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ABSTRACT

Diffraction patterns for Cu as found in a perfect FCC lattice were

generated for various particle sizes and shapes using a computer model

based on the Debye-Sum. These patterns were Fourier transformed to

yield the "radial distribution function" G(R) = 4WR(0(R)—DO). This
function was studied in relation to five variables, i.e., 1) particle
size, 2) particle shape, 3) scattering vector termination, 4) the
influence of small angle scattering due to samp1é size and, 5) effect
of vibrational atomic displacements. Particle sizes of up to 304 were
found to influence G(R)vég related to determination of the first
coordination shell. The effect of volume scattering was to displace
the G(R) curve negatively, but neither peak position nor area were
affected. The measurement of 0, Was affected and the effective o,

present with SAXS removed must be taken into account when calculating

coordination shells.
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INTRODUCT ION
This study was originated in conjunction with studies of glassy
carbon in the hopes that it might be possible to obtain high resolution

information regarding the turbostatic stacking nature of the material,

" and whether any presence of hydrogen in between stacking layers could

be detected. This problem raised many other fundamental questions
about the "Radial Distribution Function" (RDF) such as: 1) effect of

small-angle-scattering (SAXS). 2) effect of particle size. 3) effect

-of particle shape. 4) experimental termination error. 5) temperature

correction., The main emphasis of this work was to asceftain the effeét
of particle size upon the RDF and to discover at épproximately what
particle size the first three coordination shells would be fully
developed as determined by RDF analysis.

Related Carbon studies have been performed by Ergun,3 Pings,21
and Lindberg.22 These papers dealt with the structural nature of
Glassy Carbon and not with the analytical nature of the RDF.

Papers pertaining directly to the analytical nature of the RDF have
been widely published. Direct examples are: "Influence of Neglected
Small-Angle Scattering in Radial Distribution Function Analysis",
Cargi]],l. "Analysis of Termination Effects on Atomic Radial Density

2

Curves," Ergun® et al., Discussion of the dependence of the

"Correlation Function" on the scattering volume is discussed by

4

Debye” and the dependence of the RDF on shape is discussed by

Ri]ey.s Other related papers have been published by Diamond,23

24 25

Franklin, and Suzuki.



TECHNICAL DISCUSSION

Computer Hardwafe o ' ' 2
A1l data were prOducéd on a. Control Data Corporatibn 7600 seriés
mainfréme.computer.‘ fhis machine utilizes a 60—bft pipe]ihed |
- architecture ;itﬁsaVSmall-cdre memory access time.of 275 Nanoseconds.
THe prdce§sing archftecture consists of a main central processing unit..~
(CPU)'énd eighﬁ béfiphera] processing units (PPU). These units are
tight]yﬁsynchronizedvin time. Instructions in all but‘oné of the units
are prdcessed with eVefy ciock cycie;vhente, the term "pipe1inef |
architecture. The thber of raw:multip1ication§ and divisions b6s§ib1e
is about 2.4 x 106 multiplications and about 9.0 x 105 divisions. |
These numbers are arrived at by takiné the reciprocal 6f the product
of clock peribd and.the'number of'per{dds per operation; The CDC~-7600
utilizes a 27.5 Nanosecond clock End 3-fnstruction codes to'perform a
mﬁltiply ahd 2—instrﬁctioh codes to perform a divide. Aséumihg'ah
instruction is executed every c]ock—cyclé the defails are workédvasﬂ
follows: | |

6

( Multiplications/Seconds) = 3. IC_'CP % = 2.42 x 10
: ' m=1

-1 5

=9.09 x 10

2
-3 Ioc, cP

( Divisions/Seconds)
o m=1

where: CP = 27.5 nanosecond clock period.



ICm = # of clock periods utilized for instruction (m) in

multiplication unit. (ICm = 5 periods; for all m)

IDCm = # of clock.periods utilized for instruction (m) in

division unit. (IDCm = 20 periods; for all m)

Computer Software

The language utilized to produce the data was the CDC version of
ANSI standard Fortran IV i.e., (FTN-4). This CDC compiler has several
levels of optimizaton depending on whether the user is striving for
faster execution time or faster compilation time. A program such as
the one described for this project is extremé1ey CPU-bound and requires
as much optimization of the codé as is possible to speed execution
time. For this reason the compiler was direcfed to produce object code
at its highest level of optimization through the use of a control card
option directive. Even using a compiler such as this at its highest
level of optimization is inadequate and it is necessary to include a
“"vectored array" access scheme. See Appendix A for an example. Other
optimization techniques such as reversal of summation, normalization
of variables, and conversion of division to multiplication were used
and are described in Appendix A.

A problem such as this is termed CPU-bound because the time
involved for numerical calculation far exceeds the time utilized for
[/0 processes such as disk access or read and write operations. The
majority of CPU time is used in performing the iterations of the

quantity [Sin(KR)] and the square root function used in the distance



formula. These functions are the limiting factors because they need
to be performed by high-level software routines. In comparison
assembly ]anguage opcodeé which pérform floating péint (adds,
subtracts, divides and muTtip]fes) all withinvhardwére units in the
machine, are orders of magnifude faster. Thevtypical execution spéed
of an optimized floating point routine for SIN(X) is 24 uS’aé stated
by Caéso_]a.8 Thus, ﬁomputation of one value of SIN(X) must be
considered as approximately 100 times slower than the aﬁcessing of
variables from memory and illustrates this calculation as being the
11miting factor fn program exeéution speed.

The programs_wriften utilize the_Least-SquareS-Po]ynominal
Regression and Polynomial interpo]gtién subroutines: (POLFIT; PVALUE)
from the Sandia mathemat ical 1jbrary:vefsion 7.2 of Lawrence Berkeley
Laboratory. fhese subroutines were used to fit.and interpolate a |
least-squafes polynomial for the scatfering factor f(k) to data %ound
ih.the Interﬁationa] Téblés for X-Ray Crystallography, Vol III, the
values'were not correcteq for diépersion. The polynomial fit found was
excellent with ‘a root-mean square error of less than 3 percent from
point to point. The integration routine'for G(R) was done using
Simpson's 1/3 ru]e; The routine is specific for prob]éms dealing with ‘ oL
equal intervals, although the technique may be adapted for problems
with unequal ihtervals. Simpson's 1/3 rule is used with an even number
of intervals and-has a global errér of h4, see Gera]d.15 This
error.is insignificant when small intervals are chosen for

integrations.



METHODS OF COMPUTATION

Various methods of producing X-ray diffraction profiles by
computational numerical method have been explored. One of the most
general powder pattern methods uses a Lorentz or Gaussian profile
equation integrated for all (hk1) ref]éctions in reciprocal space and
multiplied by the appropriate structure factor for the material (see
H. Fichtner et a].).6 This type of method is excellent for
determining peak positions, shapes, relative intensities, and for
answering questions concerning particle size, and strain since the
method is easily adjusted to account for such variables. This method
is also distinguiéhed by its relative ease of being programmed in a
high-level language such as Fortran IV, and its low CPU cost.

However, this method must be rejected when questions of calculating

the Radial Distribution Function are considered. The reason this

method should not be used in calculating RDF is that intensities are

not produced in "Electron Units." The transform kernel of the RDF

consists of a delicate comparison between the scattering per atom in
the ensemble being studied versus the écattering factor of a single
atom. Due to this reason any failure in correcting either experimental
or computational intensity data to Absolute Electron Units will result
in wildly oscillating behavior of the transform [see (Klug and

7 and Kap]ow].14

Alexander)
Since the behavior of the ROF is critically dependent on data
being in electron units the only solution to the problems posed other

than pursuing theoretical answers was to use a Debye Summation. The



Debye Sum will yield perfectly adequate results for cryéta]line powdef
patterns, excepttthat intefpartic]e effects which give rise to a
'smdbthing of small-éngle scattering will be absent. The absence of
this effect is dUe to the fact that thebbebye sum is treating'ali
scattering prob]ems:as an homogenous ideal gas!composed.ofvparficles

of a singular Shapé and size with no'particleviﬁteractions (hence the
vgasbis idea]). In tryStal]ihe poWder'patterns it's these’interparticle
~interactions whiéh gfve rise to smoofh low-angle intensity data (see
Riley?). -

CIt's cértéih]y.conéeivab1g—fﬁ think bf”modifyind;tﬁe computat ional
bfdgram using a Débye7§ummat1on‘to not only éccdunt‘?br these
interactfons, but fo a]so.inc1ude the Eesu]t'from having a distribution
ofvpartic1e sizés and_shapes.u

| The main drawback of uéing a Debye sum calculation is the reason
of feasibi]ity. Considering a cube of side length Na; N=1,2,3:etc.
thevnumber of interactions which must be considered in a conventional
Debye summation for én FCC 1attice is-16N® calculations. Obvious
symmetry will reduce the problem to 4N3 (2N3—1) calculations, but
reductions beyond this boiht invo]vé producfng an incréasing1y comp Tex
computer program and require a certain knoWledge'of matrice representa~
tion of crysfa]"synmetry,lg Three (3) programs have been
successfully produced with the following characteristics:'

(1) Vectored Loop Method: Using vectored looping techniques the

Debye sum is calculated for an FCC lattice using 4N3(2N31)

calculations for all N. This method has an N6 relation,

[0y



(2) Z-Stacking Method: Using vectored looping techniques the
Debye sum is calculated for an FCC lattice using (N-1) (1 + 8N4)—8N3
calculations for all N. This method has an N° relation for large N.

(3) Array Symmetry Method: Using a qualitative symmetry found by
inspection; the Debye sum is calculated for an FCC lattice using‘
approximately N2 calculations. It's suspected that the program has
a flaw which prevents it from functioning for all N.

In this paper intensities were calculated using the Debye sum

expressed as follow:

4, , a1 and STn(KRpy) 1)
LEUK) = a3F2(K) + 2F2(K) TR
isl 3T

where:
K = 4xSin(e)/r; the scattering vector

[.E.U.(K) = intensity in absolute electron units.

f (K) scattering factor of the atom being studied.

RIJ = the absolute magnitude of the distance between the atom I
and the atom J in the ensemble under study.

The computational procedure for I.E.U.(K) is as follows:

1) The shape of the particle is decided upon and the algorithm
for that shape is placed in the program so as to create atoms at the
desired real-space coordinates. The particle shapes used for this
problem were the cube, plate, and rod. Conservation of scattering

volume was observed for all of these cases so that for any N value
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implemented the resu1t§ are comparable for any shape produced. The'
following shapes have the following structures:
Shape: Structure v
. Cube: The total number of atoms is 4N3 in accordance with an
| F.C.C. structure of length Na on a side. The cube has N
unit cells per degree of freédom and is thus an equiaxed
structure._. |

Plate: The total number of atoms is aN3. The plate structure

js one (1) unit cell thick in the [001] direction; N unit -

~cells wide in the [010] direction, and NZ unit cells -
long in the [100] direction.
Rod: The total number of atoms is aN3. The rod structure is
| one (1) tht cell thick in the-[OOi] direction and in the
,fOlO] direction. The rod is N3 unif cells Tong in the
[100] direction. |
2) The coordinates of the structure aré arranged in'conVentiona1
F.C.C. fashion using the standard translatidn formula of:
X YnsZns Xptl/2, Yatl/2, Zpns Xo*tl/2,Y,,2,%1/2;5 X, Y*1/2, |
Z,+1/2 for n =‘I,2.,.N3- The placement of the coordinates Xns YnsZn
aré determined'by the shape of the particle as per the criteria
previously expiained° A1l of these coordinates are p]éced’in memory.
3) The intensities may now be generated directly from the Debye
sum using any of thé three programming techniques previously
discussed. [I.E. the Z-stacking method, vectored loop method, or array

symmetry method.

>,



Vectored Loop Method

Using vectored loops shown in Appendix A the summation is done as
shown in Equation 1 to arrive at I.E.U.(K).

Z-Stacking Method

The same set of transformations and vectored looping shown in
Appendix A are used in this method, except the summation is performed
with a multiplicity factor which reduges the number of terms needed
for the summation. The number of terms is effectively reduced by

(1/N). The method is accomplished as follows:

Shape = cube / /
Ns3 )/ ,/—>Plane 3 — Contains atoms 73-108
222w (——— |
I’ /
/ /= Plane 2 —Contains atoms 37-72
Zs)—f—— |
/, /
) / — Plane | —Contains atoms 1-36
Z:O‘—-"—.’

Figure A

Each plane shown in Figure A has 4N2 atoms or 36 atoms for the case
above. As shown, each plane contains the atoms numbered in the scheme

shown above and the summation may be reduced as follows:
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2

2 .
LEUK) _ g3 ooy 55 20 SI(KRyy)
F2(K) m1 9t KRy
(2)
2 2 .. 23 .
4N 8N S1n(KR 4 4N Sin(KR
Rl » 1J
+ 2(N-1) 3 Z, —T;T"_J)‘ w2 Y —K—ig__—)
=l goanéey M =l goandvenysr

This summation can be prodrammed without great difficulty.

Array Symmetry Method
| This method is the most difficult to program but affords the
greatest reduction in computational analysis. This method is arrived
at by the ana]yéis of.the real-space interatomic distance matrix as
follows: |

1) First form the upper triangular matrix R with any element
Ry = [(X(I)-X(J))2+<Y(I)-Y(J>)2+(z(I)—z(J))2]”2

J elemgnts ——

| 234567891011 - - - - - - - -4N3
| elements 1 1 ‘
2

aN3

[



11

This matrix may be broken into 4x4 submatrices; but it's
convenient to first perform the subtraction of all submatrices
involving interactions of atoms within each individual unit cell. The
contributions from these submatrices are easily analyzed.

The submatrices subtracted are of the form

1234 5678 _ _ _ 4N*3 4N3
| 5 4N3
2 6 4N12
3 7 aN|
where Ry, = /"’_2_ =Ry = Ryg = Ryq «ut Ry

where a = lattice constant for CU = 3.6148R. This subtraction

Teaves the upper triangular matrice in the following form
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5678 9101112 13141516 17181920 _ _ _ aN>3 4N’

PN -

®~NO O

0]
i
12

Examining a typical one of these submatrices reveals a symmetry

pattern shown below:

Note: the elements have been

normalized by multiplying by

/" 2/a and squaring the result.

element would represent an

ol|=—]—|m o
oo o
a|n|efo |~
nj—|—|ujo

H OGN —

interatomic distance of a/¥Y 2
and a value of 2 would
represent a distance of (a)

etc.

)
e

Thus, a value of 1 for an s
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The symmetry of each individual submatrice can be seen to involve
the diagnoal terms and of f-diagonal terms such that all the diagonal
terms are equal, and the trace of the matrix is four (4) times the
first element. All off-diagonal terms will be odd numbers if the
diagonal elements are even and all diagonal elements must of necessity
be even numbers.* Further symmetry can be found by comparing the sum
of the off-diagonal elements below the diagonal to the sum of the
of f-diagonal elements above the diagonal and noting their equivalence.
One other important symmetry that is observed is that any set of
sub-matrices defined by having the same first element will also be
such that the sum of the elements in any matrice of the set will be
equal to the sum of the elemehts from any other matrice in the set.
These symmetries by themselves are practically enough to define the
whole problem analytically, the only symmetry factor which appears
difficult to deduce is the repetition factor of each submatrice. The
repetition factor would give the number of matrices contained in the

set of all matrices with equal traces.

* A1l diagonal elements involve the distance between equivalent atoms
in different unit cells. Since the atoms are equivalent the sum of
the difference in their vector components will always add to a whole
number, eg. R15 = la; Rsg = 2a; R] 29 = 3a such that any
(X d~|ag—x d]ag) = 0,1,2',3...etC.

This relation is also true for Y and Z vector components of any
diagonal elements. Since the above relation is true it's true that
all normalized diagonal components will be even whole numbers.
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These symmetries however suggest a shorthand computational method
involving the determinaton of the repetition factor. The program
operates by generating all first diagonal elements except those of the
type R;j where I = J and Ryj where I ; J and storing them in large
core memory.

Therprogram then sfores the unique 9a1ues of each first element
such that a table will be formed whiﬁh contains the value of each
unique ihteratomic distance associated with a diagonal element. fhe
program'then_finds the repefition factor of each element in the table
by c60nting its.redundancy from the table of all elements found in
Targe core memory. Once the repetition factor of each element is
foundrthe program recreates the submatrix associated with each unique
-diagona] elemeﬁt. The Debye\sum is then computed for each submétrix

~and multiplied by the repetition factor to yield the end result.

V.
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RADIAL DISTRIBUTION FUNCTION

The intensity distribution of coherent radiation from an ensemble
of atomic scatterers was described by the Debye sum. The sum was
computed by one of several methods described and produced an intensity
pattern with the following five variablies:

1) Vector termination point

2) Small angle scattering

3) Temperature diffuse scattering

4) Ensemble shape

5) Ensemble size

The first three (3) of these variables and their influence upon
the radial distribution function have been treatéd in detail.
However, the last two variables appear to not have been given as
detailed an examination. Specifically variable (4) was given

5 and a treatment of variable (5) was not found,

treatment by Riley,
even though extensive treatments of particle size upon intensity
distributions have been performed by such people as (Stokes and
wﬂson).9 Each of these variables have been examined and the

results are presented in the proceeding sections.

Radial Distribution Function Defined

The following treatment has been taken from Kap]ow,10 and
(Enderby and Howe]ls).11

G(R) is most frequently found in the form:

G(R) = 4nR(0(R)-p
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where

P, = average number of atoms per unit volume

4«R2p(R)dR = average number of atoms in a spherical shell a
distance R from the center of an average atom; with the shell having
thickness dR.

G(R) is related directly to the interference function through a
Fourier sine fnversion; and this is the property which makes it the
most convenient function to use when transforming X-Ray intensity
data. G(R) also appears when expressing potential énergy equations
such as the (PY) Percus Yevick model or the (HNC) Hyper—netted-cﬁain
equation as expressed by Ste11.13 The appearance of G(R) in
correlafion functiohs such as.the "direct correlation function" is
also related to the properties of G(R) and its definition. The
intention here is not to deécribe G{(R) in terms of its atomic
correlation functions or tHe,existing atomic energy potentials of the
system being studied. Rather that knowing an adequate expression for
the interference function we wish to study the resulting G(R) by
varying certain parameters in the interference function. *G(R) may be

expressed in terms of the Debye sum as follows:

, 42N:3 %3 Sin(KR; ;) (kx)
G(R') =-—/ K —=—=Sin(KR') dK (3)
"J, e KRy
where R' = a continuous variable distinguished from RIJ' This

equation may be arrived at by substituting eq. 1 into the intensity

kernel of the Zernicke-Prins equation given by eq. 4.
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4% (R) = 4aR%p, + —f—R-/ K4 (K)Sin (RK) dK (4)
0 .

where Ki(K) = K [ﬁ%’% - fZ(K)]

Equation 4 may be easily rearranged to yield G(R) and the Fourier

inversion relationship is easily visible in equation 5 and 6.

G(R) = 4ﬂR(p(R)—po) = %- ulfﬁm Ki(K)Sin(RK)dK (5)
0
F(K) = Ki(K) = .//‘“E(R) Sin(RK;dR (6)
0

Note the function G(R) depicted is purposely written in large
capital script so as not to confuse it with the function little g(R)

which is also similar to G(R) by the following relation:

G(R) 4 1 | (7)

The function little g(R) is the function which appears directly in

potential energy expressions such as the PY and HNC equations.



18

RADIAL DISTRIBUTION FUNCTION AND VECTOR TERMINATION ERROR
The following treatment is adopted from Ergun.2 The treatment
is based on rewriting the Debye sum as a sum over all unique atomic
distances and substituting it into the transform for G(R). Using the
interference function (eq. 6) obtained from the Debye sum where the

Debye sum has been corrected for vibration gives:

Sin(KR,) ,e '
- J’J
F(K) =K Z m (8)
| RLSRY -
where
K = 4nS:n(9)'

ﬁJ = average number of interatomic distances RJ per atom in the

ensemble.
53 = mean square deviation in RJ due to vibration
RJ = a unique interatomic distance in the ensemble.

Note, the sum excludes the distance RJ = 0; and counts each distance
twice.

It is interesting to note here that treatments by other authors
such as Warrenl? include the use of an exponential convergence
factor in K-space to make the problem soluble. It's assumed that
these factors whether they are convergence factors or temperature

factors are acting as integraiing factors for the problem. The
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treatment of the problem in any case will of necessity be inexact
except in the case presented where it is assumed that all vibrational
displacements in the lattice ensemble are equal. This assumption is
of course invalid for polycrystalline experimental systems.

Rewriting the function G(R) in terms of both upper and lower
limits of integration gives a function which represents the
distribution function for a set of experimental data with a lower

cutoff-limit of K=M1 and an upper cutoff-limit of K=M2.

M

2
4nRDA(R)=%/ F(K) Sin(KR)dK (9)

M

where
" D,(R) = the G(R) function which would be obtained with a typical
set of experimental data having respective vector termination values
of Ml and Mz.
F(K) = the interference function defined in equation 8.

Rearranging order of summation and integration gives

= M2 K2 2 .
47RD (R) -2 :E: J J/f Sin(KR )Sin[KR]e- GJdK (10)
. "AlTd Ry J

M]

The integral in equation 10 must be solved in the complex plane
and the procedure is long. The solution may be found in the appendix

section of the paper mentioned. The solution by Ergun2 is given as:
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ZﬁJ ® _ —Kzsg
4nRPJ(R) = "RJ ~/C.S1n(KRJ)S1n(KR)e dK (11)
-a, -8B
e Y-e.V)
P.(R) =
J 372
8? RJGJ
GJ = (RJ—R)/ZGJ
By = (RJ+R)/25J

~erf(X) = Is the standard error function of X

_ m |
K : J )
¢J(m,6J,R) =':7=:;=§=. [Z(M,GJ,GJ) - Z(MaGJaBJ)]
J-d

. 2 b2 .2
Z(a,b) = e 2 /ji_d/f e(Y ~b )[Sin(ZaY)dY]
" o

where

a = MsJ

o
"

(R # RJ)/ZGJ

The function P(R) is derived by changing the integration limits

for equation 9, such that M1 = 0 and M2 = o,

Thus, G(R) which contains no termination error can be obtained by
the summation of equation 11 over all interatomic distances. We can

signify this function by an infinity () subscript.
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4+«RD (R) = 41R Z P
A1l J

R) (12)

Equation 12 expresses a method for calculating G(R) from just
knowledge of position, vibrational displacement, and the multiplicity
of every interatomic distance. Or conversely experimental curves may
be corrected to reflect data as though it were taken without
termination. The key to utilizing these expressions comes from
knowledge of m; and &; both of which are difficult to obtain for
complex experimental systems. For a theoretical system of the F.C.C.
copper lattice as used in the computational models here, it would not
be an unfair treatment to consider all of the §5 equal. The
parameter m; could be computed from the array symmetry method
described earlier; while 53 could be set equal to the expectation
value of the mean-square displacement as arrived at by the summation
of all the elastic waves in the system. Upon such considerations
calculation of G(R) devoid of termination error becomes a trivial task.
If this same function would need to be determined for experimental
data it's absolutely necessary that all of the sJ be set equal so
that the error functions can factor out. d

Figure 1 illustrates the variation of parameters M2 and M;.

The displacement factor for this figure is 8§, = 0, which corresponds
to a temperature of T = 0° Kelvin. Due to the uncertainty principle
even at T = 0°K there is still a small displacement fn the lattice,

it's assumed to be zero. The effect of vector termination can be seen

clearly in Curve A where M2 = 20A‘1. In this case the appearance
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of termination satellites will be seen at (£.4 A=) = (2a/K to

max)
the side of any major peak. These peaks are readily seen at r =

2.154; r = 2.95R and at r = 4,058 and r = 4. 8A These satellites
correspond to the major correlation distances r = 2.55A and r = 4.42A

2 12). Curve B shows the rapid washout of

(see Ergun and Warren
detail and peak broadening that occurs from vector term1nat1on due to

the influencé‘of the tonvo]uted function T(M2 x),described by -

:Erguﬁ.3
wheyg
, ) ‘SinMZ(r_x) ‘ 5inM2(er)
T(My,x) = — M, (r=x] NG (13)
ahd~ :
4o, (r) - /w sxo (x) [T (M), %) T(Ml’*)]dx. O
° | . .

_Where 0,(R) was previously_defihed,in equatioﬁs 9-11 and o(x) is a
delta like function which beaks at all interatomic distances. This is
" the function we would like to obtain by a dec&nvo]ution of the integral
in equation 14, This sort of proqedure is dependent on -M1 and MZ

and may not'be able to be performed unless the analytical behavior of
T(M,x) shows bounded support I,E (dies off rapidly with increasing

x).' There are many instances where T(M,x) may not be deconvoluted and

other methods such as described previously must be used.
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RADIAL DISTRIBUTION FUNCTION AND SMALL-ANGLE SCATTERING

The treatment of the exclusion of small-angle scattering (SAXS) on
the RDF has been treated in depth by Cargi]l.l His treatment
examined the SAXS associated with density fluctuations, and this makes
his work very important for a material such as glassy carbon because
of its high internal porosity. The data generated computationally in
this paper contains SAXS associated with volume scattering and the
effect upon the RDF is substantially different from the one noted by
Cargill. The essential result revealed by Cargill is illustrated in
equation 15. The result shows that the neglection of SAXS from the
intensity kernel produces a G(R) which appears to correspond to a
material of greater average atomic densify than the material being
studied. As a consequence of the slbpe of G(R) being disturbed near

the first peak the coordination number of the first shell will be

disturbed.
o 12(0)" (w,R)
GEXD(R) = 44R (D(R)'Do)[l ——:2—-——- (15)
0
where

Gexp(R) = the Radial Distribution Function arrived at when SAXS
is neglected from the interference function.

w = a volume which is of the order of the atomic volume of the
particle. This volume is associated with the Gaussian "Precision
Function" used to approximate the contributidn of SAXS due to density

fluctuations.
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nZ(Q) = the average of the square of the atomic density
fluctuations.

v{w,R) = the density fluctuation correlation function.

The effect of neglecting SAXS yields a decrease in G(R) by the
amount (4an2(w)Y(w,R)/oo) which introduces an error of
(4an2(w)/po) at small values of R where the density fluctuation
correlation function is near unity.

'Since thé particle sizes fn this problem are so small the
'unobseryab1e peaks are clearly visible (see Figure 7a). These
unobservable peakslare‘usqaliy never seen in experimental situations.
They are, however, respons{b1e for contributing the amount 4anO in
the G(R) curvelnegative]y and can be interpreted'as the changing of
o, to a smaller vélue for all G(R) values cpmputéd in this paper
which include volume scattering in the intensity kernel. See Figure 3
which shows the contribution to G(R) from volume scattering.

Figures 2 and 4 shows the intensity and G(R) functiohs for a
cube-shaped particle of size N = 4 on an edge. Where Figure 2
contains SAXS and Figure 4 does not. The overlay of Figures 2 and 4
is §hown as Figure 5.

The results for Figures 2, 4 are shown in Table 1. The effect of
low-angle cut-off (M1 = 2,3A“1) is responsible for the slope seen
in Figure 4 as compared to Figure 2 which shows a zero slope in the
small-R region. The calculations of SAXS for any M1 cutof f is

calculated by smoothing the interference function in the region
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K=081tok = MIA'I. The Porod region is located and the
constant relating its behavior is determined. This constant is then

used to subtract the analytic expression for volume scattering (see

Warrenlz).
3
44R"p
I.E.U(K) volume scattering = ———3—9 f%K)¢2(KR) (18)
4N
where:
4N3 = the number of atoms in the ensemble

oy = macroscopic density

f(K) = atomic scattering factor

. 2
2 9 SinkKR
o (KR) = ( - CosKR)
(KR)4 KR

4xSine
K = e

Rewriting eq. 18 gives a Porod approximation

el (K)<8?(KR)> _ c'F2(K)

[.E.U(K) i

volume scattering ~ (19)

where

<¢2KR)> = ——2——1 which is the expectation value of the interference
2(KR)

function for SAXS for spherical particles.

Since the particie is a cube its "gamma" function (Yo(R)) will
be different and this will mean a different scattering function is
actually applicable (see Guinier, Fournet).16 Thus, the analysis is
not exact.

The coordination analysis shows that the contribution of volume

scattering (SAXS) to the RDF profile must be corrected for by altering
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P, (see Table 1). The new p, may be calculated from the negative
shift observed. This is possible since peak-positions and area are
conserved. Table 1 does'not account for the shift observed and thus
different coordination numbers are reported. The coordination numbers
reported with (SAXS) removed are correct to within experimental

error. As mentioned, the influence of particle size and the intensity
of SAXS at angular values outside of the direct beam ére directly.
observed. This has applicability to a material such as glassy-carbon

since its pore sizes are small, on the order of Rg = (10 - 20)R (see

(Hoyt).17 Rg is the elec¢tronic radius of gyration and for a

sphericé] particle would just be its radius.
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PARTICLE SIZE AND INTERPARTICLE INTERFERENCE AND INFLUENCE UPON RDF

The effect of particle-size broadening on the profile in K-space
has been well documented. The classical papers are those by Scherrer
and (Stokes and wi1son).9 The. derivation of their equations may be
found in practically any college-level textbook dealing with
diffraction. In a material such as glassy carbon where the presence
of faulting and strain are present along with particle size, the use
of the above methods have very limited value. |

This paper does not apply ﬁtrictly to glassy carbon, however it
will show how the evolution of particle size may be traced using the
RDF. To make the method applicable for glassy carbon would require a
strain analysis such aé the wérreH-Averbach method (see wagnerlS).
The analysis for faulting might then be completed in R-space using the

3

method of Ergun” where the Cosine transform of (001) reflections: are

curve-fitted to an exponential form.
For a material such as glassy carbon we need to consider the

3

ef fects of layer size, strain, and faulting. Ergun’ has chosen to

write the interference function for glassy carbon as:

Sin(h] )

J(h) = Z 1 1 )f(h,1 g 20
(h) a”]qrwq)g(q)( Jd T (20)
h - 4+Sine

A

n(]q) = the total number of interatomic vectors of length ]q



28

-al

g(]q) = (e 9) which modifies n(lq) to account for interlayer

stacking defects and finite lattice size. Where a is a defect
correlation distance given as: a = (2/d). d = mean distance between

defects between layers. f(h,]q) = a factor used to account for

temperature vibration and strain in the lattice.

The similarity of equation 20 and equation 8 are immediately

visible except for the omission of g(1:) and the average of n(1

B o
from equation 8. The similarity of equation 20 and equation 1 (the

Debye sum) can be immediately recognized also. The result arrived at

q) upon

~ the RDF and this function is known and expressible for any lattice in
19)

by conputétion in this paper only expresses the éffect of n(1
set nqtation'(see Ergunt?). Since n(]q) is independent of the
scattering vector, the function G(R) is only product dependent upon
n(lq), Since n(lq) is a funétion of particle size, G(R) can be

used as a measure of particle size when temperature and strain effects
aré'not present in the interferenée function as expressed by the

function f(h,1 which was used to account

q). The function g(1q)

for a defective lattice will necessarily be included in n(1
3

q) since

its also scattering vector independent. Ergun” has outlined a

method for seperating n(1 and g(1 so as to arrive at d, the

7 ¢
mean-defect-free interlayer distance.

The relationship of SAXS to particle size through "radius of
gyration" calculation are explored extensively in such texts as
)16

(Guinier and Fournet and the relationship of the correlation

function to specific surface area are shown by Debye.l4 The problem
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being solved in this study involves an ideal gas composed of copper
particles of a single size. We can write the intensity function in
terms of a volume scattering term and a perturbation volume term from

(Guiner and Fournet)16

2 Vo
LEU(K) = NI (K) *+ I (K)RFE(K) [1- V_l] (21)

where

Il(K) = the scattering due to the volume of the particle (see
equation 21).

N = the average number of particles in the scattering volume.

2

F®(K) = the structure factor of the material being studied.

V1= the average total volume available per particle.

V2=.j/. 4xR[1 - p(R)] Sin iﬁ%ldR referred to as the perturbation
0

vo lume.
Ie(K) = the scattering of a single electron for non-polarized
radiation.
P(R) = probability of finding a pair of atoms seperated by a

distance R, when the atoms are in different particles.

The term II(K) expresses SAXS due to volume scattering and it is
this term which gives rise to scattering in the Guinier and Porod
regions. The result from equation 21 is the same result as Il(K) if
Il(K) is evaluated using the Fraunhofer approximation with a

flat-faced diffractometer sample. Rewriting equation 21 yields
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Vs

I.E.U(K) = NIe(K) [II(K) -V (ZlA)

F2 K]
1 SAXS TERM

+ T (KN Fo(

e K) (wAXD-Intensity TERM)

Exploring the behavior of the ratio (VZ/VI) for different
systems gives much insight as to how interparticle effects control the
interference function and thus the ROF. For the system computed in
this paper we can easily show that there is no prefferred orientation
of particles and as such the quotient (VZ/VI) = 0. The ROF
~obtained by transforming equation 21 with this condition will create a
G(R) function with a zero-slope in the small R region as illustrated
in Figure 2 where.the slope at small-R is flat.

In any system such as glassy carbon the value of (VZ/VI) will
be non-zero due to the large internal porosity of the material and the
vdensity fluctuations between‘iathes. When interparticle effects
become non-negligible it's necessary to rewrite the intensity function
either in terms o% Thermodynamic variables or in terms of potential
‘energy e;pre$§ions. The effect of interparticle interference will
always be to decrease the SAXS kK™% Taw so that the éorrespondihg
G(R) function must possess a negative slope at small-R.

Table 2 shows the Scherrer analysis for the (002) ref]ectidn, The
Scherrer equation gives an excellent approximation of true particle
size. Table 3 shows both peak height and width for G(R) for the first

three coordination shells for the particle sizes N =2; N = 9 for all
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three particle shapes. The evolution of peak width in K-space is
expressed by the Scherrer equation (eq. 22). While the relation
between the correlation function and interference function in terms of
particle size is expressed by a "free electron" volume described by

4

Debye™ in equations 23, 24 and 25. The evolution of the RDF with

particle size is shown in Figures 7-9, and table 3.

A .
g(28) = I_EBEEE_ Scherrer Equation (22)
where
8(28) = the full width at half-maximum intensity measured in

radians for a reflection associated with the crystallite dimension L.

L = the crystallite dimension in angstroms associated with the
plane reflection being examined.

9, = the Bragg-angle of the plane reflection being examined.

The Scherrer equation is valid for reflections having no
broadening due to instrumental effects, crystal strain or fault
broadening. Thus, all figures presented can be analyzed using the
Scherrer equation.

Debye has expressed a "free electron® number.(n*) as the
scattering due to the total number of electrons = in the scattering

volume V.

n* = VAv <(8n)252 /m C(R)ig”(KR)dT (23)
0
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where
| V = volume illuminated by the primary beam.

Av<(6n)2> =-the expectation value of the sduare_of free electron
density fluctuation per cubic_centfmeter, evaluated for small étomic
seperation.distaﬁces. "

- dT = a volume e]enent_deffnedvby R and é.

The integral'in equatidn 23 represents an effective scattering
power cdntained in the illuminated yo]ume V as observed at K. This
knowledge then leads direétly to a relation between the correTation
function C(R) and the volume expressed by its Fourier Transform.

Debye expresses this volume function as (K) where:

(K) =_/°° c(r) SIRKR) 4 S (28)
5 . E _
C(R) = the correlation function for the material as defined by
Debye.

~ Equation 24 is an éxpression of the electron vo]ume_participating
in scattering and can be associated with particle size when the volume
element dt is évaldatéd for a case such as sbherés’at K'=0. The |
relation between this volume and this scatteredvintensity is given by

equation 25.

2

- () et w0 25
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where

2 \2
(9—?) = the scattering cross section of a free electron.

mc
(1+c0529)

> = polarization factor for an unpolarized primary beam.

r = the distance from the sample to the point of observation.

Equation 25 is significant in showing the proportionality between

intensity and "free electron volume". Equation 25 may be rearranged

16

to yield a result given by Guinier*” shown in equation 29.

F2(K) = FZ(O)f vo(R) 2MKR) 4 (26)
0 .
where
dt = 4xRZaR

Yo(R) = a correlation or "characteristic function" of the
particle. Its definition is that it represents the probability that
an arbitrary point at a distance R in a random direction from a fixed
point in the particle will itself be in the particle.

The equivalence‘of equations 25 and 26 can be shown by equating

Y (R)FZ(K) and VAv<(5n)2>C(R). This can be easily shown since

0
Debye defines n*(K) in the Porod region identically to FZ(K).

—

a*(K) = FE(K) = (2moS/k?) (27)
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when (KR1 > 2m)

where
R1 = radius of particle undergoing diffraction
92 = square of elecpron density of particle.

Further it can be shown that the integral of Yo(R) over all R is
one half of the average particle size. Table 3 exhibits the growth in
.amp]itude of the first peak in G(R) for three different shape
partiﬁ]es. A1l peak widths remained constant within measurement
1imi£s. The peak heights showed a 1limiting behavior as particle size
was increased. See figures 7-9 and Table 3. Where figures 7-9
represent the growth in coordination number vs. particle size and

Table 3 shows the growth of G(R).
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PARTICLE SHAPE AND ITS EFFECT UPON THE RDF

Particle shape influences the scattering curve at small angles and
as such it will be shown that its effect on G(R) is negligible for
large particle sizes. Scattering curves for various shaped particles
have been calculated by such pgop]e as Kratky and Porod and Rayleigh.
These curves can be shown to have similar characteristics in that they
will all tend to zero, oscillating about a k=4 curve as long as
K >> (1/e); where ¢ represents the small dimension for anisotropic
shapes such as discs or cylinders. The Zernicke-Prins equation and
other similar derivations all involve the neglection of scattering at
small angles where the shape of the volume exerté its fnf1uence. In
typical experimental data this intensity will be covered by the
primary beam. The actual G(R) curve which will be derived from
experimental intensity will be a difference function as shown by
Riley.>

(=-]

[G(R)-gs(R)] =f—R / Ki (K)Sin(KR)dK (28)
0

where:

M = the 16w—ang]e cut-off for the experiment
(

'
~

-
I

the experimentally observed interference function.

the "shape function" defined as the Fourier transform of

o

—~~
=

N
[}

the unobserved low-angle scattering for an amorphous particle of
uniform electron density.
The seperation of ¢(R) is impossible, since its analytical form is

not known for systems of particles found in non-dilute experimental
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situations. In the case of a very dilute system or theoretical system,

as in the Debye sum, ¢(R) is equivalent to y_(R) the characteristic

of
function of the particle. The information of a particle size will be
found at the largest R-values observable in the RDF. In reciprocal
space this information should be in the SAXS region, and this implies
that the correction of SAXS should have an effect upon the RDF peaks
'at 1érge R. However, examination of the "characteristic function"
shows that it takes on its.]arggst value at R = 0 and falls to zero at
distances approaching~and»or equal to the particle size. For example,
a sphere of radius RS will have a yo(R) function defined by

equation 29. From inspection one can determine-the function is zero

at R = 2R'S'

| 3
(SPhere () %%;,+ %B‘(E;‘) . (29)

Equation 29 illustrates h0w‘the function YO(R) would be useful
in determining characteristic particle size. However, the equation
really contains no information on the shape of the particle and it's
possible that two different shaped particles couid have very similar
YO(R) since Yo(R) is dependent upon the surface to volume ratio of
the particle. The illustration of Yo(R) approaching zero can be
found in Figure 5 where the RDF functions approach identical values at
R = 14.50R. This is to be expected from a particle whose

characteristic dimension is of this order.
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The effect of particle shape will be to change the function
YO(R); which would be equivalent to changing nJ(RJ) in equation
8. The change in this function may be monitored directly by comparing
peak-height rat}os in G(R).
- The absence of a specific pattern can sometimes be related to its
shape. For example, an F.C.C. structure in the shape of a rod cannot
contain distances expressed as the square root of an integer which has

as its square root a non-integer number. I.E.

R?Sd £ vV 2a, v/ 3a, v 5a,/ ba, v/ 7a, v/ 8a, v 10a etc.

These distances are allowed for a plate or cube shape and other
methods need to be used to distinguish these shapes. One method which
can be determined qualitatively but is not of fered here as a
quanitative method is to ratio the peaks found at a, and 2a. It
should be noted that these ratios will be a function of particle size
and will not converge until that size becomes much larger than 2a.

A preferred method of determining shape is in examining the
intensity curve in reciprocal space. The Scherrer analysis of
Figure 6a reveals the particle has well developed structure of (111)
type planes. In comparison plate and rod shapes show poor development
of these planes (see 6b and 6¢c). This infdrmation in conjunction with
Scherrer analysis allows speculation as to the shape of a particle.

In a formal sense the sensitivity of the two methods should be
identical since both methods are manifestations of the same reality.

In practice however differences in structure tend to be more localized
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in curves in reciprocal space as compared to the effects in

real—space. Both curves have their advantages in certain situtations, R
but in conjunction with each other they form a powerful tool when
interpreting experimental data against scattering models constructed

computationally.
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DISCUSSION AND CONCLUSIONS

The results obtained by Fourier inversion of Small-Angle data
(SAXS) show that this portion of the intensity is associated with the
effective density of the material and particle size. The importance
of SAXS subtraction when dealing with only volume scattering is found
in the Zernicke Prins equation and discussed by Cargi]],l
Frank]in,24 Diamond,23 and Warren.12 The removal of SAXS and
application of gaussian analysis provided answers for coordiéation
numbers within experimental error. See Table 1, which shows the
results of coordination numbers obtained with and without Saxs data.
Peak-position was always conserved regardless of Saxs. Evidence is
found in figure 5 which shows an oVer]ay of RDF patterns which include
and exclude Saxs in their intensity kernel. The figure clearly shows
the superposition of peaks. Peak area was also found to be conserved,
however the o is shifted to some unknown value when Saxs is
included in thg transform. This area conservation is best
demonstrated by figure 5, which shows both patterns as identical but
displaced by the amount shown in figure 3.

The results obtained from the diffraction data at higher angles
(WAXD) is completely accurate to within experimental error as
demonstrated by figures 6a, b, and ¢ which show convincing WAXD
patterns accurate to within .05~ for a cube, plate and rod
structure. Also the Fourier transforms of this data which illustrate

the interatomic distances were accurate to within £.058. From these

results and the coordination number results obtained in figure 7 it
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appears aé though the model's discontinuity has not interferred with
the data obtained in real or reciprocal space. The primary results of
this study are reflected in figures 7, 8 and 9. Close examination of
these figures demonstrate conc]usiVe]y that the first coordination
shell stops evolving with an effective particle size of 30-40A. AN
of the shapes studied confirm this result so shape appears to play no
role.

The results fof the second and third coordination shells must be
obtained from figures 8 and 9, since the particle size in the three
dimensional model is not large enough for the secondxor third shell to
have_conVerged. Thefe appears to be no easy way to ;onfirm these
results since they are based on the one and two dimensional models of
the plate and rod. The result for the second shell appears to be that
it has converged at particle sizes on the order of 908 as shown in
figure 8. Figures 8 and 9 indicate that the third shell is fully
evolved at an effective particle size of ~130A. Since the effective
| particle size in figure 9-35 increasing so rapidly the interpolation
is best taken from figure 8. Since figures 8 and 9 represent data
from one and two dimensional models respectively, the results may not
-'app1y to experimental situations and care should be used in

transferring these results to experimental situations.



41

Table 1. Effect of SAXS

2.55
4.45
5.75
2.55
4.45

5.75

G(R)

25.70
23.82
18.22
29.92
32.25
28.46

(G(R) )COI"I"

23.21
21.64
18.02
26 .96
28.58
23.52

No. Corrected Coordination No.

Shape = Cube
Coordination Coordination

No.

10.96 lb.OO
19.22 17.75
21.16 20.99
12.58 11.40
24.89 22.42
30.07 25.77

Actual

12

12

H

Ve O O
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Table 2.
*
Na Loo2 8Kgo2
N A A Shape g1
14.45 14.21 Cube .442
7 25.30 25 .50 Cube .286
9 32.53 33.42 Cube .188

*Loo2 = 2n/aKgQ?2
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Table 3
G(R% AG(R) Width at Coordination
N Shape atoms/A  half max #.02A No. R A
2 Cube 19.40 17 8.53 2.55
3 Cube 23.44 17 10.09 2.55
4 Cube 25.70 17 10.96 2.55
5 Cube 27.16 A7 11.52 - 2.55
6 Cube 28.17 17 11.91 2.55
7 Cube 28.91 A7 12.19 2.55
8 Cube 29.48 17 12.42 2.55
9 Cube 29.92 17 12.58 2.55
2 Plate 17.26 17 7.70 2.55
3 Plate 19.39 17 8.52 2.55
4 Plate 20.37 17 8.90 2.55
5 Plate 20.93 17 9,12 2.55
6 Plate 21.29 17 9.26 2.55
7 Plate 21.50 17 9.34 2.55
1 Rod 7.36 17 3.88 2.55
2 Rod 11.74 17 5.57 2.55
3 Rod 12.18 A7 5.74 2.55
4 Rod 12.33 17 5.80 2.55
5 Rod 12.40 17 5.83 2.55
2 Cube 6.48 17 10.95 5.75
3 Cube 13.97 17 17.47 5.75
4 Cube 18.22 17 21.16 5.75
5 Cube 21.24 17 23.79 5.75
6 Cube 23.39 A7 25.66 5.75
7 ".Cube 26.74 17 28.58 5.75
8 Cube 27.71 17 29.42 5.75
9 Cube 28.46 17 30.07 5.75
2 P1ate 5.95 17 10.49 5.75
3 Plate 9.79 17 13.83 5.75
4 Plate 11.65 17 15.45 5.75
5 Plate 12.68 17 16.34 5.75
6 Plate 13.32 17 16.90 5.75
7 Plate 13.75 A7 17.28 5.75
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Table 3 cont

NOYO & WN

Rod

G(R) peak AG(R) Coordination
Shape atoms/A2 Width at half max No. R A
1 Rod .17 0 5.75
2 . Rod 17 8.94 5.75
3 Rod 17 9.52 5.75
4 Rod A 9.65 5.75
5 Rod .17 9.76 5.75
2 Cube A7 10.75 4.45
3 Cube 17 15.94 4.45
4 Cube A7 19.22 4.45
5 Cube 17 21.28 4,45
6 Cube 17 22.58 4.45
7 Cube 17 23.55 4.45
8 Cube’ 17 24.30 4,45
9 Cube 17 24.89 4.45
Plate - 17 7.61 4.45
Plate 17 9.39 4.45
Plate 17 10.26 4.45
Plate 17 10.78 © 4,45
Plate 17 11.09 4.45
Plate 17 11.27 4.45
1 Rod 17 0 4.45
2 Rod 17 5.02 4.45
3 Rod 17 5.21 4.45
4 Rod .17 5.31 4.45
5 A7 5.37 4.45
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Fig. 2.

Fig. 3.

Fig. 4.
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FIGURE CAPTIONS
Shows the effect of termination error upon resolution of
peaks in the RDF. Both curves are for cubes of side-length .
(N = 3). Curve A shows termination at K = 204-1, and v
Curve B shows termination at K = 54~1.
Shows the RDF for a cube of side-length (N = 4). This
distribution Qas produced from data taken from K = .OSIK'1
to.K = 2081, The flat zero slope in the small R region is
indicative of the presence of volume scattering in the
transformed intensity function.
Shows a Saxs transform of the intensity region K = L0581
to K = 2.38~1. The contribution of this curve to G(R)
should be 4nRo, out to (Na/2). The intensity data is
extracted from figure 2 and represents Saxs fof a cube of
side-length (N = 4).
This figure shows fhe result of transforming intensity data
without Saxs (volume scattering). The intensity data used in
this transform is the same as figure 2 except the limits
extend from K = 2,341 to K = 20A°1,

This figure demonstrates the effect of the y_(R) function I

of
by showing the overlay of figures 2 and 4. Note the

convergence of the two curves at R = 14,58, Note also the
exact overlay of peak position, demonstrating Saxs has no

effect on RDF positions.
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Fig. 6a, These figures show overlays of WAXD for the shépes and sizes

b,c

Fig. 7.

Fig. 8.

Fig. 9.

indicated on the figures. These figUrés also illustrate the
evolution of the specific planes associated with each shape
and how particle size effects sharpness in reciprocal space.
The coordination number for cube shaped particles for the
first three coordination shells is plotted versus the
effective particle size. Since the data transformed contains
Saxs, the asymptote of the first coordination shell curve
rises above the theoretical Tine shown.

The coordination number fur plate shaped particles for the
first three shells is plotted versus the effective particle
size which is N2a for p]ates; Note that the asymptote of
the first shell begins at the same value as that for cubes.
The coordination number for rod shaped particles for the
first three shells is plotted versus the effective particle
size which is N3a for rods. Note that the asymptote of the
first shell begins at the same value as that for cubes and

plates.
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_ APPENDIX A
VECTORED ARRAY ACCESS

Consider a usual 3-level nested "Do Loop" with variables I,J,K.
Count =1
Do 100

I
Do 200 J
Do 300 K
(
(
(

AN
|
b b b

X(Count) =

Y(Count) =

Z(Count) =

Count = Count + 1
300 Continue
200 Continue
100 Continue

P Vv S S S

* ok He v v

v 2222

Rewriting this scheme in terms of vectored access gives:

Count =1

Do - 100 I

Rim = (

Do 200 J

Rjm = (

Do 300 K

X(Count)

Y(Count)

Z(Count) = (K=1)*A
300 Continue
200 Continue
100 Continue

[
el
o
3

When N is large the savings in computation will be substantial
since the quantity (Rim) and (Rjm) will be calculated N, and N2
vy times respectively instead of N3 times. Only the most advanced
compilers are capable of generating code such as the above from the

starting code previously shown.



62

REVERSAL OF SUMMATION AND MULTIPLICATION CONVERSION

The Debye summation found in this program could be performed as a
(3-1level) nested "Do Loop" as shown below. The order of the summation
can_be an important factor in consumption of time as well as possibly

providing elimination of other unnecessary loops.

Do 50 I1 =1, KMAX3
DO 100 I = 1, 4N—'1 -
Do 200 J = 1+1, 4an3
K = I1*.05
2 2 2
'RIJ = X(I)=-X(J) “+ Y(I)-Y(J) “+ Z(1)-2(J)
' KRIJ
Sum = STn—rrIJ—— + Sum |
200  Continue
100 Continue
_ 2 3 £2
Sum = 0
50 Continue
Instead this summation could be rewritten as:
Do 100 [ =1, an3-1
Do 200 J = I+1, 4N3
Ryg = X(D=x(3) 2+ ¥(1)=v(3) %+ 2(1)-2(3) 2
Converts division » RDg = 1/Ryg ‘ 'y
to multiplication .
Do 300 I1 = 1, KMAX a
’_‘
Sum(Il) = RDIK Sin(KRIJ)
+ Sum(1I1)

300 Continue
200 Continue
100 Continue

Do 500 Q =1, KMAX
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2
Division by K » 1eu(q) = FHQSUmQ) 4 4p3¢2(q)

is performed here
500 Continue
The time savings is realized by changing the order of summation
and utilizing the reciprocal of RIJ‘ Similarly the reciprocal of K

could have been used to change the line above line 500.



NORMALIZATION OF VARIABLES
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One of the most time consuming steps in the program is the

generation of coordinates. By normalizing these coordinates by the

factor (a/4) where a is the lattice constant much time can be saved.

which converts
the normalized

Count =1 -
Do 100 I=1, 43,4
" Do 200 J=1, a3, 4
| Do 300 K=1, an3, 4
These > X(Count) = (I-1)
are the normalized Y(Count) = (J-1)
coordinates Z(Count) = (k-1)
Count = Count + 1
300 Continue
200 Continue
100 Continue
Do 600 N = 1, KMAX
. v .05 a
proquges a > KDUM(N) = 1
modified K K(N) .05N actual K in reciprocal space

600 Continue
coordinates to real-coordinates

sy te

w2
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