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Abstract. We extend the periodicity of birational rowmotion for rectangular posets to the
case when the base field is replaced by a noncommutative ring (under appropriate condi-
tions). This resolves a conjecture from 2014. The proof uses a novel approach and is fully
self-contained.

Consider labelings of a finite poset P by |P |+2 elements of a ring K: one label associ-
ated with each poset element and two constant labels for the added top and bottom elements
in P̂ . Birational rowmotion is a partial map on such labelings. It was originally defined
by Einstein and Propp for K = R as a lifting (via detropicalization) of piecewise-linear
rowmotion, a map on the order polytope O(P ) := {order-preserving f : P → [0, 1]}. The
latter, in turn, extends the well-studied rowmotion map on the set of order ideals (or more
properly, the set of order filters) of P , which correspond to the vertices of O(P ). Dynamical
properties of these combinatorial maps sometimes (but not always) extend to the birational
level, while results proven at the birational level always imply their combinatorial counter-
parts. Allowing K to be noncommutative, we generalize the birational level even further,
and some properties are in fact lost at this step.

In 2014, the authors gave the first proof of periodicity for birational rowmotion on rect-
angular posets (when P is a product of two chains) for K a field, and conjectured that it
survives (in an appropriately twisted form) in the noncommutative case. In this paper, we
prove this noncommutative periodicity and a concomitant antipodal reciprocity formula. We
end with some conjectures about periodicity for other posets, and the question of whether
our results can be extended to (noncommutative) semirings.

It has been observed by Glick and Grinberg that, in the commutative case, periodicity of
birational rowmotion can be used to derive Zamolodchikov periodicity in the type AA case,
and vice-versa. However, for noncommutative K, Zamolodchikov periodicity fails even in
small examples (no matter what order the factors are multiplied), while noncommutative
birational rowmotion continues to exhibit periodicity. Thus, our result can be viewed as a
lateral generalization of Zamolodchikov periodicity to the noncommutative setting.

https://www.combinatorial-theory.org
mailto:darijgrinberg@gmail.com
mailto:tom.roby@uconn.edu
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1. Introduction

The goal of this paper is to extend the periodicity of birational rowmotion for rectangular posets
to the case when the base field is replaced by a noncommutative ring (under appropriate con-
ditions). This resolves a conjecture from 2014. The proof uses a novel approach (even in the
commutative case) and is fully self-contained.

Let P be a finite poset, and let P̂ be the same poset with two extra elements added: one
global minimum and one global maximum. For the time being, let K be a field. A K-labeling
of P means a map from P̂ to K; we view it as a way of labeling each element of P̂ by an element
of K. Birational rowmotion, as studied conventially, is a rational map R on such labelings (i.e.,
a rational map R : KP̂ 99K KP̂ ). It was introduced by Einstein and Propp [EP21] for K = R,
generalizing (via the tropical limit1) the well-studied combinatorial rowmotion map on order
ideals of P [BS74, SW12, PR15, TW19].

Birational rowmotion can be defined as a composition of “toggles”: For each v ∈ P , we
define the v-toggle as the rational map Tv : KP̂ 99K KP̂ that modifies aK-labeling f by changing
the label f (v) to2 ∑

u∈P̂ ;
u⋖v

f (u)

 · (f (v))−1 ·

∑
u∈P̂ ;
u⋗v

(f (u))−1


−1

,

while leaving all the other labels of f unchanged. Now, birational rowmotion R is the composi-
tion of all the v-toggles, where v runs over the poset P from top to bottom. (That is, we pick a
linear extension (v1, v2, . . . , vn) of P , and set R = Tv1 ◦ Tv2 ◦ · · · ◦ Tvn .)

Dynamical properties at the combinatorial level sometimes extend to higher levels, while re-
sults proven at the birational level always imply their combinatorial counterparts. In particular,
while combinatorial rowmotion always has finite order (since it is an invertible map on a finite
set), there is no reason to expect periodicity at all at the higher levels. Indeed, for many nice
posets, birational rowmotion has infinite order, including for the Boolean algebra of order 3 (or
those in [Rob16, Fig. 6]), and there are only a few infinite classes where it appears to have finite
order (mostly posets associated with representation theory, e.g., root or minuscule posets). In
these cases the order of birational rowmotion is generally the same as for combinatorial rowmo-
tion, e.g., p+ q for P = [p]× [q].

In 2014, the authors gave the first proof of periodicity of birational rowmotion for rectangular
posets (i.e., when P is a product of two chains) and K a field [GR22]. The main idea of this
proof was to embed the space of labelings into an appropriate Grassmannian (where in each

1See [Kir01, Section 4.1] for what we mean by the “tropical limit” here, and [KB95] for one of the earliest
example of detropicalization (i.e., the generalization of a combinatorial map to a rational one).

2The notations ⋖ and ⋗ mean “covered by” and “covers”, respectively (see Sections 2 and 4 for details).
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“sufficiently generic” K-labeling, the labels can be expressed as ratios of certain minors of a
matrix) and use particular Plücker relations to derive the result. There were several serious
technical hurdles to overcome.

The definition of birational rowmotion relies entirely on addition, multiplication and inverses
in K. Thus, it is natural to extend it to the case when K is a ring (not necessarily commutative),
or even just a semiring. (At this level, birational rowmotion is no longer a rational map, just a
partial map.) However, there is no guarantee that the properties of birational rowmotion survive
at this level for every poset; and indeed, sometimes they do not (see, e.g., Example 14.9). How-
ever, in 2014, the authors experimentally observed that the periodicity for rectangular posets
appears to hold even in this noncommutative setting, as long as it is appropriately modified: Af-
ter p+q iterations of birational rowmotion, the labels are not returned to their original states, but
rather to certain “twisted variants” thereof (resembling, but not the same as, conjugates). See
Example 4.17 to get the sense of this.

Strikingly, this noncommutative generalization has resisted all approaches that have pre-
viously succeeded in the commutative case. The determinantal computations involved in the
proof in [GR22] can be extended to the noncommutative setting using the quasideterminants of
Gelfand and Retakh, but it seems impossible to make a rigorous proof out of it (lacking, e.g.,
any useful notation of Zariski topology in this setting, it is not clear what it means for a K-
labeling to be “generic”). The alternative proof of commutative periodicity found by Musiker
and Roby [MR19] (via a lattice-path formula for iterates of birational rowmotion) could not be
generalized as well. Thus the noncommutative case remained an open problem.3

At some point, Glick and Grinberg noticed that the Y -variables in the type-AA Zamolod-
chikov periodicity theorem of Volkov [Vol07] could be written as ratios of labels under iterated
birational rowmotion [Rob16, § 4.4]; this allows the periodicity in one setting to be derived from
that in the other (with some work). However, for noncommutativeK, Zamolodchikov periodicity
fails even in small examples such as r = r′ = 2 (no matter what order we multiply the factors),
while noncommutative birational rowmotion continues to exhibit periodicity. This approach is
therefore unavailable in the noncommutative case as well.

In this paper, we prove the periodicity of birational rowmotion and a concomitant antipodal
reciprocity formula over an arbitrary noncommutative ring. The proof proceeds from first prin-
ciples, by studying certain values

Av
ℓ and Av

ℓ and their products along paths in the rectangle. At
the core of the proof is a “conversion lemma” (Lemma 10.2), which provides an identity between
a certain sum of

Av
ℓ products and a certain sum of Av

ℓ products for the same ℓ; this equality does
not actually depend on the concept of rowmotion and might be of interest on its own. Another
important step is the reduction of the reciprocity claim to the labels on the “lower boundary”
of the rectangle (i.e., to the labels at the elements of the form (i, 1) and (1, j)). This reduction
requires subtraction, which is why we are only addressing the case of a ring, not of a semiring;

3This is not the first time that rational maps in algebraic combinatorics have been generalized to the noncom-
mutative case; some other instances are [IS15, BR18, Rup19, GK21]. Each time, the generalizations have been
much harder to prove, not least because very little of the commutative groundwork is (currently?) available at
the noncommutative level. For instance, it is insufficient to work over the “free skew fields”, since an identity
between rational expressions can be true in all skew fields yet fail in some noncommutative rings (such as the iden-
tity x (yx)

−1
y = 1). For this reason, while natural from an algebraic point of view, the noncommutative setting is

only recently and slowly getting explored.
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the latter remains open.
A few words are in order about the relation between our birational rowmotion and a parallel

construction. Combinatorial rowmotion seems first to have been defined not on the set J (P )
of order ideals of P , but rather on the set A (P ) of antichains of P [BS74]. The standard
bijection between J(P ) and A(P ) (by taking maximal elements of I ∈ J(P ) or saturating
down from an antichain) makes it easy to go between the two maps and to see that they have
the same periodicity. However, some dynamic properties (e.g., homomesy) that depend on the
sets themselves are not so easily translated. Just as Einstein and Propp lifted combinatorial
rowmotion on J (P ) to a birational map and we continued to the noncommutative context, Joseph
and Roby did a parallel lifting on the antichain side: from antichain rowmotion to piecewise-
linear rowmotion on the chain polytope, C(P ), to birational antichain rowmotion, and finally to
noncommutative antichain rowmotion [JR20, JR21]. In particular they lifted “transfer maps”
(originally defined by Stanley to go between O(P ) and C(P ) [Sta86]) from the piecewise-linear
to the birational and noncommutative realms. These serve as equivariant bijections at each level,
thus showing that periodicity at each level is equivalent for the order-ideal and antichain liftings.
But they were unable to find a new proof of periodicity for the piecewise-linear and higher
levels, relying instead on the periodicity results for birational order-ideal rowmotion to deduce
it for birational antichain rowmotion. They also lifted a useful invariant, the Stanley–Thomas
word, which cyclically rotates with antichain rowmotion at each level. At the combinatorial
level, this gives an equivariant bijection that proves periodicity [PR15, § 3.3.2]; however, it is
no longer a bijection at higher levels. Our paper completes the story in the case of a ring: Via
the transfer maps mentioned above, the periodicity of noncommutative birational order-ideal
rowmotion entails the periodicity of noncommutative birational antichain rowmotion.

The paper is structured in a fairly straightforward way: In the first sections (Sections 2 to 4),
we introduce our noncommutative setup and define birational rowmotion in it. These include
technicalities about partial maps and the definition of noncommutative toggles. In Section 5, we
state our main results. In the sections that follow, we build an arsenal of lemmas to prove these
results; the proofs are completed in Section 12. (The structure of the proof is outlined at the end
of Section 5.) In Sections 13 and 14, we discuss avenues for further work: a possible general-
ization to semirings and conjectured periodicity claims for other posets. In the final Section 15,
we apply our techniques to arbitrary posets (not just rectangles), obtaining two identities.

A 12-page survey of the results of this paper (with the main steps of the proof outlined) can
be found in the extended abstract [GR23].

1.1. Remark on the level of detail

This paper comes in two versions: a regular one (optimized for readability) and a more de-
tailed one (expanding proofs to a high level of detail). The version you are reading is the reg-
ular one. The detailed version is available as an ancillary file on the arXiv page of this pa-
per (arXiv:2208.11156v4).

https://arxiv.org/abs/2208.11156v4
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2. Linear extensions of posets

This section collects a few standard notions concerning posets and their linear extensions, needed
to define the main characters of our paper. Readers familiar with the subject may wish to skip
forward to Section 3 or Section 4. We start by defining general notations identical with those
in [GR22], to which we refer the reader for commentary and comparison to other references.

Convention 2.1. We let N denote the set {0, 1, 2, . . .}.

Definition 2.2. Let P be a poset, and u, v ∈ P .

(a) We will use the symbols ⩽, <, ⩾ and > to denote the lesser-or-equal relation, the lesser
relation, the greater-or-equal relation and the greater relation, respectively, of the poset P .
(Thus, for example, “u < v” means “u is smaller than v with respect to the partial order
on P ”.)

(b) The elements u and v of P are said to be incomparable if we have neither u ⩽ v nor u ⩾ v.

(c) We write u⋖ v if we have u < v and there is no w ∈ P such that u < w < v. One often
says that “u is covered by v” to signify that u⋖ v.

(d) We write u ⋗ v if we have u > v and there is no w ∈ P such that u > w > v. (Thus,
u⋗ v holds if and only if v ⋖ u.) One often says that “u covers v” to signify that u⋗ v.

(e) An element u of P is called maximal if every w ∈ P satisfying w ⩾ u satisfies w = u. In
other words, an element u of P is called maximal if there is no w ∈ P such that w > u.

(f) An element u of P is called minimal if every w ∈ P satisfying w ⩽ u satisfies w = u. In
other words, an element u of P is called minimal if there is no w ∈ P such that w < u.

These notations may become ambiguous when an element belongs to several different posets
simultaneously. In such cases, we will disambiguate them by adding the words “in P ” (where P
is the poset which we want to use).4

Convention 2.3. From now on, for the rest of the paper, we fix a finite poset P . Most of our
results will concern the case when P has a rather specific form (viz., a rectangular poset, i.e., a
Cartesian product of two finite chains), but we do not assume this straightaway.

Definition 2.4. A linear extension of P will mean a list (v1, v2, . . . , vm) of the elements of P
such that

• each element of P occurs exactly once in this list, and

• any i, j ∈ {1, 2, . . . ,m} satisfying vi < vj (in P ) must satisfy i < j (in Z).
4For instance, if R denotes the poset Z endowed with the reverse of its usual order, then we say (for instance)

that “0 > 3 in R” rather than just “0 > 3” (to avoid mistaking our statement for an absurd claim about the usual
order on Z).
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A linear extension of P is also known as a topological sorting of P .
We will use the following well-known fact:

Theorem 2.5. There exists a linear extension of P .

Definition 2.6. The set of all linear extensions of P will be called L (P ). Thus, L (P ) ̸= ∅ (by
Theorem 2.5).

The reader can easily verify the following proposition:

Proposition 2.7. Let (v1, v2, . . . , vm) be a linear extension of P . Let i ∈ {1, 2, . . . ,m− 1} be
such that the elements vi and vi+1 of P are incomparable. Then

(v1, v2, . . . , vi−1, vi+1, vi, vi+2, vi+3, . . . , vm)

(this is the tuple obtained from the tuple (v1, v2, . . . , vm) by interchanging the adjacent entries vi
and vi+1) is a linear extension of P as well.

We will also use the following folklore result:5

Proposition 2.8. Let ∼ denote the equivalence relation on L (P ) generated by the following
requirement: For any linear extension (v1, v2, . . . , vm) of P and any i ∈ {1, 2, . . . ,m− 1} such
that the elements vi and vi+1 of P are incomparable, we set

(v1, v2, . . . , vm) ∼ (v1, v2, . . . , vi−1, vi+1, vi, vi+2, vi+3, . . . , vm) .

Then any two elements of L (P ) are equivalent under the relation ∼.

Proofs of Proposition 2.8 can be found in [GR22, Proposition 1.7], in [AKS14, Proposi-
tion 4.1 (for the π′ = πτj case)], in [Eti84, Lemma 1] and in [Gyo86, Lemma 4.2]6. See
also [Naa00, Proposition 2.2] for a stronger claim (describing a shortest way to transform a
given linear extension into another by successively swapping adjacent incomparable entries).

Another well-known fact says that any nonempty finite poset has a minimal element and a
maximal element. In other words:

Proposition 2.9. Assume that P ̸= ∅. Then:

(a) The poset P has a minimal element.

(b) The poset P has a maximal element.
5Particular cases of Proposition 2.8 have a tendency to appear in various parts of combinatorics; see [DK21,

Proposition 1.3] for a few such references.
6Note that the sources [AKS14], [Eti84] and [Gyo86] define linear extensions of P as bijections

β : {1, 2, . . . , n} → P (where n = |P |) whose inverse map β−1 is order-preserving. This is equiva-
lent to our definition (indeed, if β : {1, 2, . . . , n} → P is a linear extension of P in their sense, then the
list (β (1) , β (2) , . . . , β (n)) is a linear extension of P in our sense).
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3. Inverses in rings

Convention 3.1. From now on, for the rest of this paper, we fix a ring K. This ring is not
required to be commutative, but must have a unity and be associative.

For example, K can be Z or Q or C or a polynomial ring or a matrix ring over any of these. In
almost all previous work on birational rowmotion (with the exception of [JR20] and [JR21]), only
commutative rings (and, occasionally, semirings) were considered; by removing the commuta-
tivity assumption, we are invalidating many of the methods used in prior research. We suspect
that the level of generality can be increased even further, replacing our ring K by a semiring (i.e.,
a “ring without subtraction”); however, this poses new difficulties which we will not surmount
in the present work. (See Section 13 for more about this.)

Even as we do not assume our ring K to be a division ring, we will nevertheless take multi-
plicative inverses of elements of K on many occasions. These inverses do not always exist, but
when they do exist, they are unique; thus, we introduce a notation for them:

Definition 3.2. Let a be an element of K.

(a) An inverse of a means an element b ∈ K such that ab = ba = 1. This inverse is unique
when it exists, and will be denoted by a. (A more standard notation for it is a−1, but we
prefer the notation a since it helps keep our formulas short.)

(b) We say that the element a of K is invertible if it has an inverse.

The following well-known properties of inverses will often be used without mention:

Proposition 3.3.

(a) If a is an invertible element of K, then its inverse a is invertible as well, and its inverse
is a = a.

(b) If a and b are two invertible elements of K, then their product ab is invertible as well, and
its inverse is ab = b · a.

(c) If a1, a2, . . . , am are several invertible elements of K, then their product a1a2 · · · am is
invertible as well, and its inverse is a1a2 · · · am = am · am−1 · · · · · a1.

The converse of Proposition 3.3 (b) does not necessarily hold: A product ab of two elements a
and b of K can be invertible even when neither a nor b is7.

The next property of inverses is less well-known:8

7See https://math.stackexchange.com/questions/627562 for examples of such situations.
8Proposition 3.4 (a) will not be used in what follows, but its proof provides a good warm-up exercise in manip-

ulating inverses in a noncommutative ring.

https://math.stackexchange.com/questions/627562
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Proposition 3.4. Let a and b be two elements of K such that a+ b is invertible. Then:

(a) We have a · a+ b · b = b · a+ b · a.

(b) If both a and b are invertible, then a+ b is invertible as well and its inverse is

a+ b = a · a+ b · b.

Proof. (a) Comparing

a · a+ b · a+ a · a+ b · b = a · a+ b · (a+ b)︸ ︷︷ ︸
=1

= a

with
a · a+ b · a+ b · a+ b · a = (a+ b) · a+ b︸ ︷︷ ︸

=1

· a = a,

we obtain
a · a+ b · a+ a · a+ b · b = a · a+ b · a+ b · a+ b · a.

Subtracting a · a+ b · a from both sides of this equality, we obtain a · a+ b · b = b · a+ b · a.
This proves Proposition 3.4 (a).

(b) Assume that both a and b are invertible. Set x := a+ b and y := a · a+ b · b.
From x = a+ b, we obtain x · a =

(
a+ b

)
· a = aa︸︷︷︸

=1

+ ba = 1 + ba. Comparing this with

b · (a+ b) = ba+ bb︸︷︷︸
=1

= ba+ 1 = 1 + ba,

we obtain x · a = b · (a+ b). Now, from y = a · a+ b · b, we obtain

x · y = x · a︸︷︷︸
=b·(a+b)

· a+ b · b = b · (a+ b) · a+ b︸ ︷︷ ︸
=1

· b = b · b = 1.

A similar argument (starting with b ·x = ba+1 = (a+ b) · a) shows that y ·x = 1, so that y
is an inverse of x. Hence, x is invertible and its inverse is x = y. This is precisely the claim of
Proposition 3.4 (b).

4. Noncommutative birational rowmotion

In this section, we introduce the basic objects whose nature we will investigate: labelings of a
finite poset P by elements of a ring, and a partial map between them called “birational rowmo-
tion”. These labelings generalize the field-valued labelings studied in [GR22], which in turn
generalize the piecewise-linear labelings of [EP21], which in turn generalize the order ideals
of P . Many of the definitions that follow will imitate analogous definitions made (in somewhat
lesser generality) in [GR22].
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4.1. The extended poset P̂

Definition 4.1. We define a poset P̂ as follows: As a set, let P̂ be the disjoint union of the set P
with the two-element set {0, 1}. The smaller-or-equal relation ⩽ on P̂ will be given by

(a ⩽ b) ⇐⇒ ((a ∈ P and b ∈ P and a ⩽ b in P ) or a = 0 or b = 1) .

Here and in the following, we regard the canonical injection of the set P into the disjoint union P̂
as an inclusion; thus, P becomes a subposet of P̂ .

In the terminology of Stanley’s [Sta11, Section 3.2], this poset P̂ is the ordinal
sum {0} ⊕ P ⊕ {1}.

Example 4.2. Let us represent posets by their Hasse diagrams. Then:

1

δ δ

If P = γ , then P̂ = γ .

α β α β

0

4.2. K-labelings

Let us now define the type of object on which our maps will act:

Definition 4.3. A K-labeling of P will mean a map f : P̂ → K. Thus, KP̂ is the set of all
K-labelings of P . If f is a K-labeling of P and v is an element of P̂ , then f (v) will be called
the label of f at v.

Example 4.4. Assume that P is the poset {1, 2} × {1, 2} with order relation defined by setting

(i, k) ⩽ (i′, k′) if and only if (i ⩽ i′ and k ⩽ k′) .

This poset will later be called the “2× 2-rectangle” in Definition 5.2. It has Hasse diagram

(2, 2)

(2, 1) (1, 2)

(1, 1) .
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The extended poset P̂ has Hasse diagram

1

(2, 2)

(2, 1) (1, 2)

(1, 1)

0 .

We recall that a K-labeling of P is a map f : P̂ → K. We can visualize such a K-labeling
by replacing, in the Hasse diagram of P̂ , each element v ∈ P̂ by the label f (v). For example,
the Z-labeling of P that sends 0, (1, 1), (1, 2), (2, 1), (2, 2), and 1 to 12, 5, 7, −2, 10, and 14,
respectively can be visualized as follows:

14

10

−2 7

5

12

. (4.1)

For example, its label at (1, 2) is 7.

4.3. Partial maps

We will next define the notion of a partial map, to formalize the idea of an operation whose result
may be undefined, such as division on Q (since division by zero is undefined). We will use ⊥
as a symbol for such undefined values:

Convention 4.5. We fix an object called ⊥. In the following, we tacitly assume that none of the
sets we will consider contains this object ⊥ (unless otherwise specified).

The reader can think of ⊥ as a “division-by-zero error” (more precisely, a “division-by-a-
non-invertible-element error”, since 0 is often not the only non-invertible element of K).

Definition 4.6. Let X and Y be two sets. A partial map from X to Y means a map from X
to Y ⊔ {⊥}.

If f is a partial map from X to Y , then f can be canonically extended to a map from X⊔{⊥}
to Y ⊔ {⊥} by setting f (⊥) := ⊥. We always consider f to be extended in this way.

If f is a partial map from X to Y , then the set {x ∈ X | f (x) ̸= ⊥} will be called the
domain of definition of f .
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We view the element ⊥ as an “undefined output” – i.e., we think of a partial map f from X
to Y as a “map” from X to Y that is defined only on some elements of X (namely, on those
whose image under this map is not⊥). Thus, for example, inQ, division is a partial map because
division by 0 is undefined:

Example 4.7. The map

Q → Q ⊔ {⊥} ,

x 7→

{
1/x, if x ̸= 0;

⊥, if x = 0

is a partial map from Q to Q.

Partial maps can be composed much like usual maps:

Definition 4.8.

(a) Let X , Y and Z be three sets. Let f be a partial map from Y to Z. Let g be a partial map
from X to Y .
Then f ◦ g denotes the partial map from X to Z that sends

each x ∈ X to

{
f (g (x)) , if g (x) ̸= ⊥ ;

⊥, if g (x) = ⊥ .

(Following our convention that f (⊥) is understood to be ⊥, we could simplify the right
hand side to just f (g (x)), but we nevertheless subdivided it into two cases just to stress
the different branches in our “control flow”.)
This partial map f ◦ g is called the composition of f and g.

(b) This notion of composition lets us define a category whose objects are sets and whose
morphisms are partial maps. (The identity maps in this category are the obvious ones:
i.e., the maps id : X → X ⊔ {⊥} that send each x ∈ X to x ∈ X ⊆ X ⊔ {⊥}.)

(c) Thus, if X is any set, and if f is any partial map from X to X , then we can define
fk := f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

k times

for any k ∈ N.

Convention 4.9. Let X and Y be two sets. We will write “f : X 99K Y ” for “f is a partial map
from X to Y ” (just as maps from X to Y are denoted “f : X → Y ”).

A warning is worth making: While we are using the symbol 99K for partial maps here, the
same symbol has been used for rational maps in [GR22]. The two uses serve similar purposes
(they both model “maps defined only on those inputs for which the relevant denominators are
invertible”), but they have some technical differences. Rational maps are defined only when K
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is an infinite field9, but are well-behaved in many ways that partial maps are not. (For example,
a rational map is uniquely determined if its values on a Zariski-dense subset of its domain are
known, but no such claims can be made for partial maps.) Thus, by working with partial maps
instead of rational maps, we are freeing ourselves from technical assumptions on K, but at the
same time forcing ourselves to be explicit about the domains on which our partial maps are
defined.

4.4. Toggles

Recall that KP̂ denotes the set of K-labelings of a poset P (that is, the set of all maps P̂ → K).
Next, we define (noncommutative) toggles: certain (fairly simple) partial maps on this set.

Definition 4.10. Let v ∈ P . We define a partial map Tv : KP̂ 99K KP̂ as follows: If f ∈ KP̂ is
any K-labeling of P , then the K-labeling Tvf ∈ KP̂ is given by

(Tvf) (w) =


f (w) , if w ̸= v;∑

u∈P̂ ;
u⋖v

f (u)

 · f (v) ·
∑
u∈P̂ ;
u⋗v

f (u), if w = v
(4.2)

for all w ∈ P̂ .

Here, we agree that if any part of the expression

∑
u∈P̂ ;
u⋖v

f (u)

 · f (v) ·
∑
u∈P̂ ;
u⋗v

f (u) is not well-

defined (i.e., if one of the values f (u) and f (v) appearing in it is undefined, or if f (v) is not
invertible, or if f (u) is not invertible for some u ∈ P̂ satisfying u⋗ v, or if the sum

∑
u∈P̂ ;
u⋗v

f (u)

is not invertible), then Tvf is understood to be ⊥.
This partial map Tv is called the v-toggle or the toggle at v.

Thus, the partial map Tv is a “local” transformation: it only changes the label at the element v
(unless its result is ⊥).

Remark 4.11. You are reading Definition 4.10 right: We setTvf=⊥ if any of f (v) and
∑
u∈P̂ ;
u⋗v

f (u)

fails to be well-defined. Thus, in this case, none of the values (Tvf) (w) exists. It may appear
more natural to leave only the value (Tvf) (v) undefined, while letting all other values (Tvf) (w)
equal the respective values f (w). Our choice to “panic and crash”, however, will be more
convenient for some of our proofs.

9It stands to reason that a notion of “rational map” should exist for a sufficiently wide class of infinite skew-
fields as well, but we have not encountered a satisfactory theory of such maps in the literature. See https://

mathoverflow.net/questions/362724/ for a discussion of how this theory might start. It appears unlikely,
however, that such “noncommutative rational maps” exist in the generality that we are working in (viz., arbitrary
rings).

https://mathoverflow.net/questions/362724/
https://mathoverflow.net/questions/362724/
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The v-toggle Tv is called a “noncommutative order toggle” in [JR20, Definition 5.6].
When the ring K is commutative, this v-toggle Tv is an “involution” in the sense that each
K-labeling f ∈ KP̂ satisfying Tv (Tvf) ̸= ⊥ satisfies Tv (Tvf) = f . For noncommutative K,
this is usually not the case; an “inverse” partial map10 can be obtained by flipping the order of
the factors on the right hand side of (4.2). (This “inverse” appears in [JR20] under the name
“noncommutative order elggot”.)

The following proposition is trivially obtained by rewriting (4.2); we are merely stating it for
easier reference in proofs:

Proposition 4.12. Let v ∈ P . For every f ∈ KP̂ satisfying Tvf ̸= ⊥, we have the following:

(a) Every w ∈ P̂ such that w ̸= v satisfies (Tvf) (w) = f (w).

(b) We have

(Tvf) (v) =

∑
u∈P̂ ;
u⋖v

f (u)

 · f (v) ·
∑
u∈P̂ ;
u⋗v

f (u).

Furthermore, the following “locality principle” (part of [JR20, Proposition 5.8]) is easy to
check:11

Proposition 4.13. Let v ∈ P and w ∈ P . Then Tv ◦ Tw = Tw ◦ Tv, unless we have either v⋖w
or w ⋖ v.

Proof of Proposition 4.13. In the case whenK is commutative, this is essentially [GR16, Propo-
sition 14], except that we are now more careful about well-definedness (since only invertible
elements have inverses). Yet, the proof given in [GR16] can easily be adapted to the general
(noncommutative) case. The details can be found in the detailed version of this paper (but the
reader should have an easy time reconstructing them).

As a particular case of Proposition 4.13, we have the following:

Corollary 4.14. Let v and w be two elements of P which are incomparable.
Then Tv ◦ Tw = Tw ◦ Tv.

Corollary 4.15. Let (v1, v2, . . . , vm) be a linear extension of P . Then the partial
map Tv1 ◦ Tv2 ◦ · · · ◦ Tvm : KP̂ 99K KP̂ is independent of the choice of the linear exten-
sion (v1, v2, . . . , vm).

Proof. Combine Corollary 4.14 with Proposition 2.8.
10We are putting the word “inverse” in scare quotes since we are talking about partial maps, but the two maps

are as close to being mutually inverse as partial maps can be.
11In the following, equalities between partial maps are understood in the strongest possible sense: Two partial

maps F : X 99K Y and G : X 99K Y satisfy F = G if and only if each x ∈ X satisfies F (x) = G (x). This
entails, in particular, that F (x) = ⊥ holds if and only if G (x) = ⊥. Thus, F = G is a stronger requirement than
merely saying that “F (x) = G (x) whenever neither F (x) nor G (x) is ⊥”.
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4.5. Birational rowmotion

Recall that P is a finite poset. Corollary 4.15 lets us make the following definition.

Definition 4.16. Birational rowmotion (or, more precisely, the birational rowmotion of P ) is
defined as the partial map Tv1 ◦ Tv2 ◦ · · · ◦ Tvm : KP̂ 99K KP̂ , where (v1, v2, . . . , vm) is a linear
extension of P . This partial map is well-defined, because

• Theorem 2.5 shows that a linear extension of P exists, and

• Corollary 4.15 shows that the partial map Tv1 ◦Tv2 ◦ · · · ◦Tvm is independent of the choice
of the linear extension (v1, v2, . . . , vm).

This partial map will be denoted by R.

Birational rowmotion is called “birational NOR-motion” (and denoted NOR) in the pa-
per [JR20, Definition 5.9]12. When K is commutative, it agrees with the standard concept of
birational rowmotion as studied in [EP21] and [GR22].

Example 4.17. Let us demonstrate the effect of birational toggles and birational rowmotion. For
this example, we let P be the poset P = {1, 2} × {1, 2} introduced in Example 4.4.

In order to disencumber our formulas, we agree to write g (i, j) for g ((i, j)) when g is a
K-labeling of P and (i, j) is an element of P .

As in Example 4.4, we visualize a K-labeling f of P by replacing, in the Hasse diagram
of P̂ , each element v ∈ P̂ by the label f (v). Let f be a K-labeling sending 0, (1, 1), (1, 2),
(2, 1), (2, 2), and 1 to a, w, y, x, z, and b, respectively (for some elements a, b, x, y, z, w of K);
this f is then visualized as follows:

f =

b

z

x y

w

a

.

(As before, we draw (2, 1) on the western corner and (1, 2) on the eastern corner.)
Now, recall the definition of birational rowmotion R on our poset P . Since the list

((1, 1) , (1, 2) , (2, 1) , (2, 2)) is a linear extension of P , we have R = T(1,1) ◦T(1,2) ◦T(2,1) ◦T(2,2).
Let us track how this transforms our labeling f :

12To be more precise, [JR20, Definition 5.9] works in a slightly less general context, requiring K to be a skew
field and that f (0) = 1 and f (1) = C for some C in the center of K.
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We first apply T(2,2), obtaining the K-labeling

T(2,2)f =

b

(x+ y)zb

x y

w

a

(where we colored the label at (2, 2) red to signify that it is the label at the element which got
toggled). Indeed, the only label that changes under T(2,2) is the one at (2, 2), and this label
becomes

(
T(2,2)f

)
(2, 2) =

 ∑
u∈P̂ ;

u⋖(2,2)

f (u)

 · f (2, 2) ·
∑
u∈P̂ ;

u⋗(2,2)

f (u)

= (f (1, 2) + f (2, 1)) · f (2, 2) · f (1)

= (y + x) · z · b = (x+ y) · z · b.

(We assume that z and b are indeed invertible; otherwise, T(2,2)f would be⊥ and would remain⊥
after any further toggles. Likewise, as we apply further toggles, we assume that everything else
we need to invert is invertible.)

Having applied T(2,2), we next apply T(2,1), obtaining

T(2,1)T(2,2)f =

b

(x+ y)zb

wx(x+ y)zb y

w

a

.

Next, we apply T(1,2), obtaining

T(1,2)T(2,1)T(2,2)f =

b

(x+ y)zb

wx(x+ y)zb wy(x+ y)zb

w

a

.
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Finally, we apply T(1,1), resulting in

T(1,1)T(1,2)T(2,1)T(2,2)f=

b

(x+ y)zb

wx(x+ y)zb wy(x+ y)zb

aw · wx(x+ y)zb+ wy(x+ y)zb

a

.

The unwieldy expression w ·wx(x+ y)zb+ wy(x+ y)zb in the label at (1, 1) can be simplified
to zb (using standard laws such as p · q = qp and distributivity), so this rewrites as

T(1,1)T(1,2)T(2,1)T(2,2)f =

b

(x+ y)zb

wx(x+ y)zb wy(x+ y)zb

azb

a

.

We thus have computed Rf (since Rf = T(1,1)T(1,2)T(2,1)T(2,2)f ).
By repeating this procedure (or just substituting the labels of Rf obtained as variables), we

can compute R2f , R3f etc., obtaining

Rf =

b

(x+ y)zb

wx(x+ y)zb wy(x+ y)zb

azb

a

,
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R2f =

b

w (x+ y) b

a · x+ y · x (x+ y) b a · x+ y · y (x+ y) b

abz · x+ y · b

a

,

R3f =

b

awb

· · · abz · x+ y · x+ y · y · (x+ y)wb

ab · x+ y · wb

a

,

R4f =

b

abzab

· · · ab · x+ y · x+ y · y (x+ y) (x+ y) ab

abwab

a

.

Here, we have omitted the label at (2, 1) for both R3f and R4f , since it can be obtained from
the respective label at (1, 2) by interchanging x with y (thanks to an obvious symmetry be-
tween (1, 2) and (2, 1)).

The above might suggest that the labels get progressively more complicated as we
apply R over and over. For a general poset P , this is indeed the case. However, for our
poset P = {1, 2} × {1, 2}, a surprising periodicity-like pattern emerges. Indeed, our above
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expressions for R2f, R3f, R4f can be simplified as follows:

R2f =

b

w (x+ y) b

ayb axb

abz · x+ y · b

a

,

R3f =

b

awb

abz · x+ y · ywb abz · x+ y · xwb

ab · x+ y · wb

a

,

R4f =

b

abzab

abxab abyab

abwab

a

.

Thus, the labels of R4f are closely related to those of f : For each v ∈ P , we have(
R4f

)
(v) = ab · f (v) · ab.

(This holds for v = 0 and v = 1 as well, as one can easily check.) Note that if ab = ba, then this
entails that (R4f) (v) is conjugate to v in K.

In Theorem 5.7, we will generalize this phenomenon to arbitrary “rectangular” posets –
i.e., posets of the form {1, 2, . . . , p} × {1, 2, . . . , q} with entrywise order. The “period” in this
situation will be p+ q.

Our P = {1, 2} × {1, 2} example also exhibits a reciprocity-like phenomenon. Indeed, our
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above expressions for Rf, R2f, R3f reveal that

(Rf) (1, 1) = azb = a · f (2, 2) · b;(
R2f

)
(1, 2) = axb = a · f (2, 1) · b;(

R2f
)
(2, 1) = ayb = a · f (1, 2) · b;(

R3f
)
(2, 2) = awb = a · f (1, 1) · b.

These equalities relate the label of Ri+j−1f at an element (i, j) with the label of f at the ele-
ment (3− i, 3− j) (which is, visually speaking, the “antipode” of the former element (i, j) on
the Hasse diagram of P ). To be specific, they say that(

Ri+j−1f
)
(i, j) = a · f (3− i, 3− j) · b

for any (i, j) ∈ P . This too can be generalized to arbitrary rectangles (Theorem 5.8).
In the above calculation, we used the linear extension ((1, 1) , (1, 2) , (2, 1) , (2, 2)) of P to

compute R as T(1,1) ◦ T(1,2) ◦ T(2,1) ◦ T(2,2). We could have just as well used the linear ex-
tension ((1, 1) , (2, 1) , (1, 2) , (2, 2)), obtaining the same result. But we could not have used
the list ((1, 1) , (1, 2) , (2, 2) , (2, 1)) (for example), since it is not a linear extension (and in-
deed, T(1,1) ◦ T(1,2) ◦ T(2,2) ◦ T(2,1) would not give rise to any similar phenomenon).

This example shows that birational rowmotion behaves unexpectedly well for some posets.
There are also some more serious motivations to study it: Birational rowmotion for commuta-
tive K generalizes Schützenberger’s classical “promotion” map on semistandard tableaux
(see [GR22, Remark 11.6]), and is closely related to the Zamolodchikov periodicity conjecture
in type AA (see [Rob16, §4.4]). The case of a noncommutative ring K appears more baroque,
but we expect it to find a combinatorial meaning sooner or later.

Before we formalize and prove the above phenomena, we first consider some general prop-
erties of R. We begin with an implicit description of birational rowmotion that does not involve
toggles (but is essentially a restatement of Definition 4.16):

Proposition 4.18. Let v ∈ P . Let f ∈ KP̂ . Assume that Rf ̸= ⊥. Then

(Rf) (v) =

∑
u∈P̂ ;
u⋖v

f (u)

 · f (v) ·
∑
u∈P̂ ;
u⋗v

(Rf) (u).

Proof. This is merely the noncommutative analogue of [GR16, Proposition 19], and the proof
in [GR16] can be used with straightforward modifications.

The following near-trivial fact completes the picture:

Proposition 4.19. Let f ∈ KP̂ . Assume that Rf ̸= ⊥. Then (Rf) (0) = f (0)
and (Rf) (1) = f (1).
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Proof. None of the toggles Tv, when applied to a K-labeling, changes the label of 0 or the
label of 1. Hence, the same is true for the partial map R (since R is a composition of such
toggles Tv).

A trivial corollary of Proposition 4.19 is:

Corollary 4.20. Let f ∈ KP̂ and ℓ ∈ N. Assume that Rℓf ̸= ⊥. Then
(
Rℓf

)
(0) = f (0)

and
(
Rℓf

)
(1) = f (1).

(Recall that N denotes the set {0, 1, 2, . . .} in this paper.)

4.6. Well-definedness lemmas

We next show some simple lemmas which say that certain inverses exist under the assumption
thatRℓf is well-defined for some values of ℓ. These lemmas are easy and unexciting, but are nec-
essary in order to rigorously prove the more substantial results that will follow. We recommend
the reader skip the proofs, at least on a first reading.

Lemma 4.21. Let f ∈ KP̂ and k, ℓ ∈ N satisfy k ⩽ ℓ and Rℓf ̸= ⊥. Then, Rkf ̸= ⊥.

Proof. We have Rℓ−k
(
Rkf

)
= Rℓf ̸= ⊥ = Rℓ−k (⊥), so that Rkf ̸= ⊥.

Lemma 4.22. Let f ∈ KP̂ satisfy Rf ̸= ⊥. Let v ∈ P . Then, f (v) is invertible.

Proof. Proposition 4.18 yields

(Rf) (v) =

∑
u∈P̂ ;
u⋖v

f (u)

 · f (v) ·
∑
u∈P̂ ;
u⋗v

(Rf) (u).

Thus, in particular, f (v) is well-defined. In other words, f (v) is invertible. This proves
Lemma 4.22.

Lemma 4.23. Assume that P ̸= ∅. Let f ∈ KP̂ satisfy Rf ̸= ⊥. Then, f (1) is invertible.

Proof. We have P ̸= ∅. Thus, the poset P has a maximal element y (by Proposition 2.9 (b)).
This y then satisfies 1⋗ y in P̂ .

We have Rf ̸= ⊥. Therefore, Proposition 4.18 (applied to v = y) yields

(Rf) (y) =

∑
u∈P̂ ;
u⋖y

f (u)

 · f (y) ·
∑
u∈P̂ ;
u⋗y

(Rf) (u).

Hence, in particular, (Rf) (u) is well-defined for each u ∈ P̂ satisfying u⋗y. We can apply this
to u = 1 (since 1⋗y), and thus conclude that (Rf) (1) is well-defined. In other words, (Rf) (1)
is invertible. However, Proposition 4.19 yields (Rf) (1) = f (1). Thus, f (1) is invertible.
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Lemma 4.24. Assume that P ̸= ∅. Let f ∈ KP̂ satisfy R2f ̸= ⊥. Then, f (0) and f (1) are
invertible.

Proof. The poset P has a minimal element x (by Proposition 2.9 (a)).
From R2f ̸= ⊥, we obtain Rf ̸= ⊥ (by Lemma 4.21); thus, Rf ∈ KP̂ . Hence, Lemma 4.23

yields that f (1) is invertible. Furthermore, Lemma 4.22 (applied toRf and x instead of f and v)
yields that (Rf) (x) is invertible (since R (Rf) ̸= ⊥).

Recall again that Rf ̸= ⊥. Hence, Proposition 4.18 (applied to v = x) yields

(Rf) (x) =

∑
u∈P̂ ;
u⋖x

f (u)

 · f (x) ·
∑
u∈P̂ ;
u⋗x

(Rf) (u). (4.3)

The only u ∈ P̂ satisfying u⋖ x is the element 0 of P̂ (since x is a minimal element of P ).
Thus,

∑
u∈P̂ ;
u⋖x

f (u) = f (0). Hence, (4.3) rewrites as

(Rf) (x) = f (0) · f (x) ·
∑
u∈P̂ ;
u⋗x

(Rf) (u).

Solving this equality for f (0), we obtain

f (0) = (Rf) (x) ·

∑
u∈P̂ ;
u⋗x

(Rf) (u)

 · f (x) .

The right hand side of this equality is a product of three invertible elements (indeed, the two fac-
tors

∑
u∈P̂ ;
u⋗x

(Rf) (u) and f (x) are invertible because their inverses appear in (4.3), and we already

know that the factor (Rf) (x) is invertible), and thus itself invertible. Hence, the left hand side
is invertible. In other words, f (0) is invertible.

Lemma 4.25. Let v ∈ P . Assume that v is not a minimal element of P . Then, there exists at
least one element w ∈ P satisfying v ⋗ w.

Proof. Apply Proposition 2.9 (b) to the subposet P<v := {u ∈ P | u < v} of P . Details are
left as an exercise.

Lemma 4.26. Let f ∈ KP̂ satisfy Rf ̸= ⊥. Let v ∈ P . Assume that v is not a minimal element
of P . Then, (Rf) (v) is invertible.
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Proof. Lemma 4.25 shows that there exists at least one elementw ∈ P satisfying v⋗w. Consider
this w. Proposition 4.18 (applied to w instead of v) yields

(Rf) (w) =

∑
u∈P̂ ;
u⋖w

f (u)

 · f (w) ·
∑
u∈P̂ ;
u⋗w

(Rf) (u).

In particular, (Rf) (u) is well-defined for each u ∈ P̂ satisfying u⋗w. Applying this to u = v,
we conclude that (Rf) (v) is well-defined (since v ∈ P ⊆ P̂ and v⋗w). In other words, (Rf) (v)
is invertible.

Lemma 4.27. Assume that P ̸= ∅. Let f ∈ KP̂ satisfy Rf ̸= ⊥. Let v ∈ P̂ . Assume that f (0)
is invertible. Then, (Rf) (v) is invertible.

Proof. If v = 0, then the claim follows from our assumption about f (0) (since Proposition 4.19
yields (Rf) (0) = f (0)). If v = 1, then it instead follows from Lemma 4.23 (since Proposi-
tion 4.19 yields (Rf) (1) = f (1)). Thus, we assume from now on that v is neither 0 nor 1.
Hence, v ∈ P .

If v is not a minimal element of P , then the claim follows from Lemma 4.26. Hence, we
assume from now on that v is a minimal element of P . Therefore, the only u ∈ P̂ satisfying u⋖v
is the element 0. Thus,

∑
u∈P̂ ;
u⋖v

f (u) = f (0). Now, Proposition 4.18 yields

(Rf) (v) =

∑
u∈P̂ ;
u⋖v

f (u)


︸ ︷︷ ︸

=f(0)

·f (v) ·
∑
u∈P̂ ;
u⋗v

(Rf) (u) = f (0) · f (v) ·
∑
u∈P̂ ;
u⋗v

(Rf) (u).

The right hand side of this equality is a product of three invertible elements (since f (0) is in-
vertible, and since f (v) and

∑
u∈P̂ ;
u⋗v

(Rf) (u) are invertible13), and thus itself is invertible. Thus,

the left hand side is invertible as well. In other words, (Rf) (v) is invertible.

5. The rectangle: statements of the results

5.1. The p× q-rectangle

As promised, we now state the phenomena observed in Example 4.17 in greater generality (and
afterwards prove them). First we define the posets on which these phenomena manifest:

Definition 5.1. For p ∈ Z, we let [p] denote the totally ordered set {1, 2, . . . , p} (with its usual
total order: 1 < 2 < · · · < p). This set is empty if p ⩽ 0.

13because an inverse is always invertible
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Definition 5.2. Let p and q be two positive integers. The p × q-rectangle will mean
the Cartesian product [p] × [q] of the two posets [p] and [q]. Explicitly, this is the
set [p]× [q] = {1, 2, . . . , p} × {1, 2, . . . , q}, equipped with the partial order defined as follows:
For two elements (i, j) and (i′, j′) of [p] × [q], we set (i, j) ⩽ (i′, j′) if and only
if (i ⩽ i′ and j ⩽ j′).

Henceforth, if we speak of [p] × [q], we implicitly assume that p and q are two positive
integers.

The p× q-rectangle has been denoted by Rect (p, q) in [GR22].

Example 5.3. Here is the Hasse diagram of the 2× 3-rectangle [2]× [3]:

(2, 3)

(2, 2) (1, 3)

(2, 1) (1, 2)

(1, 1) .

(5.1)

Convention 5.4. In the following, the Hasse diagram of a p× q-rectangle will always be drawn
as in (5.1). That is, the elements (i, j) of [p] × [q] will be aligned in a rectangular grid, with
the x-axis going southeast to northwest and the y-axis going southwest to northeast. Thus, for
instance, the northwestern neighbor of an element (i, j) is always (i+ 1, j).

Two elements s and t of P̂ will be called adjacent if they satisfy s⋗ t or t⋗ s.

The poset [p]×[q] has a unique minimal element, (1, 1), and a unique maximal element, (p, q).
Its covering relation can be characterized by the following easy remark (which will be used
without explicit mention):
Remark 5.5. Let (i, j) and (i′, j′) be two elements of [p]× [q]. Then, (i, j)⋖ (i′, j′) if and only
if (i′, j′) is either (i+ 1, j) or (i, j + 1).

Convention 5.6. Let P = [p]× [q]. If f is a function defined on P or on P̂ , and if (i, j) is any
element of P , then we will write f (i, j) for f ((i, j)).

5.2. Periodicity

The following theorem (conjectured by the first author in 2014) generalizes the periodicity-like
phenomenon seen in Example 4.17:

Theorem 5.7 (Periodicity theorem for the p×q-rectangle). Let P = [p]× [q], and let f ∈ KP̂ be
a K-labeling such that Rp+qf ̸= ⊥. Set a = f (0) and b = f (1). Then, a and b are invertible,
and for any x ∈ P̂ we have (

Rp+qf
)
(x) = ab · f (x) · ab. (5.2)
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If the ring K is commutative14, then (5.2) simplifies to (Rp+qf) (x) = f (x) (since commu-
tativity of K yields ab · f (x) · ab = aa︸︷︷︸

=1

· f (x) · bb︸︷︷︸
=1

= f (x)). Thus, if K is commutative, then

the claim of Theorem 5.7 can be rewritten as Rp+qf = f , generalizing the main part of [GR22,
Theorem 11.5] (which itself generalizes similar properties of rowmotion operators on other lev-
els). Unlike in [GR22, Theorem 11.5], we cannot honestly claim that Rp+q = id even when K
is commutative, since the partial map Rp+q takes the value ⊥ on some K-labelings f (while id
does not).

The parallel result for birational antichain rowmotion [JR20, Conjecture 5.10] follows from
Theorem 5.7.

5.3. Reciprocity

Theorem 5.7 shows that the “periodicity phenomenon” we have observed on [2]× [2] in Exam-
ple 4.17 was not a coincidence. The “reciprocity phenomenon” is similarly the p = q = 2 case
of a general fact:

Theorem 5.8 (Reciprocity theorem for p × q-rectangle). Let P = [p] × [q]. Fix ℓ ∈ N, and
let f ∈ KP̂ be a K-labeling such that Rℓf ̸= ⊥. Set a = f (0) and b = f (1). Let (i, j) ∈ P
satisfy ℓ− i− j + 1 ⩾ 0. Then,(

Rℓf
)
(i, j) = a · (Rℓ−i−j+1f) (p+ 1− i, q + 1− j) · b. (5.3)

Theorem 5.8 directly generalizes the analogous theorem [GR22, Theorem 11.7] in the com-
mutative setting.

5.4. The structure of the proofs

Theorems 5.8 and 5.7 are the main results of this paper, and most of it will be devoted to their
proofs. We first summarize the large-scale structure of these proofs:

1. In Section 6, we show that twisted periodicity (Theorem 5.7) follows from reciprocity
(Theorem 5.8). Thus, proving the latter will suffice.

2. In Section 7, we introduce some notations. Some of these notations (a, b and xℓ) are mere
abbreviations for the labels of Rℓf , while others (Av

ℓ ,

Av
ℓ , A

p
ℓ ,

Ap
ℓ , Au→v

ℓ and

Au→v
ℓ ) stand

for certain derived quantities and will play a more active role. We also define “paths” on
the poset P , and introduce a few of their basic features.

3. In Section 8, we prove a few simple results. The most important of these results are Propo-
sition 8.3 (which reveals how birational rowmotion transforms Av

ℓ−1 into

Av
ℓ ) and Theo-

rem 8.6 (which allows us to recover the original labels xℓ from either Av
ℓ or

Av
ℓ ).

14or, more generally, if the elements a and b commute with each other and with f (x)
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4. In Section 9, we prove Theorem 5.8 in the case when (i, j) = (1, 1). This proof warrants
its own section both because it is conceptually easier than the general case, and because it
requires some “well-definedness” technicalities that are (surprisingly) not needed in any
other cases.

5. In Section 10, we saddle the main workhorse of our proof: a lemma (Lemma 10.2) that
connects certain Au→v

ℓ quantities with certain

Au→v
ℓ quantities with the same ℓ. We prove

this using a variant of paths, which we call “path-jump-paths” and which allow us to in-
terpolate between Au→v

ℓ and

Au→v
ℓ .

6. In Section 11, we combine the previous results with this lemma to prove Theorem 5.8 in
the case when j = 1.

7. In Section 12, we finally complete the proof of Theorem 5.8 in the general case. This
requires almost no new ideas, just an induction that extends Theorem 5.8 from four “ad-
jacent” elements of P (labeled u,m, s, t in diagram (12.1)) to the fifth element v.

6. Twisted periodicity follows from reciprocity

Our first step towards the proofs of twisted periodicity (Theorem 5.7) and reciprocity (Theo-
rem 5.8) is to show that the latter implies the former.15

Proof of Theorem 5.7 using Theorem 5.8. Assume that Theorem 5.8 has been proved. Let p, q,
P , f , a and b be as in Theorem 5.7. Let x ∈ P̂ . From p ⩾ 1 and q ⩾ 1, we obtain p + q ⩾ 2.
Hence, from Rp+qf ̸= ⊥, we obtain R2f ̸= ⊥ (by Lemma 4.21). Therefore, Lemma 4.24 yields
that a and b are invertible (since a = f (0) and b = f (1)).

It remains to prove (5.2). First, we note that

ab · f (0)︸︷︷︸
=a

·ab = ab · a · a︸︷︷︸
=1

b = a b · b︸︷︷︸
=1

= a.

However, Corollary 4.20 yields (Rp+qf) (0) = f (0) = a. Comparing these, we find
that (Rp+qf) (0) = ab · f (0) · ab. Thus, the equality (5.2) holds for x = 0. Similarly, this
equality also holds for x = 1. So from now on, we WLOG assume that x is neither 0 nor 1.
Hence, x = (i, j) ∈ P = [p]× [q].

From Rp+qf ̸= ⊥, we obtain Rf ̸= ⊥ (by Lemma 4.21, since 1 ⩽ 2 ⩽ p + q). Thus,
Lemma 4.22 (applied to v = (i, j)) yields that f (i, j) is invertible. Hence, f (i, j) is well-
defined. The element f (i, j) of K is invertible (since it has inverse f (i, j)).

Set i′ := p + 1 − i ∈ [p] and j′ := q + 1 − j ∈ [q], so that (i′−, j′) ∈ [p] × [q] = P
and i′ + j′ ⩾ 1 + 1 = 2. Also, the definitions of i′ and j′ readily yield p + 1 − i′ = i
and q + 1− j′ = j and i′ + j′ − 1 = p+ q − i− j + 1.

15This reduction is not new; it appears already in [MR19, proof of Corollary 2.12] in the commutative case.
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Now i′+j′ ⩽ p+q, so i′+j′−1 ⩽ i′+j′ ⩽ p+q and thus Ri′+j′−1f ̸= ⊥ (by Lemma 4.21,
since Rp+qf ̸= ⊥). Thus, Theorem 5.8 (applied to i′ + j′ − 1, i′ and j′ instead of ℓ, i and j)
yields

(
Ri′+j′−1f

)
(i′, j′) = a ·

(
R(i′+j′−1)−i′−j′+1f

)
︸ ︷︷ ︸

=f
(since (i′+j′−1)−i′−j′+1=0)

p+ 1− i′︸ ︷︷ ︸
=i

, q + 1− j′︸ ︷︷ ︸
=j

 · b

= a · f (i, j) · b. (6.1)

However, we also have p + q − i − j + 1 = i′ + j′ − 1 ⩾ 0 (since i′ + j′ ⩾ 2 ⩾ 1). Thus,
Theorem 5.8 (applied to ℓ = p+ q) yields(

Rp+qf
)
(i, j) = a · (Rp+q−i−j+1f) (p+ 1− i, q + 1− j) · b

= a · (Ri′+j′−1f) (i′, j′) · b
(

since p+ q − i− j + 1 = i′ + j′ − 1
and p+ 1− i = i′ and q + 1− j = j′

)
= a · a · f (i, j) · b︸ ︷︷ ︸

=b·f(i,j)·a
(by Proposition 3.3 (c),

since a and f(i,j) and b are invertible)

· b (by (6.1))

= ab · f (i, j) · ab.

Since x = (i, j), we can rewrite this as(
Rp+qf

)
(x) = ab · f (x) · ab.

Thus twisted periodicity (Theorem 5.7) is proved, assuming reciprocity (Theorem 5.8) holds.

7. Proof of reciprocity: notations

It now suffices to prove Theorem 5.8, which will be the ultimate goal of the next few sections.
First we introduce some notations that will be used throughout these sections.

Fix two positive integers p and q. Assume that P = [p] × [q]. Let f ∈ KP̂ be a K-labeling
of P . Set

a := f (0) and b := f (1) .

For any x = (i, j) ∈ P , we define an element x∼ ∈ P by

x∼ := (p+ 1− i, q + 1− j) .

We call this element x∼ the antipode of x. Thus, the desired equality (5.3) can be rewritten as(
Rℓf

)
(x) = a · (Rℓ−i−j+1f) (x∼) · b (7.1)
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for x = (i, j).
For any x ∈ P̂ and ℓ ∈ N, we write

xℓ :=
(
Rℓf

)
(x) , (7.2)

which is well-defined whenever Rℓf ̸= ⊥. This compact notation will make upcoming formulas
more readable.

In particular, for each x ∈ P̂ , we have x0 = (R0f) (x) = f (x). Moreover, for each ℓ ∈ N
satisfying Rℓf ̸= ⊥, we have

0ℓ =
(
Rℓf

)
(0) = a (via Corollary 4.20) (7.3)

and similarly 1ℓ = b.
We can further rewrite the equality (7.1) as xℓ = a · x∼

ℓ−i−j+1 · b (since xℓ =
(
Rℓf

)
(x)

and x∼
ℓ−i−j+1 =

(
Rℓ−i−j+1f

)
(x∼)). Hence, our desired Theorem 5.8 takes the following form:

Theorem 5.8, restated. If x = (i, j) ∈ P and ℓ ∈ N satisfy ℓ− i− j + 1 ⩾ 0 and
Rℓf ̸= ⊥, then

xℓ = a · x∼
ℓ−i−j+1 · b. (7.4)

Proposition 4.18 yields that for each v ∈ P , we have16

(Rf) (v) =

(∑
u⋖v

f (u)

)
· f (v) ·

∑
u⋗v

(Rf) (u). (7.5)

(In both sums, u ranges over P̂ ; from now on, this will always be understood if not otherwise
specified.) Applying this equality (7.5) to Rℓf instead of f , we obtain

(
Rℓ+1f

)
(v) =

(∑
u⋖v

(
Rℓf

)
(u)

)
· (Rℓf) (v) ·

∑
u⋗v

(Rℓ+1f) (u)

for each v ∈ P and ℓ ∈ N satisfying Rℓ+1f ̸= ⊥ (since R
(
Rℓf

)
= Rℓ+1f ).

Using (7.2), we can rewrite this as follows:

vℓ+1 =

(∑
u⋖v

uℓ

)
· vℓ ·

∑
u⋗v

uℓ+1 (7.6)

for each v ∈ P and ℓ ∈ N satisfying Rℓ+1f ̸= ⊥.
Next, we formally define the paths that will play a key role in the proof. A path means a

sequence (v0, v1, . . . , vk) of elements of P̂ satisfying v0 ⋗ v1 ⋗ · · · ⋗ vk. We denote this path
by (v0 ⋗ v1 ⋗ · · ·⋗ vk), and we will call it a path from v0 to vk (or, for short, a path v0 → vk).
The vertices of this path are defined to be the elements v0, v1, . . . , vk. We say that this path starts
at v0 and ends at vk.

16assuming that Rf ̸= ⊥
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For each v ∈ P and ℓ ∈ N, we set1718

Av
ℓ := vℓ ·

∑
u⋖v

uℓ and

Av
ℓ :=

∑
u⋗v

uℓ · vℓ.

Furthermore, when v ∈ {0, 1}, we set

Av
ℓ := 1 and

Av
ℓ := 1 (7.7)

for all ℓ ∈ N.
For any path p = (v0 ⋗ v1 ⋗ · · ·⋗ vk) and any ℓ ∈ N, we set

Ap
ℓ := Av0

ℓ Av1
ℓ · · ·Avk

ℓ and

Ap
ℓ :=

Av0
ℓ

Av1
ℓ · · ·

Avk
ℓ

(assuming that the factors on the right hand sides are well-defined).
If u and v are elements of P̂ , and if ℓ ∈ N, then we set

Au→v
ℓ :=

∑
p is a path from u to v

Ap
ℓ and (7.8)

Au→v
ℓ :=

∑
p is a path from u to v

Ap
ℓ (7.9)

(assuming that all addends on the right hand sides are well-defined).

Example 7.1. Let P = [2]× [2] and f ∈ KP̂ be as in Example 4.17. Then,

(1, 1)∼ = (2, 2) , (1, 2)∼ = (2, 1) , (2, 1)∼ = (1, 2) , (2, 2)∼ = (1, 1) ,

(1, 1)0 = f (1, 1) = w, (1, 1)1 = (Rf) (1, 1) = azb,

(1, 1)2 =
(
R2f

)
(1, 1) = abz · x+ y · b,

(1, 2)2 =
(
R2f

)
(1, 2) = a · x+ y · y (x+ y) b.

There are only two paths from (2, 2) to (1, 1): namely, the path ((2, 2)⋗ (1, 2)⋗ (1, 1)) and
the path ((2, 2)⋗ (2, 1)⋗ (1, 1)). Each of these two paths has three vertices. There are no paths
from (1, 1) to (2, 2), since we don’t have (1, 1) ⩾ (2, 2). The only path from 0 to 0 is the trivial
path (0).

17We recall that the summation signs “
∑
u⋖v

” and “
∑
u⋗v

” mean “
∑

u∈P̂ ;
u⋖v

” and “
∑

u∈P̂ ;
u⋗v

”, respectively.

18These elements Av
ℓ and

Av
ℓ are not always well-defined. For Av

ℓ to be well-defined, we need to have Rℓf ̸= ⊥,
and we need the element

∑
u⋖v

uℓ to be invertible. For

Av
ℓ to be well-defined, we need to have Rℓf ̸= ⊥, and we

need the elements uℓ (for u⋗ v) and
∑
u⋗v

uℓ and vℓ to be invertible.
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We have

A
(1,1)
0 = (1, 1)0 ·

∑
u⋖(1,1)

u0 = (1, 1)0 · 00 = w · a,

A
(2,2)
0 = (2, 2)0 ·

∑
u⋖(2,2)

u0 = (2, 2)0 · (1, 2)0 + (2, 1)0 = z · y + x,

A
(1,1)
1 = (1, 1)1 ·

∑
u⋖(1,1)

u1 = (1, 1)1 · 01 = azb · a,

A(1,1)
0 =

∑
u⋗(1,1)

u0 · (1, 1)0 = (1, 2)0 + (2, 1)0 · (1, 1)0 = y + x · w,

A(1,1)
1 =

∑
u⋗(1,1)

u1 · (1, 1)1 = (1, 2)1 + (2, 1)1 · (1, 1)1

= wy (x+ y) zb+ wx (x+ y) zb · azb = w · a (after simplifications) .

Furthermore, for any ℓ ∈ N, we have

A
((2,2)⋗(1,2)⋗(1,1))
ℓ = A

(2,2)
ℓ A

(1,2)
ℓ A

(1,1)
ℓ ;

A
(2,2)→(1,1)
ℓ = A

((2,2)⋗(1,2)⋗(1,1))
ℓ + A

((2,2)⋗(2,1)⋗(1,1))
ℓ

= A
(2,2)
ℓ A

(1,2)
ℓ A

(1,1)
ℓ + A

(2,2)
ℓ A

(2,1)
ℓ A

(1,1)
ℓ

(and similarly for
A

instead of A).

The letter ℓ will always stand for a nonnegative integer (but will not be fixed).
Remark 7.2. The elements Av

ℓ and

Av
ℓ (for v ∈ P and ℓ ∈ N) are not entirely new. They are

closely connected with the down-transfer operator ∇ and the up-transfer operator ∆ studied
in [JR20, Definition 5.11]; to be specific, we have Av

ℓ =
(
∇Rℓf

)
(v) and

Av
ℓ =

(
∆ΘRℓf

)
(v)

using the notations of [JR20, Definition 5.11]. These operators ∇ and ∆ have a long history,
going back to Stanley’s “transfer map” ϕ between the order polytope and the chain polytope of
a poset (see [Sta86, Definition 3.1]). The down-transfer operator ∇ does indeed restrict to ϕ
when K is an appropriate tropical semiring. For this reason, we have been informally referring
to Av

ℓ and

Av
ℓ as the down-slack and the up-slack of v at time ℓ (harkening back to the notion of

slack from linear optimization). Arguably, the behavior of these operators when K is the tropical
semiring is not very indicative of the general case.

When K is commutative, our Av
0 have also implicitly appeared in [MR19]: If v = (i, j) ∈ P ,

then Av
0 = Aij , where Aij is defined as in [MR19, (1)].

8. Proof of reciprocity: simple lemmas

Throughout this section, we use the notations introduced in Section 7.
Let us prove some relations between the elements we have introduced. We begin with a

well-definedness result:
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Lemma 8.1. Let ℓ ∈ N be such that ℓ ⩾ 1 and Rℓf ̸= ⊥. Assume furthermore that a is
invertible. Let v ∈ P̂ . Then:

(a) The element vℓ is well-defined and invertible.

(b) The element vℓ−1 is well-defined and invertible.

(c) The element Av
ℓ−1 is well-defined and invertible.

(d) The element

Av
ℓ is well-defined and invertible.

Proof. From Rℓf ̸= ⊥, we obtain Rℓ−1f ̸= ⊥. Hence, Corollary 4.20 yields that(
Rℓ−1f

)
(0) = f (0) = a, which is invertible by assumption.

(a) Clearly, vℓ =
(
Rℓf

)
(v) is well-defined, and we have vℓ =

(
R
(
Rℓ−1f

))
(v). Hence,

Lemma 4.27 (applied to Rℓ−1f instead of f ) yields that vℓ is invertible.

(b) If v = 0, then this follows from part (a), because (7.3) yields that vℓ−1 = a = vℓ in
this case. An analogous argument works if v = 1. Thus, we WLOG assume that v /∈ {0, 1},
so that v ∈ P . The element vℓ−1 =

(
Rℓ−1f

)
(v) is clearly well-defined, and is invertible by

Lemma 4.22 (applied to Rℓ−1f instead of f ).

(c) If v ∈ {0, 1}, then this follows from (7.7). Otherwise, v ∈ P . Applying (7.6) to ℓ − 1
instead of ℓ, we obtain

vℓ =

(∑
u⋖v

uℓ−1

)
· vℓ−1 ·

∑
u⋗v

uℓ. (8.1)

This equality shows that vℓ−1 and
∑
u⋗v

uℓ are well-defined, i.e., the elements vℓ−1 and
∑
u⋗v

uℓ are

invertible. Also, vℓ is invertible (by Lemma 8.1 (a)).
Solving the equality (8.1) for the first factor on its right hand side, we obtain

∑
u⋖v

uℓ−1 = vℓ ·

(∑
u⋗v

uℓ

)
· vℓ−1.

The right hand side of this equality is a product of three invertible elements; thus, both sides are
invertible. Therefore, the element

∑
u⋖v

uℓ−1 is well-defined, hence invertible (since an inverse is

always invertible).
Finally,Av

ℓ−1 is defined to be the product vℓ−1·
∑
u⋖v

uℓ−1, and thus is well-defined and invertible

because both of its factors are.

(d) If v ∈ {0, 1}, then this follows from (7.7). Otherwise, v ∈ P .
Lemma 8.1 (a) shows that vℓ is invertible; hence, vℓ is well-defined, and invertible. Also,

in the proof of Lemma 8.1 (c), we have shown that
∑
u⋗v

uℓ is well-defined, so it too is invertible.

Finally,

Av
ℓ is defined to be the product

∑
u⋗v

uℓ · vℓ, and thus is also well-defined and invertible

because both of its factors are.
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Next we show some simple recursions for As→t
ℓ and

As→t
ℓ :

Proposition 8.2. Let s and t be two distinct elements of P̂ , and fix ℓ ∈ N. Then

As→t
ℓ = As

ℓ

∑
u∈P̂ ;
s⋗u

Au→t
ℓ (8.2)

=
∑
u∈P̂ ;
u⋗t

As→u
ℓ At

ℓ (8.3)

and

As→t
ℓ =

As
ℓ

∑
u∈P̂ ;
s⋗u

Au→t
ℓ (8.4)

=
∑
u∈P̂ ;
u⋗t

As→u
ℓ

At
ℓ. (8.5)

Here, we assume that all the terms in the respective equalities are well-defined.

Proof. Since s ̸= t, every path from s to t must contain an element covered by s as its second
vertex.

Fix an element u ∈ P̂ satisfying s⋗ u. If (v0 ⋗ v1 ⋗ · · ·⋗ vk) is a path from s to t satisfy-
ing v1 = u, then (v1 ⋗ v2 ⋗ · · ·⋗ vk) is a path from u to t. Hence, we have found a map

from {paths (v0 ⋗ v1 ⋗ · · ·⋗ vk) from s to t satisfying v1 = u}
to {paths from u to t}

that sends each path (v0 ⋗ v1 ⋗ · · ·⋗ vk) to (v1 ⋗ v2 ⋗ · · ·⋗ vk). This map is a bijection (since
any path from u to t can be uniquely extended to a path from s to t by inserting the vertex s at
the front). We can use this bijection to substitute (v1 ⋗ v2 ⋗ · · ·⋗ vk) for p in a sum that ranges
over all paths p from u to t. In particular,∑

p is a path from u to t

As
ℓA

p
ℓ =

∑
(v0⋗v1⋗···⋗vk) is a path from s to t;

v1=u

As
ℓ︸︷︷︸

=A
v0
ℓ

(since s=v0)

A
(v1⋗v2⋗···⋗vk)
ℓ︸ ︷︷ ︸

=A
v1
ℓ A

v2
ℓ ···Avk

ℓ

(by the definition of A(v1⋗v2⋗···⋗vk)
ℓ )

=
∑

(v0⋗v1⋗···⋗vk) is a path from s to t;
v1=u

Av0
ℓ Av1

ℓ Av2
ℓ · · ·Avk

ℓ︸ ︷︷ ︸
=A

(v0⋗v1⋗···⋗vk)
ℓ

(by the definition of A(v0⋗v1⋗···⋗vk)
ℓ )

=
∑

(v0⋗v1⋗···⋗vk) is a path from s to t;
v1=u

A
(v0⋗v1⋗···⋗vk)
ℓ . (8.6)

Now, forget that we fixed u. We thus have proved (8.6) for each u ∈ P̂ satisfying s⋗ u.
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The definition of As→t
ℓ yields

As→t
ℓ =

∑
(v0⋗v1⋗···⋗vk) is a path from s to t︸ ︷︷ ︸

=
∑

u∈P̂ ;
s⋗u

∑
(v0⋗v1⋗···⋗vk) is a path from s to t;

v1=u

(because any path (v0⋗v1⋗···⋗vk) from s to t has a well-defined
second vertex v1, and this second vertex v1 satisfies s⋗v1)

A
(v0⋗v1⋗···⋗vk)
ℓ

=
∑
u∈P̂ ;
s⋗u

∑
(v0⋗v1⋗···⋗vk) is a path from s to t;

v1=u

A
(v0⋗v1⋗···⋗vk)
ℓ

︸ ︷︷ ︸
=

∑
p is a path from u to t

As
ℓA

p
ℓ

(by (8.6))

=
∑
u∈P̂ ;
s⋗u

∑
p is a path from u to t

As
ℓA

p
ℓ

= As
ℓ

∑
u∈P̂ ;
s⋗u

∑
p is a path from u to t

Ap
ℓ︸ ︷︷ ︸

=Au→t
ℓ

(by the definition of Au→t
ℓ )

= As
ℓ

∑
u∈P̂ ;
s⋗u

Au→t
ℓ .

This proves (8.2). The same argument (but with each A symbol replaced by an

A

symbol)
proves (8.4). Moreover, a similar argument (but now classifying paths from s to t according
to their second-to-last vertex instead of their second vertex) establishes (8.3) and (8.5). Thus,
Proposition 8.2 is proven.

The next proposition uses the products

Av
ℓ and Av

ℓ−1 to rewrite the equality (7.6) (which is
essentially the definition of birational rowmotion) in a slick way:

Proposition 8.3 (Transition equation inA-

A

-form). Let v ∈ P̂ and ℓ ⩾ 1 be such thatRℓf ̸= ⊥.
Assume that a is invertible. Then,

Av
ℓ = Av

ℓ−1.

Proof. If v is 0 or 1, then the equality

Av
ℓ = Av

ℓ−1 holds because both of its sides are 1 (by (7.7)).
Thus, we assume WLOG that v ∈ P .

Lemma 8.1 (a) yields that vℓ is well-defined and invertible, while Lemma 8.1 (c,d) yield
that

Av
ℓ andAv

ℓ−1 are well-defined. SinceAv
ℓ−1 is defined as vℓ−1·

∑
u⋖v

uℓ−1, this entails that
∑
u⋖v

uℓ−1

is invertible.
If α, β, γ, δ are four invertible elements of K satisfying α = βγδ, then

δα = δ βγδ︸︷︷︸
=δγβ

= δδ︸︷︷︸
=1

γβ = γβ. (8.7)
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Applying (7.6) to ℓ− 1 instead of ℓ, we find

vℓ =

(∑
u⋖v

uℓ−1

)
· vℓ−1 ·

∑
u⋗v

uℓ.

Thus, (8.7) (applied to α = vℓ, β =
∑
u⋖v

uℓ−1, γ = vℓ−1 and δ =
∑
u⋗v

uℓ) yields

∑
u⋗v

uℓ · vℓ = vℓ−1 ·
∑
u⋖v

uℓ−1.

But the left hand side of this equality is

Av
ℓ (by the definition of

Av
ℓ ), whereas the right hand side

is Av
ℓ−1. Hence, this equality simplifies to

Av
ℓ = Av

ℓ−1. This proves Proposition 8.3.

As a consequence of Proposition 8.3, we have:

Corollary 8.4. Let p be a path. Let ℓ ⩾ 1 be such that Rℓf ̸= ⊥. Assume that a is invertible.
Then,

Ap
ℓ = Ap

ℓ−1.

Corollary 8.5. Let u, v ∈ P̂ . Let ℓ ∈ N be such that ℓ ⩾ 1 and Rℓf ̸= ⊥. Assume that a is
invertible. Then,

Au→v
ℓ = Au→v

ℓ−1 . (8.8)

The next theorem gives ways to recover the labels uℓ =
(
Rℓf

)
(u) from some of the sums

defined in (7.8) and (7.9).19

Theorem 8.6 (path formulas for rectangle). Let ℓ ∈ N. Assume that a is invertible. Then:

(a) If Rℓf ̸= ⊥ and ℓ ⩾ 1, then each u ∈ P satisfies

uℓ =

A

1→u
ℓ · b

(and the inverse

A

1→u
ℓ is well-defined).

(b) If Rℓ+1f ̸= ⊥, then each u ∈ P satisfies

uℓ = Au→0
ℓ · a.

(c) If Rℓf ̸= ⊥ and ℓ ⩾ 1, then each u ∈ P satisfies

uℓ =

A(p,q)→u
ℓ · b

(and the inverse

A(p,q)→u
ℓ is well-defined).

19The condition ℓ ⩾ 1 in Theorem 8.6 (a) and (c) is meant to ensure that

A1→u
ℓ and

A(p,q)→u
ℓ are invertible. It

can be replaced by directly requiring the latter.
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(d) If Rℓ+1f ̸= ⊥, then each u ∈ P satisfies

uℓ = A
u→(1,1)
ℓ · a.

Proof of Theorem 8.6. (a) Assume that Rℓf ̸= ⊥ and ℓ ⩾ 1. Then, Lemma 8.1 (d) yields
that the element

Av
ℓ is well-defined and invertible for each v ∈ P̂ . Hence, the element

Ap
ℓ is

well-defined for each path p. Therefore, the element

A1→u
ℓ is well-defined for each u ∈ P .

Next, we will prove the equality

A1→u
ℓ = buℓ for each u ∈ P. (8.9)

(The uℓ on the right hand side here is well-defined, since Lemma 8.1 (a) (applied to v = u)
shows that uℓ is well-defined and invertible.)

Proof of (8.9). We utilize downwards induction on u. This is a version of strong induction in
which we fix an element v ∈ P and assume (as the induction hypothesis) that (8.9) holds for
all u ∈ P satisfying u > v. We will then prove that (8.9) also holds for u = v. Since the poset P
is finite, this will entail that (8.9) holds for all u ∈ P .

Let v ∈ P . Assume (as the induction hypothesis) that (8.9) holds for all u ∈ P satisfy-
ing u > v. In other words, we have

A1→u
ℓ = buℓ for each u ∈ P satisfying u > v. Thus, in

particular, we have

A1→u
ℓ = buℓ for each u ∈ P satisfying u⋗ v. (8.10)

Note also that the only path from 1 to 1 is the trivial path (1). Hence,

A1→1
ℓ =

A(1)
ℓ =

A1
ℓ = 1 = b1ℓ (8.11)

(since 1ℓ = b).
However, 1 ̸= v (since 1 /∈ P and v ∈ P ). Thus, (8.5) (applied to s = 1 and t = v) yields

A1→v
ℓ =

∑
u∈P̂ ;
u⋗v︸︷︷︸
=

∑
u⋗v

(since our sums
range over P̂ by

default)

A1→u
ℓ︸ ︷︷ ︸

=buℓ
(indeed, this follows from (8.10) when u∈P ,

and follows from (8.11) when u=1;
and there are no other possibilities, since u⋗v rules out u=0)

Av
ℓ

=
∑
u⋗v

buℓ

Av
ℓ = b

(∑
u⋗v

uℓ

)

Av
ℓ︸︷︷︸

=
∑
u⋗v

uℓ·vℓ
(by the definition of

Av
ℓ )

= b

(∑
u⋗v

uℓ

)∑
u⋗v

uℓ︸ ︷︷ ︸
=1

·vℓ = bvℓ.

In other words, (8.9) holds for u = v. This completes the induction step. Thus, we have
proved (8.9) by induction.
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Note that 1ℓ is invertible (by Lemma 8.1 (a), applied to v = 1). In other words, b is invertible
(since 1ℓ = b).

Now, let u ∈ P . Then, buℓ is invertible (since b and uℓ are). In view of (8.9), this means
that

A1→u
ℓ is invertible. Hence,

A

1→u
ℓ is well-defined. Solving (8.9) for uℓ, we thus

obtain uℓ =

A

1→u
ℓ · b. This proves Theorem 8.6 (a).

(b) This proof is rather similar to that of part (a), but uses upwards induction instead of
downwards induction (and applies (8.2) instead of (8.5)).

(c) Let u ∈ P . Recall that (p, q) is the unique maximal element of P . Therefore, each path
from 1 to u begins with the step 1 ⋗ (p, q). Thus,

A1→u
ℓ =

A(p,q)→u
ℓ (since

A1
ℓ = 1). Hence,

part (c) follows from (a).

Similarly, part (d) follows from (b).

Remark 8.7. Corollary 8.5, Proposition 8.2 and parts (a) and (b) of Theorem 8.6 hold more
generally if P is replaced by any finite poset (not necessarily a rectangle). The proofs we gave
above work in that generality. Parts (c) and (d) of Theorem 8.6 can be similarly generalized as
long as the poset P has a global maximum (for part (c)) and a global minimum (for part (d));
all we need to do is to replace (p, q) by the global maximum and (1, 1) by the global minimum.
We will have no need for this generality, though.

9. Proof of reciprocity: the case (i, j) = (1, 1)

Now, we are mostly ready to prove that Theorem 5.8 holds in the case when (i, j) = (1, 1). For
reasons both technical and pedagogical, it is useful for us to dispose of this case now in order
to have less work to do later. First, we prove Theorem 5.8 for (i, j) = (1, 1) under the extra
assumption that a is invertible:

Lemma 9.1. Assume that P is the p × q-rectangle [p] × [q]. Let ℓ ∈ N be such that ℓ ⩾ 1.
Let f ∈ KP̂ be a K-labeling such that Rℓf ̸= ⊥. Let a = f (0) and b = f (1). Assume that a is
invertible. Then, (

Rℓf
)
(1, 1) = a · (Rℓ−1f) (p, q) · b.

Proof. We use the notations from Section 7. Thus,
(
Rℓf

)
(1, 1) = (1, 1)ℓ and(

Rℓ−1f
)
(p, q) = (p, q)ℓ−1 = A

(p,q)→(1,1)
ℓ−1 · a

(by Theorem 8.6 (d), applied to ℓ − 1 and (p, q) instead of ℓ and u). Solving this equation
for A(p,q)→(1,1)

ℓ−1 , we obtain
A

(p,q)→(1,1)
ℓ−1 =

(
Rℓ−1f

)
(p, q) · a (9.1)

(since a is invertible). Note also that R
(
Rℓ−1f

)
= Rℓf ̸= ⊥, and thus

(
Rℓ−1f

)
(p, q) is

invertible (by Lemma 4.22, applied to Rℓ−1f and (p, q) instead of f and v).
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Now,(
Rℓf

)
(1, 1) = (1, 1)ℓ =

A(p,q)→(1,1)
ℓ · b (by Theorem 8.6 (c), applied to u = (1, 1))

= A
(p,q)→(1,1)
ℓ−1 · b

(
since (8.8) yields

A(p,q)→(1,1)
ℓ = A

(p,q)→(1,1)
ℓ−1

)
= (Rℓ−1f) (p, q) · a︸ ︷︷ ︸

=a·(Rℓ−1f)(p,q)
(since (Rℓ−1f)(p,q) and a

are invertible)

· b (by (9.1))

= a · (Rℓ−1f) (p, q) · b.

This proves Lemma 9.1.

Unfortunately, our proof of Lemma 9.1 made use of the requirement that a be invertible,
since

A(p,q)→(1,1)
ℓ and A

(p,q)→(1,1)
ℓ−1 would not be well-defined otherwise. In order to remove this

requirement, we make use of a trick, in which we “temporarily” set the label f (0) to 1 and then
argue that this has a predictable effect on (Rf) (1, 1). This trick relies on the following:

Lemma 9.2. Let P be an arbitrary finite poset (not necessarily [p]× [q]). Let f, g ∈ KP̂ be two
K-labelings such that Rf ̸= ⊥. Assume that

g (x) = f (x) for each x ∈ P̂ \ {0} . (9.2)

Assume furthermore that g (0) = 1. Set a = f (0). Then:

(a) We have Rg ̸= ⊥.

(b) If v ∈ P is not a minimal element of P , then (Rf) (v) = (Rg) (v).

(c) If v ∈ P is a minimal element of P , then (Rf) (v) = a · (Rg) (v).

Proof of Lemma 9.2 (sketched). Our assumption (9.2) shows that the labels of f equal the cor-
responding labels of g at all elements of P̂ other than at 0. Only the labels at 0 can differ.

Compute the labelings Rf and Rg recursively, as we did in Example 4.17, making sure
to pick a linear extension of P that starts with all minimal elements of P (so that the toggles
at these minimal elements all happen at the very end of our computation). The computation
for Rf proceeds identically with the computation for Rg until we “interact with” the different
labels at 0 – that is, until the labels f (0) and g (0) make an appearance in the sums

∑
u∈P̂ ;
u⋖v

f (u)

and
∑
u∈P̂ ;
u⋖v

g (u), respectively (because all other labels of f equal the corresponding labels of g).

However, this “interaction” only happens when we toggle at a minimal element of P (since v
has to be minimal in order for f (0) to be an addend of the sum

∑
u∈P̂ ;
u⋖v

f (u)). Furthermore, when
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we do toggle at a minimal element v of P , the relevant sums
∑
u∈P̂ ;
u⋖v

f (u) and
∑
u∈P̂ ;
u⋖v

g (u) simplify

to f (0) = a and g (0) = 1, respectively (because 0 is the only element u ∈ P̂ satisfying u⋖ v).
Therefore, the labels of Rf and Rg at v end up differing by a factor of a (more precisely, the
value of Rf at v ends up being a times the label of Rg at v). This proves Lemma 9.2.

Let us now get rid of the “a is invertible” requirement in Lemma 9.1:

Lemma 9.3. Assume that P is the p × q-rectangle [p] × [q]. Let ℓ ∈ N be such that ℓ ⩾ 1.
Let f ∈ KP̂ be a K-labeling such that Rℓf ̸= ⊥. Let a = f (0) and b = f (1). Then,(

Rℓf
)
(1, 1) = a · (Rℓ−1f) (p, q) · b.

Proof. If R2f ̸= ⊥, then Lemma 4.24 yields that a and b are invertible (since a = f (0)
and b = f (1)), and therefore our claim follows directly from Lemma 9.1. For this reason,
we WLOG assume that R2f = ⊥. If we had ℓ ⩾ 2, then we would thus conclude that Rℓf = ⊥
as well, which would contradict Rℓf ̸= ⊥. Hence, we must have ℓ < 2, so that ℓ = 1. There-
fore, Rℓ−1 = R1−1 = R0 = id and consequently

(
Rℓ−1f

)
(p, q) = f (p, q). Also, Rℓ = R

(since ℓ = 1). Hence, R = Rℓ, so that Rf = Rℓf ̸= ⊥.
Now, let g ∈ KP̂ be the K-labeling that is obtained from f by replacing the label f (0) by 1.

Thus, we have
g (x) = f (x) for each x ∈ P̂ \ {0} , (9.3)

and we have g (0) = 1. Then, Lemma 9.2 (a) yields Rg ̸= ⊥. In other words, R1g ̸= ⊥.
We have (p, q) ∈ P ⊆ P̂ \ {0}. Hence, (9.3) yields g (p, q) = f (p, q).
We also have 1 ∈ P̂ \ {0}. Thus, (9.3) yields g (1) = f (1) = b, so that b = g (1).

Also, 1 = g (0), and clearly 1 is invertible. Hence, Lemma 9.1 (applied to 1, g and 1 instead
of ℓ, f and a) yields(

R1g
)
(1, 1) = 1 · (R1−1g) (p, q) · b = (R1−1g) (p, q) · b.

In view of R1 = R and R1−1 = id, we can rewrite this as

(Rg) (1, 1) = g (p, q) · b.

However, (1, 1) is a minimal element of P . Thus, Lemma 9.2 (c) (applied to v = (1, 1))
yields

(Rf) (1, 1) = a · (Rg) (1, 1)︸ ︷︷ ︸
=g(p,q)·b

= a · g (p, q) · b = a · f (p, q) · b (since g (p, q) = f (p, q)) .

In view of Rℓ = R and
(
Rℓ−1f

)
(p, q) = f (p, q), we can rewrite this as(

Rℓf
)
(1, 1) = a · (Rℓ−1f) (p, q) · b.

Thus, Lemma 9.3 is proven.

This settles the easiest case of Theorem 5.8 – namely, the case (i, j) = (1, 1). To get a grip
on the general case, we need more lemmas.
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10. The conversion lemma

We continue using the notations from Section 7.

Lemma 10.1 (Four neighbors lemma). Let u, v, w, d be four adjacent elements of P that are
arranged as follows on the Hasse diagram of P :

u

v w

d

(i.e., we have d = (i, j), v = (i+ 1, j), w = (i, j + 1) and u = (i+ 1, j + 1) for
some i ∈ [p− 1] and some j ∈ [q − 1]).

Assume that a is invertible. Let ℓ ⩾ 1 be such that Rℓ+1f ̸= ⊥. Then:

(a) We have
vℓ ·

Ad
ℓ · dℓ = uℓ · Au

ℓ · wℓ.

(b) We have
wℓ ·

Ad
ℓ · dℓ = uℓ · Au

ℓ · vℓ.

Proof. (a) We haveR
(
Rℓf

)
= Rℓ+1f ̸= ⊥ = R (⊥) and thusRℓf ̸= ⊥. Hence, Lemma 8.1 (a)

yields that vℓ is invertible. Similarly, wℓ and uℓ and dℓ are invertible. Also, Lemma 8.1 (d)
(applied to d instead of v) yields that the element

Ad
ℓ is well-defined and invertible. Moreover,

Lemma 8.1 (c) (applied to u and ℓ+1 instead of v and ℓ) yields that the elementAu
ℓ is well-defined

and invertible.
The elements s ∈ P̂ that satisfy s ⋗ d are v and w. Hence,

∑
s⋗d

sℓ = vℓ + wℓ (where, of

course, the sum ranges over s ∈ P̂ ). Now, the definition of

Ad
ℓ yields

Ad
ℓ =

∑
s⋗d

sℓ · dℓ = vℓ + wℓ · dℓ (10.1)

(since
∑
s⋗d

sℓ = vℓ + wℓ).

The elements s ∈ P̂ that satisfy s ⋖ u are v and w. Hence,
∑
s⋖u

sℓ = vℓ + wℓ. Now, the

definition of Au
ℓ yields

Au
ℓ = uℓ ·

∑
s⋖u

sℓ = uℓ · vℓ + wℓ (10.2)

(since
∑
s⋖u

sℓ = vℓ +wℓ). Since this is well-defined, the element vℓ +wℓ of K must be invertible.

Also, we already know that vℓ and wℓ are invertible. Hence, Proposition 3.4 (b) (applied to vℓ
and wℓ instead of a and b) yields that vℓ + wℓ is invertible as well and its inverse is

vℓ + wℓ = vℓ · vℓ + wℓ · wℓ.
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Now,
vℓ ·

Ad
ℓ︸︷︷︸

=vℓ+wℓ·dℓ
(by (10.1))

· dℓ = vℓ · vℓ + wℓ︸ ︷︷ ︸
=vℓ·vℓ+wℓ·wℓ

· dℓ · dℓ︸ ︷︷ ︸
=1

= vℓ · vℓ︸ ︷︷ ︸
=1

· vℓ + wℓ · wℓ = vℓ + wℓ · wℓ.

Comparing this with
uℓ · Au

ℓ︸︷︷︸
=uℓ·vℓ+wℓ
(by (10.2))

·wℓ = uℓ · uℓ︸ ︷︷ ︸
=1

· vℓ + wℓ · wℓ = vℓ + wℓ · wℓ,

we obtain vℓ ·

Ad
ℓ · dℓ = uℓ · Au

ℓ · wℓ. Thus, Lemma 10.1 (a) is proved.
(b) This can be proved by the same argument that we used to prove part (a) (with the roles

of v and w interchanged).

We recall our conventions for drawing the p × q-rectangle P = [p] × [q]. In light of these
conventions, we shall refer to the set {(k, q) | k ∈ [p]} as the northeastern edge of P , and to
the set {(i, 1) | i ∈ [p]} as the southwestern edge of P .

The next lemma is crucial, as it allows us to “convert” betweenA’s and

A

’s without changing
the subscript.
Lemma 10.2 (Conversion lemma). Let u and u′ be two elements of the northeastern edge of P
satisfying u ⋗ u′ (that is, let u = (k, q) and u′ = (k − 1, q) for some k ∈ {2, 3, . . . , p}). Let
d and d′ be two elements of the southwestern edge of P satisfying d ⋗ d′ (that is, let d = (i, 1)
and d′ = (i− 1, 1) for some i ∈ {2, 3, . . . , p}).

Assume that a is invertible. Let ℓ ⩾ 1 be such that Rℓ+1f ̸= ⊥. Then we have:

Au→d
ℓ =

Au′→d′

ℓ .

Here is an illustration for this lemma:

u
u′

d
d′
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(the red path indexes one addend in the sum Au→d
ℓ =

∑
p is a path from u to d

Ap
ℓ , while the blue path

contributes to the sum

Au′→d′

ℓ =
∑

p is a path from u′ to d′

Ap
ℓ ).

In the case when K is commutative, Lemma 10.2 was independently discovered by John-
son and Liu [JL22]. More precisely, [JL22, Lemma 4.1] extends it from sums over paths (such
as Au→d

ℓ and

Au′→d′

ℓ ) to sums over k-tuples of non-intersecting paths. It is unclear whether this
extension can still be made when K is not commutative (what order should the Av

ℓ ’s along differ-
ent paths be multiplied in?), but the use of determinants likely precludes any noncommutative
generalization of the proof in [JL22].

Proof of Lemma 10.2. Let ℓ ∈ N. We “interpolate” between the paths from u to d and the paths
from u′ to d′ using what we call “path-jump-paths”. To define these formally, we introduce some
more basic notations.

The first coordinate of any x ∈ P will be denoted by firstx. Thus, first (i, j) = i for
any (i, j) ∈ P .

Furthermore, for any x = (i, j) ∈ P , we define the rank of x to be the positive integer i+j−1.
This rank will be denoted by rankx.

We define a new binary relation ▶ on the set P as follows: If x and y are two elements of P ,
then the relation x ▶ y means “rankx = rank y + 1 and firstx > first y”. In other words, the
relation x ▶ y means that

if x = (i, j) , then y = (i− k, j + k − 1) for some k > 0.

Visually speaking, it means that y is one step southeast and a (nonnegative) amount of steps east
of x (on the Hasse diagram).

We define a path-jump-path to be a tuple p = (v0, v1, . . . , vk) of elements of P along with a
chosen number i ∈ {0, 1, . . . , k − 1} such that the chain of relations

v0 ⋗ v1 ⋗ · · ·⋗ vi ▶ vi+1 ⋗ vi+2 ⋗ · · ·⋗ vk

holds. We denote this path-jump-path simply by

p = (v0 ⋗ v1 ⋗ · · ·⋗ vi ▶ vi+1 ⋗ vi+2 ⋗ · · ·⋗ vk) , (10.3)

and we say that this path-jump-path p has jump at i. The elements v0, v1, . . . , vk are called the
vertices of this path-jump-path. The pairs (vj, vj+1) of consecutive vertices are called the steps
of this path-jump-path. Such a step (vj, vj+1) is said to be a ⋗-step if j ̸= i, and it is said to be
a ▶-step if j = i.
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Here is an example of a path-jump-path, where the red edge is the ▶-step:

(Note that two vertices x and y can satisfy x ▶ y and x ⋗ y simultaneously. Thus, it can
happen that several path-jump-paths with jumps at different i’s contain the same vertices. We
nevertheless do not consider these path-jump-paths to be identical, because we understand a
path-jump-path like (10.3) to “remember” not only its vertices v0, v1, . . . , vk but also the value
of i.)

A path-jump-path from u to d′ will mean a path-jump-path

(v0 ⋗ v1 ⋗ · · ·⋗ vi ▶ vi+1 ⋗ vi+2 ⋗ · · ·⋗ vk)

such that v0 = u and vk = d′.
We note that if two elements x and y of P satisfy x⋗ y or x ▶ y, then

rank y = rankx− 1. (10.4)

As a consequence of this fact, successive entries vj−1 and vj in a path-jump-path

(v0 ⋗ v1 ⋗ · · ·⋗ vi ▶ vi+1 ⋗ vi+2 ⋗ · · ·⋗ vk)

always satisfy rank (vj) = rank (vj−1) − 1 for each j ∈ [k]. In other words, the ranks of the
vertices of a path-jump-path decrease by 1 at each step.

Hence, the difference in ranks between the first and final entries of a path-jump-path

(v0 ⋗ v1 ⋗ · · ·⋗ vi ▶ vi+1 ⋗ vi+2 ⋗ · · ·⋗ vk)
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is one less than its number of entries:

rank (v0)− rank (vk) = k. (10.5)

Let r := ranku − rank (d′). Thus, any path-jump-path from u to d′ must contain ex-
actly r + 1 vertices (by (10.5)). In other words, any path-jump-path from u to d′ must have
the form (v0 ⋗ v1 ⋗ · · ·⋗ vi ▶ vi+1 ⋗ vi+2 ⋗ · · ·⋗ vr).

We have R
(
Rℓf

)
= Rℓ+1f ̸= ⊥ = R (⊥) and thus Rℓf ̸= ⊥. Hence, Lemma 8.1 (a) yields

that vℓ is well-defined and invertible for each v ∈ P . Also, Lemma 8.1 (d) yields that

Av
ℓ is

well-defined and invertible for each v ∈ P . Moreover, Lemma 8.1 (c) (applied to ℓ + 1 instead
of ℓ) yields that Av

ℓ is well-defined and invertible for each v ∈ P .
In this proof, we will not consider any K-labelings other than Rℓf . Thus, the only labels

we will be using are the labels vℓ =
(
Rℓf

)
(v) for v ∈ P̂ . Thus, we agree to use the following

shorthand notation: If v ∈ P̂ , then the elements vℓ,

Av
ℓ and Av

ℓ of K will be denoted simply by
v,

Av and Av, respectively. In other words, we shall omit subscripts when these subscripts
are ℓ. For instance, the product Au

ℓuℓu′
ℓ will thus be abbreviated as Auuu′.

For any path-jump-path

p = (v0 ⋗ v1 ⋗ · · ·⋗ vi ▶ vi+1 ⋗ vi+2 ⋗ · · ·⋗ vr)

that contains r + 1 vertices, we set

Ep := Av0Av1 · · ·Avi−1vivi+1

Avi+2

Avi+3 · · ·

Avr ∈ K.

Now we claim the following (again omitting subscripts that are ℓ):

Claim 1: We have
Au→d =

∑
p is a path-jump-path

from u to d′
with jump at r−1

Ep.

Claim 2: We have

Au′→d′ =
∑

p is a path-jump-path
from u to d′

with jump at 0

Ep.

Claim 3: For each j ∈ {0, 1, . . . , r − 2}, we have∑
p is a path-jump-path

from u to d′
with jump at j

Ep =
∑

p is a path-jump-path
from u to d′

with jump at j+1

Ep.
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Before we prove these three claims, let us explain how Lemma 10.2 will follow from them:

Au′→d′

ℓ =

Au′→d′

=
∑

p is a path-jump-path
from u to d′

with jump at 0

Ep (by Claim 2)

=
∑

p is a path-jump-path
from u to d′

with jump at 1

Ep (by Claim 3, applied to j = 0)

=
∑

p is a path-jump-path
from u to d′

with jump at 2

Ep (by Claim 3, applied to j = 1)

= · · ·

=
∑

p is a path-jump-path
from u to d′

with jump at r−1

Ep (by Claim 3, applied to j = r − 2)

= Au→d (by Claim 1)
= Au→d

ℓ .

Hence, Lemma 10.2 will follow once Claims 1, 2 and 3 have been proved. Let us now prove
these three claims:

Proof of Claim 1. We know that d lies on the southwestern edge of P . Hence, the only s ∈ P̂
satisfying s ⋖ d is d′ (since d ⋗ d′). Therefore,

∑
s∈P̂ ;
s⋖d

sℓ = d′ℓ. However, the definition of Ad
ℓ

shows that Ad
ℓ = dℓ ·

∑
s∈P̂ ;
s⋖d

sℓ = dℓd′ℓ (since
∑
s∈P̂ ;
s⋖d

sℓ = d′ℓ). Since we omit subscripts (when these

subscripts are ℓ), we can rewrite this as

Ad = dd′. (10.6)

We know that any path-jump-path from u to d′ must have the form

(v0 ⋗ v1 ⋗ · · ·⋗ vi ▶ vi+1 ⋗ vi+2 ⋗ · · ·⋗ vr) .

If such a path-jump-path has jump at r−1, then it must have the form (v0⋗v1⋗· · ·⋗vr−1▶vr);
that is, its last step (vr−1, vr) is an ▶-step. However, since it ends at d′, we must have vr = d′ and
thus vr−1 ▶ vr = d′. This entails vr−1 = d (since the only g ∈ P satisfying g ▶ d′ is d 20), and
therefore (vr−1, vr) = (d, d′) (since vr = d′). In other words, the last step of this path-jump-path
is (d, d′).

20This follows easily from the geographical positions of d and d′ on the southwestern edge of P .
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We have thus shown that if a path-jump-path from u to d′ has jump at r− 1, then its last step
is (d, d′). Hence, any path-jump-path from u to d′ with jump at r − 1 must have the form

(v0 ⋗ v1 ⋗ · · ·⋗ vr−1 ▶ d′) ,

where (v0 ⋗ v1 ⋗ · · ·⋗ vr−1) is a path from u to d. Conversely, any tuple of the latter form is a
path-jump-path from u to d′ with jump at r − 1 (since d ▶ d′). Therefore,∑

p is a path-jump-path
from u to d′

with jump at r−1

Ep =
∑

(v0⋗v1⋗···⋗vr−1)
is a path from u to d

E(v0⋗v1⋗···⋗vr−1▶d′)︸ ︷︷ ︸
=Av0Av1 ···Avr−2vr−1d′

(by the definition of E(v0⋗v1⋗···⋗vr−1▶d′))

=
∑

(v0⋗v1⋗···⋗vr−1)
is a path from u to d

Av0Av1 · · ·Avr−2 vr−1︸︷︷︸
=d

d′

=
∑

(v0⋗v1⋗···⋗vr−1)
is a path from u to d

Av0Av1 · · ·Avr−2 dd′︸︷︷︸
=Ad

(by (10.6))

=
∑

(v0⋗v1⋗···⋗vr−1)
is a path from u to d

Av0Av1 · · ·Avr−2 Ad︸︷︷︸
=Avr−1

(because d=vr−1)

=
∑

(v0⋗v1⋗···⋗vr−1)
is a path from u to d

Av0Av1 · · ·Avr−2Avr−1︸ ︷︷ ︸
=A(v0⋗v1⋗···⋗vr−1)

(by the definition of A(v0⋗v1⋗···⋗vr−1))

=
∑

(v0⋗v1⋗···⋗vr−1)
is a path from u to d

A(v0⋗v1⋗···⋗vr−1) =
∑

p is a path from u to d

Ap

= Au→d
(
by the definition of Au→d

)
.

This proves Claim 1.

Proof of Claim 2. This is analogous to the proof of Claim 1. This time, we need to argue that if
a path-jump-path from u to d′ has jump at 0, then its first step is (u, u′) (since the only g ∈ P
satisfying u ▶ g is u′).

Proving Claim 3 is a bit trickier. As an auxiliary result, we first show the following:

Claim 4: Let s and t be two elements of P . Then,∑
x∈P ;
s▶x⋗t

sx

At =
∑
x∈P ;
s⋗x▶t

Asxt. (10.7)

Proof of Claim 4. First, we observe that an x ∈ P satisfying s ▶ x ⋗ t cannot exist un-
less rank t = rank s− 2 (because (10.4) yields that such an x must satisfy rankx = rank s− 1
and rank t = rankx− 1, whence rank t = rankx− 1 = (rank s− 1)− 1 = rank s− 2). Hence,
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the left hand side of the desired equality (10.7) is an empty sum unless rank t = rank s − 2.
Similarly, the same can be said about the right hand side. Thus, (10.7) boils down to 0 = 0
unless rank t = rank s − 2. We therefore assume WLOG that rank t = rank s − 2. In other
words, rank s − rank t = 2. In terms of the way that we draw our poset P , this means that the
point s lies two rows above the point t.

The definition of

At
ℓ yields

At
ℓ =

∑
x⋗t

xℓ · tℓ. Omitting the subscripts, we can rewrite this as

At =
∑
x⋗t

x · t. (10.8)

The definition of As
ℓ yields As

ℓ = sℓ ·
∑
x⋖s

xℓ. Omitting the subscripts, we can rewrite this as

As = s ·
∑
x⋖s

x. (10.9)

Write the elements s, t ∈ P in the forms s = (i, j) and t = (i′, j′). Then, rank s = i+ j − 1
and rank t = i′ + j′ − 1. Hence, rank s − rank t = i + j − i′ − j′, so that i + j − i′ − j′ =
rank s− rank t = 2. Thus, j′ = i+ j − i′ − 2.

We are in one of the following three cases:
Case 1: We have i′ < i− 1.
Case 2: We have i′ = i− 1.
Case 3: We have i′ > i− 1.
Representative examples for these three cases are illustrated in the following pictures:

Case 1 Case 2 Case 3
s

• • • •

t

s

• •

t

s

• • •

t

(the bullets signify the positions of potential neighbors of s and t; some of these positions may
fall outside of P , but this does not disturb our argument). In terms of the way we draw our
poset P , the three cases can be reformulated as “the point s lies further west than t” (Case 1),
“the point s lies due north of t” (Case 2) and “the point s lies further east than t” (Case 3). Note
that two elements x, y ∈ P satisfy x ▶ y if and only if y lies one step south and some arbitrary
distance east of x in our pictures.

Let us first consider Case 1. In this case, the point s lies further west than t. Thus, s lies
further west than any neighbor of t as well21. Hence, each element x of P that satisfies x ⋗ t

21This becomes fairly clear if you draw the configuration and recall that s lies two rows above t (so that P has
points further east than s but further west than t). A rigorous version of this argument (without reference to pictures)
can be found in the detailed version of the present paper.
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must satisfy s ▶ x automatically. Therefore, the summation sign
∑
x∈P ;
s▶x⋗t

can be simplified to
∑
x∈P ;
x⋗t

,

and even further to
∑
x⋗t

(because any x ∈ P̂ that satisfies x⋗t must belong to P automatically22).

Hence, ∑
x∈P ;
s▶x⋗t

sx

At =
∑
x⋗t

sx

At = s

(∑
x⋗t

x

)

At︸︷︷︸
=

∑
x⋗t

x·t

(by (10.8))

= s

(∑
x⋗t

x

)∑
x⋗t

x︸ ︷︷ ︸
=1

· t

= st. (10.10)

Recall again that the point s lies further west than t. Thus, any neighbor of s lies further
west than t as well (since s lies two rows above t). Hence, each element x of P that satis-
fies s⋗ x must satisfy x ▶ t automatically. Therefore, the summation sign

∑
x∈P ;
s⋗x▶t

can be simpli-

fied to
∑
x∈P ;
s⋗x

=
∑
x∈P ;
x⋖s

, and even further to
∑
x⋖s

(because any x ∈ P̂ that satisfies x⋖ s must belong

to P automatically23). Hence,∑
x∈P ;
s⋗x▶t

Asxt =
∑
x⋖s

Asxt = As︸︷︷︸
=s·

∑
x⋖s

x

(by (10.9))

(∑
x⋖s

x

)
t = s ·

∑
x⋖s

x

(∑
x⋖s

x

)
︸ ︷︷ ︸

=1

t = st.

Comparing this with (10.10), we obtain
∑
x∈P ;
s▶x⋗t

sx

At =
∑
x∈P ;
s⋗x▶t

Asxt. Thus, Claim 4 is proved in

Case 1.
Let us now consider Case 2. In this case, we have i′ = i− 1. Hence, j′ = i+ j− i′︸︷︷︸

=i−1

−2 =

i+ j− (i− 1)− 2 = j− 1. Thus, t = (i′, j′) = (i− 1, j − 1) (since i′ = i− 1 and j′ = j− 1).
Let v := (i, j − 1) and w := (i− 1, j). In our coordinate system, the four points

s = (i, j) , t = (i− 1, j − 1) , v = (i, j − 1) , w = (i− 1, j)

are arranged in a 1× 1-square, which looks as follows:

s

v w

t .

(10.11)

Hence, v and w belong to P (since s and t belong to P ), and furthermore, Lemma 10.1 (b)
(applied to s and t instead of u and d) yields

wℓ ·

At
ℓ · tℓ = sℓ · As

ℓ · vℓ.
22Indeed, the rank of any such x must lie between the ranks of s and t, and thus x cannot be 0 or 1.
23Indeed, the rank of any such x must lie between the ranks of s and t, and thus x cannot be 0 or 1.
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Since we are omitting subscripts, we can rewrite this as follows:

w ·

At · t = s · As · v.

The picture (10.11) shows that we have s ▶ w but not s ▶ v. Hence, there is only one
element x ∈ P that satisfies s ▶ x⋗ t; namely, this element x is w. Hence,∑

x∈P ;
s▶x⋗t

sx

At = sw

At = s · w ·

At · 1︸︷︷︸
=t·t

= s · w ·

At · t︸ ︷︷ ︸
=s·As·v

· t = s · s︸︷︷︸
=1

·As · v · t

= As · v · t. (10.12)

On the other hand, the picture (10.11) shows that we have v ▶ t but not w ▶ t. Hence, there is
only one element x ∈ P that satisfies s⋗ x ▶ t; namely, this element x is v. Hence,∑

x∈P ;
s⋗x▶t

Asxt = Asvt = As · v · t.

Comparing this with (10.12), we obtain
∑
x∈P ;
s▶x⋗t

sx

At =
∑
x∈P ;
s⋗x▶t

Asxt. Thus, Claim 4 is proved in

Case 2.
Let us finally consider Case 3. In this case, we have i′ > i−1. Thus, i′ ⩾ i (since i′ and i are

integers), so that i ⩽ i′. Note that i = first s (since s = (i, j)) and i′ = first t (since t = (i′, j′)).
There exists no x ∈ P satisfying s ▶ x ⋗ t (because if x ∈ P satisfies s ▶ x ⋗ t,

then x ⋗ t = (i′, j′) entails firstx ⩾ i′ ⩾ i = first s, but this clearly contradicts s ▶ x).
Hence, the sum

∑
x∈P ;
s▶x⋗t

sx

At is empty. Thus,
∑
x∈P ;
s▶x⋗t

sx

At = 0.

Furthermore, there exists no x ∈ P satisfying s⋗x ▶ t (because if x ∈ P satisfies s⋗x ▶ t,
then (i, j) = s⋗ x entails firstx ⩽ i ⩽ i′ = first t; but this clearly contradicts x ▶ t). Hence,
the sum

∑
x∈P ;
s⋗x▶t

Asxt is empty. Thus,
∑
x∈P ;
s⋗x▶t

Asxt = 0.

Comparing this with
∑
x∈P ;
s▶x⋗t

sx

At = 0, we obtain
∑
x∈P ;
s▶x⋗t

sx

At =
∑
x∈P ;
s⋗x▶t

Asxt. Thus, Claim 4 is

proved in Case 3.
We have now proved Claim 4 in all three cases.

We can now step to the proof of Claim 3:

Proof of Claim 3. Let j ∈ {0, 1, . . . , r − 2}.
We know that any path-jump-path from u to d′ must have the form

(v0 ⋗ v1 ⋗ · · ·⋗ vi ▶ vi+1 ⋗ vi+2 ⋗ · · ·⋗ vr) .

If such a path-jump-path has jump at j, then it must have the form

(v0 ⋗ v1 ⋗ · · ·⋗ vj ▶ vj+1 ⋗ vj+2 ⋗ · · ·⋗ vr) .
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Thus, ∑
p is a path-jump-path

from u to d′
with jump at j

Ep

=
∑

(v0⋗v1⋗···⋗vj▶vj+1⋗vj+2⋗···⋗vr)
is a path-jump-path

from u to d′
with jump at j

E(v0⋗v1⋗···⋗vj▶vj+1⋗vj+2⋗···⋗vr)︸ ︷︷ ︸
=Av0Av1 ···Avj−1vjvj+1

Avj+2

Avj+3 ···

Avr

(by the definition of E
(v0⋗v1⋗···⋗vj▶vj+1⋗vj+2⋗···⋗vr)

)

=
∑

(v0⋗v1⋗···⋗vj▶vj+1⋗vj+2⋗···⋗vr)
is a path-jump-path

from u to d′
with jump at j

Av0Av1 · · ·Avj−1vjvj+1

Avj+2

Avj+3 · · ·

Avr

=
∑

(v0⋗v1⋗···⋗vj)
is a path starting at u

∑
(vj+2⋗vj+3⋗···⋗vr)
is a path ending at d′

∑
vj+1∈P ;

vj▶vj+1⋗vj+2

Av0Av1 · · ·Avj−1vjvj+1

Avj+2

Avj+3 · · ·

Avr


here, we have broken up our

path-jump-path (v0 ⋗ v1 ⋗ · · ·⋗ vj ▶ vj+1 ⋗ vj+2 ⋗ · · ·⋗ vr)
into two paths (v0 ⋗ v1 ⋗ · · ·⋗ vj) and (vj+2 ⋗ vj+3 ⋗ · · ·⋗ vr)

and an intermediate vertex vj+1 satisfying vj ▶ vj+1 ⋗ vj+2


=

∑
(v0⋗v1⋗···⋗vj)

is a path starting at u

∑
(vj+2⋗vj+3⋗···⋗vr)
is a path ending at d′

∑
x∈P ;

vj▶x⋗vj+2

Av0Av1 · · ·Avj−1vjx

Avj+2

Avj+3 · · ·

Avr

(here we have renamed vj+1 as x in the inner sum)

=
∑

(v0⋗v1⋗···⋗vj)
is a path starting at u

∑
(vj+2⋗vj+3⋗···⋗vr)
is a path ending at d′

Av0Av1 · · ·Avj−1

∑
x∈P ;

vj▶x⋗vj+2

vjx

Avj+2

︸ ︷︷ ︸
=

∑
x∈P ;

vj⋗x▶vj+2

Avjxvj+2

(by Claim 4,
applied to s=vj

and t=vj+2)

Avj+3

Avj+4 · · ·

Avr

=
∑

(v0⋗v1⋗···⋗vj)
is a path starting at u

∑
(vj+2⋗vj+3⋗···⋗vr)
is a path ending at d′

Av0Av1 · · ·Avj−1

∑
x∈P ;

vj⋗x▶vj+2

Avjxvj+2

Avj+3

Avj+4 · · ·

Avr .

We know that any path-jump-path from u to d′ must have the form

(v0 ⋗ v1 ⋗ · · ·⋗ vi ▶ vi+1 ⋗ vi+2 ⋗ · · ·⋗ vr) .

If such a path-jump-path has jump at j + 1, then it must have the form

(v0 ⋗ v1 ⋗ · · ·⋗ vj+1 ▶ vj+2 ⋗ vj+3 ⋗ · · ·⋗ vr) .
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Thus, ∑
p is a path-jump-path

from u to d′
with jump at j+1

Ep

=
∑

(v0⋗v1⋗···⋗vj+1▶vj+2⋗vj+3⋗···⋗vr)
is a path-jump-path

from u to d′
with jump at j+1

E(v0⋗v1⋗···⋗vj+1▶vj+2⋗vj+3⋗···⋗vr)︸ ︷︷ ︸
=Av0Av1 ···Avj vj+1vj+2

Avj+3

Avj+4 ···

Avr

(by the definition of E
(v0⋗v1⋗···⋗vj+1▶vj+2⋗vj+3⋗···⋗vr)

)

=
∑

(v0⋗v1⋗···⋗vj+1▶vj+2⋗vj+3⋗···⋗vr)
is a path-jump-path

from u to d′
with jump at j+1

Av0Av1 · · ·Avjvj+1vj+2

Avj+3

Avj+4 · · ·

Avr

=
∑

(v0⋗v1⋗···⋗vj)
is a path starting at u

∑
(vj+2⋗vj+3⋗···⋗vr)
is a path ending at d′

∑
vj+1∈P ;

vj⋗vj+1▶vj+2

Av0Av1 · · ·Avjvj+1vj+2

Avj+3

Avj+4 · · ·

Avr

=
∑

(v0⋗v1⋗···⋗vj)
is a path starting at u

∑
(vj+2⋗vj+3⋗···⋗vr)
is a path ending at d′

∑
x∈P ;

vj⋗x▶vj+2

Av0Av1 · · ·Avjxvj+2

Avj+3

Avj+4 · · ·

Avr

(here we have renamed vj+1 as x in the inner sum)

=
∑

(v0⋗v1⋗···⋗vj)
is a path starting at u

∑
(vj+2⋗vj+3⋗···⋗vr)
is a path ending at d′

Av0Av1 · · ·Avj−1

∑
x∈P ;

vj⋗x▶vj+2

Avjxvj+2

Avj+3

Avj+4 · · ·

Avr .

Comparing our last two equalities, we obtain∑
p is a path-jump-path

from u to d′
with jump at j

Ep =
∑

p is a path-jump-path
from u to d′

with jump at j+1

Ep.

Thus, Claim 3 is proven.

We have now proved all three Claims 1, 2 and 3. As we explained, this completes the proof
of Lemma 10.2.

Remark 10.3. Parts of the above proof of Lemma 10.2 can be rewritten in a more abstract (al-
though probably not shorter) manner, avoiding the notion of a “path-jump-path” and the nested
sums that appeared in our proof of Claim 3.

To rewrite the proof, we need the notion of P × P -matrices. A P × P -matrix is a matrix
whose rows and columns are indexed not by integers but by elements of P . (That is, it is a family
of elements of K indexed by pairs (i, j) ∈ P × P .) If C is any P × P -matrix, and if i and j are
two elements of P , then the (i, j)-th entry of C is denoted by Ci,j . Addition and multiplication
are defined for P × P -matrices in the same way as they are for usual matrices. That is, for
any P × P -matrices C and D and any (i, j) ∈ P × P , we have

(C +D)i,j = Ci,j +Di,j and (CD)i,j =
∑
k∈P

Ci,kDk,j.
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For any statementA, we let [A] be the Iverson bracket (i.e., truth value) ofA. That is, [A] = 1
if A is true, and [A] = 0 if A is false.

Now, let ℓ ∈ N. Define three P × P -matrices A,

A

and U by

Ax,y := Ax [x⋗ y] ,

A

x,y :=

Ay [x⋗ y] ,

Ux,y := xy [x ▶ y] for all x, y ∈ P.

Here, the relation x ▶ y is defined as in the above proof of Lemma 10.2, and we are again
omitting the “ℓ” subscripts, so (for instance) “xy” actually means xℓyℓ.

Now, Claim 4 in our above proof of Lemma 10.2 can be rewritten in a nice and compact form
as the equality

AU = U

A

.

From this, we easily obtain

AkU = U

Ak for any k ∈ N. (10.13)

This equality essentially replaces Claim 3 in the above proof.
Setting k = ranku − rank d in (10.13), and comparing the (u, d′)-entries of both sides, we

quickly obtain Au→d =

Au′→d′ (since x ▶ d′ holds only for x = d, and since u ▶ x holds only
for x = u′). This proves Lemma 10.2 again.

11. Proof of reciprocity: the case j = 1

Using the conversion lemma, we can now easily prove Theorem 5.8 in the case when j = 1:

Lemma 11.1. Assume that P is the p× q-rectangle [p]× [q]. Let i ∈ [p]. Let ℓ ∈ N satisfy ℓ ⩾ i.
Let f ∈ KP̂ be a K-labeling such that Rℓf ̸= ⊥. Let a = f (0) and b = f (1). Then, using the
notations from Section 7, we have

(i, 1)ℓ = a · (p+ 1− i, q)ℓ−i · b.

Proof. We have ℓ ⩾ i ⩾ 1. Hence, Lemma 9.3 yields that
(
Rℓf

)
(1, 1) = a · (Rℓ−1f) (p, q) · b.

In other words, (1, 1)ℓ = a · (p, q)ℓ−1 · b. This proves Lemma 11.1 in the case when i = 1.
Hence, for the rest of this proof, we WLOG assume that i ̸= 1. Thus, i ⩾ 2, so that ℓ ⩾ i ⩾ 2,

and therefore R2f ̸= ⊥ (by Lemma 4.21, since Rℓf ̸= ⊥). Hence, Lemma 4.24 yields that a
and b are invertible (since a = f (0) and b = f (1)).

We have ℓ − i + 1 ⩾ 1 (since ℓ ⩾ i) and ℓ − i + 1 ⩽ ℓ (since i ⩾ 1). The latter inequal-
ity entails Rℓ−i+1f ̸= ⊥ (by Lemma 4.21, since Rℓf ̸= ⊥). Thus, Lemma 8.1 (b) (applied
to (p− i+ 1, q) and ℓ − i + 1 instead of v and ℓ) yields that the element (p− i+ 1, q)ℓ−i is
well-defined and invertible.

Theorem 8.6 (d) (applied to (p− i+ 1, q) and ℓ− i instead of u and ℓ) yields

(p− i+ 1, q)ℓ−i = A
(p−i+1, q)→(1, 1)
ℓ−i · a.
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Solving this for A(p−i+1, q)→(1, 1)
ℓ−i , we obtain A

(p−i+1, q)→(1, 1)
ℓ−i = (p− i+ 1, q)ℓ−i · a, and thus

A
(p−i+1, q)→(1, 1)
ℓ−i = (p− i+ 1, q)ℓ−i · a = a · (p− i+ 1, q)ℓ−i. (11.1)

For each k ∈ {0, 1, . . . , i− 2}, we have

A(p−k, q)→(i−k, 1)
ℓ−k = A

(p−k, q)→(i−k, 1)
ℓ−k−1

(
by (8.8), since we can easily

find ℓ− k ⩾ 2 ⩾ 1 and Rℓ−kf ̸= ⊥

)

=

A(p−k−1, q)→(i−k−1, 1)
ℓ−k−1


by Lemma 10.2, applied to
(p− k, q) , (p− k − 1, q) ,
(i− k, 1) , (i− k − 1, 1)

and ℓ− k − 1
instead of u, u′, d, d′ and ℓ


=

A(p−(k+1), q)→(i−(k+1), 1)
ℓ−(k+1) . (11.2)

Now,

A(p, q)→(i, 1)
ℓ =

A(p−0, q)→(i−0, 1)
ℓ−0

=

A(p−1, q)→(i−1, 1)
ℓ−1 (by (11.2), applied to k = 0)

=

A(p−2, q)→(i−2, 1)
ℓ−2 (by (11.2), applied to k = 1)

= · · ·
=

A(p−(i−1), q)→(i−(i−1), 1)
ℓ−(i−1) (by (11.2), applied to k = i− 2)

=

A(p−i+1, q)→(1, 1)
ℓ−i+1

 since p− (i− 1) = p− i+ 1
and i− (i− 1) = 1

and ℓ− (i− 1) = ℓ− i+ 1


= A

(p−i+1, q)→(1, 1)
ℓ−i (by (8.8)) . (11.3)

However, Theorem 8.6 (c) (applied to u = (i, 1)) yields

(i, 1)ℓ =

A(p, q)→(i, 1)
ℓ · b = A

(p−i+1, q)→(1, 1)
ℓ−i · b (by (11.3))

= a · (p− i+ 1, q)ℓ−i · b (by (11.1))
= a · (p+ 1− i, q)ℓ−i · b.

This proves Lemma 11.1.

In analogy to Lemma 11.1, we have the following:
Lemma 11.2. Assume that P is the p×q-rectangle [p]× [q]. Let j ∈ [q]. Let ℓ ∈ N satisfy ℓ ⩾ j.
Let f ∈ KP̂ be a K-labeling such that Rℓf ̸= ⊥. Let a = f (0) and b = f (1). Then, using the
notations from Section 7, we have

(1, j)ℓ = a · (p, q + 1− j)ℓ−j · b.

Proof. The two coordinates u and v of an element (u, v) ∈ P play symmetric roles. Lemma 11.2
is just Lemma 11.1 with the roles of these two coordinates interchanged. Thus, the proof of
Lemma 11.2 is analogous to the proof of Lemma 11.1.
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12. Proof of reciprocity: the general case

Somewhat surprisingly, the general case of Theorem 5.8 follows by a fairly straightforward in-
duction argument from Lemma 11.1:

Proof of Theorem 5.8. We again use the notations from Section 7.
For any (i, j) ∈ P , we define tilt (i, j) to be the positive integer i + 2j. Our goal is to

prove (7.4) for each x = (i, j) ∈ P and ℓ ∈ N satisfying ℓ − i − j + 1 ⩾ 0 and Rℓf ̸= ⊥. We
will now prove this by strong induction on tiltx.

Induction step: Fix N ∈ N. Assume (as the induction hypothesis) that

(7.4) holds for each x = (i, j) ∈ P satisfying tiltx < N and each ℓ ∈ N satisfying
ℓ− i− j + 1 ⩾ 0 and Rℓf ̸= ⊥.

We now fix an element v = (i, j) ∈ P satisfying tilt v = N and an ℓ ∈ N satis-
fying ℓ− i− j + 1 ⩾ 0 and Rℓf ̸= ⊥. Our goal is to prove that (7.4) holds for x = v. In
other words, our goal is to prove that vℓ = a · v∼ℓ−i−j+1 · b.

We have N = tilt v = i+ 2j (since v = (i, j)). We are in one of the following six cases:
Case 1: We have i = 1.
Case 2: We have j = 1.
Case 3: We have j = 2 and 1 < i < p.
Case 4: We have j = 2 and i = p > 1.
Case 5: We have j > 2 and 1 < i < p.
Case 6: We have j > 2 and i = p > 1.
Let us first consider Case 1. In this case, we have i = 1. Thus, v = (i, j) = (1, j)

(since i = 1). The definition of v∼ thus yields v∼ = (p+ 1− 1, q + 1− j) = (p, q + 1− j).
Also, ℓ − i︸︷︷︸

=1

−j + 1 = ℓ − 1 − j + 1 = ℓ − j, so that ℓ − j = ℓ − i − j + 1 ⩾ 0. In other

words, ℓ ⩾ j. Hence, Lemma 11.2 yields

(1, j)ℓ = a · (p, q + 1− j)ℓ−j · b.

In view of v = (1, j) and v∼ = (p, q + 1− j) and ℓ − i − j + 1 = ℓ − j, we can rewrite this
as vℓ = a · v∼ℓ−i−j+1 · b. Thus, vℓ = a · v∼ℓ−i−j+1 · b is proved in Case 1.

Similarly (but using Lemma 11.1 instead of Lemma 11.2), we can obtain the same result
(viz., vℓ = a · v∼ℓ−i−j+1 · b) in Case 2.

Next, let us analyze the four remaining cases: Cases 3, 4, 5 and 6. The most complex of
these four cases is Case 5, so it is this case that we start with.

In this case, we have j > 2 and 1 < i < p. Recall that v = (i, j). Define the four further
pairs

m := (i, j − 1) , u := (i+ 1, j − 1) ,

s := (i, j − 2) , t := (i− 1, j − 1) .
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The conditions j > 2 and 1 < i < p entail that all these four pairs m, u, s and t belong
to [p] × [q] = P . Here is how the five elements v,m, u, s, t of P are aligned on the Hasse
diagram of P :

u v

m

s t .

(12.1)

In particular, the two elements of P̂ that cover m are u and v, whereas the two elements of P̂
that are covered by m are s and t.

The map P → P, x 7→ x∼ (which can be visualized as “reflecting” each point in P around
the center of the rectangle [p]× [q]) “reverses” covering relations (i.e., if x, y ∈ P satisfy x⋗ y,
then x∼ ⋖ y∼). Hence, applying this map to the diagram (12.1) yields

t∼ s∼

m∼

v∼ u∼ .

In particular, the two elements of P̂ that are covered by m∼ are u∼ and v∼, whereas the two
elements of P̂ that cover m∼ are s∼ and t∼.

From ℓ − i − j + 1 ⩾ 0, we obtain ℓ ⩾ i︸︷︷︸
>1

+ j︸︷︷︸
>2

−1 > 1 + 2 − 1 = 2, so that ℓ ⩾ 2.

Therefore, ℓ− 1 ∈ N and 2 ⩽ ℓ.
Hence, from Rℓf ̸= ⊥, we obtain R2f ̸= ⊥ (by Lemma 4.21). Therefore, Lemma 4.24

yields that a and b are invertible (since a = f (0) and b = f (1)). Also, we have Rℓ−1f ̸= ⊥
(since R

(
Rℓ−1f

)
= Rℓf ̸= ⊥ = R (⊥)).

Set k := i+ j − 2. Then, k ⩾ 0 (since i ⩾ 1 and j ⩾ 1), so that k ∈ N.
Now, straightforward computations show that the four elements m, u, s and t of P satisfy

tiltm < N, tiltu < N, tilt s < N, tilt t < N

(since i+2j = N ). Hence, using the induction hypothesis, it is easy to see that the five equalities

mℓ = a ·m∼
ℓ−k · b, (12.2)

sℓ−1 = a · s∼ℓ−k · b, (12.3)
tℓ−1 = a · t∼ℓ−k · b, (12.4)

mℓ−1 = a ·m∼
ℓ−k−1 · b, (12.5)

uℓ = a · u∼
ℓ−k−1 · b (12.6)

hold24.
24In more detail: The induction hypothesis tells us that ...

• ... we can apply (7.4) to m and (i, j − 1) instead of x and (i, j) (since m = (i, j − 1) ∈ P and tiltm < N
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We have ℓ−1 ∈ N andRℓf ̸= ⊥. Hence, the transition equation (7.6) (applied tom and ℓ−1
instead of v and ℓ) yields

mℓ =

(∑
x⋖m

xℓ−1

)
·mℓ−1 ·

∑
x⋗m

xℓ

(here we have renamed the summation indices u from (7.6) as x, since the letter u is already
being used for something else in our current setting). Thus,

mℓ =

(∑
x⋖m

xℓ−1

)
︸ ︷︷ ︸
=sℓ−1+tℓ−1

(since the two elements of P̂ that
are covered by m are s and t)

·mℓ−1 ·
∑
x⋗m

xℓ︸ ︷︷ ︸
=uℓ+vℓ

(since the two elements of P̂
that cover m are u and v)

= (sℓ−1 + tℓ−1) ·mℓ−1 · uℓ + vℓ. (12.7)

On the other hand, from k = i + j − 2, we obtain ℓ − k − 1 = ℓ − i − j + 1 ⩾ 0. Thus,
ℓ − k − 1 ∈ N. Also, ℓ − k︸︷︷︸

⩾0

⩽ ℓ, so that Rℓ−kf ̸= ⊥ (by Lemma 4.21, since Rℓf ̸= ⊥).

Hence, the transition equation (7.6) (applied to m∼ and ℓ− k − 1 instead of v and ℓ) yields

m∼
ℓ−k =

(∑
x⋖m∼

xℓ−k−1

)
︸ ︷︷ ︸
=u∼

ℓ−k−1+v∼ℓ−k−1

(since the two elements of P̂ that
are covered by m∼ are u∼ and v∼)

·m∼
ℓ−k−1 ·

∑
x⋗m∼

xℓ−k︸ ︷︷ ︸
=s∼ℓ−k+t∼ℓ−k

(since the two elements of P̂
that cover m∼ are s∼ and t∼)

=
(
u∼
ℓ−k−1 + v∼ℓ−k−1

)
·m∼

ℓ−k−1 · s∼ℓ−k + t∼ℓ−k. (12.8)

This entails that the elements s∼ℓ−k + t∼ℓ−k and m∼
ℓ−k−1 of K are invertible (since their inverses

appear on the right hand side of this equality). Hence, their product
(
s∼ℓ−k + t∼ℓ−k

)
· m∼

ℓ−k−1 is
invertible as well.

Also, ℓ−k ⩾ 1 (since ℓ−k−1 ⩾ 0) andRℓ−kf ̸= ⊥. Hence, Lemma 8.1 (a) (applied to ℓ−k
and m∼ instead of ℓ and v) shows that m∼

ℓ−k is well-defined and invertible. Now, solving (12.8)
for u∼

ℓ−k−1 + v∼ℓ−k−1, we obtain

u∼
ℓ−k−1 + v∼ℓ−k−1 = m∼

ℓ−k ·
(
s∼ℓ−k + t∼ℓ−k

)
·m∼

ℓ−k−1.

and ℓ ∈ N and ℓ − i − (j − 1)︸ ︷︷ ︸
⩽j

+1 ⩾ ℓ − i − j + 1 ⩾ 0 and Rℓf ̸= ⊥). This yields (12.2) (since an easy

computation shows that ℓ− i− (j − 1) + 1 = ℓ− k).
• ... we can apply (7.4) to s and (i, j − 2) and ℓ − 1 instead of x and (i, j) and ℓ (the reader can easily

verify that the requirements for this are satisfied). This yields (12.3) (since an easy computation shows
that (ℓ− 1)− i− (j − 2) + 1 = ℓ− k).

• ... we can apply (7.4) to t and (i− 1, j − 1) and ℓ− 1 instead of x and (i, j) and ℓ. This yields (12.4).
• ... we can apply (7.4) to m and (i, j − 1) and ℓ− 1 instead of x and (i, j) and ℓ. This yields (12.5).
• ... we can apply (7.4) to u and (i+ 1, j − 1) instead of x and (i, j). This yields (12.6).
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This shows that u∼
ℓ−k−1 + v∼ℓ−k−1 is invertible (since the three factors m∼

ℓ−k and s∼ℓ−k + t∼ℓ−k

and m∼
ℓ−k−1 on the right hand side are invertible).

Taking reciprocals on both sides of (12.8), we obtain

m∼
ℓ−k =

(
u∼
ℓ−k−1 + v∼ℓ−k−1

)
·m∼

ℓ−k−1 · s∼ℓ−k + t∼ℓ−k

=
(
s∼ℓ−k + t∼ℓ−k

)
·m∼

ℓ−k−1 · u∼
ℓ−k−1 + v∼ℓ−k−1 (12.9)

(by Proposition 3.3 (c)).
Comparing (12.7) with (12.2), we obtain

a ·m∼
ℓ−k · b =

 sℓ−1︸︷︷︸
=a·s∼ℓ−k·b
(by (12.3))

+ tℓ−1︸︷︷︸
=a·t∼ℓ−k·b
(by (12.4))

 · mℓ−1︸ ︷︷ ︸
=a·m∼

ℓ−k−1·b
(by (12.5))

·uℓ + vℓ

=
(
a · s∼ℓ−k · b+ a · t∼ℓ−k · b

)︸ ︷︷ ︸
=a·(s∼ℓ−k+t∼ℓ−k)·b

· a ·m∼
ℓ−k−1 · b︸ ︷︷ ︸

=b·m∼
ℓ−k−1·a

(by Proposition 3.3 (c),
since a and m∼

ℓ−k−1 and b are invertible)

·uℓ + vℓ

= a ·
(
s∼ℓ−k + t∼ℓ−k

)
· b · b︸︷︷︸

=1

·m∼
ℓ−k−1 · a · uℓ + vℓ

= a ·
(
s∼ℓ−k + t∼ℓ−k

)
·m∼

ℓ−k−1 · a · uℓ + vℓ.

Multiplying both sides of this equality by a on the left and by b on the right (this is allowed,
since a and b are invertible), we obtain

m∼
ℓ−k =

(
s∼ℓ−k + t∼ℓ−k

)
·m∼

ℓ−k−1 · a · uℓ + vℓ · b︸ ︷︷ ︸
=b·(uℓ+vℓ)·a

(by Proposition 3.3 (c))

=
(
s∼ℓ−k + t∼ℓ−k

)
·m∼

ℓ−k−1 · b · (uℓ + vℓ) · a.

Comparing this with (12.9), we obtain(
s∼ℓ−k + t∼ℓ−k

)
·m∼

ℓ−k−1 · b · (uℓ + vℓ) · a =
(
s∼ℓ−k + t∼ℓ−k

)
·m∼

ℓ−k−1 · u∼
ℓ−k−1 + v∼ℓ−k−1.

Cancelling the
(
s∼ℓ−k + t∼ℓ−k

)
· m∼

ℓ−k−1 factors on the left of this equality (this is allowed,
since

(
s∼ℓ−k + t∼ℓ−k

)
·m∼

ℓ−k−1 is invertible), we obtain

b · (uℓ + vℓ) · a = u∼
ℓ−k−1 + v∼ℓ−k−1.

Taking reciprocals on both sides, we find

b · (uℓ + vℓ) · a = u∼
ℓ−k−1 + v∼ℓ−k−1.
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Expanding the left hand side by distributivity, we rewrite this as

b · uℓ · a+ b · vℓ · a = u∼
ℓ−k−1 + v∼ℓ−k−1. (12.10)

However, (12.6) yields

uℓ = a · u∼
ℓ−k−1 · b = b · u∼

ℓ−k−1 · a (by Proposition 3.3 (c)) .

Multiplying both sides by b from the left and by a from the right, we can transform this into

b · uℓ · a = u∼
ℓ−k−1.

Subtracting this equality from (12.10), we obtain

b · vℓ · a = v∼ℓ−k−1. (12.11)

This equality expresses v∼ℓ−k−1 as a product of three invertible elements (namely, b, vℓ and a).
Thus, v∼ℓ−k−1 is itself invertible.

Taking reciprocals on both sides of (12.11), we now obtain b · vℓ · a = v∼ℓ−k−1. Hence,

v∼ℓ−k−1 = b · vℓ · a = a · vℓ · b (by Proposition 3.3 (c)) .

Solving this for vℓ, we obtain

vℓ = a · v∼ℓ−k−1 · b = a · v∼ℓ−i−j+1 · b (since ℓ− k − 1 = ℓ− i− j + 1) .

Thus, vℓ = a · v∼ℓ−i−j+1 · b is proved in Case 5.
The arguments required to prove vℓ = a · v∼ℓ−i−j+1 · b in the Cases 3, 4 and 6 are similar to

the one we have used in Case 5, but simpler:

• In Case 3, we have s /∈ P . The “neighborhood” of m thus looks as follows:

u v

m

t

(instead of looking as in (12.1)). This necessitates some changes to the proof; in par-
ticular, all addends that involve s or s∼ in any way need to be removed, along with the
equality (12.3).

• Case 6 is similar, but now we have u /∈ P instead. (Subtraction is no longer required in
this case.)

• In Case 4, we have both s /∈ P and u /∈ P .

Thus, we have proved the equality vℓ = a · v∼ℓ−i−j+1 · b in all six Cases 1, 2, 3, 4, 5 and 6.
Hence, this equality always holds. In other words, (7.4) holds for x = v. This completes the
induction step. Thus, (7.4) is proved by induction. In other words, Theorem 5.8 is proven.

As we have already seen (in Section 6), this entails that Theorem 5.7 is proven as well.
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13. The case of a semiring

An attentive reader may have noticed that nowhere in the definitions of v-toggles and birational
rowmotion do any subtraction sign appear. This means that all these definitions can be extended
to the case when K is not a ring but a semiring.

A semiring is a set K equipped with a structure of an abelian semigroup (K,+) and
the structure of a (not necessarily abelian) monoid (K, ·, 1) such that the distributive
laws (a+ b) c = ac+ bc and a (b+ c) = ab + ac are satisfied (where we use the shorthand
notation xy for x · y). Some standard concepts defined for rings can be straightforwardly gener-
alized to semirings; in particular, any nonempty finite family (ai)i∈I of elements of a semiring K
has a well-defined sum

∑
i∈I

ai. Definition 3.2, too, applies verbatim to the case when K is a semir-

ing instead of a ring. Thus, the definition of a v-toggle (Definition 4.10) and the definition of
birational rowmotion (Definition 4.16) can be applied to a semiring K as well. We thus can
wonder:

Question 13.1. Do twisted periodicity (Theorem 5.7) and reciprocity (Theorem 5.8) still hold
if K is not a ring but merely a semiring?

If we assume that K is commutative, then the answer to this question is positive, for fairly
simple general reasons (see [GR16, Remark 10]). However, no such general reasoning helps for
noncommutative K. Indeed, there are subtraction-free identities involving inverses that hold for
all rings but fail for some semirings. One example is the identity a · a+ b · b = b · a+ b · a
from Proposition 3.4 (a): David Speyer has constructed an example of a semiring K and two
elements a and b of K such that a+ b is invertible (actually, a+ b = 1 in his example), but this
identity does not hold. See [Spe21] for details.

Of course, this does not mean that the answer to Question 13.1 is negative; we are, in fact,
inclined to suspect that the question has a positive answer. Our proofs of Lemma 11.1 and
Lemma 11.2 apply in the semiring setting (i.e., when K is a semiring rather than a ring) without
any need for changes; thus, Theorem 5.8 holds over any semiring K at least in the case when one
of i and j is 1. Unfortunately, subtraction is used in the proof of Theorem 5.8, and we have so far
been unable to excise it from the argument. (With a bit of thought, we can convince ourselves
that subtraction is actually unnecessary if p = 2 or q = 2, so the first interesting case is obtained
for P = [3]× [3].)

14. Other posets: conjectures and results

We now proceed to discuss the behavior of R on some other families of posets P . We no longer
use the notations introduced in Section 7.

14.1. The ∆ and ∇ triangles

When p = q, the p× q-rectangle [p]× [q] becomes a square. By cutting this square in half along
its horizontal axis, we obtain two triangles:



58 Darij Grinberg, Tom Roby

Definition 14.1. Let p be a positive integer. Define two subsets ∆(p) and ∇ (p) of the p × p-
rectangle [p]× [p] by

∆(p) = {(i, k) ∈ [p]× [p] | i+ k > p+ 1} ;
∇ (p) = {(i, k) ∈ [p]× [p] | i+ k < p+ 1} .

Each of these two subsets ∆(p) and ∇ (p) inherits a poset structure from [p] × [p]. In the
following, we will consider ∆(p) and ∇ (p) as posets using these structures.

The Hasse diagrams of these posets ∆(p) and ∇ (p) look like triangles; if we draw [p]× [p]
as agreed in Convention 5.4, then ∆(p) is the “upper half” of the square [p]× [p], whereas ∇ (p)
is the “lower half” of this square.

Example 14.2. Here is the Hasse diagram of the poset ∆(4):

(4, 4)

(4, 3) (3, 4)

(4, 2) (3, 3) (2, 4) .

Here, on the other hand, is the Hasse diagram of the poset ∇ (4):

(3, 1) (2, 2) (1, 3)

(2, 1) (1, 2)

(1, 1) .

Note that ∆(p) = ∅ when p = 1.
Computations with SageMath [The21] for p = 3 have made us suspect a periodicity-like

phenomenon similar to Theorem 5.7:

Conjecture 14.3 (periodicity conjecture for∆-triangle). Let p ⩾ 2 be an integer. Assume thatP
is the poset ∆(p). Let f ∈ KP̂ be a K-labeling such that Rpf ̸= ⊥. Let a = f (0) and b = f (1).
Let x ∈ P̂ . We define an element x′ ∈ P̂ as follows:

• If x = 0 or x = 1, then we set x′ := x.

• Otherwise, we write x in the form x = (i, j), and we set x′ := (j, i).

Then, a and b are invertible, and we have

(Rpf) (x) = ab · f (x′) · ab.

Conjecture 14.4 (periodicity conjecture for ∇-triangle). The same holds if P = ∇ (p) instead
of P = ∆(p).

If true, these two conjectures would generalize [GR15, Theorem 65], where K is commuta-
tive.
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14.2. The “right half” triangle

We can also cut the square [p]× [p] along its vertical axis:

Definition 14.5. Let p be a positive integer. Define a subsetTria (p) of the p×p-rectangle [p]×[p]
by

Tria (p) := {(i, k) ∈ [p]× [p] | i ⩽ k} .
This subset Tria (p) inherits a poset structure from [p]× [p].

The Hasse diagram of this poset Tria (p) has the shape of a triangle; if we draw [p]× [p] as
agreed in Convention 5.4, then Tria (p) is the “right half” of the square [p]× [p].

Example 14.6. Here is the Hasse diagram of the poset Tria (4):

(4, 4)

(3, 4)

(3, 3) (2, 4)

(2, 3) (1, 4)

(2, 2) (1, 3)

(1, 2)

(1, 1) .

The inequality i ⩽ k in Definition 14.5 could just as well be replaced by the reverse in-
equality i ⩾ k; the resulting poset would be isomorphic to Tria (p). But we have to agree on
something.

Now, we again suspect a periodicity-like phenomenon:

Conjecture 14.7 (periodicity conjecture for “right half” triangle). Let p be a positive integer.
Assume that P is the poset Tria (p). Let f ∈ KP̂ be a K-labeling such that R2pf ̸= ⊥.
Let a = f (0) and b = f (1). Let x ∈ P̂ . Then, a and b are invertible, and we have(

R2pf
)
(x) = ab · f (x) · ab.

If true, this conjecture would generalize [GR15, Theorem 58], where K is commutative.
In a sense, we can “almost” prove Conjecture 14.7: Namely, the proof of its commutative

case ([GR15, Theorem 58]) given in [GR15] can be adapted to the case of a general ring K, as
long as the number 2 is invertible in K. The latter condition has all the earmarks of a technical
assumption that should not matter for the validity of the result; unfortunately, however, we are
not aware of a rigorous argument that would allow us to dispose of such an assumption in the
noncommutative case.
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14.3. Trapezoids

Nathan Williams’s conjecture [GR15, Conjecture 75], too, seems to extend to the noncommuta-
tive setting:
Conjecture 14.8 (periodicity conjecture for the trapezoid). Let p be an integer > 1. Let s ∈ N.
Assume that P is the subposet

{(i, k) ∈ [p]× [p] | i+ k > p+ 1 and i ⩽ k and k ⩾ s}

of [p] × [p]. Let f ∈ KP̂ be a K-labeling such that Rpf ̸= ⊥. Let a = f (0) and b = f (1).
Let x ∈ P̂ . Then, a and b are invertible, and we have

(Rpf) (x) = ab · f (x) · ab.

Again, this has been verified using SageMath for certain values of p and s and some randomly
chosen K-labelings with K = Q3×3. Even for commutative K, a proof is yet to be found,
although significant advances have been recently made (see [Joh23, Chapter 4]25).

14.4. Ill-behaved posets

The above results and conjectures may suggest that every finite poset P for which birational
rowmotion R has finite order when K is commutative must also satisfy a similar (if slightly more
complicated) property when K is noncommutative. In particular, one might expect that if some
positive integerm satisfiesRm = id (as rational maps) for all fieldsK, thenRmf = f should also
hold for all noncommutative rings K and all K-labelings f ∈ KP̂ that satisfy f (0) = f (1) = 1
(the latter condition ensures, e.g., that the ab and ab factors in Theorem 5.7 can be removed).
However, this expectation is foiled by the following example:
Example 14.9. Let P be the four-element poset {p, q1, q2, q3} with order relation defined by
setting p < qi for each i ∈ {1, 2, 3}. This poset has Hasse diagram

q1 q2 q3

p .

It is known (see [GR16, Example 18] or [GR16, Corollary 76]) that the birational rowmotion R
of this poset P satisfies R6 = id (as rational maps) if K is a field. In other words, if K is a field,
and if f ∈ KP̂ is a K-labeling such that R6f ̸= ⊥, then R6f = f . But nothing like this holds
when K is a noncommutative ring. For instance, if we let K be the matrix ring Q2×2, and if we
define a K-labeling f ∈ KP̂ by

f (0) = I2 (the identity matrix in K) ,

f (1) = I2, f (p) = I2, f (q1) = I2,

f (q2) =

(
1 0
0 −1

)
, f (q3) =

(
1 1
0 1

)
,

then Rmf is distinct from f (and also distinct from ⊥) for all positive integers m.
25See also [DWYWZ22] for a proof on the level of order ideals.



combinatorial theory 3 (3) (2023), #7 61

(See the detailed version of this article for a proof.)

Example 14.10. Let P be the four-element poset {p1, p2, q1, q2} with order relation defined by
setting pi < qj for each i, j. It follows from [GR16, Proposition 74 (b) and Proposition 61] that
the birational rowmotion R of this poset P satisfies R6 = id (as rational maps) if K is a field.
On the other hand, if K is the matrix ring Q2×2, then we can easily find a K-labeling f of P such
that Rmf ̸= f for all 1 ⩽ m ⩽ 10 000 (and probably for all positive m, but we have not verified
this formally), despite f (0) and f (1) both being the identity matrix I2.

15. A note on general posets

We finish with some curiosities. While Theorem 5.8 is specific to rectangles, its (i, j) = (1, 1)
case can be generalized to arbitrary finite posets P in the following form:

Proposition 15.1. Let P be any finite poset. Let f ∈ KP̂ be a labeling of P such that Rf ̸= ⊥.
Let a = f (0) and b = f (1). Then,

b ·
∑
u∈P̂ ;
u⋗0

(Rf) (u) · a =
∑
u∈P̂ ;
u⋖1

f (u) , (15.1)

assuming that the inverses (Rf) (u) on the left-hand side are well-defined.

Proof. Even though we are not requiring P to be a rectangle, we shall use some of the notations
introduced in Section 7. Specifically, we shall use the notation xℓ defined in (7.2), the notion
of a “path”, and the notations Av

ℓ ,

Av
ℓ , A

p
ℓ ,

Ap
ℓ , Au→v

ℓ and

Au→v
ℓ defined afterwards. Hence, the

equality (15.1) (which we must prove) can be rewritten as

b ·
∑
u∈P̂ ;
u⋗0

u1 · a =
∑
u∈P̂ ;
u⋖1

u0 (15.2)

(since u1 = (Rf) (u) and u0 = f (u)).
We assume that the inverses (Rf) (u) on the left-hand side of (15.1) are well-defined (since

the claim of Proposition 15.1 requires this). We furthermore WLOG assume that P ̸= ∅ (since
the claim is easily checked otherwise). Using these two assumptions, it is not hard to show that
both a and b are invertible. (See the detailed version for a proof.)

In Remark 8.7, we have observed that Corollary 8.5, Proposition 8.2 and parts (a) and (b) of
Theorem 8.6 hold for our poset P (even though P is not necessarily a rectangle).

Now, Theorem 8.6 (a) (applied to ℓ = 1) shows that each u ∈ P satisfies

u1 =

A

1→u
1 · b

and thus
b · u1 = b ·

A

1→u
1 · b︸ ︷︷ ︸

=b·

A1→u
1

= b · b︸︷︷︸
=1

·

A1→u
1 =

A1→u
1 .



62 Darij Grinberg, Tom Roby

This latter equality also holds for u = 1 (indeed, from 11 = b, we obtain b · 11 = b · b = 1; but
it is easy to prove that

A1→1
1 = 1 as well, and thus we obtain b · 11 = 1 =

A1→1
1 ). Therefore, it

holds for all u ∈ P ∪{1}. Hence, in particular, it holds for all u ∈ P̂ satisfying u⋗0. Summing
it over all such u, we obtain ∑

u∈P̂ ;
u⋗0

b · u1 =
∑
u∈P̂ ;
u⋗0

A1→u
1 =

A1→0
1

(since (8.5) (applied to ℓ = 1 and s = 1 and t = 0) yields

A1→0
1 =

∑
u∈P̂ ;
u⋗0

A1→u
1

A0
1︸︷︷︸

=1

=
∑
u∈P̂ ;
u⋗0

A1→u
1 ).

Therefore,
b ·
∑
u∈P̂ ;
u⋗0

u1 =
∑
u∈P̂ ;
u⋗0

b · u1 =

A1→0
1 = A1→0

0 (15.3)

(by Corollary 8.5, applied to ℓ = 1 and u = 1 and v = 0). Hence,

b ·
∑
u∈P̂ ;
u⋗0

u1 = A1→0
0 = A1

0︸︷︷︸
=1

∑
u∈P̂ ;
1⋗u

Au→0
0

(
by (8.2), applied to ℓ = 0

and s = 1 and t = 0

)

=
∑
u∈P̂ ;
1⋗u

Au→0
0 =

∑
u∈P̂ ;
u⋖1

Au→0
0 .

Multiplying both sides of this equality by a on the right, we obtain

b ·
∑
u∈P̂ ;
u⋗0

u1 · a =
∑
u∈P̂ ;
u⋖1

Au→0
0 · a. (15.4)

However, Theorem 8.6 (b) (applied to ℓ = 0) shows that each u ∈ P satisfies

u0 = Au→0
0 · a.

This equality also holds for u = 0 (since 00 = a equals A0→0
0︸ ︷︷ ︸
=1

· a = a). Thus, it holds for

all u ∈ P ∪{0}. In particular, it therefore holds for all u ∈ P̂ satisfying u⋖ 1. Summing it over
all such u, we obtain ∑

u∈P̂ ;
u⋖1

u0 =
∑
u∈P̂ ;
u⋖1

Au→0
0 · a.

Comparing this with (15.4), we obtain

b ·
∑
u∈P̂ ;
u⋗0

u1 · a =
∑
u∈P̂ ;
u⋖1

u0.

This proves (15.2) and, with it, Proposition 15.1.
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Proposition 15.2. Let P be any finite poset. Let f ∈ KP̂ be a labeling of P such that Rf ̸= ⊥
and f (0) = f (1) = 1. Then,∑

u,v∈P̂ ;
u⋖v

(Rf) (u) · (Rf) (v) =
∑

u,v∈P̂ ;
u⋖v

f (u) · f (v),

assuming that the inverses (Rf) (v) on the left-hand side are well-defined.

Proposition 15.2 is essentially saying that the sum
∑

u,v∈P̂ ;
u⋖v

f (u) · f (v) is an invariant under

birational rowmotion R when f (0) = f (1) = 1. This is a noncommutative analogue of the
conservation of the “superpotential” FG (X) of an R-system ([GP19, Proposition 5.2]). We do
not know whether such invariants exist in the general case.

Proof of Proposition 15.2. This follows by combining Proposition 15.1 with Proposition 4.18.
(This is elaborated in the detailed version.)
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