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Abstract: Measurements of elliptic (v2) and triangular (v3) flow coefficients of π±, K±,
p+p, K0

S, and Λ+Λ obtained with the scalar product method in Xe-Xe collisions at
√
sNN = 5.44TeV are presented. The results are obtained in the rapidity range |y| < 0.5 and

reported as a function of transverse momentum, pT, for several collision centrality classes.
The flow coefficients exhibit a particle mass dependence for pT < 3GeV/c, while a grouping
according to particle type (i.e., meson and baryon) is found at intermediate transverse
momenta (3 < pT < 8GeV/c). The magnitude of the baryon v2 is larger than that of mesons
up to pT = 6GeV/c. The centrality dependence of the shape evolution of the pT-differential
v2 is studied for the various hadron species. The v2 coefficients of π±, K±, and p+p are
reproduced by MUSIC hydrodynamic calculations coupled to a hadronic cascade model
(UrQMD) for pT < 1GeV/c. A comparison with vn measurements in the corresponding
centrality intervals in Pb-Pb collisions at √sNN = 5.02TeV yields an enhanced v2 in central
collisions and diminished value in semicentral collisions.
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1 Introduction

Collisions of ultra-relativistic nuclei provide the opportunity to study in the laboratory the
quark-gluon plasma (QGP), a state of deconfined quarks and gluons [1]. An important
feature of the QGP is the collective expansion, called flow, due to pressure gradients in
the geometrically overlapping matter in the collisions of nuclei. A direct experimental
evidence of this collective flow is the observation of anisotropic flow [2], which arises from
the asymmetry in the initial geometry of the collision combined with the initial state
inhomogeneities of the system’s energy density. Its magnitude is usually quantified by the
harmonic coefficients vn in a Fourier decomposition of the azimuthal distribution of particles
with respect to the collision symmetry plane [3, 4]

dN
dϕ ∝ 1 + 2

∞∑
n=1

vn cos[n(ϕ−Ψn)], (1.1)

where ϕ is the azimuthal angle of the produced particle and Ψn is the n-th harmonic
symmetry-plane angle in the collision. The second (v2) and third (v3) coefficients are called
elliptic and triangular flow, respectively. While v2 directly reflects the almond-shaped
geometry of the interaction volume being the largest contribution to the asymmetry in
non-central collisions, v3 is generated by fluctuations in the initial distribution of nucleons in
the overlap region [5–9]. For light and strange particles, both coefficients scale approximately
linearly with the corresponding eccentricities εn (vn ≈ κnεn) [10], which govern the shape of
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the initial collision geometry. The coefficients κn are sensitive to the macroscopic properties
of the QGP, such as the shear viscosity to entropy density ratio (η/s), and the lifetime of the
system. A greater sensitivity to η/s is expected for higher-order flow coefficients [11, 12].

Measurements of anisotropic flow performed in Au-Au collisions at the Relativistic
Heavy Ion Collider (RHIC) [13–16] and in Pb-Pb collisions at the Large Hadron Collider
(LHC) [17–20] indicate that the QGP is strongly-coupled (i.e. constituents have small mean
free path) and behaves like a nearly perfect fluid as the extracted η/s is close to the lower
limit predicted by the anti-de Sitter/conformal field theory (AdS/CFT) correspondence
of 1/(4π) (setting } = kB = 1) [21]. Recently, the vn coefficients of unidentified charged
particles have been measured in Xe-Xe collisions at the center-of-mass energy per nucleon
pair √sNN = 5.44TeV [22–24]. These measurements further constrain the transport
coefficients of the medium, such as η/s and bulk viscosity to entropy density ratio (ζ/s),
and initial state models. Furthermore, comparisons of the v2 measurements in semicentral
Xe-Xe collisions with those from Pb-Pb collisions in the same centrality intervals could
provide direct information on the η/s. For these collisions, the two systems have similar ε2
coefficients [25, 26] but different sizes, thus the influence of the initial state on η/s mostly
cancels out in ratios of Xe-Xe/Pb-Pb v2 and a finite η/s suppresses κ2 by 1/R, where R
corresponds to the transverse size of the system [25]. Centrality estimates the degree of
overlap between two colliding nuclei and is expressed as percentiles of the inelastic cross
section, with low percentage values corresponding to the most central collisions. Stronger
constraints can be placed by studying anisotropic flow of identified particles since the κn
coefficients depend on particle mass, type, and kinematics [27]. In addition to probing
η/s and ζ/s, the anisotropic flow of identified particles provides valuable information on
the particle production mechanism in different transverse momentum, pT, regions. For
pT . 3GeV/c, the characteristic mass ordering (i.e., lighter particles having a larger vn
than that of heavier particles at fixed pT), which arises from the interplay between radial
flow (isotropic expansion) and anisotropic flow [28, 29], is described by hydrodynamic
calculations [30–34]. This mass ordering provides constraints on both η/s and ζ/s as the
magnitude of vn depends on η/s, while the mass ordering is affected by ζ/s through its
influence on radial flow. At intermediate pT, 3 < pT < 8GeV/c, a grouping of vn of mesons
and baryons is observed, with the flow of baryons being larger than that of mesons [32, 35–37].
While this supports the hypothesis of hadronization through quark coalescence (involving
the combination of a quark and anti-quark to form a meson and three quarks to form a
baryon) [38–40], alternate explanations are attempted in models in which particle production
includes interactions of jet fragments with bulk matter [41]. To test the hypothesis of
particle production via quark coalescence it was suggested to divide both vn and pT by the
number of constituent quarks since it is assumed that the spectrum of produced particles is
proportional to the product of the spectra of their constituents [42, 43]. However, deviations
from the exact scaling at the level of ±20% are seen in Pb-Pb collisions at the LHC [30–32],
while it only holds approximately at RHIC [37]. This scaling can be further tested using
measurements of identified particle vn in Xe-Xe collisions.

The pT-differential elliptic flow coefficient, v2(pT), of π±, K±, p+p, K0
S, and Λ+Λ as

well as the pT-differential triangular flow coefficient, v3(pT), of π±, K±, and p+p, measured
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in Xe-Xe collisions at √sNN = 5.44TeV are presented in this paper. The results are reported
for pT < 8.5 GeV/c within the rapidity range |y| < 0.5 at different collision centralities in
the 0–60% range, where vn can be measured accurately. The scalar product method [44–46]
is employed with a pseudorapidity gap of |∆η| > 2.0 between the identified particles under
study and the reference charged particles. The vn coefficients denote the average between
results for positive and negative particles as they are compatible within uncertainties
for most pT and centrality intervals. Any residual difference has been included into the
systematic uncertainties.

This paper is organized as follows. A brief description of the ALICE detector, analysis
details, particle identification, reconstruction methods, and flow measurement techniques is
given in section 2. Section 3 outlines the evaluation of systematic uncertainties, while the
results are reported in section 4. Finally, conclusions are drawn in section 5.

2 Experimental setup and analysis details

A full overview of the ALICE detector and its performance can be found in refs. [47, 48].
The Inner Tracking System (ITS) [49], the Time Projection Chamber (TPC) [50], the
Time of Flight (TOF) [51], and the V0 [52] are the main subsystems used in this analysis
and are briefly described below. These detectors are located inside a solenoid magnet
which provides a nominal magnetic field of 0.5 T. However, the field was reduced to 0.2
T for Xe-Xe collisions in order to extend particle tracking and identification to the lowest
possible momenta. The ITS, TPC, and TOF detectors cover the full azimuth within the
pseudorapidity range |η| < 0.9. The ITS consists of six layers of silicon detectors and is
employed for tracking, vertex reconstruction, and event selection. The TPC, being the
main tracking detector, is used to reconstruct charged-particle tracks but also to identify
particles via the measurement of the specific energy loss, dE/dx. The TOF detector
provides particle identification based on the measurement of flight time from the collision
point using a start time given by the T0 detector [53], which consists of two arrays of
Cherenkov counters located at −3.3 < η < −3.0 (T0C) and 4.5 < η < 4.9 (T0A). The V0
detector, two arrays of 32 scintillator tiles each (four rings in the radial direction with each
ring divided into eight sectors in the azimuthal direction) covering −3.7 < η < −1.7 (V0C)
and 2.8 < η < 5.1 (V0A), is used for triggering, event selection, and the determination
of centrality [54] and Qn vectors (see below). Two tungsten-quartz neutron Zero Degree
Calorimeters (ZDCs) [55], installed 112.5 meters from the interaction point on each side,
are also used for event selection.

The analyzed data set was recorded by the ALICE detector during the Xe-Xe run at
√
sNN = 5.44TeV in 2017. The minimum-bias trigger requires signals in both V0A and

V0C detectors in coincidence with signals in the two neutron ZDCs, the latter condition
suppressing contamination from electromagnetic interactions. In addition, the beam-induced
background (i.e., beam-gas events) and pileup events are removed using an offline event
selection. The former is rejected utilizing the V0 and ZDC timing information, while
pileup events are removed by comparing charged particle multiplicity estimates from the V0
detector with those of tracking detectors at midrapidity, exploiting the difference in readout
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times between the systems. The remaining contribution of such interactions is estimated
to be negligible. The primary vertex position is determined from tracks reconstructed in
the ITS and TPC as described in ref. [48]. Approximately 9 × 105 Xe-Xe events in the
0–60% centrality interval, with a primary vertex position within ±10 cm from the nominal
interaction point along the beam direction, are used in the analysis. Centrality is estimated
from the energy deposition measured in the V0 detector [54].

The charged particle tracks used to determine the flow coefficients of π±, K±, and p+p
are reconstructed using the ITS and TPC within |η| < 0.8 and 0.4 < pT < 8.5GeV/c. Each
track is required to cross at least 70 TPC readout rows (out of a maximum of 159), to have
a minimum number of 70 TPC space points with a χ2 per TPC space point lower than
4, and to have the ratio between the number of space points and the number of crossed
rows in the TPC larger than 0.8. The selected tracks are also required to have at least 2
ITS hits, of which at least one in the two innermost layers, and a χ2 per ITS hit smaller
than 36. Only tracks with a distance of closest approach (DCA) to the reconstructed
vertex position smaller than 2 cm in the longitudinal direction (z) are accepted. In the
transverse plane (xy), a pT-dependent selection is applied: |DCAxy| < 7σDCAxy , where
σDCAxy is the resolution of the DCAxy in each pT interval. These selection criteria reduce
the contamination from secondary charged particles (i.e., particles originating from weak
decays, conversions, and secondary hadronic interactions in the detector material) and
fake tracks (random associations of space points) and ensure a track momentum resolution
better than 4% for the considered pT range [56].

The particle identification for π±, K±, and p+p is performed using signals from the
TPC and TOF detectors following the procedure described in ref. [32]. For pT < 4 GeV/c,
particle identification is done track-by-track evaluating the difference between the measured
and expected dE/dx and time-of-flight for a given species in units of the standard deviation
(σTPC, σTOF) from the most probable value. Particles are selected combining the TPC
and TOF information (nσPID =

√
n2
σTPC + n2

σTOF) and requiring nσPID < 3 for each species.
When this condition is fulfilled by more than one species, the smallest nσPID is used to assign
the identity. To exclude contamination in the sample from secondary protons originating
from the detector material, only p are considered for pT < 2 GeV/c. For pT > 4GeV/c, only
π± and p+p are identified using the TPC dE/dx by selecting them from the upper part
of the pion dE/dx distribution and from the lower part of the proton dE/dx distribution,
respectively. For example, pion selection varies in the range 0.3σ to 2σ.

The remaining contamination from secondary particles originating in weak decays,
studied using the procedure described in ref. [57], is negligible for K± and decreases with
increasing pT from about 5% to 0.5% for π± and from about 40% to 5% for p+p in the
pT range 0.4–4.0GeV/c. The vn coefficients are not corrected for these contaminations.
Their effect on vn, estimated from the correlation between vn and contamination for various
DCAxy selections in each pT interval, is negligible for π± and K± and up to 20% and 5%
for central and peripheral collisions, respectively, for v2 of p+p at pT ∼ 0.5GeV/c. The
contamination from other particle species is below 2% and 25% at pT > 4.0 GeV/c for π±

and p+p, respectively. The contamination from fake tracks is negligible.
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The K0
S and Λ+Λ are reconstructed in the K0

S → π++π− and Λ→ p+ π− (Λ→ p + π+)
channels. An offline selection is used to identify secondary vertices (called V0s), from which
two particles of opposite charge originate. The selection of V0 candidates is done with an
invariant mass between 0.4 and 0.6 GeV/c2 for K0

S and 1.07 and 1.17 GeV/c2 for Λ+Λ.
Daughter particles, identified using the TPC (|nσTPC | < 3), are assumed to be either a
π+–π− pair or a p–π− (p–π+) pair in the calculation of the invariant mass of the V0. The
TPC track quality requirements described above for charged tracks are also imposed on
daughter particles. In addition, the maximum DCA of daughter tracks to the secondary
vertex is 0.5 cm and the minimum DCA of daughter tracks to the primary vertex is 0.1 cm.
Secondary vertices created by decays into more than two particles are rejected requiring
the cosine of the pointing angle θp to be larger than 0.998. This angle is defined as the
angle between the momentum-vector of the V0 assessed at its decay position and the line
connecting the V0 decay vertex to the primary vertex and has to be close to 0 as a result of
momentum conservation. Only V0 candidates produced at a radial distance between 5 and
100 cm from the beam line are accepted. Finally, a selection in the Armenteros-Podolanski
variables [58] is applied for the K0

S candidates to asses the systematic uncertainty related to
contamination from Λ+Λ and electron-positron pairs coming from γ conversions. Earlier
studies have shown that contaminations from higher mass baryons (Ξ±, Ω±) have a negligible
effect on the measured vn [30]. More details about this selection can be found in ref. [32].

The scalar product (SP) method [44–46] is used to measure the flow coefficients vn,
written as

vn{SP} = 〈〈un,kQ∗n〉〉
/√

〈QnQA∗
n 〉〈QnQB∗

n 〉
〈QA

n QB∗
n 〉

, (2.1)

where un,k = exp(inϕk) is the unit flow vector of the particle of interest k with azimuthal
angle ϕk, Qn is the event flow vector, and n is the harmonic number. Brackets 〈· · · 〉 denote
an average over all events, the double brackets 〈〈· · · 〉〉 an average over all particles in
all events, and ∗ the complex conjugate. The vector Qn is obtained from the azimuthal
distribution of the energy deposition measured in the V0A, with the x and y components
given by

Qn,x =
∑

j
wj cos(nϕj), Qn,y =

∑
j
wj sin(nϕj), (2.2)

where the sum runs over the 32 channels j of the V0A detector, ϕj is the azimuthal angle
of channel j, and wj is the amplitude measured in channel j. The vectors QA

n and QB
n are

determined from the azimuthal distribution of the energy deposition measured in the V0C
and the azimuthal distribution of the tracks reconstructed in the ITS and TPC, respectively.
Any non-uniform detector response is taken into account by adjusting the components of
the Qn vectors using a recentering procedure (i.e. subtraction of the Qn vector averaged
over many events from the Qn vector of each event) [59]. The large gap in pseudorapidity
between un,k and Qn (|∆η| > 2.0) greatly suppresses short-range correlations unrelated
to the common symmetry planes Ψn (“non-flow”), such as those due to resonances, jets,
and quantum statistics correlations. The remaining non-flow contributions are small as
reported in ref. [22] where the ratio between v2{4} and v2{2, |∆η| > 2.0} of inclusive charged
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Figure 1. Top panel: invariant mass distribution of opposite-sign pion pairs belonging to candidate
K0

S in the centrality range 10–20% and pT interval 0.5 < pπ
+π−

T < 0.8GeV/c. Bottom panel: a fit of
eq. (2.3) to the mass-dependent v2 distribution.

particles shows a weak centrality dependence for semicentral and peripheral collisions. These
contributions are estimated by increasing the pseudorapidity gap to |∆η| > 2.8. Any residual
difference has been included into the systematic uncertainties (see section 3).

As the V0s cannot be identified on a track-by-track basis, eq. (2.1) cannot be used to
measure directly vn of K0

S and Λ+Λ. Instead, a statistical approach is employed, with the
vtot

n of the candidate V0s being written as the weighted sum of vn(pT) of the true V0s, vsig
n ,

and that of the background pairs, vbg
n [60]

vtot
n (Md+d−) = vsig

n
N sig

N sig +Nbg (Md+d−) + vbg
n (Md+d−) Nbg

N sig +Nbg (Md+d−), (2.3)

where signal (N sig) and background (Nbg) yields are extracted by integration of the Gaussian
distribution and the third-order polynomial function used to parametrize the invariant
mass (Md+d−) distribution at the given pT, respectively. The latter accounts for residual
contaminations that are present in the K0

S and Λ+Λ signals after passing the selection
criteria. The vtot

n (Md+d−) obtained according to eq. (2.1) is fitted using eq. (2.3) with one
parameter for the vsig

n and a second-order polynomial function to parametrize the vbg
n . This

procedure is illustrated in figure 1 where the invariant mass distribution of the K0
S and a fit

of the vtot
2 (Mπ+π−) distribution are shown in the top and bottom panels, respectively.

The π± and p+p v2 and v3 are reported for 0.4<pT< 8.5GeV/c and 0.4<pT< 6.0GeV/c,
respectively, while K± vn are presented for 0.4<pT< 4.0GeV/c. The v2 of K0

S and Λ+Λ are
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reported for 0.5<pT< 6.0GeV/c and 0.8<pT< 6.0GeV/c, respectively. All measurements
are performed in the rapidity range |y|< 0.5.

3 Systematic uncertainties

The systematic uncertainties are evaluated by varying the event and charged particle
tracking selection criteria, the particle identification approach, the V0 finding strategy,
and the vn(pT) extraction. The default result is compared to a variation on the nominal
measurement. If the value of the variation itself differs from the main result by more
than 1σ, which is evaluated based on the recommendations in ref. [61], it is considered to
be a systematic uncertainty. For various checks performed to quantify the effect of one
systematic uncertainty (e.g., using different values for the minimum number of TPC space
points employed in the reconstruction to estimate an uncertainty in tracking), the maximum
significant deviation found between the nominal measurement and the systematic variations
is assigned as a systematic uncertainty. The total systematic uncertainties are estimated
by summing in quadrature the systematic uncertainties from the independent sources
(if applicable) for all particle species, vn(pT), and centrality intervals. A pT-dependent
systematic uncertainty is assigned to vn of π±, K±, and p+p, while a pT-independent
average uncertainty is reported for v2 of K0

S and Λ+Λ. For each particle species, a summary
of the magnitude of the relative systematic uncertainties on the values of v2 and v3 are
given in tables 1 and 2, respectively.

Systematic uncertainties related to event selection criteria are estimated by using an
alternative centrality estimator based either on the number of hits in the first or second
layer of the ITS; by requiring the reconstructed primary vertex position alternatively within
±12 cm, ±7 cm, and ±5 cm from the nominal interaction point along the beam direction;
by imposing a stricter pileup rejection than the default selection (i.e., stronger constraints
on the consistency of different event multiplicity estimators) or accepting all events with
tracks regardless the pileup selection. The limited size of the Xe-Xe data sample does not
allow for testing the effects from centrality fluctuations by measuring the vn of π±, K±,
and p+p in 1% wide centrality intervals as done in refs. [22, 32]. However, the systematic
uncertainties estimated for this check in the vn analysis of unidentified charged particles [22]
are applied to the ones for vn of π±, K±, and p+p.

The variations for the track selection criteria are: changing the ITS hit requirements
(referred to as tracking mode in tables 1 and 2); varying the minimum number of TPC space
points from 70 to 60, 80, and 90; changing the χ2 per ITS hit; increasing the minimum
number of crossed TPC readout rows from 70 to 120 and the ratio between the number of
space points and the number of crossed rows in the TPC from 0.8 to 0.9 (these two checks
are combined and referred to as track quality in tables 1 and 2).

The uncertainties related to particle identification are evaluated by changing the required
minimum number of TPC clusters from 70 to 60, 80, and 90 to estimate the effect on the
dE/dx; varying the maximum value of the nσPID from 3 to 1, 2, and 4 for pT < 4GeV/c;
rejecting tracks that satisfy the particle identification criterion for more than one particle
species simultaneously for pT < 4GeV/c; changing the nσTPC ranges for pT > 4GeV/c.
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Uncertainty source π± K± p+p K0
S Λ+Λ

Vertex position 0–3% 0–2% 1–3% 1–2% 1–2%
1% wide centrality intervals 0–2% 0–2% 0–2%
Centrality estimator 0–4% 0–2% 1–4% 2–3% 1–3%
Pileup rejection 0–1% 0–1% 0–1% 0–1% 0–1%
Tracking mode 0–2% 0–3% 0–5%
Number of TPC space points 0–1% 0–2% 0–3% 0–1% 0–1%
Track quality 0–1% 0–1% 0–1% 0–2% 1–2%
ITS χ2 negl. 0–1% 0–1%
Particle identification purity 1–2% 1–2% 1–3% 1–3% 1–2%
Number of TPC clusters used for
dE/dx

0–1% 0–1% 0–1% 1–3% 1–3%

Exclusive particle identification negl. negl. negl.
Decay vertex (radial position) 1–2% 1–4%
Armenteros-Podolanski variables 1–2%
DCA decay products to primary
vertex

0–2% 1–2%

DCA between decay products 1–2% 1–2%
Pointing angle cos θp 0–1% negl.
Minimum pT of daughter tracks 1–2% 0–1%
dE/dx contamination for K0

S 0–2%
V0 online selection 1–3% 0–2%
Peak shape 0–1% 0–1%
Residual background in yield 1–2% 0–1%
Positive and negative rapidities 1–2% 1–2% 1–3% 2–3% 1–3%
Opposite charges 0–2% 0–2% 0–2%
vbg

n parametrization 0–1% 1–2%
vtot

n fit ranges 0–1% 0–2%

Table 1. Summary of systematic uncertainties for the v2 of π±, K±, p+p, K0
S, and Λ+Λ. Uncer-

tainties are given as intervals between the minimum and maximum values for all pT and centrality
ranges. Empty fields indicate that a given check does not apply, while the field marked negl. for
negligible implies that the tested uncertainty cannot be resolved within the statistical precision.

The systematic uncertainty related to the V0 finding strategy includes contributions
from the topological selection criteria on the V0s themselves and requirements imposed on
their daughter tracks. The latter consists of the following variations: requiring in addition
pT > 0.2 GeV/c for each daughter track; changing the minimum number of TPC space
points from 70 to 60 and 80; varying the minimum number of crossed TPC readout rows
from 70 to 60 and 80; increasing the ratio between the number of space points and the
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Uncertainty source π± K± p+p
Vertex position 1–3% 1–2% 1–3%
1% wide centrality intervals 0–2% 0–2% 0–2%
Centrality estimator 2–4% 1–3% 2–4%
Pileup rejection 0–1% 0–1% 0–1%
Tracking mode 0–2% 0–4% 0–4%
Number of TPC space points 0–1% 0–3% 0–2%
Track quality 0–1% 0–1% 0–1%
ITS χ2 0–1% 0–1% 0–1%
Particle identification purity 1–3% 1–2% 2–3%
Number of TPC clusters used for
dE/dx

0–2% 0–1% 0–2%

Exclusive particle identification negl. negl. negl.
Positive and negative rapidities 1–3% 1–2% 1–3%
Opposite charges 0–2% 0–2% 0–2%

Table 2. Summary of systematic uncertainties for the v3 of π±, K±, and p+p. Uncertainties are
given as intervals between the minimum and maximum values for all pT and centrality ranges. The
field marked negl. for negligible implies that the tested uncertainty cannot be resolved within the
statistical precision.

number of crossed rows in the TPC from 0.8 to 0.9; varying the minimum DCA of the V0

daughter tracks to the primary vertex from 0.1 cm to 0.05 cm and 0.3 cm; changing the
maximum DCA of the V0 daughter tracks to the secondary vertex from 0.5 cm to 0.3 cm and
0.7 cm; requesting at least 60 and 90 TPC clusters instead of 70 to estimate the effect on the
dE/dx; varying the maximum absolute value of the nσTPC from 3 to 1 and 4. Concerning
the V0s selection, the following variations are investigated: changing the minimum value of
the cos θp from 0.998 to 0.98; requesting a minimum radial distance to the beam line at
which the V0 can be produced of 1 cm and 15 cm instead of 5 cm; changing the maximum
radial distance to the beam pipe at which the V0 can be produced from 100 cm to 50 cm
and 150 cm; suppressing the contamination from Λ+Λ and electron-positron pairs coming
from γ conversions to the K0

S sample by limiting the value of the Armenteros-Podolanski
variables and excluding electrons by only selecting V0 daughter tracks with a dE/dx value
2σ away from the expected electron dE/dx. Finally, the yield extraction is varied by
using polynomials of different orders as parametrization of the residual background in the
invariant mass spectra and employing a sum of two Gaussian distributions with the same
mean for the parametrization of the K0

S and Λ+Λ invariant mass yield.
The uncertainties associated with the determination of vn(pT) are estimated by perform-

ing the analysis for positive and negative rapidities independently, thus increasing the pseu-
dorapidity gap to |∆η| > 2.8; performing the analysis for π±, K±, and p+p for positive and
negative charges independently; varying theMd+d− range over which eq. (2.3) is fitted; chang-
ing the vbg

2 parametrization from a second-order polynomial to a linear or constant function.
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Figure 2. Centrality dependence of v2(pT) for π±, K±, p+p, K0
S, and Λ+Λ. Bars (boxes) denote
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4 Results and discussion

4.1 Centrality and pT dependence of flow coefficients

The v2(pT) of π±, K±, p+p, K0
S, and Λ+Λ is presented in figure 2 for various centrality

intervals in the 0–60% range. The measured v2 of all particle species, being mainly driven
by the collision geometry, increases strongly with decreasing centrality up to the 40–50%
centrality interval. This evolution is expected since v2 scales approximately linearly with
the eccentricity of the overlap zone of the colliding nuclei [10]. For the 50–60% centrality
class, the value of v2 is similar to that measured in the previous centrality interval within
uncertainties, which is expected due to a shorter lifetime of the system in more peripheral
collisions. This together with the reduced contribution of eccentricity fluctuations and
hadronic interactions inhibit the generation of large v2 [62, 63]. The v2(pT) increases up
to pT ∼ 3–4 GeV/c, where a maximum is reached, and then decreases with increasing
pT. The position of this maximum depends weakly on centrality and is located at smaller
pT for lighter compared to heavier particles, over the various centrality intervals studied.
The observed phenomenon finds an explanation in the changes in parton density and the
centrality dependence of radial flow [32], which will be detailed in section 4.3. The evolution
of v2 with pT and centrality is similar to that reported in Pb-Pb collisions [30–32].

Unlike v2, the third-order flow coefficient v3 originates from event-by-event fluctuations
in the initial nucleon density distribution [5–9]. A stronger decrease of v3 compared to v2
is expected due to the dampening effect of η/s, which implies that v3 is more sensitive to
transport coefficients than v2 [11, 12]. The limited size of the Xe-Xe data sample does not
allow for v3 to be measured accurately in the centrality intervals used for v2. Therefore,
these measurements have been combined in larger centrality classes using the pT-differential
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Figure 3. Centrality dependence of v3(pT) for π±, K±, and p+p. Bars (boxes) denote statistical
(systematic) uncertainties.

yields [64] as weights. Figure 3 presents the v3(pT) of π±, K±, and p+p for the 0–10%,
10–30%, and 30–50% centrality intervals. The measured v3 is non-zero, positive for most
of the pT ranges and increases with pT up to 3–4 GeV/c. The coefficient v3 shows a weak
centrality dependence with a magnitude significantly smaller than that of v2, except for the
0–10% centrality interval. These findings illustrate that v3 originates from fluctuations of
the initial geometry of the system.

Figure 4 shows comparisons of the v2(pT) for all particle species in a given centrality
interval arranged into panels of various centrality classes. For pT < 2–3GeV/c, v2 of the
different particle species exhibits a mass ordering, meaning that heavier particles have a
smaller v2 than that of lighter particles at the same pT. This behaviour can be attributed
to the interplay of elliptic flow with radial flow which imposes an isotropic velocity boost
equal for all particles, thus pushing heavier particles towards higher pT [28, 29]. For
3 < pT < 8 GeV/c, the v2 of baryons becomes larger than that of mesons, indicating
that the particle type dependence persists out to high pT. This grouping according to the
number of constituent quarks supports the hypothesis of particle production via quark
coalescence [38]. The crossing between meson and baryon v2 depends on particle species
and centrality, occurring at lower pT values for peripheral than central collisions as a result
of the smaller radial flow in the former. Comparing the K± and K0

S v2, there is a hint of
v

K0
S

2 < vK±
2 in the 0–10% centrality range, while the measurements are compatible within

statistical uncertainties in the 10–60% centrality interval. One should note that a difference
in v2(pT) of K± and K0

S was reported by ALICE in Pb-Pb collisions [30, 32].
Figure 5 presents the v3(pT) of π±, K±, and p+p in a given centrality interval. The

v3 of different particle species is mass ordered at pT < 2–3GeV/c, indicating the interplay
between triangular and radial flow. For 3 < pT < 6GeV/c, the p+p v3 is slightly larger than
that of π±. The crossing between v3 values of pions and protons shows a weak centrality
dependence.

4.2 Scaling properties

Scaling with the number of constituent quarks (NCQ) of vn has been suggested to test the
hypothesis of particle production via quark coalescence at intermediate pT, which would
lead to a meson and baryon vn grouping [38–40]. This can be achieved by dividing both vn
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and pT by the number of constituent quarks (nq) independently for each particle species.
Figures 6 and 7 present the v2/nq and v3/nq as function of pT/nq for π±, K±, p+p, K0

S,
and Λ+Λ, for various centrality classes. For 1 < pT/nq < 3GeV/c, the region where quark
coalescence is hypothesized to be the dominant process [38, 39], a deviation from the exact
scaling of ± 20% is found for v2, similar to the one reported in Pb-Pb collisions [30–32].
This deviation is quantified by dividing the pT/nq dependence of v2/nq by a cubic spline fit
to the p+p v2/nq. The scaling for v3 seems to hold within the relatively large uncertainties.

4.3 Shape evolution of v2(pT) as function of centrality

The centrality dependence of the shape evolution of v2(pT) is studied as in ref. [32] by
choosing the v2 measured in the 20–30% centrality interval as reference. It is quantified
by dividing the v2(pT) in a given centrality interval by this reference and denoted as
v2(pT)ratio to 20−30% in the following. The ratio of the pT-integrated v2 value obtained in
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the 20–30% centrality interval to that in the centrality interval of interest is used as a
normalization factor in order for v2(pT)ratio to 20−30% to be unity in the absence of centrality-
dependent variations. The shape evolution of elliptic flow for π±, K±, p+p, and inclusive
charged hadrons (the latter taken from ref. [22]) is presented in figure 8. Variations in shape
of about 10% are observed for inclusive charged hadrons throughout the considered pT range
within uncertainties. The evolution of the shape of the v2(pT) shows different trends for π±,
K±, and p+p for pT < 2 GeV/c and no particle type dependence within uncertainties for
pT ≥ 2 GeV/c. The variations are more pronounced for p+p v2(pT)ratio to 20−30%, reaching
around 60% at low pT in peripheral collisions. The elliptic flow of K± varies up to 40% for
pT < 1 GeV/c, while the v2(pT)ratio to 20−30% of π± follows the results for inclusive charged
particles. Radial flow and transverse quark density should play important roles in this mass
dependence for pT < 2 GeV/c as both depend on centrality, having larger values in central
than peripheral collisions. The latter influences the peak value of vn(pT) in the coalescence
model [65], while the effect of the former on vn of heavier particles is greater than on the
lighter particles at low pT.

An alternative way of quantifying the shape of the v2(pT) is the position of the maximum
v2. It is expected to be located at higher pT in central than peripheral collisions as the
quark density depends on centrality. Its centrality dependence, quantified by the pT where
v2(pT) reaches a maximum divided by the number of constituent quarks nq, is reported
in figure 9 for π± and p+p. The K±, K0

S, and Λ+Λ are not included since the kinematic
range and granularity of the measurements do not allow for a reliable extraction of a
maximum. The pT/nq at which v2(pT) reaches a maximum, denoted as pT|vmax

2
, shows a

weak centrality dependence with a decreasing trend from central to peripheral collisions.
This behavior is expected from the hypothesis of hadronization through coalescence where
an increase in the transverse density of quarks, as in more central collisions, results in a
higher value of pT|vmax

2
[65]. The observed pT|vmax

2
is compatible between π± and p+p for all

centrality intervals within uncertainties. The systematic uncertainties presented in figure 9
are evaluated directly on pT|vmax

2
to accurately take into account that some systematic

uncertainties can be point-by-point correlated in pT.
If v2 exhibits a power law dependence on p2

T up to pT ∼ M for particles with mass
M as in the scenario of ideal hydrodynamics [66], ratios of the form |v2|1/2/pT should
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Figure 8. Centrality dependence of v2(pT)ratio to 20−30% for π±, K±, p+p, and inclusive charged
hadrons (h±) [22]. Bars (boxes) denote statistical (systematic) uncertainties.

be constant. Previous measurements performed by ALICE in Pb-Pb collisions [32] have
shown that the v2 ∝ pT

2 scaling is broken for π± and the inclusive charged particles for
all centrality intervals. However, this scaling holds up to pT ≈ 1GeV/c for K± and K0

S,
and up to pT ≈ 2GeV/c for p+p and Λ+Λ for central and semicentral collisions [32]. It
should be noted, however, that the kinematic constraints imposed on the measurement
preclude testing the scaling hypothesis in the full relevant momentum region for π± and the
inclusive charged particles. Figure 10 shows |v2|1/2/pT for inclusive charged particles [22],
π±, K±, p+p, K0

S, and Λ+Λ as a function of pT in various centrality intervals. The ratios
|v2|1/2/pT show a strong pT dependence for π± and the inclusive charged particles, while
they exhibit a weak (if any) pT dependence up to pT ≈ 1GeV/c for K± and K0

S, and up
to pT ≈ 2GeV/c for p+p and Λ+Λ for the 0–5% and 10–20% centrality intervals.
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uncertainties.

4.4 Comparison with hydrodynamic calculations

Figure 11 presents the pT-differential v2 of π±, K±, and p+p for various centrality intervals
compared with predictions from MUSIC hydrodynamic simulations [67]. MUSIC [68],
an event-by-event 3+1 dimensional viscous hydrodynamic model, uses the IP-Glasma
model [69, 70] to describe the initial conditions of the collision and is coupled to a hadronic
cascade model (UrQMD) [71, 72], which allows one to study the influence of the hadronic
phase on the development of anisotropic flow for different particle species. The starting time
for the hydrodynamic evolution and the switching energy between hydrodynamics and the mi-
croscopic transport evolution are set to τ0 = 0.4 fm/c and esw = 0.18GeV/fm3, respectively.
A value of η/s = 0.12 and a temperature dependent ζ/s are also employed in this model.
It should be noted that these parameters do not depend on collision system or centrality.

Figure 11 shows that the MUSIC calculations qualitatively reproduce the mass ordering.
The predictions are in agreement with the measured v2(pT) of π±, K±, and p+p for
pT < 1GeV/c, while they overestimate the data points at higher pT. However, the v2 of
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Figure 11. The pT-differential v2 of π±, K±, and p+p for various centrality classes compared
to hydrodynamic calculations from MUSIC model using IP-Glasma initial conditions (colored
curves) [67]. Bars (boxes) denote statistical (systematic) uncertainties. The uncertainties of the
hydrodynamic calculations are depicted by the thickness of the curves. The ratios of the measured
v2 to a fit to the hydrodynamic calculations are also presented for clarity.

p+p is more accurately described than that of π± and K± for pT ≥ 1GeV/c in all centrality
intervals. A better agreement with the data points is found in central than in peripheral
collisions. The differences between the data points and model are also illustrated in figure 11
as the ratios of the measured v2 to a fit to the theoretical calculations.

4.5 Comparison with vn of identified particles in Pb-Pb collisions at
√

sNN = 5.02TeV

As mentioned in section 1, the initial state models and transport properties can be further
constrained by comparing anisotropic flow coefficients measured in Xe-Xe collisions with
those from Pb-Pb collisions. Figures 12 and 13 show the v2(pT) and v3(pT) of π±, K±,
p+p, K0

S, and Λ+Λ compared with ALICE measurements performed in Pb-Pb collisions
at √sNN = 5.02TeV [32] for various centrality intervals. The vn coefficients from Pb-Pb
collisions were measured employing the same procedure as described in section 2, resulting
in similar non-flow contributions to vn. Ratios of the measurements presented in this paper
to a cubic spline fit to the ones performed in Pb-Pb collisions are also given in the figures
for each presented centrality interval. The uncertainties in these ratios are obtained by
summing the statistical and systematic uncertainties on the Xe-Xe and Pb-Pb measurements
in quadrature, and propagating the obtained uncertainties as uncorrelated.
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Figure 13. The pT-differential v3 of π±, K±, and p+p (black markers) compared to ALICE
measurements performed in Pb-Pb collisions at √sNN = 5.02TeV [32] (red markers) for the 0–10%
(top panels), 10–30% (middle panels), and 30–50% (bottom panels) centrality classes. The ratios
of Xe-Xe measurements to a cubic spline fit to Pb-Pb measurements are also presented for clarity.
Bars (boxes) denote statistical (systematic) uncertainties.

The vn coefficients at low pT are expected to be smaller in Pb-Pb collisions than the
corresponding Xe-Xe results due to a larger radial flow in the former, an effect which would
be most pronounced in central collisions and for heavier particles. However, the v2 of all
particle species in Xe-Xe collisions is systematically above that from Pb-Pb in the entire pT
range in the 0–5% centrality class. The ratios do not depend significantly on pT and particle
species within uncertainties, showing ∼37% larger Xe-Xe values. In terms of the initial state,
two effects can be responsible for this behaviour. The first relates to the fact that the 208Pb
nucleus is spherical while the 129Xe nucleus is deformed with parameters of the nuclear-
charge density distribution not yet measured directly but extrapolated from neighboring
isotopes or predicted (the deformation parameter β2 is predicted to be 0.162 in ref. [75]
and extrapolated to 0.18± 0.02 in ref. [54]). The second involves initial-state fluctuations
being proportional to A−1/2 [76], where A is the mass number, and the dependence of
εn{2} on the number of sources contributing to it which decreases when the number of
sources increases [76, 77]. These effects imply larger values of ε2{2} for central Xe-Xe
collisions than central Pb-Pb collisions, which in turn induce larger v2. However, viscosity
is expected to be larger for Xe-Xe collisions as it is proportional to A−1/3 [78] which will
decrease v2 [79]. For the 10–20% centrality interval, the measurements are compatible
within uncertainties for the different particle species although a possible suppression of
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Figure 14. The pT|vmax
2

for π± and p+p (black markers) compared to ALICE measurements
performed in Pb-Pb collisions at √sNN = 5.02TeV [32] (red markers) as a function of centrality
(left) and charged-particle density (right) [73, 74]. The Pb-Pb points are slightly shifted along the
horizontal axis for better visibility in both panels. Bars (boxes) denote statistical (systematic)
uncertainties.

p+p v2 from Pb-Pb collisions can be seen for pT < 1.5 GeV/c. For the 40–50% centrality
class, no differences are observed between the K0

S and Λ+Λ v2(pT) measured in the two
systems within uncertainties, while the v2 of π±, K±, and p+p from Xe-Xe collisions is
∼8% lower than the corresponding Pb-Pb results. This difference is almost independent of
pT within uncertainties although a possible gradual decrease with increasing pT up to 2
GeV/c can be seen for p+p. The larger v2 values in Pb-Pb collisions might be explained by
viscous effects related to the different radial flow and transverse size of the systems since
the ε2{2} coefficients are similar in this centrality interval (differences within 1%) [25, 26].
Although v3 is expected to be larger in Xe-Xe compared to Pb-Pb due to larger values of
ε3{2} in the same centrality interval [25, 26], the precision of the results does not allow for
conclusions to be drawn. The ratios are close to 1 with no significant pT dependence within
uncertainties, except for π± and p+p v3 for pT < 2GeV/c in the 0–10% centrality class.

The v2(pT) of π±, K±, and p+p measured in Xe-Xe and Pb-Pb collisions is also
compared with MUSIC hydrodynamic calculations [67] in figure 12. It is worth noting
that these calculations employ the same parameters for Xe-Xe and Pb-Pb collisions (see
section 4.4). The Pb-Pb calculations show similar trends to those reported for Xe-Xe
collisions: they are in agreement with the measurements for pT < 1GeV/c and overestimate
the data points at higher pT. However, the MUSIC Xe-Xe/Pb-Pb v2 ratios quantitatively
reproduce the ones of the measurements up to pT = 3GeV/c. This points to similar
differences between the data points and model for both systems. Two potential sources
might be responsible for this behavior: improper δf corrections, which are introduced in
hydrodynamic models to account for non equilibrium processes at freeze-out and are highly
model dependent [80], or sub-optimal tunes of η/s and ζ/s.

Figure 14 shows the value of pT|vmax
2

of π± and p+p and compares these to the ALICE
measurements performed in Pb-Pb collisions at √sNN = 5.02TeV [32] as function of
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centrality and charged-particle density [73, 74]. For all centrality intervals, the pT|vmax
2

of
p+p has similar values in the two collision systems, within uncertainties. The pT|vmax

2
of π±

is slightly lower in Xe-Xe collisions in the 5–40% centrality range. This can be attributed to
a different quark density and radial flow at the same centrality in the two systems. Indeed,
the pT|vmax

2
is the same in Xe-Xe and Pb-Pb collisions for the different particle species

within uncertainties when reported as function of charged-particle density.

5 Summary

The elliptic and triangular flow coefficients of π±, K±, p+p, K0
S, and Λ+Λ were measured

in Xe-Xe collisions at √sNN = 5.44TeV. The magnitude of v2 increases strongly with
decreasing centrality up to the 40–50% centrality interval for all particle species, while v3
shows a weak centrality dependence with a smaller increase than for v2. This indicates that
collision geometry dominates the generation of elliptic flow while triangular flow is generated
by event-by-event fluctuations in the initial nucleon and gluon densities. For pT < 3GeV/c,
the vn coefficients show a mass ordering which can be attributed to the interplay between
anisotropic flow and radial flow. In this transverse momentum range, MUSIC hydrodynamic
calculations reproduce the measured v2 of π±, K±, and p+p for pT < 1GeV/c. At
intermediate transverse momenta (3 < pT < 8GeV/c), the baryon vn has a magnitude
larger than that of mesons, indicating that the particle type dependence persists up to high
pT. Furthermore, particles show an approximate grouping by the number of constituent
quarks at the level of ±20% for v2. The centrality dependence of the shape evolution of
v2(pT) is different for π±, K±, and p+p for pT < 2 GeV/c, being more pronounced for p+p,
but shows no particle type dependence within uncertainties for pT ≥ 2 GeV/c. Comparing
these measurements to those from Pb-Pb collisions at √sNN = 5.02TeV, v2 is larger in
central collisions at the same centrality and it has smaller value in peripheral collisions.
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