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Abstract

The Transformation of Second-Order Linear Systems
into Independent Equations

by

Matthias Morzfeld
Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Fai Ma, Chair

Linear second-order ordinary differential equations arise from Newton’s second law
combined with Hooke’s law and are ubiquitous in mechanical and civil engineering.
Perhaps the most prominent example is a mathematical model for small oscillations
of particles around their equilibrium positions. However, second-order systems also
find applications in such diverse areas as chemical engineering, structural dynamics,
linear systems theory or even economics. Very large second-order systems appear, for
example, in mathematical modeling of complex structures by finite-element methods.

In general, any system of second-order equations is coupled. Each equation is
linked to at least one of its neighbors and the solution of one of the equations requires
the solution of all equations. The “classical decoupling problem” is concerned with
the elimination of coordinate coupling in linear dynamical systems. The decoupling
transforms the system of equations into a collection of mutually independent equations
so that each equation can be solved without solving any other equation. In “The
Theory of Sound” in 1894, Lord Rayleigh already expounded on the significance of
system decoupling. Since then, the problem has attracted the attention of many
researchers.

Mathematically, the system of differential equations is defined by three coefficient
matrices. The equations are coupled unless all three matrices are diagonal. The
“classical decoupling problem” is thus equivalent to the problem of simultaneous con-
version of the coefficient matrices into diagonal forms. Current theory emphasizes
simultaneous diagonalization of the coefficient matrices by equivalence or similarity
transformations. However, it has been shown that no time-invariant linear trans-
formations will decouple every second-order system. Even partial decoupling, i.e.
simultaneous conversion of the coefficient matrices into upper triangular forms, is not
ensured with time-invariant linear transformations.

The purpose of this work is to present a general method and algorithm to de-
couple any second-order linear system (possessing symmetric and non-symmetric co-
efficients). The theory exploits the parameter “time,” characteristic of a dynamical
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system. The decoupling is achieved by a real, invertible, but generally nonlinear map-
ping. This mapping simplifies to a real, linear time-invariant transformation when the
coefficient matrices can be simultaneously diagonalized by a similarity transformation.
A state-space reformulation of the mapping is also derived. In homogeneous systems
the configuration-space decoupling transformation is real, linear and time-invariant
when cast in state space. In non-homogeneous systems, both the configuration and
associated state transformations are nonlinear and depend continuously on the exci-
tation. The theory is illustrated by several numerical examples. Two applications in
earthquake engineering demonstrate the utility of the decoupling approach.
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Chapter 1

Introduction

We consider the second-order linear dynamical system

Mq̈(t) + Cq̇(t) +Kq(t) = f(t), (1.1)

where all quantities are real and where dots denote derivatives with respect to the
independent variable t ≥ 0. The coefficients M , C, K are n × n matrices; q(t)
and f(t) are n-dimensional column vectors. The initial conditions q(0), q̇(0) as well
as f(t) are given. For simplicity, we assume f(t) is continuously differentiable and
restrict our attention to invertible M , thus avoiding differential algebraic equations.
Equation (1.1) is a cornerstone in vibration theory and, for example, models small
oscillations of particles [8, 31, 39, 44, 48]. In vibration terminology, equation (1.1)
determines a non-conservative linear system.

Two symmetric positive definite (SPD) matrices M and K can be simultaneously
diagonalized by a congruence transformation [25, 46]. The same congruence trans-
formation that diagonalizes M and K also diagonalizes a symmetric C if and only
if (see [7])

CM−1K = KM−1C. (1.2)

Similar restrictive conditions on simultaneous diagonalization apply if M , C and
K are arbitrary square matrices (see [32, 35] for an application-based discussion).
It follows that system (1.1) generally cannot be uncoupled (decoupled in modern
terminology) into a set of mutually independent, real, scalar, second-order equations
by a linear mapping q(t) → Lq(t), with L independent of t.

Nonetheless, the decoupling of equation (1.1) is desirable from a practical as well
as a theoretical perspective. We present a new approach to this old problem and
consider a time-dependent, nonlinear mapping q(t) → N (q, t) to obtain a set of
mutually independent, real, second-order equations. We then compute the solution
q(t) of the coupled equation from the solutions of the independent equations. With
apologies for using a terminology that may cause confusion, any methodology that
uses a linear or nonlinear mapping to obtain a diagonal second-order system is herein
referred to as decoupling.
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The possibility of decoupling any system posessing SPD coefficients by a nonlinear
mapping was recently discovered [36, 37]. The decoupling procedure, termed phase
synchronization, can be briefly described as follows. First, the quadratic eigenvalue
problem associated with (1.1) is solved. A real and diagonal (i.e. decoupled) system
is then constructed using the eigenvalues. Let the solution of the decoupled system
be p(t). If system solution is an objective, we can recover q(t) by evaluating each
component of p(t) with a different time-lag. It is here that we exploit the special
parameter t which is characteristic of equation (1.1).

This work extends the developments in [36,37] to systems possessing nonsymmetric
coefficients. We also clarify the decoupling procedure under real eigenvalues and
provide a broader perspective of the decoupling operations. The few restrictions
placed on M , C and K are an indication of the extensive scope of our method.
We emphasize the theory of decoupling, rather than its numerous applications such
as model reduction, stability analysis, optimal control, earthquake or rotor design.
Nevertheless, two examples from earthquake engineering are employed to demonstrate
the utility of the decoupling method. Further exposition of applications will be given
elsewhere in future papers.

Based upon the notion of structure-preserving transformations (SPT), Garvey and
others [9, 10, 18–20] introduced an alternative method for decoupling homogeneous
systems. There, algorithms employing linear coordinate transformations in a higher
dimensional space (the state space) are utilized to compute a real and second-order
diagonal system. If available, this diagonal system is identical to the system we
obtain by phase synchronization without recourse to state space or SPTs (modulo a
normalization Md → I, see (4.3) and (5.14)).

The organization of this work is as follows. Chapter 2 reviews the traditional
theory of coordinate coupling in viscously damped linear dynamical systems. This
survey sets up the terminology and notation used throughout this work. In Chap-
ter 3, the concept of damped modes is introduced. When vibrating in a mode, each
system component performs exponentially decaying or growing harmonic motion with
the same frequency and the same exponential decay. However, there is a constant
phase difference between any two components. The key, but radical idea is to syn-
chronize all modes by evaluating each component at a different, but fixed time-lag.
We call this process phase synchronization. It is shown in Chapter 4 that phase syn-
chronization generates a nonlinear mapping that decouples any linear system. Three
numerical examples are provided to illustrate the theory. In Chapter 5, we discuss
the decoupling in configuration and state spaces and give an example of a system
that can be decoupled in configuration space, but not in state space. We also explain
how phase synchronization relates to SPT’s. Applications of the decoupling by phase
synchronization in structural dynamics are discussed in Chapter 6. We conclude with
a summary of major findings in Chapter 7.
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1.1 Notational Conventions

We try to reserve capital letters for matrices, lower case Roman letters for column
vectors, and lower case Greek letters for scalars. The main exceptions are t (time),
e (Euler’s number) and i =

√
−1, for obvious reasons. We also reserve n for the

number of degrees of freedom (the length of the vector q), and the letters j and k for
indexing scalars or vectors. Thus, vj, j = 1, . . . , n, denotes the sequence of vectors
v1, v2, . . . , vn. We sometimes use vkj to denote the kth entry of vj. In addition, we
make use of the Hadamard (or Schur, or pointwise) product of two vectors of the
same dimension, i.e. (v ◦ w)k = vkwk. In this context, the vector u = (1, . . . , 1)T is
useful, where T denotes the transpose (u stands for unit and we would have preferred
to use e here, as is more common, but decided to reserve e for Euler’s number). We
apply scalar functions like sin(·) or cos(·) to vectors in a component-wise fashion.
Thus, exp(v) is a vector with kth component given by (exp(v))k = exp(vk). Likewise,
�(v) and �(v) denote respectively the real and imaginary parts of the vector v. We
construct diagonal matrices using the notation Λ = diag(λ1, . . . ,λn) so that Λ ∈ Cn×n

is diagonal with elements λ1, . . . ,λn. Given a sequence of vectors vj, j = 1, . . . , n, we
construct a matrix V = (v1, . . . , vn) ∈ Cn×n, whose columns are the vectors vj. The
identity matrix is denoted by I, and a square matrix with all elements equal zero is
denoted by 0. Based upon compatibility, the dimensions of I and 0 can be inferred
from the context. Lastly, we express complex vectors in a quasi–polar form, so that
v = r ◦ exp(−if) with f = (ϕ1, . . . ,ϕn)T . In strictly polar form, rj ≥ 0 and |ϕj| ≤ π
for j = 1, . . . , n. For our purposes it appears more sensible to allow rj to be negative
(if necessary) so that |ϕj| ≤ π/2. There is no advantage in the problem we consider
to have r nonnegative. The choice of sign in v = r ◦ exp(−if) is for convenience only.
We call this representation the quasi–polar form.
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Chapter 2

Coordinate Coupling in Viscously
Damped Linear Systems

The equation of motion of a viscously damped linear system is given by (1.1) with
M , C and K being SPD. These characteristics are not arbitrary, but in fact have solid
footing in the theory of Lagrangian dynamics. For example, symmetry of M is based
upon the fact that the quadratic form of the kinetic energy can always be defined
in terms of a symmetric matrix. In addition, K is SPD if the rigid-body modes are
eliminated, which is not an essential restriction at all. In general, the equation of
motion (1.1) is coupled so that the ith component equation involves not only qi and
its derivatives but also other coordinates and their derivatives as well. The system is
decoupled if and only if M , C and K are diagonal matrices. Coordinate coupling is
thus not an inherent property of a system but depends on the generalized coordinates
used.

The traditional theory of coordinate coupling in viscously damped linear dynam-
ical systems emphasizes simultaneous diagonalization of the coefficient matrices M ,
C and K by congruence transformations. This theory is concisely surveyed in the
present chapter to set up the terminology and notation used throughout this dis-
sertation. To be sure, we assume definiteness of the coefficients M , C and K only
in this chapter. We will drop this assumption in Chapter 3 and develop a general
methodology for decoupling any linear system.

2.1 Decoupling by Classical Modal Analysis

The process of decoupling the equation of motion of an undamped dynamical
system (C = 0 in (1.1)) is a time-honored procedure termed modal analysis. We
present only a brief summary and refer to standard textbooks for complete detail
(e.g. [39]).
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Associated with the undamped system is the symmetric eigenvalue problem [39,46]

Ku = Muω2. (2.1)

Owing to the positive definiteness of the matrices M and K, all n eigenvalues ω2
i are

real and positive, and the corresponding natural modes ui are real and orthogonal with
respect to either M or K. We define the modal and spectral matrices, respectively,
by

U = [u1, . . . , un] , (2.2)

K̃ = diag(ω2
1, . . . ,ω

2
n). (2.3)

Upon normalization of the natural modes with respect to the mass matrix, the gen-
eralized orthogonality of the modes can be expressed in a compact form:

UTMU = I, (2.4)

UTKU = K̃. (2.5)

Define a modal transformation by

q(t) = Uq̃(t). (2.6)

In terms of the principal coordinate q̃, the equation of motion takes the canonical
form

¨̃q(t) + C̃ ˙̃q(t) + K̃q̃(t) = UTf(t), (2.7)

where the SPD matrix
C̃ = UTCU,

is referred to as the modal damping matrix. Note that the mass matrix M and
the stiffness matrix K have been diagonalized by modal transformation. Thus, an
undamped system can always be decoupled by modal analysis. Any coupling in a
linear system occurs ultimately through viscous damping.

2.2 Inadequacy of Classical Modal Analysis

A system is classically damped if it can be decoupled by classical modal analysis,
whereby the modal damping matrix C̃ in (2.7) is diagonal. In Section 97 of “The
Theory of Sound” in 1894, Rayleigh [48] asserted that a system is classically damped
if

C = αM + βK (2.8)

for some scalar constants α and β. This requirement, referred to as proportional
damping, is sufficient but not necessary for classical damping. In 1965, Caughey
and O’Kelly [7] established that a necessary and sufficient condition under which a
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system is classically damped is that the commutativity condition CM−1K = KM−1C
is satisfied.

Practically speaking, classical damping means that energy dissipation is almost
uniformly distributed throughout the system. This assumption is violated for sys-
tems consisting of two or more parts with significantly different levels of damping.
Examples of such systems include soil-structure systems [12], base-isolated struc-
tures [27, 55, 56], and systems in which coupled vibrations of structures and fluids
occur. Increasing use of special energy-dissipating devices in control constitutes an-
other important example. In fact, experimental modal testing suggests that no phys-
ical system is strictly classically damped [50].

From a mathematical perspective, almost all viscously damped linear systems
are non-classically damped. To show this, we wish to determine the dimension of
the space of all viscously damped linear systems. This space is defined by three
real symmetric square matrices. The symmetry imposes constraints so that only
n(n + 1)/2 of the n2 elements of each coefficient matrix are independent. The space
of all viscously damped linear systems thus forms an 3n(n+ 1)/2 dimensional linear
space over the field of the real numbers. All classically damped linear systems are
defined by two real symmetric matrices and n parameters defining viscous damping
matrix by the Caughey series [7, 8]

C = M
n−1�

k=0

αk(M
−1K)k. (2.9)

Classically damped systems thus generate an n2 + 2n dimensional manifold in the
space of all viscously damped linear systems. Viscous damping is thus non-classical
with probability one. We conclude that a linear dynamical system is generally non-
classically damped and, thus, can not be decoupled by classical modal analysis.

2.3 Inadequacy of State-Space Approach

Classical modal analysis utilizes a real transformation (2.6). Foss and others
[17, 58, 59] extended classical modal analysis to a process of complex modal analysis
in the state space to treat non-classically damped systems. However, the state-space
approach has never appealed to practicing engineers. There are several reasons for
this situation. A common excuse is that the state-space approach is computationally
more involved because the dimension of the state space is twice the number of degrees
of freedom. Another reason is that complex modal analysis still cannot decouple all
non-classically damped systems. A condition of non-defective eigenvectors in the
state space must be satisfied in order for complex modal analysis to achieve complete
decoupling (see Chapter 5 for an example of a system that can be decoupled in
configuration space, but not in state space). More importantly, there is little physical
insight associated with different elements of complex modal analysis, whereas classical
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modal analysis is amenable to physical interpretation. For example, each normal
mode ui represents a physical profile of vibration. Even the eigenvalue problem (2.1)
can be interpreted geometrically as the problem of finding the principal axes of an
n-dimensional ellipsoid.

2.4 The Classical Decoupling Problem

The “classical decoupling problem” is concerned with the elimination of coordi-
nate coupling in damped linear dynamical systems. It is a well-trodden problem
that has attracted the attention of many researchers in the past century. In “The
Theory of Sound” in 1894, Rayleigh [48] already expounded on the significance of
system decoupling and introduced the concept of proportional damping. Over the
years, various types of decoupling approximation were employed in the analysis of
damped systems [3, 8, 11, 13, 16, 21, 26, 29, 51, 57]. Different indices of coupling were
also introduced to quantify coordinate coupling [2, 33, 34, 43, 45, 47, 54, 62]. However,
a solution to the “classical decoupling problem” has not been reported in the open
literature. Mathematically, the “classical decoupling problem” is equivalent to the
problem of simultaneous conversion of M , C, and K into diagonal forms. Ma and
Caughey [35] showed that no time-invariant linear transformations in the configura-
tion space will decouple every damped linear system. Even partial decoupling, i.e.
simultaneous conversion of M , C, and K into upper triangular forms, is not en-
sured with time-invariant linear transformations [6]. As a consequence, any universal
decoupling transformation in the configuration space, if it exists, must be at least
time-varying or even nonlinear.
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Chapter 3

Phase Synchronization

We drop the SPD assumption on M , C, and K to develop a general methodology
for the decoupling of (1.1). Associated with (1.1) is the regular quadratic eigenvalue
problem [22,30, 31,53]

(Mλ2 + Cλ+K)v = 0, (3.1)

where λ is termed an eigenvalue and v is the corresponding eigenvector. There are
2n eigenpairs (λj, vj), j = 1, . . . , 2n, complex in general. All eigenvalues are finite
because M is invertible. Since M , C and K are real, complex eigenvalues and eigen-
vectors occur in complex conjugate pairs. Throughout this paper, we will associate
real eigenvectors with real eigenvalues. For simplicity, we assume that the quadratic
eigenvalue problem is non-defective. This assumption is neither unduly restrictive
(almost all systems are non-defective) nor essential. Examples of decoupling defec-
tives systems with SPD coefficients can be found in [36, 37] and complete details are
provided in [28].

The solution of (1.1) with f(t) = 0 can be written as

q(t) =
2n�

j=1

vje
λjtγj, (3.2)

where γj, j = 1, . . . , 2n, are constants determined by the initial conditions [22, 31].
Real initial conditions force those constants γj, associated with complex conjugate
eigensolutions, to likewise occur in complex conjugate pairs. If all eigenvalues are
complex, the solution becomes

q(t) =
n�

j=1

�
vje

λjtγj + v̄je
λ̄jtγ̄j

�
. (3.3)

Every summand is real and represents a vibration pattern, observable in experiments.
Following [36, 37], we refer to a summand

sj(t) = veλjtγj + v̄je
λ̄jtγ̄j = 2�(vjeλjtγj) (3.4)
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as a mode. We hope this terminology will not cause additional confusion, since the
word mode has been used in different contexts before. For example vjeλjt is sometimes
called a complex mode.

The real modes sj(t) play a key role in decoupling (1.1). When vibrating in a
mode, each component performs exponentially decaying or growing harmonic motion
with the same frequency and the same exponential decay. However, there is a constant
phase difference between any two components. The key, but radical idea is to syn-
chronize all modes sj(t) by evaluating each component skj (t) at a different, but fixed
time-lag. We call this process phase synchronization. Phase synchronization gener-
ates a nonlinear mapping to decouple the system (the precise meaning of nonlinear
is clarified in Section 3.3 of this Chapter and in Chapter 4.3). The main attraction in
phase synchronization is thus not the formalism itself, but the decoupling algorithm
we will extract from it.

Our terminology is not to be confused with the phenomenon of synchronization
in nonlinear systems (we specifically mention the work of Blekhman, see e. g. [4]
and references therein). The main idea in phase synchronization is to enforce a
synchronization by appropriate manipulation of the modes given by (3.4). Because the
idea of phase synchronization is new and somewhat unconventional, the derivations
of principal formulas will be presented in sufficient detail. We drop the index j on
s(t) temporarily because all modes evolve independently of each other.

3.1 Phase Synchronization of Complex Conjugate
Eigensolutions

A pair of complex conjugate eigenvalues

λ, λ̄ = α± iω, ω > 0, (3.5)

generates a real mode s(t) given by (3.4). We wish to physically interpret s(t) and,
for this reason, we express the eigenvector v and the scalar γ in quasi-polar form

v = r ◦ exp(−il), l = (η1, . . . , ηn)
T , |ηj| ≤ π/2, (3.6)

γ =
1

2
ρe−iθ, |θ| ≤ π/2. (3.7)

Combining (3.5), (3.6) and (3.7) gives the intermediate result

veλtγ = (r ◦ exp(−il)) exp(αt+ iωt)
1

2
ρ exp(−iθ). (3.8)

Since all parameters on the right-hand side of the above equation are real, we can
rewrite (3.4) with the aid of the vector u = (1, . . . , 1)T in the desired form

s(t) = r ◦ cos(u(ωt− θ)− l)ρeαt. (3.9)



10

The constant phase difference between any two system components is now ob-
vious. Phase synchronization eliminates these phase differences by evaluating each
component sk(t) at a different, but fixed time-lag. Upon phase synchronization, we
obtain a synchronized vector y(t) with components

yk(t) = sk(t+ ηk/ω)

= rke
αηk/ωρeαt cos(ω(t+ ηk/ω)− θ + ηk)

= rke
αηk/ωρeαt cos(ωt− θ). (3.10)

More simply, we write
y(t) = zψ(t), (3.11)

with
ψ(t) = ρeαt cos(ωt− θ), z = exp(αω−1l) ◦ r. (3.12)

The above two equations highlight the synchronization. The argument of the cosine
in y(t) is scalar, so that all components perform exponentially decaying (or growing)
harmonic motion with the same frequency, passing through their equilibrium positions
at the same time. In other words, the mode y(t) physically represents synchronous
motion of all system components.

To invert the synchronization, we apply the time-shifting operation

sk(t) = yk(t− ηj/ω). (3.13)

Combination of (3.13) and (3.12) gives a formula for the mode s(t) in terms of ψ(t)

s(t) = (ψ(t− η1/ω), . . . ,ψ(t− ηn/ω))
T ◦ z. (3.14)

The above equation plays an important role in the decoupling of system (1.1).

3.2 Phase Synchronization of Two Real and Dis-
tinct Eigensolutions

Before we can proceed to decouple (1.1), we must consider modes generated by
real eigenvalues. It may appear natural to think of a real eigensolution veλt as a
mode. However, to decouple (1.1) into a set of independent second-order equations,
two linearly independent eigensolutions have to be paired up to generate a mode of
the form

s(t) = vae
λatγa + vbe

λbtγb, λa �= λb. (3.15)

The goal is to derive a synchronized vector y(t) of the functional form (3.11). The
phase shifts necessary to enforce the synchronization are, however, not obvious. A
series of algebraic manipulations, summarized below, permits the necessary phase
shifts to manifest themselves. The results in equations (3.21)-(3.24) should be noted.
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For the generic case (all n components of va, vb being nonzero), consider the kth

component of (3.15),

sk(t) = exp

�
λa + λb

2
t

�

×
�
(vka exp

�
λa − λb

2
t

�
γa + vkb exp

�
−λa − λb

2
t

�
γb

�
. (3.16)

Whenever vka or vkb equals zero, the corresponding component sk(t) is either vkae
λatγa

or vkb e
λbtγb and no extra work is required. In analogy to Section 2.1, we define a

vector y(t) by evaluating each component of s(t) with a constant, but yet unkown
time-lag τk so that

yk(t) = sk(t+ τk) = exp
�
λa+λb

2 (t+ τk)
�
�
vka exp

�
λa−λb

2 τk
�
exp

�
λa−λb

2 t
�
γa

+vkb exp
�
−λa−λb

2 τk
�
exp

�
−λa−λb

2 t
�
γb

�
.

To achieve a synchronizing effect in y(t) without disturbing the coefficients γa and γb
in equation (3.15), we require that

vka exp

�
λa − λb

2
τk

�
= vkb exp

�
−λa − λb

2
τk

�
. (3.17)

We solve the above equation for τk using the principal value of the logarithm of a
complex number, ln z = ln |z|+ iArg(z), and obtain

τk =
ln
��vkb /vka

��
λa − λb

×
�

1, for vkav
k
b > 0,

iπ, for vkav
k
b < 0.

(3.18)

The above τk yields the intermediate results

vka exp
�
λa−λb

2 τk
�
= sign(vka)

���vkavkb
��×

�
1, for vkav

k
b > 0,

i, for vkav
k
b < 0,

(3.19)

and

exp
�
λa+λb

2 τk
�
=

����v
k
b

vka

���
�

λa+λb
λa−λb

�

×
�

1, for vkav
k
b > 0,

exp
�

1
2iπ

λa+λb
λa−λb

�
, for vkav

k
b < 0.

Substitution of equations (3.19) and (3.20) into (3.17) now provides the sought-after
expression for the components

yk(t) = (eλatγa + eλbtγb)

×

�����

������
(vkb )

�
λa+λb
λa−λb

+1
�

(vka)
�

λa+λb
λa−λb

−1
�

������
×

�
1, for vkav

k
b > 0,

exp
�

1
2iπ

λa+λb
λa−λb

�
, for vkav

k
b < 0,

(3.20)
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of the synchronized mode. By time-shifting every component, we again obtain equa-
tion (3.11) with

ψ(t) = γae
λat + γbe

λbt, z = (ζ1, . . . , ζn)
T , (3.21)

where

ζk = sign(vka)

�����

������
(vkb )

�
λa+λb
λa−λb

+1
�

(vka)
�

λa+λb
λa−λb

−1
�

������
×
�

1 for vkav
k
b > 0,

exp
�

1
2iπ

λa+λb
λa−λb

�
for vkav

k
b < 0.

(3.22)

Straightforward calculation shows that the inverse formulae (3.13) and (3.14) remain
valid with the substitutions

l = (η1, . . . , ηn)
T , ηk =





ln

vkb
vka

for vkav
k
b > 0,

ln
���v

k
b

vka

���+ iπ for vkav
k
b < 0,

(3.23)

ω = λa − λb �= 0. (3.24)

Finally, we would like to point out that phase synchronization reduces to the identity
transformation if two distinct eigenvalues share the same real eigenvector.

3.3 Computation of Homogeneous Solution by Phase
Synchronization

We wish to express the homogeneous solution in terms of the modes s(t) we just
defined. Suppose 2o of the 2n eigenvalues of (3.1) are complex and 2d = 2(n− o) are
real (the unusual indices o and d are used to denote oscillatory and non-oscillatory
decaying solutions). For simplicity, we index the eigenvalues such that λ1, . . . ,λo are
complex with increasing positive imaginary parts; λo+1 ≤ · · ·λn ≤ λn+o+1 ≤ · · ·λ2n

are real and λn+1, . . . ,λn+o are the complex conjugates of λ1, . . . ,λo. The indexing
scheme is graphically illustrated in Figure 3.1.

For j = 1, . . . , o, define sj(t) by substituting λj, vj in (3.4). Expressions for
ρj, θj,αj,ωj, rj and

lj = (η1j , . . . , η
n
j ) (3.25)

can be inferred from equations (3.5), (3.6) and (3.7) by simply reintroducing the
index j. Using this notation, define ψj(t) and zj for j = 1, . . . , o by (3.12). Similarly,
for j = o + 1, . . . , n, define sj(t) by substituting λj, vj for λa, va and λj+n, vj+n for
λb, vb in (3.15) . With the same substitution, define ψj and zj by (3.21), lj by (3.23)
and, finally, ωj by (3.24). Assuming that system (3.1) is non-defective, this pairing of
real eigenvalues guarantees that eigensolutions with distinct real eigenvalues generate
a mode, as required by its definition. We have thus shown that the homogeneous
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Figure 3.1: Indexing of 2n eigenvalues of the quadratic eigenvalue problem (3.1).

solution q(t) is the superposition of n real modes such that

q(t) =
n�

j=1

sj(t). (3.26)

Note that the above equation is valid for systems with complex and real eigen-
values. By using a similar notation for both real and complex eigensolutions, we are
able to write down streamlined formulae for the general case. In particular, with
ω in (3.14) representing either the imaginary part of a complex eigenvalue or the
difference between two real and distinct eigenvalues (see (3.24)), we obtain

q(t) =
n�

j=1

(ψj(t− η1j/ωj), . . . ,ψj(t− ηnj /ωj))
T ◦ zj, (3.27)

with ηkj as in (3.25). The above equation represents a mapping from the set of mutu-
ally independent functions ψj(t) to the homogeneous solution q(t) of equation (1.1)
and is linear in the function space spanned by {vjeλjt}, j = 1, . . . , 2n. The equation
(3.27) appeared for the first time in [36], however in a more restrictive setting and in
different notation.

3.4 Choice of pairing schemes

As indicated above, any two distinct real eigensolutions may be paired up to
generate a real mode sj(t) according to (3.15). We have described only one way. If all
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real eigenvalues are distinct, there are in fact (2d)!/(2dd!) ways to pair the 2d distinct
eigensolutions to generate d real modes. Each pairing scheme may generate a different
set of modes and, consequently, a different set of functions ψj(t). Formally, any such
set of functions may be used. In applications, the pairing of real eigenvalues warrants
further consideration. For example, when the coefficients M , C and K are SPD,
the commutativity condition in (1.2) guarantees that the 2n eigenvalues occur in n
pairs, each pair sharing a common real eigenvector (even if some or all eigenvalues are
complex, see [7]). By using this pairing scheme, phase synchronization becomes the
identity transformation for all n modes, rendering this specific pairing particularly
easy and the scheme of choice in vibration books. A real, invertible, linear mapping
(coinciding with classical modal analysis) to decouple the system can be derived from
this pairing of eigensolutions (see Chapter 2). In the general case (equation (1.2)
not satisfied), phase synchronization is far from being the identity transformation,
regardless of the pairing scheme.

It is also reasonable to describe the non-oscillatory part of the solution as a linear
combination of 2d real eigensolutions veλt, i. e. avoid the somewhat artificial modes
s(t) in Section 2.2 altogether. The price for this simplification is to have o+2d terms
in (3.26). With appropriate modifications, o+2d functions ψj(t) can be used to derive
an equation similar to (3.27). In other words, phase synchronization may be confined
to the oscillatory part of the solution. Following this approach we ultimately generate
a set of o + 2d mutually independent equations, o of which are of second order, 2d
of first order. The second-order structure inherent to (1.1) is thus lost. We prefer
to apply phase synchronization to real eigensolutions and preserve the second-order
structure.
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Chapter 4

The Decoupling of Linear
Dynamical Systems

We now proceed to construct a real and diagonal system whose solution generates
the solution of the original system (1.1). It is convenient to separate the homogeneous
and the inhomogeneous cases.

4.1 Decoupling the Homogeneous Equation

In Section 3.3, we found a mapping from the set of independent functions ψj(t)
in (3.12) to the homogeneous solution of equation (1.1). Straightforward calculation
reveals that the functions ψj(t) satisfy the second-order differential equations

ψ̈j(t)− (λj + λj+n)ψ̇j(t) + (λjλj+n)ψj(t) = 0, j = 1, . . . , n. (4.1)

All coefficients in the above equations are real. To streamline the notation, define





p(t) = (ψ1(t), . . .ψn(t))T ,
Λ1 = diag(λ1, . . . ,λn), Λ2 = diag(λn+1, . . . ,λ2n),
D = −(Λ1 + Λ2), Ω = Λ1Λ2,

(4.2)

and express the n mutually independent, scalar equations (4.1) in a compact matrix
form

p̈(t) +Dṗ(t) + Ωp(t) = 0. (4.3)

The above represents a decoupled system to which the homogenous equation associ-
ated with (1.1) reduces.

The remaining task is to connect the initial conditions of (1.1) and (4.3). The
initial conditions render q(t), and hence p(t), unique. By simply evaluating (3.27)
and its derivative at t = 0, we can only connect q with p at different times. This
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difficulty can be avoided by observing that phase synchronization does not disturb
the constants γj in equation (3.2). Specifically, from (3.2), we have

�
q(0)
q̇(0)

�
=

�
V1 V2

V1L1 V2L2

��
c1
c2

�
, (4.4)

where the columns of V1, V2 ∈ Cn×n consist of the eigenvectors of (3.1) such that

V1 = (v1, . . . , vn), V2 = (vn+1, . . . , v2n), (4.5)

and where cT1 = (γ1, . . . , γn)T , cT2 = (γn+1, . . . , γ2n)T . On the other hand, equa-
tions (3.12) and (3.21) imply that

�
p(0)
ṗ(0)

�
=

�
I I
Λ1 Λ2

��
c1
c2

�
. (4.6)

Combining (4.6) and (4.4) to eliminate (cT1 cT2 )
T yields the desired real mapping of

initial conditions:
�

p(0)
ṗ(0)

�
=

�
I I
Λ1 Λ2

��
V1 V2

V1Λ1 V2Λ2

�−1 �
q(0)
q̇(0)

�
. (4.7)

The decoupling is now complete. To solve the homogeneous equation associated
with (1.1), solve the quadratic eigenvalue problem (3.1), construct and solve the real,
diagonal system (4.3) with initial conditions (4.7), and map p = (ψ1, . . .ψn)T back to
q using (3.27).

4.2 Decoupling the Inhomogeneous Equation

The homogeneous part of (1.1) can always be decoupled by phase synchronization
as described earlier. Thus the remaining task is to determine how the excitation
f(t) transforms under phase synchronization. Put differently, we postulate that the
coupled system (1.1) can be decoupled into the form

p̈(t) +Dṗ(t) + Ωp(t) = g(t), (4.8)

where D and Ω are given by (4.2) and where g(t) is real. To find g(t), recast (1.1) in
a first-order form

�
q̇(t)
q̈(t)

�
=

�
0 I

−M−1K −M−1C

��
q(t)
q̇(t)

�
+

�
0

M−1f(t)

�
. (4.9)

ShouldM be ill-conditioned, other forms of first-order conversion may be used [24,38].
Inspired by (4.7), we define a real and invertible mapping by

�
q(t)
q̇(t)

�
=

�
V1 V2

V1Λ1 V2Λ2

��
I I
Λ1 Λ2

�−1 �
p1(t)
p2(t)

�
. (4.10)
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Substitution into (4.9) yields the equations

p2(t) = ṗ1(t)− g1(t), (4.11)

p̈1(t) +Dp1(t) + Ωp1(t) = (D + Id/dt)g1(t) + g2(t), (4.12)

where g1(t) and g2(t) are given by

g1(t) = ((V1Λ1 − V2Λ2V
−1
2 V1)−1 + (V2Λ2 − V1Λ1V

−1
1 V2)−1)M−1f(t),

g2(t) = (Λ1(V1Λ1 − V2Λ2V
−1
2 V1)−1 + Λ2(V2Λ2 − V1Λ1V

−1
1 V2)−1)M−1f(t).

(4.13)
Note that g1(t) and g2(t) are real and depend continuously on f(t). Specifically,
equation (4.11) defines how p2(t) is connected to the displacements and velocities of
the decoupled system (4.8), while (4.12) represents the dynamics of the decoupled
system, i.e. p1(t) = p(t). We thus obtain (4.8) with

g(t) = (D + Id/dt)g1(t) + g2(t). (4.14)

The mapping from p to q, as inferred from equations (4.10), (4.11) and (4.12), is

q(t) = (T1 + T2 d/dt)p(t)− T2g1(t), (4.15)

where the real matrices T1 and T2 are given by

T1 = (V1Λ2 − V2Λ1)(Λ2 − Λ1)
−1, (4.16)

T2 = (V2 − V1)(Λ2 − Λ1)
−1. (4.17)

As a mapping between p and q, (4.15) is real, time-dependent and nonlinear. More
specifically, the transformation is affine in p(t) because (T1 + T2 d/dt)p(t) is linear
and followed by the shift −T2g1(t).

The initial conditions of (1.1) and (4.8) are connected by

�
p(0)
ṗ(0)

�
=

�
I I
Λ1 Λ2

��
V1 V2

V1Λ1 V2Λ2

�−1 �
q(0)
q̇(0)

�
+

�
0

g1(0)

�
, (4.18)

thus completing the decoupling of (1.1). The formulas for decoupling presented in
this section are direct generalizations of those given in [37], applicable only when M ,
C and K are SPD.

4.3 Nonlinearity and Non-Uniqueness in Decou-
pling

Based upon physical intuition, the dependence of the nonlinear mapping (4.15)
on the excitation f(t) can be explained as follows. If f(t) = 0, viscous damping
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and gyroscopic forces induce constant time-shifts between the components of a mode
s(t). These time-shifts are accounted for by the linear mapping (3.27). For f(t) �= 0,
the mapping must account for additional and not necessarily constant time-shifts
caused by the external force f(t). Thus, a mapping leading to the decoupling of the
inhomogeneous equation must depend on f(t). If f(t) = 0, the nonlinear mapping in
(4.15) for the inhomogeneous equation reduces to the linear mapping in (3.27).

In decoupling a homogeneous system, we have observed a degree of non-uniqueness
when generating the modes. This non-uniqueness is carried over to the decoupling
of (1.1). Recall that two systems with identical eigenvalues and multiplicities are
termed strictly isospectral. Since the property of being strictly isospectral is reflex-
ive, transitive and symmetric, strictly isospectral systems generate an equivalence
class [20]. It is easy to verify that system (1.1) and the decoupled systems (4.3) are
strictly isospectral regardless of the pairing of real eigensolutions during phase syn-
chronization. Indeed, every system within the equivalence class can be generated by
suitably pairing the real eigensolutions. Thus, phase synchronization generates the
path to all real and diagonal systems within the equivalence class of systems strictly
isospectral to (1.1).

Finally, it is important to point out that decoupling by phase synchronization
reduces to a linear mapping if M , C and K are simultaneously diagonalizable to real
diagonal matrices by a real equivalence transformation (because phase synchroniza-
tion becomes the identity in this case).

4.4 Decoupling Algorithm

The procedure for decoupling the linear system (1.1) by phase synchronization
may be summarized as an algorithm.

1. Solve the quadratic eigenvalue problem (3.1) and generate the real and diagonal
system (4.3).

2. If f(t) = 0, decoupling is complete. The solution p of (4.3), with initial condi-
tions (4.7) can be easily obtained. We may recover the homogeneous solution q
of (1.1) from p by simply evaluating (3.27).

3. If f(t) �= 0, the decoupled system is (4.8), which can be obtained from (4.3) by
incorporating an excitation g(t) given by (4.14). The solution p of the real and
diagonal system (4.8), with initial conditions (4.18), can be readily computed.
We may recover the solution q of (1.1) from p by using (4.15).

The decoupling algorithm is illustrated in Figure 4.1. Although complex quantities
appear in the algorithmic developement, the entire process can be implemented in
real arithmetic. Computing the solution by decoupling is particularly attractive if
(1.1) is very stiff (eigenvalues vary over many orders of magnitude). In this case,
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Figure 4.1: Flowchart for decoupling a second-order linear system. All required
parameters are obtained through solution of a quadratic eigenvalue problem.
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different time stepping methods can be applied to each decoupled equation resulting
in substantial improvement in algorithms for response computation. In addition,
low-energy components of p(t) may be neglected to obtain powerful model reduction
schemes (see Section 6). Further applications of the algorithm will be taken up in
future papers.

4.5 Examples

Three examples will be given to illustrate the concept of modes of vibration as well
as the process of decoupling by phase synchronization. Complete details are given in
the Example 1 to provide physical insight and to reinforce the mathematical concepts
expounded earlier.

4.5.1 Example 1: Oscillatory Free Vibration

Consider a homogeneous mass-spring-damper system governed by an equation of
the type (1.1), with

M = m

�
1 0
0 1

�
, C =

�
c1 + c2 −c2
−c2 c2 + c3

�
, K = k

�
2 −1
−1 2

�
, (4.19)

f(t) = 0 and initial conditions

q(0) = (1, 2)T , q̇(0) = (−1, 1)T . (4.20)

The system is shown in Figure 4.2. For convenience, let m = 1. Three different cases
will be examined.

!

Figure 4.2: The mass-spring-damper system of Example 1.

(a) System is undamped: c1 = c2 = c3 = 0. Solution of the symmetric eigenvalue
problem (3.1) yields, upon normalization with respect to the mass matrix,

ω = diag(1, 3), U =
1√
2

�
1 1
1 −1

�
. (4.21)
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The general solution is a superposition of two modes such that

q(t) =
2�

j=1

sj(t) = C1 cos(t− θ1)u1 + C2 cos(
√
3t− θ2)u2. (4.22)

The constants C1, θ2, C2 and θ2 are determined by the initial conditions. As shown in
Figure 4.3, the system components in each mode are either in phase or out of phase so
that vibration appears truly synchronous. This system can be decoupled by classical
modal analysis as explained in Chapter 2.

! !
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Figure 4.3: Modes and undamped free response of Example 1a shown in three parts.
(a) First mode s1(t) with first element s11(t) (solid line) and second element s21(t)
(dashed line). (b) Second mode s2(t) with first element s22(t) (solid line) and second
element s22(t) (dashed line). (c) Free Response q(t) with first element q1(t) (solid line)
and second element q2(t) (dashed line).

(b) Classically damped system: c1 = c2 = c3 = 0.1. Since C = 0.1K, the system
is proportionally damped. The general solution is given by

q(t) =
2�

j=1

sj(t) = C1e
−0.05t cos(1.00t− θ1)u1 + C2e

−0.15t cos(1.73t− θ2)u2. (4.23)
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Figure 4.4: Modes and free response of Example 1b shown in three parts. (a) First
mode = s1(t) with first element s11(t) (solid line) and second element s21(t) (dashed
line). (b) Second mode s2(t) with first element s22(t) (solid line) and second element
s22(t) (dashed line). (c) Free Response q(t) with first element q1(t) (solid line) and
second element q2(t) (dashed line).

As shown in Figure 4.4, the system components in each mode are again either in
phase or out of phase but, in contrast to case (a), they decay exponentially. The
system can still be decoupled by classical modal analysis.

(c) Non-classically damped system: c1 = 0.6, c2 = c3 = 0.1. Since condition (1.2)
is not satisfied, the system cannot be decoupled by classical modal analysis. Solution
of the quadratic eigenvalue problem (3.1) yields

λ1 = λ̄3 = −0.18 + 1.00i , v1 = v̄3 =
�
0.74e−i7.38◦ , −0.72e−i172.51◦

�T
(4.24)

λ2 = λ̄4 = −0.27 + 1.68i , v2 = v̄4 =
�
−0.73e−i167.13◦ , −0.73e−i12.68◦

�T
,(4.25)

where, for convenience, the eigenvectors are normalized in accordance with

2λjv
T
j Mvj + vTj Cvj = 2iωj. (4.26)
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From (3.9), the two modes are given by

s1(t) = C1e
−0.18t

�
0.74 cos(1.00t− θ1 − 7.38◦)

−0.72 cos(1.00t− θ1 − 172.51◦)

�
, (4.27)

s2(t) = C2e
−0.27t

�
−0.73 cos(1.68t− θ2 − 167.13◦)
−0.73 cos(1.68t− θ2 − 12.68◦)

�
. (4.28)

The general solution is a superposition of these two modes. As can be easily seen in
Figure 4.5, there is a constant phase difference between the two components in each
mode. Upon decoupling, the equation of motion becomes p̈(t) +Dṗ(t) + Ωp(t) = 0,
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Figure 4.5: Modes and free response of Example 1c shown in three parts. (a) First
mode = s1(t) with first element s11(t) (solid line) and second element s21(t) (dashed
line). (b) Second mode s2(t) with first element s22(t) (solid line) and second element
s22(t) (dashed line). (c) Free Response q(t) with first element q1(t) (solid line) and
second element q2(t) (dashed line).

with
D = diag(0.36, 0.54), Ω = diag(1.03, 2.90) (4.29)

The initial conditions of the decoupled system are p(0) = (2.32, −0.71)T , ṗ(t) =
(−0.50, 2.09)T . The solution q(t) of the original system can be readily recovered
from solution p(t) of the decoupled system by (3.27). It can be checked that, whether
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generated by decoupling or by direct numerical solution of the original equation of
motion, is the same.

4.5.2 Example 2: Non-oscillatory Free Vibration

Consider a homogeneous mass-spring-damper system governed by an equation of
the type (1.1), with

M =

�
1 0
0 1

�
, C =

�
4 −1
−1 8

�
, K =

�
1 0
0 4

�
, (4.30)

and initial conditions

q(0) = (1, −1)T , q̇(0) = (1, 1)T . (4.31)

This system does not satisfy (1.2) and, thus, cannot be decoupled by congruence
transformations (classical modal analysis, see Chapter 2). Solution of the quadratic
eigenvalue problem yields the modes

s1(t) = −0.25ie−4.16t

×
�

0.39 cos(i3.58t+ π/2 + 1.59i+ 0.45i)
1.00i cos(i3.58t+ π/2 + 1.59i+ π/2 + 0.04i)

�
, (4.32)

s2(t) = 1.72ie−1.84t

×
�

0.94 cos(i1.58t+ π/2 + 0.81i− 0.04i)
−0.73 cos(i1.58t+ π/2 + 0.81i−+π/2− 0.45i)

�
, (4.33)

and the decoupled system p̈(t) +Dṗ(t) + Ωp(t) = 0, with

D = diag(8.33, 3.67), Ω = diag(4.54, 0.88), (4.34)

and initial conditions p(0) = (−0.59, 1.55)T , ṗ(t) = (0.16, 0.81)T . Upon solution
of the decoupled equations, we can recover q(t) from p(t) by (3.27).

4.5.3 Example 3: Forced Vibration

Consider the mass-spring-damper system of Example 1 (c) and under the excita-
tion

f(t) = (cos(t), sin(2t))T . (4.35)

By using (4.16) and (4.17), we compute

T1 =

�
0.72 0.74
0.73 −0.69

�
, T2 =

�
−0.09 0.10
0.09 0.10

�
, (4.36)
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and the excitation

g(t) =

�
0.72 cos(t) + 0.18 cos(2t) + 0.09 sin(t) + 0.73 sin(2t)
0.74 cos(t) + 0.20 cos(2t)− 0.10 sin(t)− 0.69 sin(2t)

�
. (4.37)

The initial conditions, p(0) = (2.32, −0.71)T , ṗ(t) = (−0.43, −1.61)T , of the
decoupled system are computed using (4.18). The decoupled system can be read-
ily solved and solution of the original system can be recovered from p(t) by (4.15).
Steady-state behaviors of g(t), p(t) and q(t) are shown in Figure 4.6. It can be
checked that the response, whether generated by decoupling or by direct numerical
integration, is the same.
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Figure 4.6: Forced response and excitation of Example 3 with a smooth excitation
as defined in (4.35). (a) Excitation g(t) of the decoupled system with first element
g1(t) (solid line) and second element g2(t) (dashed line). (b) Steady-state response of
the decoupled system with first element p1(t) (solid line ) and second element p2(t)
(dashed line). (c) Steady-state response q(t) of the original system with first element
q1(t) (solid line) and second element q2(t) (dashed line).

An implicit assumption in (4.14) is that f(t) be differentiable. However, this
assumption can be easily relaxed if all derivatives are interpreted as distributional
derivatives [49, 52].
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4.6 Efficiency of Solution by Decoupling

Although system solution is probably not the most important reason for decou-
pling, it may still be instructive to compare the efficiency of solution of (1.1) by direct
numerical integration and by decoupling. One measure of the performance of an al-
gorithm is the number of floating point operations (flops) required to evaluate the
response at m time points within a given time window.

4.6.1 Efficiency of Decoupling the Homogeneous Equation

The flops associated with three procedures will be compared. (a) In direct nu-
merical integration, a standard procedure is to rewrite (1.1) in first-order form using
the state companion matrix

A =

�
0 I

−M−1K −M−1C

�
. (4.38)

The state equation �
q̇(t)
q̈(t)

�
= A

�
q(t)
q̇(t)

�
, (4.39)

is then discretized, and the resulting system of 2n coupled difference equations is
solved by matrix computations [5]. This procedure involves one-time computation of
the exponential matrix exp(A∆t), where ∆t is the sampling time, and one matrix-
vector multiplication at each step. The estimate of flops for response calculation at
m instants is [1, 14, 23, 40]

N1 = 160n3 + 8mn2, (4.40)

where n is the number of degrees of freedom and m > n in general.
In solving (1.1) by decoupling, two alternative procedures may be used. (b) It

is possible to evaluate the n responses by directly invoking (3.27) and the exact
responses

pj(t) = eαjt

�
pj(0) cos(ωjt) +

ṗj(0)− αjpj(0)

ωj
sin(ωjt)

�
. (4.41)

This procedure involves one-time solution of (3.1) and (4.7), plus evaluation of (3.27)
and (4.41) at each step. The estimate of flops for this procedure is [1, 14, 23, 53]

N2 = 213n3 + 2mn2. (4.42)

(c) Another method of solution is to decouple (1.1) through solution of the
quadratic eigenvalue problem (3.1) followed by direct numerical integration of each
decoupled equation (this procedure is also used in forced vibration). If each decou-
pled equation is solved numerically with the same algorithm used in procedure (a)
for direct integration of (1.1), the estimate of flops is

N3 = 213n3 + 2mn2 + 8mn+ 1280n. (4.43)
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Figure 4.7: Comparison of efficiency of three methods of solution: direct numerical
integration (dashed gray line); decoupling by invoking Eqs. (3.27) and (4.41) (solid
black line); and decoupling followed by numerical integration of the decoupled equa-
tions (dashed black line). (a) Estimated flops to evaluate the response at m instants
vs. degree of freedom n. The curves associated with N2 and N3 agree within the
line thickness. (b) Estimated flops vs. starting time d of window, where the initial
conditions are prescribed at t = 0, and m = 105, n = 50.

The variations of N1, N2, and N3 with n are illustrated in Figure 4.7a for a window
containing m = 105 instants. It is observed that the curves associated with N2, N3

agree within the line thickness and that procedures (b) and (c) are more efficient
than (a). In fact, the estimate of flops shown in Figure 4.7a is very conservative for
two reasons. First, N3 has been estimated by using the same sampling time in the
integration of all decoupled equations. If an optimal sampling time is individually
chosen for each decoupled equation, N3 may decrease substantially. Second, Figure
4.7a is generated by using a window of m = 105 points that begins from t = 0, the
time at which initial values are prescribed. For any window that begins from a time
d >> 0, numerical integration must still start from the initial time t = 0. A large
number of iterations may be required over the interval 0 < t < d before the window
of interest is reached. Thus for d >> 0, N1 and N3 increase appreciably while N2
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remains constant. This situation is depicted in Figure 4.7b, in which N1, N2, and N3

are plotted against d. It is observed that N1 increases more rapidly than N3. Based
upon Figure 4.7, it may be stated that solution by decoupling generally reduces the
flops and economizes on both core memory and computing time.

4.6.2 Efficiency of Decoupling the Inhomogeneous Equation

The flops associated with two procedures are compared. (a) For direct numerical
integration, we recast the second-order equation (1.1) in state space as a first-order
system of dimension 2n by using the state companion matrix A in (4.38). The state
equation �

q̇(t)
q̈(t)

�
= A

�
q(t)
q̇(t)

�
+

�
0

M−1f(t)

�
, (4.44)

is then discretized, and the resulting difference equation is solved by matrix computa-
tions [5]. The flops for this standard procedure for response calculation at m instants
in forced vibration is [1, 14, 23, 40]

N4 = 160n3 + 16mn2, (4.45)

where n is the number of degrees of freedom and m > n in general.
(b) In solving (1.1) by decoupling, the decoupled system (4.8) is obtained through

solution of the quadratic eigenvalue problem (3.1) and evaluation of (4.18). Each
independent decoupled system in (4.8) is then solved numerically at m instants with
the same algorithm used in procedure (a). Subsequently, Eq. (4.15) is employed to
compute the response q(t). The estimate of flops is [1, 14, 23, 53]

N5 = 10mn2 + 16mn+ 213n3 + 4n2. (4.46)

The variations of N4 and N5 with n are illustrated in Figure 4.8 for a window
containing m = 106 instants. It is observed that response calculation by decoupling
generally reduces the flops and economizes on both core memory and computing time.
In fact, Figure 4.8 is rather conservative because N5 has been estimated by using the
same sampling time in the integration of all decoupled equations. If an optimal sam-
pling time can be individually chosen for each decoupled equation, N5 may decrease
substantially. Moreover, each decoupled equation may be solved exactly in many
applications in terms of elementary functions (rather than convolution integrals). On
the other hand, the efficiency of response calculation by decoupling depends on the
size of the time window. In addition, validity of the above flop estimates requires
that the excitation f(t) and response q(t) be sufficiently smooth. Distributional ex-
citation such as an impulse and weak solutions (less than twice differentiable) are
excluded [49, 52]. Thus Figure 4.8 should be interpreted as indicative rather than
absolute in the comparison of efficiency.
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Figure 4.8: Comparison of efficiency in response calculation under forced vibration by
direct numerical integration (dashed gray line) and by decoupling (solid black line).
Estimated flops to evaluate the response at m = 106 instants are plotted against the
degree of freedom n.
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Chapter 5

Decoupling in Configuration and
State Spaces

It was shown in Chapter 4 that any linear system can be decoupled in the config-
uration space by a real, nonlinear, time-dependent transformation. We will show in
this chapter that the time-dependent configuration-space decoupling transformation
is real, linear and time-invariant when cast in state space. In non-homogeneous sys-
tems, both the configuration and associated state transformations are nonlinear (in

the displacements p(t) respectively the state
�
p(t)T , ṗ(t)T

�T
) and depend continu-

ously on the excitation. An example is given of a linear system that can be decoupled
in configuration but not in state space.

5.1 Simplifying Assumptions

Although the decoupling by phase synchronization can be extended to defective
systems [28, 36, 37] so that (1.1) can be decoupled without restrictions, this type of
generality will be suppressed in the present chapter. Unless otherwise stated, it will
be assumed that (a) all eigenvalues of (3.1) are complex (with non-zero imaginary
parts) and distinct, (b) f(t) = 0 and (c) M , C, and K are SPD. These assumptions
are made to streamline the presentation and, as explained later on, they can be readily
relaxed.

5.2 State-Space Formulation of Phase Synchroniza-
tion

What is the state-space version of the time-dependent decoupling transforma-
tion (4.15)? Since physical insight is diminished due to (complex) state transfor-
mations, it would be laborious to recast and interpret in state space every equation
associated with phase synchronization. This is however not necessary. An efficient
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reformulation is provided if a trial state-space version of Eq. (4.15) is first surmised
through intuition. The trial version is then rigorously validated.

5.2.1 Derivation of Reformulated Transformation

The free response of the homogeneous system (1.1) is

q(t) = V1e
Λ1ta1 + V2e

Λ2ta2, (5.1)

where Λ1 and Λ2 are defined in (4.2), and V1 and V2 are given in (4.5). The n-
dimensional columnvectors a1 and a2 contain 2n constants depending on the initial
conditions. Because of the simplifying assumptions in Section 5.1, Λ2 = Λ̄1, V2 = V̄1

and a2 = ā1. The state (displacements and velocities) of the homogeneous system
(1.1) is given by �

q(t)
q̇(t)

�
=

�
V1 V2

V1Λ1 V2Λ2

��
a1
a2

�
. (5.2)

We use the fact that phase synchronization does not disturb the constants a1, a2 (see
Chapter 4), to write down the state of the homogeneous decoupled system

�
p(t)
ṗ(t)

�
=

�
I I
Λ1 Λ2

��
a1
a2

�
. (5.3)

Equations (5.2) and (5.3) can be combined to yield the state transformation

�
q(t)
q̇(t)

�
=

�
V1 V2

V1Λ1 V2Λ2

��
I I
Λ1 Λ2

�−1 �
p(t)
ṗ(t)

�
= T

�
p(t)
ṗ(t)

�
. (5.4)

It can be checked that the transformation matrix T is real and nonsingular. Thus
the time-dependent configuration-space transformation (3.27) becomes a linear time-
invariant transformation (5.4) when cast in state space.

This surprising result, surmised through intuition, can be readily validated. In
free vibration, the state-space versions of (1.1) and (4.8) are given, respectively, by

�
q̇(t)
q̈(t)

�
=

�
0 I

−M−1K −M−1C

��
q(t)
q̇(t)

�
= A

�
q(t)
q̇(t)

�
, (5.5)

�
ṗ(t)
p̈(t)

�
=

�
0 I
−Ω −D

��
p(t)
ṗ(t)

�
= B

�
p(t)
ṗ(t)

�
, (5.6)

where D, Ω are defined in (4.2). Observe that the quadratic eigenvalue problems as-
sociated with (1.1) and (4.8) have the same eigenvalues with the same multiplicities.
In addition, the quadratic eigenvalue problem (3.1) and the matrix A in (5.5) have
identical eigenvalues, and the same is true for the quadratic eigenvalue problem asso-
ciated with the decoupled system (4.8) and the matrix B in (5.6). As a consequence,
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A, B have the same eigenvalues, i.e., they are isospectral, and each is diagonaliz-
able because if the eigenvalues are distinct. From linear algebra, two diagonalizable
matrices are isospectral if and only if they are similar. It can be checked by direct
manipulations that

T−1AT = B (5.7)

where T is defined in (5.4). Thus the state transformation (5.4) converts (5.5) into
(5.6) through a similarity transformation. The state-space version of the decoupling
transformation (3.27) is indeed given by (5.4). While (3.27) decouples the homoge-
neous equation (1.1) in configuration space, the state transformation (5.4) does not
decouple the state-space version of system (1.1) because B is not diagonal. Rather,
Eq. (5.4) operates in such a way that (5.5) is converted into (5.6), from which the
homogeneous decoupled system is extracted.

5.2.2 Relaxation of Assumptions

Subject to the simplifying assumptions of Section 5.1, the time-dependent decou-
pling transformation (3.27) becomes a linear time-invariant transformation in state
space. It can be shown that the same observation is true for free vibration under
real, complex, or repeated eigenvalues, as long as (3.1) is non-defective. If there
exist 2r ≤ 2n distinct real eigenvalues, there is an equivalence class of (2r)!/2rr!
different forms of D, Ω associated with the real eigenvalues [37]. For each member
of this equivalence class, the corresponding time-dependent configuration-space de-
coupling transformation is equivalent to a linear time-invariant state transformation.
When (3.1) is defective, Jordan sub-matrices appear in many formulas associated
with decoupling [28, 36, 37]. As a result, both the configuration-space decoupling
transformation and its state-space version are time-dependent.

If f(t) �= 0, the nonlinear configuration-space decoupling transformation (4.8)
depends continuously on the excitation f(t). Consequently, its reformulated state-
space version also involves f(t). From (4.10), it can be shown that

�
q(t)
q̇(t)

�
=

�
V1 V2

V1Λ1 V2Λ2

��
I I
Λ1 Λ2

�−1 �
p(t)
ṗ(t)

�
−

�
0

g2(t)

�
, (5.8)

is the state-space version of the decoupling transformation for forced vibration (4.15).
Phase synchronization can be used to decouple systems with symmetric or non-
symmetric coefficients, provided that M is nonsingular. The observations in this
section thus remain valid when M , C and K are not symmetric.
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5.3 Phase Synchronization and Structure Preserv-
ing Transformations

Garvey et al. [18,19] defined structure preserving transformations (SPT) and ap-
plied them to decouple certain linear dynamical systems of second order. In our
notation, an equivalence transformation {UL, UR} is structure-preserving if and only
if

UT
L

�
0 K
K C

�
UR =

�
0 KD

KD CD

�
, (5.9)

UT
L

�
K 0
0 −M

�
UR =

�
KD 0
0 −MD

�
, (5.10)

UT
L

�
C M
M 0

�
UR =

�
CD MD

MD 0

�
, (5.11)

where UL, UR are real, invertible 2n × 2n matrices and MD, CD, KD are real n ×
n matrices. It is easy to check that the eigenvalues (and their multiplicities) of
equation (3.1) remain the same if M , C and K are replaced respectively by MD,
CD and KD. Thus, SPTs are strictly isospectral. An SPT is termed diagonalizing if
MD, CD, KD are diagonal. To illustrate how a diagonalizing SPT decouples (1.1) for
f(t) = 0, consider the first-order formulation

�
C M
M 0

��
q̇(t)
q̈(t)

�
+

�
K 0
0 −M

��
q(t)
q̇(t)

�
= 0. (5.12)

A diagonalizing SPT leads to
�

CD MD

MD 0

��
q̇D(t)
q̈D(t)

�
+

�
KD 0
0 −MD

��
qD(t)
q̇D(t)

�
= 0, (5.13)

from which the decoupled second-order equation

MDq̈D(t) + CDq̇D(t) +KDqD(t) = 0, (5.14)

can be extracted. It was pointed out in [10] that current algorithms for constructing
diagonalizing SPTs can be quite restrictive.

We have argued that the decoupled system (4.3) is the unique real and diagonal
system, isospectral to (1.1). Thus, a diagonalizing SPT must generate the same
decoupled system as phase synchronization. It is indeed straightforward to show that
CD = D and KD = Ω, provided we choose MD = I, which can be done without loss
of generality. Thus, a diagonalizing SPT leads to the same decoupled system as phase
synchronization.

This somewhat surprising observation can be explained as follows. A diagonalizing
SPT lives in the state space, i.e. the space of dimension 2n spanned by displacements
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and velocities. Phase synchronization, on the other hand, is a method in the con-
figuration space of dimension n spanned only by the displacements. Any procedure
in configuration space can of course be executed in state space (but not vice versa).
We thus may interpret diagonalizing SPTs to be the state-space version of phase
synchronization. Starting from phase synchronization, a diagonalizing SPT can be
constructed, if it is available. The mapping in equation (4.7), for example, defines a
diagonalizing structure-preserving congruence transformation for symmetric and pos-
itive definite M,C,K and a clever normalization of eigenvectors. On the other hand,
it is generally not possible to obtain phase synchronization from diagonalizing SPTs
(see [42]).

5.4 Illustrative Examples

Two examples illustrate the theoretical developments of this chapter. The first
examples shows that there are systems that can be decoupled in configuration space,
but not in state space. The second emphasizes SPTs.

5.4.1 Example 1: Coordinate Coupling in State Space

A two-degree-of-freedom system in free vibration is defined by M = I,

K =

�
1 0
0 4

�
, C =

�
2 0
0 4

�
, (5.15)

This damped system is already in a decoupled form, and both classical modal analysis
(see Chapter 2) and phase synchronization (see Chapter 4) reduce to identity trans-
formation in configuration space. The eigenvalues of the state companion matrix

A =

�
0 I

−M−1K −M−1C

�
=





0 0 1 0
0 0 0 1
−1 0 −2 0
0 −4 0 −4



 (5.16)

are λ1 = −1, λ2 = −2 and each is repeated. However, there is only one eigenvector
(1, 0,−1, 0)T associated with λ1 and also only one eigenvector (0, 1, 0,−2)T associated
with λ2. Therefore, the matrix A is defective and cannot be diagonalized. As a result,
the system in this example cannot be decoupled by complex modal analysis in state
space. A generalization is obvious: a classically damped multi-degree-of-freedom
system cannot be decoupled by complex modal analysis in state space if one or more
degrees are critically damped.

There should not be any confusion about the role played by structure-preserving
transformations: they are state-space transformations aiming at decoupling systems
in the configuration space. It is easy to show that a diagonalizing SPT for this
example is given by UL = UR = I.
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5.4.2 Example 2: Diagonalizing Structure-Preserving Trans-
formation

Consider a non-classically damped system governed by (1.1) with M = I,

C =

�
0.5 −0.1
−0.1 1

�
, K =

�
1 0
0 4

�
, (5.17)

and f(t) = 0. Solution of the quadratic eigenvalue problem (3.1) yields

λ1 = λ̄3 == 0.25 + 0.97i , v1 = v̄3 =
�
1.00e−i0.0002, −0.03e−i1.49

�T
(5.18)

λ2 = λ̄4 == 0.50 + 1.93i , v2 = v̄4 =
�
0.07e−i1.66, −1.00e−i3.14

�T
(5.19)

Phase synchronization converts (1.1) into (4.8), for which

D = diag(0.50, 1.00), Ω = diag(1.00, 3.99), (5.20)

and g(t) = 0. The configuration-space decoupling transformation (3.27) becomes

�
q1(t)
q2(t)

�
=

�
1.00p1(t− 0.002) + 0.04p2(t− 0.86)
−0.02p1(t− 1.53)− 0.44p2(t− 1.63)

�
(5.21)

From (5.4), the state-space version of (3.27) is given by





q1(t)
q2(t)
q̇1(t)
q̇2(t)



 =





1.00 −0.02 −0.00 −0.04
0.01 1.00 0.04 0.00
0.00 0.14 1.00 0.01
−0.03 −0.00 −0.01 1.00









p1(t)
p2(t)
ṗ1(t)
ṗ2(t)



 = T





p1(t)
p2(t)
ṗ1(t)
ṗ2(t)



 (5.22)

The matrix T above defines a diagonalizing SPT {UL, UR} with UL = UR = T . This
transformation satisfies equations (5.9)-(5.11) above, for which MD = I, CD = D,
and KD = Ω.
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Chapter 6

Applications in Earthquake
Engineering

The response of a building to earthquake excitation is of great importance in
structural engineering. Although the dynamic properties are nonlinear, experimen-
tal studies using shaking tables have shown that the system response can often be
simulated to a satisfactory degree of accuracy by a linear viscoelastic model. The
equation of motion (1.1) is thus widely used in earthquake engineering to model the
dynamic behavior of, for example, multi-story buildings, nuclear power-plants or base-
isolated structures [8, 12, 27, 55,56, 60, 61]). In such applications, M and K represent
respectively the inertia and elastic properties of the structure under investigation and
C describes the energy dissipation. All three system matrices are SPD. Practically
speaking, the commutativity condition (1.2) is satisfied if energy dissipation is almost
uniformly distributed throughout the system. This condition is violated for systems
consisting of two or more subsystems with significantly different levels of damping.
We shall consider two examples in the analysis of (1.1) when (1.2) is not satisfied.

6.1 Response of Light Equipment in a Base-Isolated
Structure

The use of base-isolation is known to attenuate not only the response of the
building (termed the primary structure), but also the response of a secondary system
mounted on the primary structure, for example internal equipment. The isolation sys-
tem, primary structure and secondary system are usually made of different materials
with significantly different energy dissipation characteristics. Hence the commutativ-
ity condition (1.2) is not satisfied [55,56].

The classical engineering approach to the analysis of base-isolated systems rests
upon classical modal analysis (see Chapter 2). That is, we solve the symmetric eigen-
value problem (2.1) to obtain n real eigenvectors uj and n natural frequencies ωj,
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j = 1, . . . , n. The eigenvectors are orthogonal with respect to M or K. Normalize
the eigenvectors with respect to M and use the normalized eigenvectors as columns
to construct the modal matrix U in (2.2). Upon modal transformation q(t) = Uq̃(t)
in (2.6), the equation of motion (1.1) becomes (2.7) with modal damping matrix
C̃ = UTCU and spectral matrix K̃ = UTKU (see (2.2)). The modal damping matrix
C̃ is diagonal if and only if (1.2) is satisfied [7]. When C̃ is diagonal, (2.7) is decoupled
and methods for analysis and design are readily available (see [8]). When C̃ is not
diagonal, (2.7) is often decoupled by simply neglecting the off-diagonal elements of C̃.
This procedure, termed the decoupling approximation, is relatively routine in struc-
tural engineering. The decoupling approximation appears intuitive if the off-diagonal
elements in C̃ are small in magnitude when compared to the diagonal elements, i. e.
C̃ is diagonally dominant. However, even when C̃ is diagonally dominant, the errors
can still be large and exhibit rather surprising behaviors [21, 29, 41].

Tsai and Kelly [55] investigated the validity of the decoupling approximation in
computation of the seismic response of attached equipment in a base-isolated building.
In [55], they derived a linear viscoelastic model for a five-story, base-isolated build-
ing with internal equipment. The model has three degrees of freedom, representing
the displacement of the base, the primary structure and the equipment respectively
(see [55] for the details of the modeling process). The response of the equipment to
the 1940 El Centro earthquake is studied in detail. Here, we utilize their formulation
and apply the decoupling algorithm described in Section 4.4 to this problem.

GivenM , C andK as in [55], we first solve the quadratic eigenvalue problem (3.1).
Using the eigen-data, we construct the matrices Λ1 and Λ2 according to (4.2) and V1,
V2 according to (4.5). With an excitation g(t) derived from (4.13) and (4.14), the
decoupled equation (4.8) is obtained, where

D = diag(0.1910, 0.1644, 0.8178)

and
Ω = diag(0.3505, 33.0195, 33.7899).

We apply an explicit Runge-Kutta (4,5) formula [15] (implemented in the Matlab
function ode45 ) to solve the decoupled equations (4.8), i.e. compute p(t). The time
step is adaptively chosen for each independent decoupled coordinate and can be as
large as 0.08. Equation (4.15) is used to map p(t) back to q(t). The upper part of
Figure 6.1 shows the response of the attached equipment as computed by the method
of phase synchronization. The lower part shows the results obtained by employing
the decoupling approximation. As already observed by Tsai and Kelly [55], the re-
sults obtained by the decoupling approximation underestimate the response of the
equipment because the coupling in (2.7) is significant. In contrast, the method of
phase synchronization generates the decoupled equation (4.8) by capturing all cou-
pling effects. Using (4.8) instead of decoupling approximation, an accurate system
response is computed. Furthermore, system solution by phase synchronization can be
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Figure 6.1: Response of attached equipment to the 1940 El Centro earthquake. Top:
phase synchronization. Bottom: decoupling approximation.

substantially more efficient than direct simulation because a different time step may
be chosen for each independent decoupled equation (see Section 4.6.2). For example,
the time step in the present example could be chosen twice as big for the decoupled
equations. However, the main advantage of phase synchronization lies beyond re-
sponse calculation: all streamlined design and analysis methods applicable only to
independent single-degree-of-freedom equations can be used once (4.8) is obtained.

6.2 A Simplified Linear Viscoelastic Model of a
Nuclear Power Plant

We now consider the seismic response of a nuclear power plant. We use the 8
degree-of-freedom linear viscoelastic model presented in [27] and shown in Figure 6.2
for convenience. The model consists of four interconnected rigid structures repre-
senting the core, prestressed concrete pressure vessel (PCPV), basement and building
respectively. Each structure has two degrees of freedom representing the sway (U)
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Figure 6.2: An 8 degree-of-freedom model of a nuclear power plant (taken from [27]).

and rocking angle (Φ). The coefficient matrices M , C and K are given in [27]. We are
interested in the response of the core (U1) when the structure is subject to the 1940
El Centro earthquake.

We compare three approaches to this problem. First, we simulate the response of
the system using the Runge-Kutta formula already mentioned in the previous section.
The results serve as the benchmark solution and are shown in the second uppermost
part of Figure 6.3. Next, we apply the method of phase synchronization and decouple
the system to obtain (4.8). Upon solution of the decoupled equations using the same
Runge-Kutta formula as above, we compute the energy

Ej =
1

2

� T

0

ṗj(t)
2 + Ω2

jpj(t)
2dt (6.1)

in each decoupled coordinate pj(t). In the above equation, T = 10, and Ωj is the jth
diagonal entry of Ω in (4.2). The results are shown in the top part of Figure 6.3 and
it is clear that the coordinates p1(t) and p5(t) carry most of the energy within the
system. As a result, an approximation to the response can be obtained by solving only
the first five decoupled equations (which are associated with the lowest frequencies),
followed by transformation to q(t) using (4.15). The results of this approximation,
shown in the third uppermost part of Figure 6.3, are in very good agreement with
the core response obtained by direct numerical simulation.
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Figure 6.3: Comparison of three approaches for response calculation.

Finally, we can obtain another decoupled system using the decoupling approxima-
tion. When the first five coordinates of this decoupled system are used to generate
the system response, the resulting approximation dramatically underestimates the
core response, as is shown in the bottom part of Figure 6.3. Perhaps this is not sur-
prising. The decoupling approximation produces a decoupled system by neglecting
the coupling caused by non-zero off-diagonal elements of the modal damping matrix
C̃. In contrast, the method of phase synchronization generates a decoupled equation
by incorporating all coupling effects properly.

To be sure, direct numerical simulation certainly yields the correct core response,
but the method of phase synchronization offers a lot more than just efficient evaluation
of response. Incidentally, we have outlined in this example a new method of model
reduction, i.e. solving fewer differential equations while achieving good accuracy in
response computations. The decoupling approximation, although in popular use, is
not feasible for model reduction unless coupling is negligible.
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Chapter 7

Conclusions

This dissertation builds upon previously published work. Phase synchronization
and the decoupling of all non-defective, purely oscillatory linear systems with sym-
metric coefficients in free vibration was first presented in [36]. The procedure was
extended in [37] to apply to non-defective, non-oscillatory systems with symmetric co-
efficients in free or forced vibration. Currently, an extension of the theory to defective
systems with symmetric coefficients in under review [28]. Chapter 5 is based upon the
extended discussion on decoupling in configuration and state space published in [42].

Here, we have presented a theory and an algorithm to decouple all non-defective
second-order linear dynamical systems (with symmetric and non-symmetric coeffi-
cients). Previous work on decoupling emphasizes simultaneous diagonalization of the
three system matrices, however this theory exploits the parameter t (time), character-
istic of a dynamical system. The decoupling methodology developed herein possesses
ample physical insight and it also lends itself to numerical computations. Major
findings are summarized in the following statements.

1. The decoupling is achieved by a real, invertible, but nonlinear mapping. This
mapping simplifies to a real, linear time-invariant transformation when the three
system matrices can be simultaneously diagonalized.

2. All parameters required for the decoupling of a second-order system are obtained
from the solution of a quadratic eigenvalue problem.

3. In homogeneous systems, the real, time-dependent, configuration-space decou-
pling transformation is real, linear and time-invariant when cast in state space.
In addition, the configuration-space decoupling transformation generates a di-
agonalizing structure-preserving transformation.

4. In non-homogeneous systems, both the configuration-space decoupling transfor-
mation and associated state transformation are nonlinear and depend continu-
ously on the excitation.
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5. There are damped linear systems that can be decoupled by modal analysis or
phase synchronization in configuration space but not by complex modal analysis
in state space.

System decoupling plays a fundamental role in such diverse areas as linear vi-
bration, quantum mechanics, mathematical economics, and computational science.
It not only provides an efficient means of evaluating the system response but also
greatly facilitates qualitative analysis. Unlike any methods of decoupling approx-
imation, phase synchronization is an exact decoupling technique that accounts for
all effects of coupling in full. As demonstrated by examples, the main advantage of
decoupling lies beyond system solution. It is the possibility, for example, of model
reduction, damping characterization, or stability design that would make system de-
coupling worthwhile. The study of other issues, such as energy distribution among
the independent decoupled coordinates or numerical algorithms for decoupling are
also worthwhile in a subsequent course of investigation.
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