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Abstract

A proper representation of space and a joint attention mecha-
nism are indispensable for an effective deictic communication
with embodied agents. Taking inspiration from developmen-
tal psychology may help us to tackle computational challenges
for robots. Although some developmental joint attention mod-
els for robots have already been proposed, to the best of our
knowledge, there is no such model that can stand for the ef-
fects of pointing gestures on covert attention in infants. Thus
we have designed and implemented a developmental robotics
model for joint spatial attention combining connectionist and
dynamical approaches. The hybrid architecture was struc-
tured over two existing computational models: a connectionist
model of gesture comprehension and a Dynamic Field (DF)
model of spatial attention in infants. These models were ex-
tended with various perceptual modules and dynamical neu-
ral fields, and implemented on the state-of-art iCub humanoid
robot. In this paper, the computational architecture is intro-
duced with some preliminary results that show the model’s ca-
pability of representing deixis and perceived objects, and their
effects on attention over space and time.

Keywords: cognitive modelling; cognitive robotics; artificial
neural networks; dynamic field theory; joint attention; pointing
gestures; spatial attention; deixis; grounded cognition

Introduction
Inherently simple tasks, such as jointly attending to a particu-
lar object or an event in the scene, might be very challenging
for artificial cognitive agents. Human infants acquire joint
attentional skills very early in infancy, starting from gaze fol-
lowing, later comprehension and production of deictic ges-
tures such as pointing (Tomasello, Carpenter, & Liszkowski,
2007). These abilities are essential for human communica-
tion. On the other hand, the ability to accomplish proper de-
ictic communication with humanoid robots, key processing
mechanisms, such as attention synchronisation, object recog-
nition and object indication, are needed (Sugiyama, Kanda,
Imai, Ishiguro, & Hagita, 2007).

Pointing gestures are observed prior to verbal communi-
cation and they are universal social tools to direct attention
(Bates, Camaioni, & Volterra, 1975). In attentional cue-
ing tasks, it has been shown that comprehension of point-
ing gestures occurs several months before their production
(Gredebäck, Melinder, & Daum, 2010) and if the pointing

hand provides also motion information, then the attentional
sensivity in congruent cases can be observed even in 4.5-
month-old infants (Rohlfing, Longo, & Bertenthal, 2012).

Developmental (or epigenetic) Robotics is a multidisci-
plinary field where insights from developmental psychology
guides the implemention of adaptive intelligent embodied
agents (Cangelosi & Schlesinger, 2015). In developmental
robotics, Artificial Neural Networks (ANNs) have been used
to map some of the developmental changes of joint attention
(Nagai, Hosoda, Morita, & Asada, 2003). ANNs were also
used to model pointing gesture comprehension using edge
features in robot-robot interaction (Hafner & Kaplan, 2005),
as well as using the motion and edge information in human-
robot interaction (Nagai, 2005). However, time is not an in-
herent property of these feed-forward networks. Even if the
number of learning steps can be used to denote the time, once
the network is trained, the network’s output reaction for a
given input is immediate in terms of computation steps. On
the other hand, time is a built-in feature in dynamical systems
approaches, as well as in certain hybrid approaches such as
Nengo, which integrates time dynamics into its framework
using LIF spiking neurons (Eliasmith, 2013).

The Dynamic Field Theory (DFT) is a dynamical approach
to model cognition at the neural population level (Schöner,
Spencer, & the DFT Research Group, 2015). The theory has
been used to model wide variety of cognitive processes, as
well as the developmental aspects of cognition. The DFT is
notably robust to simulate reaction times of the underlying
processes of spatial cognition (Spencer, Simmering, Schutte,
& Schöner, 2007). The DF model of the proposed architec-
ture of this paper was constructed over the existing IOWA
model that can capture the developmental changes in spatial
attention and saccade planning (Ross-Sheehy, Schneegans, &
Spencer, 2015).

It has been proposed that, on the theoretical basis, connec-
tionism and dynamical systems accounts do not have compet-
ing positions in child development (Thelen & Bates, 2003).
In this paper, we introduced a computational architecture that
integrates and extends the conceptual link between connec-
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tionism and dynamical modelling approaches. The proposed
developmental robotics model is able to represent the overt
and the covert spatial attention over time and space by ex-
tending a connectionist model of deictic gesture comprehen-
sion (Nagai, 2005) with the DFT approach.

In the next section, the architecture of the model is ex-
plained in detail considering, respectively, the robot and its
related modules, the connectionist parts of the model, and the
integration of the DFT modules. The model is then evaluated
in three case scenarios in the results section. Finally, the paper
is concluded with the discussions and the future directions.

The Computational Architecture
The cognitive robotics model was designed to interpret the
contribution of the low level features of pointing gestures
such as movement and edge information, to a higher under-
standing of deixis. To learn the association between the point-
ing hands and the indicated locations in the space through
the low level features, a variation of a gesture comprehen-
sion neural network model was implemented (Nagai, 2005).
This model can learn autonomously the intended direction of
a pointing gesture. However, once the network is trained, it
immediately produces outputs for any given input sequences.
This makes it impossible to model developmental psychology
studies based on reaction time. We extended this model us-
ing the Dynamic Field Theory so that the new architecture is
able to represent some parts of the high level cognition such
as spatial attention and spatial working memory. The overall
structure of the model can be seen in Figure 1. Its constitu-
tive modules and their functions are explained in detail in the
following subsections.

The Embodied Agent
The iCub robot was used as an embodied agent of the compu-
tational model in this study. This section briefly explains the
robot and associated modules.

iCub Humanoid Robotic Platform The iCub humanoid
robotic platform is an open source robotic platform developed
at the Italian Institute of Technology with the contribution of
more than 20 laboratories. The iCub robot was designed as
a 3 to 4 year-old child (Figure 1) and equipped with binoc-
ular vision, binaural audition, haptic and inertial sensors to
perceive the surrounding environment, as well as its bodily
states. It has also 53 degrees of freedom that enables it to
perform wide variety of actions to interact with its environ-
ment. The main purpose of the iCub is to provide an inter-
disciplinary platform for cognitive development research via
HRI and autonomous learning studies (Metta et al., 2010).

YARP Modules Yet Another Robot Platform (YARP) is
an open source robotics middleware that is designed to ease
communication between different hardware and software sys-
tems (Metta, Fitzpatrick, & Natale, 2006). In our study,
YARP was used to ensure the link between all physical ma-
chines such as server and client PCs, and the iCub’s boards.
The communication of the modules that work on different

platforms (e.g. Matlab for DFT modules and Python for neu-
ral network modules) were also accomplished by implement-
ing modules using YARP’s functionalities.
Motor Control Module This module was implemented to
create an actual saccade on the particular location where the
saccade motor field of the DFT module was indicated. It takes
one dimensional input, turns into a point on a semicircle on
2D plane and sets the motor decoders of the robot’s eyes to
fixate that point.

Learning Pointing Direction via Low Level Features

The modules that are responsible to get raw data from the
robot’s camera and process them to understand pointed loca-
tion, are illustrated in the upper half of Figure 1. Pointing
gestures are first captured by the iCub’s left camera and im-
ages are transferred to the main computer using YARP proto-
cols. Then, the images are passed separately through pre-
processing steps in three modules before they are fed into
neural networks and dynamical neural fields.
Perception Module This module detects the object in the
current scene according to its colour using basic openCV
masking methods and forms the object location into an an-
gle value. This angle value is later sent to the DFT module
and represented as the location of the object on the perception
dynamic neural field.
Feature Detection Modules The Edge Detection (ED) and
the Optic Flow Detection (OFD) modules were implemented
very similarly to Nagai’s model (Nagai, 2005). The centre of
the image (168x168) was considered as foveal area. The ED
detects the edges of the hand image in this area with an ori-
entation selective filter so that each edge pixel has a 4 dimen-
sional vector for 4 different orientations (↔,↙↗,l,↖↘ ). The
foveal region was split into 49 small regions (24x24) called
receptive fields. A cumulative orientation vector was calcu-
lated for each receptive fields.

The displacement of the receptive fields between consecu-
tive frames was calculated by the OFD module using a tem-
plate matching algorithm. For each field, an 8 dimensional
vector is constructed to keep the displacement amounts on 8
different directions (←,↙,↓,↘,→,↗,↑,↖).
Learning Modules Two separate feed-forward neural net-
works were implemented in PyBrain (Schaul et al., 2010)
to learn the association between pointing gestures and the
pointed location. The edge neural network (edge-NN) has
three layers. The input layer has 196 neurons which receive
the orientation vectors of the receptive fields as inputs (49x4)
from the ED. The edge-NN also has a fully connected hid-
den layer consisting of 49 neurons and an output layer of 8
neurons. The output neurons represent the magnitude of the
8 different direction vectors of the indicated location.

The optic flow neural network (flow-NN) has one input
(392 neurons) and one output layer (8 neurons). It receives
displacement information of the receptive fields in 8 direc-
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Figure 1: Architecture of the model

tions (49x8) and outputs an 8 dimensional vector as edge-NN.

The learning of pointing gestures with these networks was
done offline by using 104 labelled videos from the same par-
ticipant. These videos had 37 different object locations that
were congruent to the pointing hand. Around 2500 image
frames were extracted from these videos to train the networks
for 10000 epochs with a learning rate σ = 0.05.
Dimension Reduction Once the pointed location is deter-
mined by neural networks with 8 dimensional vectors, these
vectors are first projected onto 2D plane by taking the means
of horizontal and vertical components of the 8 directions as
in (Nagai, 2005). After that, their dimension is again re-
duced by using a multi-valued inverse tangent function (i.e.
numpy.arctan2) to an angle in radian ( ]− π;0[ ). The two
angle predictions of two networks are sent separately to the
DFT module through YARP.

High Level Representation of Pointed Location

To extend the sensorimotor understanding of our connection-
ist network with spatial attention and spatial working memory
mechanisms, we took advantage of the dynamic field theory
(Schöner et al., 2015). In the DFT, the activation of the neural
populations are represented with dynamic neural fields that
are defined by the following differential equation:

τu̇ =−u(x, t)+h(x)+ s(x, t)+
∫

g(u(x′, t))k(x− x′)dx (1)

where u(x, t) is the activation level of the related neural field
over the predefined metric dimension x such as space, τ is the
time constant, h(x) is the resting level of the activation, s(x, t)
is the external input to the field, and the integral term stands
for the convolution of the interaction kernel k (e.g. a Gaussian
function) with the output sigmoid function g(u).

The DFT is a powerful approach to model neural dynam-
ics of high level cognitive processes at the population level.
The DF model of this study has been built by extending the
existing IOWA model (Ross-Sheehy et al., 2015) using the
COSIVINA framework in Matlab. The IOWA model is an in-
fant saccade planning model that can capture developmental
changes in spatial attention and memory. The IOWA model
was extended by adding two other dynamic neural fields,
namely perception field and reference (pointing) field (the
DFT module in Figure 1).

The continuous metric dimension (x) of all the neural fields
is defined as the angles on a semicircle (]−π;0[) that is cen-
tred at the mid horizontal line of the image plane (the dimen-
sion reduction in Figure 1).

Visual Perception Field This neural field is used to repre-
sent the perceived object location as a peak of activation of a
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neural population. This can be thought as a sort of retinotopic
representation of the object in the current scene by a popula-
tion of neurons in early visual areas such as V1. The visual
perception field has excitatory projections onto the attention
field so that if the visually salient object remains a sufficient
amount of time on a particular location, that might cause a
peak of activation in the spatial attention for that location.
The field has also lateral interactions so that when a detected
object gives rise to a peak of activation, this peak may became
an attractor state with the local excitation around that location
and the global inhibition over the space dimension.

Pointing (Reference) Field The purpose of the neural pop-
ulation of the pointing field is to stand for the referential re-
lation between the observed space and the pointed location.
The angle values received from two neural nets are projected
onto the pointing field as the summation of two Gaussian
stimuli (i.e. s(x, t) in eq. 2 ) where their centres were char-
acterised by these angles on the field’s metric dimension (x).
The reference field has self excitatory-inhibitory lateral inter-
actions and an excitatory projection onto the attention field
(just as the visual perception field). The field equation of the
pointing field is the following:

τu̇r =−ur(x, t)+hur(x)+ s(x, t)

+
∫

kurur(x− x′)g(ur(x′, t))dx+qξ(x, t)
(2)

where ur is the activation variable of the pointing (reference)
field, τ is the time coefficient, g is the output sigmoid func-
tion, ξ is the random noise function and kurur is a Mexican hat
shaped function for the lateral interaction in the form of:

kurur(x− x′) =
cexc√
2πσexc

exp
(
− (x− x′)2

2σ2
exc

)
− cinhib√

2πσinhib
exp

(
− (x− x′)2

2σ2
inhib

)
− cglob

(3)

where c is the strength of the interaction (cexc for excitatory,
cinhib for inhibitory interactions), σ parameters are the width
of the Gaussians and cglob is used for the global inhibition
over the metric feature dimension of the pointing field.

Basically, when the distance between the referential loca-
tions related to motion and edge information is small, then
the amplitude of the attractor that appears on that location be-
comes higher, which then causes an increase in the attention
on that location with its excitatory projection onto the spatial
attention field.

Spatial Attention Field The spatial attention and the sac-
cade motor fields are constructed based on the existing IOWA
model (Ross-Sheehy et al., 2015). The strength of a localised
activation on the spatial attention field represents the amount
of attention on that particular location. The lateral inter-
actions permits the emergence of a rivalry mechanism be-
tween different localised activations over its feature dimen-

sion which is the same metric dimension as the others. Our
contributions to its dynamical equation were two excitatory
projections coming from the visual perception (bottom-up)
and the pointing field (top-down) which are defined by the
convolutions of those fields’ outputs with Gaussian kernels.

Once the activation passes the resting level on a particular
location, the strong global inhibition suppresses all the other
rival spots over the feature dimension. Together with the local
excitation, one single attractor state that represents the spot-
light of the attention emerges on this field.

If there is a conflicted situation, for example, if a hand
points in the opposite direction while there is a visually
salient object on the other side, the competition increases the
time needed to create an attractor on an attentional locus. This
process is also non-deterministic in terms of who the winner
will be.
Saccade Motor Field This field represents motor areas re-
sponsible of saccadic eye movements. It receives excitatory
input from the spatial attention field and this interaction is
done by convolving the sigmoid output function of the atten-
tion field with an inverse Gaussian kernel so that foveal areas
are more inhibited while approaching to the center. With this
mechanism, if the spotlight of attention is already at the fovea,
the motor responses are suppressed, on the other hand, if the
attention is on another locus, an attractor state emerges at that
location to saccade and fixate there. Once the resting level
is exceeded, attention field is inhibited to reset the system by
discrete nodes (Ross-Sheehy et al., 2015).

Results

The model was tested with three different videos that were
not in the training dataset for the learning experiments. Each
video had a different scenario. A blue plastic ball was located
in the same place on the table in all cases. No pointing gesture
appears in the scene in the first scenario while a congruent or
an incongruent pointing gesture appears, respectively, in case
II and case III.

The behaviour of the model was illustrated in these sce-
narios in three columns in Figure 2. Each panel of a column
simultaneously represents the activation patterns on the re-
spective neural field during the associated experimental sce-
nario. In each panel, x-axis stands for the continuous metric
feature dimension that is linked to locations on a spatial map
of the environment. Y-axis represents the computational time
steps whereas z-axis shows the activation levels of the field
over time and space. Except for the saccade motor field, the
surface areas were covered by connected red lines where the
output of the sigmoid activation functions were higher than
0.5. In the saccade motor fields, only the first attractor was
covered in red, since once threshold passed, the location is
sent immediately to the motor control module to direct the
iCub’s eye gaze to that fixation point.
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Figure 2: Behaviours of the dynamical neural fields in 3 different conditions

Case Scenario I - Object Perception
In the first case, the stationary object located at −2π/3 can
be seen on the visual perception field as a continuous peak of
activation over time. Random fluctuations at the resting level
(h =−5) on the pointing field demonstrate that there was no
pointing gesture observed during this scenario. It can be seen
in the attention field that the persistent activation of the per-
ception field triggered an increase in the attention at the same
location and the field’s output function passed its threshold
(i.e. g(ua(x′, t)) > 0.5) after around 300 computation cycles.
The projection of this activation then caused a rise on the sac-
cade motor field and created a saccade signal at t = 551.

Case Scenario II - Congruent Pointing
In this case, the stationary object was again located in the
same spot, however this time a moving pointing gesture di-
rected at the object was also included in the scene. Thus, the
peaks of activation can be observed around the object loca-
tion (−2π/3) on the attention field in this occasion, whilst
the behaviour of the perception field was very similar to that
of the case I. Since the combination of both field activations
left a trace together onto the spatial attention field, in this
scenario the attractor states in the attention field had more
strength than the previous case and more importantly, attrac-
tors were formed faster starting after around 200 time steps.
This effect was then reflected also to the motor field and the
saccade reaction time decreased to t = 284.

Case Scenario III - Incongruent Pointing
In the final scenario, the object was positioned in the same
location, and a pointing gesture was presented. However

this time the pointing hand was indicating another spatial re-
gion (−π/6) which was incongruent to the object location
(−2π/3) (see the first and the second panels from the top).
In this example, when the activations of the perception and
the pointing fields were forwarded onto the spatial attention
field, the incongruity of the locations initiated a rivalry be-
tween two conflicting regions. The localised peaks on the
two sides of the attention field were trying to suppress the
other because of the strong global inhibition defined through
the lateral interaction kernel. Similarly, the strong local ex-
citation was helping these peaks to self-sustain whilst being
under inhibition of the other. Therefore, this attentional ri-
valry mechanism elicited an increase in reaction time of the
motor field (t = 807).

The pattern of results described here reflect the typical dy-
namics of the system with the three visual stimulus configura-
tions. Future explorations of the control of the object location
and the pointing hand will help to clarify the full dynamics of
the model.

Conclusion and Future Directions
The proposed cognitive architecture is able to learn and rep-
resent the joint attentional intention underlying pointing ges-
tures while also taking into consideration its time dynam-
ics and its deictic nature. The implementation of our com-
putational model is consistent with the formal account of
grounded cognition (Barsalou, 2008). Connectionism was
taken into our hybrid model as a bottom-up understand-
ing mechanism of pointing gestures so that its learning can
be seen similar to ‘sensorimotor toil’ method in the Sym-
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bolic Theft Hypothesis (Cangelosi, Greco, & Harnad, 2002).
Grounding symbols over the pointing neural field might be
possible in future, as, for example, demonstratives are ac-
companied by pointing gestures in early infancy and the ex-
ophoric use of demonstratives is to create a joint attentional
frame (Diessel, 1999). In addition, the model may provide
practical advantages for the design of robots that have more
natural interaction and communication skills.

In this paper, we introduced a cognitive robotics model
and validated its key mechanisms. The next step is to design
experiments to compare the iCub’s behaviours with infants’
reactions to the pointing gestures in attentional cueing tasks
(e.g. Rohlfing et al. (2012)). Moreover, replicating develop-
mental psychology studies with robots may improve our un-
derstanding of the underlying mechanisms of cognitive pro-
cesses. Furthermore, this line of research might also provide
new directions of investigations for developmental psycholo-
gists (Cangelosi & Schlesinger, 2015).

Since speech is an essential modality for human communi-
cation, it can be an obvious extension for the model in future.
The DFT is again an option as it has been already used for
modelling spatial language (Richter, Lins, Schneegans, San-
damirskaya, & Schoner, 2014), as well as in word learning
tasks (Samuelson, Spencer, & Jenkins, 2013). Another op-
tion might be using a deep neural network (DNN) to classify
the speech and gesture couplings.
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