
UC Berkeley
UC Berkeley Previously Published Works

Title
Cyber-Security for the Controller Area Network (CAN) Communication Protocol

Permalink
https://escholarship.org/uc/item/5422g038

ISBN
978-1-4799-0219-4

Authors
Lin, Chung-Wei
Sangiovanni-Vincentelli, Alberto

Publication Date
2012-12-01

DOI
10.1109/cybersecurity.2012.7

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5422g038
https://escholarship.org
http://www.cdlib.org/

Cyber-Security for the Controller Area Network
(CAN) Communication Protocol

Chung-Wei Lin
University of California, Berkeley
Email: cwlin@eecs.berkeley.edu

Alberto Sangiovanni-Vincentelli
University of California, Berkeley
Email: alberto@eecs.berkeley.edu

Abstract—We propose a security mechanism to help prevent
cyber-attacks (masquerade and replay) in vehicles with archi-
tecture based on Controller Area Network (CAN). We focus on
CAN as it will likely continue being used in upcoming in-vehicle
architectures. The CAN protocol contains no direct support for
secure communications. Retrofitting the protocol with security
mechanisms poses several challenges given the very limited data
rates available (e.g., 500kbps) since bus utilization may signifi-
cantly increase. In this paper, we focus on a security mechanism
which keeps the bus utilization as low as possible. Through
our experimental results, we show that our security mechanism
can achieve high security levels while keeping communication
overheads (e.g., bus load and message latency) at reasonable
levels.

I. INTRODUCTION

Modern automotive electronics systems are distributed as
they are implemented with software running over networked
Electronic Control Units (ECU) communicating via serial
buses and gateways. Most systems (but not all; indeed, the
automotive industry has started to take actions to prevent
tampering with calibration parameters in engine control ap-
plications) have not been designed with security in mind. In
addition, in the majority of the cases, there was little or no
interest for hackers to compromise them. The only exception
known so far is the after-market community that tampers with
engine calibrations to increase engine’s performance.

Recently, Koscher et al. demonstrated in [2] that the po-
tential exists for an automotive ECU to be infiltrated by an
attacker, who can then potentially gain access, via a serial
communication bus, to an array of other ECUs. However,
no security aspect is included as part of the hardware and
software architecture development process and no standard
communication protocol has any built-in provisions to prevent
or mitigate attacks.

Communication networks are vulnerable as they enable
unauthorized access in a relatively straightforward manner
as all the communications between the ECUs in the vehicle
are performed with no authentication [11]. Authentication
mechanisms ensure that sender and receiver identities are not
compromised and thus, the sender and the receiver are who
they are claiming to be. Unfortunately, current communication
network protocols, including Controller Area Network (CAN),
FlexRay, MOST, and LIN have no authentication (or at best
have CRC mechanisms to guarantee data integrity) and send
their messages in the clear. Hence, room for fraudulent

communications between ECUs exists. For example, in the
CAN protocol, masquerade attacks followed by replay attacks
(an ECU pretending to be another ECU by sending/replaying
a message the ECU is not entitled to send) are likely to happen
as messages exchanged in a CAN network are broadcast from
one ECU to the rest of the ECUs in the network. In fact, the
receiver cannot verify the identity of the sender of the message
as an attacker could have pretended to be someone else (and
therefore sending a message with an ID the pretender was
not configured to send in the first place). Again, this scenario
is called a masquerade-based attack which then leads to a
possible “replay” attack as the attacker, by pretending to be
someone else, is replaying verbatim the same message it has
received although not entitled to do so.

We are convinced that security can be taken into account
in the early phases of the development cycle of automotive
electronics systems, both by enforcing software programming
standards that prevent software defects that may enable cyber-
attacks, as well as by implementing security mechanisms such
as authentication that enable the validation of the identity
of the sender to avoid potentially harmful messages to be
replayed/transmitted across the communication network. How-
ever, even for known vulnerabilities, one has to perform a
cost versus benefits analysis as the communication data rates
available are very limited—it is necessary to evaluate whether
a full authentication-based solution that addresses security
concerns is compatible with performance and resource cost
constraints that are typical of automotive embedded systems
and specifically of the predominant communication protocols
used in the vehicle (e.g., CAN has very limited data rates
between 33kbps and 500kbps). In fact, authentication mech-
anisms typically require large amounts of processing power,
memory, and bandwidth, in addition to those already reserved
for the messages that are exchanged across ECUs. As more
bytes need to be transmitted, current bus technologies may not
be sufficient given their already limited available bandwidth.

Authentication mechanisms have been proposed in the lit-
erature. The TESLA protocol [4], [5], [6] uses a time-delayed
release of keys for authentication. A receiver can check the
Message Authentication Code (MAC) after receiving the key
used to compute the MAC. To guarantee security, the protocol
needs to maintain global time and make sure that a receiver
gets a message before the corresponding key is released.
In [8], [9], [10], the authors emphasize the constraints in an

embedded network and consider a time-triggered (i.e., global
time is available) broadcast protocol. Even with the features
proposed for reducing the number of bits transmitted and
for achieving fault tolerance, two major challenges exist in
applying these approaches to the CAN protocol. First, the
bandwidth available in the CAN protocol is very limited.
Second, there is no notion of global time in the protocol. The
challenge for OEMs in the automotive industry is to design
a security mechanism for CAN with high security, combined
with minimal communication overhead, high fault tolerance,
low cost, and no global synchronization clock.

In this paper, we describe a security mechanism that
addresses the requirements stated earlier. Specifically, our
mechanism can be used to retro-fit the CAN protocol to
protect it from cyber-attacks such as masquerade and replay
attack with as low as possible overhead, and high degree of
tolerance to faults. We address the low cost requirement by
providing a software-only solution with no additional hardware
required. We focus on the CAN protocol because it is the
most used serial data protocol in current in-vehicle networked
architectures, and it will likely be used for a long time. We
do not focus on the initial security critical key assignment
and distribution as this aspect, although very important, is
already being mentioned in [8]. Instead, we focus on run-time
authentication both in the system steady state (after ignition
key on and the security secret keys have been distributed to
the ECUs). As security has a cost in terms of performance
(because of the additional bits needed for signatures and
counters) and in terms of potential hazards that may occur
due to poor performance, we also work on exploring trade-offs
between degree of security and other metrics such as resource
utilization. Experimental results show that our security mecha-
nism can achieve high security level without introducing high
communication overhead in terms of bus load and message
latency.

The paper is organized as follows: Section II defines the
system and attacker model; Section III presents the existing
mechanisms, their limitations, our proposed security mecha-
nism; Section IV shows the experimental results, and Sec-
tion V concludes this paper.

II. SYSTEM AND ATTACKER MODEL

We adapt the terminology from [7] to the automotive
use case, where a node is one of the computers (ECUs)
connected to the other ECUs in the vehicle via a serial data
communication bus to provide the following definitions of
attack scenarios:

• Modification: an unauthorized node changes existing data
(e.g., a sender node modifies the data portion of a
communication frame to be transmitted).

• Fabrication: an unauthorized node generates additional
data (e.g, a sender node creates a new frame with an ID
that the node is not authorized to transmit).

• Interception: an unauthorized node reads data (e.g., a
receiver node accepts a message with an ID that is not

supposed to accept and reads the data portion of the
frame).

• Interruption: data becomes unavailable (e.g., a sender
node sends high priority frames over the communication
bus at a very high rate making it impossible for other
frames to be transmitted).

For the sake of our discussion, we generalize modification
and fabrication as an unauthorized write of data by a node,
an interception attack as an unauthorized read by a node, and
an interruption attack as a Denial-of-Service (DoS) attack. We
now define the following properties:

• Data integrity: data is not changed (written) or generated
by an unauthorized node.

• Confidentiality: data is not read by an unauthorized node.
• Authentication: a receiver or a sender is who it claims to

be.
• Non-repudiation: a sender ensures that a receiver has

received the message, and a receiver is sure about the
identity of a sender.

For automotive electronics systems and the CAN protocol,
data integrity and authentication are very relevant properties
which are suitable to our software-only security mechanism
solution. To prevent an interruption attack, hardware protec-
tions are required as, because of the very same nature of the
CAN protocol (broadcast and multi-master with arbitration),
a malicious node can freely read and write data from/to the
bus. Interruption attacks are outside of the scope of our work.

Before introducing our attacker model, we first state our
assumptions, and provide definitions about our system model
as follows:

Assumption 1: The network architecture has only one CAN
bus, and all ECUs are connected to the bus itself.

Definition 1: A node is an ECU.
Definition 2: The sender of a message is the node sending

the message.
Assumption 2: A sender sends a message by broadcasting

it on the CAN bus.
Definition 3: A receiver of a message is a node receiving

the message and accepting it by comparing the message ID to
the list of its acceptable message ID’s1.

Note that CAN is a broadcast protocol, so every node
“receives” the message, but only receivers (as we have defined
them) accept the message.

Assumption 3: A node can use volatile (RAM) and/or non-
volatile (FLASH) memory to store data. Data stored in RAM
is no longer available after a node reset; data in FLASH is
available after a node resets.

To describe our attacker model, we use a networked ar-
chitecture topology as in Figure 1. Although in CAN, any
node can play the role of sender and receiver in different
bus transactions, for illustration purposes, we assume N1 is
a sender node and N2 is a receiver node. We also assume
that N1 and N2 are legitimate nodes. In Figure 1, if malicious

1Our definition of a receiver is a specialization of the definition of a receiver
in CAN where instead a receiver can also reject a message.

sender

software

N1

RAM

FLASH

receiver

software

N2

RAM

FLASH

strong

attacker

software

N3

RAM

FLASH

N4

RAM

FLASH

weak

attacker

software

Fig. 1. Attacker Model.

Types Strong Attacker N3 Weak Attacker N4

Modification
or Scenario 1 Scenario 2

Fabrication
Replay Scenario 3 Scenario 4

TABLE I
Attack scenarios that an attacker pretends as a legitimate sender (N1) and

sends a message to a legitimate receiver (N2).

software takes control of N3, it can access any data stored in
RAM and FLASH, including data used to implement a security
mechanism (e.g., shared secret keys). It is also possible that an
attacker uses a node (N4) that has been added to the network
(e.g., to perform diagnostics on the network this node could
be laptop running diagnostic software and connected to the
network using the CAN adapter interface); in this case, the
malicious software also has access to the RAM and FLASH
memory. However, no critical data (e.g., shared secret keys)
is stored in RAM and FLASH in the first place. We are now
ready to provide some definitions as follows:

Definition 4: A strong attacker is an existing node where
malicious software is able to gain control with full access to
any critical data.

Definition 5: A weak attacker is a node where malicious
software is able to gain control but no critical data is available
(mainly because it was never stored in memory).

Definition 6: A legitimate node is a node which is neither
a strong attacker nor a weak attacker.

For example, in Figure 1, N3 and N4 are strong and weak
attackers, respectively, and N1 and N2 are legitimate nodes.
The possible attack scenarios that N3 and N4 can carry out
and that we are addressing with our solution are shown in
Table I. In the table, we describe the scenario in which a
message is supposed to be send by a legitimate sender (N1).
However, N3 and N4 try to alter this situation with either a
strong or weak attack. Again, we are not addressing attacks
such as DoS as they would require additional hardware—our
proposed solution is software-only.

We now explain the scenarios as follows:

• Scenario 1: this is possible if important/secret data be-
tween N1 and N2 has been stored in RAM or FLASH of
N3. For example, if important/secret data is shared and

used by every node in the network2, then N3 can use the
data stored in RAM or FLASH and pretend to be N1 to
send a new message to N2 (fabrication).

• Scenario 2: there is no threat because no important/secret
data is stored in RAM or FLASH of N4.

• Scenario 3: this is possible if N3 reads a message from the
CAN bus and then writes the same message to the CAN
bus without any modification. Note that, in this case, N3

does not need to get important/secret data between N1

and N2, e.g., a secret pair-wise key as in Figure 2, because
N2 will just accept the message thinking it was sent by
N1.

• Scenario 4: same as Scenario 3.
We now define a masquerade and replay attack and show

how we can prevent it as follows [9]:
Definition 7: In a masquerade attack, an attacker (strong

or weak) sends a message in which it claims to be a node
other than itself.

Note that a masquerade attack can lead to a fabrication
attack, a modification attack, or as a special case, a replay
attack:

Definition 8: A replay attack is enabled by a masquerade
attack, and the node in order to be successful, needs first to
pretend to be another node. In the case of CAN, in a replay
attack a node transmits a copy (replays) of a message it has
received from the CAN bus. The message is not modified or
altered. It is merely sent to other nodes by a node that is not
entitled to send it. The other nodes have tables that match the
message id to the sender and therefore, determine the identity
of the sender but have no provision to authenticate it.

Since CAN is a broadcast protocol, both a strong and weak
attacker can successfully carry out a masquerade/replay attack
if no security mechanism is put in place, or even if pair-
wise keys are used as the attacker would not need them to
successfully carry on the attack. Before introducing some basic
security mechanisms, we also provide a definition of a false
acceptance and a false rejection as follows:

Definition 9: A false acceptance is the scenario that a node
accepts messages which it should reject.

Definition 10: A false rejection is the scenario that a node
rejects messages which it should accept.

By the definition, a successful attack implies a false accep-
tance.

III. SECURITY MECHANISMS

We provide a few additional definitions that we will use in
the rest of the paper (see Table II).

A. Existing Work

A lot of existing work focus on digital signatures. However,
digital signatures have very high communication overhead,
making them inapplicable or at least very difficult to use for
CAN.

2For example, if the nodes in the network share the same secret key. This
is a different scenario from the scenario in Figure 2 where nodes share secret
keys in a pair-wise fashion.

Notations Explanations
i the ID of a node
j the ID of a node
k the ID of a message
Ni the node with ID i
Mk the message with ID k
n the number of nodes
nk the number of receivers of Mk

rk,s the ID of the s-th receiver of Mk

f the function to compute a MAC
T the time

Ki,j the shared secret key of Ni and Nj

Ak,s the MAC for the s-th receiver of Mk

A the MAC computed by a receiver
Ci,k the counter stored in Ni for Mk

CM the most significant bits (MSBs) of a counter
CL the least significant bits (LSBs) of a counter

TABLE II
Table of notations.

K1,2

N1

K1,3 K1,2

N2

K2,3 K1,3

N3

K2,3

Fig. 2. Pair-wise secret key distribution.

In [8], [9], [10], a pair-wise secret key assignment (an
example is shown in Figure 2) is used. The authors emphasize
the constraints in an embedded network and consider a time-
triggered (i.e., global time is available) broadcast protocol.
Since every node is a receiver3, a transmitted message includes
MACs for all receivers. Therefore, N1 and N2 perform the
following steps to send and receive a message Mk:

Sender (Ni)
1 Get time T
2 ∀j, 1 ≤ j ≤ n,Ak,j = f(Mk, T,Ki,j)
3 Send Mk, Ak,1, Ak,2, . . . , Ak,n

Receiver (Nj)
1 Receive Mk, Ak,1, Ak,2, . . . , Ak,n

2 Get sending time T
3 Get i where Ni is the sender of Mk

4 A = f(Mk, T,Ki,j)
5 Accept Mk if and only if A = Ak,j

The authentication operation using the for-loop uses n since
the authors are using a comprehensive definition of receiver.
This means that there are as many receivers as nodes in
the network. Each receiver authenticates the message by first
identifying the correct MAC that the receiver needs to com-
pare to, based upon the information that maps each received
message to the unique sender of the message itself. Besides
the authentication aspect, the authors have also introduced
other interesting features to their authentication mechanism to
cope with the potentially limited communication bus data rate

3The authors use the more comprehensive version of a receiver where a
receiver can accept or reject a message.

and provide fault tolerance. First, only a subset of the MAC
bits are sent and used for authentication purposes, i.e., A and
Ak,j in the above operations are replaced by [A]l and [Ak,j]l
where []l is the truncation operation to l bits. The authors,
in their analysis, assume that an unsafe state is reached only
when at least k out of n most recently received messages are
successfully attacked. Lastly, in their extension work [10], the
authentication is performed by different voting nodes.

B. Challenges for CAN

Even with the features proposed for reducing the number
of bits transmitted and achieving fault tolerance, two major
challenges exist in applying the work just described to CAN.
First, the bandwidth available in CAN is extremely limited. In
fact, the maximum and nominal data rate of a CAN bus is only
500kbps, while each 11-bit ID standard frame has a maximum
total of 134 bits which include a maximum of 64-bit payload,
46 bits of overhead (e.g., including CRC bits), and 24 bits for
bit-stuffing [1] in the worst case. If a security mechanism needs
to add MACs to the original frame, as the original frame might
have a 64-bit payload, the frame might have to be split in two
or more frames. This may result in increasing bus utilization
which may result in a degraded communication performance
or even in a unschedulable system. Finally, as stated earlier,
there is no global time in CAN (the global time is required
in [4], [5], [6], [8], [9], [10]).

C. Our Security Mechanism

The key elements of our proposed security mechanism are
stored in each node (in the volatile and non-volatile memory).
The elements are: the ID table, the pair-wise symmetric secret
keys, and message counters (receiving and sending). In the
following, we use our definition of receivers (see Definition 3).

• ID table: unlike the approach described in [8], [9], [10],
our mechanism does not use MACs for all nodes. On the
contrary, a sender only computes as many MACs as the
corresponding receivers4 of the transmitted message. This
is done by maintaining a ID table in each node where
each entry is indexed by a message ID — each entry
contains the node ID of the sender and the list of the
node ID’s of the receivers. We define the ID table with
the following function:

(i, nk, rk,1, rk,2, . . . , rk,nk
) = ID-Table(k),

where k is the ID of Mk, i is the ID of the sender of
Mk, nk is the number of receivers of Mk, and rk,s is the
ID of the s-th receiver of Mk. A sender can check its
ID table to determine how many MACs it must compute,
what keys it should use, and what ordering of MACs it
should attach with the message. A receiver can check
the ID table to determine what key it should use and
which MAC included in the received frame it should
select. Again, the advantage of relying on ID tables is that
our mechanism reduces the number of MACs because it

4In our “specialized” meaning.

considers only the receivers that are accepting the frame
after CAN filtering, rather than considering the whole set
of receivers that the frame is broadcast to. This can reduce
the communication overhead considerably.

• Pair-wise secret key: a pair-wise key Ki,j is “shared
secret” between Ni and Nj for authentication. Every pair
of nodes has a shared secret key which is not known by
any other node. Therefore, any other node cannot modify
or fabricate a message, but a replay attack is possible as
explained earlier. Note that using pair-wise keys is only
a basic key distribution method. If we want to further
reduce the communication overhead, we could a assign
nodes to several groups where each node in a group
shares a secret key. Of course, there is a trade-off between
security and performance (minimizing communication
overhead) in that the security level is diminished but the
communication performance is improved.

• Message-based counter: a counter is used to replace
the global time and prevent a replay attack. Each node
maintains a set of counters, and each counter corresponds
to a message, i.e., Ci,k is the counter stored in Ni for
Mk. If the node is the sender of Mk, its counter value
records the number of times that Mk is sent; if the
node is the receiver of Mk, its counter value records the
number of times Mk has been received (and accepted
after being authenticated). Therefore, if a malicious node
replays a message, a receiver can check the corresponding
receiving counter to see if a message is fresh or not.
Because of a network fault, a receiving counter may not
have the same value as that of its sending counter. In
other words, it is possible that a node sends a frame,
updates its sending counter, then a network fault occurs,
e.g., the electrical bus has a transient fault, and thus
the frame never reaches its destination. Therefore, the
receiving node does not receive the frame and thus
does not increase its receiving counter. This means that
two counters are out of synchronization. However, our
mechanism can deal with this scenario without any loss
of security. We will explain this aspect later in the paper.
We now provide the following additional definitions:

Definition 11: A sending counter for a message is the
counter stored in its sender.

Definition 12: A receiving counter for a message is the
counter stored in one of its receiver.

In our security mechanism, every node maintains its ID
table, pair-wise keys, and counters. Ni and Nj perform the
following steps to send and receive a message Mk:

Sender (Ni)
1 (i, nk, rk,1, rk,2, . . . , rk,nk

) = ID-Table(k)
2 Ci,k = Ci,k + 1
3 ∀s, 1 ≤ s ≤ nk, Ak,s = f(Mk, Ci,k,Ki,rk,s

)
4 Send Mk, Ci,k, Ak,1, Ak,2, . . . , Ak,nk

Receiver (Nj)
1 Receive Mk, Ci,k, Ak,1, Ak,2, . . . , Ak,nk

2 (i, nk, rk,1, rk,2, . . . , rk,nk
) = ID-Table(k)

3 Continue if and only if find s, 1 ≤ s ≤ nk, j = rk,s
4 Continue if and only if Ci,k > Cj,k

5 A = f(Mk, Ci,k,Ki,j)
6 Accept Mk and Cj,k = Ci,k if and only if A = Ak,s

Based on this mechanism, our security mechanism can
protect any masquerade attack and replay attack. We prove
our claim using the following three scenarios:

• If an attacker sends a message which is not supposed to
be received by the receiver, then the receiver will reject
the message in Line 6 by checking its ID table.

• If an attacker sends a message which is not supposed to
be sent by the attacker, and it is a replay attack, then the
receiver will reject the message in Line 2 by checking
the counters.

• If an attacker sends a message which is not supposed
to be sent by the attacker, and it is not a replay attack,
then the receiver will reject the message in Line 12 by
comparing the MACs.

D. Counter Implementation
These operations can meet the requirements stated by our

problem formulation. However, the number of bits used for
the counter must be explored. If the number of bits is not
sufficient during the lifetime of a vehicle, then the counter may
overflow. For example, if the counter stored at the receiving
side overflows and resets to zero, then the replay attack may
succeed as the attacker just needs to wait for this event
to happen, and therefore resend a counter which is larger
than the reset counter stored in the receiver; if the number
of bits used for the counter is too large, then the bus will
be overloaded. Therefore, we propose a solution where the
counter C is divided into two parts: the most significant bits
(MSBs) CM and the least significant bits (LSBs) CL—only
CL is transmitted with the message. The steps performed by
Ni and Nj are similar, but only CL

i,k is transmitted:

Authenticated-Sending(Mk)
1 (i, nk, rk,1, rk,2, . . . , rk,nk

) = ID-Table(k);
2 Ci,k = Ci,k + 1;
3 for s = 1 to nr

k

4 Ak,s = f(Mk, Ci,k,Ki,rk,s
);

5 Send Mk, C
L
i,k, Ak,1, Ak,2, . . . , Ak,nk

;

The Authenticated-Receiving is shown in Figure 3. If
CL

i,k > CL
j,k, then this is the same scenario as that of the

original mechanism; if CL
i,k ≤ CL

j,k, then the receiver will use
CM

j,k + 1 to compute the MAC. If there is a replay attack,
then the receiver will test CL

j,k = CL to be true and use
CM

j,k + 1 to compute the MAC which will be different from
the one transmitted in the replayed message. The receiver will
fail the test comparing the stored computed MAC and the
received MAC and will reject the message. The advantage
of using this mechanism is that we can reduce the commu-
nication overhead without any loss of security. Of course, if

Ci,kMk

(…, rk,1, rk,2,…) = ID-Table(k)

Ci,k > Cj,k ?

A = f (Mk, (Cj,k+1) | Ci,k, Ki,j)

A = Ak,s ? Reject

Y

A = f (Mk, Cj,k | Ci,k, Ki,j)

A = Ak,s ?

N

N N

Y Y

k
Ak,1 Ak,2 … Ak,n

M

Find s such that j = rk,s Reject

found

not

found

M

LL

L

LL

Cj,k = Ci,k Accept Cj,k = Cj,k +1; Cj,k = Ci,k

Y Y

LM M LLL

Fig. 3. The steps performed by a receiver Nj of a message Mk sent by a
sender Ni.

the receiver consecutively misses several messages due to a
network fault, it may reject a message although there is no
attack in place, as its receiving counter may not be up-to-
date (out of synchronization). However, the probability that a
counter is out of synchronization is very low. If a counter is
divided into CM and CL and the probability of a network fault
is q, the probability that a counter is out of synchronization is
q2

|CL|
. For example, if |CL| = 3 and q = 0.1, the probability

that a counter is out of synchronization is only 0.18. Even
if this scenario occurs and the computed MAC would not
match although it would pass the counter test, the receiver
will continue rejecting messages (false rejection). Although
this scenario is not optimal, a counter out of synchronization is
a better option than a successful attack. In addition, we address
this potential issue by providing counter reset mechanisms, but
they are not covered in this paper.

IV. EXPERIMENTAL RESULTS

In this section, we show how the security mechanism has
an impact on the system bus load and message latencies by
formulating the problem as a feasibility analysis problem. The
system model includes the following parameters:

• q: the probability that a message is missing due to a
network fault.

• R: the bus data rate.
The following message Mk parameters are defined:

• nk: the number of the message receivers.
• Pk: the upper-bound of the probability of a successful

attack.
• Qk: the upper-bound of the probability that a counter is

out of synchronization.
If Mk is not a security-critical message, then Pk = Qk = 1.

Since there is no global time in CAN, the approaches in [4],
[5], [6], [8], [9], [10] are not applicable to CAN networks. We
used a test case with 17 security-critical messages among 138
messages, and q = 0.1, R = 500 (kbps). Table III and Table IV
show the relative bus load and average latency (computed

Q
P 10−1 10−4 10−7

Load Avg L. Load Avg L. Load Avg L.
10−1 1.0094 1.0241 1.0113 1.0267 1.0131 1.0288
10−2 1.0150 1.0322 1.0169 1.0394 1.0188 1.0425
10−3 1.0206 1.0445 1.0225 1.0481 1.0244 1.0506
10−4 1.0282 1.0591 1.0300 1.0625 1.0319 1.0646
10−5 1.0338 1.0668 1.0357 1.0733 1.0375 1.0767
10−6 1.0394 1.0789 1.0413 1.0832 1.0432 1.0883
10−7 1.0469 1.0987 1.0488 1.1007 1.0507 1.1040
10−8 1.0526 1.1061 1.0544 1.1129 1.0563 1.1181
10−9 1.0582 1.1213 1.0601 1.1232 — —
10−10 — — — — — —

TABLE III
The relative bus load and average message latency under nk = 1 and

different values of P and Q where “—” means that there is no feasible
solution. Without the security mechanism, the original bus load 376.44kbps

and average message latency 11.535ms are both scaled to 1.

Q
P 10−1 10−4 10−7

Load Avg L. Load Avg L. Load Avg L.
10−1 1.0244 1.0506 1.0263 1.0571 1.0282 1.0591
10−2 1.0413 1.0832 1.0432 1.0883 1.0451 1.0968
10−3 1.0582 1.1213 1.0601 1.1232 — —
10−4 — — — — — —

TABLE IV
The relative bus load and average message latency under nk = 3 and

different values of P and Q where “—” means that there is no feasible
solution. Without the security mechanism, the original bus load 376.44kbps

and average message latency 11.535ms are both scaled to 1.

by [3]) with different values of P and Q, where Pk = P
and Qk = Q for all k, under the assumptions that the nk is 1
or 3. The number of receivers was not known at the time of
our experiments, so we have used a simple assumption. If this
information is provided, more general experiments can be done
by assigning different values for Pk and Qk for different k.
Again, the main purpose of this paper is to provide a security
mechanism and show how the security mechanism impacts
on the system bus load and message latency. If there exist
tight constraints on the bus load, the average message latency,
or the message latency (deadline) for each message, then we
can check if the security mechanism can be applied or not. As
shown in Table III, when nk = 1, if we want to make sure that
the probability of a successful attack and the probability that
a node is out of synchronization are both bound by 10−4, then
there is a 3% increase on the bus load and a 6.25% increase on
the average message latency. Note that, in some cases where
the values of P and Q are both large, there is no feasible
solution. For our experiments, we show that we can achieve a
very high security level (e.g., P (successful attack) ≤ 10−8),
with a bus load or average message latency increasing less than
6% and 12%, respectively. However, as shown in Table IV,
when nk = 3, we can see that the feasible region is reduced,
since there are fewer bits available.

V. CONCLUSIONS

We described a security mechanism that can be used to
retro-fit the CAN protocol to protect it from cyber-attacks
such as masquerade and replay attacks. The mechanism is
suitable for this protocol because it has a low communication
overhead and does not need to maintain global time. Besides,
the solution is software-only, hence, it is not overly expensive
to implement. Experimental results showed that our security
mechanism can achieve high security level without introduc-
ing high communication overhead in terms of bus load and
message latency.

ACKNOWLEDGEMENTS

We would like to thank Paolo Giusto, Joseph D’Ambrosio,
Dave Nairn, and Tom Forest from General Motors for the
valuable discussions and feedback.

REFERENCES

[1] Controller Area Network, Specification 2.0.
[2] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,

D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage, “Ex-
perimental security analysis of a modern automobile,” IEEE Symposium
on Security and Privacy, pp. 447–462, 2010.

[3] M. Di Natale, H. Zeng, P. Giusto, A. Ghosal, “Worst-case time analysis
of CAN messages,” Understanding and Using the Controller Area
Network Communication Protocol, Springer, pp. 43–65, 2012.

[4] A. Perrig, R. Canetti, D. Song, and D. Tygar, “Efficient authentication
and signing of multicast streams over lossy channels,” IEEE Symposium
on Security and Privacy, 2000.

[5] A. Perrig, R. Canetti, D. Song, and D. Tygar, “Efficient and secure source
authentication for multicast,” Network and Distributed System Security
Symposium, 2001.

[6] A. Perrig, R. Canetti, D. Song, and D. Tygar, “The TESLA broadcast
authentication protocol,” RSA Cryptobytes, 2002

[7] S. Shenker and I. Stoica, “Security,” Slides of Lectures 13 and 14, CS
194: Distributed Systems, University of California, Berkeley, 2005

[8] C. Szilagyi and P. Koopman, “A flexible approach to embedded network
multicast authentication,” Workshop on Embedded System Security,
2008.

[9] C. Szilagyi and P. Koopman, “Flexible multicast authentication for
time-triggered embedded control network applications,” International
Conference on Dependable Systems and Networks, 2009

[10] C. Szilagyi and P. Koopman, “Low cost multicast authentication via
validity voting in time-triggered embedded control networks,” Workshop
on Embedded System Security, 2010.

[11] M. Wolf, A. Weimerskirch, and C. Paar, “Security in automotive bus
systems,” Workshop on Embedded Security in Cars, 2004.

