelles are vital for the production of cellular energy in the form of ATP. Using

mechanosensory neurons of the nematode Caenorhabditis elegans to test regeneration

after neuronal injury in vivo, we surveyed genes related to mitochondrial function

for effects on axon regrowth after laser axotomy. Genes involved in mitochondrial

transport, calcium uptake, mitophagy, or fission and fusion were largely dispensable for

axon regrowth, with the exception of eat-3/Opa1. Surprisingly, many genes encoding

components of the electron transport chain were dispensable for regrowth, except

for the iron-sulfur proteins gas-1, nduf-2.2, nduf-7, and isp-1, and the putative

oxidoreductase rad-8. In these mutants, axonal development was essentially normal

and axons responded normally to injury by forming regenerative growth cones, but

were impaired in subsequent axon extension. Overexpression of nduf-2.2 or isp-1 was

sufficient to enhance regrowth, suggesting that mitochondrial function is rate-limiting

in axon regeneration. Moreover, loss of function in isp-1 reduced the enhanced

regeneration caused by either a gain-of-function mutation in the calcium channel EGL-19

or overexpression of the MAP kinase DLK-1. While the cellular function of RAD-8 remains

unclear, our genetic analyses place rad-8 in the same pathway as other electron transport

genes in axon regeneration. Unexpectedly, rad-8 regrowth defects were suppressed by

altered function in the ubiquinone biosynthesis gene clk-1. Furthermore, we found that

inhibition of themitochondrial unfolded protein response via deletion of atfs-1 suppressed

the defective regrowth in nduf-2.2 mutants. Together, our data indicate that while axon

regeneration is not significantly affected by general dysfunction of cellular respiration, it is

sensitive to the proper functioning of a select subset of electron transport chain genes,

or to the cellular adaptations used by neurons under conditions of injury.

Keywords: electron transport chain, growth cone, oxidoreductase rad-8, iron-sulfur protein, mitochondrial
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INTRODUCTION

Most neurons are intrinsically competent to regenerate their
axonal processes after damage, although neurons of the adult
mammalian central nervous system are generally unsuccessful in
their regrowth attempts (He and Jin, 2016). Extensive studies in
multiple model systems have revealed a complex set of intrinsic
and extrinsic regulators of axon regeneration, and efforts are
underway to understand these mechanisms with the aim of
coaxing neurons into regrowing their connections and restoring
neural function (Tedeschi and Bradke, 2016).

Successful axon regeneration is an intricate multistep
process: The initial injury generates various cellular signals
that must be detected, propagated, and interpreted by the
neuron, and early responses include resealing the disrupted
membrane and stabilizing damaged structures. Following this,
the “repair” response involves preparing cellular structures
for repair, initiating genetic growth/regrowth programs,
synthesizing cellular components needed for regeneration and
transporting them to the injury site, and the formation of pro-
growth structures such as growth cones. Finally, for functional
restoration of the neural circuit, regrowing axons must reach
their targets, pathfinding successfully in the post-developmental
environment while overcoming growth-inhibiting factors.

Using the nematode Caenorhabditis elegans, we and others
have taken a genetic approach to identifying molecular
mechanisms of axon regeneration, reviewed in Chisholm et al.
(2016). The axons of C. elegans sensory and motor neurons
respond to damage by forming growth cones at the severed
axon stump followed by extending the axon and eventually
reconnecting to targets (Yanik et al., 2004). As in other
animals, axonal injury triggers an initial transient change in
axonal calcium levels, the dynamics of which are important
determinants of subsequent regrowth (Ghosh-Roy et al., 2010).
A MAP kinase cascade involving the dual leucine-zipper
kinase DLK-1 is essential and rate-limiting for early steps in
regeneration, including growth cone formation (Hammarlund
et al., 2009; Yan et al., 2009; Yan and Jin, 2012). DLK-1 activity
is regulated by calcium and acts as a link between initial
injury signals and subsequent cytoskeletal and transcriptional
responses (Ghosh-Roy et al., 2012; Chen et al., 2015). In response
to damage, the axonal microtubule cytoskeleton undergoes an
intricate sequence of changes resulting in the formation of a
regenerative growth cone between 4 and 6 h after axotomy
(Ghosh-Roy et al., 2012; Chen et al., 2015). Subsequent axon
extension over the next 48 h is characterized by erratic guidance,
frequent branching and pruning, yet can result in functional
reconnection with the original targets (Yanik et al., 2004; Ghosh-
Roy et al., 2010).

In our previous screen of more than 650 genes with human
homologs, two genes in the mitochondrial electron transport
chain (ETC), isp-1 and nduf-2.2, were found to be required for
axon regeneration in peripheral lateral mechanosensory (PLM)
neurons (Chen et al., 2011). The isp-1 gene encodes the sole
iron-sulfur protein in the ubiquinol-cytochrome c reductase
complex, or Complex III, of the ETC (Feng et al., 2001). The
nduf-2.2 gene encodes one of seven iron-sulfur proteins in the

NADH ubiquinone oxidoreductase complex, also known as ETC
Complex I (Kayser et al., 2001). Loss of function in either gene
had no obvious effect on neuronal development but significantly
reduced PLM axon regeneration, suggesting that axon regrowth
depends on mitochondrial ETC function.

To further explore the contribution of mitochondria to
axon regrowth, we have conducted a targeted screen of viable
mutants defective in mitochondrial regulation or function.
From this screen we have identified two additional Complex
I iron-sulfur protein genes, gas-1 and nduf-7, as well as the
putative ETC component rad-8 as being required for effective
regeneration. Interestingly, loss of function mutants of most
ETC component-encoding genes as well as mutants in genes
relating to mitochondrial transport, calcium uptake, mitophagy,
or mitochondrial fission/fusion did not affect axon regrowth,
with the exception of the mitochondrial inner membrane
fusion-promoting gene eat-3. Most of the axon regeneration-
defective mutants responded to injury by forming growth
cones at a normal rate, but exhibited decreased axon regrowth.
Overexpression of either isp-1 or nduf-2.2 in the nervous
system was sufficient to enhance axon regrowth beyond that
seen in controls. Genetic double mutant analysis suggested that
mitochondria act downstream or in parallel to injury-related
calcium or DLK-1 signals. Our genetic analyses support a role
for rad-8 in the mitochondrial ETC, and revealed an unexpected
genetic interaction between rad-8 and the demethoxyubiquinone
dehydroxylase clk-1, which synthesizes ubiquinone for use
in the ETC. Additionally, mutants of atfs-1, a transcription
factor involved in the mitochondrial unfolded protein response,
suppressed defective regrowth seen in the nduf-2.2 mutant
despite having normal axon regeneration levels on their own.
Together our data reveal a role for mitochondrial function in
the extension of regrowing axons after injury, although it may
not be the proper functioning of the ETC per se that determines
regeneration success, but rather the cellular adaptations in
injured neurons.

MATERIALS AND METHODS

Genetics and Strains
C. elegans were cultured on nematode growth medium plates
seeded with OP50 E. coli at 20◦C for all experiments. Most
strains contained Pmec-4-GFP(zdIs5) for visualization of touch
neurons, except those used for axotomy with the mito-GFP
marker, which contained the Pmec-4-TagRFP(juIs252) transgene.
Mutants were obtained from Shohei Mitani’s lab through the
Japan National Bio-Resource Project, or from the Caenorhabditis
Genetics Center, which is funded by NIH Office of Research
Infrastructure Programs (P40 OD010440). All mutations were
outcrossed at least twice to wild type. Alleles and strains used,
as well as primer sequences for genotyping, are listed in Table S1.

Molecular Biology and Transgenes
For rescue and overexpression experiments, coding sequences
were cloned from N2 wild type genomic DNA using primers
listed in Table S2 into the pCR8 backbone (Invitrogen) to
create Gateway entry clones, which were then recombined into
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Gateway destination vectors to generate expression plasmids.
For the mitochondrial GFP marker, the N-terminal 29 amino
acid mitochondrial targeting sequence of human COX8a was
cloned upstream of GFP using Gibson Assembly (New England
Biolabs) into pCR8 to generate a Gateway entry vector, and then
recombined with tissue-specific Gateway destination vectors.

Transgenic arrays were generated following standard
microinjection procedure (Mello et al., 1991), with expression
plasmids at the concentrations listed in Table S3. RFP or mKate2
driven by promoters for AIY neurons (ttx-3), AFD neurons
(gcy-8), or coelomocytes (unc-122) was used as visual markers for
transgenic arrays. Most arrays were created in wild type worms
and crossed into the mutant backgrounds using primers listed in
Table S4 to distinguish array sequences from genomic loci.

Laser Axotomy and Microscopy
Final larval stage worms (L4) were anesthetized in M9 buffer
containing 0.1% phenoxypropanol and mounted on agar
containing 0.03% phenoxypropanol. PLM femtosecond laser
axotomy and regrowth quantitation were performed essentially
as described (Wu et al., 2007). For the experiment using alternate
anesthesia, 0.1% levamisole in M9 buffer was used at both
time points, and the agar for mounting did not contain any
drugs. Axon regrowth measurements were obtained from three-
dimensional reconstructions of ∼1µm sections using the Zeiss
LSM Image Browser software, and any neurite >1µm was
included in the analysis. Strains were tested in at least two
separate experiments and any sick animals or animals with
regrowing axons fused to the severed neurite fragment were
censored from the analysis.

For mitoGFP quantification, worms were mounted in
phenoxypropanol as above and visualized at 63x using an
LSM710 confocal microscope (Zeiss). For quantification of
axonal mitochondrial density without injury, discrete axonal
GFP puncta were quantified from 0 to 170µm from the PLM
cell body. For mitoGFP density measurements after injury, the
number of discrete axonal GFP puncta were counted in the entire
segment of the axon still attached to the cell body at both the time
of injury (0 h) and 24 h later.

Statistical Analyses
Data are graphed as mean ± SEM using GraphPad Prism
(version 5.01). All data were tested for statistical significance
using unpaired Student’s t-tests or ANOVA with Tukey’s multiple
comparison post-test in comparison to wild type animals tested
on the same day. ns = p > 0.05, ∗p < 0.05, ∗∗p < 0.01, and
∗∗∗p < 0.001. Numbers in graphs are the number of animals
tested.

RESULTS

Regrowing PLM Axons Maintain
Mitochondrial Density
Mitochondria in C. elegans neurons have been visualized
using mito-GFP markers (Fatouros et al., 2012; Morsci
et al., 2016), revealing that mitochondria form discrete
puncta in axonal processes and more complex networks

in cell bodies. We confirmed these observations using a
pan-neuronally expressed mitochondrial reporter Prgef-1-mito-
GFP(juEx7517) (Figure S1A) as well as a touch neuron specific
marker Pmec-4-mito-GFP(juEx3328) (Figure S1B). The density
of mitochondrial puncta in the proximal PLM axon was
approximately one per ten microns (Figure S1C), which is
similar to that recently reported for C. elegans motor neurons
(Han et al., 2016). Mitochondrial density in the distal axon of
ALM neurons has been reported to increase during adult life
(Morsci et al., 2016), yet we observed that the mitochondrial
density in proximal PLM axons remains stable through
the seventh day of adulthood (Figure S1C), suggesting that
mitochondrial density may be differentially regulated between
different neuron types, or even between distal and proximal parts
of the same axon.

To examine whether mitochondrial distribution changes in
response to axon injury we performed laser axotomy at the fourth
larval stage, immediately before the final molt to adulthood. We
observed an increase in the number of mitochondrial puncta in
the proximal axon 24 h after injury (Figures 1A,B); however, this
increase was proportional to axon regrowth such that the density
of axonal mitochondria in the regrowing axon was maintained at
pre-injury levels (Figure 1C). These observations suggest that the
regrowing PLM axonmaintains a constant mitochondrial density
during regrowth, possibly by either increasing mitochondrial
biogenesis or transport from the cell soma. Additionally, we
noticed that mitochondria were generally not located at the
regrowing tips of axons, but rather were variable distances away
from the growth cone (Figures 1B,D). This is in contrast to
a recent report wherein regrowing commissural axons of C.
elegansmotor neurons exhibit a marked increase in the density of
mitochondrial puncta after injury as a result of increased cellular
transport as well as localization of mitochondria to the growth
cone (Han et al., 2016). These two studies in different neural
subsets suggest that the density and localization of mitochondria
after injury may be controlled in a cell type-specific manner.
Regardless, the maintenance or increase of axonal mitochondrial
density after injury (as opposed to decrease) in PLM neurons
suggests that these organelles are important in axon regrowth.
We therefore took a genetic approach to define which aspects of
mitochondrial function might be relevant in axon regeneration.

A Survey of Mitochondria-Related Genes:
Transport, Calcium Uptake, and Biogenesis
To learn how mitochondria contribute to axon regrowth,
we surveyed genes whose orthologs are known to affect
mitochondrial biogenesis, transport, or calcium uptake (Table 1).
In addition, we performed a more extensive survey of
genes involved in the electron transport chain (see next
section; Table 2). As in our previous large-scale mutant screen
(Chen et al., 2011), our analysis was confined to viable
mutants; Because mitochondrial function is essential for viability
(Tsang and Lemire, 2003), we exploited null mutants in
non-essential genes or partial loss of function mutants in
those genes that are essential to animal development and
survival.
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FIGURE 1 | Mitochondrial density is maintained in regenerating axons.

(A) PLM axons were visualized with Pmec-4-TagRFP(juIs252) and

mitochondria with Pmec-4-mitoGFP(juEx3328). Axons were severed ∼50 µm

from the cell body and the number of mitoGFP puncta and the length of the

regrowing axon quantified 24 h post injury. (B) Quantification of total number of

mitoGFP puncta in the portion of axon attached to the cell body (proximal

axon) 24 h post injury. (C) Mitochondrial density was calculated as the total

number of puncta divided by the length of the entire proximal axon, normalized

to 10µm. (D) Quantification of the distance between the regrowing axon tip or

growth cone and the closest mitochondrial punctum. n = 10 animals tested,

p-value from paired t-test: ns, not significant, ***p < 0.001. Filled arrows mark

injury site, arrowheads indicate mitoGFP puncta in proximal axon, and unfilled

arrow indicates tip of regrowing axon. Scale bars = 10µm.

We first focused on genes implicated in microtubule-
dependent transport ofmitochondria. TheMiro and Trak/Milton
protein families act as adaptors between mitochondria and
microtubule-binding molecular motors and are required in
other organisms for anterograde and retrograde transport
of mitochondria in axons (Schwarz, 2013). The C. elegans
genome contains two Miro family members miro-1 and miro-
2 (Shen et al., 2016; Xu et al., 2016) and a single Trak/Milton
family member trak-1 (Mercer et al., 2009). miro-1(tm1966)
null mutants appear superficially wild type, but have been
shown to have increased longevity and reduced mitochondrial
content (Shen et al., 2016), as well as altered mitochondrial
morphology in the epidermis (Xu et al., 2016). miro-2(tm2933)
null mutants are superficially wild type and have normal
epidermal mitochondrial morphology (Xu et al., 2016). Single
mutants in miro-1 or miro-2 displayed normal PLM axon
regeneration, suggesting individual Miro genes are not required
for regrowth. trak-1(tm1572) null mutants also displayed normal
PLM axon regeneration. Together these data suggest that despite
the observed increase in the number of mitochondrial puncta in
the regrowing axons, and in contrast to the recently reported

TABLE 1 | Mitochondrial pathways screened for axon regeneration.

Gene (allele) Human

ortholog

Pathway Regrowth

(% of WT)

n p-value

miro-1(tm1966) RHOT1 Transport 114.8 ± 7.8 22 0.1587

miro-2(tm2933) RHOT2 Transport 110.7 ± 7.9 26 0.2907

trak-1(tm1572) TRAK1 Transport 104.4 ± 3.3 22 0.7081

mcu-1(ju1154) MCU Calcium 82.96 ± 3.2 22 0.1174

emre-1(tm6230) SMDT1 Calcium 92.09 ± 7.4 29 0.3975

pink-1(tm1779) PINK1 Mitophagy 72.65 ± 5.8 26 **

pink-1(ok3538) PINK1 Mitophagy 88.42 ± 3.8 28 0.2247

pdr-1(gk448) PARK2 Mitophagy 110.7 ± 2.9 24 0.2895

pdr-1(tm395) PARK2 Mitophagy 96.68 ± 2.9 23 0.7505

pdr-1(tm598) PARK2 Mitophagy 95.15 ± 4.0 20 0.6758

drp-1(tm1108) DNM1L Fission 94.1 ± 4.0 23 0.3419

fis-1(tm1867) FIS1 Fission 113. ± 6.6 22 0.1775

fis-1(tm2227) FIS1 Fission 108.8 ± 7.3 21 0.4543

fis-2(gk363) FIS1 Fission 107.9 ± 8.3 22 0.4745

fis-2(gk414) FIS1 Fission 115.0 ± 6.4 41 0.0735

fis-2(tm1832) FIS1 Fission 107.5 ± 8.5 28 0.4462

fzo-1(tm1133) MFN2 Fusion 87.33 ± 5.4 19 0.074

eat-3(ad426) OPA1 Fusion 62.02 ± 6.2 17 ***

eat-3(tm1107) OPA1 Fusion 70.27 ± 4.2 26 ***

Human orthologs of C. elegans genes, as well as their mitochondrial pathway are listed.

Regrowth is reported as mean percentage of wild type (WT) ± S.E.M., n = number

of animals tested, and p-value from Student’s t-test of mutant vs. same-day control,

**p < 0.01, ***p < 0.001.

role for miro-1 in motor axon regeneration (Han et al., 2016),
individual transport adaptors are dispensable for PLM axon
regeneration.

One of the initial signals of axonal damage is an increase
of axonal calcium that spreads wave-like bi-directionally
away from the site of injury (Ghosh-Roy et al., 2010).
Injury-triggered calcium transients are also observed in C.
elegans epidermal wound responses, where they trigger local
mitochondrial calcium uptake and reactive oxygen species
(ROS) production critical for wound repair (Xu and Chisholm,
2014). To test whether mitochondrial calcium pathways might
be involved in axon repair or regeneration, we tested null
mutations in the mitochondrial calcium uniporter (MCU)
ortholog mcu-1 and in the essential MCU regulator (EMRE)
ortholog emre-1, required for coupling uniporter opening
to calcium-sensing subunits (Sancak et al., 2013). These
mcu-1 and emre-1 mutants displayed normal PLM axon
regrowth, consistent with observations in mcu-1 mutants in
motor axon regrowth (Han et al., 2016), suggesting that
mitochondrial calcium uptake is not a critical determinant of
axon regeneration.

We next tested C. elegans homologs of genes involved in
mitophagy, the breakdown of faulty mitochondria. In mammals
and Drosophila the PINK1 serine/threonine kinase activates
the ubiquitin-ligase activity of PARKIN/PDR-1, which marks
mitochondria for degradation (Song et al., 2013). The C.
elegans PINK1 ortholog pink-1 and the Parkin/PDR1 ortholog
pdr-1 have been implicated in mitophagy and mitochondrial
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TABLE 2 | Mitochondrial electron transport chain genes tested.

Gene (allele) Human

ortholog

ETC complex Regrowth

(% of WT)

n p-value

gas-1(fc21) NDUFS2 I 70.0 ± 6.0 25 ***

nduf-2.2(ok437) NDUFS2 I 41.7 ± 5.3 25 ***

nduf-7(et19) NDUFS7 I 67.5 ± 3.8 23 ***

nuo-6(qm200) NDUFB4 I 106.1 ± 6.2 24 0.4557

mev-1(kn1) SDHC II 94.0 ± 7.5 21 0.5693

sdha-2(tm1420) SDHA II 97.6 ± 6.0 22 0.8019

clk-1(e2519) COQ7 Ubiquinone 91.1 ± 4.7 24 0.2637

clk-1(qm30) COQ7 Ubiquinone 91.3 ± 4.5 29 0.212

rad-8(mn163) RTN4IP1 II/III 51.5 ± 7.4 25 ***

isp-1(qm150) UQCRFS1 III 23.3 ± 3.9 27 ***

ucr-2.3(ok3073) UQCRC2 III 106.5 ± 5.9 30 0.4429

ucr-2.3(pk732) UQCRC2 III 83.05 ± 5.5 27 0.0656

asg-2(ok3344) ATP5L ATP synthase 82.84 ± 5.6 26 0.0908

asg-2(tm1472) ATP5L ATP synthase 82.5 ± 6.2 21 0.1068

Human orthologs of C. elegans electron transport chain genes and their complex

association are listed. Regrowth is reported as mean percentage of wild type (WT) ±

S.E.M., n = number of animals tested, and p-value from Student’s t-test of mutant vs.

same-day control, ***p < 0.001.

biogenesis (Palikaras et al., 2015; Pickrell and Youle, 2015).
We tested two pink-1 deletions, both of which are presumed
null mutants: pink-1(tm1779) (Samann et al., 2009) displayed
significantly reduced axon regeneration, yet pink-1(ok3538)
(Valenci et al., 2015) displayed normal axon regrowth. We
note that the tm1779 deletion also affects the inter-genic
region of the operon that includes the 3′ untranslated region
of the upstream F-box gene EEED8.10; tm1779 may affect
expression of the downstream gene(s), or tm1779 strains
may contain background mutations that we were unable to
eliminate in outcrossing. Axon regrowth was normal in three
independent alleles of the PARKIN homolog pdr-1, all of which
are thought to cause strong loss of function at the protein
level (Springer et al., 2005; Valenci et al., 2015). Together, we
conclude that mitophagy-related genes are not required for axon
regeneration.

Finally, we testedC. elegans genes implicated inmitochondrial
fission and fusion (Mishra and Chan, 2014), namely drp-
1/DNM1L and the FIS1 homologs fis-1 and fis-2 for fission,
and fzo-1/MFN1 and eat-3/OPA1 for fusion (Table 1). While
drp-1 null mutants have an abnormally fused mitochondrial
network, the network in fis-1 or fis-2 null mutants is normal;
FIS-1 and FIS-2 have been suggested to play a role in mitophagy-
related mitochondrial fission rather than mitochondrial network
maintenance (Breckenridge et al., 2008; Shen et al., 2014). When
tested for axon regrowth after injury, all these fission-defective
mutants displayed normal regrowth phenotypes (Table 1). We
next examined a null allele of fzo-1 and two loss-of-function
alleles of eat-3/Opa1, orthologs of which mediate fusion of
the outer and inner mitochondrial membranes, respectively
(Breckenridge et al., 2008; Kanazawa et al., 2008; Rolland et al.,
2009). Interestingly, eat-3, but not fzo-1, mutants displayed
significantly reduced axon regrowth. As fzo-1 and eat-3 mutants

exhibit comparably fragmented mitochondrial networks in other
cell types (Breckenridge et al., 2008), the requirement for eat-
3 in regrowth may be independent of its role in mitochondrial
fusion. The eat-3 ortholog Opa1 functions in remodeling the
cristae of the inner mitochondrial membrane, independent of its
role in IMM fusion (Cogliati et al., 2013; Pernas and Scorrano,
2016). Since cristae house the electron transport chain, and our
previous and current screen implicated ETC function in axon
regrowth, we hypothesized that the requirement for eat-3 in
axon regrowth is indirect, via its effects on the ETC. However,
mutants of immt-1, immt-2, moma-1, and chch-3, genes which
have been implicated in cristae formation or maintenance (Mun
et al., 2010; Head et al., 2011), all showed normal axon regrowth
(Figure S2). Nevertheless, and in light of the two genes identified
in the original screen belonging to the ETC, we next turned our
attention to ETC genes and whether ETC function is critical for
axon regrowth.

Select Components of the Electron
Transport Chain Are Required for Axon
Regeneration
Four multiprotein complexes (Complexes I–IV) work to
metabolize products from the citric acid cycle in order to
create an electrochemical gradient across the innermitochondrial
membrane, which in turn powers the ATP synthase (Complex
V) that generates ATP to power cellular reactions (Figure 2A).
While complete loss of function in mitochondrial electron
transport is lethal (Tsang and Lemire, 2003), viable mutations
in a number of C. elegans ETC components have been
identified, many of which have been studied for their effects
on animal lifespan (Munkacsy and Rea, 2014; Dancy et al.,
2015). Besides the previously tested genes nduf-2.2 and isp-
1, we tested mutants in nine additional ETC components,
some of which have been shown biochemically by others to
display reduced ETC function (Table 2). Of the new mutants
tested, only three had significantly reduced axon regrowth:
the Complex I iron-sulfur protein-encoding genes gas-1 and
nduf-7 and the putative mitochondrial oxidoreductase rad-8
(Figures 2B–G).

We first extended our previous observations of impaired
regrowth in isp-1 and nduf-2.2 mutants. The isp-1(qm150) allele
is a point mutation that reduces Complex III function and lowers
overall cellular respiration by 40% (Feng et al., 2001). Axon
regrowth defects seen in this mutant were completely rescued
by expression of wild type isp-1 under the control of a pan-
neuronal promoter (Figure 3A), suggesting a cell-autonomous
requirement for ETC function in axon regrowth.

C. elegans encodes two orthologs of the NDUFS2 subunit
of complex I: nduf-2.2 and gas-1 (Kayser et al., 2001). gas-
1 is ubiquitously expressed, whereas the expression pattern
of nduf-2.2 is undetermined (Kayser et al., 2004). The nduf-
2.2(ok437) allele is a large deletion and likely null with unknown
effects on mitochondrial metabolism, although mutants appear
superficially wild type. In contrast, gas-1(fc21) partial loss of
function mutants are small and slow-growing and display
drastically reduced Complex I activity (Kayser et al., 1999,
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significantly decreased axon regeneration 24 h after injury. Arrow indicates injury site. Scale bars = 20µm.

2001). Consistent with previous observations, nduf-2.2(ok437)
reduced regrowth by roughly 60%, and expression of wild
type nduf-2.2 under the control of a ubiquitously expressed
promoter fully rescued axon regrowth phenotypes (Figure 3B).
gas-1(fc21) mutants, which grow slowly and have a small body
phenotype, also displayed a defect in PLM axon regrowth
(Table 2), although not as severe as in nduf-2.2 mutants.
This suggests that defective axon regrowth is not the result
of organismal growth rate and that nduf-2.2 may play the
predominant role in regrowing axons. As gas-1(fc21) was
originally isolated based on hypersensitivity to anesthetics
(Kayser et al., 1999), we tested its effects on axon regrowth
using two independent immobilization agents, phenoxypropanol
and levamisole, with comparable results (Figure 3C). Pan-
neuronal expression of wild type gas-1 was sufficient to
rescue gas-1(fc21) axon regrowth defects to normal levels
(Figure 3D). A recent report identified the et19 partial loss-of-
function allele of nduf-7, another Complex I iron-sulfur protein
(Rauthan et al., 2015). nduf-7(et19) mutants are viable and
healthy yet slightly slow-growing, and displayed defective axon
regrowth (Figure 2E). Together, these data suggest the ETC
Complex I iron-sulfur protein subunits are important for axon
regeneration.

The above results on subunits of the ETC Complexes
I and III are consistent with a general requirement for
mitochondrial respiration and ATP synthesis in axon regrowth.
Indeed, recent results showing a requirement for mitochondria
in motor axon regrowth have been interpreted as reflecting

the high energetic requirements in this process (Han et al.,
2016). To further address the role of the ETC in axon
regrowth we examined additional ETC components (Table 2).
Unexpectedly, loss of function in most of these genes had no
effect on PLM axon regeneration: In Complex I, we tested nuo-
6/NDUFB4(qm200), which exhibits reduced Complex I activity
and overall mitochondrial respiration, as well as impaired motor
axon regrowth after injury (Yang and Hekimi, 2010b; Han
et al., 2016). In Complex II we tested the kn1 allele of mev-
1/SDHC, which displays decreased Complex II function but
normal ATP levels (Ishii et al., 1998). Also in Complex II, the
tm1420 allele of sdha-2/SDHA, has a 519 bp in-frame deletion
in exon four, which removes most of the FAD-binding domain
of the protein and thus likely rendering it unable to oxidize
succinate. We tested two alleles of the Complex III core protein
ucr-2.3/UQCRC2l: the ok3073 allele is a 415 bp deletion and 4
bp insertion creating a premature stop codon; pk732 is a point
mutation in the insulinase domain (Butler et al., 2010). No
viable alleles in genes encoding subunits of Complex IV were
available. For the ATP synthase, we tested two deletion alleles of
the γ-subunit homolog asg-2/ATP5L. We also tested clk-1/COQ7,
which catalyzes the final step in the synthesis of ubiquinone, an
essential electron carrier that shuttles electrons from Complexes
I or II to Complex III (Felkai et al., 1999). clk-1(e2519) is a point
mutation in the active site and is defective in conversion of 5-
demethoxyubiquinone into ubiquinone, while the clk-1(qm30)
deletion is a null (Ewbank et al., 1997; Miyadera et al., 2001;
Branicky et al., 2006). Collectively, these mutants have varying
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(A) isp-1(qm150) and (B) nduf-2.2(ok437), respectively. (C) Testing

gas-1(fc21) mutants using either 0.1% phenoxypropanol or 0.1% levamisole

revealed that the impairments in regeneration in this mutant are independent of

the immobilization method used. (D) Pan-neuronal transgenic arrays

containing the wild type genomic sequence of gas-1 were able to partially

restore axon regrowth in gas-1(fc21) mutants. Lower tier p-values calculated

by Student’s t-test vs. same-day control and upper tier p-values calculated by

ANOVA with Tukey’s multiple comparison post-test across mutant strains: ns,

not significant, *p < 0.05, **p < 0.01 ***p < 0.001.

effects on ETC function and ATP production (Dancy et al., 2015),
yet all had largely normal axon regeneration 24 h after axotomy,
contradicting our hypothesis that the ETC is required for axon
regeneration (Table 2).

Among the additional ETC components tested, only rad-8

mutants displayed defective regrowth (Figure 2F, Table 2). rad-8

encodes a putative mitochondrial oxidoreductase, and themn163

mutation results in a premature stop codon and is a presumed
null allele. This mutant has decreased electron transfer from

Complex II to Complex III (Fujii et al., 2011), but normal ATP
levels (Braeckman et al., 2000); the precise role of RAD-8 in

electron transport is unclear. Pan-neuronal expression of wild
type rad-8 was sufficient to rescue rad-8 axon regrowth defects
(Figure 4A). Unlike isp-1 and other ETC mutants, regrowing
PLM axons in rad-8(mn163) displayed a reduced frequency
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exhibit fewer growth cones. (A) Wild type genomic sequence of rad-8
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normal levels. (B) Examples of regrowing axon terminals with (left) or without

(right) growth cones. (C) Proportions of ETC mutant animals with axons
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of growth cones 24 h after injury (4 vs. 20% in wild type;
Figures 4B,C).

Overall, since many of the ETC mutants have normal axon
regrowth, our data suggest that PLM axon regeneration is not
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simply dependent on ATP generation by the entire ETC, but
rather on the function of specific subset of ETC components.
The relationship between dysfunction of a small group of ETC
components and overall mitochondrial metabolism is complex,
thus it may be that these genes have a special function within the
ETC, or that their loss or mutation leads to cellular adaptations
which inhibit axon regrowth (see below).

Mitochondrial ETC Genes Are Required for
Axon Extension and Act Downstream or in
Parallel to Injury Signals
To get a deeper understanding of the regeneration defects in
the affected ETC mutants, we next asked whether mitochondria
are required for early responses such as formation of growth
cones at the tip of the regrowing axon. Defective axon regrowth
24 h after injury could result from the failure of a number
of steps in regrowth, from initial injury detection and signal
propagation to growth cone formation and axon extension.
These five ETC mutants with defective axon regrowth had
a normal frequency of growth cone formation at 6 h after
injury (Figure 5A). Furthermore, by this time point, regrowing
wild type axons had extended nearly 20µm, whereas the
ETC mutants consistently displayed reduced axon extension
(Figure 5B). Altogether these data suggest that the ETC genes
are not required in injury detection and growth cone formation,

rather they likely function in the extension phase of axon
regeneration.

Elevated calcium influx after injury with a gain-of-function
mutation in the voltage gated calcium channel EGL-19 or
elevated injury signaling by overexpression of dlk-1 each enhance
axon regrowth beyond wild type levels (Ghosh-Roy et al.,
2010; Yan and Jin, 2012). To test whether the ETC functions
downstream of the initial injury signaling, we performed double
mutant analyses between isp-1(qm150) mutants and either egl-
19(gf) or DLK-1 overexpressing animals. Double mutants of isp-
1(qm150) and the egl-19(ad695) mutant were strongly defective
in regrowth, although not as strongly as isp-1(qm150) alone
(Figure 5C). Similarly, isp-1(qm150) was almost fully epistatic to
the effects of dlk-1 overexpression. We conclude that the role
of mitochondria in axon regeneration lies downstream of initial
injury signals and that boosting these early events cannot bypass
the requirement for mitochondria in later axon extension. The
partial epistasis of isp-1with egl-19(gf) is consistent with multiple
pathways acting downstream of injury signals.

Overexpression of nduf-2.2 or isp-1 Can
Enhance Axon Regeneration
During the above rescue experiments, we noticed that animals
expressing one of the nduf-2.2 transgenic arrays displayed
axon regrowth significantly higher than wild type, even in
the nduf-2.2(ok437) background (Figure 3B). We explored
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whether overexpressing these ETC genes in the wild type
background would affect axon regeneration. Interestingly,
rescuing transgenes for the iron-sulfur proteins nduf-2.2 and
isp-1 using either a ubiquitous or a pan-neuronal promoter,
respectively, enhanced PLM axon regeneration in the wild
type background (Figures 6A,B). Although, nduf-2.2 and gas-
1 are over 90% identical in amino acid sequence and share
similar functions (Kayser et al., 2001), transgenes of wild

type gas-1 using a pan-neuronal promoter did not enhance
axon regeneration in the wild type background (Figure 6C).
Similarly, neuronal overexpression of wild type rad-8 also
had no effect (Figure 6D). With the caveat that expression
levels have not been directly measured in these strains,
our data suggest that overexpression of nduf-2.2 or isp-1
can be sufficient to enhance axon regrowth above normal
levels.
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Interactions of rad-8 with the
Mitochondrial Electron Transport Chain
Our finding that rad-8 is required for efficient axon regrowth
prompted us to investigate this gene in more depth, since the
cellular function of RAD-8 remains unclear. rad-8 mutants
were originally isolated by virtue of their hypersensitivity to
radiation (Hartman and Herman, 1982) and later found to
exhibit reduced electron transport between Complexes II and
III (Fujii et al., 2011). rad-8 encodes a putative mitochondrial
dehydrogenase/reductase (Fujii et al., 2011) related to the
mammalian Nogo-interacting protein RTN4IP/NIMP (Hu et al.,
2002). To assess whether RAD-8 is required in mitochondria,
we mis-targeted the protein to the cytoplasm by deleting
the N-terminal mitochondrial localization sequence (MLS) as
described by Hu et al. (2002). Wild type animals expressing
RAD-81MLS pan-neuronally displayed normal development
and behavior, but in the rad-8(mn163) background the RAD-
81MLS transgene significantly decreased viability, precluding
axon regeneration testing. These experiments suggest the N-
terminal MLS is important for RAD-8 function, consistent with a
role in mitochondria.

We next constructed compound mutants of rad-8(mn163)
with other ETC mutants. Double mutants between rad-
8(mn163) and nduf-2.2(ok437) or isp-1(qm150) were extremely
slow growing yet displayed sub-additive interactions in axon
regrowth, such that the double mutants resembled the strongest
single mutant phenotype (Figure 7A). We were unsuccessful
in our attempts to generate viable double mutants between
rad-8(mn163) and gas-1(fc21), mev-1(kn1), and the C-terminal
deletion mutant ucr-2.3(ok3073). Double mutants of rad-
8(mn163) with ucr-2.3(pk732), a point mutant in the insulinase
domain of a Complex III core subunit that is phenotypically
similar to mev-1(kn1) (Butler et al., 2010) and had normal
axon regrowth, showed axon regeneration levels similar to rad-
8(mn163)mutants.

Additionally, we tested whether rad-8(mn163) interacts with
clk-1. As noted above, the null allele clk-1(qm30) had no effect
on axon regeneration alone, and double mutants resembled rad-
8(mn163) in regrowth (Figure 7B). Unexpectedly, when rad-
8(mn163) was combined with the clk-1(e2519) point mutation,
the rad-8(mn163) axon regeneration defect was suppressed to
wild type levels. Both clk-1 alleles partially suppressed the slow
growth and small body size of the rad-8(mn163) mutants when
grown at 20◦C, but only e2519 suppressed rad-8 axon regrowth
defects, further supporting a conclusion that axon regrowth is
separable from organismal growth rate.

Inhibiting the mitoUPR Suppresses
nduf-2.2 Regeneration Defects
One response to mitochondrial dysfunction is the mitochondrial
unfolded protein response (mitoUPR), in which the transcription
factor ATFS-1 is released from mitochonrdria and translocates
to the cell nucleus to turn on the expression of adaptive
genes (Nargund et al., 2012; Kornmann, 2014). We tested two
deletion alleles of atfs-1 that affect the N-terminal region of
the gene, likely causing strong loss of function. We observed

a mild improvement in axon regeneration in one allele, and
another allele showed wild type levels of regrowth (Figure 8),
suggesting that inhibiting the mitoUPR has no major effect on
axon regeneration. However, double mutants of either atfs-1
allele with the ETC gene nduf-2.2 showed suppression of the
regeneration defect seen in nduf-2.2 single mutants. Our attempts
to generate double mutant strains between atfs-1 and the other
affected ETC genes were unsuccessful because these mutants
were either extremely slow-growing or lethal. Together with the
interaction between rad-8 and clk-1 observed above, these data
suggest that absence of rad-8 or nduf-2.2 likely trigger special
cellular adaptations and stress signaling cascades, which are
compensated upon impairment in mitoUPR function, resulting
in normal regrowth of injured axons.

DISCUSSION

Increasing evidence from diverse model systems points to
an important role for mitochondria in regenerative axon
regrowth. Here, building on initial observations from our
large-scale axon regeneration screen (Chen et al., 2011), we
explored the role of mitochondria in depth. Using C. elegans
mechanosensory neurons, we find that injured neurons maintain
their axonal mitochondrial density as they regrow and do
not send mitochondria to the tips of regrowing axons.
Regeneration is generally resistant to loss-of-function mutations
in most mitochondrial biogenesis or fission/fusion pathways,
with the exception of eat-3/Opa1, which may affect assembly
of the electron transport chain. We identify a subset of ETC
components required for efficient regrowth, and show that these
likely act cell autonomously during the axon extension phase of
regrowth.

We find that in C. elegans PLM mechanosensory
neurons, axon injury does not trigger dramatic alterations
in mitochondrial distribution. By 24 h post injury, the total
number of axonal mitochondria in the regrowing axon has
increased so as to maintain mitochondrial density at ∼10 per
100µm of axon length, with the most distal mitochondrion
located∼25µm from the regrowing axon tip. These observations
may be compared with recent studies of C. elegansmotor neuron
commissures, which display an increase in mitochondrial
density within 12 h of injury due to increased axonal transport
and translocation into growth cones (Han et al., 2016). Axon
regeneration of mammalian neurons also appears to involve
axonal mitochondrial transport, as loss of function in the
mammalian-specific mitochondrial anchor protein syntaphilin
results in enhanced axon regeneration (Zhou et al., 2016).
Furthermore, the mammalian-specific transport protein Armcx1
is required for the enhanced regenerative capacity of some retinal
ganglion axons in a regeneration-enhanced background (Cartoni
et al., 2016). In contrast, Rawson and colleagues reported that
in C. elegans ric-7 mutant worms, which cannot transport
mitochondria into PLM axons, severed axons retained their
regenerative competence (Rawson et al., 2014).

In addition to mitochondrial transport, studies in mammalian
peripheral axons or in Drosophila have found that injury triggers
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FIGURE 7 | rad-8 epistasis places it in the same pathway as other ETC

genes. (A) Axon regrowth in double mutants of rad-8(mn163) with either

nduf-2.2(ok437) or isp-1(qm150) were identical to either nduf-2.2(ok437) or

isp-1(qm150) single mutants, while double mutants of rad-8(mn163) with

ucr-2.3(pk732) were identical to rad-8(mn163) single mutants.

(B) rad-8(mn163); clk-1(qm30) double mutants were identical to rad-8(mn163)

single mutants, while rad-8(mn163); clk-1(e2519) double mutants had wild

type levels of axon regrowth. Lower tier p-values calculated by Student’s t-test

vs. same-day control and upper tier p-values calculated by ANOVA with

Tukey’s multiple comparison post-test across mutant strains: ns, not

significant, *p < 0.05, ***p < 0.001.

mitochondrial fission (Chen et al., 2016; Kiryu-Seo et al., 2016).
In contrast to our findings in PLM sensory neurons, the
fission-defective mutant drp-1 is defective in C. elegans motor
commissure regrowth (Han et al., 2016), although it is unclear if
this reflects a requirement for fission during the injury response
or if it results from the chronic depletion of axonal mitochondria
in these mutants. Taken together, these studies suggest the
effects of injury on axonal mitochondrial distribution may vary
depending on the species and neuronal subtype.
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FIGURE 8 | Mutations in the mitoUPR response gene atfs-1 suppress

axon regeneration defects in nduf-2.2. Two deletion mutants of atfs-1 have

either no effect or a small increase in axon regeneration on their own, but

double mutants of either atfs-1 allele and nduf-2.2 have wild type axon

regrowth. Lower tier p-values calculated by Student’s t-test vs. same-day

control and upper tier p-values calculated by ANOVA with Tukey’s multiple

comparison post-test across mutant strains: ns, not significant, *p < 0.05,

***p < 0.001.

In PLM neurons, injury does not appear to trigger drastic
remodeling of axonal mitochondria. Nonetheless, our data show
that mitochondrial function is important in PLM axon regrowth.
We tested over 20 genes with known or predicted roles in
mitochondrial biogenesis or function, assessing mitochondrial
transport, calcium uptake, mitophagy, the fission/fusion cycle,
and the electron transport chain. We find no evidence that
mitophagy on its own is essential for regrowth, as also reported
for C. elegans motor neurons (Han et al., 2016). Adaptors for
mitochondrial transport along microtubules also did not appear
to play direct roles in PLM regrowth, although we have not
excluded possible redundancy between the two miro genes.
Axon regrowth was essentially normal in drp-1 mutants (fission
defective) or fzo-1 mutants (fusion defective) implying that the
fission/fusion cycle is not rate limiting to PLM axon regrowth.
In contrast, eat-3 (inner mitochondrial membrane fusion
defective) mutants displayed significantly reduced regrowth,
potentially reflecting an influence on the electron transport
chain.

Our observations that loss of function in only five out of
eleven ETC subunits resulted in significantly impaired axon
regrowth support a more specific role for the electron transport
chain in axon regrowth. Consistent with our findings, Han and
colleagues also found that isp-1 mutants are strongly defective
in GABAergic motor neuron commissure regrowth (Han et al.,
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2016). However, in contrast, Han and colleagues found that
nuo-6 mutants are mildly defective in motor neuron regrowth,
whereas we find nuo-6 mutants show normal PLM regrowth.
This suggests that GABAergic motor neurons may be more
sensitive to lowered ETC function than are PLM neurons, or that
different neuron types depend on different ETC components for
regrowth.

A key question is why axon regrowth is sensitive to
loss of function in some but not other components of the
ETC. It should be noted that in addition to their best-
known roles in ATP synthesis, mitochondrial function affects
diverse aspects of cellular metabolism. Chronic disruption
of electron transport, as in the mutants studied here,
triggers complex cellular responses, including remodeling
of metabolism to preserve energy production. Electron
transport dysfunction can trigger the mitochondrial retrograde
signaling pathway (Liu and Butow, 2006), the mitochondrial
unfolded protein response (Nargund et al., 2012), as well as
a host of other metabolic responses (Morgan et al., 2015)
including aberrant NADH:NAD+ ratios (Falk et al., 2008)
and altered one-carbon metabolism (Bao et al., 2016). A
common result of ETC dysfunction is elevated production
of mitochondrial ROS, which in some cases induces elevated
levels of detoxifying enzymes. However, our data together
with those of Han et al. (2016) argue against a role for
mitochondrial calcium handling or ROS production in axon
regeneration.

Focusing on the energetic phenotypes of the C. elegans
mutants studied here, disruption of Complex I—as in gas-
1(fc21) mutants—impairs Complex I activity, but animals
compensate by elevating Complex II function and organismal
ATP levels are normal (Kayser et al., 2004). Conversely, loss
of Complex II function—as in mev-1(kn1) mutants—leads to
a compensatory increase in Complex I function resulting in
overall normal ATP levels (Braeckman et al., 2000; Senoo-
Matsuda et al., 2001). Defects in ubiquinone synthesis, such
as in clk-1 mutants, strongly reduce Complex I-dependent
respiration, but overall metabolism and ATP content are
normal, presumably due to compensatory upregulation of
glycolytic pathways for ATP production (Braeckman et al.,
1999). Complex III-impaired isp-1 mutants display the most
dramatic axon regrowth defects in our assay and have been
reported to have either normal (Yang and Hekimi, 2010a)
or reduced (Yee et al., 2014) ATP levels. Conversely, rad-8
mutants have normal ATP levels (Braeckman et al., 2000), yet
display reduced regrowth. ATP levels have not been examined
in nduf-2.2 or nduf-7 mutants. nuo-6 mutants, which had
normal PLM regrowth, have been reported to have either
elevated (Yang and Hekimi, 2010a) or reduced (Yee et al.,
2014) ATP levels. Thus, there is so far no clear correlation
between respiratory chain outputs and regeneration, although
it should be noted that whole organism measurements of ATP
or other metabolites may not necessarily extend to individual
neurons.

In seeking possible commonalities among the subset of
mitochondria- and ETC-related genes required for axon
regeneration, we note that several genes have human orthologs

implicated in hereditary optic neuropathies, wherein retinal
ganglion cells or their axons degenerate, leading to blindness.
The eat-3 ortholog OPA1 is well known for its association with
dominant optic atrophy, an inherited condition characterized
by retinal ganglion cell degeneration (Lenaers et al., 2012).
Mutations in NDUFS2 and NDUFS7, orthologs of nduf-2.2/gas-
1 and nduf-7, respectively, are associated with mitochondrial
Complex I deficiency, which can cause hereditary optic
neuropathy (Triepels et al., 1999; Bugiani et al., 2004; Tuppen
et al., 2010). Humanmutations inUQCRFS1, the human ortholog
of isp-1, the Complex III Rieske iron-sulfur protein, have not
been directly associated with human disease, but Complex III
deficiency in general is linked to optic neuropathy (Benit et al.,
2009). A recent report found that mutations in RTN4IP1, the
rad-8 ortholog, lead to inherited optic neuropathy (Angebault
et al., 2015). Although many of the other genes screened in
this study have human orthologs associated with a variety of
diseases, including degenerative diseases affecting the nervous
system, none are currently associated with optic neuropathies.
Speculatively, this suggests that C. elegans sensory neurons
and human retinal ganglion cells share similarities in their
dependence on specific components of the ETC, perhaps for
metabolic or other homeostatic purposes. The finding that
inhibition of the mitoUPR in the nduf-2.2 mutant background
could restore axon regeneration to wild type levels presents
the possibility that specific cellular adaptations and signaling
cascades remain active in this subset of ETC mutants.

An additional common feature among four of the six genes
identified here as being required in axon regrowth is their
biochemical function as iron-sulfur proteins, the key electron
donors and acceptors in the ETC. Why these proteins are
specifically required while other components of the same ETC
complexes are not required is unclear. One possibility is that
these proteins, due to their interface with electrons, experience a
high rate of structural damage during respiration such that their
degradation and replacement is rate-limiting. Another possibility
is that under conditions of high respiratory demand—stresses
such as axon injury—dysfunction of iron-sulfur proteins might
lead to release of labile iron, leading to further cellular damage
or the initiation of processes such as ferroptosis (Dixon and
Stockwell, 2014; Yang and Stockwell, 2016). In support of both
of these options, we found that overexpression of the iron-
sulfur proteins NDUF-2.2 and ISP-1 can enhance regrowth,
which may provide a ready pool of replacement proteins
or might sequester labile iron, or both. It remains unclear
why overexpression of the NDUF-2.2 paralog GAS-1 did not
enhance regrowth; perhaps NDUF-2.2 plays a more dominant
or specific role in neurons, while GAS-1 has a larger role in
non-neuronal tissues. Together these data suggest that ETC iron-
sulfur proteins play a specialized role in neurons and in axon
regeneration.

Our finding that we could genetically suppress rad-8 growth
phenotypes with either of the clk-1 mutant alleles was a
serendipitous observation during double mutant construction.
It is possible that loss of clk-1 function leads to mild stress and
upregulation of stress response pathways that might suppress the
rad-8 defects. However, other ETC mutants—which may also
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activate stress response pathways—did not similarly suppress
rad-8(mn163) phenotypes in the viable double-mutants, in
some cases (nduf-2.2, isp-1) actually exacerbating the slow
growth of rad-8 mutants. Moreover, although both clk-1 alleles
suppressed rad-8 growth rate defects, only the point mutant
(e2519) and not the null allele suppressed the rad-8(mn163)
regeneration defect, suggesting the e2519 allele might possess
altered function, as has been noted (Branicky et al., 2006).
Similarly, RAD-8 may also has tissue-specific functions. It
was notable that restoration of RAD-8 expression only in
neurons also rescued organismal growth rates (this study
and Fujii et al., 2011), while expression of the RAD-81MLS
construct in neurons strongly impaired overall growth rates.
These findings support a link between neuronal mitochondria
and overall animal growth rates (Ndegwa and Lemire, 2004;
Berendzen et al., 2016), although overall growth rates and
axon regeneration after injury are not themselves correlated.
Future studies on the molecular mechanisms of these ETC-
related genes may help shed further light on the role that
mitochondria play in the axon regenerative program and may,
through homology with human genes, provide insights into
human optic atrophies.
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Figure S1 | Mitochondria in the worm nervous system. (A) Brightfield and

fluorescence images of wild type worms expressing mitoGFP under the

pan-neuronal rgef-1 promoter. Zoomed in views of the (A’) head and (A”) tail

ganglia are outlined. (B) Expression of mitoGFP in the PLM neuron using the

mec-4 promoter. (C) The density of axonal mitochondrial puncta in the first ∼100

µm from the cell body in the PLM neuron remains stable from the final larval stage

(L4) through the seventh day of adulthood (A7). p-values calculated using

Student’s t-test vs. L4: ns, not significant.

Figure S2 | Mutants in cristae shape-related genes have normal axon

regeneration. Single mutant analysis of genes linked to cristae formation or

shape show no significant defects in axon regeneration. p-values calculated using

Student’s t-test vs. same day control: ns, not significant.
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