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TRAVEL-TIME UNCERTAINTY, DEPARTURE TIME CHOICE, AND THE 
COST OF THE MORNING COMMUTE 

Abstract 

We extend existing models of the commuting time-of-day choice in order to analyze the 

effect of uncertain travel times. Travel time includes a time-varying congestion 

component and a random element specified by a probability distribution. We compare 

results from the uniform and exponential probability distributions and derive the optimal 

"head start" time that the commuter chooses to account for travel time variability; i.e., a 

safety margin that determines the probability of arriving late for work. Our model includes 

a one-time lateness penalty for arriving late as well as the per minute penalties for early 

and late arrival that other investigators have included. It also generalizes earlier work by 

accounting for the time variation in the predictable component of congestion, which 

interacts with uncertainty in interesting ways. A brief numerical analysis of the model 

reveals that uncertainty can account for a large proportion of the costs of the morning 

commute. 

KEYWORDS: Reliability, Congestion, Time-of-day, Scheduling, Travel-time variation 



Robert B. Noland & Kenneth A Small 

Introduction 

The choice of home departure time for commuters is an important element of determining 

how congestion levels will vary during the morning peak. This choice has been related 

empirically to the cost of early or late arrival relative to some preferred work arrival time 

(1, 2). The planning of on-time arrivals is, however, complicated by the presence of 

uncertainty in actual travel times. 

1 

This paper describes a model in which commuters simultaneously trade off costs of 

inconvenient schedules, lateness penalties, and the desire to minimize time spent in 

congested traffic. Like Gaver ( 3) and Polak ( 4), we assume that commuters face a 

probabilistic distribution of travel times, and choose departure time to minimize an 

expected cost function. In contrast to these authors, our cost function includes a discrete 

lateness penalty as well as per minute penalties for both early and late arrival; it also 

accounts for variation over time in the predictable component of congestion. 

Furthermore, we derive analytically the optimized expected cost function (i.e., the costs 

resulting after an optimal departure time is chosen). We do this for both a uniform and an 

exponential distribution for uncertain travel time. 

The results show how changes in the uncertainty of travel time affect both the 

departure time decision and the resulting expected costs. For example, as uncertainty 

increases, commuters shift their departure schedules to earlier hours to compensate for the 

increased probability of late arrival; in some cases they overcompensate in the sense that 

the probability of late arrival decreases as uncertainty increases. As for the resulting 

expected costs, the functional relationship that we derive relating costs to the underlying 

parameters of the model is of great interest for empirical studies of traveler behavior under 

uncertainty (5, 6, 7). We find, for example, that only when we disregard lateness penalties 

is that functional relationship linear in the standard deviation of travel time as is frequently 

assumed. 
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Changes in the level of congestion over the course of the peak period also play an 

important role in commuter decisions. Rapidly rising congestion shifts the commuter to 

earlier departure times, but also lowers the probability of late arrival. The opposite is true 

when congestion levels are falling. These type of trade-offs are fully accounted for in our 

model. 

We begin with a review of the literature on departure time and route choice, 

especially previous work dealing with uncertain travel times. We then present and solve 

our analytical model. Next we give some numerical examples that provide quantitative 

information about the possible importance of various components of the model. We 

conclude by briefly discussing some implications for both research and policy. 

Literature Review 

The reliability of arriving at a destination on time is a key component in the decisions 

made by commuters for their morning trips. Prashker ( 8) attempts to classify some 

perceived components of reliability into a measurable framework using factor analysis. 

More recently, researchers have produced direct empirical estimates of how travelers 

respond to reliability (5, 6, 7). Much of this work has been aided by the development of 

stated preference survey techniques. 

It is useful to begin with an understanding of how travelers choose departure time 

choice under certainty. Most research has focused on schedule delay, defined as the 

difference between the actual time of arrival and some ideal time, usually identified with an 

official work start time. Typically the commuter is assumed to receive some disutility 

from schedule delay as well as from travel time (I, 2, 9). In Small's specification (2) this 

disutility is piecewise linear in schedule delay, i.e., disutility rises linearly in either the early 

or late direction. In addition, there is a discrete penalty for being late. In all these studies 

scheduling disutility is traded off against the possible advantages, due to variation in 

congestion over the rush hour, of shifting one's schedule to take advantage of lower 
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congestion. In Cosslett's (1) continuous model, this tradeoff appears as a maximization 

condition involving the slope of the congestion function. 

Scheduling models such as these have been incorporated into equilibrium analyses 

of congestion formation. Basic models for a single link (J 0-15) have been extended to a 

variety of circumstances including elastic demand (16, 17), networks ( 16, 18, 19), 

heterogeneous commuters including arbitrary population distributions for desired arrival 

times (19, 20), and uncertain capacity or demand (21, 22, 23). See (24) for a more 

complete review. Although most of these analyses use deterministic models of the 

traveler's choice of departure time, a few (J 6, 25) use a discrete-choice model analogous 

to Small's (2). 

3 

Other researchers have incorporated a simpler version of this utility specification 

into models analyzing uncertain travel times. Gaver (3), Polak ( 4), and Bates (5) all 

consider the piecewise linear disutility specification when travel time is uncertain, but none 

consider congestion that is varying over the rush hour. Hence they examine only the 

trade-offs inherent in trying to minimize the expected disutility from given arrival times 

given the randomness in travel times. 

Mahmassani and associates (23, 26, 27, 28) simulate time of day departure choices 

using hypothetical data collected from actual commuters and fed through a traffic 

simulation model. These papers focus on day to day variations in travel time as commuters 

gain experience with the system. While travel times may be uncertain, these simulations 

emphasize how people learn about the shape of the congestion profile as opposed to 

uncertainties due to non-recurrent events. 

Mannering (29) and Abdel-Aty et al. (7) investigate how likely commuters are to 

make changes in their departure time and/or route choices. Mannering finds that those 

commuters with longer travel times are more likely to make changes and speculates that 

these trips may have larger variances. His results also indicate that non-recurrent events 

may not allow a steady-state equilibrium to evolve, which may have implications for 
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simulating traffic congestion. 

Mannering and Hamed (30) find empirical evidence that work-to-home departure 

decisions are influenced by similar factors. Such decisions may not be independent of 

home-to-work departure decisions: for example, some commuters may delay the morning 

departure with the intent of staying at work until evening congestion levels have fallen. 

Neither our model nor any other of which we are aware attempts to deal with this 

dependence. 

Mahmassani and Herman (26) and Mahmassani et al. (31) show that commuters 

tend to adjust departure times more readily than they do routes. In fact, route switches 

tend to occur when commuters are continually dissatisfied with the outcomes from 

departure time switches alone (28, 31). The lower likelihood of route switching adds 

credibility to models that examine only the choice of departure time, which can have 

important impacts on the development and timing of peak congestion levels. 

Analytical Derivation of Model 

We now describe a model which explains how uncertainty in travel time affects the 

expected cost of the morning commute. First we specify the basic components of the cost 

model, including how changes in congestion levels are accounted for. We then formulate 

and solve the commuter's scheduling problem using both a uniform and an exponential 

probability distribution. The solution is then inserted into the expected cost function to 

determine how total commuting cost depends on the parameters describing the 

commuter's travel environment. This cost consists of various components that enable us 

to better understand how significant unreliability is as a contribution to travel cost. 

Cost Model 

We assume the following cost function for the morning commute: 

C = aT + f3(SDE) + y(SDL) + 8DL (1) 
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where T is travel time, SDE and SDL are schedule delay early and late, respectively 

( defined below), and DL is equal to 1 when SDL > 0 and O otherwise. a is the cost of 

travel time, J3 and y are the costs per minute of arriving early and late, respectively, and 0 

is an additional discrete lateness penalty. 

The variables SDE and SDL are defined with respect to the official work start 

time, tw, and the home departure time, th. Let SD= th+ T - tw be "schedule delay," the 

difference between actual arrival time and official work start time. Define 

{
SD if SD> 0, 

SDL= 
0 otherwise; 

{
-SD if SD< 0, 

SDE= 
0 otherwise. 

5 

This formulation of costs is that of Small (2), table 2, model 1. It could result if 

pay is docked for late arrival, or if in some other way the frequency and magnitude of late 

arrival are costly to one's career. Many analyses of time-of-day decisions have used the 

first three terms of ( 1 ); others have implicitly added the fourth term with 0 set to infinity 

by excluding the possibility of late arrivals. A more complex model formulation could also 

vary the amount of time spent at work and thus account for evening travel conditions as 

additional determinants of the morning commute decision. 

The total commute time, T, consists of three elements. Tf is the free flow travel 

time when there is no congestion. T x is the extra travel time due to congestion which the 

traveler is sure to encounter; it is a function of th, the home departure time. Tr is the 

extra travel time due to non-recurrent congestion, and is modeled formally as a random 

variable. Following the standard classification of congestion delays into recurrent and 

incident-related delays (32, 33) we call Tx "recurrent delay" and Tr "incident delay." 

For simplicity we assume that the probability distribution of Tr is independent of 

recurrent congestion and of the time of day of travel. This assumption has the advantage 

(2) 

(3) 
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that it enables us to isolate the impact of exogenous changes in travel time uncertainty. 

Although the assumption may appear unrealistic, there is a surprising absence of clear-cut 

empirical evidence for alternative assumptions. Satterthwaite (34), in a review, finds no 

reported relations between congested traffic and accidents (which are a primary cause of 

non-recurrent congestion). Hendrickson et. al. (35) analyzed data in Pittsburgh and 

concluded that variance of travel times is independent of departure times. Richardson and 

Taylor (36) posit a relationship between congested traffic and increases in travel time 

variability, but do not derive an explicit relationship. 

To simplify the analysis, define the variable Te to be the amount one would arrive 

early if there were no incident-related delays: 

Following Gaver ( 3), we call Te the "head start." Polak's ( 4) "safety margin" is equal to 

Te - E(T r), where E(T r) denotes the expected incident delay. Note that Te> 0 implies the 

possibility of early arrival (if recurrent congestion turns out to be nil), whereas Te < 0 

implies certain late arrival. Schedule delay can now be written as SD = Tr - Te and the 

lateness dummy, DL, is equal to 1 if Tr> Te and O otherwise. 

These definitions enable the cost function to be written as follows: 

C(T,) = a[Tr + Tx + T,] + f3(1- DJ[Te -T,] + yDL[T, -Te] +0DL 

We specify two alternative probability distribution functions for Tr· First we will 

consider a uniform distribution, which assumes that the likelihood of a delay is equal for 

any level in the domain. Then we will consider an exponential distribution, as in Gaver 

( 3), which allows lower levels of delay to have a greater likelihood than longer levels of 

delay. Many authors, including Richardson & Taylor (36), have fit log-normal curves to 

travel-time variance data; Giuliano (37) has found specifically that non-recurrent 

(4) 

(5) 
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congestion follows a log-normal distribution. Unfortunately we find the log-normal 

distribution to be intractable in this model, so do not pursue it here. 

Changes in Congestion Levels 

7 

Before proceeding with the derivation of expected cost functions, it is convenient to 

describe how congestion levels change with the choice of departure time, th. First, we can 

describe the commuter's choice of departure time by head start time, Te, instead of 

departure time, th. In order to do this, we assume that T x, the travel time due to 

congestion, is a differentiable function ofth, Tx(th)- Differentiating the implicit definition 

th= tw- Tr- Tx(th) -Te, we find that 

or, solving, 

where Tx' = dTx/dth. We impose the requirement Tx' > -1 in order to rule out 

"overtaking," in which a person can arrive earlier by leaving later (24, 38). This condition 

guarantees that (7) is well defined and negative. Using equation (7), the functional 

relationship between T x and Te, defined by T x[ th(T e) ], has total derivative 

The quantity ~ is a measure of how steeply congestion increases if departure is 

delayed; more precisely, ~ is the rate at which congestion increases as the "planned" 

arrival time, th+ Tr+ Tx = tw- Te, is made later. It has the same sign as Tx'· If~> 0, 

conditions worsen as planned arrival time is delayed, thus favoring earlier schedules; 

whereas ~ < 0 favors later schedules. Note that the restriction T x' > -1 implies ~ < 1. 

(6) 

(7) 

(8) 
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Henceforth we regard Tx as a function of Te, with well-defined derivative-~. As 

it turns out, making T x a function of traffic volume at Te rather than that at th is necessary 

for consistency in an important equilibrium model of endogenous scheduling choice due to 

Henderson (I 0, 1 l); see Chu ( 38) for a demonstration. If T x has a kink so that ~ is 

undefined, corner solutions in addition to those described below become possible. 

We now solve the model for two alternative probability distributions for Tr· In 

each case we compute expected cost given scheduling choice Te, then compute the choice 

of Te that minimizes the expected cost and insert this chosen value into the expected cost 

equation. The resulting expected cost is then a function solely of those parameters which 

the commuter faces in choosing the schedule for a morning commute trip. 

Uniform Distribution 

A uniform probability distribution is defined for the domain [O, T ml The probability 

density function is defined as f(T r) = 1/T m for O :s; Tr :s; Tm, and O otherwise. The mean of 

Tr is ½Tm, and its standard deviation is T ml .JIT. The mean and standard deviation for 

the total travel time are Tr+ Tx + ½Tm and Tr+ Tx + (Tm/.JIT), respectively. 

The expected cost for the morning commute is: 

l Tm 

EC=-fC(L)dT, 
Tm 0 

Substituting equation (5) into (9), there are three possible cases: (a) 0 <Te< Tm; 

(b) Te ~ Tm; and ( c) Te :s; 0. For case (a), the chosen departure time can lead to either 

early or late arrival depending on the realization of the random variable Tr; equation (9) 

becomes: 

(9) 

Tm 1 Tc 1 Tm 

EC= a(Tf + Tx +-)+-f f3(Te-T,)dT, +-J[y(L-Te)+0]dT, (10) 
2 Tm O Tm Tc 
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=aE(T)+8PL +f3E(SDE)+yE(SDL) (12) 

In equation (I la), the first term is merely the expected travel time multiplied by its 

cost. The second term is the probability of arriving late, PL, multiplied by the lateness 

penalty, 8. The last two terms are the expected cost associated with the amounts of 

schedule delay early and late. 

The other cases result in simple modifications of equations (10) and ( 11 a). For 

case (b ), where Te ::::: Tm (implying the commuter is early with probability one), the limit of 

integration Te is replaced by Tm in (10); the result is 

(llb) 

For case (c), where Te :s; 0 (implying the commuter is late with probability one), then Te is 

replaced by Oas a limit of integration in (10) and the result is: 

(I le) 

In cases (b) and (c) the per-minute scheduling cost is simply that associated with the 

expected arrival time, since there is no uncertainty as to whether the commuter will arrive 

late. Equation (12) continues to apply, with appropriately modified expressions for the 

probability PL and for the expectations of SDE and SDL. As we will see, cases (b) and ( c) 

can occur when the cost parameters and the rate of change in the level of congestion have 

specified ranges; for example, if 8 is very large or if congestion is increasing rapidly in 

departure time, one may choose to always arrive early ( case b ). 

We now seek the value of Te which minimizes the expected cost. For case (a), we 

set the derivative of equation (I la) equal to zero, while regarding Tx as a function of Te 

as in equation (8). Solving for Te gives the following result: 
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where 6 * = -dT xf dTe evaluated at Te*. The second-order condition requires that 

dLVdTe < (l3+y)/(aTm), which may be interpreted as requiring that congestion be convex, 

or at least not be too strongly concave, in planned arrival time (tw - Te)- If Tx is a 

concave function of (tw - Te), then d2TxfdT/ < 0, i.e., 6 = -dTx/dTe is increasing in Te. 

This solution is valid only if it is consistent with case ( a) as an interior solution, which 

therefore requires that 0 <Te*< Tm, i.e., -yTm < (8 +a,6 *Tm)< 13Tm. 

To evaluate the expected cost when Te is chosen optimally, we substitute (13) into 

(1 la), yielding: 

EC*= aE( T*) + 0PZ + c; 
where 

• 1 s: (8 +a6TJ
2 

C =-uTm+----
s 2 2(13 + y )Tm 

and 

(13) 

(14) 

(15) 

(16) 

(17) 

8 = l3y 
(13 + y) 

(18) 

When 8 = 6 = 0, equations (14) - (17) are especially easy to interpret. The 

probability of being late is then chosen independently of travel time variance, and is 

decreasing in y/l3. In addition, the uncertainty of travel time creates a cost Cs *=½8Tm, 
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which is proportional to the standard deviation (T ml Ju) of travel time and also to the 

coefficient o, which is a kind of geometric average of the two schedule delay cost 

parameters; this cost arises because the commuter is unable to eliminate the likelihood of 

some schedule delay, either early or late. When 8 =Li= 0, the probability of being early is 

1 - PL*= y I (f3 + y) in agreement with Gaver eq. (3) 2.3, Polak (4) eq. 3.8 (with notation 

cE = f3 and cL = y), and Bates ( 6) eq. 17 (with notation l = y and e - h = f3). 

The last term in Cs* may be regarded as the scheduling-cost consequences of 

shifts in Te that are made to reduce congestion (if Li -:t:- 0) or to reduce the likelihood of a 

discrete lateness penalty (if 8 > 0). For example, when Li -:t:- 0, indicating that some 

congestion can be avoided by changing the head start, the commuter does so; expected 

travel time is thereby reduced and Cs* increased. When 8 > 0, indicating an extra penalty 

for being late by any amount, Te* is increased so as to reduce PL*; Cs* will go up unless a 

negative Li was already causing a tendency toward lateness. 

Consider now case (b) of an individual who arrives early with probability one; this 

occurs if, in (13), Te*> Tm, i.e., if 

This case can occur when 8 is high, or when congestion is increasing at a rapid rate. In 

this case, the commuter seeking to minimize cost will choose Te to minimize (I lb). An 

interior solution occurs when 

which requires Li> 0; the second-order condition requires that dLi/dTe < 0. Hence the 

congestion function must have a region where it is a rising convex function of planned 

arrival time tw - Te. At solution (20) the consumer trades off the extra schedule-delay 

costs of still earlier arrival (f3dT e) against the saving in travel-time cost due to less 

congestion ( aLidT e); this is the same tradeoff that forms the basis for determination of 

(19) 

(20) 
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early-side arrival times in the models of Vickrey (12), Cosslett (]), Fargier (13), 

Hendrickson and Kocur (14), Arnott et al. (15), and others. Alternatively, case (b) may 

lead to the corner solution Te= Tm. This will occur if (19) is satisfied but (20) cannot be, 

as could easily happen if 8/T m is large. The interpretation here is that the discrete lateness 

penalty is large enough for the commuter to eliminate entirely the possibility of late arrival, 

but variation in congestion, Li, is not large enough to cause a desire for still earlier planned 

arrivals. 

Consider finally case ( c) of an individual who decides to arrive late with probability 

one, i.e. who chooses Te :s; 0. This occurs if Te* :s; 0 in (13), i.e., if 

a~•~ -[y + ~] 

This requires that Li* be negative, i.e., congestion is decreasing, and also that neither y 

nor 8 be too large. In such a situation, the commuter chooses to incur the relatively mild 

lateness penalties in order to take advantage of lessening congestion. Expected cost (I le) 

has a local minimum where 

aLi = -y 

provided again that dNdTe < 0 (convex congestion function). Again, there could also be 

a corner solution Te= 0. Note that (21) and (22) are compatible only if Li changes 

considerably over the range of possible values of Te· This could happen if, for example, 

the interval [tw - Tm, tw] occurs near the end of the rush hour, so that Li* is strongly 

negative (representing rapidly falling congestion at Te*); the commuter may then choose a 

later time than Te* when both congestion T x and its rate of change, Li, are smaller in 

magnitude, making (22) possible. In fact, if Li* is strongly negative there must be a later 

region where JLil is smaller since T x cannot fall below zero. 

A practical difficulty is to find a reasonable congestion profile which allows one to 

solve these equations for the optimal head start. A linear congestion profile will work for 

(21) 

(22) 
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equation (13a) but not for (20) and (22). Conversely, other functional forms work for 

(20) and (22) but will not give analytic solutions for (13a). We do not define any explicit 

congestion profile; additional research is examining simulations which endogenously 

generate congestion profiles (39). 

Exponential Distribution 

The exponential distribution for Tr is defined by the probability density function, 

which applies for 0 :s; Tr· The parameter b is the mean and the standard deviation of the 

distribution (this differs from the uniform distribution where the mean is .J3 times larger 

than the standard deviation). The exponential distribution more accurately reflects the 

actual probability of the occurrence of an incident by allowing short delays to have a 

higher probability of occurrence than longer delays. 

Foil owing the same procedures as described above, we derive an expected cost for 

the exponential distribution. Assuming that Te> 0, in order to guarantee an interior 

solution, 

Note that we can now specify an infinite range for the distribution function. Integration 

yields the following result: 

which can be rewritten as, 

(23) 

(25) 

EC= a(Tr + Tx + b) + J3(Te- PEb) + P1 (8 +by), (26) 

where PL= e-Tl'b is defined as the probability of arriving late, and PE= 1 - PL is the 
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probability of arriving early, given Te> 0. This can again be put in the form of equation 

(12), where in this caseE(T) = Tr+ Tx + b, E(SDE) = Te-PEb, andE(SDL) = bPL· 

These expectations can be verified by direct calculations from equations (2) - ( 4). 

We now seek the value of Te that minimizes expected cost. Taking the derivative 

of (25) with respect to Te, setting it equal to 0 and solving for Te* gives the following 

result: 

T* = b · ln[ 8 + b{B + y )] 
e b(f3-at1) ' 

where ln denotes the natural logarithm. When 8 and t1 = 0, implying no late penalty and 

no change in congestion levels, this formula corresponds to that of Gaver (3), eq. (2.5). 

The second-order condition requires that dMdTe < -1/ab2 • exp(-TJb) · [8 + b(l3 + y)], 

which can simplify to dMdTe < (ai1 -13)/ab. The probability of being late, PL*= e-T;,(' 

can be rewritten as: 

p* = _b(_l3 _-_at1_)_ 
L ( e + b 13 + by r 

Lateness is favored by small values of 8 and y, and by a large negative slope to the 

congestion function. Equation (27) will have no solution where at1 2:-: 13, but this is not a 

problem because if t1 is large enough for this to occur at some head start, then the 

commuter will seek larger head starts and must eventually find a region where t1 is small. 

Such a region must exist since T x cannot be negative. 

The interior solution of (27) is valid only when it is compatible with Te 2:-: 0, the 

range under which it was derived. That condition is violated if the term in square brackets 

is~ 1, i.e., if 

(27) 

(28) 

(29) 
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This condition is the same as equation (21), except Tm is replaced by b (recall that the 

standard deviation in the uniform distribution is T ml Ju, while for the exponential 

distribution it is equal to b ). If it holds, the commuter chooses to always be late; expected 

cost is found by replacing Te by 0 in the limits of integration in (24), resulting in: 

(30) 

which is equivalent to equation ( 11 c) for the uniform distribution. Headstart, Te, would 

be chosen either at the corner solution, Te = 0, or at a point where all = -y, just as in (22). 

This is analogous to case ( c) of the uniform distribution; there is nothing analogous to case 

(b) because the exponential distribution has no upper limit and therefore there is no way to 

set Te so that one always arrives early. 

Returning to the interior solution (27), the optimized value of expected cost can be 

calculated by substituting equation (27) into (25): 

• (0+b(J3+y)J EC = a(Tr + Tx + b )- ball+ bJ3 · ln ( ) 
bJ3-all 

The first term is the expected cost of travel time. This can be rewritten to compare with 

equation ( 14): 

EC*= a(Tr+ Tx + b)+0PZ + c;, 
where PL* is given by (28) and 

c· = b{J3 · ln[e + b(J3 + Y )]- 0(J3 - all) - all}. 
s b(J3-all) 0+b(J3+y) 

The equations derived above describe the expected cost functions associated with 

uncertainty in travel times. These can be used to evaluate the relative proportion of 

expected cost associated with travel time uncertainty. The analyses in the next section 

provides some useful examples showing the relative importance of travel time variance for 

(31) 

(32) 

(33) 
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the cost of commuting. 

Numerical Examples 

In order to analyze the "head start" times and expected costs due to travel variance, we 

need estimates of the cost coefficients in the models. We use empirical estimates by Small 

(2) of the ratios ~/a and y/a, in combination with a value oftime of $6.40/hour. These 

values are also used by Arnott et al. (15). The result, using a= 6.40/hour, is ~ = 

3.90/hour and y = 15.21/hour (rescaled to minutes for our calculations). We also use 8 = 

0.58, from Small (2). 

Table I shows the values of Te* for standard deviations of travel time between 5 

and 30 minutes and for the congestion slopes,~, between -0.1 and 0.1. The optimal head 

start time is always larger with the uniform distribution than the exponential distribution; 

this is due to its higher probability weighting for large delays. The head start is larger 

( earlier departure) when the standard deviation is larger and when congestion is 

increasing. Table II shows the corresponding optimal values of PL*, the probability of 

arriving late, which is smaller when congestion is increasing. 

If a hypothetical commuter has scheduling flexibility, then we can assume that ~ = 

y, i.e., the commuter is indifferent between schedule delay early and schedule delay late. 

In addition, this hypothetical commuter would have no lateness penalty, 8. This can be 

considered a form of flextime. A commuter with flextime may still have some preferred 

arrival time, perhaps determined by constraints on the work departure time or personal 

preferences, such that~ and y are not zero. Table III shows the head start times chosen 

by such a commuter (with~= y = 3.90). In all cases the commuter still desires a head 

start time to avoid congestion, although these values are significantly less than in Table I . 

Note that the head start times increase linearly with respect to the standard deviation since 

8 = 0. In the case with no change in congestion levels, Te= ✓3 • b with the uniform 

distribution, and Te= b · ln(2) with the exponential distribution. 
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Our analytical derivations have separated the costs associated with travel time, 

E(T*), from those associated with the uncertainty of travel time, Cs* + 8PL *. How 

important are the relative contributions made by these terms towards the total expected 

cost of travel, EC*? Table IV provides a breakdown for each distribution for different 

levels of travel time uncertainty and Table V for different levels of .1, excluding the cost of 

certain travel time, a(Tr+ Tx)- The total EC* does not differ much between the two 

distributions, the largest difference being about $0.73 (when SD= 30). However, c/, the 

expected cost of schedule delay, is much larger under the exponential distribution than the 

uniform distribution. For large standard deviations of travel time, Cs* from the uniform 

distribution becomes virtually insignificant regardless of the level or direction of changes 

in congestion. However, under the exponential distribution, the proportion of expected 

costs attributable to C8 * remains relatively stable at about 46-48% of the total expected 

costs for each level of standard deviation. This is about the same contribution made by the 

expected value of uncertain travel time, ab or ½aT m, which in the case of the uniform 

distribution accounts for virtually all of the expected costs of commuting. In both 

distributions the proportion of expected cost associated with the probability of arriving 

late, 8PL *, decreases as the standard deviation increases; apparently the shifts in head start 

time shown in Table I more than compensate for the increases in standard deviation. 

Conclusions 

This research has analyzed the costs associated with uncertain travel times. We have 

followed the work of Gaver ( 3) and Polak ( 4) but with some new contributions, focusing 

primarily on scheduling considerations. We have explicitly separated the effects of 

congestion that the commuter encounters everyday from the non-recurrent congestion that 

accounts for day-to-day variability in travel times. We have also introduced a discrete 

lateness penalty, which was originally detected empirically by Small (2). 

Using one set of empirically estimated parameters, the expected cost of schedule 
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delay is found to be a relatively minor component of costs when the uniform distribution is 

used, but quite large when the exponential distribution is assumed. In both cases the 

residual probability of being late is set by the commuter at a small enough value that the 

expected discrete lateness penalty is only a small fraction of the total costs. 

Our model enables the analyst to predict the expected cost of schedule delay, 

including penalties for lateness, taking into account how the traveler adjusts the trip 

schedule in response to the travel environment. Our numerical example suggests costs of 

several dollars per trip arising from standard deviations of travel time varying from 10 to 

30 minutes. Furthermore, if the exponential distribution applies, about half this cost is due 

purely to the variance of travel times ( the other half being the expected value of the 

incident delay). 

If expected cost of schedule delay is indeed a major cost of unreliable commute 

trips, as this suggests, then policies that reduce travel time variance may be preferable in 

many cases to policies that reduce travel times, especially when the latter are very costly. 

Policies that decrease the response time needed to clear incidents, for example, may be 

much cheaper than and provide cost savings comparable to capacity expansion. 

The information the commuter has about congestion will influence the departure 

time decision and ultimately the expected cost of commuting. Future work will analyze 

the impact of providing commuters with accurate information about changes in congestion 

levels and travel time variance. For example, how will changing information affect head 

start times when combined with a supply-side congestion model? What are the impacts on 

congestion when commuters have varying degrees of information about both congestion 

and reliability? The model presented here offers a starting point for addressing such 

questions which are central to the evaluation of intelligent vehicle highway systems. 
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TABLE I 

Head Start Times, by Standard Deviation and Change in Congestion. 

Uniform Distribution: T p"' (in minutes) 

Tm/ .Jf2 =Std.Dev. Ll = -0.1 Ll = 0 Ll = 0.1 

5 15.03 15.61 16.19 
10 28.23 29.39 30.55 
15 41.44 43.18 44.92 
20 54.64 56.96 59.28 
30 81.05 84.54 88.02 

Exponential Distribution: T p"' (in minutes) 
b =Std.Dev. Ll = -0.1 Ll = 0 Ll = 0.1 

5 8.74 9.50 10.40 
10 16.05 17.57 19.36 
15 23.28 25.56 28.25 
20 30.49 33.53 37.11 
30 44.89 49.44 54.82 
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TABLE II 

Optimal Probability of Being Late, by Standard Deviation and Change in 
Congestion. 

Uniform Distribution: PT * 
Tm I .JIT =Std.Dev. ,1 = -0.1 ,1 = 0 ,1 = 0.1 

5 13.24% 9.89% 6.55% 
10 18.50% 15.15% 11.80% 
15 20.25% 16.90% 13.55% 
20 21.13% 17.78% 14.43% 
30 22.00% 18.66% 15.31% 

Exponential Distribution: PT"' 
b =Std.Dev. ,1 = -0.1 ,1 = 0 ,1 = 0.1 

5 17.41% 14.96% 12.50% 
10 20.10% 17.26% 14.43% 
15 21.19% 18.20% 15.21% 
20 21.77% 18.71% 15.64% 
30 22.40% 19.24% 16.08% 
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TABLE ID 

Head Start Times, by Standard Deviation and Change in Congestion with Flextime. 

Uniform Distribution: Tf':';j< (in minutes) 

Tm I Ju =Std.Dev. L1 = -0.1 L1 = 0 L1 = 0.1 

5 7.239 8.660 10.081 
IO 14.478 17.321 20.163 
15 21.717 25.981 30.244 
20 28.956 34.641 40.326 
30 43.435 51.962 60.489 

Exponential Distribution: T f': ';j< (in minutes) 
b =Std.Dev. L1 = -0.1 L1 = 0 L1 = 0.1 

5 2.706 3.466 4.362 
IO 5.412 6.931 8.724 
15 8.118 10.397 13.086 
20 10.824 13.863 17.448 
30 16.236 20.794 26.172 
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TABLE IV 

Expected Costs of Scheduling and Incident Delay with Uncertain Travel Time. 
Costs in Dollars per Morning Commute (.!\ = 0). 

Uniform Distribution 

Tm I Jfi =Std.Dev. EC* C"' s % 8PL* % 

5 1.0375 0.0564 5.43% 0.0574 5.53% 
10 1.9765 0.0411 2.08% 0.0879 4.45% 
15 2.9054 0.0360 1.24% 0.0980 3.37% 
20 3.8317 0.0335 0.87% 0.1031 2.69% 
30 5.6817 0.0309 0.54% 0.1082 1.90% 

Exponential Distribution 
b =Std.Dev. EC* cs"' % 0PT* % 

5 1.1508 0.5307 46.11% 0.0868 7.54% 
10 2.2084 1.0416 47.17% 0.1001 4.53% 
15 3.2612 1.5557 47.70% 0.1056 3.24% 
20 4.3126 2.0708 48.02% 0.1085 2.52% 
30 6.4139 3.1023 48.37% 0.1116 1.74% 

27 



Robert B. Noland & Kenneth A. Small 

TABLE V 

Expected Costs of Scheduling and Incident Delay with Uncertain Travel Time. 
Costs in Dollars per Morning Commute (SD = 10) 

Uniform Distribution 
~ EC* c/ % 8Pr* % 

-0.1 1.9827 0.0279 1.41% 0.1073 5.41% 
0 1.9765 0.0411 2.08% 0.0879 4.45% 

0.1 1.9827 0.0667 3.37% 0.0685 3.45% 
Exponential Distribution 

~ EC* C/ % 8Pr* % 
-0.1 2.2163 1.0331 46.61% 0.1166 5.26% 

0 2.2084 1.0416 47.17% 0.1001 4.53% 
0.1 2.2183 1.0679 48.14% 0.0837 3.77% 

28 



Robert B. Noland & Kenneth A. Small 29 

Table Titles 

Table I 

Table II 

Table ID 

Table IV 

Table V 

Head Start Times, by Standard Deviation and Change in Congestion. 

Optimal Probability of Being Late, by Standard Deviation and 
Change in Congestion. 

Head Start Times, by Standard Deviation and Change in Congestion 
with Flextime. 

Expected Costs of Scheduling and Incident Delay with Uncertain 
Travel Time. Costs in Dollars per Morning Commute (~ = 0). 

Expected Costs of Scheduling and Incident Delay with Uncertain 
Travel Time. Costs in Dollars per Morning Commute (SD = 10) 




