
UCLA
UCLA Electronic Theses and Dissertations

Title
Graph-Based Error Correcting Codes for Modern Dense Storage Devices

Permalink
https://escholarship.org/uc/item/540302hp

Author
Hareedy, Ahmed Hassan Mahmoud E

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/540302hp
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Graph-Based Error Correcting Codes

for Modern Dense Storage Devices

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical and Computer Engineering

by

Ahmed Hassan Mahmoud E Hareedy

2018

c© Copyright by

Ahmed Hassan Mahmoud E Hareedy

2018

ABSTRACT OF THE DISSERTATION

Graph-Based Error Correcting Codes

for Modern Dense Storage Devices

by

Ahmed Hassan Mahmoud E Hareedy

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2018

Professor Lara Dolecek, Chair

In order to meet the demands of data-hungry applications, modern data storage systems

are expected to be increasingly denser. This is a challenging endeavor, and storage engineers

are continuously trying to provide novel technologies. However, these new technologies are

typically associated with an increase in the number and types of errors, making the goal of

securing highly-reliable dense storage devices a tricky challenge.

This dissertation focuses on analyzing the errors in addition to providing novel and ef-

ficient error correcting coding schemes that are capable of overcoming the aforementioned

challenge. In particular, through informed exploitation of the underlying channel characteris-

tics of the storage device being studied, we provide frameworks for systematically generating

error correcting codes with mathematical guarantees that offer performance improvements

in orders of magnitude relative to the prior state-of-the-art.

First, we present a technique to predict the performance of codes given the existence of

certain error-prone structures in the graph representation of these codes. Next, we introduce

a general framework for the code optimization of non-binary graph-based codes, which works

for various interesting channels. Finally, we derive an approach to design high performance

spatially-coupled codes particularly for magnetic recording applications.

Our frameworks are based on mathematical tools drawn from coding theory and in-

ii

formation theory, and rely on advanced mathematical techniques from probability theory,

linear algebra, graph theory, combinatorics, and optimization. The proposed frameworks

have a vast variety of applications that include both magnetic recording and Flash mem-

ory systems. Our frameworks lead to a practical, effective tool for storage engineers to use

multi-dimensional storage devices with confidence.

iii

The dissertation of Ahmed Hassan Mahmoud E Hareedy is approved.

Danijela Cabric

Lieven Vandenberghe

Guy Van den Broeck

Lara Dolecek, Committee Chair

University of California, Los Angeles

2018

iv

To my parents and my brothers.

v

Table of Contents

1 Introduction . 1

1.1 Outline of Contributions . 4

1.1.1 Chapter 2 Contributions . 4

1.1.2 Chapter 3 Contributions . 5

1.1.3 Chapter 4 Contributions . 6

1.1.4 Chapter 5 Contributions . 7

2 A Technique for Error Floor Prediction . 8

2.1 Introduction . 8

2.2 Error Profile of NB-LDPC Codes over PR Channels 10

2.2.1 System Model . 10

2.2.2 Background and Motivating Examples 12

2.2.3 New Definitions of Detrimental Objects 14

2.2.4 Effect of Global Iterations . 15

2.2.5 Preparing the List of Problematic Objects 18

2.3 Error Floor Prediction Method . 19

2.3.1 A Theoretical Description of the Proposed Method 20

2.3.2 The Algorithm and Simulation Results 27

2.4 Code Optimization for Transmission over PR Channels 32

2.4.1 Removing Balanced Absorbing Sets 32

2.5 Concluding Remarks . 35

vi

3 Non-Binary LDPC Code Optimization . 36

3.1 Introduction . 36

3.2 New Objects: GASs and GASTs . 38

3.2.1 Motivating Examples . 38

3.2.2 Defining GASs and GASTs . 40

3.3 Theoretical Analysis of GASTs . 44

3.3.1 Combinatorial Properties of GASTs 44

3.3.2 How to Remove GASTs Using WCMs 48

3.3.3 How to Remove Other Detrimental Objects Using WCMs 51

3.3.4 Parent and Child GASTs . 55

3.4 The WCM Optimization Framework . 56

3.4.1 Extracting the WCMs . 56

3.4.2 The New NB-LDPC Code Optimization Algorithm 59

3.5 Applications in Practical Channels . 61

3.5.1 Results for Practical Flash Channels 62

3.5.2 Results for Other Channels . 68

3.6 Concluding Remarks . 70

4 Analysis and Extensions of the WCM Framework 71

4.1 Introduction . 71

4.2 Preliminaries . 74

4.3 Characterizing GASTs Through Their WCMs 77

4.3.1 Proving the Optimality of the WCM Framework 80

4.3.2 Enumeration of WCMs Associated with a GAST 81

4.3.3 Complexity Comparison with a Suboptimal Idea 90

4.4 More on How GASTs Are Removed . 95

4.4.1 The Dimension of the Null Space of a WCM 95

4.4.2 Breaking the Weight Conditions of Short WCMs 99

vii

4.4.3 The Number of Edge Weight Changes Needed 101

4.5 Removing Oscillating Sets to Achieve More Gain 107

4.5.1 Defining OSs and OSTs . 107

4.5.2 How to Remove OSTs Using WCMs 110

4.6 Applications of the WCM Framework . 114

4.6.1 Optimizing Column Weight 5 Codes 116

4.6.2 Achieving More Gain by Removing Oscillating Sets 118

4.6.3 Effect of Soft Information in Flash Channels 122

4.6.4 Optimizing Spatially-Coupled Codes 124

4.7 Concluding Remarks . 128

5 High Performance Spatially-Coupled Codes 130

5.1 Introduction . 130

5.2 Preliminaries . 132

5.3 The Common Substructure and Its Patterns 135

5.4 OO: Building and Solving the Optimization Problem 140

5.4.1 Analysis of Pattern P1 (size 2× 2) 142

5.4.2 Analysis of Pattern P2 (size 2× 3) 143

5.4.3 Analysis of Pattern P3 (size 3× 2) 145

5.4.4 Analysis of Pattern P4 (size 2× 4) 146

5.4.5 Analysis of Pattern P5 (size 4× 2) 149

5.4.6 Analysis of Pattern P6 (size 3× 3) 150

5.4.7 Analysis of Pattern P7 (size 3× 4) 153

5.4.8 Analysis of Pattern P8 (size 4× 3) 158

5.4.9 Analysis of Pattern P9 (size 4× 4) 160

5.5 CPO: Customization for PR Systems . 168

5.6 Experimental Results . 174

5.7 Concluding Remarks . 178

viii

5.8 Appendix . 179

5.8.1 Proofs of Pattern P1 . 179

5.8.2 Proofs of Pattern P2 . 179

5.8.3 Proofs of Pattern P3 . 181

5.8.4 Proofs of Pattern P4 . 181

5.8.5 Proofs of Pattern P5 . 183

5.8.6 Proofs of Pattern P6 . 184

5.8.7 Proofs of Pattern P7 . 186

5.8.8 Proofs of Pattern P8 . 190

5.8.9 Proofs of Pattern P9 . 193

6 Conclusion . 199

6.1 Summary of Our Results . 199

6.2 Future Directions . 201

References . 203

ix

Acknowledgements

When I left Egypt in 2014 to come to USA and start my Ph.D. journey at UCLA, I was an

industry veteran. Thus, it has not been an easy journey by any means, and I cannot picture

reaching this point without the priceless help and support of my family, my advisor, my

mentors, my collaborators, and my friends at UCLA and at my motherland. Before talking

about the people I am going to acknowledge, I must thank Allah for giving me the power

and guidance throughout my life, and particularly in my entire Ph.D. time, to overcome the

challenges and obstacles. I am forever grateful.

First, I would like to sincerely thank my advisor, Professor Lara Dolecek. Professor

Dolecek has given me the opportunity to come to UCLA and work in her prestigious LORIS

lab. Using her massive technical knowledge and awareness of the state-of-the-art research

topics in the field, Professor Dolecek has guided me to work on impactful research problems.

Professor Dolecek also has amazing decision making skills; she has constantly provided me

with insightful information about when to work on a specific problem and what are the best

venues to submit our results to. Having said that, she has always given me the freedom to

conduct my research, which is something I highly appreciate. Moreover, Professor Dolecek

has used her network of connections to introduce me to many big names in the field and

to help me with my internships along with my future steps. She has also been kind and

understanding throughout this journey. I have learned a lot of valuable things from Professor

Dolecek that will affect my academic career in a positive way.

Next, I would like to thank my other committee members, Professor Danijela Cabric,

Professor Lieven Vandenberghe, and Professor Guy Van den Broeck, for their support and

for their thoughtful feedback. Special thanks to Professor Cabric for generously providing

her precious help in different occasions.

Outside of UCLA, I have been lucky to know Professor Bane Vasic (University of Ari-

zona), with whom I have had a lot of fruitful conversations. I would like to thank Professor

x

Vasic for his valuable advice and for his support regarding my career. Moreover, I have been

honored to recently know Professor Robert Calderbank (Duke University). I have enjoyed

all my technical and non-technical discussions with him, and I am already looking forward

to starting my work with him soon. During my two internships, I was managed by Pro-

fessor Ravi Motwani (Intel Corporation), who is an expert in coding theory. It has been

my pleasure working with him, and I have collected useful knowledge to my research from

these internships. Furthermore, I have had the opportunity to work with Dr. Rick Gal-

braith (Western Digital Corporation) on multiple papers. During this work, Dr. Galbraith

provided important contributions and comments.

It has been an exceptional experience for me performing research with LORIS members

Homa Esfahanizadeh, Chinmayi Lanka, Ruiyi Wu, Dr. Behzad Amiri, Dr. Clayton Schoeny,

Nian Guo, and Andrew Tan. Two names from this list stand out; Homa and Chinmayi. My

work with Homa will leave unforgettable memories for both of us. These memories include

several publications between journal papers, conference papers, and workshop abstracts, in

addition to a Memorable Paper Award. As for Chinmayi, who has kept working with me for

two years after leaving UCLA, it is enough to mention that my fruitful collaboration with

her has resulted in two journal papers published in prestigious venues. I would like to thank

all LORIS members whom I have worked with. Moreover, the tools developed by Dr. Yuta

Toriyama have been valuable in the research.

I would also like to thank other LORIS members whom I have not had the chance to

do research with. They are Dr. Frederic Sala, Amirhossein Reisizadeh, Kayvon Mazooji,

Shahroze Kabir, Siyi Yang, Zehui Chen, Lev Tauz, in addition to the visitors, Professor

Weigang Thu and Professor Laura Conde. It has been great having all of them as colleagues.

Our lab has been different from any typical engineering lab as we have spent a lot of fun time

together. The wonderful outings, including going to basketball games together, will always

remain in my memory. I have particularly spent a lot of time discussing various topics with

Frederic, Clayton, Homa, Ruiyi, Siyi, and also Yuta.

xi

Additionally, there are other persons I have to mention here. I appreciate all the great

time I have spent with my UCLA friends and roommates, Mohammed Karmoose and Ahmed

Alaa. I thank all my friends who have helped me with the logistics in LA and SF Bay Area,

making my life there a lot easier. Our colleagues in the ECE Graduate Office, particularly

Deeona Columbia and Ryo Arreola, have been doing a great job helping graduate students in

the department. I would also like to thank my mentors at Cairo University, Professor Serag

Habib and Professor Mohamed Khairy, in addition to my long-time manager at Mentor

Graphics Corporation, Mohamed Selim, for all what I have learned from them and for their

support. Moreover, there are my close friends in Egypt, Ramy Hosny, Amin Maher, Islam

Shaboon, Rami Aliedine, Mahmoud Saber, and Reem Khairy; they have made my transition

a lot smoother with their continuous and priceless help.

Finally, and most importantly, I would like to say a hearty thank you to my family; my

father, Hassan Hareedy, my mother, Nadia Farghaly, and my brothers, Mohammed Hareedy

and Kareem Hareedy. Even though he died long ago, my father has established for our

family what everything starts from. As for my mother, she has been my first teacher and

the most important person throughout my life. I am blessed with her tremendous love, her

wise advice, and her sincere prayers. I am simply blessed with the existence of my mother in

my life, and I thank her for everything. My brothers have always been my ultimate friends.

I hope that I have done something they all will be proud of.

My research was sponsored by grants from the Advanced Storage Technology Consortium

- the International Disk Drive Equipment and Material Association (ASTC-IDEMA) along

with grants from the National Science Foundation (NSF), which are CCF 1029030, CCF-

CAREER 1150212, and CCF-BSF 1718369. In my last year, my research was also supported

by the UCLA Dissertation Year Fellowship.

xii

Vita

2006 Bachelor in Electronics and Communications Engineering

Cairo University

2006-2014 Senior Development Engineer

Deep Sub-Micron Division, Mentor Graphics Corporation

2011 Master of Science in Electronics and Communications Engineering

Cairo University

2014-2018 Research Assistant

Electrical and Computer Engineering Department

University of California, Los Angeles

2015, 2017 Error Control Coding Architect

Non-Volatile Memory Solutions Group, Intel Corporation

2015 Best Paper Award

IEEE Global Communications Conference

2017-2018 Dissertation Year Fellow

University of California, Los Angeles

2017 Henry Samueli Excellence in Teaching Award

Electrical Engineering Department, University of California, Los Angeles

2018 Memorable Paper Award

Non-Volatile Memories Workshop

Selected Publications

A. Hareedy, B. Amiri, R. Galbraith, S. Zhao, and L. Dolecek, “Non-binary LDPC

code optimization for partial-response channels,” in Proc. IEEE Global Commun. Conf.

xiii

(GLOBECOM), San Diego, CA, USA, Dec. 2015, pp. 1–6.

A. Hareedy, B. Amiri, R. Galbraith, and L. Dolecek, “Non-binary LDPC codes for

magnetic recording channels: error floor analysis and optimized code design,” IEEE Trans.

Commun., vol. 64, no. 8, pp. 3194–3207, Aug. 2016.

A. Hareedy, C. Lanka, and L. Dolecek, “A general non-binary LDPC code optimization

framework suitable for dense Flash memory and magnetic storage,” IEEE J. Sel. Areas

Commun., vol. 34, no. 9, pp. 2402–2415, Sep. 2016.

A. Hareedy, H. Esfahanizadeh, and L. Dolecek, “High performance non-binary spatially-

coupled codes for flash memories,” in Proc. IEEE Inf. Theory Workshop (ITW), Kaohsiung,

Taiwan, Nov. 2017, pp. 229–233.

H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “Finite-length construction of high

performance spatially-coupled codes via optimized partitioning and lifting,” accepted at

IEEE Trans. Commun., doi: 10.1109/TCOMM.2018.2867493, Aug. 2018.

A. Hareedy, C. Lanka, N. Guo, and L. Dolecek, “A combinatorial methodology for

optimizing non-binary graph-based codes: theoretical analysis and applications in data

storage,” accepted at IEEE Trans. Inf. Theory, doi: 10.1109/TIT.2018.2870437, Sep. 2018.

H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “Multi-dimensional spatially-coupled code

design through informed relocation of circulants,” accepted at 56th Annual Allerton Conf.

Commun., Control, and Computing, Monticello, IL, USA, Oct. 2018. [Online]. Available:

http://arxiv.org/abs/1809.04798

A. Hareedy, H. Esfahanizadeh, A. Tan, and L. Dolecek, “Spatially-coupled code design

for partial-response channels: optimal object-minimization approach,” accepted at IEEE

Global Commun. Conf. (GLOBECOM), Abu Dhabi, UAE, Dec. 2018. [Online]. Available:

http://arxiv.org/abs/1804.05504

xiv

CHAPTER 1

Introduction

We are living in the age of big data, which requires modern storage devices to be dense.

For example, two dimensional magnetic recording (TDMR) devices can be used to store

up to 1 terabytes per square inch. These dense storage devices operate at extremely low

frame error rates (FERs) that can only be achieved through novel, efficient error correcting

coding (ECC) techniques. Among those efficient ECC techniques, arise graph-based ECC

techniques, which are the topic of this dissertation.

Low-density parity-check (LDPC) codes are graph-based parity-check codes that are de-

scribed by a sparse parity-check matrix H [1]. They were first introduced by Gallager in

1962. LDPC codes are known to have capacity approaching performance. Moreover, their

simple iterative decoding, which is based on message passing algorithms, makes them even

more attractive for being used in different applications.

Due to their excellent performance in other applications, LDPC codes are now actively

being considered for modern dense storage devices, such as hard disk drives and multi-

level Flash memories. Moreover, it is well known that non-binary LDPC (NB-LDPC) codes

outperform their binary counterparts [2]. The major flaw of LDPC codes (binary and non-

binary) is the error floor phenomenon caused by absorbing sets (ASs) [3], which are detri-

mental subgraphs in the graph of the code. The error floor phenomenon is characterized

by a change in the slope of the frame error rate (FER) curve (to be worse) in the region

where the channel is “good” (e.g., high signal to noise ratio (SNR) or low raw bit error rate

1

(RBER) regions). While the error floor of binary LDPC codes has been well studied in the

literature, e.g., [3, 4, 5, 6], this problem for NB-LDPC codes is far less explored. First results

in the error floor of NB-LDPC codes include [7], [8], [9], and [10].

The first research problem we discuss in this dissertation is about error floor analysis

of NB-LDPC codes over magnetic recording channels. Practical 1-D magnetic recording

(MR) channels are commonly modeled as partial-response (PR) channels [11, 12]. Since MR

applications must operate at very low bit error rates, LDPC codes have already been studied

in the context of PR channels; [13], [14], and [15] have investigated binary LDPC codes and

their error floors in this context. On the contrary, and despite their potential, not much

work has been done on NB-LDPC codes for PR channels. First results on this topic include

[16] and [17]. The work in [16] investigated the progressive-edge-growth (PEG) algorithm to

design NB-LDPC codes for PR channels. The authors in [17] studied non-binary quasi-cyclic

LDPC (NB-QC-LDPC) codes for PR channels.

The time-consuming nature of error floor simulations has triggered research in error

floor prediction. For binary LDPC codes used for additive white Gaussian noise (AWGN)

channels, the authors in [18] presented a general method to estimate the error floor based

on the dominant error objects using biased simulations (importance sampling). While many

works investigated the error floor prediction for binary LDPC codes over AWGN channels,

including [5], [19], [20], and [21], very few explored this problem in the case of PR channels;

notable examples are [14], [22], and [23]. To the best of our knowledge, no previous literature

work has studied error floor prediction for NB-LDPC codes over PR channels.

The second research problem we address in this dissertation is about deriving a general

framework that can optimize NB-LDPC codes for a wide span of applications including Flash

memories incorporating highly asymmetric channels. The authors in [10] studied a subclass

of non-binary ASs (NB ASs), that is the NB elementary ASs (EASs), and showed that EASs

are the principal cause of the error floor of NB-LDPC codes over additive white Gaussian

noise (AWGN) channels. We demonstrate that the nature of the detrimental objects which

2

dominate the error floor region of NB-LDPC codes critically depends on the channel of

interest. As a result, we conclude that using NB-LDPC codes that are optimized for AWGN

channels is not appropriate for practical Flash channels (resp., PR channels) because of the

asymmetry (resp., the intrinsic memory) the system incorporates. While the operational

asymmetry in Flash memory systems is well documented [24, 25], the common code-design

approach is still to directly apply LDPC codes that are optimized for AWGN-like channels

[26, 27, 28], which does not give the best performance.

Next, we provide the in-depth theoretical analysis of the general NB-LDPC code opti-

mization framework mentioned in the above paragraph. In particular, the detrimental objects

that dominate the error floor region of NB-LDPC codes over asymmetric channels are char-

acterized, and the optimality of the aforementioned framework, in terms of complexity, is

proved. This optimization framework removes a detrimental object via careful processing of

its edge weights. Here, we also address questions related to what is the minimum number

of edge weights to be changed and how to select the edges. Extensions to the framework

are also proposed. Such extensions include how to achieve additional performance gains for

NB-LDPC codes with even column weights (variable node degrees) and include optimizing

non-binary spatially-coupled codes for asymmetric channels.

The last research problem we tackle is about the design of high performance binary and

non-binary spatially-coupled (SC) codes. Spatially-coupled (SC) codes [29, 30, 31] are graph-

based codes constructed by partitioning an underlying block code into components of the

same size, then rewiring these components multiple times [32]. In this work, the underlying

block codes, and consequently our constructed SC codes, are circulant-based (CB) codes.

SC codes offer not only complexity/latency gains (if windowed decoding [33] is used), but

also an additional degree of freedom in the code design; this added flexibility is achieved

via partitioning of the parity check matrix of the underlying block code. This observation

makes SC codes receive an increasing level of attention in multiple applications. Contiguous

[32] and non-contiguous [34, 35, 36] partitioning schemes were introduced in the literature

3

for various applications.

Recently, we have introduced the optimal overlap (OO), circulant power optimizer (CPO)

approach to design SC codes with superior performance for AWGN [37] and practical asym-

metric Flash [38] channels. The OO partitioning operates on the protograph to compute the

optimal set of overlap parameters that characterizes the partitioning. The CPO operates

on the unlabeled graph (edge weights are set to 1’s) to adjust the circulant powers. The

objective is to minimize the number of instances of a common substructure that exists in

several detrimental objects. If the SC code is binary, the unlabeled graph is the final graph.

If the SC code is non-binary, the edge weights are optimized after applying the OO-CPO

approach. Here, we aim at extending the OO-CPO approach to construct high performance

SC codes for magnetic recording applications.

1.1 Outline of Contributions

In this section, we provide a summary of the contributions that will be detailed in each of

the following five chapters of the dissertation. Our related publications in the references are

[39] and [40] for Chapter 2, [41] and [42] for Chapter 3, [43] for Chapter 4, and [44] and [45]

for Chapter 5, in addition to the relevant publications [32], [34], [35], [37], [38], [46], [47],

and [48]. Further details about the described work in this dissertation can be found in these

publications.

1.1.1 Chapter 2 Contributions

In this chapter, we offer a detailed study of the error floor performance of structured NB-

LDPC codes over PR channels. In particular, we show that the error profile in the error

floor region over PR channels is qualitatively different from the error profile over AWGN

channels. A subset of absorbing sets (ASs) [3], called balanced absorbing sets (BASs), is

introduced and is shown to be the dominant error type over PR channels. Based on these

4

BASs, we propose a method to accurately predict the error floor of NB-LDPC codes over

PR channels. To accurately perform such prediction, we add two major refinements to the

prediction method introduced in [23]: incorporation of the inter-symbol interference (ISI)

(effect of channel density) in the method and accurate modeling of the pattern-dependent

jitter. Simulation results show that our method is capable of estimating the error floor of NB-

LDPC codes over PR channels within only 0.2 of an order of magnitude of the actual Monte

Carlo (MC) simulations, and can be used to predict low error floor levels (e.g., < 10−12).

Furthermore, we provide the theoretical analysis of how to efficiently remove a BAS from

the graph of an NB-LDPC code.

1.1.2 Chapter 3 Contributions

In this chapter, we re-visit the existing definitions of combinatorial objects, such as ASs

and elementary absorbing sets (EASs) [3, 10], that were proved to be useful in the error

floor analysis of NB-LDPC codes over AWGN channels. By recognizing that the existing

definitions are insufficient to describe the errors for asymmetric channels, we introduce a more

finely specified combinatorial object: the general absorbing sets of type two (GASTs). Our

NB-LDPC code optimization objective for aggressively asymmetric channels then becomes

the removal of GASTs. Through a succinct matrix-theoretic representation, we express a

GAST as a set of submatrices, which we call weight consistency matrices (WCMs). By

forcing the null spaces of the resultant WCMs to have a particular property, we provably

remove detrimental GASTs from the graph representation of the code. We also demonstrate

that the WCM definition can be customized to accurately capture the properties of other

subclasses of GASTs, e.g., EASs and balanced absorbing sets of type two (BASTs).

This work offers the first theoretical framework, which we call the WCM framework, for

the analysis and design of NB-LDPC codes over realistic storage channels with asymmetry,

e.g., the normal-Laplace mixture (NLM) Flash channel [24]. We show the effectiveness of

the WCM framework over many channels with different characteristics. We present results

5

for the NLM channel, the Cai Haratsch Mutlu Mai (CHMM) Flash channel [25], the PR

channel [11, 12], and the AWGN channel. Over all these channels, the codes optimized using

the WCM framework outperform unoptimized codes by a minimum of 1, and up to nearly

2 orders of magnitude in the uncorrectable bit error rate (UBER) [49] or the frame error

rate (FER). Furthermore, over asymmetric channels, the codes optimized using the WCM

framework also outperform the codes optimized for symmetric channels.

1.1.3 Chapter 4 Contributions

In this chapter, we define the unlabeled GAST tree to describe the underlying topology of a

GAST, where the leaves of this tree represent the WCMs of the GAST. Using this tree, we

prove the optimality of the WCM framework by demonstrating that the framework indeed

operates on the minimum possible number of matrices to remove the detrimental object. We

also compute the exact number of WCMs associated with a GAST in different cases. We

further make a comparison with a suboptimal idea.

Next, we propose a comprehensive analysis of the removal process of GASTs. We start

off with discussing the dimensions of the null spaces of WCMs; these null spaces play the

central role in the identification and removal of a GAST. Then, we derive the best that can

be done to process a short WCM during the GAST removal process. Finally, we provide

the minimum number of edge weight changes needed to remove a GAST, along with how to

appropriately select the edges and the new weights.

Moreover, we introduce new combinatorial objects that capture the majority of the non-

GAST detrimental objects in the error floor region of NB-LDPC codes that have even column

weights over asymmetric Flash channels. We define oscillating sets of type two (OSTs).

Furthermore, we expand the analysis of GASTs in Chapter 3 to cover OSTs, describing how

the WCM framework can be customized to remove OSTs, after GASTs have been removed,

to achieve additional performance gains.

We also extend the scope of the WCM framework by using it to optimize codes with

6

different properties and for various applications. Specifically, we demonstrate the benefits

of the WCM framework in optimizing column weight 5 codes, codes used over Flash chan-

nels with additional soft information, and spatially-coupled codes. The performance gains

achieved via the WCM framework range between 1 and nearly 2.5 orders of magnitude in

the error floor region over interesting channels.

1.1.4 Chapter 5 Contributions

In this chapter, we propose an approach to construct high performance SC codes for PR

channels. Unlike the case of AWGN and Flash channels (see [37] and [38]), the common

substructure, whose number of instances we seek to minimize, in the case of PR channels

can appear in different ways in the protograph of the SC code, making the optimization

problem of partitioning considerably more challenging. For that reason, we introduce the

concept of the pattern, which is a configuration in the protograph that can result in instances

of the common substructure in the unlabeled graph of the SC code after lifting. We derive

an optimization problem, in which we express the weighted sum of the counts (numbers

of instances) of all patterns in terms of the overlap parameters, which are the parameters

that characterize the partitioning. Then, we compute the optimal set of overlap parameters

(OO) that minimizes this sum. Moreover, we propose the necessary modifications to the

CPO algorithm presented in [37] and [38] to make it suitable for the common substructure

in the case of PR channels. We demonstrate the gains achieved by our OO-CPO (-WCM for

NB SC codes) approach through tables and performance plots that compare our codes not

only with SC codes, but also with CB block codes of the same length and rate.

7

CHAPTER 2

A Technique for Error Floor Prediction

2.1 Introduction

Practical 1-D magnetic recording (MR) channels are commonly modeled as partial-response

(PR) channels [11, 12]. Since MR applications must operate at very low bit error rates, low-

density parity-check (LDPC) codes have already been studied in the context of PR channels;

[13], [14], and [15] have investigated binary LDPC codes and their error floors in this context.

While it has long been known that non-binary LDPC (NB-LDPC) codes outperform their

binary counterparts on additive white Gaussian noise (AWGN) channels [2], not much work

has been done on NB-LDPC codes for PR channels. First results on this topic include

[16] and [17]. The work in [16] investigated the progressive-edge-growth (PEG) algorithm to

design NB-LDPC codes for PR channels. The authors in [17] studied non-binary quasi-cyclic

LDPC (NB-QC-LDPC) codes for PR channels. These efforts demonstrated the potential of

using NB-LDPC codes for PR channels.

The time-consuming nature of error floor simulations has triggered research in error floor

prediction. For binary LDPC codes used for AWGN channels, the authors in [18] presented

a general method to estimate the error floor based on the dominant error objects and using

biased simulations (importance sampling). While many works investigated the error floor

prediction for binary LDPC codes over AWGN channels, including [5], [19], [20], and [21],

very few explored this problem in the case of PR channels; notable examples are [14], [22],

8

and [23]. To the best of our knowledge, no previous literature work has studied error floor

prediction for NB-LDPC codes over PR channels.

Our contributions in this work are:

1. We offer a detailed study of the error floor performance of structured and regular NB-

LDPC codes over PR channels. In particular, we show that the error profile1 in the

error floor region over PR channels is qualitatively different from the error profile over

AWGN channels. A subset of absorbing sets (ASs) [3], called balanced absorbing sets

(BASs), is introduced and is shown to be the dominant error type over PR channels.

Certain qualitative and quantitative properties of BASs are then presented.

2. Based on these BASs, we propose a method to accurately predict the error floor of NB-

LDPC codes over PR channels. To accurately perform such prediction, we add two

major refinements to the prediction method introduced in [23]: incorporation of the

inter-symbol interference (ISI) (effect of channel density) in the prediction method and

accurate modeling of the pattern-dependent jitter. Simulation results show that our

method is capable of estimating the error floor of NB-LDPC codes over PR channels

within only 0.2 of an order of magnitude of the actual Monte Carlo (MC) simulations,

and can be used to predict low error floor levels (e.g., < 10−12).

3. We provide the theoretical analysis of how to efficiently remove a BAS from the graph

of an NB-LDPC code. In particular, we discuss the minimum number of edge weight

changes needed to remove a BAS. The NB-LDPC code optimization algorithm and

simulation results showing the performance gains that result from removing BASs

from the graphs of NB-LDPC codes will be presented in Chapter 3 and Chapter 4.

More details can be found in [40] and [47].

In Section 2.2, we describe the detrimental structures contributing to the error floor of

NB-LDPC codes over PR channels, and present a theoretical discussion on such structures.
1For a given code, an error profile refers to the distribution (numbers of occurances) of decoding errors

associated with certain configurations at a specified simulation setup.

9

NB-LDPC
encoder

Binary
converter/
interleaver

MR
channel

CTF/down
-sampler

DFIR
filter

Bit-based
BCJR

detector

Deinterleaver
/non-binary
converter

QSPA-FFT
LDPC

decoder

Binary
converter/
interleaver

PR channel model

Figure 2.1: System model for 1-D MR channel utilizing an NB-LDPC code.

Our error floor prediction method is described in Section 2.3 along with simulation results

showing its effectiveness. In Section 2.4, we present the techniques used to remove BASs.

The chapter ends with concluding remarks in Section 2.5.

2.2 Error Profile of NB-LDPC Codes over PR Channels

In this section, after introducing the system model, we discuss the error floor of NB-LDPC

codes over PR channels by contrasting it with the error floor over AWGN channels. Addition-

ally, we show the effect of iterations between the detector and the decoder on the error floor

performance, and, most importantly, introduce new detrimental objects: balanced absorbing

sets (BASs).

2.2.1 System Model

We first describe the system model for the NB-LDPC coded PR channel which will be used

throughout this chapter. Vectors in this chapter are row vectors. Consider an NB-LDPC

code over GF(q), q = 2p, with block length m and dimension k. The system model, shown

in Fig. 2.1, has the following components:

Encoding: The information sequence u = [u1 u2 . . . uk] ∈ GF(q)k is encoded into a

codeword c = [c1 c2 . . . cm] ∈ GF(q)m. In this chapter, we focus on regular NB-LDPC codes

with implementation-friendly structures, e.g., non-binary protograph-based LDPC (NB-PB-

LDPC) codes (also circulant-based) presented in [8] and also in [9] and [17].

Transmission: The codeword c is converted to a binary sequence that is modulated

10

and interleaved pseudo-randomly into the sequence of data d = [d1 d2 . . . dn] (e.g., dj ∈

{−1,+1} for binary phase shift keying (BPSK)) with n = pm. The vector d is then written

onto the MR channel.

Channel: The 1-D MR channel includes ISI resulting from the read-head sensitivity (see

[50] and [51]), as well as jitter and electronic noise. The normalized density [50] of the MR

channel is commonly set to 1.4. We consider other values of the MR channel density as well.

The 1-D MR channel output is the oversampled sequence xov.

Filtering: Continuous-time filtering (CTF) and down-sampling are applied sequentially

to the sequence xov. The resulting sequence is passed through a digital finite impulse re-

sponse (DFIR) filter. CTF and DFIR units are used to achieve the PR equalization target.

According to industry recommendations, the default target we use is [8 14 2]. As we will

show later, we also examined several other PR targets; for all these targets, our simulation

results were consistent.

The MR channel, CTF, and DFIR units are considered altogether as the PR channel.

Detection/Decoding: A finite-precision fast Fourier transform based q-ary sum-product

algorithm (FFT-QSPA) LDPC decoder [52] and a Bahl Cocke Jelinek Raviv (BCJR) de-

tector [53], that incorporates pattern-dependent noise prediction (PDNP) [54], are used to

iteratively estimate the sequence u.

We prefer to use a bit-based detector [16] because of the high complexity of symbol-

based detectors. Thus, in order to properly address the correlation between bits due to the

ISI, we adopt an appropriately designed bit-based interleaver to distribute correlated bits

to different symbols [16] such that the correlation between bits within the same symbol is

nearly removed.

The iterations executed inside the LDPC decoder are referred to as local iterations.

Each outer looping between the detector and the decoder is referred to as one global it-

eration. In between two consecutive global iterations, the decoder executes its prescribed

number of local iterations (or fewer, if a codeword is reached).

11

2.2.2 Background and Motivating Examples

NB-LDPC codes are defined over bipartite graphs called Tanner graphs. A non-zero value

∈ GF(q) in the parity-check matrix of an NB-LDPC code is mapped into an edge connecting

a variable node (VN) to a check node (CN) in the Tanner graph of that code. This non-zero

value ∈ GF(q) is called the edge weight. The unlabeled graph is generated by replacing

all edge weights by ones. Based on this brief introduction, we first recall the following

definitions:

Definition 1. (cf. [3] and [10]) Consider a subgraph induced by a subset V of VNs in the

Tanner graph of an NB-LDPC code. Set all the VNs in V to values ∈ GF(q)\{0} and set

all other VNs to 0. The set V is said to be an (a, b) absorbing set (AS) if the size of V is

a, the number of neighboring unsatisfied CNs is b, and each VN in V is connected to strictly

more satisfied than unsatisfied neighboring CNs, for some set of VN values.

Definition 2. (cf. [10] and [55]) An elementary absorbing set is an absorbing set with

each of its neighboring satisfied CNs having two edges connected to the set, and each of its

neighboring unsatisfied CNs having exactly one edge connected to the set.

Remark 1. (cf. [10]) For a non-binary elementary absorbing set, the unlabeled sub-

graph is a binary AS, and all the cycles of this subgraph satisfy the following weight equation:

p∏
i=1

ρ2i−1 =
p∏
i=1

ρ2i over GF(q), (2.1)

where ρj’s, 1 6 j 6 2p, are edge weights and 2p is the cycle length. Note that for a non-

binary AS which is non-elementary, Equation (2.1) does not necessarily hold for all of its

cycles.

The following examples illustrate that the error profiles for PR and AWGN channels are

qualitatively different; we observed similar behavior for other channel and code parameters.

We define ewt as the error weight.

12

4 4.5 5 5.5 . . .16 16.5 17 17.5 18 18.5
10−7

10−6

10−5

10−4

10−3

10−2

SNR (dB)

FE
R

PR channel, 1 global itr
PR channel, 5 global itrs
PR channel, 10 global itrs
AWGN channel

Figure 2.2: FER curves of Code 2.1 over PR (with the default target) and AWGN channels.

16.5 17 17.5
10−5

10−4

10−3

SNR (dB)

FE
R

Target [1 1 −1 −1], 10 global itrs
Target [8 14 2], 10 global itrs
Target [2 3 1], 10 global itrs
Target [1 2 1], 10 global itrs

Figure 2.3: FER curves of Code 2.2 over PR channels with different equalization targets.

Example 1. Consider Code 2.1, which is an NB-PB-LDPC code (designed according to

[8] and [9]) with block length n = 4,092 bits, rate R ≈ 0.87, q = 16, and column weight

γ = 4. Fig. 2.2 shows the performance curves of Code 2.1 over PR and AWGN channels.

Tables 2.1 and 2.2 show the error profiles at representative SNR values. The tables show

that the dominant error in case of the PR channel is the (6, 2) AS while the dominant errors

in case of the AWGN channel are the (4, 4), (6, 4), and (6, 6) ASs. (BAS and UBAS in

Table 2.1 refer to balanced and unbalanced ASs, respectively, which we will define shortly.)

Example 2. Consider Code 2.2, which is an NB-PB-LDPC code (designed according to [8]

and [9]) with n = 1058 bits, R ≈ 0.87, q = 4, and γ = 3. Fig. 2.3 shows the performance

13

Table 2.1: Error profile of Code 2.1 over the PR channel at 10 global iterations, SNR =
16.75 dB, FER ≈ 4.79e−7.

Error
Weight

Low
(ewt < 4)

Medium
(4 6 ewt < 12)

High
(ewt > 12)

Type 0
(6, 2)
BAS

Other
BAS UBAS Random BAS

Comb. Random

Count 86 5 2 2 4 1

Table 2.2: Error profile of Code 2.1 over the AWGN channel, SNR = 5.60 dB, FER ≈
1.05e−7.

Error Type(4, 4)(5, 2)(6, 2)(6, 4)(6, 6)(7, 4)Other
Count 44 4 7 17 12 4 12

curves of Code 2.2 over PR channels with the equalization targets [1 1 −1 −1], [8 14 2]

(default), [2 3 1], and [1 2 1]. The first and the fourth targets are known as extended PR

(EPR4) and PR2 targets, respectively [22]. Our simulations show that the dominant error

in case of PR channels for all the four targets is the (6, 0) AS while it is mainly the (3, 3)

AS in case of the AWGN channel.

Our extensive simulations for different code parameters and channel parameters, includ-

ing the PR target as shown in Example 2, confirm that indeed the PR channel error profile

is different from the AWGN channel error profile.

2.2.3 New Definitions of Detrimental Objects

Motivated by the error profile differences between AWGN and PR channels shown in the last

subsection, we now introduce new combinatorial definitions aimed at capturing the decoding

errors under the PR channel.

Let g =
⌊
γ−1

2

⌋
for a given column weight γ. Aided by the simulation results of the type

shown in Examples 1 and 2, we classify ASs as follows, depending on the relative value of b.

Definition 3. An (a, b) absorbing set with 0 6 b 6
⌊
ag
2

⌋
is defined as a balanced absorbing

set (BAS), while an (a, b) absorbing set with
⌊
ag
2

⌋
< b 6 ag is defined as an unbalanced

absorbing set (UBAS).

14

An AS with fewer unsatisfied CNs b (i.e., 0 6 b 6
⌊
ag
2

⌋
) has more immunity against the

detector-decoder looping compared with an AS with
⌊
ag
2

⌋
< b 6 ag, which may be resolved

with sufficient looping. This observation motivates us to call the former balanced (i.e., more

stable and more difficult to correct) and the latter unbalanced (i.e., more unstable and easier

to correct). BASs play a critical role in the error profile of PR channels as we shall see later.

In the following sections (and chapters), we will show how BASs can be used to accurately

estimate the error floor performance of NB-LDPC codes over PR channels, and to effectively

optimize such codes.

Examples of BASs include (6, 0) AS for γ = 3 (g = 1), and (8, 3) and (6, 2) ASs for γ = 4

(g = 1). Codewords are special cases of BASs (b = 0). Examples of UBASs include (3, 3)

AS for γ = 3, and (6, 4) and (6, 6) ASs for γ = 4.

2.2.4 Effect of Global Iterations

In addition to having an error profile different from the AWGN channel case, we further

observe that in the PR channel case, the error profile changes as a function of the number of

global iterations. For Code 2.1 of Example 1, Fig. 2.2 shows the performance curves over the

PR channel at 1, 5, and 10 global iterations. This example serves to illustrate how the error

profile changes as a function of the number of global iterations; we have observed a similar

behavior for other codes and system parameters. For this example, we tabulate the errors in

Tables 2.1, 2.3, and 2.4 for 10, 1, and 5 global iterations, respectively. Observe that, when

the receiver executes a low number of global iterations (say for example, 5), the decoding

errors are usually due to BASs and their high-weight combinations. In fact, through all our

simulations, we observed that high-weight errors are mostly combinations of two or more

low-weight BASs. This observation motivates Definition 4.

We say that a BAS is a dominant BAS if it causes most of the uncorrectable errors in

the error floor region of the NB-LDPC code over the channel of interest. For example, the

dominant BAS is the (6, 2) BAS for Code 2.1 over the PR channel (see Table 2.1).

15

Let s be the weight of the smallest dominant BAS for a given code in the error floor

region over the PR channel (for a sufficient number of global iterations).

Definition 4. For a given code, an (a, b) balanced absorbing set that has s 6 a < 2s is

defined as a first-order balanced absorbing set (FOBAS).

Intuitively, BASs that have ewt > 2s are mostly formed as combinations of two or more

FOBASs, hence we choose the name first-order BASs for the latter.

A lower bound on s can be evaluated based on the size of of the smallest possible BAS

given the structure of the code. However, care must be taken in PR channels as the smallest

possible BAS need not be the dominant BAS, as our examples show.

In PR systems, it is useful to classify decoding errors into:

1. Low-weight errors: Such errors are of weight less than the minimum AS size (amin).

These errors occur due to the intrinsic memory of the MR channel, and are typically

prevented by the CTF and DFIR units. Increasing the number of global iterations is

generally sufficient to eliminate these decoding errors.

2. Medium-weight errors: These decoding errors have weight ewt such that amin 6 ewt <

2s. As the number of global iterations increases, medium-weight errors dominate the

error profile and they are overwhelmingly BASs.

3. High-weight errors: These decoding errors have weight ewt > 2s. High-weight errors

are either random errors or combinations of BASs. As the number of global iterations

increases, random errors are mostly resolved as are BAS combinations that are formed

from overlapping BASs. The overall effect is the reduction of high-weight errors as

the number of global iterations increases. For a sufficient number of global iterations,

these high-weight errors are typically combinations of FOBASs.

For a γ = 4 NB-LDPC code, it was shown in [10] that amin = 4. As a result, Code 2.1 of

Example 1 has amin = 4 and s = 6. Thus, low-weight errors have ewt < 4, medium-weight

16

Table 2.3: Error profile of Code 2.1 over the PR channel at 1 global iteration, SNR = 18.00
dB, FER = 7.96e−7.

Error
Weight

Low
(ewt < 4)

Medium
(4 6 ewt < 12)

High
(ewt > 12)

Type 15 BAS UBAS Random BAS
Comb. Random

Count 0 13 27 13 32

Table 2.4: Error profile of Code 2.1 over the PR channel at 5 global iterations, SNR = 17.25
dB, FER = 6.30e−7.

Error
Weight

Low
(ewt < 4)

Medium
(4 6 ewt < 12)

High
(ewt > 12)

Type 0
(6, 2)
BAS

Other
BAS UBAS Random BAS

Comb. Random

Count 47 5 5 11 23 9

errors have 4 6 ewt < 12, and high-weight errors have ewt > 12. Tables 2.1, 2.3, and 2.4

confirm the trends mentioned above for low, medium, and high-weight errors as the number

of global iterations increases.

The change in the error profile as a function of the number of global iterations can be

intuitively explained as follows. First, the increase in the number of global iterations enables

the detector to provide sufficient innovation at the decoder input to resolve AS errors that

are on the brink of instability, which we classified as UBASs. As a result, the remaining,

unresolved errors are due to BASs. Second, due to the memory in the PR channel system,

a wrong belief at a VN negatively impacts nodes that are adjacent to it. With a sufficient

number of VNs having wrong beliefs, a BAS decoding error occurs. With the memory in

the system, these errors propagate to adjacent VNs that themselves form other BASs. As a

result, high-weight errors containing several small BASs (which we refer to as FOBASs) are

observed. Increasing the number of global iterations results in removing BAS combinations

caused by BASs overlap. Clearly, these fine-grained decoding error types do not exist in

memoryless, AWGN-based systems.

Remark 2. The increase in the number of global iterations can resolve the majority of high-

weight errors (see e.g., Example 1, Table 2.1); however, solely relying on the increase in the

17

number of global iterations is generally not a preferred strategy in practice because of the

added decoding latency. In our code design approach, we will therefore focus on removing

FOBASs (and consequently their combinations).

2.2.5 Preparing the List of Problematic Objects

In this subsection, we establish some properties of BASs and FOBASs. In particular, we

count all the possible pairs that can result in BASs and those that can result in FOBASs.

We will refer to these counts later in the error floor prediction method.

Recall that g =
⌊
γ−1

2

⌋
for a given column weight γ, and s is the weight of the smallest

dominant BAS for a given code in the error floor region over the PR channel.

Lemma 1. For a given value of a, the number of (a, b) pairs that can result in a BAS is:

MBAS|a =
⌊
ag

2

⌋
+ 1. (2.2)

For a given value of s, the number of (a, b) pairs that can result in an FOBAS can be

approximated as:

MFOBAS|s ≈
3s2g

4 . (2.3)

Proof. The proof of (2.2) follows from Definition 3 of a BAS:

MBAS|a =
bag2 c∑
b=0

1 =
⌊
ag

2

⌋
+ 1.

To obtain (2.3), we first consider the case when both g and s are even. Recall the

definition of an FOBAS (Definition 4). Combining that definition (s 6 a 6 2s − 1) with

(2.2) gives:

18

MFOBAS|s =
2s−1∑
a=s

(
ag

2 + 1
)

=
(
sg

2 + 1
)

+
(

(s+ 1) g
2 + 1

)

+
(

(s+ 2) g
2 + 1

)
+ · · ·+

(
(2s− 1) g

2 + 1
)

= g

2 [s+ (s+ 1) + (s+ 2) + · · ·+ (2s− 1)] + s

= g

2

[
s

2 (s+ 2s− 1)
]

+ s = g

2

[
3s2

2 −
s

2

]
+ s

= 3s2g

4 +
(

1− 1
4g
)
s ≈ 3s2g

4 .

The same procedure can be followed for other choices of the values of g and s. For

example, if g = 1 and s is even, MFOBAS|s = 3s2

4 + s
2 (exact equation). It can be shown that

the dominant term, 3s2g
4 , remains the same in all cases.

Example 3. Consider the case where s = 6 and g =
⌊
γ−1

2

⌋
= 1 (as in Example 1). In this

case, the total number of (6, b) pairs2

Remark 3. Lemma 1 provides the count of the (a, b) candidate pairs which are problematic

for PR channels. If there are multiple non-isomorphic configurations with the same values

of (a, b), they should all be accounted for during the code optimization process. Nonetheless,

Lemma 1 provides a first-order characterization of BASs and FOBASs.

Remark 4. Ensemble-wide count of the number of (a, b) binary elementary ASs is derived

in [55] and, for a given (a, b) binary elementary AS, the fraction of edge weight assignments

that can result in a non-binary elementary AS is given in [10].

2.3 Error Floor Prediction Method

In this section, we describe our error floor prediction method. Our method is inspired by

the approach in [23], which is used for binary LDPC codes over EPR4 channel, with the
2These pairs are (6, 0), (6, 1), (6, 2), and (6, 3). that can result in a BAS is MBAS|a=6 = 4. The exact

total number of (a, b) pairs3 that can result in an FOBAS is MFOBAS|s=6 = 3(62)
4 + 6

2 = 30.

19

following refinements that capture the effects of the MR channel:

1. Accounting for the ISI resulting from the MR read-head sensitivity.

2. More accurate modeling of the pattern-dependent jitter.

Additionally, we extend the method in [23] from binary LDPC to NB-LDPC codes, generalize

it from EPR4 target to any PR target, and change the error objects of interest from the

broadly defined trapping sets to the more refined FOBASs.

2.3.1 A Theoretical Description of the Proposed Method

The objective of error floor prediction methods that are based on importance sampling is

to reduce the number of required MC simulations by proposing a representative weighting

factor that weighs the outcome of a decoding error. Our goal is to accurately estimate the

error floor performance via presenting a weighting factor that captures the MR channel ISI

and jitter. To reach this goal, we perform the following steps:

1. We approximate the FER using a union bound of the dominant decoding error events.

2. We model the main effects of the MR channel (ISI and jitter) and derive its output.

3. Aided by the MR channel effects modeled in Step 2, we view the probability of each

event in Step 1 as the sum of the product of certain probabilities, one of which will be

computed analytically. We subsequently refer to this analytical term as a weighting

factor.

4. We apply concepts from linear algebra to compute the analytical weighting factor,

which corrects the decoding error probabilities obtained from the biased MC simula-

tions (importance sampling) in the equation reached in Step 3.

The first step is to approximate the FER using a union bound equation. For a sufficiently

high number of global iterations in the error floor region:

20

FER ≈
∑
F

∑
P

Pr {EF,P} , (2.4)

where F is an (a, b) FOBAS, P is an error pattern (assignment of values of the VNs in the

configuration) that satisfies the conditions of F , and EF,P is the event of decoding error due

to an FOBAS F for a specific error pattern P . Note that, unlike for binary LDPC codes, for

NB-LDPC codes, FOBAS conditions can be satisfied using more than one set of values for

its VNs, and thus a sum over P is needed. The maximum number of (a, b) pairs that can

result in detrimental FOBASs is given by Lemma 1.

The second step is to build the overall MR channel output sequence x (of length n). This

sequence is commonly approximated as [51], [56]:

x ≈ h ∗ d + w, (2.5)

where h is the transition response sequence of the MR read-head sensitivity, d is the data

sequence, w is the data dependent noise sequence (data dependency is due to jitter) and ∗

is the convolution sign.

The exponential model [51] of the ideal transition response h of the MR channel read-head

sensitivity is given in (2.6) as h|exp:

h(t)|exp = exp
[
−ph

(
t

T50

)2]
, (2.6)

where t = `T , ` is the index of the channel sample, T is the bit duration, T50 is the read-head

pulse duration at half the amplitude, and ph is a constant. Since h is decaying with `, it

can be sufficiently approximated by a finite number of samples (say τ). Thus, if the ideal

MR channel transition response is double-sided, it can be represented as a τ -tuple vector

h = [h− τ−1
2
h− τ−3

2
. . . h−1 h0 h1 . . . h τ−3

2
h τ−1

2
] (τ is odd), while if it is right-sided, it can

be represented as a τ -tuple vector h = [h0 h1 . . . hτ−1], where h` = h(`T).

Remark 5. The ratio T50
T

is called the (normalized) channel density [50], [51], [57]. This

21

ratio is important because as it increases, the rate of decay of h decreases, which in turn

exacerbates the effect of ISI. The converse is also true.

A realistic response of the overall MR channel must properly model jitter. Therefore,

we specify the term w in (2.5) as a Gaussian noise sequence [w1 w2 . . . wn], which captures

both jitter and electronic noise (see [51] and [56]), where wj has mean 0 and variance σ2
j .

Moreover,

σ2
j ≈ ψ2

jσ
2
jitter,j + σ2

elec, (2.7)

where j is the bit index, 1 6 j 6 n, σ2
jitter,j and σ2

elec are the variances of jitter noise and

electronic noise, respectively, and ψj is a factor representing the effect of jitter propagation

on dj, ψj = f(dj−1, dj,
dh(t)

dt).

One way of modeling the dependence of σj on the input data d is introduced in [23]; by

selecting the value of σj from two different values depending on whether a transition exists

(dj 6= dj−1) or not. Since σj depends not only on the transition from dj−1 to dj, but also

on the value of dj, in our method, σj takes one of four values. These four values are σ0→0,

σ0→1, σ1→1, and σ1→0, where σval1→val2 is the standard deviation of noise at dj = val2 given

dj−1 = val1. We arbitrarily define σref = σ1→0 which will be used later.

The third step is to simplify Pr {EF,P}, the probability of a decoding error EF,P due to

F for a specific P , in Equation (2.4) aided by the approximate channel model (see (2.5)):

Pr {EF,P} ≈
∑
x
Pr {EF,P |x}Pr {x}

≈
∑
w

∑
d
Pr {EF,P |w,d}Pr {w|d}Pr {d} . (2.8)

Let N = {1, 2, . . . , n}. Let F = {j1, j2, . . . , jpa}, which is the set of indices of the pa

binary modulated bits of F in d, where a is the size of F in symbols ∈ GF(q), q = 2p, and all

the indices ji, 1 6 i 6 pa, are indexing the strings after the interleaving step and before the

deinterleaving step. Then, dF is the result of modulating (e.g., into values in {−1,+1} for

22

BPSK) the binary representation of the codeword symbols of F , i.e., dF = [dj1 dj2 . . . djpa].

Similarly, wF is the subsequence of w indexed by the indices in the set F , while wN\F is

the subsequence of w indexed by all the indices in N except the indices in F .

In order to simplify (2.8), we separate the noise sequence w into two parts, wF and

wN\F . As a result, the probability of decoding error due to F , presented in (2.8), can be

approximated as follows:

Pr {EF,P} ≈
∑
wF

∑
wN\F

∑
d
Pr

{
EF,P |wF ,wN\F ,d

}
Pr

{
wF |d

}
Pr

{
wN\F |d

}
Pr {d} , (2.9)

where noise samples in the random sequence w given d are assumed to be independent.

The fourth step is to compute Pr
{
wF |d

}
, which is our analytical weighting factor cus-

tomized for the PR channel. This probability is difficult to compute. Instead, we represent

it with another conditional probability of a more tractable random variable.

We now show how to carefully construct this auxiliary random variable. Suppose d is

the transmitted binary data sequence vector. Let d̃ be a decoded vector deviated from d

because of an error e due to the FOBAS F , i.e., d̃ = d + e. It is sufficient to only consider

the entries in d and d̃ that correspond to the indices in F , i.e., to only consider dF and d̃F .

Similarly, we define xF (resp., eF) to be the subsequence vector of x (resp., e) indexed by

the indices in the set F . Let αji = σref
σji

be the noise scaling factor. (The importance of such

scaling will be illustrated shortly.) Then, dFα , xFα , and eFα are dF , xF , and eF after scaling

each entry ji by αji (see Fig. 2.4):

dFα = [αj1dj1 αj2dj2 . . . αjpadjpa],

xFα = [αj1xj1 αj2xj2 . . . αjpaxjpa], (2.10)

eFα = d̃Fα − dFα = [αj1ej1 αj2ej2 . . . αjpaejpa], (2.11)

23

where d̃Fα represents d̃F after scaling each entry ji by αji . Since d̃F critically depends on P

in (2.4), eF also critically depends on P . Based on (2.5) and assuming h to be right-sided

for simplicity, we note that xji = h0dji + h1dji−1 + · · ·+ hτ−1dji−(τ−1) +wji . Additionally, we

define the vector rFα , which captures both ISI and noise (see Fig. 2.4 for more illustration),

as follows:

rFα = xFα − dFα = [αj1rj1 αj2rj2 . . . αjparjpa]. (2.12)

Let βji = h0dji + h1dji−1 + · · ·+ hτ−1dji−(τ−1) − dji . Thus,

αjirji = αjixji − αjidji = αjiβji + αjiwji . (2.13)

Here, we aim to project the vector rFα onto the vector eFα in the pa dimensional space.

Mathematically, this projection can only be correct if all the pa dimensions are treated

equally. In order to treat these dimensions equally, it suffices to appropriately scale each

dimension i by αji specified above, to unify the variances accross all the dimensions to be

σ2
ref, as done in [23]. Notice that scaling each dimension i by αji converts dF , eF , and xF

into dFα , eFα , and xFα that are defined above. The projection process is illustrated in Fig. 2.4.

Using linear algebraic concepts and aided by (2.11), (2.12), and (2.13), the result of this

projection is:

zr,α =
(

rFα ·
eFα
‖eFα ‖2

)
eFα
‖eFα ‖2

. (2.14)

We now present the new quantity SF,P for a given d, which will replace wF and will

simplify (2.9):

SF,P = rFα ·
eFα
‖eFα ‖

2
2

= 1
‖eFα ‖

2
2
(α2

j1ej1βj1 + α2
j2ej2βj2 + · · ·+ α2

jpaejpaβjpa

+ α2
j1ej1wj1 + α2

j2ej2wj2 + · · ·+ α2
jpaejpawjpa). (2.15)

24

Thus, SF,P given d is a Gaussian random variable with non-zero mean µSF,P and variance

σ2
SF,P

:

µSF,P = 1
‖eFα ‖

2
2
(α2

j1ej1βj1 + α2
j2ej2βj2 + · · ·+ α2

jpaejpaβjpa), (2.16)

σ2
SF,P

= 1
‖eFα ‖

4
2
(α2

j1e
2
j1 + α2

j2e
2
j2 + · · ·+ α2

jpae
2
jpa)σ

2
ref

= σ2
ref

‖eFα ‖
2
2
. (2.17)

Note that SF,P given d does not depend on the entire transmitted data sequence d since only

a subset of d affects it. Let FS be the set of indices of the modulated bits in this subset:

FS = {j1 − (τ − 1), j1 − (τ − 2), . . . , j1, j2 − (τ − 1), j2 − (τ − 2), . . . , j2, . . . , jpa}.

Thus, the probability density function (PDF) of SF,P given d, plotted in Fig. 2.5, is:

f{SF,P |d} = f{SF,P |dFS}

= 1√
2πσSF,P

exp

−
(
SF,P − µSF,P

)2

2σ2
SF,P

 , (2.18)

where µSF,P and σSF,P are given in (2.16) and (2.17).

Substituting (2.15) in (2.14) gives the projection outcome zr,α = SF,PeFα (see Fig. 2.4).

Using different values of SF,P given d, we move along the vector eFα and simulate all the

blocks of the receiver. If a decoding error due to F occurs, we compute the analytical

weighting factor which is the probability Pr
{
SF,P |dFS

}
, obtained from (2.18). Thus, we

have properly rescaled the contribution of this particular decoding error to the overall FER.

With the bias proposed in our prediction method, the simulation time needed is reduced by

multiple orders of magnitude compared with the traditional MC simulation.

25

Figure 2.4: The process of projecting rFα onto eFα in the pa dimensional space.

 |

 |

Figure 2.5: The effect of the non-zero mean (µSF,P > 0) on the analytical term Pr
{
SF,P |dFS

}
.

Note how the projection point of rFα over eFα is closer to the mean of the associated distribu-
tion when µSF,P is positive, and is much further out in the tail of the associated distribution
when µSF,P is zero.

26

Accounting for the effect of the ISI on the mean µSF,P of SF,P given d improves the

accuracy of the error floor estimate. The reason is that the ISI, which directly affects µSF,P
as shown in (2.16), is a fundamental source of error in PR channels. Additionally, the

analytically-computed term, Pr
{
SF,P |dFS

}
, varies significantly with the variation of µSF,P

as shown in Fig. 2.5. Notice that if the ISI is ignored, βji is always 0, and from (2.16), µSF,P
will also be 0 (as in [23]). As simulation results will confirm, having µSF,P = 0 lowers the

weighting factors associated with decoding error events, which in turn underestimates the

overall FER.

Finally, we derive the final approximate FER that includes our analytical weighting factor

which captures MR channel effects. We replace wF |d with SF,P |d and consequently with

SF,P |dFS (as illustrated above) in (2.9) to reach:

Pr {EF,P} ≈
∑
SF,P

∑
wN\F

∑
d
Pr

{
EF,P |SF,P ,wN\F ,d

}
Pr

{
SF,P |dFS

}
Pr

{
wN\F |d

}
Pr {d} .

(2.19)

Substituting (2.19) in (2.4) results in the final approximate frame error rate:

FER ≈
∑
F

∑
P

∑
SF,P

∑
wN\F

∑
d
Pr

{
EF,P |SF,P ,wN\F ,d

}
Pr

{
SF,P |dFS

}
Pr

{
wN\F |d

}
Pr {d} .

(2.20)

2.3.2 The Algorithm and Simulation Results

In lieu of generating MR channel outputs directly, we compute a biased channel output

and the equivalent analytical weighting factor to accelerate MC simulations. (This channel

output is said to be biased since we deliberately bias it via channel effects (ISI and noise)

towards an error due to the FOBAS of interest at the decoder output.) The MR channel

equivalent block is shown in Fig. 2.6, and the remainder of the system is assumed to be as in

Fig. 2.1. Note that to compute the biased channel output, the vector zr,padded is added over

27

+

Compute
 ’s and ’s

Compute
 ’s

Compute

and

Compute

analytical
weighting

factor

biased channel
output

Figure 2.6: MR channel equivalent block of the error floor prediction method.

the data sequence d, where the entries of the vector zr,padded indexed by F are described by

the vector zr = SF,PeF (renormalization of zr,α), while all other entries are zeros (or they

are the entries indexed by N \ F in r = x− d).

We draw samples from a certain range of SF,P given d and the probabilities of these

samples are obtained from the distribution in (2.18). This range is chosen a priori such that

the errors can be generated at the decoder output and such that the value of the analytical

term Pr
{
SF,P |dFS

}
is not extremely low in order to keep the computations statistically

significant (see also [23]). In our case, such range depends not only on the value of σSF,P but

also on the value of µSF,P . An example illustrating this choice will be given shortly.

Remark 6. Only positive values of µSF,P matter (as shown in Fig. 2.5) since negative values

result in constructive ISI, which in turn implies much smaller probability of decoding error

due to the FOBAS F .

Algorithm 1 summarizes the steps we use in our error floor prediction method. We use

10 global iterations for all the simulations in this subsection.

We use different NB-PB-LDPC codes, generated according to [8] and [9], to verify the

effectiveness of our prediction method. Code 2.1 (resp., Code 2.2) is the code presented

in Example 1 (resp., Example 2). Code 2.3 is an NB-PB-LDPC code with n = 884 bits,

R ≈ 0.82, q = 4, and γ = 3. Finally, Code 2.4 is an NB-PB-LDPC code with n = 8178 bits,

R ≈ 0.86, q = 8, and γ = 4.

28

Algorithm 1 Error Floor Prediction of Regular NB-LDPC Codes over PR Channels
1: Inputs: Tanner graph G of the code, ideal read-head transition response vector h, and

SNR range in the error floor region.
2: Set S_max and d_max as the values that specify when to stop looping.
3: Determine Z, the set of all dominant FOBASs, by simulating a representative SNR

point. (Combinatorial techniques, e.g., [6], can also help to specify Z based on the code
structure.)

4: for every SNR value ∈ the SNR range do
5: for every FOBAS F ∈ Z do
6: From Step 3, determine the set of error patterns QF that satisfy the conditions of
F .

7: for every error pattern P ∈ QF (eF is determined through P) do
8: Determine the data sequence d.
9: Compute σj’s, αj’s, and βj’s given d, eF , h, and SNR value.
10: Compute µSF,P and σSF,P via αj’s, βj’s, and σref.
11: Determine the value of SF,P based on the computations in 10.
12: Add the vector zr,padded over d to get the biased channel output.
13: Simulate the whole receiver (CTF, DFIR, detector, and decoder).
14: if a decoding error due to F occurs then
15: Calculate the analytical term Pr

{
SF,P |dFS

}
from (2.18).

16: end if.
17: If S_max is not reached, go to Step 11 to pick another value of SF,P .
18: If d_max is not reached, go to Step 8 to pick another data sequence d.
19: Compute all the non-analytical terms in (2.19) from the simulation setup and

results.
20: end for
21: end for
22: Sum over all the values computed above to get the estimated FER according to (2.20).
23: end for
24: Output: Estimated FER vector for the given SNR range.

16 16.5 17 17.5 18 18.5 19 19.5 20
10−8

10−7

10−6

10−5

10−4

10−3

10−2

SNR (dB)

FE
R

Traditional MC simulation
Prediction of our method
Prediction of the method based on [16]

Figure 2.7: Error floor prediction results of Code 2.3.

29

16 16.5 17 17.5 18 18.5 19 19.5
10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

SNR (dB)

FE
R

Traditional MC simulation
Prediction of our method
Prediction of the method based on [16]

Figure 2.8: Error floor prediction results of Code 2.1.

To perform relevant comparison against the method in [23], we generalize this method

for any PR target, change the error objects to FOBASs, and account for the change in the

channel density via multiplying by an empirical weighting factor. The PR target used for

simulations in this subsection is the default taget, which is [8 14 2]. We tested our prediction

method using other PR targets, and our results were consistent with what we present in this

subsection. For Figures 2.7, 2.8, and 2.9, the channel density used is 1.4. Figures 2.7, 2.8,

and 2.9 show that the error floor estimate obtained using this modified method based on

[23] is within 1.5 orders of magnitude from the traditional MC simulation compared with

0.2 of an order of magnitude from the traditional MC simulation achieved by our method.

Moreover, the figures show that our error floor estimate correctly captures the error floor

slope of the traditional MC simulation for all the simulated codes. Note that, consistent with

the analysis in the previous subsection, the prediction method based on [23] underestimates

the overall FER.

Example 4. When we apply our error floor prediction method to Code 2.1, the representative

SNR point we simulate is 16.75 dB (see also Fig. 2.8). The set Z of the dominant objects

consists of the FOBASs (6, 2), (6, 3), and (8, 2). The suitable range of SF,P is between 0.4 and

0.7. This range can be chosen using a small training set. At 18 dB, the error floor prediction

method we propose is nearly 1000 times faster than the traditional MC simulation.

30

16 16.5 17 17.5 18 18.5 19 19.5
10−14

10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

SNR (dB)

FE
R

Traditional MC simulation
Prediction of our method
Prediction of the method based on [16]

Figure 2.9: Error floor prediction results of Code 2.4.

16 16.5 17 17.5 18

10−7

10−6

10−5

10−4

10−3

10−2

SNR (dB)

FE
R

MC, T50/T = 1.4
Ours, T50/T = 1.4
Based on [16], T50/T = 1.4
MC, T50/T = 1.2
Ours, T50/T = 1.2
Based on [16], T50/T = 1.2

Figure 2.10: Error floor prediction results of Code 2.2 at different values of the MR channel
density using the proposed prediction method and the method based on [23].

Fig. 2.10 captures the main difference between the two prediction methods – accounting

for the MR channel density T50
T
. Code 2.2 is simulated over two different PR channels, with

channel densities set to 1.4 and 1.2, respectively. Error floor prediction methods are applied

to both channels. It is clear that increasing the channel density, i.e., more ISI, increases

the gap between the estimate of the modified method based on [23] and the traditional MC

simulation while it does not affect the small gap between the estimate of our method and the

traditional MC simulation. Fig. 2.10 also shows how our method correctly captures the slope

of the error floor performance irrespective of the value of the channel density. We performed

31

different simulations confirming the same conclusions for other values of the channel density,

which we have omitted for the sake of clarity in the figure.

2.4 Code Optimization for Transmission over PR Channels

After analyzing the error floor of NB-LDPC codes over PR channels, we turn our attention

towards optimizing these codes to achieve better error floor performance. Our goal is to

provably eliminate detrimental objects from the Tanner graph of a regular NB-LDPC code,

which we have identified to be BASs for PR channels. Our removal process carefully modifies

edge weights in the Tanner graph so that the resulting code is free of BASs. We discuss the

operations on the edge weights that need to be performed in order to remove an object of

interest. The complete code optimization framework, in addition to simulation results over

various channels, will be discussed in the following two chapters.

2.4.1 Removing Balanced Absorbing Sets

Since our focus in the PR system is on the restricted subclass of ASs, given by BASs,

it is sufficient to eliminate only this special class of objects. The object removal can be

performed by changing only the edge weights, i.e., without altering the underlying topology

of the Tanner graph. This is a particularly desirable feature as it maintains the underlying

implementation-friendly code structure and properties. As a result, we preserve the code

structure and rate while improving the code performance. Restricting the object removal

process to only the class of BASs offers an additional degree of freedom, compared with the

case of removing the more general class of ASs, as would be necessary in other applications.

We capture this difference in the following lemma. Recall that g =
⌊
γ−1

2

⌋
for a given column

weight (VN degree) γ.

Lemma 2. The minimum number of edge weights to be changed to remove an (a, b) AS is

given by:

32

EAS,min = g − bvn,max + 1, (2.21)

where bvn,max is the maximum number of existing unsatisfied CNs per VN in the subgraph

of this object, while the minimum number of edge weights to be changed to remove an (a, b)

BAS is given by:

EBAS,min = min {EAS,min, EBU,min} , (2.22)

where EBU,min =
⌊
ag

2

⌋
− b+ 1. (2.23)

Proof. To remove an AS, this configuration needs to be converted into a non-AS. To perform

this conversion, it suffices to increase the number of unsatisfied CNs to be (just) above
⌊
γ−1

2

⌋
for any given VN in the configuration. Since bvn,max is the highest number of unsatisfied CNs

connected to a single VN, the number of necessary edge weight changes is then minimized if

we choose this VN to begin with. Thus,

EAS,min =
⌊
γ − 1

2

⌋
− bvn,max + 1 = g − bvn,max + 1,

where the last equality is obtained from the definition of g.

On the other hand, to remove a BAS, we may convert it into a non-AS, and we may also

convert it into a UBAS.

To convert a BAS into a UBAS, it suffices to increase b to be (just) above
⌊
ag
2

⌋
. Thus,

the minimum number of edge weights to be changed will be:

EBU,min =
⌊
ag

2

⌋
− b+ 1.

Computing the minimum of (2.21) and (2.23) gives us the minimum number of edge weights

to be changed to remove a BAS.

Remark 7. The main source of the extra edge weight selections is the new removal option

where we allow a BAS to be converted into a UBAS instead of strictly converting it into a

33

Figure 2.11: An (8, 4) balanced absorbing set, γ = 3. Circles represent VNs and white
(resp., grey) squares represent satisfied (resp., unsatisfied) CNs. Appropriate non-binary
edge weights and VN values are assumed.

non-AS. Thus, the introduction of the term EBU,min of (2.23), which is a result of the new

removal option we have for BASs, guarantees additional edge weight options irrespective of

whether EBAS,min < EAS,min or EBAS,min = EAS,min holds.

We illustrate Lemma 2 with the following example.

Example 5. Fig. 2.11 shows an (8, 4) BAS where γ = 3 (g = 1). Thus, a = 8, b = 4,

and bvn,max = 1. Equations (2.21) and (2.23) from Lemma 2 give EAS,min = EBU,min = 1,

which means EBAS,min = 1. This indicates that the problematic object can be removed by

changing only 1 edge weight. From Fig. 2.11, there are
(

20
1

)
selections available to remove

the BAS (make it a non-AS or an (8, 5) UBAS), while there are only
(

12
1

)
selections available

to convert this structure to a non-AS because the edges connected to c1, c5, c9, and c10 do

not qualify in this case. Thus, despite that EBAS,min = EAS,min in this example, the gain is

approximately 67% increase in allowable edge selections when focusing exclusively on BAS

removal. The 8 additional edge selections are coming from the term EBU,min (the additional

removal option).

34

2.5 Concluding Remarks

In this work, we studied in detail the error floor performance of regular NB-LDPC codes over

PR channels. We demonstrated that the error profile over PR channels is different from that

over AWGN channels; the existing code optimization techniques previously developed for

the AWGN channel transmission are thus not effective. We introduced a restricted class of

combinatorial objects, called balanced absorbing sets (BASs), that were identified to be the

key contributor to the PR channel error floor. We used these objects to accurately predict

the error floor of NB-LDPC codes over PR channels via a comprehensive prediction method.

Simulation results revealed that our prediction method estimates the error floor within 0.2

of an order of magnitude from the actual simulation results. Additionally, we have discussed

how the exclusive focus on BASs in the code optimization procedure can offer an additional

degree of freedom. Future work can include the analysis under symbol-based detection.

Acknowledgement

The majority of the material in this chapter was published in [40]. The work was also

presented in part at GLOBECOM 2015 [39]. Additional results for the PR channel are in

[47]. The author would like to thank the collaborators in these publications.

35

CHAPTER 3

Non-Binary LDPC Code Optimization

3.1 Introduction

Due to their excellent performance in other applications, low-density parity-check (LDPC)

codes are now actively being considered for modern dense storage devices, such as multi-

level Flash and hard disk drives. It is well known that non-binary LDPC (NB-LDPC) codes

outperform their binary counterparts [2]. The major flaw of iteratively-decoded LDPC codes

(both binary and non-binary) is the error floor phenomenon caused by absorbing sets (ASs)

[3], which are detrimental subgraphs in the Tanner graph of the code. While the error floor

of binary LDPC codes has been well studied in the literature, e.g., [3], [4], [5], and [6], this

problem for NB-LDPC codes is far less explored. First results on the topic of the error floor

of NB-LDPC codes include [7], [9], and [10].

The authors of [10] studied a subclass of non-binary ASs (NB ASs), the so-called NB

elementary ASs (EASs), and showed that EASs are the root cause of the error floor of

NB-LDPC codes over additive white Gaussian noise (AWGN) channels. In Chapter 2, we

demonstrated that the nature of the detrimental objects which dominate the error floor re-

gion of NB-LDPC codes depends on the channel of interest. As a result, we concluded that

using the code optimization techniques developed for AWGN channels is not appropriate for

partial-response (PR) channels (the typical 1-D magnetic recording (MR) channels [11]) be-

cause of the intrinsic memory the PR system incorporates. While the operational asymmetry

36

in Flash memory systems is well documented [24], [25], the common code-design approach

in these systems is still to directly apply LDPC codes optimized for symmetric, AWGN-like

channels [26], [27], [28]: “optimize for AWGN, but use on Flash”.

In this chapter, we re-visit the existing definitions of combinatorial objects, such as ab-

sorbing sets (ASs) and elementary absorbing sets (EASs) [3], [10], that were proved to be

useful in the error floor analysis of NB-LDPC codes over AWGN channels. By recognizing

that the existing definitions are insufficient to describe the errors for asymmetric channels,

we introduce a more finely specified combinatorial object: the general absorbing set (GAS).

Additionally, we introduce an important subclass of GASs, which we call general absorbing

sets of type two (GASTs). Our NB-LDPC code optimization objective for aggressively asym-

metric channels then becomes the removal of GASTs. Through a succinct matrix-theoretic

representation, we express a GAST as a set of submatrices, which we call weight consistency

matrices (WCMs). By forcing the null spaces of the resultant WCMs to have a particular

property, we provably remove detrimental GASTs from the graph representation of the code.

We also demonstrate that the WCM definition can be customized to accurately capture the

properties of other subclasses of GASTs, e.g., EASs and balanced absorbing sets of type two

(BASTs), which are an important subclass of BASs.

Key features of our WCM code optimization framework are that it systematically manip-

ulates the edge weights in the graph representation of a non-binary code while maintaining

all desirable structural properties (node degree, rate, etc.), and that it can be applied to

regular NB-LDPC codes used for a wide variety of channels. Most importantly, this work

offers the first theoretical framework for the analysis and design of NB-LDPC codes over

realistic storage channels with asymmetry, e.g., the normal-Laplace mixture (NLM) Flash

channel [24]. We show the effectiveness of the WCM framework over many channels with

different characteristics. We present results for the NLM channel, the Cai Haratsch Mutlu

Mai (CHMM) Flash channel [25], the PR channel [11], [12], and the AWGN channel. Over

all these channels, the codes optimized using the WCM framework outperform unoptimized

37

codes by a minimum of 1, and up to nearly 2 orders of magnitude in the uncorrectable bit

error rate (UBER) [49] or the frame error rate (FER). Furthermore, over asymmetric chan-

nels, the codes optimized using the WCM framework also outperform the codes optimized

for symmetric channels.

The rest of the chapter is organized as follows. In Section 3.2, we motivate the need for

new definitions, and introduce GASs and GASTs. The combinatorial properties of GASTs

along with WCMs and how to use WCMs to remove different detrimental objects are pre-

sented in Section 3.3. Aided by the theoretical analysis in Section 3.3, the WCM code

optimization framework is then proposed in Section 3.4. In Section 3.5, we introduce sim-

ulation results over different channels, demonstrating the performance gains offered by the

WCM framework. The chapter ends with concluding remarks in Section 3.6.

3.2 New Objects: GASs and GASTs

3.2.1 Motivating Examples

Consider the Tanner graph of an NB-LDPC code. Previous work in [10] (see also [3] and

[58]) introduced and studied the following object: an (a, b) non-binary absorbing set (NB

AS), with a variable nodes (VNs), b unsatisfied check nodes (CNs), and with each VN hav-

ing more satisfied than unsatisfied neighboring CNs. No explicit classification with respect

to satisfied/unsatisfied CNs of different degrees was made. This in itself was not an is-

sue for symmetric channels, and in fact techniques focusing on the removal of EASs were

demonstrated to be very effective [10] for such channels. We recall that an elementary AS

(EAS) is an AS with all satisfied CNs having degree 2 and all unsatisfied CNs having degree

1 [3], [10]. The following two examples motivate the need for a more refined description of

ASs. Example 6 shows that non-elementary ASs are indeed problematic in the case of non-

canonical (e.g., asymmetric) channels, while Example 7 illustrates the subtle issue arising

from grouping the objects of interest only by their a and b parameters. In all AS figures,

38

circles represent VNs, and white (resp., grey) squares represent satisfied (resp., unsatisfied)

CNs. Moreover, in all AS figures, appropriate non-binary edge weights and VN values are

assumed.

Example 6. Consider Code 3.1: a non-binary protograph-based LDPC (NB-PB-LDPC)

code [8, 9] defined over GF(4), with block length = 3,996 bits, rate ≈ 0.89, and column

weight = 3. We simulate Code 3.1 over AWGN, NLM [24], and CHMM [25] channels1. The

simulations reveal that the (4, 3) and the (6, 2) non-elementary ASs, shown in Figures 3.1(a)

and 3.1(b), respectively, result collectively in only about 2% of the errors in the error floor

region over the AWGN channel. Contrarily, the (4, 3) (resp., (6, 2)) AS results in nearly 15%

(resp., 12%) of the errors in the error floor region over the NLM (resp., CHMM) channel

(see also Tables 3.1 and 3.3 in Section 3.5). Intriguingly, in the error floor region for the

AWGN channel, we recognize that some of the received strings at the input to the decoder

incorporate (4, 3) and (6, 2) errors, along with few other random errors. However, because

of the limited magnitudes of the errors in the AWGN case, the decoder typically resolves

such non-elementary errors. For example, suppose that a (4, 3) error occurs at the decoder

input. In the AWGN case, the unsatisfied CN c5 is typically capable of correcting the limited-

magnitude errors at v2 and v4 via its messages, which will eventually result in resolving

the entire AS error after few decoder iterations. In contrast, the high error magnitudes (a

consequence of channel asymmetry) in the case of the NLM channel can make c5 unable to

correct the errors at v2 and v4 even after 200 iterations, resulting in an AS error that has a

degree-2 unsatisfied CN (non-elementary AS error) at the decoder output.

Asymmetric channels can result in excessively high error magnitudes preventing unsat-

isfied CNs that have degree > 1 from correcting VN errors in an AS. Note that errors of

high magnitudes can also happen in the case of PR channels due to channel memory (see

Chapter 2). In conclusion, for non-canonical channels, configurations that are not neces-
1More details on the simulation setup and the decoder [52] can be found in the experimental section

(Section 3.5).

39

𝑤1,1

𝑣1 𝑣2

𝑣3

𝑣4 𝑣5

𝑣6

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6 𝑐7 𝑐8

𝑐9

𝑤1,1 𝑤1,2

𝑤2,2

𝑤2,3

𝑤3,3

𝑤3,4

𝑤4,4 𝑤4,5

𝑤5,5

𝑤5,6

𝑤6,6

𝑤6,1 𝑤7,2

𝑤7,5

𝑤8,1

𝑤8,4

𝑤9,3 𝑤9,6

𝑐1

𝑐2

𝑐3

𝑐4
𝑐5

𝑣1 𝑣2

𝑣3 𝑣4

𝑤1,2

𝑤2,2

𝑤2,3

𝑤3,3 𝑤3,4

𝑤4,4

𝑤4,1
𝑤5,2

𝑤5,4

𝑐6

𝑐7

𝑤6,3

𝑤7,1

(a) (b)

Figure 3.1: (a) A (4, 3) non-elementary AS (column weight = 3). (b) A (6, 2) non-elementary
AS (column weight = 3).

sarily elementary ASs can also be problematic. In this and other cases, code optimization

techniques focusing on EASs are ineffective as they are agnostic to a finer classification of

the important configurations.

Example 7. Consider the three NB ASs shown in Fig. 3.2. While they are all classified as

a (6, 2) NB AS, it is clear that they have distinct connectivity properties; configuration (a)

is elementary while configurations (b) and (c) are non-elementary (and different).

 (a) (b) (c)

Figure 3.2: Three different (6, 2) NB ASs (column weight = 3). Appropriate non-binary
edge weights are assumed.

3.2.2 Defining GASs and GASTs

We start off with the definition of a general absorbing set.

40

Definition 5. Consider a subgraph induced by a subset V of VNs in the Tanner graph of an

NB-LDPC code. Set all the VNs in V to values ∈ GF(q)\{0} and set all other VNs to 0.

The set V is said to be an (a, b, b2, d1, d2, d3) general absorbing set (GAS) over GF(q)

if and only if the size of V is a, the number of unsatisfied (resp., degree-2 unsatisfied) CNs

connected to V is b (resp., b2), the number of degree-1 (resp., 2 and > 2) CNs connected

to V is d1 (resp., d2 and d3), and each VN in V is connected to strictly more satisfied than

unsatisfied neighboring CNs, for some set of VN values.

In this work, we focus on GF(q) with q = 2λ, where λ is a positive integer > 2.

Observe that for a GAS, satisfied CNs are of degree two or higher, and unsatisfied CNs

are of degree one or higher (b > d1 + b2). This GAS definition explicitly differentiates among

the three configurations in Fig. 3.2: configuration (a) is a (6, 2, 0, 2, 8, 0) GAS, configuration

(b) is a (6, 2, 2, 0, 9, 0) GAS, and configuration (c) is a (6, 2, 0, 2, 5, 2) GAS.

The description of a GAS depends on having appropriate non-zero non-binary values

(labels) associated with its edge weights. It is useful to view the induced subgraph in terms

of its unlabeled variant: unlabeled version of a configuration is the configuration with all

edge weights set to 1. Thus, we also define the following graph-theoretic object.

Definition 6. Let V be a subset of VNs in the unlabeled Tanner graph of an NB-LDPC code.

Let O (resp., T and H) be the set of degree-1 (resp., 2 and > 2) CNs connected to V. This

graphical configuration is an (a, d1, d2, d3) unlabeled GAS if it satisfies the following two

conditions:

1. |V| = a, |O| = d1, |T | = d2, and |H| = d3.

2. Each VN in V is connected to more neighbors in (T ∪ H) than in O.

Note that an unlabeled GAS is viewed in purely topological terms, and the parameters

b and b2 (unlike for a GAS) are irrelevant.

To understand the second condition in Definition 6, note that among all the CNs con-

nected to the labeled GAS, only degree-1 CNs are guaranteed to be unsatisfied whatever the

41

edge weights are.

We now establish a matrix-theoretic representation of a GAS, building in part on the

previous results from [7], [10], and a conceptually connected work from [4]. The null spaces

of the corresponding matrices will play the central role in the WCM code optimization

framework, as we describe in the next section.

Let H denote the parity-check matrix of an NB-LDPC code defined over GF(q). Consider

an (a, b, b2, d1, d2, d3) GAS in the Tanner graph of this code. Let A be the ` × a submatrix

of H that consists of ` = d1 + d2 + d3 rows of H, corresponding to the CNs participating in

this GAS, and a columns of H, corresponding to the VNs participating in this GAS.

Lemma 3. An (a, b, b2, d1, d2, d3) GAS must satisfy:

• Topological conditions: Its unlabeled configuration must satisfy the unlabeled GAS

conditions stated in Definition 6.

• Weight conditions: The set is an (a, b, b2, d1, d2, d3) GAS over GF(q) if and only if

there exists an (` − b) × a submatrix W of column rank rW < a, with elements wi,j,

1 6 i 6 (`− b), 1 6 j 6 a, of the GAS adjacency matrix A, that satisfies the following

two conditions:

1. Let N (W) be the null space of the submatrix W, and let dT
k , 1 6 k 6 b, be the

kth row of the matrix D obtained by removing the rows of W from A. Let v be a

vector of VN values and R be an `× ` permutation matrix. Then,

∃ v = [v1 v2 . . . va]T ∈ N (W) s.t. vj 6= 0, ∀j ∈ {1, 2, . . . , a},

and dT
k v = mk 6= 0, ∀k ∈ {1, 2, . . . , b}, m = [m1 m2 . . . mb]T,

i.e., RAv =

W(`−b)×a

Db×a

va×1 =

0(`−b)×1

mb×1

 . (3.1)

2. Let dk,j, 1 6 k 6 b, 1 6 j 6 a, be the elements of the matrix D. Then, ∀j ∈

42

{1, 2, . . . , a},

(
`−b∑
i=1

F (wi,j)
)
>

(
b∑

k=1
F (dk,j)

)
, (3.2)

where F (β) = 0 if β = 0, and F (β) = 1 otherwise.

Computations are performed over GF(q).

Proof. The proof follows from Definition 5.

In words, W is the submatrix of satisfied CNs, and D is the submatrix of unsatisfied

CNs. Note that Condition 2 simply ensures that each VN is connected to more satisfied

than unsatisfied CNs.

In the rest of this chapter, we study a subclass of GASs, which is defined as follows:

Definition 7. A GAS that has d2 > d3 and all the unsatisfied CNs connected to it (if any)

∈ (O ∪ T) (having either degree 1 or degree 2), is defined as an (a, b, d1, d2, d3) general

absorbing set of type two (GAST). The word "two" refers to the maximum degree

of any unsatisfied CN connected to the set. In a way similar to the unlabeled GAS (see

Definition 6), we also define the (a, d1, d2, d3) unlabeled GAST.

The reason why we focus on GASTs is that the existence of unsatisfied CNs of degree

> 2 in any configuration in the Tanner graph significantly increases the likelihood that the

object is not an AS. For example, consider configuration (c) in Fig. 3.2. If either of the two

degree-3 CNs is unsatisfied, the resulting object will not be an AS.

In this work, we focus on regular codes, and we let γ denote the column weight (the VN

degree) of the code.

Remark 8. Fig. 3.3 shows how different types of absorbing sets are related. Assuming that

the degree of any unsatisfied CN is 6 2, different types of known ASs become special cases

of GASTs. We summarize this in the following lines:

43

GASs

BASs

GASTs

EASs
BASTs

Figure 3.3: A Venn diagram showing the relation between different types of absorbing sets.

• A GAST with b = d1 and d3 = 0 is an elementary AS (EAS).

• A GAST with b > d1 or/and d3 > 0 is a non-elementary AS.

• A GAST with 0 6 b 6
⌊
ag
2

⌋
is a balanced AS (BAS), where g =

⌊
γ−1

2

⌋
.

• A GAST with
⌊
ag
2

⌋
< b 6 ag is an unbalanced AS.

Balanced and unbalanced ASs were previously introduced in Chapter 2. In particular,

balanced ASs (BASs) play a critical role in the context of channels with memory, such as

those encountered in magnetic recording applications (e.g., the PR channel).

We devote the next section to establishing a series of properties of GASTs and techniques

to remove them from the Tanner graph of the NB-LDPC code.

3.3 Theoretical Analysis of GASTs

3.3.1 Combinatorial Properties of GASTs

The following theorem provides a condition on when a degree-2 CN can be unsatisfied in a

GAST configuration which results from an unlabeled GAST configuration operating on the

same set of VNs and their neighboring CNs, with proper edge labeling.

44

Theorem 1. Consider an (a, d1, d2, d3) unlabeled GAST with T denoting the set of d2 degree-

2 CNs and with H denoting the set of d3 CNs of degree > 2 in this configuration. This

unlabeled GAST can result in an (a, b, d1, d2, d3) GAST (with proper edge labeling) that has

b > d1 if and only if there exists at least one CN c in T such that the two neighboring VNs of

c (with respect to this unlabeled GAST) each has the property that strictly more than
⌈
γ+1

2

⌉
of its neighboring CNs belong to (T ∪ H), where γ is the column weight.

Proof. We prove Theorem 1 by contradiction. We assume that in the unlabeled GAST,

there exist no CNs ∈ T connecting pairs of VNs that have strictly >
⌈
γ+1

2

⌉
neighboring

CNs ∈ (T ∪ H) connected to each of them. Thus, for each degree-2 CN, at least one of

the connected VNs has exactly
⌈
γ+1

2

⌉
connected CNs ∈ (T ∪ H). Note that the number

of satisfied CNs connected to any VN in any AS cannot be <
⌈
γ+1

2

⌉
. Also note that these

CNs ∈ (T ∪ H) are the only CNs that can be satisfied because the others ∈ O are always

unsatisfied.

As a result, if any degree-2 CN is forced to be unsatisfied in the resulting GAST (by the

choice of the edge weights), at least one connected VN of the two will have the following

bound on the number of satisfied CNs connected to it:

ξvn 6
⌈
γ + 1

2

⌉
− 1 =

⌈
γ − 1

2

⌉
. (3.3)

Thus, and since an AS condition is to have >
⌈
γ+1

2

⌉
satisfied CNs connected to each VN in

the configuration, the configuration under analysis will not become an AS, and thus, will

not become a GAST, if any degree-2 CN is unsatisfied. In other words, given the above

assumption, all the unsatisfied CNs must be ∈ O (/∈ T), like EASs, in order that the object

is an AS after edge labeling. One check node (at least) violating the above assumption makes

it possible to have b > d1 in the resulting GAST.

Remark 9. The importance of Theorem 1 is that it provides the necessary topological con-

dition on a GAST to have unsatisfied CNs of degree 2. If this condition is not satisfied, then

45

all the unsatisfied CNs of this GAST are of degree 1, which makes the removal process of the

GAST much easier as we shall see later.

In this chapter and the next one, the notation “ut” (resp., “et”) in the subscript of b refers

to the upper bound on the (resp., exact) maximum number of degree-2 unsatisfied CNs.

Theorem 2. Given an (a, d1, d2, d3) unlabeled GAST, the maximum number of unsatisfied

CNs, bmax, in the resulting GAST after edge labeling is upper bounded by:

bmax 6 d1 + but, where (3.4)

but =
⌊1

2

(
a
⌊
γ − 1

2

⌋
− d1

)⌋
. (3.5)

Proof. Since degree-1 CNs are always unsatisfied, we can write the bound on bmax as follows:

bmax 6 d1 + but,

where but is the upper bound on the maximum number of degree-2 unsatisfied CNs (∈ T).

In the beginning, we mark all the CNs ∈ (T ∪ H) as satisfied.

To compute but, we access all the VNs in the GAST configuration one by one and mark the

maximum number of degree-2 CNs that can be unsatisfied simultaneously while the object

remains a GAST. As with any AS, the maximum number of unsatisfied CNs connected to

a VN in the GAST is
⌊
γ−1

2

⌋
(which is g). Thus, the maximum number of additional CNs

connected to VN j, 1 6 j 6 a, that can be marked as unsatisfied is but,j =
⌊
γ−1

2

⌋
− bup,j,

where bup,j is the number of already-unsatisfied CNs connected to VN j updated by what

has been done for all the VNs processed prior to VN j.

The upper bound but is achieved if for each VN that has >
⌈
γ+1

2

⌉
connected CNs marked

as satisfied, there exists another VN connected to it, through some degree-2 satisfied CN,

which also has >
⌈
γ+1

2

⌉
connected CNs marked as satisfied. In other words, the degree-2 CN

46

connecting these two VNs can be marked as unsatisfied while the object remains a GAST.

Thus, for some a, d1, and γ,

but =
a∑
j=1

but,j =
a∑
j=1

[⌊
γ − 1

2

⌋
− bup,j

]

= a
⌊
γ − 1

2

⌋
−

a∑
j=1

bup,j. (3.6)

Since ∑a
j=1 bup,j represents the final number of unsatisfied CNs we will end up with after

processing all the VNs in the GAST, it can be concluded that:

a∑
j=1

bup,j = d1 + but. (3.7)

Substituting (3.7) into (3.6) results in a recursive equation where but appears in both the

RHS and the LHS. The solution of this equation is (3.5), which completes the proof.

𝑤1,1

𝑣1 𝑣2

𝑣3

𝑣4 𝑣5

𝑣6

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6 𝑐7 𝑐8

𝑐9

𝑤1,1 𝑤1,2

𝑤2,2

𝑤2,3

𝑤3,3

𝑤3,4

𝑤4,4 𝑤4,5

𝑤5,5

𝑤5,6

𝑤6,6

𝑤6,1 𝑤7,2

𝑤7,5

𝑤8,1

𝑤8,4

𝑤9,3 𝑤9,6

𝑐1

𝑐2

𝑐3

𝑐4
𝑐5 𝑐6

𝑣1 𝑣2

𝑣3 𝑣4

𝑤1,2

𝑤2,2

𝑤2,3

𝑤3,3 𝑤3,4

𝑤4,4

𝑤4,1
𝑤5,2

𝑤5,4

𝑤6,1

𝑤6,3

𝑐7

𝑐8 𝑐9

𝑐10

𝑤7,2

𝑤8,3

𝑤10,1

𝑤9,4

(a) (b)

Figure 3.4: (a) A (4, 4, 4, 6, 0) GAST, γ = 4. (b) A (6, 0, 0, 9, 0) GAST, γ = 3. Unlabeled
GASTs are reached by setting all the weights in the configurations to 1.

Example 8. Consider the (4, 4, 6, 0) unlabeled GAST (γ = 4) shown in Fig. 3.4(a). From

Theorem 1, irrespective of the edge labeling that converts this unlabeled GAST to a GAST,

the resultant GAST cannot have unsatisfied CNs of degree 2. From (3.5), but = 0 and thus,

47

from (3.4), bmax = b = d1 = 4. Hence, this GAST can only be an EAS. In contrast, the

(6, 0, 9, 0) unlabeled GAST (γ = 3), shown in Fig. 3.4(b), has the following property. When

this unlabeled GAST is converted to a GAST for some GF(q), it is possible to have degree-2

unsatisfied CNs (from Theorem 1). Also from (3.5), but = 3, and thus, bmax = but = 3 6=

d1 = 0.

3.3.2 How to Remove GASTs Using WCMs

The next step is to make use of Theorems 1 and 2 to remove GASTs from the Tanner graph of

the code. First, we need a new definition that captures the removal process. The objective is

to avoid generating another GAST for the same unlabeled GAST configuration, after making

the edge weight changes. Note that throughout the dissertation, the edge weight changes

are with respect to the original configuration. Moreover, the original and the new weights

are ∈ GF(q)\{0}.

For a given (a, b, d1, d2, d3) GAST, let Z be the set of all (a, b′, d1, d2, d3) GASTs with d1 6

b′ 6 bmax, which have the same unlabeled GAST configuration as the original (a, b, d1, d2, d3)

GAST. Here, bmax is the largest allowable number of unsatisfied CNs for these configurations.

Definition 8. An (a, b, d1, d2, d3) GAST is said to be removed from the Tanner graph of

an NB-LDPC code if and only if the resulting object (after edge weight processing) /∈ Z.

To clarify Definition 8, we discuss again the two configurations in Fig. 3.4. For the

(4, 4, 4, 6, 0) GAST (γ = 4), bmax = b = d1 = 4, which means Z contains only one object

that is the (4, 4, 4, 6, 0) GAST itself. On the other hand, for the (6, 0, 0, 9, 0) GAST (γ = 3),

bmax = but = 3, which means Z = {(6, 0, 0, 9, 0), (6, 1, 0, 9, 0), (6, 2, 0, 9, 0), (6, 3, 0, 9, 0)}.

For a given GAST, define a matrix Wz to be the matrix obtained by removing b′, d1 6

b′ 6 bmax, rows corresponding to CNs ∈ (O ∪ T) from the matrix A, which is the GAST

adjacency matrix (see also Lemma 3). These b′ CNs can simultaneously be unsatisfied under

some edge labeling that produces a GAST which has the same unlabeled GAST as the given

48

GAST. Let U be the set of all matrices Wz. Each element ∈ Z has one or more matrices

∈ U . In principle, GASTs can be removed by manipulating the associated matrices Wz

of the set U . However, a more efficient approach is to work with matrices that are each a

submatrix of multiple Wz matrices. In this way, we can remove problematic GASTs while

only focusing on a smaller collection of matrices. These new matrices are referred to as the

weight consistency matrices (WCMs).

In this chapter and the next one, the notation “z” (resp., “cm”) in the superscript of a

matrix means that the matrix is associated with an element in the set Z (resp., a WCM).

Definition 9. For a given (a, b, d1, d2, d3) GAST and its associated adjacency matrix A and

its associated set Z, we construct a set of t matrices as follows:

1. Each matrix Wcm
h , 1 6 h 6 t, in this set is an (`−bcm

h)×a submatrix, d1 6 bcm
h 6 bmax,

formed by removing different bcm
h rows from the `×a matrix A of the GAST. These bcm

h

rows to be removed correspond to CNs ∈ (O∪T) that can simultaneously be unsatisfied

under some edge labeling that produces a GAST which has the same unlabeled GAST

as the given GAST.

2. Each matrix Wz ∈ U , for every element ∈ Z, contains at least one element of the

resultant set as its submatrix.

3. This resultant set has the smallest cardinality, which is t, among all the sets which

satisfy Conditions 1 and 2 stated above.

We refer to the matrices in this set as weight consistency matrices (WCMs), and to

this set itself as W.

Remark 10. In many cases, all the WCMs ∈ W are of the same size, which is (`−bmax)×a,

i.e., bcm
h = bmax, ∀h.

Now, we provide the theorem that makes use of the WCMs of the GAST to remove the

latter.

49

Theorem 3. The necessary and sufficient processing needed to remove an (a, b, d1, d2, d3)

GAST, according to Definition 8, is to change the edge weights such that for every WCM

Wcm
h ∈ W, there does not exist any vector with all its entries 6= 0 in the null space of that

WCM. Mathematically, ∀h:

If N (Wcm
h) = span{x1,x2, . . . ,xph}, then @ r = [r1 r2 . . . rph]T for

v = r1x1 + r2x2 + · · ·+ rphxph = [v1 v2 . . . va]T s.t. vj 6= 0, ∀j ∈ {1, 2, . . . , a}, (3.8)

where ph is the dimension of N (Wcm
h). Computations are performed over GF(q).

Proof. We divide the proof into two parts. First, we prove that breaking the weight con-

ditions stated in (3.1) and (3.2) for any submatrix Wz is done as stated in (3.8). From

Lemma 3, these weight conditions are broken if:

@ v = [v1 v2 . . . va]T ∈ N (Wz) s.t. vj 6= 0, ∀j ∈ {1, 2, . . . , a}. (3.9)

Since the set of vectors {x1,x2, . . . ,xp} is a basis of N (Wz), therefore, if there is no linear

combination of them over GF(q) that results in v s.t. vj 6= 0, ∀j ∈ {1, 2, . . . , a}, (3.9) is

automatically satisfied. In other words, if (3.8) is satisfied, the weight conditions of Wz are

broken.

Second, we prove that breaking such weight conditions for all the WCMs ∈ W (the

smallest AS submatrices) guarantees the GAST removal. By the definition of WCMs (Defini-

tion 9), ∃Wcm
h ∈ W as a submatrix, for any matrix Wz ∈ U of size (`−b′)×a, d1 6 b′ < bmax.

Now, recall the following linear algebraic lemma:

If we have a matrix M =

M1

M2

 ,
then, N (M) ⊆ N (M1), and N (M) ⊆ N (M2). (3.10)

50

Applying this lemma to our case, if @ v = [v1 v2 . . . va]T ∈ N (Wcm
h) s.t. vj 6= 0, ∀j, for

every WCM ∈ W , then this implies that @ v = [v1 v2 . . . va]T ∈ N (Wz) s.t. vj 6= 0, ∀j, for

every matrix Wz of size (` − b′) × a, d1 6 b′ 6 bmax. This property ensures the removal of

the GAST according to Definition 8. The necessity follows from that every WCM ∈ W is

itself a matrix Wz with no submatrices ∈ U , which completes the proof of Theorem 3.

Remark 11. The concepts proposed by Theorem 3 are not only useful for GAST removal,

but also for GAST detection. In other words, using Theorem 3, we can detect whether a

certain configuration cannot be an (a, b′, d1, d2, d3) GAST, d1 6 b′ 6 bmax, by checking the

null spaces of all the WCMs ∈ W of that configuration.

3.3.3 How to Remove Other Detrimental Objects Using WCMs

Recall that an elementary AS (EAS) is an AS with all satisfied CNs having degree 2 and all

unsatisfied CNs having degree 1, while a balanced AS (BAS) is an AS with 0 6 b 6
⌊
ag
2

⌋
,

where g =
⌊
γ−1

2

⌋
. As shown in Fig. 3.3, every EAS is indeed a GAST. On the other hand,

few BASs are not GASTs. For the sake of convenience, we will only focus in the rest of the

chapter on BASs that are GASTs (unsatisfied CNs are of either degree 1 or degree 2). In a

way similar to the GAST, we call a BAS that has the degree of any unsatisfied CN 6 2, a

BAS of type two (BAST).

Removing EASs (for symmetric channels) or BASTs (for PR channels), as restricted sub-

classes of GASTs, requires less steps and fewer edge weight changes compared with removing

GASTs according to Definition 8. In other words, it is enough for an elementary AS to be

converted into a non-elementary AS, and for a balanced AS to be converted into an unbal-

anced AS. In order to customize the WCM framework for removing such simpler objects

(compared with GASTs), the definitions of WCMs should be customized to only capture the

objects of interest (which depend on the channel). Such customization secures additional

edge weight choices.

In a way similar to the unlabeled GAST, we define the unlabeled EAS and the un-

51

labeled BAST. We note that Lemma 3 applies to EASs and to BASTs. Additionally,

Theorem 1 is not needed for EASs since the degree of any unsatisfied CN in an EAS is

always 1. On the contrary, Theorem 1 applies to BASTs if
⌊
ag
2

⌋
> d1. This is because if⌊

ag
2

⌋
< d1, the object is not a BAST. Moreover, if

⌊
ag
2

⌋
= d1, any additional unsatisfied CN

will convert the object from a BAST into an unbalanced AS (assuming that the object stays

as an AS). Note that degree-1 CNs are always unsatisfied.

We modify Theorem 2 to capture EAS and BAST properties in the following Lemma.

Lemma 4. Given an (a, d1, d2, 0) unlabeled EAS, the maximum number of unsatisfied CNs,

be_max, in the resulting EAS after edge labeling is given by:

be_max = b = d1. (3.11)

Moreover, given an (a, d1, d2, d3) unlabeled BAST with
⌊
ag
2

⌋
> d1, the maximum number of

unsatisfied CNs, bb_max, in the resulting BAST after edge labeling is given by:

bb_max = d1 + bb_ut, where (3.12)

bb_ut =
⌊1

2a
⌊
γ − 1

2

⌋⌋
− d1. (3.13)

Proof. From the definition of the EAS, every unsatisfied CN in an EAS must be of degree

1. Thus, be_max = b = d1.

On the other hand, from the definition of the BAS (see Chapter 2), the maximum number

of unsatisfied CNs it can have is (applies also to BASTs):

bb_max =
⌊
ag

2

⌋
. (3.14)

However, we can also write bb_max as:

bb_max = d1 + bb_ut, (3.15)

52

where bb_ut is the maximum number of degree-2 unsatisfied CNs (∈ T) in the BAST. Com-

bining (3.14) and (3.15), and recalling that g =
⌊
γ−1

2

⌋
complete the proof.

Now, for a given (a, d1, d1, d2, 0) EAS (b = d1 and d3 = 0 for any EAS), let Ze be the set

of all EASs which have the same unlabeled EAS configuration as the original (a, d1, d1, d2, 0)

EAS. The set Ze contains only one element, which is the given EAS itself. Additionally, for

a given (a, b, d1, d2, d3) BAST, let Zb be the set of all (a, b′b, d1, d2, d3) BASTs with d1 6 b′b 6

bb_max which have the same unlabeled BAST configuration as the original (a, b, d1, d2, d3)

BAST. Here, bb_max =
⌊
ag
2

⌋
is the largest allowable number of unsatisfied CNs for these

configurations. In the following lines, we rewrite Definitions 8 and 9 to make them suitable

for EASs and BASTs.

Definition 10. An (a, d1, d1, d2, 0) EAS (resp., (a, b, d1, d2, d3) BAST) is said to be re-

moved from the Tanner graph of an NB-LDPC code if and only if the resulting object (after

edge weight processing) /∈ Ze (resp., /∈ Zb).

Definition 11. For a given (a, d1, d1, d2, 0) EAS and its associated adjacency matrix A and

its associated set Ze, we construct a set of 1 matrix as follows: We_cm
1 is an (` − d1) × a

submatrix, formed by removing d1 rows corresponding to CNs ∈ O from the ` × a matrix

A of the EAS. We refer to the matrix in this set as an elementary weight consistency

matrix (EWCM) and to this set itself as We.

For a given BAST, define a matrix Wz
b to be the matrix obtained by removing b′b,

d1 6 b′b 6 bb_max =
⌊
ag
2

⌋
, rows corresponding to CNs ∈ (O ∪ T) from the matrix A. These

b′b CNs can simultaneously be unsatisfied under some edge labeling that produces a BAST

which has the same unlabeled BAST as the given BAST. Let Ub be the set of all matrices

Wz
b. Each element ∈ Zb has one or more matrices ∈ Ub.

Definition 12. For a given (a, b, d1, d2, d3) BAST and its associated adjacency matrix A

and its associated set Zb, we construct a set of tb matrices as follows:

53

1. Each matrix Wb_cm
h , 1 6 h 6 tb, in this set is an (` − bb_cm

h) × a submatrix, d1 6

bb_cm
h 6 bb_max =

⌊
ag
2

⌋
, formed by removing different bb_cm

h rows from the `×a matrix

A of the BAST. These bb_cm
h rows to be removed correspond to CNs ∈ (O ∪ T) that

can simultaneously be unsatisfied under some edge labeling that produces a BAST which

has the same unlabeled BAST as the given BAST.

2. Each matrix Wz
b ∈ Ub, for every element ∈ Zb, contains at least one element of the

resultant set as its submatrix.

3. This resultant set has the smallest cardinality, which is tb, among all the sets which

satisfy Conditions 1 and 2 stated above.

We refer to the matrices in this set as balanced weight consistency matrices

(BWCMs), and to this set itself as Wb.

We note that be_max 6 bb_max 6 bmax. Thus, |Ze| = 1 6 |Zb| 6 |Z|. This condition

ensures the simplicity of removing EASs compared with BASTs, and BASTs compared with

GASTs. Such simplicity is a result of the extra degrees of freedom we gain when we customize

the WCM definition and the removal process to focus only on the objects of interest. For

example, since |Ze| = 1, to remove an EAS, it suffices to make a single edge weight change for

any edge connected to a degree-2 CN to convert the object into another one /∈ Ze. Further

illustrations are provided in the following example.

Example 9. Consider configuration (a) in Fig. 3.2, which is a (6, 2, 0, 2, 8, 0) GAS (γ =

3). We note that the configuration is also a (6, 2, 2, 8, 0) GAST, and it is at the same

time an EAS (because b = d1 and d3 = 0) and a BAST (because b = 2 <
⌊
ag
2

⌋
= 3).

From Lemma 4 and Theorem 2 we compute be_max = d1 = 2, bb_max =
⌊
ag
2

⌋
= 3, and

bmax = d1 +
⌊

1
2 (ag − d1)

⌋
= 4. If the channel used is symmetric, the code design objective

becomes the removal of EASs [10], which means converting this object into another object

/∈ Ze = {(6, 2, 2, 8, 0)}. If the channel used is the PR channel, the code design objective

54

becomes the removal of BASTs (see Chapter 2 and [40]), which means converting this object

into another object /∈ Zb = {(6, 2, 2, 8, 0), (6, 3, 2, 8, 0)}. If the channel used is asymmetric

(e.g., the NLM or the CHMM channels), the objective becomes the removal of GASTs, which

means converting the object into another one /∈ Z = {(6, 2, 2, 8, 0), (6, 3, 2, 8, 0), (6, 4, 2, 8, 0)}.

Note that once the WCMs are properly determined (EWCM or BWCMs), Theorem 3 is

applied to remove any EAS or BAST.

3.3.4 Parent and Child GASTs

In graph theory, if Graph 1 is a subgraph of Graph 2, the former is called parent and the

latter is called child. It has been shown in [10] that removing the parent EAS removes the

child EAS. The analysis in the last subsection illustrates why this is the case (because only

one edge weight change is needed to remove both the parent and the child EASs). However,

this is not the case for GASTs because the GAST removal process is more complicated. We

emphasize on this observation using the following lemma.

Lemma 5. Consider an (a′′, b′′, d′′1, d′′2, d′′3) GAST which is a parent of an (a, b, d1, d2, d3)

GAST. Removing the parent GAST does not guarantee removing the child GAST. The re-

moval here is according to Definition 8.

Proof. We prove this lemma by an example which shows that removing the parent GAST

does not necessarily result in removing the child GAST. Consider the VN v which is shared

between the parent GAST and the child GAST.

Suppose that v is connected to exactly
⌈
γ+1

2

⌉
satisfied CNs in the parent GAST and

strictly more than
⌈
γ+1

2

⌉
satisfied CNs in the child GAST. Making one more CN connected

to v unsatisfied (by properly changing one of the weights of the edges connected to it) changes

the number of satisfied CNs connected to v to be
⌈
γ+1

2

⌉
− 1 in the parent GAST, and to be

>
⌈
γ+1

2

⌉
in the child GAST. Thus, the parent GAST, which is the (a′′, b′′, d′′1, d′′2, d′′3) GAST,

55

is removed (converted into a non-AS). On the contrary, the child GAST is now converted

into another GAST, which is an (a, b+ 1, d1, d2, d3) GAST.

The following example serves to illustrate Lemma 5.

Example 10. Recall the (6, 0, 0, 9, 0) GAST (γ = 3) in Fig. 3.4 (b). We note that the VNs

{v1, v2, v3, v4} form a (4, 4, 4, 4, 0) GAST that has T = {c1, c2, c3, c8} and O = {c6, c7, c9, c4}.

The (4, 4, 4, 4, 0) GAST, which can only be an elementary AS (|Z| = 1), is the parent GAST,

and the (6, 0, 0, 9, 0) GAST is the child GAST. If we change the edge weight w11, the parent

GAST is completely removed as it has |Z| = 1 (see also Remark 9). However, the child

GAST is converted into a (6, 1, 0, 9, 0) GAST, with one degree-2 unsatisfied CN.

3.4 The WCM Optimization Framework

In this section, we deploy all the illustrated definitions and theorems to develop the new

NB-LDPC code optimization framework. The objective of the new framework is to remove

the detrimental objects (GASTs, EASs, or BASTs) from the Tanner graph of the NB-LDPC

code using their WCMs and via edge weight manipulation.

3.4.1 Extracting the WCMs

First, we separately introduce Algorithm 2 for finding the WCMs. Algorithm 2 operates

mainly on the unlabeled configuration of the object (the unlabeled GAST, unlabeled EAS,

or unlabeled BAST) to determine the WCMs.

For the sake of clarity, we show the version of the algorithm which deals with GASTs. For

EASs (resp., BASTs),W should be replaced byWe (resp.,Wb) representing EWCMs (resp.,

BWCMs). Moreover, for EASs, there is only one EWCM of size (` − d1) × a. For BASTs,

but in Algorithm 2 should be replaced by bb_ut given by (3.13), and t should be replaced by

tb, while the rest of the algorithm stays the same.

56

Algorithm 2 Finding the WCMs of a Given GAST
1: Input: Tanner graph Gs of the GAST s, with edge weights over GF(q), from which, the

matrix A is formed.
2: Set the maximum number of nested for loops, loop_max.
3: Mark all the CNs ∈ (T ∪ H) as satisfied. (CNs ∈ O are always unsatisfied.)
4: Check if ∃ in Gs at least one degree-2 CN connecting two VNs, each is connected to
>
⌈
γ+1

2

⌉
CNs that are marked as satisfied.

5: if @ any of them then
6: ∃ only one (` − d1) × a WCM. Extract it by removing all the rows corresponding to

degree-1 CNs from the matrix A.
7: Go to 26.
8: else
9: Count such CNs (that satisfy the condition in 4), save the number in u0, and save

their indices (the indices of their rows in A) in y0 = [y0(1) y0(2) . . . y0(u0)]T.
10: end if
11: Compute but from (3.5) in Theorem 2. If but = 1, go to 25.
12: for i1 ∈ {1, 2, . . . , u0} do (Level 1)
13: Remove the marking performed in levels > 1, and mark the selected CN cy0(i1) as

unsatisfied.
14: Redo the counting in 9, but save in u1

i1 (< u0) and y1
i1 (instead of u0 and y0, resp.).

15: If but = 2 ‖ u1
i1 = 0, go to 12.

16: for i2 ∈ {1, 2, . . . , u1
i1} do (Level 2)

17: Remove the marking performed in levels > 2, and mark the selected CN cy1
i1

(i2) as
unsatisfied.

18: Redo the counting in 9, but save in u2
i1,i2 (< u1

i1) and y2
i1,i2 .

19: If but = 3 ‖ u2
i1,i2 = 0, go to 16.

20: . . .
21: The lines from 16 to 19 are repeated (loop_max−2) times, with the nested

(loop_max−2) for loops executed over the running indices i3, i4, . . . , iloop_max.
22: . . .
23: end for
24: end for
25: Obtain the WCMs via the indices in the y arrays. In particular, by removing permuta-

tions of the rows corresponding to cy0(i1), cy1
i1

(i2), . . . , cybut−1
i1,i2,...,ibut−1

(ibut), and the degree-1
CNs from A, we can reach any WCM.

26: Eliminate all the repeated WCMs to reach the final set of WCMs, W , where |W| = t.
27: Output: The set W of all WCMs of the GAST.

Note that for GASTs, but is an upper bound for the maximum number of rows corre-

sponding to degree-2 CNs that can be removed from A. Thus, it can happen in some cases

that ubut−1
i1,i2,...,ibut−1

= 0, ∀i1, i2, . . . , ibut−1. In such cases, the exact maximum number of rows

57

corresponding to degree-2 CNs that can be removed from A is the number of levels (nested

loops in Algorithm 2), denoted by bet, after which ubet
i1,i2,...,ibet

= 0, ∀i1, i2, . . . , ibet .

Note also that because the WCMs do not necessarily have the same row dimension,

Algorithm 2 may stop before reaching bet levels starting from some cy0(i1), which results in

an (`− bcm
h)× a WCM with bcm

h < bmax = d1 + bet.

Example 11. To illustrate Algorithm 2, we contrast the two configurations in Fig. 3.4 one

more time. The set W contains only one WCM of size 6 × 4 for the (4, 4, 4, 6, 0) GAST

(γ = 4) (see Steps 4, 5, 6, and 7 of Algorithm 2). Having a single WCM is the case for

all GASTs that cannot have unsatisfied CNs ∈ T , which exemplifies the ease in removing

such GASTs. On the contrary, for the (6, 0, 0, 9, 0) GAST (γ = 3), following Algorithm 2

gives u0 = 9 (i.e., all the CNs are connecting pairs satisfying the condition in Theorem 1),

y0 = [1 2 3 4 5 6 7 8 9]T, and bmax = but = bet = 3. The matrix A is:

v1 v2 v3 v4 v5 v6

A =

c1

c2

c3

c4

c5

c6

c7

c8

c9



w1,1 w1,2 0 0 0 0
0 w2,2 w2,3 0 0 0
0 0 w3,3 w3,4 0 0
0 0 0 w4,4 w4,5 0
0 0 0 0 w5,5 w5,6

w6,1 0 0 0 0 w6,6

0 w7,2 0 0 w7,5 0
w8,1 0 0 w8,4 0 0

0 0 w9,3 0 0 w9,6



.

If Algorithm 2 selects c1 first, c1 will be marked as unsatisfied. As a result, c2, c7, c6, and

c8 cannot be selected with c1 (otherwise the configuration will not be an AS). On level 2 (the

second loop in the group of nested for loops in Algorithm 2), the algorithm can select one of

c3, c4, c5, and c9. If the algorithm selects c3, c3 will be marked as unsatisfied. As a result, c4

and c9 cannot be selected. Thus, the only choice remaining on level 3 (the last level) is c5,

which means one WCM is extracted by removing the rows corresponding to (c1, c3, c5) together

58

from A. Applying the steps from 12 to 26 on all the 9 CNs in y0, results in that the set W

contains 6 WCMs of size 6× 6. They are formed by removing the rows corresponding to the

following groups of 3 CNs from A: {(c1, c3, c5), (c1, c4, c9), (c2, c4, c6), (c2, c5, c8), (c3, c6, c7),

(c7, c8, c9)}.

3.4.2 The New NB-LDPC Code Optimization Algorithm

We are now ready to present our optimization algorithm. Again, for the sake of clarity,

we show the version of the algorithm which deals with GASTs. For EASs (resp., BASTs),

unlabeled GAST and WCM should be changed into unlabeled EAS and EWCM (resp.,

unlabeled BAST and BWCM). Additionally, for EASs (resp., BASTs), EGAST,min and Wcm
h

should be changed into EEAS,min (which equals 1) and We_cm
h (resp., EBAST,min and Wb_cm

h).

Obviously, many steps in Algorithm 3 will be skipped in case the objective is to remove EASs

because in this case, |We| = 1 and a single edge weight change (for any edge connected to a

degree-2 CN) is sufficient to remove the target object. For BASTs, t should be changed into

tb, where |Wb| = tb.

Remark 12. For EASs, resolving the null space of the single EWCM according to Algo-

rithm 3 is the same as breaking the weight condition stated in [10, Lemma 1].

Remark 13. The process of determining the set G of GASTs to be removed (Step 2 in

Algorithm 3) is summarized as follows. First, we identify the dominant GASTs (which are

the GASTs that contribute the most to the error profile in the error floor region) by initial

simulations (see also [23]) in addition to combinatorial properties of the code. Second, we

determine the set G using two complementary methods. The first method is to use efficient

combinatorial techniques (e.g., [6]) to locate the (a, d1, d2, d3) unlabeled GASTs, for a given

dominant (a, b, d1, d2, d3) GAST, in the Tanner graph of the code. The second method is to

use additional extensive simulations for the non-binary code to locate GASTs, and for the

binary code, which corresponds to the unlabeled Tanner graph, to locate unlabeled GASTs. For

59

Algorithm 3 Optimizing NB-LDPC Codes by Reducing the Number of GASTs
1: Input: Tanner graph G of the NB-LDPC code with edge weights over GF(q).
2: Using initial simulations and combinatorial techniques (e.g., [6]), determine G, the set of

GASTs to be removed.
3: Let X be the set of GASTs in G that cannot be removed, and initialize it with ∅.
4: Let P be the set of GASTs in G that have been processed, and initialize it with ∅.
5: Sort the GASTs in G according to their sizes (parameter a) from the smallest to the

largest.
6: Start from the smallest GAST (smallest index).
7: for every GAST s ∈ G \ P do
8: If the unlabeled configuration of s does not satisfy the unlabeled GAST conditions in

Definitions 6 and 7, skip s and go to 7.
9: Determine the minimum number of necessary edge weight changes to remove the

GAST s, EGAST,min, by using Lemma 2 in Chapter 2.
10: Extract the subgraph Gs of the GAST s, from G.
11: Use Algorithm 2 to determine the set W of all WCMs of s (|W| = t).
12: for h ∈ {1, 2, . . . , t} do
13: Find the null space N (Wcm

h) of the hth WCM.
14: if (3.8) is satisfied (i.e., the WCM already has broken weight conditions) then
15: Go to 12.
16: else
17: Keep track of the changes already performed in Gs. (The total number of changes

to remove the GAST should be as close as possible to EGAST,min.)
18: Determine the smallest set of edge weight changes in Gs needed to achieve (3.8)

for the hth WCM, without violating (3.8) for WCMs prior to the hth.
19: If this set of edge weight changes does not undo the removal of any GAST ∈ P\X ,

perform these changes in Gs and go to 12.
20: if @ more edge weights to execute 18 and 19 then
21: Add GAST s to the set X and go to 27.
22: else Go to 18 to determine a new set of changes.
23: end if.
24: end if
25: end for
26: Update G by the changes performed in Gs.
27: Add GAST s to the set P .
28: If P 6= G, go to 7 to pick the next smallest GAST.
29: end for
30: If X = ∅, then all the GASTs have been removed. Otherwise, only the remaining GASTs

in X cannot be removed.
31: Output: Updated Tanner graph G of the optimized NB-LDPC code with edge weights

over GF(q).

60

both methods, given the unlabeled GAST, the WCM framework is used to detect whether the

edge weights are such that the labeled configuration is indeed a GAST (see also Remark 11).

The removal of a specific GAST might result in undoing the removal of another GAST

if the removal of the former is done via changing the weight (weights) of an edge (edges)

shared between the two GASTs. That is why Step 19 in Algorithm 3 is needed.

Note that the complexity of the process of removing a specific GAST using the WCM

framework is mainly controlled by the number of WCMs, which is t, of that GAST (see the

for loop in Step 12 of Algorithm 3). Thus, the complexity of Algorithm 3 depends on the

size of the set G and the numbers of WCMs of the GASTs in G.

As long as the maximum degree of any unsatisfied CN in the AS (or GAS) is 2, Algo-

rithm 3 can be used to remove any type of ASs from the NB-LDPC code. Algorithm 3 can

be used to remove EASs, BASTs, and of course GASTs. That is the reason why the pro-

posed WCM optimization framework is general, in the sense that it is suitable for optimizing

NB-LDPC codes to be used over many channels (e.g., the AWGN channel, the PR channel,

the CHMM channel, and even an aggressively asymmetric channel like the NLM channel to

be discussed in the next section).

3.5 Applications in Practical Channels

In this section, we demonstrate the effectiveness of the WCM framework by simulating

different NB-LDPC codes optimized for various channels and applications. We used a finite-

precision, fast Fourier transform based q-ary sum-product algorithm (FFT-QSPA) LDPC

decoder [52] to generate all the results. The decoder performs a maximum of 50 iterations

(except for the PR channel simulations), and it stops if a codeword is reached sooner.

All the unoptimized NB-LDPC codes we are using are regular protograph-based NB-PB-

LDPC codes. These codes are constructed as follows. First, a binary protograph matrix Hp

is designed. Then, Hp is lifted via a lifting parameter ζ to create the binary image of H,

61

which is Hb. The lifting process means that every 1 in Hp is replaced by a ζ × ζ circulant

matrix, while every 0 (if any) in Hp is replaced by a ζ × ζ all-zero matrix. The circulant

powers are adjusted such that the unlabeled Tanner graph of the resulting code does not

have cycles of length 4. Then, the 1’s in Hb are replaced by non-zero values ∈ GF(q) to

generate H. These unoptimized codes are high performance NB-PB-LDPC codes (see also

[8] and [9]). Note that while we are focusing on PB structured codes in our simulations, the

WCM framework works for any regular NB-LDPC codes. Moreover, the WCM framework

also works for any GF size q and for any code rate.

Remark 14. While we focus in this work on regular NB-LDPC codes with fixed column and

row weights, the WCM framework can also be applied to NB-LDPC codes that have only the

column weight fixed (i.e., fixed VN degree).

Here, RBER is the raw bit error rate. If we define the data read out of the Flash memory

without error correction as the raw data, then RBER equals the number of raw data bits

in error divided by the total number of raw data bits read [49]. Furthermore, UBER is

the uncorrectable bit error rate, which is a metric for the fraction of bits in error out of all

bits read after the error correction is applied [49]. A useful formulation of UBER, which is

recommended by industry, is the frame error rate (FER) divided by the sector size in bits.

3.5.1 Results for Practical Flash Channels

In this subsection, we present our results over two practical Flash channels, namely the

NLM [24] and the CHMM [25] channels. While the two channels are asymmetric, the NLM

channel incorporates more asymmetry because of the way it models programming errors.

We start first with the NLM channel; the authors in [24] accurately modeled the threshold

voltage distribution of sub-20nm 4-level (2-bit, multi-level cell (MLC)) Flash memories. The

four levels (states) are modeled as different normal-Laplace mixture distributions, taking

into account various sources of error due to wear-out effects, e.g., programming errors (sig-

nificant asymmetry). Through device testing, the authors provided accurate fitting results

62

of their model for program/erase (P/E) cycles up to 10 times the manufacturer’s endurance

specification. We implemented the NLM channel based on the parameter set described in

[24]. We use 3 reads, and the sector size is 512 bytes.

In the NLM simulations, Code 3.1, that was introduced in Example 6, is again an NB-

PB-LDPC code defined over GF(4), with block length = 3,996 bits, rate ≈ 0.89, and γ = 3.

Code 3.2 is an NB-PB-LDPC code defined over GF(4), with block length = 3,280 bits, rate

≈ 0.80, and γ = 4. Code 3.3 (resp., Code 3.4) is the result of optimizing Code 3.1 (resp.,

Code 3.2) for symmetric channels by attempting to remove only the EASs in Table 3.1 (resp.,

Table 3.2). Note that EASs have b = d1 and d3 = 0. Code 3.5 (resp., Code 3.6) is the result

of optimizing Code 3.1 (resp., Code 3.2) for the NLM channel (which is asymmetric) by

attempting to remove the GASTs in Table 3.1 (resp., Table 3.2) using the WCM framework.

Figures 3.5 and 3.6 show that even though only 3 reads are used, the codes optimized by

removing GASTs using the WCM framework (Codes 3.5 and 3.6) outperform the unoptimized

codes (Codes 3.1 and 3.2) by more than 1 order of magnitude. More intriguingly, the two

figures show that conventional code optimization techniques which assume channel symmetry

(e.g., techniques that would focus on the removal of EASs) are ineffective for realistic memory

(storage) channels (Codes 3.5 and 3.6 outperform Codes 3.3 and 3.4, respectively, by over

0.5 of an order of magnitude).

0.0010.00080.00060.0004

10−12

10−11

10−10

RBER

U
B

ER

Unoptimized
Elementary removal
WCM framework

Figure 3.5: Simulation results over the NLM channel for Code 3.1 (unoptimized), Code 3.3
(elementary removal), and Code 3.5 (WCM framework). All the three codes have γ = 3.

63

0.001 0.0015 0.002 0.0025 0.003
10−14

10−13

10−12

RBER

U
B

ER

Unoptimized
Elementary removal
WCM framework

Figure 3.6: Simulation results over the NLM channel for Code 3.2 (unoptimized), Code 3.4
(elementary removal), and Code 3.6 (WCM framework). All the three codes have γ = 4.

Table 3.1: Error profile of Codes 3.1, 3.3, and 3.5 over the NLM channel, RBER≈ 3.51×10−4,
UBER (unoptimized) ≈ 1.04 × 10−11, and UBER (WCM framework) ≈ 9.04 × 10−13 (see
Fig. 3.5).

Error type Count
Code 3.1 Code 3.3 Code 3.5

(4, 2, 2, 5, 0) 45 0 0
(4, 3, 2, 5, 0) 15 23 0
(4, 4, 4, 4, 0) 3 0 0
(6, 0, 0, 9, 0) 12 1 0
(6, 1, 0, 9, 0) 7 13 0
(6, 2, 0, 9, 0) 3 5 1
(6, 2, 2, 5, 2) 2 2 0
(7, 1, 0, 10, 1) 4 4 0

Other 9 13 8

Table 3.1 (resp., Table 3.2) shows the error profiles of Codes 3.1, 3.3, and 3.5 (resp.,

3.2, 3.4, and 3.6). The tables reveal the effectiveness of the WCM framework in removing

detrimental GASTs. The tables further illuminate why optimizing the codes by removing

only EASs (as one would do for the case of symmetric channels) will not work for the NLM

channel. First, unoptimized codes naturally have a high percentage of non-elementary ASs

(b > d1 or/and d3 > 0) in their error profiles over the NLM channel (31% for Code 3.1,

and 26% for Code 3.2). Second, any technique that primarily focuses on the elimination

of EASs will not be effective as it would convert most of the elementary ASs into non-

elementary ASs, which themselves are still problematic GASTs. For example, Code 3.3 has

64

Table 3.2: Error profile of Codes 3.2, 3.4, and 3.6 over the NLM channel, RBER≈ 1.16×10−3,
UBER (unoptimized) ≈ 1.93 × 10−13, and UBER (WCM framework) ≈ 1.86 × 10−14 (see
Fig. 3.6).

Error type Count
Code 3.2 Code 3.4 Code 3.6

(4, 4, 4, 6, 0) 47 2 0
(6, 2, 2, 11, 0) 11 0 0
(6, 4, 2, 11, 0) 14 14 0
(6, 4, 4, 7, 2) 6 6 0
(8, 3, 2, 15, 0) 6 6 1
(8, 4, 4, 14, 0) 5 1 0

Other 11 18 9

0.004 0.005 0.006 0.007 0.008
10−13

10−12

10−11

10−10

10−9

10−8

RBER

U
B

ER

Unoptimized
WCM framework

Figure 3.7: Simulation results over the NLM channel for Code 3.7 (unoptimized) and
Code 3.8 (WCM framework). The two codes have γ = 4.

more (4, 3, 2, 5, 0) GASTs in its error profile compared with Code 3.1 (see Table 3.1) mainly

because many of these (4, 3, 2, 5, 0) GASTs were originally (4, 2, 2, 5, 0) GASTs (elementary),

and the optimization procedure of removing EASs has converted them into (4, 3, 2, 5, 0)

GASTs (non-elementary).

Furthermore, we introduce results for Code 3.7, which is an NB-PB-LDPC code defined

over GF(4), with block length = 8,480 bits, rate ≈ 0.90, and γ = 4, in addition to Code 3.8,

which is the result of optimizing Code 3.7 for the NLM channel by attempting to remove

the dominant GASTs (4, 4, 4, 6, 0), (6, 4, 4, 10, 0), (6, 5, 5, 8, 1), and (8, 4, 2, 15, 0). Fig. 3.7

demonstrates that a performance gain of nearly 2 orders of magnitude is achievable via

optimizing practical codes like Code 3.7 using the WCM framework to reach Code 3.8.

65

0.0006 0.001 0.002 0.004 0.006
10−13

10−12

10−11

10−10

10−9

RBER

U
B

ER

Unoptimized
WCM framework

Figure 3.8: Simulation results over the CHMM channel for Code 3.1 (unoptimized) and
Code 3.10 (WCM framework). The two codes have γ = 3.

0.006 0.007 0.008 0.009 0.01

10−13

10−12

10−11

10−10

RBER

U
B

ER

Unoptimized
WCM framework

Figure 3.9: Simulation results over the CHMM channel for Code 3.9 (unoptimized) and
Code 3.11 (WCM framework). The two codes have γ = 4.

We also provide results over another Flash channel, which is the CHMM channel; the

authors in [25] developed a model for the threshold voltage distribution that is suitable

for 20nm and 24nm 4-level (MLC) Flash memories. They modeled the four levels (states)

as different Gaussian distributions, along with additive white noise, that are shifted and

broadened as P/E cycles increase (limited asymmetry). We implemented the CHMM channel

using the data and the model provided in [25]. We use 3 reads, and the sector size is 512

bytes.

In the CHMM simulations, we reuse Code 3.1 (that has γ = 3). Code 3.9 is an NB-PB-

66

Table 3.3: Error profile of Codes 3.1 and 3.10 over the CHMM channel, RBER ≈ 6.74×10−4,
UBER (unoptimized) ≈ 8.13 × 10−12, and UBER (WCM framework) ≈ 3.37 × 10−13 (see
Fig. 3.8).

Error type Count
Code 3.1 Code 3.10

(4, 2, 2, 5, 0) 52 0
(5, 2, 2, 5, 1) 3 0
(5, 3, 3, 6, 0) 7 0
(6, 0, 0, 9, 0) 4 0
(6, 1, 1, 7, 1) 8 0
(6, 2, 0, 9, 0) 12 0
(6, 2, 2, 8, 0) 3 0
(7, 1, 0, 10, 1) 2 1
(8, 0, 0, 12, 0) 2 0

Other 7 4

Table 3.4: Error profile of Codes 3.9 and 3.11 over the CHMM channel, RBER ≈ 5.87×10−3,
UBER (unoptimized) ≈ 1.74 × 10−12, and UBER (WCM framework) ≈ 1.22 × 10−13 (see
Fig. 3.9).

Error type Count
Code 3.9 Code 3.11

(4, 4, 4, 6, 0) 38 0
(6, 4, 2, 11, 0) 2 0
(6, 4, 4, 10, 0) 33 0
(7, 4, 3, 11, 1) 12 0
(8, 5, 5, 12, 1) 5 0
(9, 5, 5, 14, 1) 2 1

Other 8 6

LDPC code defined over GF(4), with block length = 1,840 bits, rate ≈ 0.80, and γ = 4.

Code 3.10 (resp., Code 3.11) is the result of optimizing Code 3.1 (resp., Code 3.9) for the

CHMM channel (which is asymmetric) by attempting to remove the GASTs in Table 3.3

(resp., Table 3.4) using the WCM framework.

Figures 3.8 and 3.9 confirm, on a different Flash channel, that even though only 3 reads

are used, the codes optimized using the WCM framework (Codes 3.10 and 3.11) outperform

the unoptimized codes (Codes 3.1 and 3.9) by more than 1 order of magnitude (nearly 1.4

orders in Fig. 3.8).

Table 3.3 (resp., Table 3.4) shows the error profiles of Codes 3.1 and 3.10 (resp., 3.9

and 3.11). The tables again reveal the effectiveness of the WCM framework in removing

67

detrimental GASTs. An interesting observation from Tables 3.1, 3.2, 3.3, and 3.4 is that the

percentage of non-elementary ASs (b > d1 or/and d3 > 0) in the error profile of a code is a

function of the asymmetry the channel incorporates. For example, Table 3.1 shows that the

percentage of non-elementary ASs in the error profile of Code 3.1 over the NLM channel is

31%. However, this percentage drops to 25% for the same code over the CHMM channel, as

Table 3.3 reveals. The reason is that the NLM channel incorporates more asymmetry.

3.5.2 Results for Other Channels

In this subsection, we present additional results on channels that are not Flash-related.

In particular, we present simulation results over the PR channel (encountered in 1-D MR

applications) and the AWGN channel (as an example on canonical symmetric channels).

The PR channel used is the one described in Chapter 2. The channel incorporates inter-

symbol interference (intrinsic memory) along with jitter and electronic noise. The normalized

channel density [51] is 1.4 while the PR equalization target is [8 14 2]. The number of global

(detector-decoder) iterations is either 5 or 10 (see Fig. 3.10), and the maximum number of

local (decoder only) iterations is 20. More details can be found in Chapter 2.

In the PR simulations, Code 3.12 is an NB-PB-LDPC code defined over GF(8), with

block length = 867 bits, rate ≈ 0.82, and γ = 3. Code 3.13 is the result of optimiz-

ing Code 3.12 by attempting to remove the dominant BASTs (6, 0, 0, 9, 0), (6, 1, 0, 9, 0),

(6, 2, 0, 9, 0), (8, 0, 0, 12, 0), and (10, 0, 0, 15, 0) using the WCM framework.

Fig. 3.10 shows that the code optimized using the WCM framework (Code 3.13) outper-

forms the unoptimized code (Code 3.12) by more than 1.5 orders of magnitude. Additionally,

the optimized code (Code 3.13) outperforms the unoptimized code (Code 3.12) at half the

latency by about 0.8 of an order of magnitude.

In the AWGN simulations, we reuse Code 3.9 (that has γ = 4). Code 3.14 is the result of

optimizing Code 3.9 by attempting to remove the dominant EASs (4, 4, 4, 6, 0), (5, 2, 2, 9, 0),

(6, 2, 2, 11, 0), (6, 4, 4, 10, 0), (7, 4, 4, 12, 0), and (8, 4, 4, 14, 0) using the WCM framework.

68

Fig. 3.11 shows that the code optimized using the WCM framework (Code 3.14) outper-

forms the unoptimized code (Code 3.9) by about 1.2 orders of magnitude.

16 16.5 17 17.5 18 18.5
10−7

10−6

10−5

10−4

10−3

10−2

SNR (dB)

FE
R

Unoptimized with 5 global itrs
Unoptimized with 10 global itrs
WCM framework with 5 global itrs
WCM framework with 10 global itrs

Figure 3.10: Simulation results over the PR channel for Code 3.12 (unoptimized) and
Code 3.13 (WCM framework). The two codes have γ = 3, and they are defined over GF(8).

4.4 4.6 4.8 5 5.2 5.4
10−8

10−7

10−6

10−5

10−4

SNR (dB)

FE
R

Unoptimized
WCM framework

Figure 3.11: Simulation results over the AWGN channel for Code 3.9 (unoptimized) and
Code 3.14 (WCM framework). The two codes have γ = 4.

In summary, the additional results in this subsection demonstrate that the WCM frame-

work can effectively remove subclasses of GASTs, like BASTs and EASs, with the proper

customization described in previous sections. The performance gains we achieve using the

WCM framework over PR and AWGN channels are the same gains achieved in [40] and [10],

respectively. Moreover, these results show that the WCM framework works for any GF size

(see Fig. 3.10).

69

3.6 Concluding Remarks

We introduced a novel NB-LDPC code optimization framework based on new combinatorial

definitions and linear-algebraic tools. The WCM framework was applied to codes used over

realistic Flash channels, namely the NLM channel and the CHMM channel, where clear

benefits of the proposed technique relative to the existing approaches were demonstrated.

Moreover, our framework was shown to be effective in designing optimized NB-LDPC codes

for MR applications (the PR channel) and for symmetric channels (the AWGN channel). As

many emerging storage devices exhibit an increasing level of asymmetry (e.g., 3-D Flash),

the presented framework can be a valuable code design and optimization tool that will enable

data storage engineers to use LDPC codes with confidence.

Acknowledgement

The majority of the material in this chapter was published in [42]. The work was also

presented in part at ISIT 2016 [41]. The author would like to thank the collaborators in

these publications. Special thanks to Chinmayi Lanka for her contributions to the work.

70

CHAPTER 4

Analysis and Extensions of the WCM Framework

4.1 Introduction

Modern dense storage devices, e.g., multi-level Flash and magnetic recording (MR) devices,

operate at very low frame error rate (FER) values, motivating the need for strong error cor-

rection techniques. Because of their capacity approaching performance, low-density parity-

check (LDPC) codes [1, 59, 60, 61] are becoming the first choice for many of the modern

storage systems [26, 27, 28, 51, 62, 63, 64]. Under iterative quantized decoding, LDPC codes

suffer from the error floor problem, which is a change in the FER slope that undermines the

chances of reaching desirable very low FER levels [14, 20, 21, 23, 65]. It was demonstrated

in the literature that absorbing sets (ASs), which are detrimental subgraphs in the Tanner

graph of the LDPC code, are the principal cause of the error floor problem [3, 10]. There are

other works that studied different classes of detrimental objects, specifically, stopping sets

[7] and trapping sets [5], [66]. Research works investigating the error floor problem of LDPC

codes include [3, 4, 5, 14, 58, 66, 67, 68, 69, 70, 71].

Particularly for non-binary LDPC (NB-LDPC) codes, the authors in [10] used concepts

from [7] to study non-binary elementary absorbing sets (EASs), and showed that EASs are

the detrimental objects which contribute the most to the error floor of NB-LDPC codes

over the canonical additive white Gaussian noise (AWGN) channel. The observation that

the combinatorial structure of the dominant detrimental objects critically depends on the

71

characteristics of the channel of interest was discussed first in Chapter 2 (see also [39] and

[40]); we introduced balanced absorbing sets (BASs) and demonstrated their dominance in

the error floor of NB-LDPC codes over partial-response (PR) channels, which exemplify 1-D

MR channels [11, 12]. Motivated by the asymmetry possessed by practical Flash channels

[24, 25], in Chapter 3, we introduced general absorbing sets (GASs) and general absorbing

sets of type two (GASTs) to capture the dominant problematic objects over realistic Flash

channels (see also [41] and [42]). GASs and GASTs subsume previously introduced AS

subclasses (namely EASs, BASs, and BASTs).

In [10] and [40], NB-LDPC code optimization algorithms tailored to AWGN and PR

channels, respectively, were proposed. While the weight consistency matrix (WCM) frame-

work introduced in Chapter 3 was originally motivated by the need to optimize NB-LDPC

codes for asymmetric Flash channels [41], we customized this methodology to be suitable

for channels with memory (e.g., PR channels), canonical symmetric channels (e.g., AWGN

channels), as well as practical Flash channels, achieving at least 1 order of magnitude per-

formance gain over all these channels. As illustrated in Chapter 3, the principal idea of the

WCM framework is representing a problematic object, e.g., a GAST, using a small set of

matrices, called WCMs. Since problematic objects in an NB-LDPC code are described in

terms of both their weight conditions as well as their topological conditions, there are explicit

weight properties associated with the WCMs of an object. By changing the null spaces of

the WCMs associated with an object such that the weight conditions of all these WCMs are

broken, this problematic object is removed from the Tanner graph of the code. A key feature

of the WCM framework is that the GASTs removal process is performed solely via manip-

ulating the edge weights of the Tanner graph of the NB-LDPC code, which consequently

preserves all the structural topological properties of the code being optimized.

For NB-LDPC codes with fixed column weights (variable node degrees), our contributions

in this chapter are:

1. We characterize GASTs via their WCMs. In particular, we define the unlabeled GAST

72

tree to describe the underlying topology of a GAST, where the leaves of this tree

represent the WCMs of the GAST. Using this tree, we prove the optimality of the

WCM framework by demonstrating that the framework indeed operates on the min-

imum possible number of matrices to remove the detrimental object. We also deploy

concepts from graph theory and combinatorics to compute the exact number of WCMs

associated with a GAST in different cases. We further compare the number of matri-

ces the WCM framework operates on with the number of matrices a suboptimal idea

works with, showing the significant reduction (up to about 90%) achieved by the WCM

framework in the cases of interest.

2. Based on tools from graph theory and linear algebra, we propose a comprehensive

analysis of the removal process of GASTs. We start off with discussing the dimensions

of the null spaces of WCMs; these null spaces play the central role in the identification

and removal of a GAST. Then, we derive the best that can be done to process a short

WCM (a WCM that has fewer rows than columns) during the GAST removal process.

Finally, we provide the minimum number of edge weight changes1 needed to remove

a GAST, along with how to select the edges and the new weights to guarantee the

removal of the GAST through its WCMs.

3. We introduce new combinatorial objects that capture the majority of the non-GAST

detrimental objects in the error floor region of NB-LDPC codes that have even col-

umn weights over asymmetric Flash channels. We define oscillating sets (OSs) and

oscillating sets of type two (OSTs). Furthermore, we expand the analysis of GASTs in

Chapter 3 to cover OSTs, describing how the WCM framework can be customized to

remove OSTs, after GASTs have been removed, from the Tanner graph of a code to

achieve additional performance gains.
1In the WCM framework, a GAST is removed via careful processing of the weights of its edges (the

original and the new weights are not zeros). Throughout this chapter, the edge weight changes are always
with respect to the original configuration.

73

4. We extend the scope of the WCM framework by using it to optimize codes with different

properties and for various applications. Specifically, we show that despite the good

error floor performance of NB-LDPC codes with column weight 5 before optimization,

more than 1 order of magnitude gain in the uncorrectable bit error rate (UBER) over

practical Flash channels is achievable via the WCM framework. We further apply the

theoretical concepts in Item 3 for NB-LDPC codes with column weight 4 over practical

Flash channels to achieve overall UBER gains up to nearly 2.5 orders of magnitude.

Additionally, we optimize NB-LDPC codes for practical Flash channels with more soft

information (6 reads). We also use the WCM framework to optimize NB-LDPC codes

with irregular check node (CN) degrees and fixed variable node (VN) degrees; we

show that more than 1 order of magnitude performance gain in the FER is achievable

by optimizing spatially-coupled (SC) codes [30, 31, 33, 72, 73, 74] used over PR and

AWGN channels.

The rest of the chapter is organized as follows. We start with some preliminaries in

Section 4.2. Section 4.3 discusses the characterization of GASTs through their WCMs, in

addition to the optimality proof and the WCMs enumeration. In Section 4.4 we detail our

analysis for the process of the GAST removal through WCMs. Afterwards, Section 4.5

discusses OSTs and how to customize the WCM framework to remove them. The simulation

results are presented in Section 4.6. The chapter ends with concluding remarks in Section 4.7.

4.2 Preliminaries

The definitions of different objects of interest are provided in Chapter 2 and Chapter 3.

In particular, see Definition 5 for GASs, Definition 6 for unlabeled GASs, Definition 7 for

GASTs, Definition 3 for BASs, and Definition 2 for EASs. Moreover, the WCM framework

is described in detail in Chapter 3.

Let γ be the column weight (VN degree) of the NB-LDPC code. Recall that g =
⌊
γ−1

2

⌋
.

74

GF refers to Galois field, and q is the GF size (order). We focus here on the case of q = 2λ,

where λ is a positive integer > 2. Furthermore, when we say in this chapter that nodes

are “connected”, we mean they are “directly connected” or they are “neighbors”, unless

otherwise stated. The same applies conceptually when we say an edge is “connected” to a

node or vice versa.

In this chapter, all vectors are column vectors, except the cutting vectors of SC codes and

the equalization target of the PR channel (see Subsection 4.6.4). Furthermore, in all GAST,

unlabeled GAST, and OST figures, circles represent VNs. In all GAST and OST figures,

grey (resp., white) squares represent unsatisfied (resp., satisfied) CNs. In all unlabeled GAST

figures, grey (resp., white) squares represent degree-1 (resp., > 1) CNs.

The three theorems essential for understanding the WCM framework are Theorem 1,

Theorem 2, and Theorem 3 in Chapter 3. Recall that given an (a, d1, d2, d3) unlabeled GAST,

the maximum number of unsatisfied CNs in the resulting GAST after edge labeling, bmax, is

upper bounded by d1+but. Here, but is the upper bound on the maximum number of degree-2

unsatisfied CNs the resulting GAST can have. Because of the structure of the underlying

unlabeled configuration, sometimes the exact maximum (obtained by Algorithm 2) is a

quantity smaller than but. We refer to this exact maximum as bet. Thus,

bmax = d1 + bet. (4.1)

We also recall the following. For a given GAST, a matrix Wz is defined as the matrix

obtained by removing b′, d1 6 b′ 6 bmax, rows corresponding to CNs having either degree 1 or

degree 2 from the matrix A, the GAST adjacency matrix. These b′ CNs can simultaneously

be unsatisfied under some edge labeling that produces a GAST which has the same unlabeled

GAST as the given GAST. Let U be the set of all such matrices Wz.

The definition of the GAST removal is Definition 8. WCMs are then described in Def-

inition 9. Recall also that each matrix Wz contains at least one WCM as its submatrix.

75

 GAST matrix A WCMs

 subgraph adjacency matrix submatrices of A

Figure 4.1: An illustrative figure showing the process of extracting the WCMs of a
(6, 0, 0, 9, 0) GAST. Appropriate edge weights (w’s) ∈ GF(q)\{0} are assumed.

Theorem 3 then demonstrates how WCMs are used to remove a GAST from the Tanner

graph of an NB-LDPC code. WCMs are denoted by Wcm
h , 1 6 h 6 t, with size (`− bcm

h)×a,

and the set of all WCMs is the set W .

Definition 13. Parameter bet represents the exact maximum number of rows cor-

responding to degree-2 CNs that can be removed together from A to extract a WCM.

Similarly, we define bst to be the exact minimum number of rows corresponding to

degree-2 CNs that can be removed together from A to extract a WCM. Recall that the

rows corresponding to degree-1 CNs are always removed while extracting a WCM. Thus,

d1 6 d1 + bst 6 bcm
h 6 d1 + bet = bmax. Both bst and bet depend on the unlabeled GAST.

Fig. 4.1 depicts the relation between a GAST and its associated WCMs, and roughly

describes how the WCMs of this GAST are extracted.

The WCM framework is easily adjusted to efficiently remove special subclasses of GASTs,

namely EASs and BASTs, by customizing the WCM definition. The details are in Chapter 3;

particularly, see Lemma 4 in addition to Definitions 10, 11, and 12.

The two algorithms that constitute the WCM framework are Algorithm 2, which is the

WCM extraction algorithm, and Algorithm 3, which is the code optimization algorithm. The

two algorithms are also in Chapter 3.

76

A WCM that has (3.8) satisfied is said to be a WCM with broken weight conditions.

A GAST is removed if and only if all its WCMs have broken weight conditions. Note that

the complexity of the process of removing a specific GAST using the WCM framework is

mainly controlled by the number of WCMs, which is t, of that GAST (see the for loop in

Step 12 of Algorithm 3). Thus, the complexity of the WCM framework depends on the size

of the set G (see Algorithm 3) and the numbers of WCMs of the GASTs in G.

4.3 Characterizing GASTs Through Their WCMs

In order to characterize a GAST through its WCMs, we introduce the definition of the GAST

tree, which will also be used to derive all the results in this section. Since this tree does not

depend on the edge weights of the configuration, we call it the unlabeled GAST tree.

Recall that A is the adjacency matrix of the GAST. Both Wz and U are defined in

Section 4.2. Recall also that bet is the maximum number of degree-2 CNs that can be

unsatisfied simultaneously while the object remains a GAST. As in Chapter 3, define u0 as

the number of degree-2 CNs that can be unsatisfied individually while the object remains a

GAST, and y0 as the vector in which the indices of such u0 CNs are saved. Note that we

always have bet 6 u0.

Definition 14. For a given (a, d1, d2, d3) unlabeled GAST with bet > 0, we construct the

unlabeled GAST tree of bet levels (level 0 is not counted) as follows:

• Except the root node at level 0, each tree node represents a degree-2 CN in the unlabeled

GAST. For any two CNs in the tree, being neighbors means that they can be unsatisfied

simultaneously after labeling and the resulting object remains a GAST.

• Let i1, i2, . . . , ibet be the running indices used to access nodes at different levels in the

tree as follows. The index of a node at level j, 1 6 j 6 bet, is saved in yj−1
i1,i2,...,ij−1 and

given by yj−1
i1,i2,...,ij−1(ij). CN cyj−1

i1,i2,...,ij−1
(ij) at level j is accessed via the path of nodes

“root node – cy0(i1) – cy1
i1

(i2) – cy2
i1,i2

(i3) – . . . – cyj−1
i1,i2,...,ij−1

(ij)”.

77

• At level 0, a virtual root node is assumed to be connected to the u0 nodes with indices

in y0 at level 1. Level j of the tree consists of all the nodes with indices in yj−1
i1,i2,...,ij−1 ,

∀i1, i2, . . . , ij−1. Level j + 1 of the tree is created as follows. Each CN cyj−1
i1,i2,...,ij−1

(ij)

at level j is connected to all the CNs with indices in yji1,i2,...,ij at level j + 1. These

CNs can each be – simultaneously with the nodes on the path from the root node until

cyj−1
i1,i2,...,ij−1

(ij) – unsatisfied after labeling and the resulting object remains a GAST.

• The number of nodes at level j + 1 that are connected to cyj−1
i1,i2,...,ij−1

(ij) at

level j is uji1,i2,...,ij (which is the size of the vector yji1,i2,...,ij), with uji1,i2,...,ij <

uj−1
i1,i2,...,ij−1 ,∀i1, i2, . . . , ij.

• The leaves of this tree are linked to the matrices extracted by Algorithm 2 before re-

moving the repeated matrices (see Algorithm 2).

Note that for the parameters u and y, the superscript refers to the level prior to the level

in which the nodes exist, and the subscript refers to the running indices used to access the

nodes. Note also that Algorithm 2 is designed to generate the unlabeled GAST tree.

Fig. 4.2 shows an unlabeled GAST tree for a configuration that has bet = 3. The config-

uration has three levels after the root node. We say that each tree node at level j, j > 0, in

the unlabeled GAST tree is linked to a matrix Wz ∈ U extracted by removing (d1 +j) rows

from the matrix A. These rows correspond to all the d1 degree-1 CNs, and the j degree-2

CNs on the path from the virtual root node to this tree node in the configuration. We also

say that every valid matrix Wz ∈ U is linked to one or more tree nodes.

It can be shown that bet is the number of levels (nested loops in Algorithm 2), after

which ubet
i1,i2,...,ibet

= 0, ∀i1, i2, . . . , ibet . Moreover, because the WCMs do not necessarily have

the same row dimension, Algorithm 2 may stop at bk levels, bk 6 bet, starting from some

cy0(i1), which results in an (` − bcm
h) × a WCM with bcm

h = d1 + bk 6 bmax = d1 + bet. The

smallest value of bk is bst, i.e., bst 6 bk 6 bet.

78

Level 1 Level 2 Level 3

Virtual
root
node

𝑢0
𝑢11

𝑢21

𝑢1,12

𝑢2,12

Figure 4.2: An unlabeled GAST tree with bet = 3.

Remark 15. Note that the unlabeled GAST tree is unique for a given unlabeled configuration.

In other words, two non-isomorphic (a, d1, d2, d3) configurations have two different unlabeled

GAST trees even though they have the same a, d1, d2, and d3 parameters.

Repetitions in tree nodes linked to matrices Wz come from the fact that we are addressing

the permutations and not the combinations in the tree. In other words, if we have a path

from the root node at level 0 to a tree node at level 2 that has c1 at level 1 then c4 at level

2 on it, there must exist another path from the root node at level 0 to another tree node at

level 2 that has c4 at level 1 then c1 at level 2 on it. Obviously, removing the row of c1 then

the row of c4, or first c4 then c1 (in addition to the rows of degree-1 CNs) from A to extract

a matrix produces the same end result.

79

4.3.1 Proving the Optimality of the WCM Framework

The numbers of matrices needed to operate on for different GASTs control the complexity

of the code optimization process. In this subsection, we prove that the WCM framework is

optimal in the sense that it works on the minimum possible number of matrices to remove

a GAST. Our optimization problem is formulated as follows:

The optimization problem: We seek to find the set W of matrices that has the

minimum cardinality, with the matrices in W representing submatrices of A that can be

used to remove the problematic GAST, without the need to work on other submatrices.

The optimization constraint: Each matrix in W has to be a valid Wz matrix in U .

The optimization constraint is set to ensure that we are performing not only sufficient,

but also necessary processing to remove the object. Note that, by definition, the set of WCMs

is the solution of this optimization problem. Thus, the problem of proving the optimality of

the WCM framework reduces to proving that the matrices we extract by Algorithm 2, and

operate on in Algorithm 3 to remove the GAST, are indeed the WCMs.

Now, we are ready to present the optimality theorem and its proof.

Theorem 4. Consider an (a, b, d1, d2, d3) GAST with bet > 0. After eliminating repetitions,

the set of matrices which are linked to the leaves of the unlabeled GAST tree characterized

by Definition 14 is the set of WCMs, i.e., the set W of minimum cardinality.

Proof. According to Definition 9, Theorem 3, and its proof, each matrix Wz ∈ U must have

at least one matrix ∈ W as its submatrix (as W is the set of WCMs). The relation between

a matrix Wz
1 linked to tree node 1 at level j and a matrix Wz

2 linked to tree node 2 at

level j + 1, provided that tree node 2 is a child of tree node 1, is as follows. Matrix Wz
2

is a submatrix of matrix Wz
1, extracted by removing one more row, that corresponds to a

degree-2 CN (tree node 2), from Wz
1. Following the same logic, the multiset of matrices, say

Wrep, linked to tree nodes with no children (the leaves of the tree) contains submatrices of

every possible matrix Wz. We let the set Wnrep be Wrep after eliminating the repetitions.

80

Now, we prove the sufficiency and minimality, which imply the optimality of Wnrep. The

sufficiency is proved as follows. Any matrix Wz that is linked to a tree node with a child will

be redundant if added to the set Wnrep because in Wnrep there already exists a submatrix of

this Wz (from the analysis above). The minimality is proved as follows. If we eliminate any

matrix from Wnrep, there will be at least one matrix Wz that has no submatrices in Wnrep

(which is the eliminated matrix itself since it is linked to a node (nodes) with no children).

Thus, we cannot further reduce the cardinality of Wnrep. Hence, the set Wnrep is indeed the

set W of WCMs, which proves the optimality of the WCM framework.

4.3.2 Enumeration of WCMs Associated with a GAST

In this subsection, we provide the exact number of distinct WCMs associated with a GAST.

Moreover, we present particular examples where this number reduces to a combinatorial

function of the column weight of the code. Since the number of WCMs (and also their sizes)

associated with a GAST only depends on the unlabeled configuration and not on the edge

weights, we relate the number of distinct WCMs, t, to the unlabeled GAST throughout this

chapter.

We first identify the following two types of unlabeled GAST configurations according to

the properties of their unlabeled GAST trees.

Definition 15. An (a, d1, d2, d3) same-size-WCMs unlabeled GAST satisfies one of the

following two conditions:

1. It has bet = 0, i.e., u0 = 0, which results in |W| = 1.

2. It has bet > 0; thus, u0 > 0, and its tree has the property that uji1,i2,...,ij = 0 only if

j = bet, ∀i1, i2, . . . , ibet, which results in all the WCMs having the same (`− bmax)× a

size, bmax = d1 + bet.

Definition 16. An (a, d1, d2, d3) u-symmetric unlabeled GAST is a same-size-WCMs un-

labeled GAST which satisfies the following condition. If u0 > 0, its tree has the property that

81

at any level j, uj−1
i1,i2,...,ij−1 is the same, ∀i1, i2, . . . , ij−1.

An example of a same-size-WCMs unlabeled GAST that is not u-symmetric is the

(7, 9, 13, 0) configuration shown in Fig. 4.4(a). The (6, 0, 9, 0) and the (8, 0, 16, 0) config-

urations shown in Fig. 4.6(a) are examples of u-symmetric unlabeled GASTs.

We start off with the count for the general case.

Theorem 5. Given the unlabeled GAST tree, an (a, d1, d2, d3) unlabeled GAST, with the

parameters bst > 0 and bet > 0, results in the following number, t, of distinct WCMs (t is

the size of the set W) for the labeled configuration:

t =
bet∑

bk=bst

1
bk!

u0∑
i1=1

u1
i1∑

i2=1

u2
i1,i2∑
i3=1
· · ·

u
bk−1
i1,i2,...,ibk−1∑
ibk =1

T
(
ubk
i1,i2,...,ibk

)
, (4.2)

where bst 6 bk 6 bet. Here, T
(
ubk
i1,i2,...,ibk

)
= 1 if ubk

i1,i2,...,ibk
= 0, and T

(
ubk
i1,i2,...,ibk

)
= 0

otherwise.

Proof. To prove Theorem 5, we recall the unlabeled GAST tree. The number of nodes in

this tree at any level bk > 0 is given by:

µbk =
u0∑
i1=1

u1
i1∑

i2=1

u2
i1,i2∑
i3=1
· · ·

u
bk−1
i1,i2,...,ibk−1∑
ibk =1

(1) . (4.3)

From the previous subsection, the number, trep,bk , of WCMs (not necessarily distinct) ex-

tracted by removing bcm
h = d1 + bk rows from A equals the number of leaves at level bk. Note

that the leaves at level bk do not have connections to level bk + 1 (no children) in the tree.

As a result, trep,bk is given by:

trep,bk =
u0∑
i1=1

u1
i1∑

i2=1

u2
i1,i2∑
i3=1
· · ·

u
bk−1
i1,i2,...,ibk−1∑
ibk =1

T
(
ubk
i1,i2,...,ibk

)
. (4.4)

To compute the number of distinct WCMs, we need to eliminate repeated WCMs. Since

82

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6 𝑐7

𝑐8 𝑐9
𝑐2

𝑐4

𝑐3

𝑐4
𝑐2

Level 1 Level 2

Virtual
root
node

(a) (b)

Figure 4.3: (a) A (6, 2, 5, 2) unlabeled GAST for γ = 3. (b) The associated unlabeled GAST
tree with bet = 2.

a WCM extracted by removing (d1 + bk) rows from A appears bk! times, we compute the

number of distinct WCMs that are extracted by removing (d1 + bk) rows from A using (4.4)

as follows:

tbk = 1
bk!

u0∑
i1=1

u1
i1∑

i2=1

u2
i1,i2∑
i3=1
· · ·

u
bk−1
i1,i2,...,ibk−1∑
ibk =1

T
(
ubk
i1,i2,...,ibk

)
. (4.5)

The total number of distinct WCMs is then obtained by summing tbk in (4.5) over all values

of bk, bst 6 bk 6 bet, to reach t in (4.2).

Recall that γ is the column weight (VN degree) of the code.

Example 12. Fig. 4.3(a) shows a (6, 2, 5, 2) unlabeled GAST for γ = 3. As demonstrated

by the unlabeled GAST tree in Fig. 4.3(b), the configuration has WCMs that are not of the

same size. Since bst = 1, bet = but = 2, and u0 = 3 (that are c2, c3, and c4), (4.2) reduces to:

t =
2∑

bk=1

1
bk!

3∑
i1=1

u1
i1∑

i2=1
T
(
ubk
i1,...,ibk

)

= 1
1!(0 + 1 + 0) + 1

2!(1 + 0 + 1) = 2.

Thus, the configuration has only 2 WCMs, extracted by removing the rows of the following

groups of CNs from A: {(c3,Osg), (c2, c4,Osg)}, where Osg is (c8, c9). We explicitly list the

83

subgroup Osg of degree-1 CNs to highlight the fact that the rows of these CNs are always

removed, irrespective of the action on the remaining rows in A.

Now, we analyze the important special case of same-size-WCMs configurations.

Lemma 6. Given the unlabeled GAST tree, a same-size-WCMs (a, d1, d2, d3) unlabeled

GAST, with the parameter bet > 0, results in the following number, t, of distinct WCMs

(t is the size of the set W) for the labeled configuration:

t = 1
bet!

u0∑
i1=1

u1
i1∑

i2=1

u2
i1,i2∑
i3=1
· · ·

u
bet−1
i1,i2,...,ibet−1∑
ibet =1

(1) . (4.6)

Proof. We prove Lemma 6 by substituting bk = bst = bet in (4.2):

t = 1
bet!

u0∑
i1=1

u1
i1∑

i2=1

u2
i1,i2∑
i3=1
· · ·

u
bet−1
i1,i2,...,ibet−1∑
ibet =1

T
(
ubet
i1,i2,...,ibet

)

= 1
bet!

u0∑
i1=1

u1
i1∑

i2=1

u2
i1,i2∑
i3=1
· · ·

u
bet−1
i1,i2,...,ibet−1∑
ibet =1

(1) . (4.7)

The second equality in (4.7) follows from the fact that T
(
ubet
i1,i2,...,ibet

)
= 1 since ubet

i1,i2,...,ibet
= 0,

∀i1, i2, . . . , ibet , from the definition of bet.

Example 13. Fig. 4.4(a) shows a (7, 9, 13, 0) unlabeled GAST for γ = 5. As demonstrated

by the unlabeled GAST tree in Fig. 4.4(b), this is a same-size-WCMs configuration. Since

bet = but = 2 and u0 = 5 (that are c3, c4, c9, c11, and c12), (4.6) reduces to:

t = 1
2!

5∑
i1=1

u1
i1∑

i2=1
(1) = 1

2(1 + 1 + 3 + 2 + 3) = 5.

Thus, the configuration has 5 WCMs, all of the same size (11 × 7), extracted by remov-

ing the rows of the following groups of CNs from the matrix A: {(c3, c12,Osg), (c4, c9,Osg),

(c9, c11,Osg), (c9, c12,Osg), (c11, c12,Osg)}, where Osg is (c14, c15, c16, c17, c18, c19, c20, c21, c22).

84

𝑐1

𝑐2

𝑐3

𝑐4 𝑐5

𝑐6

𝑐7
𝑐8

𝑐9

𝑐10
𝑐11

𝑐12
𝑐13

𝑐14

𝑐15

𝑐16

𝑐17

𝑐18

𝑐19

𝑐20

𝑐21

𝑐22

𝑐3
𝑐12

𝑐4
𝑐9

𝑐9 𝑐4
𝑐11
𝑐12

𝑐11 𝑐9
𝑐12

𝑐12 𝑐3

𝑐9
𝑐11

Level 1 Level 2

Virtual
root
node

(a) (b)

Figure 4.4: (a) A (7, 9, 13, 0) unlabeled GAST for γ = 5. (b) The associated unlabeled
GAST tree with bet = 2.

Another important special case to study is the case of u-symmetric configurations.

Corollary 1. Given the unlabeled GAST tree, a u-symmetric (a, d1, d2, d3) unlabeled GAST,

with the parameter bet > 0, results in the following number, t, of distinct WCMs (t is the

size of the set W) for the labeled configuration:

t = 1
bet!

bet∏
j=1

uj−1. (4.8)

Proof. Since the u-symmetric case is a special case of the same-size-WCMs case, we use (4.6)

to conclude:

t = 1
bet!

u0∑
i1=1

u1∑
i2=1

u2∑
i3=1
· · ·

ubet−1∑
ibet =1

(1) = 1
bet!

bet∏
j=1

uj−1. (4.9)

Equation (4.9) follows from the fact that for a u-symmetric configuration, at any level j,

uj−1
i1,i2,...,ij−1 is the same, ∀i1, i2, . . . , ij−1. Thus, we can express uj−1

i1,i2,...,ij−1 in (4.6) as uj−1,

which is independent of i1, i2, . . . , ibet−1, ∀j ∈ {1, 2, . . . , bet}.

85

Level 1 Level 2

Virtual
root
node

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6
𝑐7 𝑐8

𝑐9 𝑐10

𝑐11

𝑐12 𝑐13

𝑐1
𝑐4

𝑐4
𝑐1

𝑐7
𝑐8

𝑐8
𝑐7

𝑐9
𝑐10

𝑐10
𝑐9

(a) (b)

Figure 4.5: (a) A (6, 2, 11, 0) unlabeled GAST for γ = 4. (b) The associated unlabeled
GAST tree with bet = 2.

Example 14. Fig. 4.5(a) shows a (6, 2, 11, 0) unlabeled GAST for γ = 4. As demonstrated by

the unlabeled GAST tree in Fig. 4.5(b), the configuration is u-symmetric. Since bet = but = 2,

u0 = 6, and u1 = 1, (4.8) reduces to:

t = 1
2!

2∏
j=1

uj−1 = 1
2(6)(1) = 3.

Thus, the configuration has 3 WCMs, all of the same size (9 × 6), extracted by remov-

ing the rows of the following groups of CNs from the matrix A: {(c1, c4,Osg), (c7, c8,Osg),

(c9, c10,Osg)}, where Osg is (c12, c13).

After providing the exact number of WCMs for different cases, we now study examples

where the number of distinct WCMs associated with a configuration is proved to be a function

only of the column weight γ (the VN degree). We study the u-symmetric version of the

(2γ, 0, γ2, 0) unlabeled GASTs with g =
⌊
γ−1

2

⌋
= 1 (i.e., for γ = 3 or γ = 4). Studying

these configurations is important because they are unlabeled low weight codewords, and

their multiplicity in the Tanner graph of a code typically strongly affects the error floor (and

also the waterfall) performance of this code.

86

Lemma 7. A u-symmetric (2γ, 0, γ2, 0) unlabeled GAST, with γ ∈ {3, 4} (see Fig. 4.6(a)),

results in t = γ! distinct WCMs for the labeled configuration.

Proof. From (3.5), for a u-symmetric (2γ, 0, γ2, 0) unlabeled GAST2, we have:

bet = but =
⌊1

2

(
2γ
⌊
γ − 1

2

⌋
− 0

)⌋
= γ. (4.10)

Notice that
⌊
γ−1

2

⌋
= 1 for γ ∈ {3, 4}. Substituting (4.10) in (4.8) gives:

t = 1
γ!

γ∏
j=1

uj−1 = γ2

γ!

γ∏
j=2

uj−1, (4.11)

where the second equality in (4.11) follows from the property that for a (2γ, 0, γ2, 0) unlabeled

GAST, u0 = γ2.

Next, we compute uj−1, 2 6 j 6 bet = γ. At level 1, a degree-2 CN that has its index in

y0 will be marked as unsatisfied resulting in:

u1 = u0 − 1− 2 (γ − 1) = γ2 − 2γ + 1 = (γ − 1)2 . (4.12)

Equation (4.12) follows from the fact that after such a degree-2 CN is selected to be marked

as unsatisfied at level 1, all the remaining (γ − 1) CNs connected to each of the two VNs

sharing this CN cannot be selected at level 2 (because g = 1 for γ ∈ {3, 4}). Thus, u1 = u0−

(1+2 (γ − 1)), where the additional 1 represents the already selected CN itself. Furthermore:

u2 = u1 − 1− 2 (γ − 2) = (γ − 1)2 − 2γ + 3 = (γ − 2)2 . (4.13)

Note that the 2 (γ − 1) CNs that cannot be selected at level 2 are connected to all the

remaining (2γ − 2) VNs in the configuration (after excluding the two VNs sharing the CN

selected at level 1). Thus, any CN to be selected at level 2 results in 2 (γ − 2) extra CNs
2Unlike the superscript of u, the superscript of γ and all linear expressions of γ refers to the mathematical

power (if exists).

87

that cannot be selected3 at level 3. As a result, u2 = u1− (1 + 2 (γ − 2)), which is Equation

(4.13). This analysis also applies for uj−1 with j > 3. By means of induction, we conclude

the following for every uj−1 with 1 6 j 6 bet = γ:

uj−1 = (γ − (j − 1))2 . (4.14)

Substituting (4.14) into (4.11) gives:

t = 1
γ!γ

2 (γ − 1)2 (γ − 2)2 · · · 12 = γ!. (4.15)

As a result, t = γ!, which completes the proof.

Example 15. Fig. 4.6(a), upper panel, shows the u-symmetric (6, 0, 9, 0) unlabeled GAST

for γ = 3. Fig. 4.6(b) confirms that the configuration is u-symmetric with bet = but = 3,

u0 = 9, u1 = 4, and u2 = 1. Thus, (4.8) reduces to (4.15), implying:

t = 1
3!

3∏
j=1

uj−1 = 3! = 6.

The configuration has 6 WCMs (size 6× 6), extracted by removing the rows of the following

groups of CNs from A: {(c1, c3, c5), (c1, c4, c9), (c2, c4, c6), (c2, c5, c8), (c3, c6, c7), (c7, c8, c9)}.

Fig. 4.6(a), lower panel, shows the u-symmetric (8, 0, 16, 0) unlabeled GAST for γ = 4.

We omit the tree of this unlabeled GAST for brevity. Following the same logic we used for

the u-symmetric (6, 0, 9, 0) unlabeled GAST (γ = 3), we conclude that this configuration has

bet = 4, u0 = 16, u1 = 9, u2 = 4, and u3 = 1. Thus, from (4.15):

t = 1
4!

4∏
j=1

uj−1 = 4! = 24.

3The reason why it is 2 (γ − 2) and not 2 (γ − 1) is that two CNs from the group that cannot be selected
at level 3 were already accounted for while computing u1 as they could not be selected at level 2 (recall that
the configuration is u-symmetric).

88

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6
𝑐7 𝑐8

𝑐9

Level 1 Level 2

Virtual
root
node

Level 3

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6

𝑐7

𝑐8

𝑐9

𝑐3 𝑐5

𝑐7 𝑐8

(a) (b)

Figure 4.6: (a) Upper panel: the u-symmetric (6, 0, 9, 0) unlabeled GAST for γ = 3. Lower
panel: the u-symmetric (8, 0, 16, 0) unlabeled GAST for γ = 4. (b) The associated unlabeled
GAST tree for the (6, 0, 9, 0) unlabeled GAST with bet = 3.

Table 4.1: Number of distinct WCMs for different types of unlabeled GASTs.
Unlabeled GAST type Number of distinct WCMs (t)

General t =
bet∑

bk=bst

1
bk!

u0∑
i1=1

u1
i1∑

i2=1

u2
i1,i2∑
i3=1
· · ·

u
bk−1
i1,i2,...,ibk−1∑
ibk =1

T
(
ubk
i1,i2,...,ibk

)

Same-size-WCMs t = 1
bet!

u0∑
i1=1

u1
i1∑

i2=1

u2
i1,i2∑
i3=1
· · ·

u
bet−1
i1,i2,...,ibet−1∑
ibet =1

(1)

U-symmetric t = 1
bet!

bet∏
j=1

uj−1

U-symmetric, (2γ, 0, γ2, 0), with γ ∈ {3, 4} t = γ!

89

We conclude Subsection 4.3.2 with Table 4.1. Table 4.1 lists the number of distinct

WCMs for different types of unlabeled GASTs.

4.3.3 Complexity Comparison with a Suboptimal Idea

We have already proved the optimality of the WCM framework in Subsection 4.3.1. In this

subsection, we demonstrate the complexity reduction we gain by focusing only on the set

of WCMs, W , to remove a GAST. We compute the total number of distinct matrices to

operate on in an alternative idea (a suboptimal idea), and compare it with the number of

distinct WCMs we operate on, which is t derived in Subsection 4.3.2. The suboptimal idea

we compare with is operating on the set of all distinct matrices Wz.

Computational savings of the WCM framework relative to the suboptimal idea mentioned

above on a prototypical example of an NB-LDPC code are quite apparent; it takes roughly

only four days to optimize this code using the WCM framework (via operating on the WCMs

of each GAST to be removed), compared with roughly a month of computations using

the suboptimal approach (via operating on all distinct matrices Wz of each GAST to be

removed). In this subsection, we justify this observation.

Here, we seek to compare the number of distinct WCMs, which is the size of the set W ,

with the number of distinct Wz matrices, which is the size of the set U . For convenience,

we assume for this comparison that bet > 0 and u0 > 0.

Theorem 6. Given the unlabeled GAST tree, the difference between the cardinalities of the

sets U and W (the reduction in the number of matrices to operate on) for an (a, d1, d2, d3)

unlabeled GAST, with the parameters bst > 0 and bet > 0, is:

t′ − t = 1 +
bet−1∑
j=1

1
j!

u0∑
i1=1

u1
i1∑

i2=1

u2
i1,i2∑
i3=1
· · ·

uj−1
i1,i2,...,ij−1∑
ij=1

Tc
(
uji1,i2,...,ij

)
, (4.16)

where t′ = |U| and t = |W|. Here, Tc
(
uji1,i2,...,ij

)
= 1 if uji1,i2,...,ij 6= 0, and Tc

(
uji1,i2,...,ij

)
= 0

otherwise.

90

Proof. Given that t (which is |W|) is known from Subsection 4.3.2, we need to derive t′

(which is |U|). Since U is the set of all distinct matrices Wz, it follows that the cardinality

of U is a function of the total number of nodes in the unlabeled GAST tree. Note that

each node at level j in the unlabeled GAST tree is linked to a matrix Wz (see the proof of

Theorem 4). The total number of these tree nodes is:

ηrep =
bet∑
j=1

u0∑
i1=1

u1
i1∑

i2=1

u2
i1,i2∑
i3=1
· · ·

uj−1
i1,i2,...,ij−1∑
ij=1

(1) . (4.17)

To remove the repeated Wz matrices from that count, we need to divide the number of tree

nodes at each level j by j!. Thus, we reach:

η =
bet∑
j=1

1
j!

u0∑
i1=1

u1
i1∑

i2=1

u2
i1,i2∑
i3=1
· · ·

uj−1
i1,i2,...,ij−1∑
ij=1

(1) . (4.18)

The cardinality of the set |U|, which is t′, is then:

t′ = 1 + η = 1 +
bet∑
j=1

1
j!

u0∑
i1=1

u1
i1∑

i2=1

u2
i1,i2∑
i3=1
· · ·

uj−1
i1,i2,...,ij−1∑
ij=1

(1) , (4.19)

where the additional 1 is for the particular matrix Wz extracted by removing d1 rows from

A corresponding to all degree-1 CNs in the configuration. Note that we can consider the

virtual root node as the node linked to this particular Wz matrix in the tree.

To compute t′ − t, we subtract (4.2) from (4.19). Consequently,

t′ − t = 1 +
bst−1∑
j=1

1
j!

u0∑
i1=1

u1
i1∑

i2=1

u2
i1,i2∑
i3=1
· · ·

uj−1
i1,i2,...,ij−1∑
ij=1

(1)

+
bet∑
j=bst

1
j!

u0∑
i1=1

u1
i1∑

i2=1

u2
i1,i2∑
i3=1
· · ·

uj−1
i1,i2,...,ij−1∑
ij=1

[
1− T

(
uji1,i2,...,ij

)]
. (4.20)

91

Thus, we complete the proof as follows:

t′ − t = 1 +
bet∑
j=1

1
j!

u0∑
i1=1

u1
i1∑

i2=1

u2
i1,i2∑
i3=1
· · ·

uj−1
i1,i2,...,ij−1∑
ij=1

[
1− T

(
uji1,i2,...,ij

)]

= 1 +
bet−1∑
j=1

1
j!

u0∑
i1=1

u1
i1∑

i2=1

u2
i1,i2∑
i3=1
· · ·

uj−1
i1,i2,...,ij−1∑
ij=1

Tc
(
uji1,i2,...,ij

)
. (4.21)

The first equality in (4.21) is derived by observing that
[
1− T

(
uji1,i2,...,ij

)]
= 1 for j ∈

{1, 2, . . . , bst−1}. The second equality in (4.21) follows from that T
(
uji1,i2,...,ij

)
= 1 for j = bet,

and
[
1− T

(
uji1,i2,...,ij

)]
= Tc

(
uji1,i2,...,ij

)
(from the definitions of both T and Tc). We can

simply consider Tc
(
uji1,i2,...,ij

)
as the complement function (binary inversion) of T

(
uji1,i2,...,ij

)
.

Example 16. Consider the (6, 2, 5, 2) unlabeled GAST (γ = 3) shown in Fig. 4.3(a). Since

bst = 1, bet = but = 2, and u0 = 3, and aided by the unlabeled GAST tree in Fig. 4.3(b), the

complexity reduction (the reduction in the number of matrices to operate on) is (see (4.16)):

t′ − t = 1 + 1
1!

3∑
i1=1

Tc
(
u1
i1

)
= 1 + (1 + 0 + 1) = 3.

In other words, the cardinality of the set U is t′ = 5, while from Example 12, the cardinality

of the set W (the number of distinct WCMs) is t = 2. Thus, the complexity reduction is 60%

for this configuration.

Now, we study the case of same-size-WCMs unlabeled GASTs.

Lemma 8. Given the unlabeled GAST tree, the difference between the cardinalities of the

sets U andW (the reduction in the number of matrices to operate on) for a same-size-WCMs

(a, d1, d2, d3) unlabeled GAST, with the parameter bet > 0, is:

t′ − t = 1 +
bet−1∑
j=1

1
j!

u0∑
i1=1

u1
i1∑

i2=1

u2
i1,i2∑
i3=1
· · ·

uj−1
i1,i2,...,ij−1∑
ij=1

(1) , (4.22)

92

where t′ = |U| and t = |W|.

Proof. Knowing that the configuration is a same-size-WCMs unlabeled GAST does not sim-

plify the expression of t′ in (4.19). Thus, to compute (t′ − t), we subtract (4.6) from (4.19).

The result of this subtraction is (4.22).

Example 17. Consider the (7, 9, 13, 0) unlabeled GAST (γ = 5) shown in Fig. 4.4(a). Since

bet = but = 2 and u0 = 5, and aided by the unlabeled GAST tree in Fig. 4.4(b), the complexity

reduction (the reduction in the number of matrices to operate on) is (see (4.22)):

t′ − t = 1 + 1
1!

5∑
i1=1

(1) = 1 + 5 = 6.

In other words, the cardinality of the set U is t′ = 11, while from Example 13, the cardinality

of the set W (the number of distinct WCMs) is t = 5. Thus, the complexity reduction is over

50%.

Corollary 2. Given the unlabeled GAST tree, the difference between the cardinalities of the

sets U and W (the reduction in the number of matrices to operate on) for a u-symmetric

(a, d1, d2, d3) unlabeled GAST, with the parameter bet > 0, is:

t′ − t = 1 +
bet−1∑
j=1

1
j!

j∏
i=1

ui−1, (4.23)

where t′ = |U| and t = |W|.

Proof. We recall again that the u-symmetric configuration is a special case of the same-size-

WCMs configuration. Consequently, we can use the same idea from the proof of Corollary 1

in (4.22) to reach (4.23).

Example 18. Consider the u-symmetric (2γ, 0, γ2, 0) unlabeled GAST. From (4.14), we

know that uj−1 = (γ − (j − 1))2. Thus, from Corollary 2, the complexity reduction (the

93

Table 4.2: Reduction in the number of matrices to operate on for different types of unlabeled
GASTs.

Unlabeled GAST type Reduction in the number of matrices (t′ − t)

General t′ − t = 1 +
bet−1∑
j=1

1
j!

u0∑
i1=1

u1
i1∑

i2=1

u2
i1,i2∑
i3=1
· · ·

uj−1
i1,i2,...,ij−1∑
ij=1

Tc
(
uji1,i2,...,ij

)

Same-size-WCMs t′ − t = 1 +
bet−1∑
j=1

1
j!

u0∑
i1=1

u1
i1∑

i2=1

u2
i1,i2∑
i3=1
· · ·

uj−1
i1,i2,...,ij−1∑
ij=1

(1)

U-symmetric t′ − t = 1 +
bet−1∑
j=1

1
j!

j∏
i=1

ui−1

U-symmetric, (2γ, 0, γ2, 0), with γ ∈ {3, 4} t′ − t = 1 +
γ−1∑
j=1

1
j!

j∏
i=1

(γ − (i− 1))2

reduction in the number of matrices to operate on) is:

t′ − t = 1 +
bet−1∑
j=1

1
j!

j∏
i=1

ui−1 = 1 +
γ−1∑
j=1

1
j!

j∏
i=1

(γ − (i− 1))2 . (4.24)

For γ = 3 (corresponding to the u-symmetric (6, 0, 9, 0) unlabeled GAST), the complexity

reduction is 1+ 1
1!(9)+ 1

2!(9)(4) = 28, which is over 80% (i.e., t′ = 34 while t = 6). For γ = 4

(corresponding to the u-symmetric (8, 0, 16, 0) unlabeled GAST), the complexity reduction is

1 + 1
1!(16) + 1

2!(16)(9) + 1
3!(16)(9)(4) = 185, which is about 90% (i.e., t′ = 209 while t = 24).

We conclude Subsection 4.3.3 with Table 4.2. Table 4.2 lists the reduction, t′ − t, in the

number of matrices to operate on for different types of unlabeled GASTs.

Remark 16. The analysis in Section 4.3 is focusing on the case where bet > 0 (thus, u0 > 0)

because if bet = 0 (i.e., u0 = 0), t = 1 always. In other words, there exists only one matrix

Wz. As a result, there exists only one WCM of size (`− d1)× a, which is the single matrix

Wz itself. Note that if bet > 0, the matrix Wz of size (` − d1) × a cannot be a WCM (this

is the reason why we do not add 1 in (4.2) as we do in (4.19)).

Remark 17. An analysis similar to what we presented in Section 4.3 can be done for BASTs.

However, it is omitted for brevity.

94

4.4 More on How GASTs Are Removed

After demonstrating the complexity reduction achieved by operating only on the set of

WCMs to remove a GAST, in this section, we provide more details on the removal of GASTs

via their WCMs. We first investigate the dimension of the null space of a WCM. Then, we

discuss the best that can be done to break the weight conditions of a short WCM. Finally, we

discuss the exact minimum number of edge weight changes needed by the WCM framework

to remove a GAST from the Tanner graph of an NB-LDPC code, and we provide a useful

topological upper bound on that minimum.

4.4.1 The Dimension of the Null Space of a WCM

A GAST is removed via breaking the weight conditions of all its WCMs, i.e., via satisfying

(3.8) for all its WCMs. This breaking is performed by forcing the null spaces of these WCMs

to have a particular property. Thus, studying the dimension of the null space of a WCM is

critical to understand how GASTs are removed.

Consider a WCM Wcm
h , 1 6 h 6 t, of a GAST. Recall that N (M) is the null space of

a matrix M, and let dim(N (M)) denote the dimension of the null space of a matrix M.

Moreover, let Gcm
h be the subgraph created by removing bcm

h degree 6 2 CNs from the GAST

subgraph. The bcm
h rows that are removed from A to reach Wcm

h correspond to these bcm
h

CNs. Note that these CNs are the ones on the path from the root node until the tree node

linked to Wcm
h in the unlabeled GAST tree (the CNs marked as unsatisfied by Algorithm 2

to extract Wcm
h). Moreover, let M(G) denote the adjacency matrix of a graph G.

Theorem 7. The dimension ph of the null space of a WCM Wcm
h , 1 6 h 6 t, of an

(a, b, d1, d2, d3) GAST, given that this WCM has unbroken weight conditions, is given by:

ph = dim (N (Wcm
h)) =

δh∑
k=1

dim
(
N
(
M(Gdisc

h,k)
))

> δh, (4.25)

95

where δh is the number of disconnected components in Gcm
h , and Gdisc

h,k is the kth disconnected

component in Gcm
h , with 1 6 k 6 δh.

Proof. It is known from graph theory that if graph Gcm
h has δh disconnected components

defined as Gdisc
h,k , 1 6 k 6 δh, then:

ph = dim (N (Wcm
h)) = dim (N (M(Gcm

h))) =
δh∑
k=1

dim
(
N
(
M(Gdisc

h,k)
))
. (4.26)

Note that from the definition of Gcm
h , Wcm

h = M(Gcm
h).

Then, we prove the inequality ph > δh. If ∃ Gdisc
h,k s.t. dim

(
N
(
M(Gdisc

h,k)
))

= 0 (which

means N (Wcm
h) = {0}), then it is impossible to have a vector v = [v1 v2 . . . va]T ∈

N (M(Gcm
h)) = N (Wcm

h) s.t. vf 6= 0, ∀f ∈ {1, 2, . . . , a}, where a is the size of the

GAST. Thus, in order to have a WCM that has unbroken weight conditions, we must have

dim
(
N
(
M(Gdisc

h,k)
))

> 0, ∀k ∈ {1, 2, . . . , δh}. Noting that if dim
(
N
(
M(Gdisc

h,k)
))

> 0,

∀k ∈ {1, 2, . . . , δh}, then it has to be the case that ph = ∑δh
k=1 dim

(
N
(
M(Gdisc

h,k)
))

> δh

completes the proof of Theorem 7.

Remark 18. Consider a WCM Wcm
h that has unbroken weight conditions. In the majority

of the GASTs we have studied, if Gcm
h (the graph corresponding to Wcm

h) has δh = 1 (the

graph is fully connected), then dim (N (Wcm
h)) = 1. Similarly, we have typically observed

that if δh > 1, then ∀Gdisc
h,k , 1 6 k 6 δh, dim

(
N
(
M(Gdisc

h,k)
))

= 1. In other words, in most

of the cases we have seen, ph = dim (N (Wcm
h)) = δh. Having said that, we have already

encountered few examples where ph = dim (N (Wcm
h)) > δh (see the next subsection).

Typically, if δh = 1, breaking the weight conditions of a WCM Wcm
h yields

dim (N (Wcm
h)) = 0 (there are few exceptions to that). Contrarily, it is important to

note that if δh > 1 (which again means the graph corresponding to Wcm
h has more than

one disconnected components), the weight conditions of this WCM can be broken while

dim (N (Wcm
h)) > 0. This situation occurs if ∃ Gdisc

h,k1 and Gdisc
h,k2 , 1 6 k1, k2 6 δh, s.t.

96

dim
(
N
(
M(Gdisc

h,k1)
))

= 0 while dim
(
N
(
M(Gdisc

h,k2)
))

> 0. Thus, breaking the weight con-

ditions of such a WCM by making dim (N (Wcm
h)) = 0 (if possible) is, albeit sufficient, not

necessary. A conceptually-similar observation will be presented in the next subsection. We

present Example 19 to illustrate Theorem 7 as well as this discussion.

Example 19. Consider the (6, 0, 0, 9, 0) GAST (γ = 3) over GF(4), where GF(4) =

{0, 1, α, α2} and α is a primitive element (a root of the primitive polynomial ρ(x) = x2+x+1,

i.e., α2 = α + 1), that is shown in Fig. 4.7(a). The matrix A of this configuration is:

v1 v2 v3 v4 v5 v6

A =

c1

c2

c3

c4

c5

c6

c7

c8

c9



w1,1 α 0 0 0 0
0 α2 α2 0 0 0
0 0 1 α2 0 0
0 0 0 α2 1 0
0 0 0 0 1 1
w6,1 0 0 0 0 α

0 α 0 1 0 0
α 0 0 0 α2 0
0 0 1 0 0 1



.

For the original configuration, we assume that w1,1 = w6,1 = 1. The unlabeled GAST

tree of this configuration reveals that it is neither u-symmetric nor same-size-WCMs. The

configuration has 10 WCMs (of different sizes), extracted by removing the rows of the

following groups of CNs from A: {(c1, c3, c5), (c1, c4, c9), (c2, c4, c6), (c2, c5), (c2, c8), (c3, c6),

(c3, c8), (c5, c7), (c6, c7), (c7, c8, c9)}. We index these groups of CNs (and consequently, the

resulting WCMs) by h, 1 6 h 6 t = 10. The WCM of interest in this example is Wcm
2 ,

which is extracted by removing the rows of (c1, c4, c9) from A. The graph correspond-

ing to Wcm
2 , which is Gcm

2 , is shown in Fig. 4.7(b). Note that this graph has δ2 = 2

disconnected components. For the given edge weight assignment, Wcm
2 (as well as all

the remaining 9 WCMs) has unbroken weight conditions. Thus, according to Theorem 7,

dim (N (Wcm
2)) = ∑2

k=1 dim
(
N
(
M(Gdisc

2,k)
))

> 2 must be satisfied. Solving for the null

97

1

𝑣1 𝑣2

𝑣3

𝑣4 𝑣5

𝑣6

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6

𝑐7 𝑐8
𝑐9

𝑤1,1 𝛼

𝛼2

𝛼2

𝛼2

𝛼2 1

1

1

𝛼

𝑤6,1

𝛼

𝛼2

𝛼

1
1

𝑣1 𝑣2

𝑣3

𝑣4 𝑣5

𝑣6

𝑐2

𝑐3 𝑐5

𝑐6

𝑐7 𝑐8

𝛼2

𝛼2

𝛼2 1

1

𝛼

𝑤6,1

𝛼

𝛼2

𝛼

1

1 1

(a) (b)

Figure 4.7: (a) A (6, 0, 0, 9, 0) GAST for γ = 3. (b) The graph created by removing (c1, c4, c9)
from the GAST graph. GF(4) is assumed.

space of Wcm
2 yields:

N (Wcm
2) = span{[α 0 0 0 1 1]T, [0 1 1 α 0 0]T}, (4.27)

which means that dim (N (Wcm
2)) = 2, and the reason is that dim

(
N
(
M(Gdisc

2,k)
))

= 1,

∀k ∈ {1, 2}. Note that N
(
M(Gdisc

2,1)
)

= span{[α 1 1]T}, where Gdisc
2,1 is the subgraph grouping

{v1, v5, v6} in Fig. 4.7(b), while N
(
M(Gdisc

2,1)
)

= span{[1 1 α]T}, where Gdisc
2,2 is the subgraph

grouping {v2, v3, v4} in Fig. 4.7(b). Observe that the existance of the vector:

v = [α 0 0 0 1 1]T + [0 1 1 α 0 0]T = [α 1 1 α 1 1]T ∈ N (Wcm
2) (4.28)

verifies that the weight conditions of Wcm
2 are unbroken.

Now, assume that in the process of removing the GAST, we break the weight conditions

of Wcm
2 via the following set of a single edge weight change: {w6,1 : 1 → α2}. This change

results in breaking the weight conditions of Wcm
2 , i.e., @ v = [v1 v2 . . . v6] ∈ N (Wcm

2)

s.t. vf 6= 0, ∀f ∈ {1, 2, . . . , 6}. However, N (Wcm
2) = span{[0 1 1 α 0 0]T} 6= {0}, i.e.,

dim (N (Wcm
2)) = 1 (it was originally 2). This is an example of how the weight conditions of

a WCM that has a corresponding graph with δh > 1 can be broken while dim (N (Wcm
h)) > 0

(for h = 2 here). Obviously, it is possible to make another edge weight change for an edge

98

in Gdisc
2,2 to make N (Wcm

2) = {0}. However, this is by no means necessary for the GAST

removal process.

4.4.2 Breaking the Weight Conditions of Short WCMs

In this subsection, we discuss the best that can be done to break the weight conditions of a

short WCM. The following lemma states this result.

Lemma 9. The null space of a short WCM Wcm
h (a WCM that has fewer rows than columns)

after a successful removal process for the (a, b, d1, d2, d3) GAST to which this WCM belongs

satisfies the following two conditions4:

1. Its dimension is strictly more than 0, i.e., ph = dim (N (Wcm
h)) > 0.

2. For any v = [v1 v2 . . . va]T ∈ N (Wcm
h), where a is the size of the GAST, the number

of non-zero elements in v is strictly less than a, i.e., ‖v‖0 < a.

Proof. Since the number of rows is less than the number of columns in this WCM, the WCM

cannot have a full column rank. Thus, N (Wcm
h) 6= {0}, which means dim (N (Wcm

h)) > 0,

and proves the first condition in the lemma. Moreover, if a GAST is removed successfully,

this implies that each WCM in the set W associated with that GAST has broken weight

conditions. Thus, the second condition in the lemma is automatically satisfied for the short

WCM as well.

Lemma 9 further emphasizes on the fact that the weight conditions of a WCM Wcm
h can

be broken while dim (N (Wcm
h)) > 0 (i.e., N (Wcm

h) 6= {0}). One way this case can happen is

if δh > 1 (which is discussed in the previous subsection). Another way is if the WCM is short,

even with δh = 1. For many short WCMs, the reason why this case occurs is that before

breaking the weight conditions of a short WCM, it typically has ph = dim (N (Wcm
h)) > δh.

Here, we are more interested in short WCMs with δh = 1. The difference between the
4Note that Lemma 9 also applies to any WCM Wcm

h that has Gcm
h with δh > 1 and at least one of the

disconnected components having a short adjacency matrix (a very rare case).

99

two ways is that if δh > 1 and there does not exist any disconnected component having a

short adjacency matrix, we can still break the weight conditions of the WCM by making

dim (N (Wcm
h)) = 0. However, such processing is not necessary, and it would require more

edge weight changes than the minimum needed. Contrarily, if the WCM is short, it is

impossible to break the weight conditions by making dim (N (Wcm
h)) = 0, and the best we

can do is what is described in Lemma 9. The following example demonstrates Lemma 9.

Example 20. Consider the (6, 2, 2, 5, 2) GAST (γ = 3) over GF(4), where GF(4) =

{0, 1, α, α2} and α is a primitive element, that is shown in Fig. 4.8(a). The matrix A

of this configuration is:

v1 v2 v3 v4 v5 v6

A =

c1

c2

c3

c4

c5

c6

c7

c8

c9



0 w1,2 α2 0 0 0
0 0 1 1 0 0
0 0 0 α 1 0
0 0 0 0 1 1
1 0 0 0 0 α

α 0 α 0 α 0
0 α 0 α2 0 α2

0 α2 0 0 0 0
1 0 0 0 0 0



.

For the original configuration, we assume that w1,2 = α2. From Example 12, this config-

uration has 2 WCMs, extracted by removing the rows of the following groups of CNs from

A: {(c3,Osg), (c2, c4,Osg)}, where Osg is (c8, c9). We index these groups of CNs (and conse-

quently, the resulting WCMs) by h, 1 6 h 6 t = 2. The WCM of interest in this example

is Wcm
2 , which is extracted by removing the rows of (c2, c4, c8, c9) from A. The graph corre-

sponding to Wcm
2 , which is Gcm

2 , is shown in Fig. 4.8(b). Note that Wcm
2 is of size 5× 6 (a

short matrix). For the given edge weight assignment, Wcm
2 (as well as Wcm

1) has unbroken

weight conditions. Solving for the null space of Wcm
2 yields the following:

N (Wcm
2) = span{[0 1 1 α2 1 0]T, [1 1 1 0 0 α2]T}, (4.29)

100

𝑐1

𝑐2

𝑐3

𝑐4

𝑐5

𝑐6 𝑐7

𝑐8 𝑐9

𝑣1 𝑣2

𝑣3

𝑣4 𝑣5

𝑣6

𝑤1,2

𝛼2

1

1

𝛼 1

1

1

𝛼

1 𝛼 𝛼

𝛼 𝛼2

𝛼2 𝛼

𝛼2 1

𝑐1

𝑐3

𝑐5

𝑐6 𝑐7

𝑣1 𝑣2

𝑣3

𝑣4 𝑣5

𝑣6

𝑤1,2

𝛼2

𝛼 1

𝛼

1 𝛼 𝛼

𝛼 𝛼2

𝛼2 𝛼

(a) (b)

Figure 4.8: (a) A (6, 2, 2, 5, 2) GAST for γ = 3. (b) The subgraph created by removing
(c2, c4, c8, c9) from the GAST subgraph. GF(4) is assumed.

This is one of the cases where we have dim (N (Wcm
h)) > 1 (for h = 2) with δh = 1 (the

corresponding graph to Wcm
2 is fully connected). Observe also that the existance of the vector:

v = [0 1 1 α2 1 0]T + α[1 1 1 0 0 α2]T = [α α2 α2 α2 1 1]T ∈ N (Wcm
2) (4.30)

verifies that the weight conditions of Wcm
2 are unbroken.

Now, assume that in the process of removing the GAST, we break the weight conditions

of Wcm
2 via the following set of a single edge weight change: {w1,2 : α2 → α}. This change

results in breaking the weight conditions of Wcm
2 , i.e., @ v = [v1 v2 . . . v6] ∈ N (Wcm

2)

s.t. vf 6= 0, ∀f ∈ {1, 2, . . . , 6}. However, N (Wcm
2) = span{[1 0 0 α2 1 α2]T} 6= {0}, i.e.,

dim (N (Wcm
2)) = 1 (it was originally 2). This example illustrates that the weight conditions

of the short WCM can only be broken with dim (N (Wcm
2)) > 0 regardless of the edge weight

change(s) we perform.

4.4.3 The Number of Edge Weight Changes Needed

In this subsection, we discuss the minimum number of edge weight changes needed, in addi-

tion to how to select these edge weight changes in order to have a successful removal of the

problematic object. Recall that we need to break the weight conditions of all the WCMs of

101

a GAST in order to remove the GAST.

Lemma 10. The minimum number of edge weight changes (with respect to the original

configuration) needed to remove an (a, b, b2, d1, d2, d3) GAS (convert it into a non-AS, i.e., a

non-GAS) is given by:

EGAS,min = g − bvn,max + 1, (4.31)

where g =
⌊
γ−1

2

⌋
, and bvn,max is the maximum number of existing unsatisfied CNs per VN in

the GAS. A topological upper bound on that minimum is given by:

EGAS,min 6 g − d1,vn,max + 1, (4.32)

where d1,vn,max is the maximum number of existing degree-1 CNs per VN in the GAS.

Proof. The set of GASs is simply the set of absorbing sets (ASs). Thus, the proof of (4.31)

is exactly the same as the proof of EAS,min in Lemma 2.

Now, we prove the upper bound in (4.32). Recall that degree-1 CNs are always unsatisfied.

Thus, irrespective of whether the VN that has the maximum number of existing unsatisfied

CNs is the same as the VN that has the maximum number of existing degree-1 CNs or not,

the following inequality is always satisfied:

bvn,max > d1,vn,max. (4.33)

Substituting (4.33) in (4.31) gives (4.32), and completes the proof.

While theoretically a GAST can be removed by forcing a single degree > 2 CN (if any)

to be unsatisfied via a single edge weight change, this is not the strategy we follow. The

reason is that the described process can result in another GAS with a degree > 2 unsatisfied

CN (b > d1 + b2). Despite that GASs with b > d1 + b2 are generally less harmful than

GASTs, it is not preferred to remove GASTs by converting some of them into other types of

GASs. Thus, we remove a GAST by performing EGAST,min = EGAS,min edge weight changes

102

for edges connected to only degree-2 CNs (all the weights of edges connected to degree > 2

CNs remain untouched). In other words, (4.31) and (4.32) are applicable to both GASTs

and GASs. Furthermore, EGAST,min we use in Algorithm 3 is given by (4.31), which is (2.21),

and bounded by (4.32).

The upper bound in (4.32) is purely topological (determined from the unlabeled GAST),

i.e., it does not require any knowledge of b of the GAST being processed (nor bvn,max, conse-

quently). The importance of this topological bound will be illustrated shortly.

A useful definition and a subsequent corollary, which are used to simplify the process of

selecting EGAST,min edge weights to change, are proposed below.

Definition 17. A borderline VN in an (a, b, d1, d2, d3) GAST in a code with column weight

γ is a VN that is connected to exactly g =
⌊
γ−1

2

⌋
degree-1 CNs.

Corollary 3. An (a, b, d1, d2, d3) GAST that has at least one borderline VN has EGAST,min =

1, and the upper bound on EGAST,min is also 1.

Proof. A borderline VN already has the maximum number of unsatisfied CNs a VN can have

in a GAST (or in an AS in general), which is g =
⌊
γ−1

2

⌋
. Consequently, a GAST with at

least one borderline VN has:

bvn,max = d1,vn,max = g =
⌊
γ − 1

2

⌋
. (4.34)

Substituting (4.34) in (4.31) gives EGAST,min = 1. Noting that bvn,max = d1,vn,max proves that

the upper bound is also 1 (by substituting in (4.32)).

Remark 19. Lemma 10, Corollary 3, and the discussion below give the minimum number of

edge weight changes in addition to the specification of which edge weights need to be changed

in order to remove a GAST. However, they do not determine what these particular changes

should be, i.e., they do not specify the new values of the edge weights to be changed. Specifying

the new values of the edge weights is performed by the WCM framework via checking the null

103

spaces of all WCMs of the GAST being processed, and making sure that all the WCMs have

broken weight conditions after the edge weight changes (see also Theorem 3, Algorithm 3, and

Example 21). This justification is the reason why the word “properly” is used to describe

the edge weight changes in this subsection.

It can be concluded from Corollary 3 that any degree-2 unsatisfied CN connected to a

borderline VN results in an object that is not a GAST. Thus, assuming that the object being

processed is identified to be a GAST via the WCM framework (at least one of its WCMs

has unbroken weight conditions), we select the edge weights to be changed based on the

following two cases5:

1. If the GAST has at least one borderline VN (EGAST,min = 1), then we properly change

the weight of an edge connected to a degree-2 CN connected to any of the borderline

VNs. If every VN in the GAST is borderline, then we change the weight of an edge

connected to any degree-2 CN.

2. If the GAST does not have any borderline VNs (EGAST,min > 1), then we determine

the VN(s) that has (have) the maximum number, d1,vn,max, of degree-1 CNs connected

to it (them). Then we properly change the weights of a maximum of (g−d1,vn,max +1)

edges connected to different degree-2 CNs connected to a particular VN of those having

d1,vn,max neighboring degree-1 CNs.

To relate the above analysis to the WCMs, recall that every CN in a GAST has a

corresponding row in the matrix A of this GAST. The GAST is removed by breaking the

weight conditions of all its WCMs. To achieve this, we operate on a set of rows in A, that

has the minimum cardinality and its rows correspond to degree-2 CNs, with the property

that every WCM has at least one row in that set. Any set of (g − d1,f + 1) rows in A

satisfies the stated property if they correspond to degree-2 CNs connected to the same VN,
5Note that these two items are for a stand-alone GAST. It happens in few cases that we need more than

the minimum number of edge weight changes to remove a GAST because of previously removed GASTs that
share edges with the GAST being processed (or other reasons).

104

vf , f ∈ {1, 2, . . . , a}, where d1,f is the number of degree-1 CNs connected to VN vf . The

reason is that we cannot together remove (g−d1,f +1) rows of degree-2 CNs connected to VN

vf from A to extract a WCM since the resulting matrix then will not be a valid Wz. Thus,

a set of (g − d1,vn,max + 1) rows of degree-2 CNs connected to the same VN that achieves

d1,vn,max is indeed a set of minimum cardinality with the property that every WCM has at

least one row in that set. Consequently, the topological upper bound in (4.32) provides

the cardinality of that set of rows satisfying the stated property. Properly operating on a

maximum of (g − d1,vn,max + 1) weights in these rows (only one weight per row) is what is

needed to remove the GAST. Examples 21 and 22 illustrate the process performed by the

WCM framework to remove a stand-alone GAST.

Remark 20. Typically, we only need to perform (g − bvn,max + 1) 6 (g − d1,vn,max + 1) edge

weight changes to remove the GAST. When bvn,max 6= d1,vn,max, the number of WCMs with

unbroken weight conditions becomes strictly less than t, and only (g − bvn,max + 1) rows are

enough to establish a set of minimum cardinality with the property that every WCM with

unbroken weight conditions has at least one row in that set.

Example 21. We again discuss the (6, 0, 0, 9, 0) GAST (γ = 3) in Fig. 4.7(a), with w1,1 =

w6,1 = 1 (see Example 19 for how the 10 WCMs of this GAST are extracted). Since bvn,max =

d1,vn,max = 0, (4.31) gives EGAST,min =
⌊

3−1
2

⌋
− 0 + 1 = 2 (same as the upper bound). Given

that all VNs have 0 degree-1 neighboring CNs, any VN can be selected. Suppose that v1 is

selected. Each of the 10 WCMs has at least one of the two rows corresponding to c1 and

c6 (both are connected to v1) in A. Thus, we consider the following two sets of edge weight

changes for w1,1 and w6,1 (cardinality 2). The first set is {w1,1 : 1→ α,w6,1 : 1→ α}. Using

this set of edge weight changes, the null spaces of the 10 WCMs become:

N (Wcm
1) = N (Wcm

3) = N (Wcm
4) = N (Wcm

6) = N (Wcm
8) = N (Wcm

9) = {0},

N (Wcm
2) = span{[0 1 1 α 0 0]T}, and

N (Wcm
5) = N (Wcm

7) = N (Wcm
10) = span{[1 1 1 α 1 1]T}. (4.35)

105

Clearly, the GAST is not removed as there are 3 WCMs with unbroken weight conditions:

Wcm
5 , Wcm

7 , and Wcm
10 . The second set is {w1,1 : 1 → α,w6,1 : 1 → α2}. Using this set of

edge weight changes, the null spaces of the 10 WCMs become:

N (Wcm
1) = N (Wcm

3) = N (Wcm
4) = N (Wcm

5) = N (Wcm
6) = N (Wcm

7)

= N (Wcm
8) = N (Wcm

9) = N (Wcm
10) = {0} and

N (Wcm
2) = span{[0 1 1 α 0 0]T}, (4.36)

which means that the GAST is successfully removed as the 10 WCMs have broken weight

conditions. As a result, it can be concluded that properly identifying which edge weights to

change is important but not enough. Checking the null spaces of all WCMs is what determines

which set of edge weight changes is sufficient for a successful GAST removal.

Now, consider the case of w1,1 = α and w6,1 = 1 for the original configuration (i.e., before

any removal attempt). The configuration in this case is a (6, 1, 0, 9, 0) GAST with bvn,max = 1

and d1,vn,max = 0. Thus, (4.31) gives EGAST,min = 1, while the upper bound is 2 from (4.32).

The null spaces of the 10 WCMs are:

N (Wcm
1) = span{[α 1 1 α 1 1]T},

N (Wcm
2) = span{[α 0 0 0 1 1]T, [0 1 1 α 0 0]T}, and

N (Wcm
3) = N (Wcm

4) = N (Wcm
5) = N (Wcm

6) = N (Wcm
7)

= N (Wcm
8) = N (Wcm

9) = N (Wcm
10) = {0}. (4.37)

Only 2 WCMs, Wcm
1 and Wcm

2 , have unbroken weight conditions. Both of them share the

row corresponding to c6. Consequently, only one edge weight change is needed to break the

weight conditions of the 2 WCMs and remove the object (EGAST,min is achieved). A set of

a single edge weight change, e.g., {w6,1 : 1 → α2}, is sufficient to perform the removal (see

also Remark 20).

106

Example 22. We discuss the (6, 2, 2, 5, 2) GAST (γ = 3) in Fig. 4.8(a), with w1,2 = α2 (see

Example 20 for how the 2 WCMs of this GAST are extracted). Since bvn,max = d1,vn,max = 1,

(4.31) gives EGAST,min = 1 (same as the upper bound). Either v1 or v2 can be selected as

both are borderline VNs. Suppose that v2 is selected. Each of the 2 WCMs has the row of c1

(see Example 20). Applying the set of a single edge weight change, {w1,2 : α2 → α}, yields

the following null spaces:

N (Wcm
1) = {0} and N (Wcm

2) = span{[1 0 0 α2 1 α2]T}, (4.38)

which means that the GAST is successfully removed.

4.5 Removing Oscillating Sets to Achieve More Gain

Now that we have presented the in-depth analysis of the baseline WCM framework, we

are ready to introduce an extension to the framework. In particular, in this section, we

discuss a new set of detrimental objects, namely oscillating sets of type two (OSTs), that

are the second-order cause of the error floor of NB-LDPC codes with even column weights

over asymmetric channels. We show how to remove OSTs using the WCM framework. In

the simulation results section, we will show that performing another optimization phase that

addresses OSTs, after the GASTs removal phase, secures up to nearly 2.5 orders of magnitude

overall performance gain in the error floor region over practical (asymmetric) Flash channels.

4.5.1 Defining OSs and OSTs

Before we introduce an oscillating set (OS), we define an oscillating VN.

Definition 18. Consider a subgraph induced by a subset V of VNs in the Tanner graph of

an NB-LDPC code. Set all the VNs in V to values ∈ GF(q)\{0} and set all other VNs to 0.

A VN in V is said to be an oscillating VN if the number of its neighboring satisfied CNs

107

equals the number of its neighboring unsatisfied CNs for some set of VN values. The set of

all oscillating VNs in V is referred to as S.

It is clear that for codes with fixed column weights (fixed VN degrees), there can exist

an oscillating VN only under the condition that the column weight γ is even. Based on

Definition 18, we define the oscillating set.

Definition 19. Consider a subgraph induced by a subset V of VNs in the Tanner graph of

an NB-LDPC code. Set all the VNs in V to values ∈ GF(q)\{0} and set all other VNs to 0.

The set V is said to be an (a, b, b2, d1, d2, d3) oscillating set (OS) over GF(q) if and only

if the size of V is a, the number of unsatisfied (resp., degree-2 unsatisfied) CNs connected to

V is b (resp., b2), the number of degree-1 (resp., 2 and > 2) CNs connected to V is d1 (resp.,

d2 and d3), the set of oscillating VNs S ⊆ V is not empty, and each VN (if any) in V \ S

is connected to strictly more satisfied than unsatisfied neighboring CNs, for some set of VN

values.

Recall from Chapter 3 that O (resp., T and H) is the set of degree-1 (resp., 2 and > 2)

CNs connected to V .

The unlabeled OS is defined in a way similar to the unlabeled GAS except for that

Condition 2 in Definition 6 is replaced by “Each VN in V has a number of neighbors in

(T ∪H) that is at least the same as its number of neighbors in O.” Moreover, Lemma 3 can

be changed to suit OSs by referring to the unlabeled OS instead of the unlabeled GAS in

the topological conditions, and by using the following equation instead of (3.2) in the weight

conditions:

(
`−b∑
i=1

F (wi,j)
)
>

(
b∑

k=1
F (dk,j)

)
. (4.39)

Note that the equality in (4.39) must hold for at least one VN in V . We also define an

oscillating set of type two (OST) as follows.

108

𝑣1 𝑣2

𝑣3

𝑣4

𝑣5 𝑣6

𝑣7

𝑣8

𝑣1
𝑣2

𝑣3

𝑣4 𝑣5

𝑣6

(a) (b)

Figure 4.9: (a) An (8, 4, 3, 13, 1) OST for γ = 4. (b) A (6, 6, 2, 11, 0) OST for γ = 4.
Appropriate non-binary edge weights are assumed. Unlabeled OSTs are reached by setting
all the weights in the configurations to 1.

Definition 20. An OS that has d2 > d3 and all the unsatisfied CNs connected to it ∈ (O∪T)

(having either degree 1 or degree 2), is defined as an (a, b, d1, d2, d3) oscillating set of type

two (OST). In a way similar to the unlabeled OS, we also define the (a, d1, d2, d3) unlabeled

OST.

If hard decision, majority rule decoding, e.g., Gallager B decoding [1], is assumed, an

oscillating VN in error receives the exact same number of “stay” and “change” messages.

This observation makes it harder for the decoder to correct it compared with a VN with

more neighboring unsatisfied than satisfied CNs. Over aggressively asymmetric channels,

oscillating VNs in error are even less likely to be corrected in many cases under soft decision

decoding because of the high error magnitudes. Based on our extensive simulations, OSTs

typically result in between 5% and 10% of the errors of NB-LDPC codes with even γ in

the error floor region over practical (asymmetric) Flash channels, making OSTs the second-

order cause, after GASTs, of the error floor in such channels. As we shall see in Section 4.6,

removing OSTs from the Tanner graphs of NB-LDPC codes offers about 0.5 of an order of

magnitude or more additional performance gain.

109

Fig. 4.9(a) shows an (8, 4, 3, 13, 1) OST that has S = {v1}. Fig. 4.9(b) shows a

(6, 6, 2, 11, 0) OST that has S = {v2, v3, v4, v5}. Some OSTs have underlying GASTs as sub-

graphs, while others do not. For example, if the VN v1 is eliminated from the (8, 4, 3, 13, 1)

OST in Fig. 4.9(a), the underlying object is a (7, 4, 3, 11, 1) GAST (the two CNs shaded in

red will be degree-1 unsatisfied CNs as a result of the elimination of v1). Contrarily, the

(6, 6, 2, 11, 0) OST in Fig. 4.9(b) does not have an underlying GAST.

4.5.2 How to Remove OSTs Using WCMs

Before we propose the lemma that discusses the removal of OSTs, we need to state several

auxiliary results.

Lemma 11. Consider an (a, d1, d2, d3) unlabeled OST with its sets T and H. A CN c ∈ T

can be unsatisfied in the resulting OST (with proper edge labeling) resulting in b > d1 if

and only if the two neighboring VNs of c (with respect to this unlabeled OST) each has the

property that strictly more than γ
2 of its neighboring CNs belong to (T ∪ H).

Proof. The proof follows the same logic as the proof of Theorem 1.

Lemma 12. Given an (a, d1, d2, d3) unlabeled OST, the maximum number of unsatisfied

CNs, bo_max, in the resulting OST after edge labeling is upper bounded by:

bo_max 6 d1 + bo_ut, where (4.40)

bo_ut =
⌊1

2

(
a
(
γ

2

)
− d1

)⌋
. (4.41)

Proof. The proof follows the same logic as the proof of Theorem 2. The main equation in

the proof is:

bo_ut =
a∑

f=1

[
γ

2 − bo_up,f

]
= a

(
γ

2

)
− (d1 + bo_ut) , (4.42)

110

where bo_ut is the upper bound on the maximum number of degree-2 unsatisfied CNs the

resulting OST can have after labeling, and bo_up,f is the number of the already-unsatisfied

CNs connected to VN vf , f ∈ {1, 2, . . . , a}, updated by what has been done for all the VNs

processed prior to VN vf .

The following example illustrates Lemmas 11 and 12.

Example 23. Both configurations in Fig. 4.9 can have degree-2 unsatisfied CNs in the

resulting OSTs. For the (8, 3, 13, 1) unlabeled OST, bo_ut = 6 (1 of these 6 CNs is unsatisfied

in the (8, 4, 3, 13, 1) OST in Fig. 4.9(a)), while for the (6, 2, 11, 0) unlabeled OST, bo_ut = 5

(4 of these 5 CNs are unsatisfied in the (6, 6, 2, 11, 0) OST in Fig. 4.9(b)). The upper bound

of bo_max is achieved for both.

For a given (a, b, d1, d2, d3) OST, let Zo be the set of all (a, b′o, d1, d2, d3) GASTs/OSTs

with d1 6 b′o 6 bo_max, which have the same unlabeled GAST/OST as the original OST.

Here, bo_max is the largest allowable number of unsatisfied CNs for these configurations.

Definition 21. An (a, b, d1, d2, d3) OST is said to be removed from the Tanner graph of

an NB-LDPC code if and only if the resulting object (after edge weight processing) /∈ Zo.

We thus augment the code optimization process for asymmetric channels to consist of

two phases. The first phase, as before, focuses on the removal of GASTs, and the second

phase focuses on the removal of OSTs. The ordering of the phases is critical because of

the following. While it is allowed to remove a GAST by converting it to an OST dur-

ing the first phase, it is not allowed to remove an OST by converting it into a GAST

during the second phase because GASTs, not OSTs, are the principal cause of the error

floor. This is the reason why the set Zo is the set of all (a, b′o, d1, d2, d3) GASTs/OSTs with

d1 6 b′o 6 bo_max. For example, to remove the (6, 6, 2, 11, 0) OST in Fig. 4.9(b), the configura-

tion needs to be converted into an object /∈ {(6, 2, 2, 11, 0) GAST, (6, 3, 2, 11, 0) GAST/OST,

(6, 4, 2, 11, 0) GAST/OST, (6, 5, 2, 11, 0) OST, (6, 6, 2, 11, 0) OST, (6, 7, 2, 11, 0) OST} (this

is because d1 = 2 and bo_max = d1 + bo_ut = 7).

111

For a given OST, define a matrix Wz
o to be the matrix obtained by removing b′o, d1 6

b′o 6 bo_max, rows corresponding to CNs ∈ (O ∪ T) from the matrix A, which is the OST

adjacency matrix. These b′o CNs can simultaneously be unsatisfied under some edge labeling

that produces a GAST/an OST which has the same unlabeled GAST/OST as the given

OST. Let Uo be the set of all matrices Wz
o. Each element ∈ Zo has one or more matrices

∈ Uo.

Definition 22. For a given (a, b, d1, d2, d3) OST and its associated adjacency matrix A and

its associated set Zo, we construct a set of to matrices as follows:

1. Each matrix Wo_cm
h , 1 6 h 6 to, in this set is an (` − bo_cm

h) × a submatrix, d1 6

bo_cm
h 6 bo_max, formed by removing different bo_cm

h rows from the ` × a matrix A

of the OST. These bo_cm
h rows to be removed correspond to CNs ∈ (O ∪ T) that can

simultaneously be unsatisfied under some edge labeling that produces a GAST/an OST

which has the same unlabeled GAST/OST as the given OST.

2. Each matrix Wz
o ∈ Uo, for every element ∈ Zo, contains at least one element of the

resultant set as its submatrix.

3. This resultant set has the smallest cardinality, which is to, among all the sets which

satisfy Conditions 1 and 2 stated above.

We refer to the matrices in this set as oscillating weight consistency matrices

(OWCMs), and to this set itself as Wo.

In a way similar to bet in GASTs, we also define bo_et 6 bo_ut for OSTs such that bo_max =

d1 + bo_et. The following lemma addresses the removal of OSTs via their OWCMs. In other

words, the lemma shows how the WCM framework can be customized to remove OSTs.

Lemma 13. The necessary and sufficient processing needed to remove an (a, b, d1, d2, d3)

OST, according to Definition 21, is to change the edge weights such that for every OWCM

112

Wo_cm
h ∈ Wo, there does not exist any vector with all its entries 6= 0 in the null space of that

OWCM. Mathematically, ∀h:

If N (Wo_cm
h) = span{x1,x2, . . . ,xph}, then @ r = [r1 r2 . . . rph]T for

v = r1x1 + r2x2 + · · ·+ rphxph = [v1 v2 . . . va]T s.t. vj 6= 0, ∀j ∈ {1, 2, . . . , a}, (4.43)

where ph is the dimension of N (Wo_cm
h). Computations are performed over GF(q).

Proof. The proof follows the same logic as the proof of Theorem 3.

An analysis similar to the one in Section 4.3 can be performed to compute the number

of OWCMs in the set Wo, with few changes (e.g., bo_et should be used instead of bet). Now,

we propose the minimum number of edge weight changes needed to remove an OST from

the Tanner graph of an NB-LDPC code with even column weight.

Corollary 4. The minimum number of edge weight changes (with respect to the original

configuration) needed to remove an (a, b, b2, d1, d2, d3) OS (convert it into a non-OS/non-

AS) is given by:

EOS,min = 1 6
γ

2 − d1,vn,max + 1, (4.44)

where d1,vn,max is the maximum number of existing degree-1 CNs per VN in the OS.

Proof. The proof follows the same logic as the proof of Lemma 10 (see also Lemma 2), with
γ
2 replacing g. Note that from the definition of an OS, at least one of its VNs has exactly γ

2

neighboring unsatisfied CNs. Thus,

EOS,min = γ

2 − bvn,max + 1 = γ

2 −
γ

2 + 1 = 1, (4.45)

where bvn,max is the maximum number of existing unsatisfied CNs per VN in the OS, which

equals γ
2 for any OS.

113

Algorithm 4 Optimizing NB-LDPC Codes with Even Column Weights
1: Apply Algorithm 3 to optimize the NB-LDPC code by removing the detrimental GASTs.
2: Using initial simulations and combinatorial techniques (e.g., [6]) for the output code of

Step 1, determine the set of OSTs to be removed.
3: Apply a customized version of Algorithm 3 to further optimize the NB-LDPC code

generated in Step 1 by removing the detrimental OSTs.

As in the case of GASTs, since we only change the weights of edges connected to degree-2

CNs to remove OSTs, (4.44) also holds for EOST,min. Moreover, a topologically-oscillating

VN in an OST in a code with even column weight γ is connected to exactly γ
2 degree-1 CNs.

An OST with such a VN has the upper bound on EOST,min equal to 1.

The following simple algorithm illustrates the procedure we follow to optimize NB-LDPC

codes with even column weights for usage over asymmetric channels.

A crucial check to make while removing an OST is that the edge weight changes to be

performed do not undo the removal of any of the already removed GASTs nor OSTs.

4.6 Applications of the WCM Framework

In this section, we apply the WCM framework to optimize NB-LDPC codes with different

structures and for various applications, demonstrating significant performance gains in the

error floor region. We used a finite-precision, fast Fourier transform based q-ary sum-product

algorithm (FFT-QSPA) LDPC decoder [52], which performs a maximum of 50 iterations

(except for PR channel simulations), and it stops if a codeword is reached sooner.

In the following items, we provide some details about the performed simulations and

about our choices for the simulated NB-LDPC codes:

• We provide simulation results over practical storage channels, which are the main focus

of this work. In particular, we present results over asymmetric Flash channels (with

3 and 6 voltage reads) and a 1-D MR channel with intrinsic memory (a PR channel).

As an additional example, we also present results over the AWGN channel. These

results collectively demonstrate the effectiveness of the WCM framework in optimizing

114

NB-LDPC codes for various channels with different characteristics.

• All our codes are circulant-based codes. The unoptimized NB block codes are chosen

to be protograph-based codes as in [8] and [9] (more details about the construction

are provided below). The reasons are that NB protograph-based codes enable faster

encoding and decoding, and they have good performance [8, 9, 40].

• We provide results for NB-LDPC codes with various column weights (particularly γ ∈

{3, 4, 5}). The justification is that we want to demonstrate that the WCM framework

typically offers at least 1 order (and up to almost 2.5 orders) of magnitude performance

gain in the error floor region for NB-LDPC codes with initial average, good, and very

good error floor performance (average in the case of γ = 3, good in the case of γ = 4,

and very good in the case of γ = 5).

• Details about the constructions and the parameters of the SC codes we simulate are

provided in Subsection 4.6.4.

All the unoptimized NB-LDPC codes we are using in Subsections 4.6.1, 4.6.2, and 4.6.3

are regular non-binary protograph-based LDPC (NB-PB-LDPC) codes. These codes are

constructed as follows. First, a binary protograph matrix Hp is designed. Then, (the Tanner

graph of) Hp is lifted via a lifting parameter ζ to create (the Tanner graph of) the binary

image of H, which is Hb. The lifting process means that every 1 in Hp is replaced by a ζ× ζ

circulant matrix, while every 0 (if any) in Hp is replaced by a ζ × ζ all-zero matrix. The

circulant powers are adjusted such that the unlabeled Tanner graph of the resulting code

does not have cycles of length 4. Then, the 1’s in Hb are replaced by non-zero values ∈

GF(q) to generate H. These unoptimized codes are high performance NB-PB-LDPC codes

(see also [8] and [9], in addition to Chapter 3). Note that the WCM framework works for

any regular, or even irregular with fixed column weight, NB-LDPC codes. Moreover, the

WCM framework also works for any GF size, q, and for any code rate.

115

Remark 21. While the WCM framework works for NB-LDPC codes defined over any GF

size, q, the performance gains achieved are expected to be relatively smaller for higher GF

sizes, e.g., q > 32 (over all channels). The reason is that the fraction of edge weight assign-

ments under which a configuration is a detrimental GAST becomes smaller as q increases

(see also [10]), which means NB-LDPC codes with higher GF sizes naturally have improved

error floor performance. However, increasing the GF size dramatically increases the decoding

complexity, as the decoding complexity either has O(q2) or O(q log2(q)) [52]. Consequently,

the approach of solely increasing the GF size in order to mitigate the error floor is not advised

for storage systems because of complexity constraints. Note that NB-LDPC codes with γ = 2

can only provide good error floor performance if the GF size is large. This discussion is the

reason why in our simulations, we work with various column weights (γ ∈ {3, 4, 5}), but we

keep the GF size relatively small (q ∈ {4, 8}). In summary, we provide NB-LDPC codes

with superior error floor performance, achieved via the WCM framework, without a dramatic

increase in the decoding complexity. An NB-LDPC decoder implementation customized for

storage application, which uses a GF size q = 8, is provided in [75].

In this chapter, RBER is the raw bit error rate, which is the number of raw (uncoded)

data bits in error divided by the total number of raw (uncoded) data bits read [49]. UBER

is the uncorrectable bit error rate, which is a metric for the fraction of bits in error out of all

bits read after the error correction is applied via encoding/decoding [49]. One formulation

of UBER, as recommended by industry, is the frame error rate (FER) divided by the sector

size in bits.

4.6.1 Optimizing Column Weight 5 Codes

In this subsection, we use the WCM framework to optimize NB-LDPC codes with column

weight 5 for the first time. Column weight 5 codes generally guarantee better performance

compared with column weight 3 and 4 codes in the error floor region. We show in this

subsection, that more than 1 order of magnitude performance gain is still achievable via

116

RBER
0.005 0.006 0.007 0.008

U
B

ER

10-15

10-14

10-13

10-12

10-11

10-10

 Unoptimized
 WCM framework

Figure 4.10: Simulation results over the NLM channel with 3 reads for Code 4.1 (unopti-
mized) and Code 4.2 (WCM framework). The two codes have γ = 5.

the WCM framework for such codes despite their improved error floor performance. The

channel used in this subsection is a practical Flash channel: the normal-Laplace mixture

(NLM) Flash channel [24]. Here, we use 3 reads, and the sector size is 512 bytes.

In the NLM channel, the threshold voltage distribution of sub-20nm multi-level cell

(MLC) Flash memories is carefully modeled. The four levels are modeled as different NLM

distributions, incorporating several sources of error due to wear-out effects, e.g., program-

ming errors, thereby resulting in significant asymmetry [24]. Furthermore, the authors pro-

vided accurate fitting results of their model for program/erase (P/E) cycles up to 10 times

the manufacturer’s endurance specification. We implemented the NLM channel based on

the parameters described in [24].

In this subsection, Code 4.1 is an NB-PB-LDPC code defined over GF(4), with block

length = 6,724 bits, rate ≈ 0.88, and γ = 5. Code 4.2 is the result of optimizing Code 4.1

for the asymmetric NLM channel by attempting to remove the GASTs in Table 4.3 using

the WCM framework.

Fig. 4.10 shows that more than 1 order of magnitude performance gain is achieved via

optimizing Code 4.1 to arrive at Code 4.2 using the WCM framework. The figure also shows

that using the WCM framework, an UBER of approximately 4.53 × 10−15 is achievable at

117

Table 4.3: Error profile of Codes 4.1 and 4.2 over the NLM channel with 3 reads, RBER
≈ 4.69 × 10−3, UBER (unoptimized) ≈ 6.31 × 10−14, and UBER (WCM framework) ≈
4.53× 10−15 (see Fig. 4.10).

Error type Count
Code 4.1 Code 4.2

(4, 8, 8, 6, 0) 18 0
(6, 8, 8, 11, 0) 9 0
(6, 10, 8, 11, 0) 11 0
(7, 5, 5, 15, 0) 4 0
(7, 9, 9, 13, 0) 4 0
(7, 10, 10, 9, 2) 7 1
(8, 6, 6, 17, 0) 23 0
(8, 8, 6, 17, 0) 15 0

Other 9 7

RBER of approximately 4.69×10−3 on the NLM Flash channel (an aggressively asymmetric

channel) with only 3 reads.

Table 4.3 shows the error profiles of Codes 4.1 and 4.2 over the NLM channel with 3 reads.

The table reveals that 33% of the errors in the error profile of Code 4.1 are non-elementary

GASTs. The table also demonstrates the effectiveness of the WCM framework in removing

the detrimental objects. Two of the GASTs that strongly contribute to the error profile of

Code 4.1 are (4, 8, 8, 6, 0) and (8, 8, 6, 17, 0) GASTs, which are shown in Fig. 4.11. The key

difference between GASTs in codes with γ = 5 (or 6) and GASTs in codes with γ ∈ {3, 4} is

that for the former GASTs, g = 2, while for the latter GASTs, g = 1. In other words, a VN

in an object in a code with γ = 5 (or 6) can be connected to a maximum of 2 unsatisfied CNs

while the object is classified as a GAST (see also Fig. 4.11 and Example 13); for γ ∈ {3, 4},

this maximum is 1.

4.6.2 Achieving More Gain by Removing Oscillating Sets

In this subsection, we demonstrate the additional gains that can be achieved for NB-LDPC

codes with even column weights (particularly γ = 4) over practical asymmetric channels by

removing OSTs as described in Section 4.5.

First, we present results for the NLM channel described in the previous subsection (still

118

(a) (b)

Figure 4.11: (a) A (4, 8, 8, 6, 0) GAST for γ = 5. (b) An (8, 8, 6, 17, 0) GAST for γ = 5.
Appropriate non-binary edge weights are assumed.

with 3 reads). Code 4.3 is an NB-PB-LDPC code defined over GF(4), with block length

= 8,480 bits, rate ≈ 0.90, and γ = 4. Code 4.4 is the result of optimizing Code 4.3

by attempting to remove the dominant GASTs (4, 4, 4, 6, 0), (6, 4, 4, 10, 0), (6, 5, 5, 8, 1), and

(8, 4, 2, 15, 0) using the WCM framework (see Chapter 3). Code 4.5 is the result of optimizing

Code 4.4 for the asymmetric NLM channel by attempting to remove the OSTs in Table 4.4

using the WCM framework. The performance curves of Code 4.3 (unoptimized) and Code 4.4

(WCM framework, no OSTs removal) in Fig. 4.12 were introduced in Chapter 3.

It is demonstrated by Fig. 4.12 that removing the dominant OSTs to generate Code 4.5

results in nearly 0.5 of an order of magnitude gain in performance over Code 4.4 (for which

only the dominant GASTs are removed) even though Code 4.4 is highly optimized (it out-

performs Code 4.3 by about 2 orders of magnitude). Thus, applying Algorithm 4 to remove

OSTs after removing GASTs raises the gain to almost 2.5 orders of magnitude for Code 4.5

compared with the unoptimized code (Code 4.3) over the NLM channel. Table 4.4 shows

the significant reduction in the number of OSTs in the error profile of Code 4.5 compared

with Code 4.3.

119

RBER
0.004 0.005 0.006 0.007 0.008

UB
ER

10-14

10-13

10-12

10-11

10-10

10-9

10-8

 Unoptimized
 WCM framework, no OSTs removal
 WCM framework, with OSTs removal

Figure 4.12: Simulation results over the NLM channel with 3 reads for Code 4.3 (unopti-
mized), Code 4.4 (WCM framework, no OSTs removal), and Code 4.5 (WCM framework,
with OSTs removal). The three codes have γ = 4.

RBER
0.006 0.007 0.008 0.009 0.01

UB
ER

10-14

10-13

10-12

10-11

10-10

 Unoptimized
 WCM framework, no OSTs removal
 WCM framework, with OSTs removal

Figure 4.13: Simulation results over the CHMM channel with 3 reads for Code 4.6 (unop-
timized), Code 4.7 (WCM framework, no OSTs removal), and Code 4.8 (WCM framework,
with OSTs removal). The three codes have γ = 4.

Second, we present results for another asymmetric Flash channel: the Cai-Haratsch-

Mutlu-Mai (CHMM) Flash channel [25]. The authors developed a model in [25] for the

threshold voltage distribution that is suitable for 20nm and 24nm MLC Flash memories. The

four levels are modeled as different Gaussian distributions that are shifted and broadened

with the increase in P/E cycles, resulting in limited asymmetry relative to the NLM channel.

We implemented the CHMM channel based on the data and the model provided in [25]. In

120

Table 4.4: OSTs error profile of Codes 4.3 and 4.5 over the NLM channel with 3 reads,
RBER ≈ 3.75× 10−3, UBER (unoptimized) ≈ 6.98× 10−12, and UBER (WCM framework,
with OSTs removal) ≈ 3.58× 10−14 (see Fig. 4.12).

Error type Count
Code 4.3 Code 4.5

(5, 5, 5, 6, 1) 22 0
(6, 5, 4, 10, 0) 29 0
(8, 4, 2, 12, 2) 24 0
(8, 5, 3, 13, 1) 25 0

Table 4.5: OSTs error profile of Codes 4.6 and 4.8 over the CHMM channel with 3 reads,
RBER ≈ 5.87× 10−3, UBER (unoptimized) ≈ 1.74× 10−12, and UBER (WCM framework,
with OSTs removal) ≈ 3.11× 10−14 (see Fig. 4.13).

Error type Count
Code 4.6 Code 4.8

(6, 5, 2, 11, 0) 29 0
(6, 6, 2, 11, 0) 11 0
(7, 5, 3, 11, 1) 34 0
(8, 4, 3, 13, 1) 15 0
(9, 4, 2, 14, 2) 11 1

this subsection, we use 3 reads, and the sector size is 512 bytes.

Here, Code 4.6 is an NB-PB-LDPC code defined over GF(4), with block length = 1,840

bits, rate ≈ 0.80, and γ = 4. Code 4.7 is the result of optimizing Code 4.6 by attempt-

ing to remove the dominant GASTs (4, 4, 4, 6, 0), (6, 4, 2, 11, 0), (6, 4, 4, 10, 0), (7, 4, 3, 11, 1),

(8, 5, 5, 12, 1), and (9, 5, 5, 14, 1) using the WCM framework (see also Chapter 3). Code 4.8

is the result of optimizing Code 4.7 for the asymmetric CHMM channel by attempting to

remove the OSTs in Table 4.5 using the WCM framework. The performance curves of

Code 4.6 (unoptimized) and Code 4.7 (WCM framework, no OSTs removal) in Fig. 4.13

were introduced in Chapter 3.

Fig. 4.13 reveals that removing the dominant OSTs to design Code 4.8 results in more

than 0.5 of an order of magnitude performance gain over Code 4.7 (for which only the

dominant GASTs are removed). Consequently, applying Algorithm 4 to remove OSTs (after

removing GASTs) raises the performance gain to more than 1.5 orders of magnitude for

Code 4.8 compared with the unoptimized code (Code 4.6) over the CHMM channel. Table 4.5

121

clarifies the significant reduction in the number of OSTs in the error profile of Code 4.8

compared with Code 4.6.

4.6.3 Effect of Soft Information in Flash Channels

In this subsection, we show the performance of NB-LDPC codes optimized by the WCM

framework over practical Flash channels with additional soft information. The NLM and

CHMM Flash channels used in this subsection are as described in the previous two subsec-

tions, except that we now consider 6 voltage reads instead of 3. The additional reads increase

the amount of soft information provided to the decoder from the Flash channel.

In the simulations of this subsection, Code 4.9 is an NB-PB-LDPC code defined over

GF(4), with block length = 3,996 bits, rate ≈ 0.89, and γ = 3. Code 4.10 is the result of

optimizing Code 4.9 for the asymmetric NLM channel (with 6 reads this time) by attempt-

ing to remove the dominant GASTs (4, 2, 2, 5, 0), (4, 3, 2, 5, 0), (5, 2, 2, 5, 1), (6, 0, 0, 9, 0),

(6, 1, 0, 9, 0), (6, 1, 1, 7, 1), (6, 2, 2, 5, 2), and (6, 2, 2, 8, 0) using the WCM framework.

Furthermore, Code 4.11 is another NB-PB-LDPC code defined over GF(4), with block

length = 3,280 bits, rate ≈ 0.80, and γ = 4. Code 4.12 is the result of optimizing

Code 4.11 for the asymmetric NLM channel (with 6 reads) by attempting to remove the

dominant GASTs (4, 4, 4, 6, 0), (6, 2, 2, 11, 0), (8, 4, 3, 13, 1), and (8, 5, 2, 15, 0) in addition to

the dominant OSTs (6, 5, 4, 10, 0), (7, 6, 4, 12, 0), (8, 4, 2, 12, 2), and (9, 4, 2, 14, 2) using the

WCM framework. We also reuse Code 4.6 in this subsection (its parameters are stated in

the previous subsection). Code 4.13 is the result of optimizing Code 4.6 for the asym-

metric CHMM channel (with 6 reads) by attempting to remove the dominant GASTs

(4, 4, 4, 6, 0), (6, 4, 4, 11, 0), and (7, 4, 3, 11, 1) in addition to the dominant OSTs (6, 5, 2, 11, 0),

(7, 5, 3, 11, 1), (7, 5, 4, 9, 2), (7, 6, 6, 8, 2), (8, 6, 2, 15, 0), and (10, 7, 5, 11, 4) using the WCM

framework.

According to our simulations, the most dominant GASTs in the error floor of the unopti-

mized codes (Codes 4.9, 4.11, and 4.6) are hardly affected by the additional soft information

122

RBER
0.002 0.003 0.004 0.005

U
B

ER

10-12

10-11

10-10

10-9

 Unoptimized
 WCM framework

Figure 4.14: Simulation results over the NLM channel with 6 reads for Code 4.9 (unopti-
mized) and Code 4.10 (WCM framework). The two codes have γ = 3.

(compare the dominant GASTs listed above for Codes 4.9, 4.11, and 4.6 with the dominant

GASTs in Table 3.1, Table 3.2, and Table 3.4, respectively). Moreover, Figures 4.14, 4.15,

and 4.16 show that the performance gains achieved by applying the WCM framework over

practical Flash channels with 6 reads are in the same range as the gains achieved over the

same channels with 3 reads. In particular, more than 1 order of magnitude gain is achieved

in Fig. 4.14, and more than 1.5 orders of magnitude (> 0.5 of an order of magnitude is due

to OSTs removal) gain is achieved in both Fig. 4.15 and 4.16. Furthermore, as in the case

of 3 reads demonstrated in Chapter 3, the more asymmetric the Flash channel is, the higher

the percentage of relevant non-elementary GASTs (b > d1 or/and d3 > 0) that appear in the

error profile of the NB-LDPC code.

The major difference between the results over practical Flash channels with 3 and 6 reads

is the gain achieved in RBER. Consider the γ = 4 codes simulated over the CHMM channel,

and assume that the target UBER is 10−13. In Fig. 4.13, Code 4.8 achieves the target UBER

at RBER ≈ 6.5 × 10−3. On the contrary, Code 4.13 achieves the target UBER at RBER

≈ 1.1× 10−2, as revealed by Fig. 4.16. Thus, using 6 reads achieves in this case about 70%

RBER gain compared with using only 3 reads. This RBER gain is directly translated into

P/E cycles gain, which means an extension in the lifetime of the Flash device. Similar gains

123

RBER
0.004 0.006 0.008 0.01 0.014 0.018

UB
ER

10-14

10-13

10-12

10-11

10-10

 Unoptimized
 WCM framework, with OSTs removal

Figure 4.15: Simulation results over the NLM channel with 6 reads for Code 4.11 (unopti-
mized) and Code 4.12 (WCM framework, with OSTs removal). The two codes have γ = 4.

are also observed for other codes over both the NLM and CHMM channels.

RBER
0.01 0.012 0.014 0.016 0.018

UB
ER

10-14

10-13

10-12

10-11

10-10

10-9

 Unoptimized
 WCM framework, with OSTs removal

Figure 4.16: Simulation results over the CHMM channel with 6 reads for Code 4.6 (un-
optimized) and Code 4.13 (WCM framework, with OSTs removal). The two codes have
γ = 4.

4.6.4 Optimizing Spatially-Coupled Codes

In this subsection, we extend the scope of the WCM framework to irregular codes with fixed

column weights (fixed VN degrees). In particular, we use the WCM framework to optimize

non-binary spatially-coupled (NB-SC) codes with γ ∈ {3, 4} for PR and AWGN channels,

showing more than 1 order of magnitude performance gain.

124

SC codes are a class of graph-based (LDPC) codes that have capacity-approaching asymp-

totic performance, and very good finite-length performance. Literature works studying the

asymptotic performance of SC codes include [31, 72, 76] for the binary case, and [73, 77]

for the non-binary case. Recent results on finite-length constructions of SC codes include

[30, 33, 36, 37, 74, 78, 79, 80, 81] for the binary case, and [32, 38, 44, 82] for the non-binary

case. Most of these finite-length constructions are based on protographs. SC codes are con-

structed by partitioning an underlying block LDPC code, and then rewiring the partitioned

components together multiple times [32, 37, 38, 80]. We demonstrate the effectiveness of

the WCM framework by optimizing the edge weights of NB-SC codes designed using two

different finite-length construction techniques (both are also based on protographs). First,

we show results for NB-SC codes partitioned using single cutting vectors (CVs) [32, 80],

and the underlying block LDPC codes used are array-based LDPC (AB-LDPC) codes [3].

More details about the CV technique can be found in [32]. Second, we show results for bet-

ter NB-SC codes, designed using the optimal overlap, circulant power optimizer (OO-CPO)

technique [37, 38, 44]. The partitioning here is derived through solving an optimization

problem aiming at minimizing the total number of detrimental objects in the protograph of

the SC code. Next, circulant powers of the underlying block code are optimized to further

reduce the number of detrimental objects in the final unlabeled Tanner graph of the SC code.

More details about the OO-CPO technique for AWGN and Flash channels can be found in

[37] and [38]. In this subsection, we focus on the case of partitioning the underlying block

code into only two component matrices (memory = 1), and all the SC codes do not have

cycles of length 4 in their unlabeled graphs. Furthermore,

• The CV and the OO-CPO techniques mentioned above are chosen to design the un-

derlying topologies (the binary images) of our NB-SC codes. SC codes designed using

the OO-CPO technique have superior performance over AWGN [37], Flash [38], and

PR channels [44].

• We use coupling lengths (see [32] and [80]) of average values (namely, 5 and 8) in

125

our SC codes. This is because for a fixed block length, the circulant size of an SC

code is inversely proportional to the coupling length. Using a very small circulant size

typically exacerbates the error floor problem.

The WCM framework requires the initial unoptimized code to have a fixed column weight

(fixed VN degree) but not necessarily a fixed row weight (fixed CN degree). NB-SC codes

that are based on the underlying structured and regular block codes incorporate irregularities

in their CN degrees (different row weights), while having fixed VN degrees [32, 37], making

them suitable for optimization using the WCM framework for various applications.

We use the PR channel described in Chapter 2. This PR channel incorporates inter-

symbol interference (intrinsic memory), jitter, and electronic noise. The normalized channel

density [50, 51, 57] is 1.4, and the PR equalization target is [8 14 2]. The receiver consists of

filtering units followed by a Bahl Cocke Jelinek Raviv (BCJR) detector [53], which is based

on pattern-dependent noise prediction (PDNP) [54], and an FFT-QSPA LDPC decoder [52].

The number of global (detector-decoder) iterations is 10, and the number of local (decoder

only) iterations is 20. Unless a codeword is reached, the decoder performs its prescribed

number of local iterations for each global iteration. More details can be found in Chapter 2.

Code 4.14 is an NB-SC code designed using the CV technique, and defined over GF(4),

with block length = 8,464 bits, rate ≈ 0.85, and γ = 3. The underlying block code is

a non-binary AB-LDPC code defined over GF(4), with circulant size = 23 and γ = 3.

The coupling length L = 8 [32], and the underlying block code is partitioned using the

optimal CV [5 11 18] (see also [32] for more details about determining the optimal CV).

Code 4.15 is the result of optimizing Code 4.14 for the PR channel by attempting to remove

the dominant BASTs (6, 0, 0, 9, 0), (6, 1, 0, 9, 0), (6, 2, 0, 9, 0), (8, 0, 0, 10, 1), and (8, 0, 0, 12, 0)

using the WCM framework.

Fig. 4.17 shows that the SC code optimized using the WCM framework (Code 4.15)

outperforms the unoptimized SC code (Code 4.14) by more than 1.5 orders of magnitude

over the PR channel. Note that this significant performance gain is achieved despite the

126

SNR (dB)
16 16.5 17 17.5 18

FE
R

10-9

10-8

10-7

10-6

10-5

10-4 Unoptimized
 WCM framework

Figure 4.17: Simulation results over the PR channel for SC Code 4.14 (unoptimized) and
SC Code 4.15 (WCM framework); both codes have γ = 3.

unlabeled Tanner graphs of Codes 4.14 and 4.15 both being designed using the optimal CV.

In the caption of Fig. 4.17 we precede the names of Codes 4.14 and 4.15 with “SC” for clarity.

In the AWGN simulations, Code 4.16 (resp., Code 4.17) is an NB-SC code designed using

the CV (resp., OO-CPO) technique, and defined over GF(8), with block length = 12,615 bits,

rate ≈ 0.83, and γ = 4. The underlying block code is defined over GF(8), with circulant size

= 29, γ = 4, and row weight = 29. The coupling length L = 5 [32, 38]. The underlying block

code of Code 4.16 is partitioned using the CV [5 11 18 24], and it is a non-binary AB-LDPC

code. The underlying block code of Code 4.17 is partitioned according to Fig. 4.18, upper

panel, and its circulant power arrangement is given in Fig. 4.18, lower panel (see also [37] and

[38]). Code 4.18 (resp., Code 4.19) is the result of optimizing Code 4.16 (resp., Code 4.17)

for the AWGN channel by attempting to remove the dominant EASs (4, 4, 4, 6, 0) (only from

Code 4.17), (6, 4, 4, 10, 0), (6, 6, 6, 9, 0), and (8, 2, 2, 15, 0) using the WCM framework.

Fig. 4.19 shows that the SC codes optimized using the WCM framework outperform the

unoptimized SC codes by more than 1 order of magnitude over the AWGN channel. Again,

note that this significant performance gain is achieved despite the unlabeled Tanner graphs

of Codes 4.16 and 4.18 (resp., Codes 4.17 and 4.19) both being designed using the same

technique. An important observation is that despite the very good performance of Code 4.17

127

6 10 18 6 0 20 5 3 5 20 4 28 4 18 14 2 7 0 8 0 0 24 0 0 0 0 0 0 0

0 1 2 27 4 5 6 7 1 28 10 11 12 24 14 15 16 17 18 26 20 26 22 23 7 25 26 27 28

0 2 4 6 8 10 12 14 8 18 20 22 24 26 28 1 3 5 7 9 11 13 15 17 19 21 23 25 27

0 3 6 9 12 15 18 21 24 8 1 4 7 10 10 16 19 22 8 28 2 25 19 11 14 17 20 23 26

Figure 4.18: Upper panel: the OO partitioning of the underlying block code of Code 4.17
(and Code 4.19). Entries with circles (resp., squares) are assigned to the first (resp., second)
component matrix. Lower panel: the circulant power arrangement for the circulants in the
underlying block code of Code 4.17 (and Code 4.19) after applying the CPO.

SNR (dB)
3.6 3.7 3.8 3.9 4

FE
R

10-10

10-9

10-8

10-7

10-6

10-5
 CV w AB, unoptimized
 CV w AB, WCM framework
 OO-CPO, unoptimized
 OO-CPO, WCM framework

Figure 4.19: Simulation results over the AWGN channel for SC Codes 4.16 (CV, unopti-
mized), 4.17 (OO-CPO, unoptimized), 4.18 (CV, WCM framework), and 4.19 (OO-CPO,
WCM framework); all codes have γ = 4.

(the unoptimized code is designed using the OO-CPO technique), optimizing Code 4.17 using

the WCM framework to reach Code 4.19 still achieves over 1 order of magnitude performance

gain. In the caption of Fig. 4.19 we precede the names of Codes 4.16, 4.17, 4.18, and 4.19

with “SC” for clarity.

4.7 Concluding Remarks

In this chapter, we have provided a theoretical analysis of a general combinatorial framework

for optimizing non-binary graph-based codes. In particular, we proved the optimality of the

128

WCM framework, and we demonstrated its efficiency by comparing the number of matrices

it operates on with that number in a suboptimal idea. We have also detailed the theory

behind the removal of a GAST; we discussed the dimension of the null space of a WCM and

the minimum number of edge weight changes needed to remove a GAST. Furthermore, we

proposed new combinatorial objects, OSTs, and showed how to extend the WCM framework

to remove them and achieve additional performance gains for NB-LDPC codes with even

column weights. On the applications side, the WCM framework was applied to different codes

over a variety of channels with different characteristics, where performance gains of at least

1 order, and up to nearly 2.5 orders, of magnitude were achieved. A notable extension of the

WCM framework was to use it for optimizing spatially-coupled codes over multiple channels.

We believe that our framework can serve as the core of an effective code optimization tool for

emerging multi-dimensional ultra-dense storage devices, e.g., 3-D Flash and two-dimensional

magnetic recording (TDMR) devices.

Acknowledgement

The majority of the material in this chapter is in [43], which has been recently accepted for

publication. The author would like to thank the collaborators in this publication.

129

CHAPTER 5

High Performance Spatially-Coupled Codes

5.1 Introduction

As with other data storage systems, magnetic recording (MR) systems operate at very low

frame error rate (FER) levels [11, 12, 14]. Consequently, to guarantee high error correction

capability in such systems, binary [12, 14] and non-binary (NB) [83, 84, 85] graph-based

codes are used. As discussed in Chapter 2, the objects that dominate the error floor region

of low-density parity-check (LDPC) codes simulated in partial-response (PR) and additive

white Gaussian noise (AWGN) systems are different in their combinatorial nature because

of the detector-decoder looping and the intrinsic memory in PR systems. In particular, in

Chapter 2, we introduced balanced absorbing sets (BASs) to characterize the detrimental

objects in the case of PR (1-D MR) channels. Moreover, the weight consistency matrix

(WCM) framework was introduced in Chapter 3 and Chapter 4 to systematically remove

any type of absorbing sets (ASs) from the graph of an NB-LDPC code.

Spatially-coupled (SC) codes [29, 30, 31] are graph-based codes constructed by parti-

tioning an underlying block code into components of the same size, then rewiring these

components multiple times [32]. In this work, the underlying block codes, and consequently

our constructed SC codes, are circulant-based (CB) codes. SC codes offer not only complex-

ity/latency gains (if windowed decoding [33] is used), but also an additional degree of freedom

in the code design; this added flexibility is achieved via partitioning of the parity check ma-

130

trix of the underlying block code. This observation makes SC codes receive an increasing

level of attention in multiple applications. Contiguous [32] and non-contiguous [34, 35, 36]

partitioning schemes were introduced in the literature for various applications. Recently, we

introduced the optimal overlap (OO), circulant power optimizer (CPO) approach to design

SC codes with superior performance for AWGN [37] and practical asymmetric Flash [38]

channels. The OO partitioning operates on the protograph to compute the optimal set of

overlap parameters that characterizes the partitioning. The CPO operates on the unlabeled

graph (edge weights are set to 1’s) to adjust the circulant powers. The objective is to min-

imize the number of instances of a common substructure that exists in several detrimental

objects. If the SC code is binary, the unlabeled graph is the final graph. If the SC code

is non-binary, the WCM framework is used to optimize the edge weights after applying the

OO-CPO approach as described in Chapter 3 and Chapter 4.

In this chapter, we propose an approach based on tools from combinatorics, optimization,

and graph theory, to construct high performance time-invariant SC codes for PR channels,

i.e., for MR devices. Unlike the case of AWGN and Flash channels (see [37] and [38]),

the common substructure, whose number of instances we seek to minimize, in the case

of PR channels can appear in different ways in the protograph of the SC code, making

the optimization problem considerably more challenging. For that reason, we introduce the

concept of the pattern, which is a configuration in the protograph that can result in instances

of the common substructure in the unlabeled graph of the SC code after lifting. We derive

an optimization problem, in which we express the weighted sum of the counts (numbers of

instances) of all patterns in terms of the overlap parameters. Then, we compute the optimal

set of overlap parameters (OO) that minimizes this sum. Moreover, we propose the necessary

modifications to the CPO algorithm presented in [37] and [38] to make it suitable for the

common substructure in the case of PR channels. We demonstrate the gains achieved by our

OO-CPO (-WCM for NB SC codes) approach through tables and performance plots that

compare our codes not only with SC codes, but also with CB block codes of the same length

131

and rate.

The rest of the chapter is organized as follows. Section 5.2 introduces the necessary pre-

liminaries. Different patterns of the common substructure are discussed in Section 5.3. The

analysis of the optimization problem is presented in Section 5.4. The needed modifications

over the baseline CPO are detailed in Section 5.5. We present our experimental results in

Section 5.6. The chapter ends with concluding remarks in Section 5.7.

5.2 Preliminaries

In this section, we review the construction of SC codes and the definitions of the objects

of interest. Here, each row (resp., column) in a parity-check matrix corresponds to a check

node (CN) (resp., variable node (VN)) in the equivalent graph of the matrix (the graph of

the code). Additionally, each non-zero entry in a parity-check matrix corresponds to an edge

in the equivalent graph of the matrix.

Since the contribution of this work (the OO-CPO) is to optimize the topology of the

underlying graph, we will focus on the unlabeled graphs and binary matrices. Labeled

graphs and non-binary matrices will be discussed as needed. Let H be the binary parity-

check matrix of the underlying regular CB code that has column weight (VN degree) γ and

row weight (CN degree) κ. This matrix consists of γκ circulants. Each circulant is of the

form σfi,j , where 0 6 i 6 γ − 1, 0 6 j 6 κ − 1, and σ is the z × z identity matrix after

cyclically shifting its columns one unit to the left. Circulant powers are fi,j, ∀i, j, and they

are defined, in addition to z, as the lifting parameters. Separable CB (SCB) codes have

fi,j = f(i)f(j). The underlying block codes we use to design SC codes in this work are CB

codes with no zero circulants and with z > κ.

The binary SC code is constructed as follows. First, H is partitioned into (m+1) disjoint

component matrices (they all have the same size as H): H0,H1, . . . ,Hm, where m is defined

as the memory of the SC code. Each component matrix Hy, 0 6 y 6 m, contains some of

the γκ circulants of H and zero circulants elsewhere such that H = ∑m
y=0 Hy. Our approach

132

𝐇SC =

𝐇0

𝐇0

𝐇0

𝐇1

𝐇1

𝐇𝑚

𝐇𝑚

𝐇𝑚

𝐇1

𝟎

𝟎

𝟎 𝟎

𝐑2 𝐑1 𝐑𝐿

Figure 5.1: The parity-check matrix of an SC code with parameters m and L.

is general; it works for any m and any γ > 3. Then, H0,H1, . . . ,Hm are coupled L times, as

shown in Fig. 5.1, to construct the binary parity-check matrix of the SC code, HSC, which

is of size γz(L+m)×κzL. A replica is any γz(L+m)×κz submatrix of HSC that contains[
HT

0 HT
1 . . . HT

m

]T
and zero circulants elsewhere. Replicas are denoted by Rρ, 1 6 ρ 6 L.

The protograph matrix (PM) of a binary CB matrix is the matrix resulting from replacing

each z × z non-zero circulant with 1, and each z × z zero circulant with 0. The PMs of H

and Hy, 0 6 y 6 m, are Hp and Hp
y , respectively, and they are all of size γ × κ. The PM of

HSC is Hp
SC, and it is of size γ(L+m)× κL. This Hp

SC also has L replicas, Rρ, 1 6 ρ 6 L,

but with 1×1 circulants. Non-binary SC (NB-SC) codes can be constructed from binary SC

codes as described in [38] and guided by Chapter 4. The NB codes we use in this work have

parity-check matrices with their elements in GF(q), where GF refers to Galois field, q = 2λ

is the GF size (order), and λ ∈ {2, 3, . . . } (in the binary case, q = 2).

A contiguous technique for partitioning H to construct HSC, namely cutting vector (CV)

partitioning, was investigated aiming to generate SC codes for PR channels [32]. Multiple

non-contiguous partitioning techniques were recently introduced in the literature, e.g., min-

imum overlap (MO) partitioning [34, 35], general edge spreading [36], in addition to OO

partitioning [37, 38]. These non-contiguous partitioning techniques significantly outperform

133

contiguous ones [34, 37, 38]. However, as far as we know, no prior work has proposed non-

contiguous techniques in the context of PR channels. The goal of this work is to derive the

effective OO-CPO approach for partitioning and lifting to construct high performance SC

codes optimized for PR channels.

Consider the graph of an LDPC code. An (a, b) AS in this graph is defined as a set of

a VNs with b unsatisfied CNs connected to it such that each VN is connected to strictly

more satisfied than unsatisfied CNs, for some set of VN values (these a VNs have non-zero

values, while the remaining VNs are set to zero) [3]. For canonical channels, e.g., the AWGN

channel, elementary ASs (EASs) are the objects that dominate the error floor region of LDPC

codes. EASs have the property that all satisfied CNs are of degree 2, and all unsatisfied CNs

are of degree 1 [10, 86]. The different characteristics of storage channels (compared with the

AWGN channel) result in changing the combinatorial properties of detrimental objects in

graph-based codes simulated over such channels (see the previous chapters).

The intrinsic memory in PR channels [11] can result in VN errors having high magnitudes,

which is typically not the case for canonical channels. These VN errors with high magnitudes

make it very difficult for unsatisfied CNs with degree > 1 to participate in correcting an AS

error. Consequently, it becomes more likely to have absorbing set errors with unsatisfied

CNs having degree > 2, which are non-elementary absorbing set errors. Moreover, the

detector-decoder looping (global iterations) help the decoder correct AS errors with higher

numbers of unsatisfied CNs. Thus, the objects that dominate the error floor region of LDPC

codes simulated over PR channels can be non-elementary, and they have a fewer number of

unsatisfied (particularly degree-1) CNs, which is the reason why they are called “balanced”.

BASs and BASs of type two (BASTs) were introduced in the previous chapters (see also [40]

and [42]) to capture such detrimental objects.

We now present the definitions of different objects of interest. Examples on these objects

of interest are in Fig. 5.2. Let g =
⌊
γ−1

2

⌋
, which is the maximum number of unsatisfied CNs

a VN can have in an AS.

134

Definition 23. Consider a subgraph induced by a subset V of VNs in the (Tanner) graph of

a code. Set all the VNs in V to values ∈ GF(q)\{0} and set all other VNs to 0. The set V is

said to be an (a, b, d1, d2, d3) balanced absorbing set of type two (BAST) over GF(q)

if the size of V is a, the number of unsatisfied CNs connected to V is b, 0 6 b 6 bag2 c, the

number of degree-1 (resp., 2 and > 2) CNs connected to V is d1 (resp., d2 and d3), d2 > d3,

all the unsatisfied CNs connected to V (if any) have either degree 1 or degree 2, and each

VN in V is connected to strictly more satisfied than unsatisfied neighboring CNs, for some

set of VN values.

While the above definition was introduced in the context of non-binary codes, as shown

in Chapter 2 and Chapter 3, it is valid in the binary case as well (set q = 2). An (a, d1, d2, d3)

unlabeled BAST (UBS) is a BAST with the weights of all edges of its graph replaced by 1’s.

All our abbreviations are short-handed for simplicity.

Definition 24. Let V be a subset of VNs in the unlabeled graph (all edge weights are 1’s) of

a code. Let O (resp., T and H) be the set of degree-1 (resp., 2 and > 2) CNs connected to

V. This graphical configuration is an (a, d1) unlabeled elementary trapping set (UTS)

if |V| = a, |O| = d1, and |H| = 0. A UTS is an unlabeled elementary absorbing set

(UAS) if each VN in V is connected to strictly more neighbors in T than in O.

A binary protograph configuration is also defined by (a, d1) for simplicity. The WCM

framework removes a BAST from the graph of an NB code by careful processing of its edge

weights (see Chapter 3 and Chapter 4 for details).

5.3 The Common Substructure and Its Patterns

The idea of focusing on a common substructure in the design of the unlabeled graph of an SC

code simplifies the optimization procedure. Additionally, minimizing the number of instances

of the common substructure significantly reduces the multiplicity of several, different types

of detrimental objects simultaneously [32, 37], which is a lot more feasible compared with

135

𝑣1 𝑣2

𝑣3 𝑣4

𝑐1

𝑐2

𝑐3

𝑐4

Figure 5.2: The UBSs of multiple detrimental BASTs and the associated common sub-
structures. Upper panel (γ = 3): two non-isomorphic (6, 0, 9, 0) UBSs, and the common
substructure is the (4, 4) UAS. Lower panel (γ = 4): an (8, 2, 15, 0) UBS and a (10, 0, 20, 0)
UBS, and the common substructure is the (4, 8) UTS. Common substructures are marked
with dashed blue and dashed brown lines. Internal connections in a cycle of length 8 are
shown in dotted green lines in the (4, 4) UAS.

operating on all these detrimental objects separately (especially for partitioning). It was

shown in [32] that the (4, 4(γ−2)) UAS/UTS, γ > 3, is the common substructure of interest

for PR channels (unlike the case for AWGN [36, 37] and Flash channels [38], where the

substructure of interest is the (3, 3(γ−2))). Fig. 1 shows UBSs of multiple detrimental BASTs

for codes with γ ∈ {3, 4} simulated over PR channels, demonstrating that the common

substructure of interest is the (4, 4(γ − 2)) UAS/UTS.

We note that the (4, 4(γ − 2)) UAS/UTS is a cycle of length 8 with no internal

connections (ignore degree-1 CNs). From [87] (see also [38]), it is known that each cycle

in the unlabeled graph (the graph of HSC) is derived from a configuration in the protograph

(the graph of the PM Hp
SC) under specific conditions on the powers of the circulants involved

in that cycle. Thus, in the OO stage, we operate on the protograph. Then, in the CPO

stage, we operate on the circulant powers.

136

Remark 22. Let x−a (resp., x−b) be an integer s.t. 2 6 x−a 6 x (resp., 0 6 x−b 6 x).

Note that a (4−a , (4(γ − 2))−b) configuration in the protograph can result in (4, 4(γ − 2))

UASs/UTSs in the unlabeled graph depending on the circulant powers. Thus, in the OO

stage, we operate on all protograph configurations that can result in (4, 4(γ−2)) UASs/UTSs

(cycles of length 8 with no internal connections) in the unlabeled graph, including the proto-

graph configurations that do have internal connections. Then in the CPO stage, we treat the

(4, 4(γ−2)) UASs/UTSs and the (4, 4(γ−2)−2δ) UASs/UTSs differently, where δ ∈ {1, 2}

is the number of existing internal connections in the configuration after lifting.

The major difference between the (4, 4(γ−2)) UAS/UTS and the (3, 3(γ−2)) UAS/UTS

is that there are multiple configurations in the protograph that can generate the former

object in the unlabeled graph. We call these different configurations patterns. A pattern is

defined by the dimensions of the matrix of its subgraph. The following lemma investigates

the number and nature of these patterns.

Lemma 14. The number of distinct patterns (with different dimensions) in the protograph

of a code that can result in (4, 4(γ− 2)) UASs/UTSs in the unlabeled graph of the code after

lifting is 9, in the case of γ > 4. The numbers of CNs and VNs in these 9 patterns are both

in {2, 3, 4}. This number of distinct patterns reduces to 7 in the case of γ = 3.

Proof. Since the objects of interest in the unlabeled graph are cycles of length 8 with 4 CNs

and 4 VNs, a protograph pattern that can generate some of them must have at most 4 CNs

and 4 VNs. Moreover, to result in cycles of length 8 after lifting, the pattern must have at

least 2 CNs and 2 VNs. Combining these two statements yields that the numbers of CNs and

VNs of a protograph pattern that can result in (4, 4(γ − 2)) UASs/UTSs in the unlabeled

graph must be in {2, 3, 4}.

Consequently, in order to have 9 distinct patterns for the case of γ > 4, we show that

selecting any number of CNs in {2, 3, 4} and any number of VNs in {2, 3, 4} can result in

a distinct pattern (one or more instances) that is capable of generating cycles of length 8

137

in the unlabeled graph. Fig. 5.3 demonstrates the above statement, focusing on the matrix

representation of patterns and cycles. In the case of γ = 3, a pattern cannot have 4 ones in

a column, which reduces the number of distinct patterns to 7.

We define the 9 patterns according to the dimensions of their submatrices in Hp
SC as

follows. Pattern P1 is 2 × 2, Pattern P2 is 2 × 3, Pattern P3 is 3 × 2, Pattern P4 is 2 × 4,

Pattern P5 is 4× 2, Pattern P6 is 3× 3, Pattern P7 is 3× 4, Pattern P8 is 4× 3, and Pattern

P9 is 4× 4 (all illustrated in Fig. 5.3).

Remark 23. Following the same logic we used in Lemma 14 and its proof for the (3, 3(γ−2))

UAS/UTS, leads to a possibility to also have patterns for this case, with the number of CNs

and VNs in {2, 3}. However, a careful analysis guides to the fact that only one protograph

pattern can result in (3, 3(γ − 2)) UASs/UTSs (cycles of length 6) after lifting, which is the

3× 3 pattern, and it is itself a cycle of length 6 [37, 38].

1 1

1 1

1 1

1 1

1

1 1 1

1 1

1 1

1

1

1

1

1 1

1 1 1

1 1 1

1

1

1

1 𝑥

𝑥

𝑥

1

1

1

1 𝑥 1

1

𝑥

1 𝑥

1

1

𝑥

1

1

1

𝑥

1

1

1

1

𝑥

𝑥 𝑥

1

𝑥

1

1

1

𝑥

𝑥

1

1 𝑥 𝑥 1

1

1

1

1 𝑥

𝑥

1
𝑣1 𝑣2 𝑣3

1

𝑣1 𝑣2

𝑣1 𝑣2 𝑣3 𝑣4

1

𝑣1 𝑣2 𝑣3

𝑣1 𝑣2 𝑣3 𝑣4

1

𝑣1 𝑣2

𝑐1

𝑐2

𝑐3

𝑐4

𝑐1

𝑐2

𝑐3

𝑣1 𝑣2 𝑣3

𝑐1

𝑐2

𝑐3

𝑐4

𝑐1

𝑐2

𝑐3

𝑐4

𝑣1 𝑣2

𝑣1 𝑣2 𝑣3 𝑣4

𝑐1

𝑐2

𝑐1

𝑐2

𝑐1

𝑐2

𝑐3

𝑐1

𝑐2

𝑐1

𝑐2

𝑐3

𝑃1 𝑃2 𝑃3

𝑃5 𝑃4 𝑃6

𝑃7
𝑃9 𝑃8

Figure 5.3: The 9 protograph patterns that can result in cycles of length 8 in the unlabeled
graph after lifting. One way of traversing each pattern to generate cycles of length 8 is
depicted in red. Note that only Pattern P9 represents a cycle of length 8 in the protograph.

138

The following lemma discusses the relation between different protograph patterns and the

resulting cycles after lifting. Define a cycle-8 candidate of Pattern P` as a way to traverse

P` in order to reach cycles of length 8 in the unlabeled graph of the code after lifting. Some

candidates are shown in Fig. 5.3.

Lemma 15. Let ζP` be the number of distinct cycle-8 candidates of Pattern P`. Then,

ζP` =



1, ` ∈ {1, 6, 9},

2, ` ∈ {7, 8},

3, ` ∈ {2, 3},

6, ` ∈ {4, 5}.

(5.1)

Proof. We define a cycle-8 candidate according to the connectivity as follows: c1 − v1 −

c2 − v2 − c3 − v3 − c4 − v4 (each CN connects the next two VNs in a circular fashion,

see Fig. 5.2). From Fig. 5.3, there is only one cycle-8 candidate for Pattern P1, which is

c1 − v1 − c2 − v2 − c1 − v1 − c2 − v2, and this is the case for all square patterns. Thus,

ζP` = 1 for ` ∈ {1, 6, 9}. It can be understood from Fig. 5.3 that ζP` 6= 1 for all the

remaining patterns. In particular, we have two cycle-8 candidates for Pattern P7, that are:

c1− v1− c2− v2− c1− v3− c3− v4 and c1− v1− c2− v3− c1− v2− c3− v4 (which is the red

cycle on P7 in Fig. 5.3). The situation is the same for Pattern P8 because it is the transpose

of P7. Thus, ζP` = 2 for ` ∈ {7, 8}. The rest of the cases can be derived similarly.

Pattern P1 has ζP` = 1 (see (5.1)), and it results in z/2 or 0 cycles of length 8 after lifting

(since P1 is only 2 × 2), while all the remaining patterns result in z or 0 cycles of length 8

after lifting [38, 87]. Thus, we define the pattern weight, βP` , which plays an important

role in the discrete optimization problem of the OO, as follows:

βP` =


1/2, ` = 1,

ζP` , ` ∈ {2, 3, 4, 5, 6, 7, 8, 9}.
(5.2)

139

5.4 OO: Building and Solving the Optimization Problem

Now, we are ready to build the optimization problem. Consider the protograph of an SC

code. The weighted sum of the total number of instances of all patterns is given by:

Fsum =
9∑
`=1

βP`FP` , (5.3)

where FP` is the total number of instances of Pattern P`. The goal is to express Fsum,

through FP` , ∀`, as a function of the overlap parameters, then find the optimal set of overlap

parameters that minimize Fsum for OO partitioning. We first recall the definition and the

properties of overlap parameters. More details on that part can be found in [37].

Definition 25. For any m, let Π1
1 =

[
HT

0 HT
1 . . . HT

m

]T
, and let Π1,p

1 be its PM (of size

(m+1)γ×κ). A degree-µ overlap among µ rows (or CNs) of Π1,p
1 indexed by {i1, . . . , iµ},

1 6 µ 6 γ, 0 6 i1, . . . , iµ 6 (m+1)γ−1, is defined as a position (column) in which all these

rows have 1’s simultaneously. A degree-µ overlap parameter, t{i1,...,iµ}, is defined as the

number of degree-µ overlaps among the rows indexed by {i1, . . . , iµ} in Π1,p
1 . A degree-1

overlap parameter ti1, 0 6 i1 6 (m + 1)γ − 1, is defined as the number of 1’s in row i1 of

Π1,p
1 .

Note that a degree-µ overlap parameter, if µ > 1, is always zero if in the set {i1, . . . , iµ}

there exists at least one pair of distinct row indices, say (iτ1 , iτ2), with the property that iτ1 ≡

iτ2 (mod γ) [37]. Define the set of all non-zero overlap parameters as O. The parameters

in O are not entirely independent. The set of all independent non-zero overlap parameters,

Oind, is:

Oind = {t{i1,...,iµ} | 1 6 µ 6 γ, 0 6 i1, . . . , iµ 6 mγ − 1,

∀{iτ1 , iτ2} ⊆ {i1, . . . , iµ} iτ1 6≡ iτ2 (mod γ)}. (5.4)

The other non-zero overlap parameters in O\Oind are obtained from the parameters in Oind

140

according to [37, Lemma 3]. The cardinality of the set Oind, which determines the complexity

of the discrete optimization problem of the OO stage, is given by (see also [37, Lemma 4]

for more details):

Nind = |Oind| =
γ∑

µ=1
mµ

(
γ

µ

)
= (m+ 1)γ − 1. (5.5)

As demonstrated in Fig. 5.3, for all the patterns of interest, the highest overlap degree is

µ = 4 (a pattern has at most 4 CNs). Note that while the overlap parameters themselves

must be restricted to Π1,p
1 , the concept of the degree-µ overlap can be generalized from Π1,p

1

to the PM of the SC code, Hp
SC. We will use this generalization in the analysis of patterns.

We aim at expressing FP` , ∀`, in terms of the parameters in Oind. Let Rr be a replica

in which at least one VN of the pattern being studied exists. We call Rr the reference

replica. Moreover, let the CNs (or rows) of the pattern be of the form cx = (r − 1)γ + ix,

1 6 x 6 4. Here, cx is the index of the row in Hp
SC corresponding to the CN. In the following,

we consider the protograph of an SC code with parameters γ > 3, κ, m, L, and O. We define

(x)+ = max{x, 0}, and F k
P`,1 as the number of instances of Pattern P` that start at replica R1

and span k consecutive replicas. Here, “start” and “span” are both with respect to the VNs

of these instances. Note that each VN in a pattern corresponds to an overlap (see Fig. 5.3).

As we shall see later, a Pattern P` spans at most χ consecutive replicas, where χ either

= m+ 1 or = 2m+ 1, depending on the value of `. Thus, in the math, we consider the case

of L > χ.

We say here that ix is the start of replica Rρ if ix is the index of the first non-zero

row in Rρ relative to Rr. We also say that iy is the end of replica Rρ if iy is the index of

the last non-zero row in Rρ relative to Rr. In particular, the start and end of replica Rr+ν

are νγ and (m + ν + 1)γ − 1, respectively. For example, the start and end of Rr are 0 and

(m + 1)γ − 1, respectively, regardless from the value of r since Rr is the reference replica.

Moreover, the start and end of Rr+2 (resp., Rr−1) are 2γ and (m + 3)γ − 1 (resp., −γ and

mγ − 1). Furthermore, the indices 1, h, w, and k of replicas are always s.t. 1 < k for two

replicas, 1 < h < k for three replicas, and 1 < h < w < k for four replicas.

141

The counts of different existence possibilities of the nine patterns in addition to the final

formulas of FP` , ∀`, are presented in the forthcoming subsections. The proofs of all lemmas

and theorems in this section are in the appendix of this chapter.

5.4.1 Analysis of Pattern P1 (size 2× 2)

This pattern has two VNs that are adjacent (connected via at least one path with only one

CN). Thus, Pattern P1 has its VNs located in at most two replicas, and the pattern spans

(i.e., its VNs span) at most m+ 1 consecutive replicas (see [37, Lemma 1]). Suppose P1 has

the CNs c1 and c2. The two overlaps forming the pattern are of degree 2, and they are both

c1 − c2 overlaps (among c1 and c2).

Lemma 16. Case 1.1: The number of instances of P1 with CNs c1 and c2, and all overlaps

in one replica, Rr, is:

AP1

(
t{i1,i2}

)
=
(
t{i1,i2}

2

)
. (5.6)

Case 1.2: The number of instances of P1 with CNs c1 and c2, and overlaps in two replicas,

Rr and Re, r < e, is:

BP1

(
t{i1,i2}, t{i1+(r−e)γ,i2+(r−e)γ}

)
= t{i1,i2}t{i1+(r−e)γ,i2+(r−e)γ}. (5.7)

The two cases are illustrated in Fig. 5.4.

Theorem 8. The total number of instances of Pattern P1 in the binary protograph of an SC

code that has parameters γ > 3, κ, m, L > m+ 1, and O, is:

FP1 =
m+1∑
k=1

(L− k + 1)F k
P1,1, (5.8)

where F k
P1,1, k ∈ {1, 2, . . . ,m+ 1}, are given by:

F 1
P1,1 =

∑
{i1,i2}⊂{0,...,(m+1)γ−1}

AP1

(
t{i1,i2}

)
,

142

𝐑𝑟 𝐑𝑟 𝐑𝑒

Figure 5.4: An instance of Pattern P1 in Case 1.1 and in Case 1.2, from left to right. For
simplicity, we have e = r + 1.

F k>2
P1,1 =

∑
{i1,i2}⊂{(k−1)γ,...,(m+1)γ−1}

BP1

(
t{i1,i2}, t{i1+(1−k)γ,i2+(1−k)γ}

)
, (5.9)

with i1 6= i2, and ix is defined by: ix = (ix mod γ).

5.4.2 Analysis of Pattern P2 (size 2× 3)

This pattern has three VNs, with each pair of them being adjacent. Thus, P2 spans at most

m + 1 consecutive replicas. Suppose P2 has the CNs c1 and c2. The three overlaps forming

P2 are of degree 2, and they are all c1 − c2 overlaps.

Lemma 17. Case 2.1: The number of instances of P2 with CNs c1 and c2, and all overlaps

in one replica, Rr, is:

AP2

(
t{i1,i2}

)
=
(
t{i1,i2}

3

)
. (5.10)

Case 2.2: The number of instances of P2 with CNs c1 and c2, and all overlaps in two replicas

s.t. two overlaps are in Rr, and one overlap is in Re, is:

BP2

(
t{i1,i2}, t{i1+(r−e)γ,i2+(r−e)γ}

)
=
(
t{i1,i2}

2

)
t{i1+(r−e)γ,i2+(r−e)γ}. (5.11)

Case 2.3: The number of instances of P2 with CNs c1 and c2, and overlaps in three replicas

143

𝐑𝑟 𝐑𝑟 𝐑𝑒 𝐑𝑟 𝐑𝑒 𝐑𝑠

Figure 5.5: An instance of Pattern P2 in Case 2.1, in Case 2.2, and in Case 2.3, from left to
right. For simplicity, we have e = r + 1 and s = e+ 1.

(one in each), Rr, Re, and Rs, r < e < s, is:

CP2

(
t{i1,i2}, t{i1+(r−e)γ,i2+(r−e)γ}, t{i1+(r−s)γ,i2+(r−s)γ}

)
= t{i1,i2}t{i1+(r−e)γ,i2+(r−e)γ}t{i1+(r−s)γ,i2+(r−s)γ}. (5.12)

The three cases are illustrated in Fig 5.5.

Theorem 9. The total number of instances of Pattern P2 in the binary protograph of an SC

code that has parameters γ > 3, κ, m, L > m+ 1, and O, is:

FP2 =
m+1∑
k=1

(L− k + 1)F k
P2,1, (5.13)

where F k
P2,1, k ∈ {1, 2, . . . ,m+ 1}, are given by:

F 1
P2,1 =

∑
{i1,i2}⊂{0,...,(m+1)γ−1}

AP2

(
t{i1,i2}

)
,

F 2
P2,1 =

∑
{i1,i2}⊂{γ,...,(m+1)γ−1}

BP2

(
t{i1,i2}, t{i1−γ,i2−γ}

)

+
∑
{i1,i2}⊂{0,...,mγ−1}

BP2

(
t{i1,i2}, t{i1+γ,i2+γ}

)
,

F k>3
P2,1 =

∑
{i1,i2}⊂{(k−1)γ,...,(m+1)γ−1}

BP2

(
t{i1,i2}, t{i1+(1−k)γ,i2+(1−k)γ}

)

144

+
∑
{i1,i2}⊂{0,...,(m−k+2)γ−1}

BP2

(
t{i1,i2}, t{i1+(k−1)γ,i2+(k−1)γ}

)

+
k−1∑
h=2

∑
{i1,i2}⊂{(k−1)γ,...,(m+1)γ−1}

CP2

(
t{i1,i2}, t{i1+(1−h)γ,i2+(1−h)γ}, t{i1+(1−k)γ,i2+(1−k)γ}

)
, (5.14)

with i1 6= i2.

5.4.3 Analysis of Pattern P3 (size 3× 2)

This pattern has two VNs that are adjacent. Thus, Pattern P3 spans at most m+ 1 consec-

utive replicas. Suppose P3 has the CNs c1, c2, and c3. The two overlaps forming P3 are of

degree 3, and they are both c1 − c2 − c3 overlaps.

Lemma 18. Case 3.1: The number of instances of P3 with CNs c1, c2, and c3, and all

overlaps in one replica, Rr, is:

AP3

(
t{i1,i2,i3}

)
=
(
t{i1,i2,i3}

2

)
. (5.15)

Case 3.2: The number of instances of P3 with CNs c1, c2, and c3, and overlaps in two

replicas, Rr and Re, r < e, is:

BP3

(
t{i1,i2,i3}, t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ}

)
= t{i1,i2,i3}t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ}. (5.16)

The two cases are illustrated in Fig. 5.6.

Theorem 10. The total number of instances of Pattern P3 in the binary protograph of an

SC code that has parameters γ > 3, κ, m, L > m+ 1, and O, is:

FP3 =
m+1∑
k=1

(L− k + 1)F k
P3,1, (5.17)

where F k
P3,1, k ∈ {1, 2, . . . ,m+ 1}, are given by:

145

𝐑𝑟 𝐑𝑟 𝐑𝑒

Figure 5.6: An instance of Pattern P3 in Case 3.1 and in Case 3.2, from left to right. For
simplicity, we have e = r + 1.

F 1
P3,1 =

∑
{i1,i2,i3}⊂{0,...,(m+1)γ−1}

AP3

(
t{i1,i2,i3}

)
,

F k>2
P3,1 =

∑
{i1,i2,i3}⊆{(k−1)γ,...,(m+1)γ−1}

BP3

(
t{i1,i2,i3}, t{i1+(1−k)γ,i2+(1−k)γ,i3+(1−k)γ}

)
, (5.18)

with i1 6= i2, i1 6= i3, and i2 6= i3.

5.4.4 Analysis of Pattern P4 (size 2× 4)

This pattern has four VNs, with each pair of them being adjacent. Consequently, P4 spans

at most m + 1 consecutive replicas. Suppose P4 has the CNs c1 and c2. The four overlaps

forming P4 are of degree 2, and they are all c1 − c2 overlaps.

Lemma 19. Case 4.1: The number of instances of P4 with CNs c1 and c2, and all overlaps

in one replica, Rr, is:

AP4

(
t{i1,i2}

)
=
(
t{i1,i2}

4

)
. (5.19)

Case 4.2: The number of instances of P4 with CNs c1 and c2, and all overlaps in two replicas

s.t. three overlaps are in Rr, and one overlap is in Re, is:

BP4

(
t{i1,i2}, t{i1+(r−e)γ,i2+(r−e)γ}

)
=
(
t{i1,i2}

3

)
t{i1+(r−e)γ,i2+(r−e)γ}. (5.20)

146

Case 4.3: The number of instances of P4 with CNs c1 and c2, and all overlaps in two replicas

s.t. two overlaps are in Rr, and two overlaps are in Re, r < e, is:

CP4

(
t{i1,i2}, t{i1+(r−e)γ,i2+(r−e)γ}

)
=
(
t{i1,i2}

2

)(
t{i1+(r−e)γ,i2+(r−e)γ}

2

)
. (5.21)

Case 4.4: The number of instances of P4 with CNs c1 and c2, and all overlaps in three

replicas s.t. two overlaps are in Rr, one overlap is in Re, and one overlap is in Rs, e < s,

is:

DP4

(
t{i1,i2}, t{i1+(r−e)γ,i2+(r−e)γ}, t{i1+(r−s)γ,i2+(r−s)γ}

)
=
(
t{i1,i2}

2

)
t{i1+(r−e)γ,i2+(r−e)γ}t{i1+(r−s)γ,i2+(r−s)γ}. (5.22)

Case 4.5: The number of instances of P4 with CNs c1 and c2, and overlaps in four replicas,

Rr, Re, Rs, and Ru, r < e < s < u, is:

EP4

(
t{i1,i2}, t{i1+(r−e)γ,i2+(r−e)γ}, t{i1+(r−s)γ,i2+(r−s)γ}, t{i1+(r−u)γ,i2+(r−u)γ}

)
= t{i1,i2}t{i1+(r−e)γ,i2+(r−e)γ}t{i1+(r−s)γ,i2+(r−s)γ}t{i1+(r−u)γ,i2+(r−u)γ}. (5.23)

Four of the five cases are illustrated in Fig. 5.7.

𝐑𝑟 𝐑𝑟 𝐑𝑒 𝐑𝑟 𝐑𝑒 𝐑𝑠 𝐑𝑟 𝐑𝑒 𝐑𝑠 𝐑𝑢

Figure 5.7: An instance of Pattern P4 in Case 4.1, in Case 4.3, in Case 4.4, and in Case 4.5,
from left to right. For simplicity, we have e = r + 1, s = e+ 1, and u = s+ 1.

147

Theorem 11. The total number of instances of Pattern P4 in the binary protograph of an

SC code that has parameters γ > 3, κ, m, L > m+ 1, and O, is:

FP4 =
m+1∑
k=1

(L− k + 1)F k
P4,1, (5.24)

where F k
P4,1, k ∈ {1, 2, . . . ,m+ 1}, are given by:

F 1
P4,1 =

∑
{i1,i2}⊂{0,...,(m+1)γ−1}

AP4

(
t{i1,i2}

)
,

F 2
P4,1 =

∑
{i1,i2}⊂{γ,...,(m+1)γ−1}

BP4

(
t{i1,i2}, t{i1−γ,i2−γ}

)

+
∑
{i1,i2}⊂{0,...,mγ−1}

BP4

(
t{i1,i2}, t{i1+γ,i2+γ}

)

+
∑
{i1,i2}⊂{γ,...,(m+1)γ−1}

CP4

(
t{i1,i2}, t{i1−γ,i2−γ}

)
,

F 3
P4,1 =

∑
{i1,i2}⊂{2γ,...,(m+1)γ−1}

BP4

(
t{i1,i2}, t{i1−2γ,i2−2γ}

)

+
∑
{i1,i2}⊂{0,...,(m−1)γ−1}

BP4

(
t{i1,i2}, t{i1+2γ,i2+2γ}

)

+
∑
{i1,i2}⊂{2γ,...,(m+1)γ−1}

CP4

(
t{i1,i2}, t{i1−2γ,i2−2γ}

)

+
∑
{i1,i2}⊂{2γ,...,(m+1)γ−1}

DP4

(
t{i1,i2}, t{i1−γ,i2−γ}, t{i1−2γ,i2−2γ}

)

+
∑
{i1,i2}⊂{γ,...,mγ−1}

DP4

(
t{i1,i2}, t{i1+γ,i2+γ}, t{i1−γ,i2−γ}

)

+
∑
{i1,i2}⊂{0,...,(m−1)γ−1}

DP4

(
t{i1,i2}, t{i1+2γ,i2+2γ}, t{i1+γ,i2+γ}

)
,

F k>4
P4,1 =

∑
{i1,i2}⊂{(k−1)γ,...,(m+1)γ−1}

BP4

(
t{i1,i2}, t{i1+(1−k)γ,i2+(1−k)γ}

)

+
∑
{i1,i2}⊂{0,...,(m−k+2)γ−1}

BP4

(
t{i1,i2}, t{i1+(k−1)γ,i2+(k−1)γ}

)

+
∑
{i1,i2}⊂{(k−1)γ,...,(m+1)γ−1}

CP4

(
t{i1,i2}, t{i1+(1−k)γ,i2+(1−k)γ}

)

148

+
k−1∑
h=2

∑
{i1,i2}⊂{(k−1)γ,...,(m+1)γ−1}

DP4

(
t{i1,i2}, t{i1+(1−h)γ,i2+(1−h)γ}, t{i1+(1−k)γ,i2+(1−k)γ}

)

+
k−1∑
h=2

∑
{i1,i2}⊂{(k−h)γ,...,(m−h+2)γ−1}

DP4

(
t{i1,i2}, t{i1+(h−1)γ,i2+(h−1)γ}, t{i1+(h−k)γ,i2+(h−k)γ}

)

+
k−1∑
h=2

∑
{i1,i2}⊂{0,...,(m−k+2)γ−1}

DP4

(
t{i1,i2}, t{i1+(k−1)γ,i2+(k−1)γ}, t{i1+(k−h)γ,i2+(k−h)γ}

)

+
k−2∑
h=2

k−1∑
w=h+1

∑
{i1,i2}⊂{(k−1)γ,...,(m+1)γ−1}

EP4

(
t{i1,i2}, t{i1+(1−h)γ,i2+(1−h)γ}, t{i1+(1−w)γ,i2+(1−w)γ}

, t{i1+(1−k)γ,i2+(1−k)γ}
)
, (5.25)

with i1 6= i2.

5.4.5 Analysis of Pattern P5 (size 4× 2)

This pattern has two adjacent VNs. Thus, Pattern P5 spans at most m + 1 consecutive

replicas. Pattern P5 does not exist in the case of γ = 3. Suppose P5 has the CNs c1, c2, c3,

and c4. The two overlaps forming P5 are of degree 4, and they are both c1 − c2 − c3 − c4

overlaps.

Lemma 20. Case 5.1: The number of instances of P5 with CNs c1, c2, c3, and c4, and all

overlaps in one replica, Rr, is:

AP5

(
t{i1,i2,i3,i4}

)
=
(
t{i1,i2,i3,i4}

2

)
. (5.26)

Case 5.2: The number of instances of P5 with c1, c2, c3, and c4, and overlaps in two replicas,

Rr and Re, r < e, is:

BP5

(
t{i1,i2,i3,i4}, t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ,i4+(r−e)γ}

)
= t{i1,i2,i3,i4}t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ,i4+(r−e)γ}. (5.27)

The two cases are illustrated in Fig. 5.8.

149

𝐑𝑟 𝐑𝑟 𝐑𝑒

Figure 5.8: An instance of Pattern P5 in Case 5.1 and in Case 5.2, from left to right. For
simplicity, we have e = r + 1.

Theorem 12. The total number of instances of Pattern P5 in the binary protograph of an

SC code that has parameters γ > 4, κ, m, L > m+ 1, and O, is:

FP5 =
m+1∑
k=1

(L− k + 1)F k
P5,1, (5.28)

where F k
P5,1, k ∈ {1, 2, . . . ,m+ 1}, are given by:

F 1
P5,1 =

∑
{i1,i2,i3,i4}⊂{0,...,(m+1)γ−1}

AP5

(
t{i1,i2,i3,i4}

)
,

F k>2
P5,1 =

∑
{i1,i2,i3,i4}⊆{(k−1)γ,...,(m+1)γ−1}

BP5

(
t{i1,i2,i3,i4}, t{i1+(1−k)γ,i2+(1−k)γ,i3+(1−k)γ,i4+(1−k)γ}

)
, (5.29)

with i1 6= i2, i1 6= i3, i1 6= i4, i2 6= i3, i2 6= i4, and i3 6= i4.

5.4.6 Analysis of Pattern P6 (size 3× 3)

This pattern has three VNs, with each pair of them being adjacent. Thus, P6 spans at most

m+1 consecutive replicas. Suppose P6 has the CNs c1, c2, and c3. Define distinct overlaps

to be overlaps from different families, i.e., overlaps among different sets of CNs. Pattern P6

is formed of three overlaps; two (distinct) of degree-2 and one of degree-3. Define c1 as the

150

𝐑𝑟 𝐑𝑒 𝐑𝑟 𝐑𝑟 𝐑𝑒 𝐑𝑠

Figure 5.9: An instance of Pattern P6 in Case 6.1, in Case 6.3, and in Case 6.4, from left to
right. For simplicity, we have e = r + y, where y ∈ {−1, 1}, and s = e+ 1.

CN connecting the three VNs. Thus, the overlaps are c1 − c2, c1 − c3, and c1 − c2 − c3 (see

P6 in Fig. 5.3). Again, each VN corresponds to an overlap.

Lemma 21. Case 6.1: The number of instances of P6 with CNs c1, c2, and c3 as defined in

the previous paragraph, and all overlaps in one replica, Rr, is:

AP6

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}

)
= t{i1,i2,i3}

(
t{i1,i2,i3} − 1

)+ (
t{i1,i3} − 2

)+

+ t{i1,i2,i3}
(
t{i1,i2} − t{i1,i2,i3}

) (
t{i1,i3} − 1

)+
. (5.30)

Case 6.2: The number of instances of P6 with CNs c1, c2, and c3 as defined in the previous

paragraph, and all overlaps in two replicas s.t. the two degree-2 overlaps are in Rr, and the

degree-3 overlap is in Re, is:

BP6

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ}

)
=
[
t{i1,i2,i3}

(
t{i1,i3} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3}

)
t{i1,i3}

]
t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ}.

(5.31)

Case 6.3: The number of instances of P6 with CNs c1, c2, and c3 as defined in the previous

paragraph, and all overlaps in two replicas s.t. the degree-3 overlap and the c1 − c2 overlap

are in Rr, and the c1 − c3 overlap is in Re, is:

151

CP6

(
t{i1,i2}, t{i1,i2,i3}, t{i1+(r−e)γ,i3+(r−e)γ}

)
= t{i1,i2,i3}

(
t{i1,i2} − 1

)+
t{i1+(r−e)γ,i3+(r−e)γ}.

(5.32)

Case 6.4: The number of instances of P6 with CNs c1, c2, and c3 as defined in the previous

paragraph, and overlaps in three replicas s.t. the c1− c2 overlap is in Rr, the c1− c3 overlap

is in Re, and the degree-3 overlap is in Rs, r < e, is:

DP6

(
t{i1,i2}, t{i1+(r−e)γ,i3+(r−e)γ}, t{i1+(r−s)γ,i2+(r−s)γ,i3+(r−s)γ}

)
= t{i1,i2}t{i1+(r−e)γ,i3+(r−e)γ}t{i1+(r−s)γ,i2+(r−s)γ,i3+(r−s)γ}. (5.33)

Three of the four cases are illustrated in Fig. 5.9.

Theorem 13. The total number of instances of Pattern P6 in the binary protograph of an

SC code that has parameters γ > 3, κ, m, L > m+ 1, and O, is:

FP6 =
m+1∑
k=1

(L− k + 1)F k
P6,1, (5.34)

where F k
P6,1, k ∈ {1, 2, . . . ,m+ 1}, are given by:

F 1
P6,1 =

∑
i1∈{0,...,(m+1)γ−1},{i2,i3}⊂{0,...,(m+1)γ−1}

AP6

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}

)
,

F 2
P6,1 =

∑
i1∈{γ,...,(m+1)γ−1},{i2,i3}⊂{γ,...,(m+1)γ−1}

BP6

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1−γ,i2−γ,i3−γ}

)

+
∑
i1∈{0,...,mγ−1},{i2,i3}⊂{0,...,mγ−1}

BP6

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+γ,i2+γ,i3+γ}

)

+
∑
i1∈{γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{γ,...,(m+1)γ−1}

CP6

(
t{i1,i2}, t{i1,i2,i3}, t{i1−γ,i3−γ}

)

+
∑
i1∈{0,...,mγ−1},i2∈{0,...,(m+1)γ−1},i3∈{0,...,mγ−1}

CP6

(
t{i1,i2}, t{i1,i2,i3}, t{i1+γ,i3+γ}

)
,

F k>3
P6,1 =

∑
i1∈{(k−1)γ,...,(m+1)γ−1},{i2,i3}⊂{(k−1)γ,...,(m+1)γ−1}

BP6

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+(1−k)γ,i2+(1−k)γ,i3+(1−k)γ}

)

152

+
∑
i1∈{0,...,(m−k+2)γ−1},{i2,i3}⊂{0,...,(m−k+2)γ−1}

BP6

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+(k−1)γ,i2+(k−1)γ,i3+(k−1)γ}

)

+
∑
i1∈{(k−1)γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{(k−1)γ,...,(m+1)γ−1}

CP6

(
t{i1,i2}, t{i1,i2,i3}, t{i1+(1−k)γ,i3+(1−k)γ}

)

+
∑
i1∈{0,...,(m−k+2)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{0,...,(m−k+2)γ−1}

CP6

(
t{i1,i2}, t{i1,i2,i3}, t{i1+(k−1)γ,i3+(k−1)γ}

)

+
k−1∑
h=2

∑
i1∈{(k−1)γ,...,(m+1)γ−1},i2∈{(k−1)γ,...,(m+1)γ−1},i3∈{(k−1)γ,...,(m+h)γ−1}

DP6

(
t{i1,i2}, t{i1+(1−h)γ,i3+(1−h)γ}, t{i1+(1−k)γ,i2+(1−k)γ,i3+(1−k)γ}

)

+
k−1∑
h=2

∑
i1∈{(k−1)γ,...,(m+1)γ−1},i2∈{(h−1),...,(m+1)γ−1},i3∈{(k−1)γ,...,(m+h)γ−1}

DP6

(
t{i1,i2}, t{i1+(1−k)γ,i3+(1−k)γ}, t{i1+(1−h)γ,i2+(1−h)γ,i3+(1−h)γ}

)

+
k−1∑
h=2

∑
i1∈{(k−h)γ,...,(m−h+2)γ−1},i2∈{0,...,(m−h+2)γ−1},i3∈{(k−h)γ,...,(m−h+2)γ−1}

DP6

(
t{i1,i2}, t{i1+(h−k)γ,i3+(h−k)γ}, t{i1+(h−1)γ,i2+(h−1)γ,i3+(h−1)γ}

)
, (5.35)

with i1 6= i2, i1 6= i3, and i2 6= i3.

5.4.7 Analysis of Pattern P7 (size 3× 4)

This pattern has four VNs, with each pair of them being adjacent. Consequently, P7 spans

at most m + 1 consecutive replicas. Suppose P7 has the CNs c1, c2, and c3. The pattern

is formed of four degree-2 overlaps that are evenly distributed over two different families.

Define c1 as the CN connecting the four VNs. Thus, the overlaps are two c1 − c2 and two

c1 − c3 overlaps (see P7 in Fig. 5.3 for clarification).

Lemma 22. Case 7.1: The number of instances of P7 with CNs c1, c2, and c3 as defined in

the previous paragraph, and all overlaps in one replica, Rr, is:

AP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}

)
=
(
t{i1,i2,i3}

2

)((
t{i1,i3} − 2

)+

2

)

+ t{i1,i2,i3}
(
t{i1,i2} − t{i1,i2,i3}

)((t{i1,i3} − 1
)+

2

)
+
(
t{i1,i2} − t{i1,i2,i3}

2

)(
t{i1,i3}

2

)
. (5.36)

Case 7.2: The number of instances of P7 with CNs c1, c2, and c3 as defined in the previous

paragraph, and all overlaps in two replicas s.t. three overlaps are in Rr, and one c1 − c3

153

overlap is in Re, is:

BP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+(r−e)γ,i3+(r−e)γ}

)
=
[(
t{i1,i2,i3}

2

)(
t{i1,i3} − 2

)+
+ t{i1,i2,i3}

(
t{i1,i2} − t{i1,i2,i3}

) (
t{i1,i3} − 1

)+

+
(
t{i1,i2} − t{i1,i2,i3}

2

)
t{i1,i3}

]
t{i1+(r−e)γ,i3+(r−e)γ}. (5.37)

Case 7.3: The number of instances of P7 with CNs c1, c2, and c3 as defined in the previous

paragraph, and all overlaps in two replicas s.t. the two c1 − c2 overlaps are in Rr, and the

two c1 − c3 overlaps are in Re, r < e, is:

CP7

(
t{i1,i2}, t{i1+(r−e)γ,i3+(r−e)γ}

)
=
(
t{i1,i2}

2

)(
t{i1+(r−e)γ,i3+(r−e)γ}

2

)
. (5.38)

Case 7.4: The number of instances of P7 with CNs c1, c2, and c3 as defined in the previous

paragraph, and all overlaps in two replicas s.t. two distinct overlaps (from different families)

are in Rr, and two distinct overlaps are in Re, r < e, is:

DP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+(r−e)γ,i2+(r−e)γ}, t{i1+(r−e)γ,i3+(r−e)γ}

, t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ}
)

=
[
t{i1,i2,i3}

(
t{i1,i3} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3}

)
t{i1,i3}

]
·
[
t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ}

(
t{i1+(r−e)γ,i3+(r−e)γ} − 1

)+

+
(
t{i1+(r−e)γ,i2+(r−e)γ} − t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ}

)
t{i1+(r−e)γ,i3+(r−e)γ}

]
. (5.39)

Case 7.5: The number of instances of P7 with CNs c1, c2, and c3 as defined in the previous

paragraph, and all overlaps in three replicas s.t. the two c1 − c2 overlaps are in Rr, and the

c1 − c3 overlaps are in Re and Rs, e < s, is:

EP7

(
t{i1,i2}, t{i1+(r−e)γ,i3+(r−e)γ}, t{i1+(r−s)γ,i3+(r−s)γ}

)
=
(
t{i1,i2}

2

)
t{i1+(r−e)γ,i3+(r−e)γ}t{i1+(r−s)γ,i3+(r−s)γ}. (5.40)

154

𝐑𝑟 𝐑𝑟 𝐑𝑒 𝐑𝑟 𝐑𝑒 𝐑𝑠 𝐑𝑟 𝐑𝑒 𝐑𝑠 𝐑𝑢

Figure 5.10: An instance of Pattern P7 in Case 7.1, in Case 7.2, in Case 7.5, and in Case 7.7,
from left to right. For simplicity, we have e = r + 1, s = e+ 1, and u = s+ 1.

Case 7.6: The number of instances of P7 with CNs c1, c2, and c3 as defined in the previous

paragraph, and all overlaps in three replicas s.t. two distinct overlaps (from different families)

are in Rr, one c1 − c2 overlap is in Re, and one c1 − c3 overlap is in Rs, e < s, is:

GP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+(r−e)γ,i2+(r−e)γ}, t{i1+(r−s)γ,i3+(r−s)γ}

)
=
[
t{i1,i2,i3}

(
t{i1,i3} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3}

)
t{i1,i3}

]
· t{i1+(r−e)γ,i2+(r−e)γ}t{i1+(r−s)γ,i3+(r−s)γ}. (5.41)

Case 7.7: The number of instances of P7 with CNs c1, c2, and c3 as defined in the previous

paragraph, and overlaps in four replicas s.t. the two c1 − c2 overlaps are in Rr and Re, and

the two c1 − c3 overlaps are in Rs and Ru, r < e, r < s, and s < u, is:

IP7

(
t{i1,i2}, t{i1+(r−e)γ,i2+(r−e)γ}, t{i1+(r−s)γ,i3+(r−s)γ}, t{i1+(r−u)γ,i3+(r−u)γ}

)
= t{i1,i2}t{i1+(r−e)γ,i2+(r−e)γ}t{i1+(r−s)γ,i3+(r−s)γ}t{i1+(r−u)γ,i3+(r−u)γ}. (5.42)

Four of the seven cases are illustrated in Fig. 5.10.

Theorem 14. The total number of instances of Pattern P7 in the binary protograph of an

SC code that has parameters γ > 3, κ, m, L > m+ 1, and O, is:

155

FP7 =
m+1∑
k=1

(L− k + 1)F k
P7,1, (5.43)

where F k
P7,1, k ∈ {1, 2, . . . ,m+ 1}, are given by:

F 1
P7,1 =

∑
i1∈{0,...,(m+1)γ−1},{i2,i3}⊂{0,...,(m+1)γ−1}
AP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}

)
,

F 2
P7,1 =

∑
i1∈{γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{γ,...,(m+1)γ−1}
BP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1−γ,i3−γ}

)

+
∑
i1∈{0,...,mγ−1},i2∈{0,...,(m+1)γ−1},i3∈{0,...,mγ−1}

BP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+γ,i3+γ}

)

+
∑
i1∈{γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{γ,...,(m+2)γ−1}

CP7

(
t{i1,i2}, t{i1−γ,i3−γ}

)

+
∑
i1∈{γ,...,(m+1)γ−1},{i2,i3}⊂{γ,...,(m+1)γ−1}

DP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1−γ,i2−γ}, t{i1−γ,i3−γ}, t{i1−γ,i2−γ,i3−γ}

)
,

F 3
P7,1 =

∑
i1∈{2γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{2γ,...,(m+1)γ−1}

BP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1−2γ,i3−2γ}

)

+
∑

i1∈{0,...,(m−1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{0,...,(m−1)γ−1}
BP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+2γ,i3+2γ}

)

+
∑

i1∈{2γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{2γ,...,(m+3)γ−1}
CP7

(
t{i1,i2}, t{i1−2γ,i3−2γ}

)

+
∑
i1∈{2γ,...,(m+1)γ−1},{i2,i3}⊂{2γ,...,(m+1)γ−1}

DP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1−2γ,i2−2γ}, t{i1−2γ,i3−2γ}, t{i1−2γ,i2−2γ,i3−2γ}

)

+
∑

i1∈{2γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{2γ,...,(m+2)γ−1}
EP7

(
t{i1,i2}, t{i1−γ,i3−γ}, t{i1−2γ,i3−2γ}

)

+
∑
i1∈{γ,...,mγ−1},i2∈{0,...,(m+1)γ−1},i3∈{γ,...,mγ−1}
EP7

(
t{i1,i2}, t{i1+γ,i3+γ}, t{i1−γ,i3−γ}

)

+
∑

i1∈{0,...,(m−1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{−γ,...,(m−1)γ−1}
EP7

(
t{i1,i2}, t{i1+2γ,i3+2γ}, t{i1+γ,i3+γ}

)

+
∑
i1∈{2γ,...,(m+1)γ−1},i2∈{γ,...,(m+1)γ−1},i3∈{2γ,...,(m+1)γ−1}

GP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1−γ,i2−γ}, t{i1−2γ,i3−2γ}

)

+
∑
i1∈{γ,...,mγ−1},i2∈{0,...,mγ−1},i3∈{γ,...,(m+1)γ−1}
GP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+γ,i2+γ}, t{i1−γ,i3−γ}

)

+
∑
i1∈{0,...,(m−1)γ−1},i2∈{0,...,(m−1)γ−1},i3∈{0,...,mγ−1}

GP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+2γ,i2+2γ}, t{i1+γ,i3+γ}

)
,

156

F k>4
P7,1 =

∑
i1∈{(k−1)γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{(k−1)γ,...,(m+1)γ−1}

BP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+(1−k)γ,i3+(1−k)γ}

)

+
∑
i1∈{0,...,(m−k+2)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{0,...,(m−k+2)γ−1}

BP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+(k−1)γ,i3+(k−1)γ}

)

+
∑
i1∈{(k−1)γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{(k−1)γ,...,(m+k)γ−1}

CP7

(
t{i1,i2}, t{i1+(1−k)γ,i3+(1−k)γ}

)

+
∑
i1∈{(k−1)γ,...,(m+1)γ−1},{i2,i3}⊂{(k−1)γ,...,(m+1)γ−1}

DP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+(1−k)γ,i2+(1−k)γ}, t{i1+(1−k)γ,i3+(1−k)γ}

, t{i1+(1−k)γ,i2+(1−k)γ,i3+(1−k)γ}
)

+
k−1∑
h=2

∑
i1∈{(k−1)γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{(k−1)γ,...,(m+h)γ−1}

EP7

(
t{i1,i2}, t{i1+(1−h)γ,i3+(1−h)γ}, t{i1+(1−k)γ,i3+(1−k)γ}

)

+
k−1∑
h=2

∑
i1∈{(k−h)γ,...,(m−h+2)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{(k−h)γ,...,(m−h+2)γ−1}

EP7

(
t{i1,i2}, t{i1+(h−1)γ,i3+(h−1)γ}, t{i1+(h−k)γ,i3+(h−k)γ}

)

+
k−1∑
h=2

∑
i1∈{0,...,(m−k+2)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{(h−k)γ,...,(m−k+2)γ−1}

EP7

(
t{i1,i2}, t{i1+(k−1)γ,i3+(k−1)γ}, t{i1+(k−h)γ,i3+(k−h)γ}

)

+
k−1∑
h=2

∑
i1∈{(k−1)γ,...,(m+1)γ−1},i2∈{(h−1)γ,...,(m+1)γ−1},i3∈{(k−1)γ,...,(m+1)γ−1}
GP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+(1−h)γ,i2+(1−h)γ}, t{i1+(1−k)γ,i3+(1−k)γ}

)

+
k−1∑
h=2

∑
i1∈{(k−h)γ,...,(m−h+2)γ−1},i2∈{0,...,(m−h+2)γ−1},i3∈{(k−h)γ,...,(m+1)γ−1}

GP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+(h−1)γ,i2+(h−1)γ}, t{i1+(h−k)γ,i3+(h−k)γ}

)

+
k−1∑
h=2

∑
i1∈{0,...,(m−k+2)γ−1},i2∈{0,...,(m−k+2)γ−1},i3∈{0,...,(m−k+h+1)γ−1}

GP7

(
t{i1,i2}, t{i1,i3}, t{i1,i2,i3}, t{i1+(k−1)γ,i2+(k−1)γ}, t{i1+(k−h)γ,i3+(k−h)γ}

)

+
k−2∑
h=2

k−1∑
w=h+1

∑
i1∈{(k−1)γ,...,(m+1)γ−1},i2∈{(h−1)γ,...,(m+1)γ−1},i3∈{(k−1)γ,...,(m+w)γ−1}
IP7

(
t{i1,i2}, t{i1+(1−h)γ,i2+(1−h)γ}, t{i1+(1−w)γ,i3+(1−w)γ}

, t{i1+(1−k)γ,i3+(1−k)γ}
)

+
k−2∑
h=2

k−1∑
w=h+1

∑
i1∈{(k−1)γ,...,(m+1)γ−1},i2∈{(w−1)γ,...,(m+1)γ−1},i3∈{(k−1)γ,...,(m+h)γ−1}
IP7

(
t{i1,i2}, t{i1+(1−w)γ,i2+(1−w)γ}, t{i1+(1−h)γ,i3+(1−h)γ}

, t{i1+(1−k)γ,i3+(1−k)γ}
)

+
k−2∑
h=2

k−1∑
w=h+1

∑
i1∈{(k−1)γ,...,(m+1)γ−1},i2∈{(k−1)γ,...,(m+1)γ−1},i3∈{(w−1)γ,...,(m+h)γ−1}
IP7

(
t{i1,i2}, t{i1+(1−k)γ,i2+(1−k)γ}, t{i1+(1−h)γ,i3+(1−h)γ}

, t{i1+(1−w)γ,i3+(1−w)γ}
)
, (5.44)

with i1 6= i2, i1 6= i3, and i2 6= i3.

157

5.4.8 Analysis of Pattern P8 (size 4× 3)

This pattern has three VNs, and the adjacent pairs are v1 − v2 and v1 − v3 (not all pairs)

according to P8 in Fig. 5.3. Thus, P8 spans at most 2m + 1 consecutive replicas (see [37,

Lemma 1]). Pattern P8 does not exist in the case of γ = 3. Suppose P8 has the CNs c1,

c2, c3, and c4. The pattern is formed of three overlaps, two of degree-2 and one of degree-4.

The degree-2 overlaps are not only distinct, but also mutually exclusive (i.e., they do not

share any CNs). Define the CNs such that c1 and c2 are directly connected twice, which is

the same for c3 and c4. Thus, the overlaps are c1− c2, c3− c4, and c1− c2− c3− c4 (see also

P8 in Fig. 5.3).

Lemma 23. Case 8.1: The number of instances of P8 with CNs c1, c2, c3, and c4 as defined

in the previous paragraph, and all overlaps in one replica, Rr, is:

AP8

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}

)
= t{i1,i2,i3,i4}

(
t{i1,i2,i3,i4} − 1

)+ (
t{i3,i4} − 2

)+

+ t{i1,i2,i3,i4}
(
t{i1,i2} − t{i1,i2,i3,i4}

) (
t{i3,i4} − 1

)+
. (5.45)

Case 8.2: The number of instances of P8 with CNs c1, c2, c3, and c4 as defined in the previous

paragraph, and all overlaps in two replicas s.t. the two degree-2 overlaps are in Rr, and the

degree-4 overlap is in Re, is:

BP8

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}, t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ,i4+(r−e)γ}

)
=
[
t{i1,i2,i3,i4}

(
t{i3,i4} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3,i4}

)
t{i3,i4}

]
· t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ,i4+(r−e)γ}. (5.46)

Case 8.3: The number of instances of P8 with CNs c1, c2, c3, and c4 as defined in the previous

paragraph, and all overlaps in two replicas s.t. the degree-4 overlap and the c1 − c2 overlap

are in Rr, and the c3 − c4 overlap is in Re, is:

158

𝐑𝑟 𝐑𝑟 𝐑𝑒 𝐑𝑟 𝐑𝑠 𝐑𝑒

Figure 5.11: An instance of Pattern P8 in Case 8.1, in Case 8.2, and in Case 8.4, from left
to right. For simplicity, we have e = r + y, where y ∈ {1, 2}, and s = e− 1.

CP8

(
t{i1,i2}, t{i1,i2,i3,i4}, t{i3+(r−e)γ,i4+(r−e)γ}

)
= t{i1,i2,i3,i4}

(
t{i1,i2} − 1

)+
t{i3+(r−e)γ,i4+(r−e)γ}.

(5.47)

Case 8.4: The number of instances of P8 with c1, c2, c3, and c4 as defined previously, and

overlaps in three replicas s.t. the c1 − c2 overlap is in Rr, the c3 − c4 overlap is in Re, and

the degree-4 overlap is in Rs, r < e, is:

DP8

(
t{i1,i2}, t{i3+(r−e)γ,i4+(r−e)γ}, t{i1+(r−s)γ,i2+(r−s)γ,i3+(r−s)γ,i4+(r−s)γ}

)
= t{i1,i2}t{i3+(r−e)γ,i4+(r−e)γ}t{i1+(r−s)γ,i2+(r−s)γ,i3+(r−s)γ,i4+(r−s)γ}. (5.48)

Three of the four cases are illustrated in Fig. 5.11.

Theorem 15. The total number of instances of Pattern P8 in the binary protograph of an

SC code that has parameters γ > 4, κ, m, L > 2m+ 1, and O, is:

FP8 =
2m+1∑
k=1

(L− k + 1)F k
P8,1, (5.49)

where F k
P8,1, k ∈ {1, 2, . . . , 2m+ 1}, are given by:

F 1
P8,1 = 1

2
∑
{i1,i2}⊂{0,...,(m+1)γ−1},{i3,i4}⊂{0,...,(m+1)γ−1}

AP8

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}

)
,

159

F 2
P8,1 = 1

2
∑
{i1,i2}⊂{γ,...,(m+1)γ−1},{i3,i4}⊂{γ,...,(m+1)γ−1}

BP8

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}, t{i1−γ,i2−γ,i3−γ,i4−γ}

)

+ 1
2
∑
{i1,i2}⊂{0,...,mγ−1},{i3,i4}⊂{0,...,mγ−1}

BP8

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}, t{i1+γ,i2+γ,i3+γ,i4+γ}

)

+
∑
{i1,i2}⊂{0,...,(m+1)γ−1},{i3,i4}⊂{γ,...,(m+1)γ−1}

CP8

(
t{i1,i2}, t{i1,i2,i3,i4}, t{i3−γ,i4−γ}

)

+
∑
{i1,i2}⊂{0,...,(m+1)γ−1},{i3,i4}⊂{0,...,mγ−1}

CP8

(
t{i1,i2}, t{i1,i2,i3,i4}, t{i3+γ,i4+γ}

)
,

F k>3
P8,1 = 1

2
∑
{i1,i2}⊂{(k−1)γ,...,(m+1)γ−1},{i3,i4}⊂{(k−1)γ,...,(m+1)γ−1}

BP8

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}, t{i1+(1−k)γ,i2+(1−k)γ,i3+(1−k)γ,i4+(1−k)γ}

)

+ 1
2

∑
{i1,i2}⊂{0,...,(m−k+2)γ−1},{i3,i4}⊂{0,...,(m−k+2)γ−1}

BP8

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}, t{i1+(k−1)γ,i2+(k−1)γ,i3+(k−1)γ,i4+(k−1)γ}

)

+
∑
{i1,i2}⊂{0,...,(m+1)γ−1},{i3,i4}⊂{(k−1)γ,...,(m+1)γ−1}

CP8

(
t{i1,i2}, t{i1,i2,i3,i4}, t{i3+(1−k)γ,i4+(1−k)γ}

)

+
∑
{i1,i2}⊂{0,...,(m+1)γ−1},{i3,i4}⊂{0,...,(m−k+2)γ−1}

CP8

(
t{i1,i2}, t{i1,i2,i3,i4}, t{i3+(k−1)γ,i4+(k−1)γ}

)

+
k−1∑
h=2

∑
{i1,i2}⊂{(k−1)γ,...,(m+1)γ−1},{i3,i4}⊂{(k−1)γ,...,(m+h)γ−1}

DP8

(
t{i1,i2}, t{i3+(1−h)γ,i4+(1−h)γ}, t{i1+(1−k)γ,i2+(1−k)γ,i3+(1−k)γ,i4+(1−k)γ}

)

+
k−1∑
h=2

∑
{i1,i2}⊂{(h−1)γ,...,(m+1)γ−1},{i3,i4}⊂{(k−1)γ,...,(m+h)γ−1}

DP8

(
t{i1,i2}, t{i3+(1−k)γ,i4+(1−k)γ}, t{i1+(1−h)γ,i2+(1−h)γ,i3+(1−h)γ,i4+(1−h)γ}

)

+
k−1∑
h=2

∑
{i1,i2}⊂{0,...,(m−h+2)γ−1},{i3,i4}⊂{(k−h)γ,...,(m−h+2)γ−1}

DP8

(
t{i1,i2}, t{i3+(h−k)γ,i4+(h−k)γ}, t{i1+(h−1)γ,i2+(h−1)γ,i3+(h−1)γ,i4+(h−1)γ}

)
,

(5.50)

with i1 6= i2, i1 6= i3, i1 6= i4, i2 6= i3, i2 6= i4, and i3 6= i4.

5.4.9 Analysis of Pattern P9 (size 4× 4)

This pattern has four VNs, and the adjacent pairs are v1 − v2, v2 − v3, v3 − v4, and v1 − v4

(not all pairs) according to P9 in Fig. 5.3. Thus, P9 also spans at most 2m + 1 consecutive

replicas. Suppose P9 has the CNs c1, c2, c3, and c4. The pattern is formed of four distinct

degree-2 overlaps. Define the CNs such that the adjacent pairs (connected via at least one

path with only one VN) are c1 − c2, c2 − c3, c3 − c4, and c1 − c4. This definition already

160

implies what the overlaps are.

Lemma 24. Case 9.1: The number of instances of P9 with CNs c1, c2, c3, and c4 as defined

in the previous paragraph, and all overlaps in one replica, Rr, is:

AP9

(
t{i1,i2}, t{i2,i3}, t{i3,i4}, t{i1,i4}, t{i1,i2,i3}, t{i1,i2,i4}, t{i1,i3,i4}, t{i2,i3,i4}, t{i1,i2,i3,i4}

)
= AP9,1 +AP9,2 +AP9,3 +AP9,4, (5.51)

AP9,1 = t{i1,i2,i3,i4}
(
t{i1,i2,i3,i4} − 1

)+ (
t{i1,i3,i4} − 2

)+ (
t{i1,i4} − 3

)+

+ t{i1,i2,i3,i4}
(
t{i1,i2,i3,i4} − 1

)+ (
t{i3,i4} − t{i1,i3,i4}

) (
t{i1,i4} − 2

)+

+ t{i1,i2,i3,i4}
(
t{i2,i3,i4} − t{i1,i2,i3,i4}

) (
t{i1,i3,i4} − 1

)+ (
t{i1,i4} − 2

)+

+ t{i1,i2,i3,i4}
(
t{i2,i3,i4} − t{i1,i2,i3,i4}

) (
t{i3,i4} − t{i1,i3,i4} − 1

)+ (
t{i1,i4} − 1

)+

+ t{i1,i2,i3,i4}
(
t{i2,i3} − t{i2,i3,i4}

) (
t{i1,i3,i4} − 1

)+ (
t{i1,i4} − 2

)+

+ t{i1,i2,i3,i4}
(
t{i2,i3} − t{i2,i3,i4}

) (
t{i3,i4} − t{i1,i3,i4}

) (
t{i1,i4} − 1

)+
,

AP9,2 =
(
t{i1,i2,i3} − t{i1,i2,i3,i4}

)
t{i1,i2,i3,i4}

(
t{i1,i3,i4} − 1

)+ (
t{i1,i4} − 2

)+

+
(
t{i1,i2,i3} − t{i1,i2,i3,i4}

)
t{i1,i2,i3,i4}

(
t{i3,i4} − t{i1,i3,i4}

) (
t{i1,i4} − 1

)+

+
(
t{i1,i2,i3} − t{i1,i2,i3,i4}

) (
t{i2,i3,i4} − t{i1,i2,i3,i4}

)
t{i1,i3,i4}

(
t{i1,i4} − 1

)+

+
(
t{i1,i2,i3} − t{i1,i2,i3,i4}

) (
t{i2,i3,i4} − t{i1,i2,i3,i4}

) (
t{i3,i4} − t{i1,i3,i4} − 1

)+
t{i1,i4}

+
(
t{i1,i2,i3} − t{i1,i2,i3,i4}

) (
t{i2,i3} − t{i2,i3,i4} − 1

)+
t{i1,i3,i4}

(
t{i1,i4} − 1

)+

+
(
t{i1,i2,i3} − t{i1,i2,i3,i4}

) (
t{i2,i3} − t{i2,i3,i4} − 1

)+ (
t{i3,i4} − t{i1,i3,i4}

)
t{i1,i4},

AP9,3 =
(
t{i1,i2,i4} − t{i1,i2,i3,i4}

)
t{i1,i2,i3,i4}

(
t{i1,i3,i4} − 1

)+ (
t{i1,i4} − 3

)+

+
(
t{i1,i2,i4} − t{i1,i2,i3,i4}

)
t{i1,i2,i3,i4}

(
t{i3,i4} − t{i1,i3,i4}

) (
t{i1,i4} − 2

)+

161

+
(
t{i1,i2,i4} − t{i1,i2,i3,i4}

) (
t{i2,i3,i4} − t{i1,i2,i3,i4}

)
t{i1,i3,i4}

(
t{i1,i4} − 2

)+

+
(
t{i1,i2,i4} − t{i1,i2,i3,i4}

) (
t{i2,i3,i4} − t{i1,i2,i3,i4}

)
·
(
t{i3,i4} − t{i1,i3,i4} − 1

)+ (
t{i1,i4} − 1

)+

+
(
t{i1,i2,i4} − t{i1,i2,i3,i4}

) (
t{i2,i3} − t{i2,i3,i4}

)
t{i1,i3,i4}

(
t{i1,i4} − 2

)+

+
(
t{i1,i2,i4} − t{i1,i2,i3,i4}

) (
t{i2,i3} − t{i2,i3,i4}

) (
t{i3,i4} − t{i1,i3,i4}

) (
t{i1,i4} − 1

)+
,

AP9,4 =
(
t{i1,i2} − t{i1,i2,i3} − t{i1,i2,i4} + t{i1,i2,i3,i4}

)
t{i1,i2,i3,i4}

·
(
t{i1,i3,i4} − 1

)+ (
t{i1,i4} − 2

)+

+
(
t{i1,i2} − t{i1,i2,i3} − t{i1,i2,i4} + t{i1,i2,i3,i4}

)
t{i1,i2,i3,i4}

·
(
t{i3,i4} − t{i1,i3,i4}

) (
t{i1,i4} − 1

)+

+
(
t{i1,i2} − t{i1,i2,i3} − t{i1,i2,i4} + t{i1,i2,i3,i4}

) (
t{i2,i3,i4} − t{i1,i2,i3,i4}

)
· t{i1,i3,i4}

(
t{i1,i4} − 1

)+

+
(
t{i1,i2} − t{i1,i2,i3} − t{i1,i2,i4} + t{i1,i2,i3,i4}

) (
t{i2,i3,i4} − t{i1,i2,i3,i4}

)
·
(
t{i3,i4} − t{i1,i3,i4} − 1

)+
t{i1,i4}

+
(
t{i1,i2} − t{i1,i2,i3} − t{i1,i2,i4} + t{i1,i2,i3,i4}

) (
t{i2,i3} − t{i2,i3,i4}

)
· t{i1,i3,i4}

(
t{i1,i4} − 1

)+

+
(
t{i1,i2} − t{i1,i2,i3} − t{i1,i2,i4} + t{i1,i2,i3,i4}

) (
t{i2,i3} − t{i2,i3,i4}

)
·
(
t{i3,i4} − t{i1,i3,i4}

)
t{i1,i4}. (5.52)

Case 9.2: The number of instances of P9 with CNs c1, c2, c3, and c4 as defined in the

previous paragraph, and all overlaps in two replicas s.t. three overlaps are in Rr, and the

c1 − c4 overlap is in Re, is:

BP9

(
t{i1,i2}, t{i2,i3}, t{i3,i4}, t{i1,i2,i3}, t{i2,i3,i4}, t{i1,i2,i3,i4}, t{i1+(r−e)γ,i4+(r−e)γ}

)

162

=
[
t{i1,i2,i3,i4}

(
t{i2,i3,i4} − 1

)+ (
t{i3,i4} − 2

)+

+ t{i1,i2,i3,i4}
(
t{i2,i3} − t{i2,i3,i4}

) (
t{i3,i4} − 1

)+

+
(
t{i1,i2,i3} − t{i1,i2,i3,i4}

)
t{i2,i3,i4}

(
t{i3,i4} − 1

)+

+
(
t{i1,i2,i3} − t{i1,i2,i3,i4}

) (
t{i2,i3} − t{i2,i3,i4} − 1

)+
t{i3,i4}

+
(
t{i1,i2} − t{i1,i2,i3}

)
t{i2,i3,i4}

(
t{i3,i4} − 1

)+

+
(
t{i1,i2} − t{i1,i2,i3}

) (
t{i2,i3} − t{i2,i3,i4}

)
t{i3,i4}

]
t{i1+(r−e)γ,i4+(r−e)γ}. (5.53)

Case 9.3: The number of instances of P9 with CNs c1, c2, c3, and c4 as defined in the previous

paragraph, and all overlaps in two replicas s.t. c1 − c2 and c2 − c3 overlaps are in Rr, and

c3 − c4 and c1 − c4 overlaps are in Re, r < e, is:

CP9

(
t{i1,i2}, t{i2,i3}, t{i1,i2,i3}, t{i3+(r−e)γ,i4+(r−e)γ}, t{i1+(r−e)γ,i4+(r−e)γ}

, t{i1+(r−e)γ,i3+(r−e)γ,i4+(r−e)γ}
)

=
[
t{i1,i2,i3}

(
t{i2,i3} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3}

)
t{i2,i3}

]
·
[
t{i1+(r−e)γ,i3+(r−e)γ,i4+(r−e)γ}

(
t{i1+(r−e)γ,i4+(r−e)γ} − 1

)+

+
(
t{i3+(r−e)γ,i4+(r−e)γ} − t{i1+(r−e)γ,i3+(r−e)γ,i4+(r−e)γ}

)
t{i1+(r−e)γ,i4+(r−e)γ}

]
. (5.54)

Case 9.4: The number of instances of P9 with CNs c1, c2, c3, and c4 as defined in the previous

paragraph, and all overlaps in two replicas s.t. c1 − c2 and c3 − c4 overlaps are in Rr, and

c2 − c3 and c1 − c4 overlaps are in Re, r < e, is:

DP9

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}, t{i2+(r−e)γ,i3+(r−e)γ}, t{i1+(r−e)γ,i4+(r−e)γ}

, t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ,i4+(r−e)γ}
)

=
[
t{i1,i2,i3,i4}

(
t{i3,i4} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3,i4}

)
t{i3,i4}

]
·
[
t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ,i4+(r−e)γ}

(
t{i1+(r−e)γ,i4+(r−e)γ} − 1

)+

163

+
(
t{i2+(r−e)γ,i3+(r−e)γ} − t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ,i4+(r−e)γ}

)
t{i1+(r−e)γ,i4+(r−e)γ}

]
.

(5.55)

Case 9.5: The number of instances of P9 with CNs c1, c2, c3, and c4 as defined previously,

and all overlaps in three replicas s.t. c1 − c2 and c2 − c3 overlaps are in Rr, the c3 − c4

overlap is in Re, and the c1 − c4 overlap is in Rs, e < s, is:

EP9

(
t{i1,i2}, t{i2,i3}, t{i1,i2,i3}, t{i3+(r−e)γ,i4+(r−e)γ}, t{i1+(r−s)γ,i4+(r−s)γ}

)
=
[
t{i1,i2,i3}

(
t{i2,i3} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3}

)
t{i2,i3}

]
· t{i3+(r−e)γ,i4+(r−e)γ}t{i1+(r−s)γ,i4+(r−s)γ}. (5.56)

Case 9.6: The number of instances of P9 with CNs c1, c2, c3, and c4 as defined previously,

and all overlaps in three replicas s.t. c1 − c2 and c3 − c4 overlaps are in Rr, the c2 − c3

overlap is in Re, and the c1 − c4 overlap is in Rs, e < s, is:

GP9

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}, t{i2+(r−e)γ,i3+(r−e)γ}, t{i1+(r−s)γ,i4+(r−s)γ}

)
=
[
t{i1,i2,i3,i4}

(
t{i3,i4} − 1

)+
+
(
t{i1,i2} − t{i1,i2,i3,i4}

)
t{i3,i4}

]
· t{i2+(r−e)γ,i3+(r−e)γ}t{i1+(r−s)γ,i4+(r−s)γ}. (5.57)

Case 9.7: The number of instances of P9 with CNs c1, c2, c3, and c4 as defined previously,

and overlaps in four replicas s.t. the c1 − c2 overlap is in Rr, the c2 − c3 overlap is in Re,

the c3 − c4 overlap is in Rs, and the c1 − c4 overlap is in Ru, r < e, e < u, and r < s, is:

IP9

(
t{i1,i2}, t{i2+(r−e)γ,i3+(r−e)γ}, t{i3+(r−s)γ,i4+(r−s)γ}, t{i1+(r−u)γ,i4+(r−u)γ}

)
= t{i1,i2}t{i2+(r−e)γ,i3+(r−e)γ}t{i3+(r−s)γ,i4+(r−s)γ}t{i1+(r−u)γ,i4+(r−u)γ}. (5.58)

Four of the seven cases are illustrated in Fig. 5.12.

164

𝐑𝑟 𝐑𝑟 𝐑𝑒 𝐑𝑒 𝐑𝑟 𝐑𝑠 𝐑𝑟 𝐑𝑒 𝐑𝑠 𝐑𝑢

Figure 5.12: An instance of Pattern P9 in Case 9.1, in Case 9.3, in Case 9.6, and in Case 9.7,
from left to right. For simplicity, we have e = r + y1, where y1 ∈ {−1, 1}, s = e+ y2, where
y2 ∈ {1, 2}, and u = s+ 1.

Theorem 16. The total number of instances of Pattern P9 in the binary protograph of an

SC code that has parameters γ > 3, κ, m, L > 2m+ 1, and O, is

FP9 =
2m+1∑
k=1

(L− k + 1)F k
P9,1, (5.59)

where F k
P9,1, k ∈ {1, 2, . . . , 2m+ 1}, are given by:

F 1
P9,1 = 1

2
∑
{i1,i3}⊂{0,...,(m+1)γ−1},{i2,i4}⊂{0,...,(m+1)γ−1}

AP9

(
t{i1,i2}, t{i2,i3}, t{i3,i4}, t{i1,i4}, t{i1,i2,i3}, t{i1,i2,i4}, t{i1,i3,i4}

, t{i2,i3,i4}, t{i1,i2,i3,i4}
)
,

F 2
P9,1 =

∑
{i1,i4}⊂{γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{0,...,(m+1)γ−1}

BP9

(
t{i1,i2}, t{i2,i3}, t{i3,i4}, t{i1,i2,i3}, t{i2,i3,i4}, t{i1,i2,i3,i4}, t{i1−γ,i4−γ}

)

+
∑
{i1,i4}⊂{0,...,mγ−1},i2∈{0,...,(m+1)γ−1},i3∈{0,...,(m+1)γ−1}

BP9

(
t{i1,i2}, t{i2,i3}, t{i3,i4}, t{i1,i2,i3}, t{i2,i3,i4}, t{i1,i2,i3,i4}, t{i1+γ,i4+γ}

)

+
∑
{i1,i3}⊂{γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i4∈{γ,...,(m+2)γ−1}

CP9

(
t{i1,i2}, t{i2,i3}, t{i1,i2,i3}, t{i3−γ,i4−γ}, t{i1−γ,i4−γ}, t{i1−γ,i3−γ,i4−γ}

)

+ 1
2
∑
{i1,i4}⊂{γ,...,(m+1)γ−1},i2∈{γ,...,(m+1)γ−1},i3∈{γ,...,(m+1)γ−1}
DP9

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}, t{i2−γ,i3−γ}, t{i1−γ,i4−γ}, t{i1−γ,i2−γ,i3−γ,i4−γ}

)
,

F 3
P9,1 =

∑
{i1,i4}⊂{2γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{0,...,(m+1)γ−1}

BP9

(
t{i1,i2}, t{i2,i3}, t{i3,i4}, t{i1,i2,i3}, t{i2,i3,i4}, t{i1,i2,i3,i4}, t{i1−2γ,i4−2γ}

)

+
∑
{i1,i4}⊂{0,...,(m−1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{0,...,(m+1)γ−1}

BP9

(
t{i1,i2}, t{i2,i3}, t{i3,i4}, t{i1,i2,i3}, t{i2,i3,i4}, t{i1,i2,i3,i4}, t{i1+2γ,i4+2γ}

)

165

+
∑
{i1,i3}⊂{2γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i4∈{2γ,...,(m+3)γ−1}

CP9

(
t{i1,i2}, t{i2,i3}, t{i1,i2,i3}, t{i3−2γ,i4−2γ}, t{i1−2γ,i4−2γ}, t{i1−2γ,i3−2γ,i4−2γ}

)

+ 1
2
∑
{i1,i4}⊂{2γ,...,(m+1)γ−1},i2∈{2γ,...,(m+1)γ−1},i3∈{2γ,...,(m+1)γ−1}

DP9

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}, t{i2−2γ,i3−2γ}, t{i1−2γ,i4−2γ}

, t{i1−2γ,i2−2γ,i3−2γ,i4−2γ}
)

+
∑
i1∈{2γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{γ,...,(m+1)γ−1},i4∈{2γ,...,(m+2)γ−1}

EP9

(
t{i1,i2}, t{i2,i3}, t{i1,i2,i3}, t{i3−γ,i4−γ}, t{i1−2γ,i4−2γ}

)

+
∑
i1∈{γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{0,...,mγ−1},i4∈{γ,...,mγ−1}

EP9

(
t{i1,i2}, t{i2,i3}, t{i1,i2,i3}, t{i3+γ,i4+γ}, t{i1−γ,i4−γ}

)

+
∑
i1∈{0,...,mγ−1},i2∈{0,...,(m+1)γ−1},i3∈{0,...,(m−1)γ−1},i4∈{−γ,...,(m−1)γ−1}

EP9

(
t{i1,i2}, t{i2,i3}, t{i1,i2,i3}, t{i3+2γ,i4+2γ}, t{i1+γ,i4+γ}

)

+
∑
{i1,i4}⊂{2γ,...,(m+1)γ−1},i2∈{γ,...,(m+1)γ−1},i3∈{γ,...,(m+1)γ−1}

GP9

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}, t{i2−γ,i3−γ}, t{i1−2γ,i4−2γ}

)

+
∑
{i1,i4}⊂{γ,...,(m+1)γ−1},i2∈{0,...,mγ−1},i3∈{0,...,mγ−1}

GP9

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}, t{i2+γ,i3+γ}, t{i1−γ,i4−γ}

)

+
∑
{i1,i4}⊂{0,...,mγ−1},i2∈{0,...,(m−1)γ−1},i3∈{0,...,(m−1)γ−1}

GP9

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}, t{i2+2γ,i3+2γ}, t{i1+γ,i4+γ}

)
,

F k>4
P9,1 =

∑
{i1,i4}⊂{(k−1)γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{0,...,(m+1)γ−1}

BP9

(
t{i1,i2}, t{i2,i3}, t{i3,i4}, t{i1,i2,i3}, t{i2,i3,i4}, t{i1,i2,i3,i4}, t{i1+(1−k)γ,i4+(1−k)γ}

)

+
∑
{i1,i4}⊂{0,...,(m−k+2)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{0,...,(m+1)γ−1}

BP9

(
t{i1,i2}, t{i2,i3}, t{i3,i4}, t{i1,i2,i3}, t{i2,i3,i4}, t{i1,i2,i3,i4}, t{i1+(k−1)γ,i4+(k−1)γ}

)

+
∑
{i1,i3}⊂{(k−1)γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i4∈{(k−1)γ,...,(m+k)γ−1}

CP9

(
t{i1,i2}, t{i2,i3}, t{i1,i2,i3}, t{i3+(1−k)γ,i4+(1−k)γ}, t{i1+(1−k)γ,i4+(1−k)γ}

, t{i1+(1−k)γ,i3+(1−k)γ,i4+(1−k)γ}
)

+ 1
2
∑
{i1,i4}⊂{(k−1)γ,...,(m+1)γ−1},i2∈{(k−1)γ,...,(m+1)γ−1},i3∈{(k−1)γ,...,(m+1)γ−1}

DP9

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}, t{i2+(1−k)γ,i3+(1−k)γ}, t{i1+(1−k)γ,i4+(1−k)γ}

, t{i1+(1−k)γ,i2+(1−k)γ,i3+(1−k)γ,i4+(1−k)γ}
)

+
k−1∑
h=2

∑
i1∈{(k−1)γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{(h−1)γ,...,(m+1)γ−1},i4∈{(k−1)γ,...,(m+h)γ−1}

EP9

(
t{i1,i2}, t{i2,i3}, t{i1,i2,i3}, t{i3+(1−h)γ,i4+(1−h)γ}, t{i1+(1−k)γ,i4+(1−k)γ}

)

+
k−1∑
h=2

∑
i1∈{(k−h)γ,...,(m+1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{0,...,(m−h+2)γ−1},i4∈{(k−h)γ,...,(m−h+2)γ−1}

EP9

(
t{i1,i2}, t{i2,i3}, t{i1,i2,i3}, t{i3+(h−1)γ,i4+(h−1)γ}, t{i1+(h−k)γ,i4+(h−k)γ}

)

+
k−1∑
h=2

∑
i1∈{0,...,(m−k+h+1)γ−1},i2∈{0,...,(m+1)γ−1},i3∈{0,...,(m−k+2)γ−1},i4∈{(h−k)γ,...,(m−k+2)γ−1}

EP9

(
t{i1,i2}, t{i2,i3}, t{i1,i2,i3}, t{i3+(k−1)γ,i4+(k−1)γ}, t{i1+(k−h)γ,i4+(k−h)γ}

)

166

+
k−1∑
h=2

∑
{i1,i4}⊂{(k−1)γ,...,(m+1)γ−1},i2∈{(h−1)γ,...,(m+1)γ−1},i3∈{(h−1)γ,...,(m+1)γ−1}

GP9

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}, t{i2+(1−h)γ,i3+(1−h)γ}, t{i1+(1−k)γ,i4+(1−k)γ}

)

+
k−1∑
h=2

∑
{i1,i4}⊂{(k−h)γ,...,(m+1)γ−1},i2∈{0,...,(m−h+2)γ−1},i3∈{0,...,(m−h+2)γ−1}

GP9

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}, t{i2+(h−1)γ,i3+(h−1)γ}, t{i1+(h−k)γ,i4+(h−k)γ}

)

+
k−1∑
h=2

∑
{i1,i4}⊂{0,...,(m−k+h+1)γ−1},i2∈{0,...,(m−k+2)γ−1},i3∈{0,...,(m−k+2)γ−1}

GP9

(
t{i1,i2}, t{i3,i4}, t{i1,i2,i3,i4}, t{i2+(k−1)γ,i3+(k−1)γ}, t{i1+(k−h)γ,i4+(k−h)γ}

)

+
k−2∑
h=2

k−1∑
w=h+1

∑
i1∈{(k−1)γ,...,(m+1)γ−1},i2∈{(h−1)γ,...,(m+1)γ−1},
i3∈{(w−1)γ,...,(m+h)γ−1},i4∈{(k−1)γ,...,(m+w)γ−1}

IP9

(
t{i1,i2}, t{i2+(1−h)γ,i3+(1−h)γ}, t{i3+(1−w)γ,i4+(1−w)γ}, t{i1+(1−k)γ,i4+(1−k)γ}

)

+
k−2∑
h=2

k−1∑
w=h+1

∑
i1∈{(k−1)γ,...,(m+1)γ−1},i2∈{(w−1)γ,...,(m+1)γ−1},
i3∈{(w−1)γ,...,(m+h)γ−1},i4∈{(k−1)γ,...,(m+h)γ−1}

IP9

(
t{i1,i2}, t{i2+(1−w)γ,i3+(1−w)γ}, t{i3+(1−h)γ,i4+(1−h)γ}, t{i1+(1−k)γ,i4+(1−k)γ}

)

+
k−2∑
h=2

k−1∑
w=h+1

∑
i1∈{(w−1)γ,...,(m+1)γ−1},i2∈{(h−1)γ,...,(m+1)γ−1},
i3∈{(k−1)γ,...,(m+h)γ−1},i4∈{(k−1)γ,...,(m+w)γ−1}

IP9

(
t{i1,i2}, t{i2+(1−h)γ,i3+(1−h)γ}, t{i3+(1−k)γ,i4+(1−k)γ}, t{i1+(1−w)γ,i4+(1−w)γ}

)
,

(5.60)

with i1 6= i2, i1 6= i3, i1 6= i4, i2 6= i3, i2 6= i4, and i3 6= i4.

After deriving the expressions of FP` , ∀`, as functions of the overlap parameters in O,

we use (5.3), (5.4), and [37, Lemma 3] to express Fsum as a function of the parameters in

Oind (which is the set of all independent non-zero overlap parameters). Thus, our discrete

optimization problem is:

F ∗sum = min
Oind

Fsum. (5.61)

The constraints of the optimization problem in (5.61) are linear constraints capturing

the interval constraints under which the resultant partitioning is valid. We also add the

balanced partitioning constraint, which guarantees a balanced distribution of the non-zero

circulants among the (m + 1) component matrices. (see also [37] and [38]). A balanced

partitioning is preferred in order to prevent the situation where a group of non-zero elements

in a particular component matrix are involved in significantly more cycles than the remaining

non-zero elements. This constraint, although it might result in a sub-optimal solution in the

protograph (in a few cases), is observed to be very beneficial when we apply the CPO to

167

construct the final code.

As with the set Oind, the optimization constraints depend only on code parameters, and

not on the common substructure of interest (which depends on the channel). For example,

in the case of γ = 3, m = 1, and any κ, Oind = {t0, t1, t2, t{0,1}, t{0,2}, t{1,2}, t{0,1,2}}, and the

optimization constraints are (see also [37] and [38]):

0 6 t0 6 κ, 0 6 t{0,1} 6 t0, t{0,1} 6 t1 6 κ− t0 + t{0,1},

0 6 t{0,1,2} 6 t{0,1}, t{0,1,2} 6 t{0,2} 6 t0 − t{0,1} + t{0,1,2},

t{0,1,2} 6 t{1,2} 6 t1 − t{0,1} + t{0,1,2},

t{0,2} + t{1,2} − t{0,1,2} 6 t2 6 κ− t0 − t1 + t{0,1} + t{0,2} + t{1,2} − t{0,1,2},

and b3κ/2c 6 t0 + t1 + t2 6 d3κ/2e . (5.62)

The solution of this optimization problem is not unique. However, since all the solutions

have the same performance (e.g., they all achieve F ∗sum, see also [38]), we work with one of

these solutions, and call it an optimal vector, t∗.

5.5 CPO: Customization for PR Systems

Using the optimal vector t∗, computed as described in the previous section, Hp is partitioned

and the protograph matrix of the SC code, Hp
SC, is constructed. The next step is preventing

as many objects in the protograph as possible from being reflected in the unlabeled graph of

the SC code, via optimizing the circulant powers using the CPO. Here, the CPO is customized

for the (4, 4(γ−2)) object, which is the common substructure for detrimental configurations

in the case of PR systems (see also Fig. 5.2).

From the previous analysis, a Pattern P` spans at most either m+1 or 2m+1 consecutive

replicas, depending on the value of `. Let ξ = 2m+1. Thus, in the CPO, it suffices to operate

on the PM Πξ,p
1 , which is the non-zero part of the first ξ replicas in Hp

SC, and has the size

(ξ +m)γ × ξκ. The circulant powers associated with the 1’s in Hp are defined as fi,j, where

168

0 6 i 6 γ− 1 and 0 6 j 6 κ− 1. Let the circulant powers associated with the 1’s in Πξ,p
1 be

f ′i′,j′ , where 0 6 i′ 6 (ξ+m)γ−1 and 0 6 j′ 6 ξκ−1. From the repetitive nature of the PM

Πξ,p
1 , f ′i′,j′ = f

i′,j̃′
, where i′ = (i′ mod γ) and j̃′ = (j′ mod κ). Define our cycle-8 candidate

in the graph of Πξ,p
1 as c1 − v1 − c2 − v2 − c3 − v3 − c4 − v4, which is a particular way of

traversing a pattern and not necessarily a protograph cycle (see also Figures 5.2 and 5.3).

This candidate results in z (or z/2 in the case of P1 only) cycles of length 8 after lifting if

and only if [87]:

f ′c1,v1 + f ′c2,v2 + f ′c3,v3 + f ′c4,v4 ≡ f ′c1,v2 + f ′c2,v3 + f ′c3,v4 + f ′c4,v1 (mod z). (5.63)

The goal is to prevent as many cycle-8 candidates in the graph of Hp
SC as possible from

being converted into z (or z/2 in the case of P1) (4, 4(γ − 2)) UASs/UTSs in the graph of

HSC, which is the unlabeled graph of the SC code. In other words, a cycle-8 candidate in

the graph of Hp
SC is allowed to be converted into multiple (4, 4(γ − 2) − 2δ) UASs/UTSs,

with δ ∈ {1, 2}, as long as they are not (4, 0) UASs, in the unlabeled graph since these are

not instances of the common substructure of interest. These (4, 4(γ − 2)− 2δ) UASs/UTSs,

δ ∈ {1, 2}, are cycles of length 8 with internal connections, which means v1 and v3 are

adjacent or/and v2 and v4 are adjacent (see Fig. 5.2). For the cycle-8 candidate in the graph

of Πξ,p
1 that is described in the previous paragraph and has a CN, say c5, connecting v1 and

v3, in order to have this internal connection in the lifted cycles, the following condition for

a cycle of length 6 must be satisfied in addition to (5.63):

f ′c1,v1 + f ′c2,v2 + f ′c5,v3 ≡ f ′c1,v2 + f ′c2,v3 + f ′c5,v1 (mod z). (5.64)

Similarly, for that cycle-8 candidate in the graph of Πξ,p
1 that has a CN, say c6, connecting v2

and v4, in order to have this internal connection in the lifted cycles, the following condition

for a cycle of length 6 must be satisfied in addition to (5.63):

169

f ′c1,v1 + f ′c6,v2 + f ′c4,v4 ≡ f ′c1,v2 + f ′c6,v4 + f ′c4,v1 (mod z). (5.65)

Note that the two CNs, c5 and c6, have to be different from the CNs of the pattern itself in

order that we consider them in the CPO algorithm as internal connections. The reason is

that the final unlabeled graphs of our codes must have no cycles of length 4 (which is also

why (5.63) is applied for P1 since f ′c1,v1 +f ′c2,v2 ≡ f ′c1,v2 +f ′c2,v1 (mod z) is not allowed for any

protograph cycle of length 4, c1 − v1 − c2 − v2).

The following lemma discusses the internal connections for different patterns in the pro-

tograph.

Lemma 25. Let ηP` be the maximum number of internal connections Pattern P` can have

(multiple internal connections between the same two VNs are only counted once). Then,

ηP` =


0, ` ∈ {1, 3, 5},

1, ` ∈ {2, 6, 8},

2, ` ∈ {4, 7, 9}.

(5.66)

Proof. A protograph pattern, P`, with only two VNs (` ∈ {1, 3, 5}) cannot have any internal

connections. A protograph pattern with three VNs (` ∈ {2, 6, 8}) can have at most one

internal connection. A protograph pattern with four VNs (` ∈ {4, 7, 9}) can have up to two

internal connection, which completes the proof.

The case of multiple internal connections between the same two VNs is addressed in the

CPO algorithm.

The steps of the customized CPO algorithm for SC codes that have parameters γ > 3,

κ, m, and L > 2m+ 1, are:

1. Assign initial circulant powers to all the γκ 1’s in Hp. In this work, our initial powers

are as in SCB codes. For example, fi,j = (i2)(2j), 0 6 i 6 γ − 1 and 0 6 j 6 κ − 1

(initially, no cycles of length 4 are in HSC).

170

2. Construct Πξ,p
1 via Hp and t∗. Circulant powers of the 1’s in Πξ,p

1 , f ′i′,j′ , are obtained

from the 1’s in Hp.

3. Define a counting variable ψi,j, 0 6 i 6 γ − 1 and 0 6 j 6 κ− 1, for each of the 1’s in

Hp. Define another counting variable ψ′i′,j′ , 0 6 i′ 6 (ξ+m)γ− 1 and 0 6 j′ 6 ξκ− 1,

for each of the elements in Πξ,p
1 . Initialize all the variables in this step with zeros.

Only ξγκ counting variables of the form ψ′i′,j′ are associated with 1’s in Πξ,p
1 . The

other variables remain zeros.

4. Locate all instances of the nine patterns in Πξ,p
1 . Note that locating P1 means also

locating all cycles of length 4 in Πξ,p
1 , which is needed.

5. Determine the ζP` ways to traverse each instance of P`, ∀`, to reach (4, 4(γ − 2))

UASs/UTSs in the unlabeled graph, which are the ζP` cycle-8 candidates.

6. Specify all internal connections (CNs) in each candidate determined in Step 5 if they

can exist.

7. For each cycle-8 candidate in Πξ,p
1 , check whether (5.63) is satisfied for its circulant

powers or not.

8. If (5.63) is satisfied, and the candidate has no internal connections, or (5.63) is satisfied

and the candidate has internal connection(s) but neither (5.64) nor (5.65) is satisfied

for any internal connection, mark this cycle-8 candidate as an active candidate.

9. Let F k,a
P`,1, where k ∈ {1, 2, . . . , ξ}, be the number of active candidates of P` starting

at the first replica and spanning k consecutive replicas in Πξ,p
1 . Thus, the number of

active candidates of P` spanning k consecutive replicas in Πξ,p
1 is (ξ−k+ 1)F k,a

P`,1. (For

example, for k = 1, ξF 1,a
P`,1 is the number of active candidates of P`, for any value of `,

spanning one replica in Πξ,p
1 .)

171

10. Compute the number of (4, 4(γ − 2)) UASs/UTSs in HSC using the following formula

(see also [37]):

FSC =
9∑
`=1

ξ∑
k=1

(
(L− k + 1)F k,a

P`,1

)
zP` , (5.67)

where zP` = z/2 if ` = 1, and zP` = z otherwise. Recall that ξ = 2m+ 1.

11. Count the number of active candidates each 1 in Πξ,p
1 is involved in. Assign weight

wk = (L−k+1)/(ξ−k+1) to the number of active candidates spanning k consecutive

replicas in Πξ,p
1 (see also [37]). Multiply wk by 1/2 if the candidate is associated to

P1. (For example, for k = ξ, the weight of the number of active candidates spanning ξ

consecutive replicas is (L− ξ + 1).)

12. Store the weighted count associated with each 1 in Πξ,p
1 , which is indexed by (i′, j′), in

ψ′i′,j′ .

13. Calculate the counting variables ψi,j, ∀i, j, associated with the 1’s in Hp from the

counting variables ψ′i′,j′ associated with the 1’s in Πξ,p
1 (computed in Steps 11 and 12)

using the following formula:

ψi,j =
∑
i′:i′=i

∑
j′:j̃′=j

Πξ,p
1 [i′][j′]6=0

ψ′i′,j′ , (5.68)

14. Sort these γκ 1’s of Hp in a list descendingly according to the counts in ψi,j, ∀i, j.

15. Pick a subset of 1’s from the top of this list, and change the circulant powers associated

with them.

16. Using these interim powers, do Steps 7, 8, 9, and 10.

17. If FSC is reduced while maintaining no cycles of length 4 and no (4, 0) objects (in the

case of γ = 3) in HSC, update FSC and the circulant powers, then go to Step 11.

172

0

12

5

8 12 2 12 0 2

6 5 4 7 5 1

2 4 4 8 10 0

(a) (b)

Figure 5.13: (a) The OO partitioning of Hp (or H) of the SC code in Example 24. En-
tries with circles (resp., squares) are assigned to Hp

0 (resp., Hp
1). (b) The circulant power

arrangement for the circulants in H.

18. Otherwise, return to Step 15 to pick a different set of circulant powers or/and a different

subset of 1’s (from the 1’s in Hp).

19. Iterate until the target FSC (set by the code designer) is achieved, or the reduction in

FSC approaches zero.

Step 15 in the CPO algorithm is performed heuristically. The number of 1’s to work with

depend on the circulant size, the values of the counts, and how these values are distributed.

Moreover, tracking the counts of active candidates and the distribution of their values over

different 1’s in Hp is the main factor to decide which 1’s to select in each iteration.

Example 24. Suppose we are designing an SC code with γ = 3, κ = 7, z = 13, m = 1,

and L = 10 using the OO-CPO approach for PR systems. Solving the optimization problem

in (5.61) gives an optimal vector t∗ = [t∗0 t∗1 t∗2 t∗{0,1} t∗{0,2} t∗{1,2} t∗{0,1,2}]T = [3 3 4 0 1 2 0]T,

with F ∗sum = 5,170 patterns (rounded weighted sum) in the graph of Hp
SC. Fig. 5.13(a) shows

how the partitioning is applied on Hp (or H). Next, applying the CPO results in 2,613 (4, 4)

UASs in the graph of HSC. Fig. 5.13(b) shows the final circulant power arrangement for all

circulants in H.

Remark 24. After introducing the concept of patterns in this work, the OO-CPO approach

can be easily extended to target other common substructures if needed.

173

5.6 Experimental Results

In this section, we propose experimental results demonstrating the effectiveness of the OO-

CPO approach compared with other code design techniques in PR (1-D MR) systems.

Remark 25. In this section, all the codes used have no cycles of length 4. Moreover, we

opted to work with circulant sizes z > κ in order to give more freedom to the CPO, which

results in less detrimental objects.

First, we compare the total number of instances of the common substructure of interest

in the unlabeled graphs of SC codes designed using various techniques. We present results

for two groups of codes.

All the codes in the first group have γ = 3 (i.e., the common substructure of interest

is the (4, 4) UAS in Fig. 5.2) and m ∈ {1, 2}. We also choose L = 10 for this group. In

addition to the uncoupled setting (H0 = H and H1 = 0), we show results for the following

five SC code design techniques:

1. The CV technique (see [32]) with m = 1.

2. The OO technique with no CPO applied and with m = 1.

3. The OO technique with circulant powers optimized via the CPO (the OO-CPO ap-

proach) and with m = 1.

4. The OO technique with no CPO applied and with m = 2.

5. The OO technique with circulant powers optimized via the CPO (the OO-CPO ap-

proach) and with m = 2.

In the uncoupled setting in addition to the first, second, and fourth techniques, circulant

powers as in SCB codes, fi,j = f(i)f(j) = (i2)(2j), are used.

The results of the first group of codes for different choices of κ and z are listed in Table 5.1.

For a particular choice of κ, z, m, and L, SC codes designed using these different techniques

174

Table 5.1: Number of (4, 4) UASs in SC codes with γ = 3, m ∈ {1, 2}, and L = 10 designed
using different techniques.

Design technique
Number of (4, 4) UASs

κ = 7,
z = 13

κ = 11,
z = 23

κ = 13,
z = 29

κ = 17,
z = 37

Uncoupled with SCB 32,370 254,610 540,850 1,700,890
SC CV with SCB and m = 1 9,464 91,333 197,084 652,347
SC OO with SCB and m = 1 6,500 53,130 123,395 440,818

SC OO-CPO and m = 1 2,613 32,361 70,151 254,005
SC OO with SCB and m = 2 3,172 27,508 60,233 194,176

SC OO-CPO and m = 2 819 13,110 32,074 117,697

all have block length = κzL and rate ≈
[
1− 3(L+m)

κL

]
. Table 5.1 demonstrates the significant

gains achieved by the OO-CPO approach compared with other techniques. In particular,

for m = 1, the proposed OO-CPO approach achieves a reduction in the number of (4, 4)

UASs that ranges between 85% and 92% compared with the uncoupled setting, and between

61% and 72% compared with the CV technique. The table also illustrates the positive

effect of increasing the memory of the SC code. In particular, the OO-CPO approach with

m = 2 achieves a reduction in the number of (4, 4) UASs that ranges between 54% and 69%

compared with the OO-CPO approach with m = 1. Moreover, the importance of the two

stages (the OO and the CPO) is highlighted by the numbers in Table 5.1.

As for the second group, all the codes have γ = 4 (i.e., the common substructure of

interest is the (4, 8) UTS in Fig. 5.2) and m = 1. We also choose L = 10 for this group. In

addition to the uncoupled setting (H0 = H and H1 = 0), we show results for the following

three SC code design techniques:

1. The CV technique (see [32]).

2. The OO technique with no CPO applied.

3. The OO technique with circulant powers optimized via the CPO (the OO-CPO ap-

proach).

In the uncoupled setting in addition to the first and second techniques, circulant powers as

in SCB codes, fi,j = f(i)f(j) = (i2)(2j), are used.

175

Table 5.2: Number of (4, 8) UTSs in SC codes with γ = 4, m = 1, and L = 10 designed
using different techniques.

Design technique
Number of (4, 8) UTSs

κ = 7,
z = 13

κ = 11,
z = 23

κ = 13,
z = 29

κ = 17,
z = 37

Uncoupled with SCB 131,820 1,034,310 2,193,850 7,081,430
SC CV with SCB 48,074 396,474 843,233 2,782,844
SC OO with SCB 27,729 230,230 508,544 1,667,886

SC OO-CPO 17,095 165,071 366,212 1,253,745

The results of the second group of codes for different choices of κ and z are listed in

Table 5.2. For a particular choice of κ, z, and L, SC codes designed using these different

techniques all have block length = κzL and rate≈
[
1− 4(L+1)

κL

]
. Table 5.2 again demonstrates

the significant gains achieved by the OO-CPO approach compared with other techniques.

In particular, the proposed OO-CPO approach achieves a reduction in the number of (4, 8)

UTSs that ranges between 82% and 87% compared with the uncoupled setting, and between

55% and 64% compared with the CV technique. Moreover, the importance of the two stages

(the OO and the CPO) is again highlighted by the numbers in Table 5.2.

Second, we present simulation results of SC codes designed using various techniques over

the PR channel. We use the PR channel described in Chapter 2. This channel incorporates

inter-symbol interference (intrinsic memory), jitter, and electronic noise. The normalized

channel density [50, 51] we use is 1.4, and the PR equalization target is [8 14 2]. The

receiver consists of filtering units followed by a Bahl Cocke Jelinek Raviv (BCJR) detector

[53], which is based on pattern-dependent noise prediction (PDNP) [54], in addition to a fast

Fourier transform based q-ary sum-product algorithm (FFT-QSPA) LDPC decoder [52]. The

number of global (detector-decoder) iterations is 10, and the number of local (decoder only)

iterations is 20. Unless a codeword is reached, the decoder performs its prescribed number

of local iterations for each global iteration.

In the simulations, we use five different codes. All the codes are defined over GF(4).

Codes 5.1, 5.2, 5.3, and 5.4 have γ = 3, κ = 19, z = 46, m = 1, and L = 5. Thus, these

codes have block length = 8,740 bits, and the SC codes have rate ≈ 0.81. Code 5.1 is

176

SNR (dB)
13.75 14 14.25 14.5 14.75 15 15.25 15.5 15.75

FE
R

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

 Code 5.1: Uncoupled w SCB
 Code 5.2: SC CV w SCB
 Code 5.5: BL PB w CB
 Code 5.3: SC OO-CPO
 Code 5.4: SC OO-CPO-WCM

Figure 5.14: Simulation results over the PR channel for SC codes designed using different
techniques and a BL code.

uncoupled. Code 5.2 is an SC code designed using the CV technique for PR channels as

described in [32]. Codes 5.1 and 5.2 have SCB circulant powers of the form fi,j = (i2)(2j).

Code 5.3 is an SC code designed using the OO-CPO approach. Codes 5.1, 5.2, and 5.3

have unoptimized edge weights. Code 5.4 is the result of applying the WCM framework to

Code 5.3 in order to optimize its edge weights. The numbers of (4, 4) UASs in the unlabeled

graphs of Codes 5.1, 5.2, and 5.3 are 2,425,120, 845,434, and 184,667, respectively. Code 5.5

is a block (BL) code, which is also protograph-based (PB), designed as in Chapter 3 and

Chapter 4. Code 5.5 has column weight = 3, circulant size = 46, block length = 8,832 bits,

rate ≈ 0.81 (same as all SC codes), and unoptimized weights (similar to all codes except

Code 5.4). Since our main focus in this work is the performance, a relatively small value of

L (which is 5) along with block decoding are used for SC Codes 5.1, 5.2, 5.3, and 5.4.

Fig. 5.14 demonstrates the effectiveness of the proposed OO-CPO approach in designing

high performance SC codes for PR channels. In particular, Code 5.3 (designed using the OO-

CPO approach) outperforms Code 5.2 (designed using the CV technique) by about 3 orders

of magnitude at signal-to-noise ratio (SNR) = 15 dB, and by about 1.1 dB at FER ≈ 10−5.

More intriguingly, Code 5.3 outperforms Code 5.5 (the block code) by about 1.6 orders of

magnitude at SNR = 15 dB, and by almost 0.4 dB at FER ≈ 10−6. The performance of

177

Code 5.3 is better than the performance of Code 5.5 not only in the error floor region, but

also in the waterfall region. An interesting observation is that, in the error profile of Code 5.3,

we found no codewords of weights ∈ {6, 8} (which are (6, 0, 0, 9, 0) and (8, 0, 0, 12, 0) BASTs)

despite the dominant presence of such low weight codewords in the error profiles of Codes 5.1,

5.2, and 5.5 (see also Chapter 2 and Chapter 4 in addition to [40], [43], and [32]). From

Fig. 5.14, the WCM framework achieves 1 order of magnitude additional gain.

An important reason behind the improved waterfall performance of Code 5.3 is the sig-

nificant reduction in the multiplicity of low weight codewords achieved by the OO-CPO

approach. This reduction is a result of the fact that such low weight codewords also have

the (4, 4) UAS as a common substructure in their configurations (see Fig. 5.2).

5.7 Concluding Remarks

We proposed the OO-CPO approach to optimally design binary and non-binary SC codes

for PR channels, via minimizing the number of detrimental objects in the graph of the code.

SC codes designed using the OO-CPO approach were shown to significantly outperform SC

codes designed using techniques from the literature. More importantly, SC codes designed

using our approach were demonstrated to outperform structured block codes with the same

parameters.

Acknowledgement

The majority of the material in this chapter is in [45], which will be submitted to a journal

soon. The work will also be presented in part at GLOBECOM 2018 [44]. The author would

like to thank the collaborators in these publications.

178

5.8 Appendix

5.8.1 Proofs of Pattern P1

Proof of Lemma 16

Proof. In Case 1.1, the number we are after is the number of ways to choose 2 overlaps out of

t{i1,i2} overlaps, which is given by (5.6). In Case 1.2, the number we are after is the number

of ways to choose 1 overlap out of t{i1,i2} and 1 overlap out of t{i1+(r−e)γ,i2+(r−e)γ}, which is

given by (5.7).

Proof of Theorem 8

Proof. To compute FP1 , we use the formula in [37, Theorem 1], with χ, which is the maximum

number of replicas the pattern can span, equals m + 1. Since the overlaps of P1 can exist

in up to 2 replicas, we need to find expressions only for F 1
P1,1 (overlaps are in 1 replica) and

F k>2
P1,1 (overlaps are in 2 replicas).

Then, F 1
P1,1 is the sum of function AP1 in (5.6), with r = 1, over all possible values of

{i1, i2}. Here, {i1, i2} can take any distinct two values in the range from the start to the end

of R1, i.e., from 0 to (m+ 1)γ − 1 (see Fig. 5.4).

Moreover, F k>2
P1,1 is the sum of function BP1 in (5.7), with r = 1 and e = k, over all possible

values of {i1, i2}. Here, {i1, i2} can take any distinct two values in the range from the start

of Rk to the end of R1, i.e., from (k − 1)γ to (m+ 1)γ − 1 (see also Fig. 5.4).

5.8.2 Proofs of Pattern P2

Proof of Lemma 17

Proof. In Case 2.1, the number we are after is the number of ways to choose 3 overlaps out

of t{i1,i2} overlaps, which is given by (5.10). In Case 2.2, the number we are after is the

number of ways to choose 2 overlap out of t{i1,i2} and 1 overlap out of t{i1+(r−e)γ,i2+(r−e)γ},

179

which is given by (5.11). In Case 2.3, the number we are after is the number of ways to

choose 1 overlap out of t{i1,i2}, 1 overlap out of t{i1+(r−e)γ,i2+(r−e)γ}, and 1 overlap out of

t{i1+(r−s)γ,i2+(r−s)γ}, which is given by (5.12).

Proof of Theorem 9

Proof. To compute FP2 , we use the formula in [37, Theorem 1], with χ = m + 1. Since the

overlaps of P2 can exist in up to 3 replicas, we need to find expressions only for F 1
P2,1, F

2
P2,1,

and F k>3
P2,1 .

Then, F 1
P2,1 is the sum of function AP2 in (5.10), with r = 1, over all possible values of

{i1, i2}. Here, {i1, i2} can take any distinct two values in the range from the start to the end

of R1, i.e., from 0 to (m+ 1)γ − 1 (see Fig. 5.5).

Regarding F 2
P2,1, we need to distinguish between two situations; when r < e (i.e., replica

Rr, which has two overlaps, comes before replica Re), and when r > e (i.e., replica Rr comes

after replica Re). This distinction gives the two summations of function BP2 in F 2
P2,1. For

the first summation, BP2 in (5.11) has r = 1 and e = 2. Thus, {i1, i2} can take any distinct

two values in the range from the start of R2 to the end of R1, i.e., from γ to (m + 1)γ − 1

(see Fig. 5.5 for more illustration). For the second summation, BP2 in (5.11) has r = 2 and

e = 1. Thus, {i1, i2} can take any distinct two values in the range from the start of R2

(which is now Rr) to the end of R1, i.e., from 0 to mγ − 1.

As for F k>3
P2,1 , the overlaps can be in 2 replicas (the first two summations in F k>3

P2,1) or 3

replicas (the third summation in F k>3
P2,1). The first two summations are derived in a way

similar to what we did for F 2
P2,1, with a change in the summation indices; R2 is replaced by

Rk here. For the third (double) summation, CP2 in (5.12) has r = 1, e = h, and s = k. Thus,

{i1, i2} can take any distinct two values in the range from the start of Rk to the end of R1,

i.e., from (k − 1)γ to (m + 1)γ − 1 (see Fig. 5.5). The outer summation is over all possible

values of h, and we have 1 < h < k.

180

5.8.3 Proofs of Pattern P3

Proof of Lemma 18

Proof. In Case 3.1, the number we are after is the number of ways to choose 2 overlaps out

of t{i1,i2,i3}, which is given by (5.15). In Case 3.2, the number we are after is the number

of ways to choose 1 overlap out of t{i1,i2,i3} and 1 overlap out of t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ},

which is given by (5.16).

Proof of Theorem 10

Proof. To compute FP3 , we use the formula in [37, Theorem 1], with χ = m + 1. Since the

overlaps of P3 can exist in up to 2 replicas, we need to find expressions only for F 1
P3,1 and

F k>2
P3,1 .

Then, F 1
P3,1 is the sum of function AP3 in (5.15), with r = 1, over all possible values of

{i1, i2, i3}. Here, {i1, i2, i3} can take any distinct three values in the range from the start to

the end of R1, i.e., from 0 to (m+ 1)γ − 1 (see Fig. 5.6).

Moreover, F k>2
P3,1 is the sum of function BP3 in (5.16), with r = 1 and e = k, over all

possible values of {i1, i2, i3}. Here, {i1, i2, i3} can take any distinct three values in the range

from the start of Rk to the end of R1, i.e., from (k−1)γ to (m+1)γ−1 (see also Fig. 5.6).

5.8.4 Proofs of Pattern P4

Proof of Lemma 19

Proof. In Case 4.1, the number we are after is the number of ways to choose 4 overlaps out

of t{i1,i2}, which is given by (5.19). In Case 4.2, the number we are after is the number of

ways to choose 3 overlaps out of t{i1,i2} and 1 overlap out of t{i1+(r−e)γ,i2+(r−e)γ}, which is

given by (5.20). In Case 4.3, the number we are after is the number of ways to choose 2

overlaps out of t{i1,i2} and 2 overlaps out of t{i1+(r−e)γ,i2+(r−e)γ}, which is given by (5.21). In

181

Case 4.4, the number we are after is the number of ways to choose 2 overlaps out of t{i1,i2},

1 overlap out of t{i1+(r−e)γ,i2+(r−e)γ}, and 1 overlap out of t{i1+(r−s)γ,i2+(r−s)γ}, which is given

by (5.22). In Case 4.5, the number we are after is the number of ways to choose 1 overlap

out of t{i1,i2}, 1 overlap out of t{i1+(r−e)γ,i2+(r−e)γ}, 1 overlap out of t{i1+(r−s)γ,i2+(r−s)γ}, and

1 overlap out of t{i1+(r−u)γ,i2+(r−u)γ}, which is given by (5.23).

Proof of Theorem 11

Proof. To compute FP4 , we use the formula in [37, Theorem 1], with χ = m + 1. Since the

overlaps of P4 can exist in up to 4 replicas, we need to find expressions only for F 1
P4,1, F

2
P4,1,

F 3
P4,1, and F

k>4
P4,1 .

Then, F 1
P4,1 is the sum of function AP4 in (5.19), with r = 1, over all possible values of

{i1, i2}. Here, {i1, i2} can take any distinct two values in the range from 0 to (m + 1)γ − 1

(see Fig. 5.7).

Regarding F 2
P4,1, we need to account for Case 4.2 and Case 4.3. For Case 4.2, we need to

distinguish between two situations; when r < e (i.e., replica Rr, which has three overlaps,

comes before replica Re), and when r > e (i.e., replica Rr comes after replica Re). This

distinction gives the two summations of function BP4 in F 2
P4,1. For the first summation, BP4

in (5.20) has r = 1 and e = 2. Thus, {i1, i2} can take any distinct two values in the range

from γ to (m+1)γ−1. For the second summation, BP4 in (5.20) has r = 2 and e = 1. Thus,

{i1, i2} can take any distinct two values in the range from 0 to mγ−1. The above distinction

is not needed for Case 4.3 since the two replicas have the same number of degree-2 overlaps.

For the third summation, CP4 in (5.21) has r = 1 and e = 2. Thus, {i1, i2} can take any

distinct two values in the range from γ to (m+ 1)γ − 1 (see Fig. 5.7 for more illustration).

As for F 3
P4,1, the overlaps can be in 2 replicas (the first three summations in F 3

P4,1) or 3

replicas (the following three summations in F 3
P4,1). The first three summations are derived

in a way similar to what we did for F 2
P4,1, with a change in the summation indices; R2 is

replaced by R3 here. The following three summations are related to Case 4.4. For Case 4.4,

182

we need to distinguish between three situations; when r < e < s (i.e., replica Rr, which has

two overlaps, comes before replicas Re and Rs as in Fig. 5.7), when e < r < s (i.e., replica

Rr comes between replicas Re and Rs), and when e < s < r (i.e., replica Rr comes after

replicas Re and Rs). This distinction gives the three summations of function DP4 in F 3
P4,1.

For the fourth summation in F 3
P4,1, DP4 in (5.22) has r = 1, e = 2, and s = 3. Thus, {i1, i2}

can take any distinct two values in the range from the start of R3 to the end of R1, i.e.,

from 2γ to (m+ 1)γ− 1. For the fifth summation, DP4 in (5.22) has r = 2, e = 1, and s = 3.

Thus, {i1, i2} can take any distinct two values in the range from the start of R3 to the end

of R1 (Rr now is R2), i.e., from γ to mγ − 1. For the sixth summation, DP4 in (5.22) has

r = 3, e = 1, and s = 2. Thus, {i1, i2} can take any distinct two values in the range from

the start of R3 (which is Rr now) to the end of R1, i.e., from 0 to (m− 1)γ − 1.

Regarding F k>4
P4,1 , the overlaps can be in 2 replicas (the first three summations in F k>4

P4,1), 3

replicas (the following three summations in F k>4
P4,1), or 4 replicas (the seventh summation in

F k>4
P4,1). The first three summations are derived in a way similar to what we did for F 2

P4,1, with

a change in the summation indices; R2 is replaced by Rk. The following three summations

are derived in a way similar to what we did for DP4 in F 3
P4,1, with a change in the summation

indices; R2 and R3 are replaced by Rh and Rk, respectively, which also requires changing

these three summations ofDP4 to be double summations. For the seventh (triple) summation,

EP4 in (5.23) has r = 1, e = h, s = w, and u = k. Thus, {i1, i2} can take any distinct two

values in the range from the start of Rk to the end of R1, i.e., from (k− 1)γ to (m+ 1)γ− 1

(see Fig. 5.7). The outer two summations are over all possible values of h and w, and we

have 1 < h < k − 1 and h < w < k.

5.8.5 Proofs of Pattern P5

Proof of Lemma 20

Proof. In Case 5.1, the number we are after is the number of ways to choose 2 over-

laps out of t{i1,i2,i3,i4}, which is given by (5.26). In Case 5.2, the number we are af-

183

ter is the number of ways to choose 1 overlap out of t{i1,i2,i3,i4} and 1 overlap out of

t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ,i4+(r−e)γ}, which is given in (5.27).

Proof of Theorem 12

Proof. To compute FP5 , we use the formula in [37, Theorem 1], with χ = m + 1. Since the

overlaps of P5 can exist in up to 2 replicas, we need to find expressions only for F 1
P5,1 and

F k>2
P5,1 .

Then, F 1
P5,1 is the sum of function AP5 in (5.26), with r = 1, over all possible values of

{i1, i2, i3, i4}. Here, {i1, i2, i3, i4} can take any distinct four values in the range from the start

to the end of R1, i.e., from 0 to (m+ 1)γ − 1 (see Fig. 5.8).

Moreover, F k>2
P5,1 is the sum of function BP5 in (5.27), with r = 1 and e = k, over all

possible values of {i1, i2, i3, i4}. Here, {i1, i2, i3, i4} can take any distinct four values in the

range from the start of Rk to the end of R1, i.e., from (k − 1)γ to (m + 1)γ − 1 (see also

Fig. 5.8).

5.8.6 Proofs of Pattern P6

Proof of Lemma 21

Proof. In Case 6.1, the number we are after is the number of ways to choose 1 overlap from

each family in Rr (there exist three different families for P6). We choose the c1 − c2 − c3

degree-3 overlap first. Then, in order to avoid over-counting, it is required to distinguish

between the two situations when the c1− c2 degree-2 overlap is part of a c1− c2− c3 degree-3

overlap, and when this is not the case. Taking this requirement into account yields the

two added terms in (5.30). The same applies for Case 6.2, with the exception that here

the degree-3 overlap is chosen from t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ} overlaps, resulting in (5.31).

Following the same logic of Case 6.1 for Case 6.3, with the exception that the c1− c3 overlap

is chosen from t{i1+(r−e)γ,i3+(r−e)γ} overlaps, gives (5.32). In Case 6.4, the number we are after

184

is the number of ways to choose 1 overlap out of t{i1,i2}, 1 overlap out of t{i1+(r−e)γ,i3+(r−e)γ},

and 1 overlap out of t{i1+(r−s)γ,i2+(r−s)γ,i3+(r−s)γ}, which is given by (5.33).

Proof of Theorem 13

Proof. To compute FP6 , we use the formula in [37, Theorem 1], with χ = m + 1. Since the

overlaps of P6 can exist in up to 3 replicas, we need to find expressions only for F 1
P6,1, F

2
P6,1,

and F k>3
P6,1 .

Then, F 1
P6,1 is the sum of function AP6 in (5.30), with r = 1, over all possible values of

i1 and {i2, i3}. In Pattern P6, CN c1, which connects all three VNs, is different from the

other two CNs. Moreover, in a group of three CNs that can form P6, c1 can be any one of

these three CNs, which means we have three possible ways to form P6 from these three CNs.

These facts combined are the reason why i1 of c1 has to be separated from {i2, i3}, despite

having the same range, in the expression of F 1
P6,1 (this applies for other expressions too).

Here, i1 (resp., {i2, i3}) can take any value (resp., distinct two values) in the range from the

start to the end of R1, i.e., from 0 to (m+ 1)γ − 1 (see also Fig. 5.9).

Regarding F 2
P6,1, we need to account for Case 6.2 and Case 6.3. For each case of the two,

we need to distinguish between two situations; when r < e and when r > e. This distinction

gives the two summations of BP6 and the two summations of CP6 in F 2
P6,1. In Case 6.2, each of

the three CNs of P6 connects overlaps in Rr and Re (because the degree-3 overlap is moved

to Re). For the first summation in F 2
P6,1, BP6 in (5.31) has r = 1 and e = 2. Thus, i1 (resp.,

{i2, i3}) can take any value (resp., distinct two values) in the range from the start of R2 to

the end of R1, i.e., from γ to (m + 1)γ − 1. For the second summation, BP6 in (5.31) has

r = 2 and e = 1. Thus, i1 (resp., {i2, i3}) can take any value (resp., distinct two values) in

the range from 0 to mγ − 1. In Case 6.3, and as shown in Fig. 5.9, c1 and c3 each connects

overlaps in Rr and Re, while c2 connects overlaps in Rr only (because the c1 − c3 overlap

is moved to Re here). For the third summation in F 2
P6,1, CP6 in (5.32) has r = 1 and e = 2.

Thus, i1 (resp., i2 and i3) can take any value in the range from the start of R2 (resp., R1

185

and R2) to the end of R1, i.e., from γ (resp., 0 and γ) to (m + 1)γ − 1. For the fourth

summation, CP6 in (5.32) has r = 2 and e = 1 (see Fig. 5.9). Thus, i1 (resp., i2 and i3) can

take any value in the range from the start of R2 to the end of R1 (resp., R2 and R1), i.e.,

from 0 to mγ − 1 (resp., (m + 1)γ − 1 and mγ − 1). Note that the ranges of i2 and i3 are

different in Case 6.3, unlike Case 6.2, which is the reason why i2 and i3 are not in a set in

the summations of CP6 .

As for F k>3
P6,1 , the overlaps can be in 2 replicas (the first four summations in F k>3

P6,1) or 3

replicas (the following three summations in F k>3
P6,1). The first four summations are derived in a

way similar to what we did for F 2
P6,1, with a change in the summation indices; R2 is replaced

by Rk here. The following three summations are associated with Case 6.4. In Case 6.4, c1

connects overlaps in Rr, Re, and Rs. On the other hand, c2 (resp., c3) connects overlaps in

Rr (resp., Re) and Rs. For the fifth (double) summation, DP6 in (5.33) has r = 1, e = h,

and s = k (see Fig. 5.9). Thus, i1 (resp., i2 and i3) can take any value in the range from the

start of Rk to the end of R1 (resp., R1 and Rh), i.e., from (k − 1)γ to (m+ 1)γ − 1 (resp.,

(m+ 1)γ− 1 and (m+h)γ− 1). For the sixth (double) summation, DP6 in (5.33) has r = 1,

e = k, and s = h. Thus, i1 (resp., i2 and i3) can take any value in the range from the start

of Rk (resp., Rh and Rk) to the end of R1 (resp., R1 and Rh), i.e., from (k − 1)γ (resp.,

(h − 1)γ and (k − 1)γ) to (m + 1)γ − 1 (resp., (m + 1)γ − 1 and (m + h)γ − 1). For the

seventh (double) summation, DP6 in (5.33) has r = h, e = k, and s = 1. Thus, i1 (resp., i2

and i3) can take any value in the range from the start of Rk (resp., Rh and Rk) to the end

of R1, i.e., from (k− h)γ (resp., 0 and (k− h)γ) to (m− h+ 2)γ − 1. The outer summation

is over all possible values of h, and we have 1 < h < k.

5.8.7 Proofs of Pattern P7

Proof of Lemma 22

Proof. In Case 7.1, the number we are after is the number of ways to choose 2 overlaps from

each family in Rr (the pattern has two c1 − c2 overlaps and two c1 − c3 overlaps). In order

186

to avoid over-counting, it is required to distinguish between the three situations when the

two c1 − c2 overlaps are each part of a c1 − c2 − c3 overlap, when only one c1 − c2 overlap

is part of a c1 − c2 − c3 overlap, and when neither of them is. Taking this requirement

into account yields the three added terms in (5.36). The same applies for Case 7.2, with

the exception that here, one c1 − c3 overlap is chosen from t{i1+(r−e)γ,i3+(r−e)γ} overlaps. In

Case 7.3, there is no need to make this distinction since both c1 − c3 overlaps are chosen

from t{i1+(r−e)γ,i3+(r−e)γ} overlaps (they are in Re), and the result is in (5.38). In Case 7.4,

the distinction is applied separately on the c1−c2 overlap in Rr and the c1−c2 overlap in Re

to give (5.39). Case 7.5 is similar to Case 7.3, with the exception that one of the two c1− c3

overlaps is chosen from t{i1+(r−s)γ,i3+(r−s)γ} overlaps since it is now in Rs. Case 7.6 is similar

to Case 7.4, with the exception that one c1 − c3 overlap is chosen from t{i1+(r−s)γ,i3+(r−s)γ}

overlaps since it is now in Rs (was the c1 − c3 overlap in Re in Case 7.4). Consequently,

the above distinction is only applied to the c1− c2 overlap in Rr, which results in (5.41). In

Case 7.7, the number we are after is the number of ways to choose 1 overlap out of t{i1,i2}, 1

overlap out of t{i1+(r−e)γ,i2+(r−e)γ}, 1 overlap out of t{i1+(r−s)γ,i3+(r−s)γ}, and 1 overlap out of

t{i1+(r−u)γ,i3+(r−u)γ}, which is given by (5.42).

Proof of Theorem 14

Proof. To compute FP7 , we use the formula in [37, Theorem 1], with χ = m + 1. Since the

overlaps of P7 can exist in up to 4 replicas, we need to find expressions only for F 1
P7,1, F

2
P7,1,

F 3
P7,1, and F

k>4
P7,1 .

Then, F 1
P7,1 is the sum of function AP7 in (5.36), with r = 1, over all possible values

of i1 and {i1, i2}. In Pattern P7, CN c1, which connects all four VNs, is different from the

other two CNs. Moreover, in a group of three CNs that can form P7, c1 can be any one of

these three CNs, which means we have three possible ways to form P7 from these three CNs.

These facts combined are the reason why i1 of c1 has to be separated from {i2, i3}, despite

having the same range, in the expression of F 1
P7,1 (this applies for other expressions too).

187

Here, i1 (resp., {i2, i3}) can take any value (resp., distinct two values) in the range from the

start to the end of R1, i.e., from 0 to (m+ 1)γ − 1 (see also Fig. 5.10).

Regarding F 2
P7,1, we need to account for Case 7.2, Case 7.3, and Case 7.4. For Case 7.2,

we need to distinguish between two situations; when r < e and when r > e, which gives

the two summations of BP7 in F 2
P7,1. In Case 7.2, and as shown in Fig. 5.10, c1 and c3

each connects overlaps in Rr and Re, while c2 connects overlaps in Rr only. For the first

summation in F 2
P7,1, BP7 in (5.37) has r = 1 and e = 2. Thus, i1 (resp., i2 and i3) can take

any value in the range from the start of R2 (resp., R1 and R2) to the end of R1, i.e., from

γ (resp., 0 and γ) to (m+ 1)γ − 1. For the second summation, BP7 in (5.37) has r = 2 and

e = 1. Thus, i1 (resp., i2 and i3) can take any value in the range from the start of R2 to the

end of R1 (resp., R2 and R1), i.e., from 0 to mγ− 1 (resp., (m+ 1)γ− 1 and mγ− 1). Note

that the ranges of i2 and i3 are different in Case 7.2. The above distinction is not needed

for neither Case 7.3 nor Case 7.4 since the two replicas have the same number of degree-2

overlaps with similar connectivity. In Case 7.3, c1 connects overlaps in Rr and Re, while c2

(resp., c3) connects overlaps in Rr (resp., Re) only. For the third summation in F 2
P7,1, CP7 in

(5.38) has r = 1 and e = 2. Thus, i1 (resp., i2 and i3) can take any value in the range from

the start of R2 (resp., R1 and R2) to the end of R1 (resp., R1 and R2), i.e., from γ (resp.,

0 and γ) to (m + 1)γ − 1 (resp., (m + 1)γ − 1 and (m + 2)γ − 1). Note that the ranges of

i2 and i3 are also different in Case 7.3. In Case 7.4, all the CNs connect overlaps in Rr and

Re. For the fourth summation in F 2
P7,1, DP7 in (5.39) has r = 1 and e = 2. Thus, i1 (resp.,

{i2, i3}) can take any value (resp., distinct two values) in the range from the start of R2 to

the end of R1, i.e., from γ to (m + 1)γ − 1. Note that the ranges of i2 and i3 are the same

in Case 7.4 (similar to Case 7.1).

As for F 3
P7,1, the overlaps can be in 2 replicas (the first four summations in F 3

P7,1) or

3 replicas (the following six summations in F 3
P7,1). The first four summations are derived

in a way similar to what we did for F 2
P7,1, with a change in the summation indices; R2 is

replaced by R3 here. Then, we need to account for Case 7.5 (fifth to seventh summations)

188

and Case 7.6 (eighth to tenth summations). In Case 7.5, c1 connects overlaps in Rr, Re,

and Rs. On the other hand, c2 (resp., c3) connects overlaps in Rr only (resp., Re and Rs).

For the fifth summation, EP7 in (5.40) has r = 1, e = 2, and s = 3 (see Fig. 5.10). Thus, i1

(resp., i2 and i3) can take any value in the range from the start of R3 (resp., R1 and R3)

to the end of R1 (resp., R1 and R2), i.e., from 2γ (resp., 0 and 2γ) to (m + 1)γ − 1 (resp.,

(m+1)γ−1 and (m+2)γ−1). For the sixth summation, EP7 in (5.40) has r = 2, e = 1, and

s = 3. Thus, i1 (resp., i2 and i3) can take any value in the range from the start of R3 (resp.,

R2 and R3) to the end of R1 (resp., R2 and R1), i.e., from γ (resp., 0 and γ) to mγ − 1

(resp., (m+1)γ−1 and mγ−1). For the seventh summation, EP7 in (5.40) has r = 3, e = 1,

and s = 2. Thus, i1 (resp., i2 and i3) can take any value in the range from the start of R3

(resp., R3 and R2) to the end of R1 (resp., R3 and R1), i.e., from 0 (resp., 0 and −γ) to

(m − 1)γ − 1 (resp., (m + 1)γ − 1 and (m − 1)γ − 1). In Case 7.6, c1 connects overlaps in

Rr, Re, and Rs. On the other hand, c2 (resp., c3) connects overlaps in Rr and Re (resp.,

Rs). For the eighth summation, GP7 in (5.41) has r = 1, e = 2, and s = 3. Thus, i1 (resp.,

i2 and i3) can take any value in the range from the start of R3 (resp., R2 and R3) to the

end of R1, i.e., from 2γ (resp., γ and 2γ) to (m+ 1)γ − 1. For the ninth summation, GP7 in

(5.41) has r = 2, e = 1, and s = 3. Thus, i1 (resp., i2 and i3) can take any value in the range

from the start of R3 (resp., R2 and R3) to the end of R1 (resp., R1 and R2), i.e., from γ

(resp., 0 and γ) to mγ − 1 (resp., mγ − 1 and (m+ 1)γ − 1). For the tenth summation, GP7

in (5.41) has r = 3, e = 1, and s = 2. Thus, i1 (resp., i2 and i3) can take any value in the

range from the start of R3 to the end of R1 (resp., R1 and R2), i.e., from 0 to (m− 1)γ − 1

(resp., (m− 1)γ − 1 and mγ − 1).

Regarding F k>4
P7,1 , the overlaps can be in 2 replicas (the first four summations in F k>4

P7,1), 3

replicas (the following six summations in F k>4
P7,1), or 4 replicas (the last three summations in

F k>4
P7,1). The first four summations are derived in a way similar to what we did for F 2

P7,1, with

a change in the summation indices; R2 is replaced by Rk. The following six summations are

derived in a way similar to what we did for F 3
P7,1, with a change in the summation indices;

189

R2 and R3 are replaced by Rh and Rk, respectively, which also requires changing these six

summations of EP7 and GP7 to be double summations. The following three summations are

associated with Case 7.7. In Case 7.7, c1 connects overlaps in Rr, Re, Rs, and Ru. On the

other hand, c2 (resp., c3) connects overlaps in Rr and Re (resp., Rs and Ru). See Fig. 5.10

for more illustration. There are three situations to distinguish between; the two c1 − c2

overlaps are in the first and second replicas, in the first and third replicas, and in the first

and last replicas. The ordering of replicas here is with respect to the four replicas in which

the overlaps of P7 exist. For the eleventh (triple) summation, IP7 in (5.42) has r = 1, e = h,

s = w, and u = k. Thus, i1 (resp., i2 and i3) can take any value in the range from the start

of Rk (resp., Rh and Rk) to the end of R1 (resp., R1 and Rw), i.e., from (k − 1)γ (resp.,

(h − 1)γ and (k − 1)γ) to (m + 1)γ − 1 (resp., (m + 1)γ − 1 and (m + w)γ − 1). For the

twelfth (triple) summation, IP7 in (5.42) has r = 1, e = w, s = h, and u = k. Thus, i1

(resp., i2 and i3) can take any value in the range from the start of Rk (resp., Rw and Rk)

to the end of R1 (resp., R1 and Rh), i.e., from (k − 1)γ (resp., (w − 1)γ and (k − 1)γ) to

(m+ 1)γ− 1 (resp., (m+ 1)γ− 1 and (m+ h)γ− 1). For the thirteenth (triple) summation,

IP7 in (5.42) has r = 1, e = k, s = h, and u = w. Thus, i1 (resp., i2 and i3) can take any

value in the range from the start of Rk (resp., Rk and Rw) to the end of R1 (resp., R1 and

Rh), i.e., from (k − 1)γ (resp., (k − 1)γ and (w − 1)γ) to (m+ 1)γ − 1 (resp., (m+ 1)γ − 1

and (m+ h)γ − 1). The outer two summations are over all possible values of h and w, and

we have 1 < h < k − 1 and h < w < k (similar to Pattern P4).

Note that c2 and c3 are not adjacent (no path of only one VN connects them) in P7,

which means it is possible to have i2 = i3, but not i2 = i3, for that pattern.

5.8.8 Proofs of Pattern P8

Proof of Lemma 23

Proof. In Case 8.1, the number we are after is the number of ways to choose 1 overlap from

each family in Rr (there exist three different families for P8). We choose the c1− c2− c3− c4

190

degree-4 overlap first. Then, in order to avoid over-counting, it is required to distinguish

between the two situations when the c1 − c2 degree-2 overlap is part of a c1 − c2 − c3 − c4

degree-4 overlap, and when this is not the case. Taking this requirement into account yields

the two added terms in (5.45). The same applies for Case 8.2, with the exception that here

the degree-4 overlap is chosen from t{i1+(r−e)γ,i2+(r−e)γ,i3+(r−e)γ i4+(r−e)γ} overlaps, resulting

in (5.46). Following the same logic of Case 8.1 for Case 8.3, with the exception that the

c3 − c4 overlap is chosen from t{i3+(r−e)γ,i4+(r−e)γ} overlaps, gives (5.47). In Case 8.4, the

number we are after is the number of ways to choose 1 overlap out of t{i1,i2}, 1 overlap out of

t{i3+(r−e)γ,i4+(r−e)γ}, and 1 overlap out of t{i1+(r−s)γ,i2+(r−s)γ,i3+(r−s)γ,i4+(r−s)γ}, which is given

by (5.48).

Proof of Theorem 15

Proof. To compute FP8 , we use the formula in [37, Theorem 1], with χ = 2m+ 1. Since the

overlaps of P8 can exist in up to 3 replicas, we need to find expressions only for F 1
P8,1, F

2
P8,1,

and F k>3
P8,1 .

Then, F 1
P8,1 is the sum of function AP8 in (5.45), with r = 1, over all possible values of

{i1, i2} and {i3, i4}. In Pattern P8, CNs c1 and c2 are directly connected twice, and CNs c3

and c4 are directly connected twice, which creates two separate groups of CNs. Moreover,

in a group of four CNs that can form P8, c1 and c2 can be any two of these four CNs. These

facts combined are the reason why the set {i1, i2} has to be separated from the set {i3, i4},

despite having the same range, in the expression of F 1
P8,1 (this applies for other expressions

too). We have
(

4
2

)
= 6 possible ways to choose {i1, i2}, i.e., to choose c1 and c2 out of the

four CNs. However, it does not matter for the count of AP8 whether the set {i1, i2} or the

set {i3, i4} is chosen first. Thus, we only have three possible ways to form P8 from these four

CNs, and the remaining three ways are repetitive. This fact is the reason why we multiply

by 1
2 in the expression F 1

P8,1. Here, {i1, i2} (resp., {i3, i4}) can take any distinct two values

in the range from the start to the end of R1, i.e., from 0 to (m+ 1)γ− 1 (see also Fig. 5.11).

191

Regarding F 2
P8,1, we need to account for Case 8.2 and Case 8.3. For each case of the two,

we need to distinguish between two situations; when r < e and when r > e. This distinction

gives the two summations of BP8 and the two summations of CP8 in F 2
P8,1. In Case 8.2, the

multiplication by 1
2 for the counts of BP8 is also to account for repetitions (as with AP8).

Moreover, in Case 8.2, each of the four CNs of P8 connects overlaps in Rr and Re (because

the degree-4 overlap is moved to Re), as shown in Fig. 5.11. For the first summation in

F 2
P8,1, BP8 in (5.46) has r = 1 and e = 2 (see also Fig. 5.11). Thus, {i1, i2} (resp., {i3, i4})

can take any distinct two values in the range from the start of R2 to the end of R1, i.e.,

from γ to (m + 1)γ − 1. For the second summation, BP8 in (5.46) has r = 2 and e = 1.

Thus, {i1, i2} (resp., {i3, i4}) can take any distinct two values in the range from 0 to mγ−1.

In Case 8.3, and contrarily to Case 8.2, it does matter for the count of CP8 whether the set

{i1, i2} or the set {i3, i4} is chosen first because the degree-2 overlaps, c1− c2 and c3− c4, are

in two different replicas. Consequently, the multiplication by 1
2 is not needed in this case.

Moreover, in Case 8.3, c1 and c2 each connects overlaps in Rr only, while c3 and c4 each

connects overlaps in Rr and Re (because the c3 − c4 overlap is moved to Re here). For the

third summation in F 2
P8,1, CP8 in (5.47) has r = 1 and e = 2. Thus, {i1, i2} (resp., {i3, i4})

can take any distinct two values in the range from the start of R1 (resp., R2) to the end of

R1, i.e., from 0 (resp., γ) to (m+ 1)γ−1. For the fourth summation, CP8 in (5.47) has r = 2

and e = 1. Thus, {i1, i2} (resp., {i3, i4}) can take any distinct two values in the range from

the start of R2 to the end of R2 (resp., R1), i.e., from 0 to (m+ 1)γ − 1 (resp., mγ − 1).

As for F k>3
P8,1 , the overlaps can be in 2 replicas (the first four summations in F k>3

P8,1) or 3

replicas (the following three summations in F k>3
P8,1). The first four summations are derived

in a way similar to what we did for F 2
P8,1, with a change in the summation indices; R2 is

replaced by Rk here. The following three summations are associated with Case 8.4. In

Case 8.4, c1 and c2 each connects overlaps in Rr and Rs. On the other hand, c3 and c4 each

connects overlaps in Re and Rs. For the fifth (double) summation, DP8 in (5.48) has r = 1,

e = h, and s = k. Thus, {i1, i2} (resp., {i3, i4}) can take any distinct two values in the range

192

from the start of Rk to the end of R1 (resp., Rh), i.e., from (k− 1)γ to (m+ 1)γ − 1 (resp.,

(m+ h)γ − 1). For the sixth (double) summation, DP6 in (5.48) has r = 1, e = k, and s = h

(see Fig. 5.11). Thus, {i1, i2} (resp., {i3, i4}) can take any distinct two values in the range

from the start of Rh (resp., Rk) to the end of R1 (resp., Rh), i.e., from (h − 1)γ (resp.,

(k − 1)γ) to (m + 1)γ − 1 (resp., (m + h)γ − 1). For the seventh (double) summation, DP8

in (5.48) has r = h, e = k, and s = 1. Thus, {i1, i2} (resp., {i3, i4}) can take any distinct

two values in the range from the start of Rh (resp., Rk) to the end of R1, i.e., from 0 (resp.,

(k− h)γ) to (m− h+ 2)γ − 1. The outer summation is over all possible values of h, and we

have 1 < h < k.

5.8.9 Proofs of Pattern P9

Proof of Lemma 24

Proof. In Case 9.1, the number we are after is the number of ways to choose 1 overlap from

each family in Rr (there exist four different families for P9). In order to avoid over-counting,

multiple distinctions need to be performed. For the degree-2 overlap c1 − c2, it is required

to distinguish between the four situations when that overlap is part of a c1 − c2 − c3 − c4

degree-4 overlap, when that overlap is part of a c1 − c2 − c3 degree-3 overlap that is not

itself part of a c1 − c2 − c3 − c4 degree-4 overlap, when that overlap is part of a c1 − c2 − c4

degree-3 overlap that is not itself part of a c1−c2−c3−c4 degree-4 overlap, and when neither

of these previous three situations holds. This particular distinction results in having four

functions, AP9,1, AP9,2, AP9,3, and AP9,4. Next, only the degree-2 overlaps c2 − c3, c3 − c4,

and c1 − c4 need to be chosen. Consequently, for the degree-2 overlap c2 − c3, it is required

to distinguish between only three situations; when that overlap is part of a c1 − c2 − c3 − c4

degree-4 overlap, when that overlap is part of a c2− c3− c4 degree-3 overlap that is not itself

part of a c1− c2− c3− c4 degree-4 overlap, and when neither of these previous two situations

holds. As for the degree-2 overlap c3 − c4, it is required to distinguish between only two

situations; when that overlap is part of a c1 − c3 − c4 degree-3 overlap, and when this is not

193

the case. Addressing all these distinctions results in (5.51) and (5.52), with six added terms

for each of the four functions constituting AP9 .

The same applies for Case 9.2, with the exception that here the degree-2 overlap c1−c4 is

chosen from t{i1+(r−e)γ,i4+(r−e)γ} overlaps, which divides the number of added terms in (5.52)

by four to reach (5.53). In Case 9.3, the distinction is applied separately on the c1 − c2

overlap in Rr and the c3 − c4 overlap in Re to give (5.54). The distinction here is between

two situations; when the degree-2 overlap is part of a degree-3 overlap, and when this is not

the case. In Case 9.4, the distinction is applied separately on the c1 − c2 overlap in Rr and

the c2− c3 overlap in Re to give (5.55). The distinction here is between two situations; when

the degree-2 overlap is part of a degree-4 overlap, and when this is not the case. Case 9.5 is

similar to Case 6.2, with the exception that here there are two degree-2 overlaps outside Rr,

and they are distributed over Re (for the c3 − c4 overlap) and Rs (for the c1 − c4 overlap).

Case 9.6 is similar to Case 8.2, with the exception that here there are two degree-2 overlaps

outside Rr, and they are distributed over Re (for the c2− c3 overlap) and Rs (for the c1− c4

overlap). In Case 9.7, the number we are after is the number of ways to choose 1 overlap

out of t{i1,i2}, 1 overlap out of t{i2+(r−e)γ,i3+(r−e)γ}, 1 overlap out of t{i3+(r−s)γ,i4+(r−s)γ}, and

1 overlap out of t{i1+(r−u)γ,i4+(r−u)γ}, which is given by (5.58).

Proof of Theorem 16

Proof. To compute FP9 , we use the formula in [37, Theorem 1], with χ = 2m+ 1. Since the

overlaps of P9 can exist in up to 4 replicas, we need to find expressions only for F 1
P9,1, F

2
P9,1,

F 3
P9,1, and F

k>4
P9,1 .

Then, F 1
P9,1 is the sum of function AP9 in (5.51), with r = 1, over all possible values

of {i1, i3} and {i2, i4}. In a group of four CNs, say cx1 , cx2 , cx3 , and cx4 , there exist 3

unique ways to form P9, which is a cycle of length 8, among them. These 3 ways are:

cx1 − cx2 − cx3 − cx4 , cx1 − cx2 − cx4 − cx3 , and cx1 − cx3 − cx2 − cx4 . In these ways, VNs are

omitted for convenience, and the last CN in each way is connected to the first CN through

194

a VN. These facts combined are the reason why we separate {i1, i3} from {i2, i4}, despite

having the same range, in the expression of F 1
P9,1 (this applies for other expressions too).

Since this separation gives
(

4
2

)
= 6 options, we multiply by 1

2 in the expression of F 1
P9,1 to

account for repetitions. Here, {i1, i3} (resp., {i2, i4}) can take any distinct two values in the

range from the start to the end of R1, i.e., from 0 to (m+ 1)γ − 1 (see also Fig. 5.12).

Regarding F 2
P9,1, we need to account for Case 9.2, Case 9.3, and Case 9.4. For Case 9.2,

we need to distinguish between two situations; when r < e and when r > e, which gives the

two summations of BP9 in F 2
P9,1. In Case 9.2, c1 and c4 each connects overlaps in Rr and

Re, while c2 and c3 each connects overlaps in Rr only. For the first summation in F 2
P9,1,

BP9 in (5.53) has r = 1 and e = 2. Thus, {i1, i4} can take any distinct two values in the

range from the start of R2 to the end of R1, i.e., from γ to (m + 1)γ − 1. Moreover, i2

(resp., i3) can take any value in the range from the start to the end of R1, i.e., from 0 to

(m + 1)γ − 1. For the second summation, BP9 in (5.53) has r = 2 and e = 1. Thus, {i1, i4}

can take any distinct two values in the range from the start of R2 to the end of R1, i.e.,

from 0 to mγ − 1. Moreover, i2 (resp., i3) can take any value in the range from the start to

the end of R2, i.e., from 0 to (m + 1)γ − 1. Note that the ranges of i2 and i3 are the same

in Case 9.2. However, i2 and i3 still need to be separated in order to count all the ways

of forming P9. The above distinction is not needed for neither Case 9.3 nor Case 9.4 since

the two replicas have the same number of degree-2 overlaps with similar connectivity. In

Case 9.3, and as shown in Fig. 5.12, c1 and c3 each connects overlaps in Rr and Re, while c2

(resp., c4) connects overlaps in Rr (resp., Re) only. For the third summation in F 2
P9,1, CP9 in

(5.54) has r = 1 and e = 2. Thus, {i1, i3} can take any distinct two values in the range from

the start of R2 to the end of R1, i.e., from γ to (m + 1)γ − 1. Moreover, i2 (resp., i4) can

take any value in the range from the start to the end of R1 (resp., R2), i.e., from 0 (resp.,

γ) to (m + 1)γ − 1 (resp., (m + 2)γ − 1). Note that the ranges of i2 and i4 are different in

Case 9.3. In Case 9.4, all the CNs connect overlaps in Rr and Re. For the fourth summation

in F 2
P9,1, DP9 in (5.55) has r = 1 and e = 2. Thus, {i1, i4} can take any distinct two values

195

in the range from the start of R2 to the end of R1, i.e., from γ to (m+ 1)γ− 1. Moreover, i2

(resp., i3) can take any value in the range from the start of R2 to the end of R1, i.e., from

γ to (m+ 1)γ − 1. Note that the ranges of i2 and i3 are the same in Case 9.4, but they are

still separated in order to count all the ways of forming P9. Moreover, the multiplication by
1
2 for the counts of DP9 is also to account for repetitions (as with AP9).

As for F 3
P9,1, the overlaps can be in 2 replicas (the first four summations in F 3

P9,1) or

3 replicas (the following six summations in F 3
P9,1). The first four summations are derived

in a way similar to what we did for F 2
P9,1, with a change in the summation indices; R2 is

replaced by R3 here. Then, we need to account for Case 9.5 (fifth to seventh summations)

and Case 9.6 (eighth to tenth summations). In Case 9.5, c1 (resp., c2) connects overlaps in

Rr and Rs (resp., Rr only). On the other hand, c3 (resp., c4) connects overlaps in Rr and

Re (resp., Re and Rs). For the fifth summation, EP9 in (5.56) has r = 1, e = 2, and s = 3.

Thus, i1 (resp., i2, i3, and i4) can take any value in the range from the start of R3 (resp.,

R1, R2, and R3) to the end of R1 (resp., R1, R1, and R2), i.e., from 2γ (resp., 0, γ, and

2γ) to (m + 1)γ − 1 (resp., (m + 1)γ − 1, (m + 1)γ − 1, and (m + 2)γ − 1). For the sixth

summation, EP9 in (5.56) has r = 2, e = 1, and s = 3. Thus, i1 (resp., i2, i3, and i4) can take

any value in the range from the start of R3 (resp., R2, R2, R3) to the end of R2 (resp., R2,

R1, and R1), i.e., from γ (resp., 0, 0, and γ) to (m+ 1)γ − 1 (resp., (m+ 1)γ − 1, mγ − 1,

and mγ − 1). For the seventh summation, EP9 in (5.56) has r = 3, e = 1, and s = 2. Thus,

i1 (resp., i2, i3, and i4) can take any value in the range from the start of R3 (resp., R3,

R3, and R2) to the end of R2 (resp., R3, R1, and R1), i.e., from 0 (resp., 0, 0, and −γ) to

mγ − 1 (resp., (m+ 1)γ − 1, (m− 1)γ − 1, and (m− 1)γ − 1). In Case 9.6, and as shown in

Fig. 5.12, c1 and c4 each connects overlaps in Rr and Rs. On the other hand, c2 and c3 each

connects overlaps in Rr and Re. For the eighth summation, GP9 in (5.57) has r = 1, e = 2,

and s = 3. Thus, {i1, i4} can take any distinct two values in the range from the start of R3

to the end of R1, i.e., from 2γ to (m+ 1)γ− 1. Moreover, i2 (resp., i3) can take any value in

the range from the start of R2 to the end of R1, i.e., from γ to (m+ 1)γ − 1. For the ninth

196

summation, GP9 in (5.57) has r = 2, e = 1, and s = 3 (see Fig. 5.12). Thus, {i1, i4} can take

any distinct two values in the range from the start of R3 to the end of R2, i.e., from γ to

(m + 1)γ − 1. Moreover, i2 (resp., i3) can take any value in the range from the start of R2

to the end of R1, i.e., from 0 to mγ − 1. For the tenth summation, GP9 in (5.57) has r = 3,

e = 1, and s = 2. Thus, {i1, i4} can take any distinct two values in the range from the start

of R3 to the end of R2, i.e., from 0 to mγ − 1. Moreover, i2 (resp., i3) can take any value in

the range from the start of R3 to the end of R1, i.e., from 0 to (m− 1)γ − 1.

Regarding F k>4
P9,1 , the overlaps can be in 2 replicas (the first four summations in F k>4

P9,1), 3

replicas (the following six summations in F k>4
P9,1), or 4 replicas (the last three summations in

F k>4
P9,1). The first four summations are derived in a way similar to what we did for F 2

P9,1, with

a change in the summation indices; R2 is replaced by Rk. The following six summations are

derived in a way similar to what we did for F 3
P9,1, with a change in the summation indices;

R2 and R3 are replaced by Rh and Rk, respectively, which also requires changing these six

summations of EP9 and GP9 to be double summations. The following three summations are

associated with Case 9.7. In Case 9.7, c1 (resp., c2) connects overlaps in Rr and Ru (resp.,

Rr and Re). On the other hand, c3 (resp., c4) connects overlaps in Re and Rs (resp., Rs and

Ru). See Fig. 5.12 for more illustration. The two overlaps connected to the c1 − c2 overlap

through CNs are the c2−c3 and the c1−c4 overlaps. There are three situations to distinguish

between; these two overlaps are in the second and last replicas, in the third and last replicas,

and in the second and third replicas. The ordering of replicas here is with respect to the

four replicas in which the overlaps of P9 exist. For the eleventh (triple) summation, IP9 in

(5.58) has r = 1, e = h, s = w, and u = k (see Fig. 5.12). Thus, i1 (resp., i2, i3, and i4)

can take any value in the range from the start of Rk (resp., Rh, Rw, and Rk) to the end of

R1 (resp., R1, Rh, and Rw), i.e., from (k − 1)γ (resp., (h− 1)γ, (w − 1)γ, and (k − 1)γ) to

(m+ 1)γ − 1 (resp., (m+ 1)γ − 1, (m+ h)γ − 1, and (m+w)γ − 1). For the twelfth (triple)

summation, IP9 in (5.58) has r = 1, e = w, s = h, and u = k. Thus, i1 (resp., i2, i3, and

i4) can take any value in the range from the start of Rk (resp., Rw, Rw, and Rk) to the end

197

of R1 (resp., R1, Rh, and Rh), i.e., from (k − 1)γ (resp., (w − 1)γ, (w − 1)γ, and (k − 1)γ)

to (m + 1)γ − 1 (resp., (m + 1)γ − 1, (m + h)γ − 1, and (m + h)γ − 1). For the thirteenth

(triple) summation, IP9 in (5.58) has r = 1, e = h, s = k, and u = w. Thus, i1 (resp., i2,

i3, and i4) can take any value in the range from the start of Rw (resp., Rh, Rk, and Rk) to

the end of R1 (resp., R1, Rh, and Rw), i.e., from (w − 1)γ (resp., (h − 1)γ, (k − 1)γ, and

(k− 1)γ) to (m+ 1)γ − 1 (resp., (m+ 1)γ − 1, (m+ h)γ − 1, and (m+w)γ − 1). The outer

two summations are over all possible values of h and w, and we have 1 < h < k − 1 and

h < w < k (similar to Patterns P4 and P7).

Note that c1 and c3 are not adjacent in P9, and the same applies for c2 and c4. Thus, it

is possible to have i1 = i3 and i2 = i4, but not i1 = i3 nor i2 = i4, for that pattern.

198

CHAPTER 6

Conclusion

6.1 Summary of Our Results

The principal focus of this dissertation was the analysis and design of high performance

graph-based codes for modern dense storage devices. In particular, this dissertation studied

three main problems. The first problem was about predicting the performance of an NB-

LDPC code in magnetic recording systems. The second problem was about optimizing

NB-LDPC codes via adjusting their edge weights in order to improve the performance over

practical storage channels. The third problem was about designing high performance SC

codes through optimal partitioning and enhanced lifting.

Regarding the first problem, we demonstrated that the nature of the detrimental objects

that dominate the error floor region of an NB-LDPC code critically depends on the channel

of interest. These detrimental objects are subgraphs with certain properties in the graph of

the NB-LDPC code. We introduced BASs and FOBASs to capture the dominant objects in

the case of magnetic recording channels. We then developed a linear-algebraic method to

predict the error floor performance of an NB-LDPC code based on the dominant FOBASs

in the graph of the code. Our method was demonstrated to not only accurately predict the

error floor performance of NB-LDPC codes, but also perform this task orders of magnitude

faster than the traditional MC simulations.

Regarding the second problem, we showed how asymmetry, as in practical Flash chan-

199

nels, affects the dominant objects of NB-LDPC codes. Consequently, we introduced finer

definitions of absorbing sets to capture these dominant objects and precisely distinguish be-

tween their topologies. In particular, we defined GASs and GASTs. Then, we proposed a

matrix theoretic representation of GASTs; we expressed a GAST as a set of submatrices,

which we call WCMs. By forcing the null spaces of its WCMs to have a certain property,

we demonstrated that a GAST is provably removed from the graph of the NB-LDPC code.

Moreover, we clarified how the WCM framework can be customized to optimize NB-LDPC

codes for magnetic recording devices as we all Flash memories. Simulation results showed

gains in orders of magnitude compared to prior state-of-the-art.

Next, we provided an in-depth analysis and extensions of the WCM framework. We

proved the optimality of the WCM framework and illustrated the significant reduction in

the number of matrices it operates on compared to suboptimal ideas. We also provided a

study of the null spaces of WCMs. Furthermore, we presented the minimum number of edge

weight changes needed to remove a GAST in addition to how to choose these changes. Then,

we presented a new class of detrimental objects, OSTs, which are the secondary cause of the

error floor in NB-LDPC codes with even column weights. We extended the repertoire of

the WCM framework by showing its benefits for NB graph-based codes, including SC codes,

with different parameters and designed for different applications.

Regarding the third problem, we derived a channel-aware combinatorial approach to

design high performance binary and non-binary SC codes. We first identified a common

substructure which exists in multiple detrimental configurations. Moreover, we introduced

the concept of the pattern to capture the configurations in the protograph that can result

in instances of the common substructure of interest after lifting. In the OO stage of the

approach, we derive a discrete optimization problem, in which we express the total number

of patterns in terms of the overlap parameters that characterize the partitioning. Then,

we solve this optimization problem to determine the partitioning. In the CPO stage of the

approach, we optimize the circulant powers in order to further reduce the number of common

200

substructure instances in the lifted graph.

Simulation results demonstrated that by optimally exploiting the degree of freedom guar-

anteed via partitioning in the design of SC codes, these codes not only outperform prior

state-of-the-art counterparts by orders of magnitude, but also can outperform block codes of

similar parameters. While our main focus in the chapter where we studied the third problem

was on magnetic recording systems, we already demonstrated the significant gains offered

by the OO-CPO approach for Flash memory systems in [38].

6.2 Future Directions

As for the error floor prediction, we deployed bit-based detection in the magnetic recording

system used here. One future direction is to extend the analysis to the case of symbol-based

detection since such detection has its advantages in systems incorporating intrinsic memory.

Another interesting direction is to develop the error floor prediction method for asymmetric

Flash channels. Particularly, the NLM Flash channel will be an intriguing option in this

regard. A third possible direction is to derive error floor prediction methods for multi-

dimensional (MD) storage devices, e.g., TDMR and 3-D Flash devices.

As for the NB-LDPC code optimization, the WCM framework currently works for NB-

LDPC codes with fixed column weights (regular VN degrees). One future direction is to

extend the WCM framework such that it can optimize NB-LDPC codes with irregular VN

degrees since these NB-LDPC codes are also used in many applications. Another promising

direction is to study the NB-LDPC code optimization problem in MD storage systems and

derive the necessary additions over the WCM framework.

As for the design of high performance SC codes, the SC codes we investigated here also

have fixed column weights (regular VN degrees). One future direction is to study SC codes

with irregular VN degrees asymptotically and optimize the degree distribution of an irregular

SC code. Another intriguing direction is to design high performance time-variant SC codes,

where the non-zero parts of different replicas are not the same. These two future directions

201

may also be combined together. A third direction is to search for theoretical techniques to

further speed up the OO-CPO approach.

Multi-dimensional SC (MD-SC) codes are more robust against burst erasures and MD

channel non-uniformity, and they have improved iterative decoding thresholds compared

to 1D-SC codes [88, 89, 90, 91]. Recently in [46], we presented some promising results

about MD-SC codes. Our focus was to design MD-SC codes with low population of short

cycles through informed relocation of circulants. We derived the theoretical condition on a

cycle of a particular length to stay active (same length) in the graph of an MD-SC code.

Our goal was then to break this condition for as many cycles as possible via relocations.

We developed an algorithm that decides concerning the relocation of a specific circulant

based on the majority of the votes from all the cycles in which this circulant exists. We

presented simulation results showing the significant performance advantage of our MD-SC

codes compared to 1D-SC codes with similar parameters [46].

The technique we proposed in [46] to design MD-SC codes is for the canonical AWGN

channel. One future direction is to extend the analysis to practical MD storage channels,

e.g., the TDMR channel. Another direction is to propose improved windowed decoding

algorithms customized for MD-SC codes. A third interesting direction is to propose MD

codes that are based on parity-check constraints derived from the impulse response of the

MD channel for TDMR and 3-D Flash channels.

These are all future directions that focus mostly on data storage applications. Addi-

tionally, there are other applications in which graph-based codes can significantly increase

the robustness of the system. One hot application is the distributed computations problem,

where graph-based codes with certain properties can be used to overcome the issue of strag-

gling computing nodes. Other applications of interest include privacy/secrecy, distributed

storage, machine learning, in addition to wireless communications.

202

References

[1] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963.

[2] M. Davey and D. MacKay, “Low-density parity-check codes over GF(q),” IEEE Com-

mun. Lett., vol. 2, no. 6, pp. 165–167, Jun. 1998.

[3] L. Dolecek, Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolic, “Analysis of

absorbing sets and fully absorbing sets of array-based LDPC codes,” IEEE Trans. Inf.

Theory, vol. 56, no. 1, pp. 181–201, Jan. 2010.

[4] J. Wang, L. Dolecek, and R. Wesel, “The cycle consistency matrix approach to absorbing

sets in separable circulant-based LDPC codes,” IEEE Trans. Inf. Theory, vol. 59, no.

4, pp. 2293–2314, Apr. 2013.

[5] O. Milenkovic, E. Soljanin, and P. Whiting, “Asymptotic spectra of trapping sets in

regular and irregular LDPC code ensembles,” IEEE Trans. Inf. Theory, vol. 53, no. 1,

pp. 39–55, Jan. 2007.

[6] M. Karimi and A. H. Banihashemi, “Efficient algorithm for finding dominant trapping

sets of LDPC codes,” IEEE Trans. Inf. Theory, vol. 58, no. 11, pp. 6942–6958, Nov.

2012.

[7] C. Poulliat, M. Fossorier, and D. Declercq, “Design of regular (2, dc)-LDPC codes over

GF(q) using their binary images,” IEEE Trans. Commun., vol. 56, no. 10, pp. 1626–

1635, Oct. 2008.

203

[8] L. Dolecek, D. Divsalar, Y. Sun, and B. Amiri, “Non-binary protograph-based LDPC

codes: enumerators, analysis, and designs,” IEEE Trans. Inf. Theory, vol. 60, no. 7, pp.

3913–3941, Jul. 2014.

[9] A. Bazarsky, N. Presman, and S. Litsyn, “Design of non-binary quasi-cyclic LDPC codes

by ACE optimization,” in Proc. IEEE Inf. Theory Workshop (ITW), Sevilla, Spain, Sep.

2013, pp. 1–5.

[10] B. Amiri, J. Kliewer, and L. Dolecek, “Analysis and enumeration of absorbing sets for

non-binary graph-based codes,” IEEE Trans. Commun., vol. 62, no. 2, pp. 398–409,

Feb. 2014.

[11] B. Vasic and E. Kurtas, Coding and Signal Processing for Magnetic Recording Systems.

CRC Press, 2005.

[12] G. Colavolpe and G. Germi, “On the application of factor graphs and the sum-product

algorithm to ISI channels,” IEEE Trans. Commun., vol. 53, no. 5, pp. 818–825, May

2005.

[13] Y. Fang, P. Chen, L. Wang, and F. Lau, “Design of protograph LDPC codes for partial

response channels,” IEEE Trans. Commun., vol. 60, no. 10, pp. 2809–2819, Oct. 2012.

[14] Y. Han and W. Ryan, “Low-floor detection/decoding of LDPC-coded partial response

channels,” IEEE J. Sel. Areas Commun., vol. 28, no. 2, pp. 252–260, Feb. 2010.

[15] H. Zhong, T. Zhong, and E. Haratsch, “Quasi-cyclic LDPC codes for the magnetic

recording channel: code design and VLSI implementation,” IEEE Trans. Magn., vol.

43, no. 3, pp. 1118–1123 , Mar. 2007.

[16] S. Jeon and B. Kumar, “Binary SOVA and nonbinary LDPC codes for turbo equalization

in magnetic recording channels,” IEEE Trans. Magn., vol. 46, no. 6, pp. 2248–2251, June

2010.

204

[17] A. Risso, “Layered LDPC decoding over GF(q) for magnetic recording channel,” IEEE

Trans. Magn., vol. 45, no. 10, pp. 3683–3686 , Oct. 2009.

[18] C. A. Cole, S. G. Wilson, E. K. Hall, and T. R. Giallorenzi, “A general

method for finding low error rates of LDPC codes,” May 2006. [Online]. Available:

http://arxiv.org/abs/cs/0605051

[19] E. Cavus, C. Haymes, B. Daneshrad, “An IS simulation technique for very low BER

performance evaluation of LDPC codes,” in Proc. IEEE Int. Conf. Commun. (ICC),

Istanbul, Turkey, June 2006, pp. 1095–1100.

[20] L. Dolecek, P. Lee, Z. Zhang, V. Anantharam, B. Nikolic, and M. Wainwright, “Pre-

dicting error floors of structured LDPC codes: deterministic bounds and estimates,”

IEEE J. Sel. Areas Commun., vol. 27, no. 6, pp. 908–917, Aug. 2009.

[21] H. Xiao, A. Banihashemi, and M. Karimi, “Error rate estimation of low-density parity-

check codes decoded by quantized soft-decision iterative algorithms,” IEEE Trans. Com-

mun., vol. 61, no. 2, pp. 474–484, Feb. 2013.

[22] X. Hu, Z. Li, B. V. K. V. Kumar, and R. Barndt, “Error floor estimation of long

LDPC codes on partial response channels,” in Proc. IEEE Global Telecommun. Conf.

(GLOBECOM), Washington, DC, USA, Dec. 2007, pp. 259–264.

[23] X. Hu, Z. Li, B. V. K. V. Kumar, and R. Barndt, “Error floor estimation of long

LDPC codes on magnetic recording channels,” IEEE Trans. Magn., vol. 46, no. 6, pp.

1836–1839, Jun. 2010.

[24] T. Parnell, N. Papandreou, T. Mittelholzer, and H. Pozidis, “Modelling of the threshold

voltage distributions of sub-20nm NAND flash memory,” in Proc. IEEE Global Com-

mun. Conf. (GLOBECOM), Austin, TX, USA, Dec. 2014, pp. 2351–2356.

205

[25] Y. Cai, E. Haratsch, O. Mutlu, and K. Mai, “Threshold voltage distribution in MLC

NAND flash memory: Characterization, analysis, and modeling,” in Proc. Design, Au-

tom., Test Eur. Conf. Exhibition (DATE), Grenoble, France, Mar. 2013, pp. 1285–1290.

[26] Y. Maeda and H. Kaneko, “Error control coding for multilevel cell Flash memories using

nonbinary low-density parity-check codes,” in Proc. 24th IEEE Int. Symp. Defect and

Fault Tolerance in VLSI Systems (DFT), Chicago, IL, USA, Oct. 2009, pp. 367–375.

[27] K. Ho, C. Chen, and H. Chang, “A 520k (18900, 17010) array dispersion LDPC decoder

architectures for NAND Flash memory,” IEEE Trans. VLSI Systems, vol. 24, no. 4, pp.

1293–1304, Apr. 2016.

[28] J. Wang, K. Vakilinia, T.-Y. Chen, T. Courtade, G. Dong, T. Zhang, H. Shankar,

and R. Wesel, “Enhanced precision through multiple reads for LDPC decoding in flash

memories,” IEEE J. Sel. Areas Commun., vol. 32, no. 5, pp. 880–891, May 2014.

[29] A. J. Felstrom and K. S. Zigangirov, “Time-varying periodic convolutional codes with

low-density parity-check matrix,” IEEE Trans. Inf. Theory, vol. 45, no. 6, pp. 2181–

2191, Sep. 1999.

[30] A. E. Pusane, R. Smarandache, P. O. Vontobel, and D. J. Costello, “Deriving good

LDPC convolutional codes from LDPC block codes,” IEEE Trans. Inf. Theory, vol. 57,

no. 2, pp. 835–857, Feb. 2011.

[31] S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Spatially coupled ensembles univer-

sally achieve capacity under belief propagation,” IEEE Trans. Inf. Theory, vol. 59, no.

12, pp. 7761–7813, Dec. 2013.

[32] H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “Spatially-coupled codes optimized for

magnetic recording applications,” IEEE Trans. Magn., vol. 53, no. 2, pp. 1–11, Feb.

2017.

206

[33] A. R. Iyengar, M. Papaleo, P. H. Siegel, J. K. Wolf, A. Vanelli-Coralli, and G. E.

Corazza, “Windowed decoding of protograph-based LDPC convolutional codes over

erasure channels,” IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2303–2320, Apr. 2012.

[34] H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “A novel combinatorial framework to

construct spatially-coupled codes: minimum overlap partitioning,” in Proc. IEEE Int.

Symp. Inf. Theory (ISIT), Aachen, Germany, Jun. 2017, pp. 1693–1697.

[35] H. Esfahanizadeh, A. Hareedy, R. Wu, R. Galbraith, and L. Dolecek, “Spatially-

coupled codes for channels with SNR variation,” accepted at IEEE Trans. Magn., doi:

10.1109/TMAG.2018.2853087, Jun. 2018.

[36] D. G. M. Mitchell and E. Rosnes, “Edge spreading design of high rate array-based SC-

LDPC codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany, Jun.

2017, pp. 2940–2944.

[37] H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “Finite-length construction of high

performance spatially-coupled codes via optimized partitioning and lifting,” accepted

at IEEE Trans. Commun., doi: 10.1109/TCOMM.2018.2867493, Aug. 2018.

[38] A. Hareedy, H. Esfahanizadeh, and L. Dolecek, “High performance non-binary spatially-

coupled codes for flash memories,” in Proc. IEEE Inf. Theory Workshop (ITW), Kaoh-

siung, Taiwan, Nov. 2017, pp. 229–233.

[39] A. Hareedy, B. Amiri, R. Galbraith, S. Zhao, and L. Dolecek, “Non-binary LDPC

code optimization for partial-response channels,” in Proc. IEEE Global Commun. Conf.

(GLOBECOM), San Diego, CA, USA, Dec. 2015, pp. 1–6.

[40] A. Hareedy, B. Amiri, R. Galbraith, and L. Dolecek, “Non-binary LDPC codes for

magnetic recording channels: error floor analysis and optimized code design,” IEEE

Trans. Commun., vol. 64, no. 8, pp. 3194–3207, Aug. 2016.

207

[41] A. Hareedy, C. Lanka, C. Schoeny, and L. Dolecek, “The weight consistency matrix

framework for general non-binary LDPC code optimization: applications in Flash mem-

ories,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Barcelona, Spain, Jul. 2016, pp.

2709–2713.

[42] A. Hareedy, C. Lanka, and L. Dolecek, “A general non-binary LDPC code optimization

framework suitable for dense Flash memory and magnetic storage,” IEEE J. Sel. Areas

Commun., vol. 34, no. 9, pp. 2402–2415, Sep. 2016.

[43] A. Hareedy, C. Lanka, N. Guo, and L. Dolecek, “A combinatorial methodology for

optimizing non-binary graph-based codes: theoretical analysis and applications in data

storage,” accepted at IEEE Trans. Inf. Theory, doi: 10.1109/TIT.2018.2870437, Sep.

2018.

[44] A. Hareedy, H. Esfahanizadeh, A. Tan, and L. Dolecek, “Spatially-coupled code de-

sign for partial-response channels: optimal object-minimization approach,” accepted at

IEEE Global Commun. Conf. (GLOBECOM), Abu Dhabi, UAE, Dec. 2018. [Online].

Available: http://arxiv.org/abs/1804.05504

[45] A. Hareedy, R. Wu, and L. Dolecek, “A channel-aware combinatorial approach to design

high performance spatially-coupled codes for magnetic recording systems,” Sep. 2018.

[Online]. Available: http://www.uclacodess.org/papers/AHH_OOCPO_TIT.pdf

[46] H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “Multi-dimensional spatially-coupled

code design through informed relocation of circulants,” accepted at 56th Annual Allerton

Conf. Commun., Control, and Computing, Monticello, IL, USA, Oct. 2018. [Online].

Available: http://arxiv.org/abs/1809.04798

[47] A. Hareedy, B. Amiri, R. Galbraith, and L. Dolecek, “Supplementary results on non-

binary LDPC codes for partial-response channels,” Jun. 2016. [Online]. Available:

http://www.uclacodess.org/papers/supp_results_bas.pdf.

208

[48] H. Esfahanizadeh, A. Hareedy and L. Dolecek, “The finite length analysis of spatially-

coupled codes for 1-D magnetic recording channels,” in 50th Asilomar Conference on

Signals, Systems and Computers, Pacific Grove, CA, Nov. 2016, pp. 1128–1132.

[49] Y. Cai, G. Yalcin, O. Mutlu, E. Haratsch, A. Cristal, O. Unsal, and K. Mai, “Flash

correct-and-refresh: Retention-aware error management for increased Flash memory

lifetime,” in Proc. IEEE 30th IEEE Int. Conf. Comput. Des. (ICCD), Montreal, Quebec,

Canada, Oct. 2012, pp. 94–101.

[50] T. Souvignier, M. Öberg, P. Siegel, R. Swanson, and J. Wolf, “Turbo decoding for

partial response channels,” IEEE Trans. Commun., vol. 48, no. 8, pp. 1297–1308, Aug.

2000.

[51] S. Srinivasa, Y. Chen, and S. Dahandeh, “A communication-theoretic framework for 2-

DMR channel modeling: performance evaluation of coding and signal processing meth-

ods,” IEEE Trans. Magn., vol. 50, no. 3, pp. 6–12, Mar. 2014.

[52] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary LDPC codes over

GF(q),” IEEE Trans. Commun., vol. 55, no. 4, pp. 633–643, Apr. 2007.

[53] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for

minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol. 20, pp. 284–287, Mar.

1974.

[54] J. Moon and J. Park, “Pattern-dependent noise prediction in signal dependent noise,”

IEEE J. Sel. Areas Commun., vol. 19, no. 4, pp. 730–743 , Apr. 2001.

[55] B. Amiri, C. Lin, and L. Dolecek, “Asymptotic distribution of absorbing sets and fully

absorbing sets for regular sparse code ensembles,” IEEE Trans. Commun., vol. 61, no.

2, pp. 455–464, Feb. 2013.

209

[56] T. Oenning and J. Moon, “A low-density generator matrix interpretation of parallel

concatenated single bit parity codes,” IEEE Trans. Magn., vol. 37, no. 2, pp. 737–741,

Mar. 2001.

[57] T. Duman and E. Kurtas, “Comprehensive performance investigation of turbo codes

over high density magnetic recording channels,” in Proc. IEEE Global Telecommun.

Conf. (GLOBECOM), Rio de Janeiro, Brazil, Dec. 1999, pp. 744–748.

[58] M. Karimi and A. Banihashemi, “On characterization of elementary trapping sets of

variable-regular LDPC codes,” IEEE Trans. Inf. Theory, vol. 60, no. 9, pp. 5188–5203,

Sept. 2014.

[59] T. J. Richardson and R. L. Urbanke, “The capacity of low-density parity-check codes

under message-passing decoding,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 599–618,

Feb. 2001.

[60] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-

approaching irregular low-density parity-check codes,” IEEE Trans. Inf. Theory, vol.

47, no. 2, pp. 619–637, Feb. 2001.

[61] A. H. Hareedy and M. M. Khairy, “Selective max-min algorithm for low-density parity-

check decoding,” IET Commun., vol. 7, no. 1, pp. 65–70, Jan. 2013.

[62] C. A. Aslam, Y. L. Guang, and K. Cai, “Read and write voltage signal optimization for

multi-level-cell (MLC) NAND Flash memory,” IEEE Trans. Commun., vol. 64, no. 4,

pp. 1613–1623, Apr. 2016.

[63] R. Cohen and Y. Cassuto, “Iterative decoding of LDPC codes over the q-ary partial

erasure channel,” IEEE Trans. Inf. Theory, vol. 62, no. 5, pp. 2658–2672, May 2016.

[64] Y. Cassuto and A. Shokrollahi, “LDPC codes for 2D arrays,” IEEE Trans. Inf. Theory,

vol. 60, no. 6, pp. 3279–3291, Jun. 2014.

210

[65] A. Tomasoni, S. Bellini, and M. Ferrari, “Thresholds of absorbing sets in low-density

parity-check codes,” IEEE Trans. Commun., vol. 65, no. 8, pp. 3238–3249, Aug. 2017.

[66] M. Ivkovic, S. K. Chilappagari, and B. Vasic, “Eliminating trapping sets in low-density

parity-check codes by using Tanner graph covers,” IEEE Trans. Inf. Theory, vol. 54,

no. 8, pp. 3763–3768, Aug. 2008.

[67] A. McGregor and O. Milenkovic, “On the Hardness of Approximating Stopping and

Trapping Sets,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1640–1650, Apr. 2010.

[68] B. K. Butler and P. H. Siegel, “Error floor approximation for LDPC codes in the AWGN

channel,” IEEE Trans. Inf. Theory, vol. 60, no. 12, pp. 7416–7441, Dec. 2014.

[69] D. V. Nguyen, S. K. Chilappagari, M. W. Marcellin, and B. Vasic, “On the construction

of structured LDPC codes free of small trapping sets,” IEEE Trans. Inf. Theory, vol.

58, no. 4, pp. 2280–2302, Apr. 2012.

[70] Q. Diao, Y. Y. Tai, S. Lin, and K. Abdel-Ghaffar, “LDPC codes on partial geometries:

construction, trapping set structure, and puncturing,” IEEE Trans. Inf. Theory, vol.

59, no. 12, pp. 7898–7914, Dec. 2013.

[71] Q. Huang, Q. Diao, S. Lin, and K. Abdel-Ghaffar, “Cyclic and quasi-cyclic LDPC codes

on constrained parity-check matrices and their trapping sets,” IEEE Trans. Inf. Theory,

vol. 58, no. 5, pp. 2648–2671, May 2012.

[72] M. Lentmaier, A. Sridharan, D. J. Costello, and K. S. Zigangirov, “Iterative decoding

threshold analysis for LDPC convolutional codes,” IEEE Trans. Inf. Theory, vol. 56,

no. 10, pp. 5274–5289, Oct. 2010.

[73] I. Andriyanova and A. Graell i Amat, “Threshold saturation for nonbinary SC-LDPC

codes on the binary erasure channel,” IEEE Trans. Inf. Theory, vol. 62, no. 5, pp.

2622–2638, May 2016.

211

[74] P. M. Olmos and R. L. Urbanke, “A scaling law to predict the finite-length performance

of spatially-coupled LDPC codes,” IEEE Trans. Inf. Theory, vol. 61, no. 6, pp. 3164–

3184, Jun. 2015.

[75] Y. Toriyama and D. Markovic, “A 2.267-Gb/s, 93.7-pJ/bit non-binary LDPC decoder

with logarithmic quantization and dual-decoding algorithm scheme for storage applica-

tions,” IEEE J. Solid-State Circuits, vol. 53, no. 8, pp. 2378–2388, Aug. 2018.

[76] N. Ul Hassan, M. Lentmaier, I. Andriyanova, and G. P. Fettweis, “Improving code

diversity on block-fading channels by spatial coupling,” in Proc. IEEE Int. Symp. Inf.

Theory (ISIT), Honolulu, HI, USA, Jun. 2014, pp. 2311–2315.

[77] A. Piemontese, A. Graell i Amat, and G. Colavolpe, “Nonbinary spatially-coupled LDPC

codes on the binary erasure channel,” in Proc. IEEE Int. Conf. Commun. (ICC), Bu-

dapest, Hungary, Jun. 2013, pp. 3270–3274.

[78] D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, “Spatially coupled LDPC codes

constructed from protographs,” IEEE Trans. Inf. Theory, vol. 61, no. 9, pp. 4866–4889,

Sep. 2015.

[79] Y. Xie, L. Yang, P. Kang, and J. Yuan, “Euclidean geometry-based spatially coupled

LDPC codes for storage,” IEEE J. Sel. Areas Commun., vol. 34, no. 9, pp. 2498–2509,

Sep. 2016.

[80] D. G. M. Mitchell, L. Dolecek, and D. J. Costello, Jr., “Absorbing set characterization

of array-based spatially coupled LDPC codes,” in Proc. IEEE Int. Symp. Inf. Theory

(ISIT), Honolulu, HI, USA, Jun. 2014, pp. 886–890.

[81] A. Beemer, S. Habib, C. A. Kelley, and J. Kliewer, “A generalized algebraic approach to

optimizing SC-LDPC codes,” in Proc. 55th Annual Allerton Conf. Commun., Control,

and Computing, Monticello, IL, USA, Oct. 2017, pp. 672–679.

212

[82] I. E. Bocharova, B. D. Kudryashov, and R. Johannesson, “Searching for binary and

nonbinary block and convolutional LDPC codes,” IEEE Trans. Inf. Theory, vol. 62, no.

1, pp. 163–183, Jan. 2016.

[83] W. Phakphisut, P. Supnithi, and N. Puttarak, “EXIT chart analysis of nonbinary pro-

tograph LDPC codes for partial response channels,” IEEE Trans. Magn., vol. 50, no.

11, Nov. 2014, Art. no. 3101904.

[84] Z. Qin, K. Cai, Y. Ng, “Iterative detection and decoding for non-binary LDPC coded

partial-response channels with written-in errors,” IET Commun., vol. 10, no. 4, pp.

399–406 , Mar. 2016.

[85] P. Chen, C. Kui, L. Kong, Z. Chen, M. Zhang, “Non-binary protograph-based LDPC

codes for 2-D-ISI magnetic recording channels,” IEEE Trans. Magn., vol. 53, no. 11,

Nov. 2017, Art. no. 8108905.

[86] S. Laendner and O. Milenkovic, “Algorithmic and combinatorial analysis of trapping

sets in structured LDPC codes,” in Proc. Int. Conf. Wireless Netw., Commun., and

Mobile Comput., Maui, HI, Jun. 2005, pp. 630–635.

[87] M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from circulant permu-

tation matrices,” IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1788–1793, Aug. 2004.

[88] D. Truhachev, D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, “New codes on

graphs constructed by connecting spatially coupled chains,” in Proc. Inf. Theory and

App. Workshop (ITA), Feb. 2012, pp. 392–397.

[89] R. Ohashi, K. Kasai, and K. Takeuchi, “Multi-dimensional spatially-coupled codes,” in

Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2013, pp. 2448–2452.

213

[90] L. Schmalen and K. Mahdaviani, “Laterally connected spatially coupled code chains for

transmission over unstable parallel channels,” in Proc. Int. Symp. Turbo Codes Iterative

Inf. Processing (ISTC), Aug. 2014, pp. 77–81.

[91] Y. Liu, Y. Li, and Y. Chi, “Spatially coupled LDPC codes constructed by parallelly

connecting multiple chains,” IEEE Commun. Letters, vol. 19, no. 9, pp. 1472–1475,

Sep. 2015.

214

	Introduction
	Outline of Contributions
	Chapter 2 Contributions
	Chapter 3 Contributions
	Chapter 4 Contributions
	Chapter 5 Contributions

	A Technique for Error Floor Prediction
	Introduction
	Error Profile of NB-LDPC Codes over PR Channels
	System Model
	Background and Motivating Examples
	New Definitions of Detrimental Objects
	Effect of Global Iterations
	Preparing the List of Problematic Objects

	Error Floor Prediction Method
	A Theoretical Description of the Proposed Method
	The Algorithm and Simulation Results

	Code Optimization for Transmission over PR Channels
	Removing Balanced Absorbing Sets

	Concluding Remarks

	Non-Binary LDPC Code Optimization
	Introduction
	New Objects: GASs and GASTs
	Motivating Examples
	Defining GASs and GASTs

	Theoretical Analysis of GASTs
	Combinatorial Properties of GASTs
	How to Remove GASTs Using WCMs
	How to Remove Other Detrimental Objects Using WCMs
	Parent and Child GASTs

	The WCM Optimization Framework
	Extracting the WCMs
	The New NB-LDPC Code Optimization Algorithm

	Applications in Practical Channels
	Results for Practical Flash Channels
	Results for Other Channels

	Concluding Remarks

	Analysis and Extensions of the WCM Framework
	Introduction
	Preliminaries
	Characterizing GASTs Through Their WCMs
	Proving the Optimality of the WCM Framework
	Enumeration of WCMs Associated with a GAST
	Complexity Comparison with a Suboptimal Idea

	More on How GASTs Are Removed
	The Dimension of the Null Space of a WCM
	Breaking the Weight Conditions of Short WCMs
	The Number of Edge Weight Changes Needed

	Removing Oscillating Sets to Achieve More Gain
	Defining OSs and OSTs
	How to Remove OSTs Using WCMs

	Applications of the WCM Framework
	Optimizing Column Weight 5 Codes
	Achieving More Gain by Removing Oscillating Sets
	Effect of Soft Information in Flash Channels
	Optimizing Spatially-Coupled Codes

	Concluding Remarks

	High Performance Spatially-Coupled Codes
	Introduction
	Preliminaries
	The Common Substructure and Its Patterns
	OO: Building and Solving the Optimization Problem
	Analysis of Pattern P1 (size 2 2)
	Analysis of Pattern P2 (size 2 3)
	Analysis of Pattern P3 (size 3 2)
	Analysis of Pattern P4 (size 2 4)
	Analysis of Pattern P5 (size 4 2)
	Analysis of Pattern P6 (size 3 3)
	Analysis of Pattern P7 (size 3 4)
	Analysis of Pattern P8 (size 4 3)
	Analysis of Pattern P9 (size 4 4)

	CPO: Customization for PR Systems
	Experimental Results
	Concluding Remarks
	Appendix
	Proofs of Pattern P1
	Proofs of Pattern P2
	Proofs of Pattern P3
	Proofs of Pattern P4
	Proofs of Pattern P5
	Proofs of Pattern P6
	Proofs of Pattern P7
	Proofs of Pattern P8
	Proofs of Pattern P9

	Conclusion
	Summary of Our Results
	Future Directions

	References

