
UC San Diego
UC San Diego Previously Published Works

Title
Utility of quantitative measurement of T2 using restriction spectrum imaging for 
detection of clinically significant prostate cancer

Permalink
https://escholarship.org/uc/item/5429r59v

Journal
Scientific Reports, 14(1)

ISSN
2045-2322

Authors
Rojo Domingo, Mariluz
Conlin, Christopher C
Karunamuni, Roshan
et al.

Publication Date
2024

DOI
10.1038/s41598-024-82742-8
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5429r59v
https://escholarship.org/uc/item/5429r59v#author
https://escholarship.org
http://www.cdlib.org/


Utility of quantitative 
measurement of T2 using 
restriction spectrum imaging for 
detection of clinically significant 
prostate cancer
Mariluz Rojo Domingo1,2, Christopher C. Conlin3, Roshan Karunamuni2, Courtney Ollison2, 
Madison T. Baxter2, Karoline Kallis2, Deondre D. Do1,2, Yuze Song2,4, Joshua Kuperman3, 
Ahmed S. Shabaik5, Michael E. Hahn3, Paul M. Murphy3, Rebecca Rakow-Penner3,  
Anders M. Dale3,6,7 & Tyler M. Seibert1,2,3,8,9

The Restriction Spectrum Imaging restriction score (RSIrs) has been shown to improve the accuracy 
for diagnosis of clinically significant prostate cancer (csPCa) compared to standard DWI. Both diffusion 
and T2 properties of prostate tissue contribute to the signal measured in DWI, and studies have 
demonstrated that each may be valuable for distinguishing csPCa from benign tissue. The purpose 
of this retrospective study was to (1) determine whether prostate T2 varies across RSI compartments 
and in the presence of csPCa, and (2) evaluate whether csPCa detection with RSIrs is improved by 
acquiring multiple scans at different TEs to measure compartmental T2 (cT2). Data includes two cohorts 
scanned for csPCa with 3T multi-b-value diffusion-weighted sequences acquired at multiple TEs. cT2 
values were computed from multi-TE RSI data and compared by compartment. CsPCa detection was 
compared between RSIrs and a logistic regression model (LRM) to predict the probability of csPCa 
using cT2 in combination with RSI measurements. Two-sample t-tests (α = 0.05) and the area under the 
receiver operating characteristic curve (AUC) were used for the statistical analyses. In both cohorts, 
T2 was different (p < 0.05) across the four RSI compartments (C1, C2, C3, C4). Voxel-level, cohort 1: 
T2 was different in csPCa for C1, C2, C3 (p < 0.001). Patient-level, cohort 1: T2 was different in csPCa 
patients in C3 (p = 0.02); cohort 2: T2 differed in csPCa patients in C1 (p = 0.01), C3 (p = 0.01) and C4 
(p < 0.01). Voxel-level csPCa detection: cT2 did not improve discrimination over RSIrs alone (p = 0.9). 
Patient-level: RSIrs and the LRM performed better than diffusion alone (p < 0.001), but the difference 
in AUCs between RSIrs and the LRM was not significantly different (p = 0.54). In conclusion, significant 
differences in cT2 were observed between normal and cancerous prostatic tissue. With our data, 
however, consideration of cT2 in addition to diffusion did not significantly improve cancer detection 
performance.

Keywords  Prostate, Cancer detection, T2 mapping, Restriction spectrum imaging, Diffusion-weighted 
imaging
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Multiparametric magnetic resonance imaging (mpMRI) has become an important tool for the diagnosis 
of prostate cancer (PCa)1. MpMRI has proven to reduce unnecessary biopsies, mitigate overdiagnosis of 
clinically insignificant prostate cancer (indolent PCa), and enhance detection of clinically significant prostate 
cancer (csPCa, Grade Group ≥ 2)2,3. In standard reporting of prostate MRI (Prostate Imaging Reporting and 
Data System, PI-RADS v2.14), diffusion-weighted imaging (DWI) and T2 -weighted imaging are the principal 
modalities used to detect csPCa. DWI measures the random movement of water molecules within tissues, 
aiding in the visualization of areas of restricted diffusion associated with hypercellular csPCa5. Meanwhile, T2 
-weighted imaging provides detailed anatomical information and facilitates the visualization of abnormalities in 
prostate tissue. The combined analysis of these two sequences allows for a more in-depth evaluation of potential 
tumor lesions, thereby contributing to csPCa detection and characterization.

The challenge with the interpretation of conventional mpMRI lies in its inherent subjectivity and variability6. 
The interpretations of imaging data by different radiologists that rely on qualitative assessment alone leads to 
inconsistencies in the identification and characterization of csPCa lesions7. Interobserver variability significantly 
limits the accuracy and reliability of csPCa diagnosis8. To enhance diagnostic accuracy, there is a growing 
emphasis on the development and adoption of quantitative MRI approaches. Quantitative MRI aims to provide 
objective metrics of tissue properties associated with the probability of csPCa, offering the potential for more 
standardized and reproducible image assessment.

Restriction Spectrum Imaging (RSI) is a quantitative approach to DWI for csPCa detection and 
characterization. RSI scans are acquired at multiple b-values (diffusion weightings) to distinguish diffusion signal 
from tissue micro-compartments (intracellular water, extracellular hindered water, freely diffusing water, and 
flowing fluid)9–12. However, RSI models typically do not incorporate quantitative T2 measurements. On the other 
hand, studies using luminal water imaging (LWI) and hybrid multidimensional MRI have shown that tissue T2 
can differ between prostate tissue compartments and provide diagnostic information that is complementary to 
diffusion13,14.

In this study, we acquired prostate RSI data at multiple echo times (TEs) to measure compartmental 
T2 in addition to diffusion. We aimed to determine whether compartmental T2 (i.e., T2 within each RSI 
micro-compartment) differs between cancerous and normal prostate tissue, and whether consideration of 
compartmental T2 in RSI yields improved detection of csPCa.

Methods
Study population
This study was approved by the University of California San Diego (UCSD) institutional review board (IRB). All 
research was performed in accordance with relevant guidelines and regulations. An FDA-cleared, commercial 
version of RSI is used routinely in our center as part of clinical routine. The first cohort included 46 patients 
scanned for suspected or known PCa between August and December of 2016 with multiple TEs as part of a 
quality improvement project to determine the best TE. The second cohort included patients who were scanned 
for suspected or known PCa between March 2021 and January of 2023 with a multi-TE RSI protocol per clinical 
routine (the need to obtain informed consent was waived by the UCSD IRB for secondary use of routine clinical 
data) or after informed written consent as part of a clinical trial on treatment response assessment (clinicaltrials.
gov NCT04349501). Patients were excluded if they had received any treatment for PCa prior to the MRI 
acquisition or if a lesion with PI-RADS score ≥ 3 was detected on MRI but no biopsy information was available.

Routine clinical evaluation
Patients in both cohorts underwent prostate MRI as part of routine clinical care for PCa, except for 38 patients 
in cohort 2 who were scanned as part of a prospective research study without clinical evaluation by a radiologist. 
MpMRI was performed according to PI-RADS guidelines, and interpretation was made per clinical routine 
using PI-RADS v2.1. Several patients, all from cohort 2, had PCa diagnosed on systematic biopsy without 
MRI, and then had an MRI with RSI before any treatment as part of a prospective study; PI-RADS scores are 
not available for these subjects. PI-RADS interpretation was done as part of clinical practice, but the original 
lesion segmentations were not available for the present study. Those segmentations are made in routine clinical 
practice using a proprietary software for biopsy that does not permit exporting the lesions. The radiologists in 
the present study segmented all biopsy-confirmed lesions, relying on the images themselves and the written 
description of those biopsy targets provided in the routine clinical PI-RADS reports. The presence of clinically 
significant prostate cancer (csPCa, grade group ≥ 2) was determined from biopsy results, typically systematic 
12-core biopsy with additional targeted cores for suspicious lesions on MRI. Patients with PI-RADS lesions of 
1 or 2 with no biopsy were considered negative for csPCa, in accordance with European Association of Urology 
(EAU) guidelines15–17.

RSI data acquisition and processing
All patients were scanned with an expanded MRI protocol that included two multi-b-value RSI acquisitions 
performed with different TEs. MRI acquisition details are summarized in Table 1. All MR imaging was performed 
on a 3T clinical scanner (Discovery MR750; GE Healthcare, Waukesha, WI, USA), using a 32-channel phased-
array coil over the pelvis. For each patient, two axial, multi-b-value DWI volumes were separately acquired 
using two different TEs: 80 ms and 100 ms for cohort 1, and 76 ms and 90 ms for cohort 2. All other parameters 
were the same between scans. In addition to the DWI volumes, a single T2-weighted volume was acquired for 
anatomical reference using the same scan coverage as the DWI volumes. MRI post-processing was performed 
using programs implemented in MATLAB R2022a (MathWorks, Natick, MA, USA18). DWI volumes were 
corrected to account for B0-inhomogeneities, gradient nonlinearities, eddy currents19, and image noise10. 
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Samples at each b-value were averaged together. Image registration20 was applied to correct for patient motion 
between acquisitions.

For patients in cohort 1, regions of interest (ROIs) were manually defined on T2-weighted images over the 
whole prostate, peripheral zone, and transition zone (the central zone was included with the transition zone). 
The contouring of the prostate zones and tumor lesions was performed using MIM software (MIM software 
version 7.2.6, Inc; Cleveland, OH, USA21), by a radiation oncologist with 3 years of experience and two board-
certified sub-specialist radiologists with 4 and 6 years of experience, using all available clinical imaging and 
pathologic information11. Radiologist-certified contours of the prostate zones and lesions were not obtainable 
for cohort 2. Instead, automated prostate contours, which are generally highly accurate22, were obtained using an 
FDA-cleared commercial product (OnQ Prostate version 1.4, CorTechs.ai, San Diego, CA, USA23).

RSI modeling
Prior studies established and validated a four-compartment RSI model of the diffusion signal10,11,24:

	
S (b) =

4∑
i=1

Cie
−bDi

S(b) denotes the measured DWI signal intensity at a particular b-value, which is modeled as a linear combination 
of exponential decays representing four diffusion compartments. Ci describes the compartmental signal 
contributions to be determined via model-fitting. The diffusion coefficients, Di, are fixed for each of the four 
tissue compartments to empirically determined values10 that broadly represent restricted diffusion, hindered 
diffusion, free diffusion, and vascular flow: 1.1e−4, 1.8e−3, 3.6e−3, and 0.1220 mm2/s, respectively. Signal-
contribution (Ci) maps were computed for both DWI volumes per patient by fitting this model to the signal-vs.-
b-value curve from each voxel. A previously validated biomarker for PCa called the RSI restriction score (RSIrs) 
was computed by dividing the signal intensity of the restricted diffusion compartment, C1, at each voxel by the 
median signal intensity within the whole prostate on the b = 0 mm2/s DWI images (an index of apparent T2-
weighting in the prostate)11,24–27.

Compartmental T2 mapping and analysis by csPCa status
T2 maps were computed for each compartment of the RSI model by fitting the monoexponential T2 decay formula 
to the signal values from the two Ci maps with different TEs. The median T2 within the whole prostate was then 
computed. Two-sample t-tests (α = 0.05) were used to determine whether there were significant differences in 
median T2 between compartments.

For cohort 1, two-sample t-tests (α = 0.05) were used to compare median compartmental T2 values between 
benign or clinically insignificant PCa tissue and csPCa lesions. For both cohorts, we used two-sample t-
tests (α = 0.05) to compare each patient’s median T2 by compartment in the whole prostate, and whether 

Cohort 1 DWI 1 DWI 2 T2-weighted

Pulse sequence EPI* EPI* FSE†

TR (ms) 5000 5000 6225

TE (ms) 80 100 100

FOV (mm) 220 × 220 220 × 220 220 × 220

Matrix [resampled dimensions] 96 × 96 [128 × 128] 96 × 96 [128 × 128] 320 × 320 [512 × 512]

Slices 34 34 34

Slice Thickness (mm) 3 3 3

b-values (s/mm2) [number of samples] 0[7‡], 200 [6], 1000 [6], 2000 [6], 3000 [6] 0[7‡], 200 [6], 1000 [6], 2000 [6], 3000 [6] N/A

Cohort 2 DWI 1 DWI 2 T2-weighted

Pulse sequence EPI* EPI* FSE†

TR (ms) 4500 4500 6230

TE (ms) 76 90 98

FOV (mm) 20 × 100 200 × 100 200 × 200

Matrix [resampled dimensions] 80 × 48 [128 × 128] 80 × 48 [128 × 128] 320 × 320 [512 × 512]

Slices 32 32 32

Slice Thickness (mm) 3 3 3

b-values (s/mm2) [number of samples] 0 [2‡], 50[6], 800[6], 1500[12], 3000 [18] 0 [2‡], 50[6], 800[6], 1500[12], 3000 [18] N/A

Table 1.  Acquisition details for DWI and T2-weighted image volumes. All MR imaging was performed on a 3T 
clinical scanner (Discovery MR750; GE Healthcare), using a 32-channel phased-array coil over the pelvis. The 
two DWI volumes for both cohorts were acquired using different TEs to allow for examination of T2 relaxation 
in prostatic tissue compartments. The single T2-weighted volume was acquired for anatomical reference. 
*Diffusion-weighted echo-planar imaging. †Fast spin echo. ‡An extra b = 0 s/mm2 volume was acquired with 
reverse phase encoding to enable correction of B0-inhomogeneity distortions.
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compartmental T2 was significantly different between patients with and without csPCa. Any compartments 
with a significant difference in T2 between normal and cancerous tissue were noted for inclusion in subsequent 
multivariable modeling.

Logistic regression model fitting and evaluation of cancer-detection performance
A logistic regression model (LRM) was developed to estimate the probability that a given voxel of tissue contains 
csPCa given measurements of diffusion and compartmental T2. RSIrs11 was included as the diffusion parameter 
of the model. Compartmental T2 was included in the LRM for each compartment that showed a significant 
difference in T2 between normal and cancerous tissue. Cohort 1 had radiologist-certified lesion contours 
available and was therefore used to train the LRM. In patients with csPCa, voxels inside the lesion contours were 
labeled as csPCa-positive, while prostate voxels outside the lesion contours were labeled as csPCa-negative. In 
these patients, voxels labeled as csPCa-positive were included to train the LRM and all non-csPCa voxels were 
excluded. In patients without csPCa, diffusion and compartmental T2 measurements from all voxels within the 
entire prostate were used to train the LRM and labeled as csPCa-negative.

Ten-fold cross-validation was performed to evaluate voxel-level csPCa-detection performance of the 
model within cohort 1. We assessed csPCa-detection performance using the area under the receiver operating 
characteristic curve (AUC) and calculated 95% confidence intervals (CI) from 10,000 bootstrap samples.

Both cohorts were used to test the patient-level csPCa-detection performance of the model. For patient-level 
analysis of the LRM, the highest probability value observed within the whole prostate was used as the predictor 
variable. Similarly, the maximum RSIrs value within the whole prostate was used as the patient-level predictor 
for RSIrs. We also computed maximum C1 to obtain the patient-level performance of diffusion only, as RSIrs 
incorporates global prostate T2 signal in addition to diffusion signal. AUC values were computed for maximum 
C1, maximum RSIrs, and the LRM, and compared using two-sample t-tests (α = 0.05). The 95% confidence 
intervals were estimated through random sampling with replacement from 10,000 bootstrap patient samples.

Results
Study population
Cohort 1 comprised 46 patients (age: 70 ± 10 years; PSA: 10.6 ± 16.9 ng/mL). Cohort 2 comprised 195 patients 
(age: 69 ± 8 years; PSA: 8.2 ± 8.5 ng/mL). In cohort 1, 22 of 46 patients (47.8%) had csPCa, while the remaining 
24 had either low-grade (grade group 1) disease or no cancer. In cohort 2, 96 of 195 (49.2%) patients had csPCa. 
38 participants from cohort 2 had no PI-RADS scores available because csPCa was diagnosed on systematic 
biopsy without MRI and then had an MRI with RSI acquisition as part of a separate, prospective study. Table 2 
summarizes the patient characteristics of both cohorts.

Compartmental T2 mapping
Figure 1 shows compartmental T2 maps for two patients with csPCa, one from each cohort.

Figure 2 shows violin plots of median T2 within the whole prostate for each RSI model compartment. In both 
cohorts, the highest median T2 values were observed in C3, followed by C2, C4, and finally C1. Compartmental T2 
was significantly different between any two compartments (p < 0.05).

Voxel-level analysis of compartmental T2 values by csPCa status
For each compartment of the RSI model, the comparison of T2 values between csPCa and prostate tissue outside 
of csPCa lesions is illustrated in Fig.  3. This figure corresponds to cohort 1, which has radiologist-certified 
csPCa lesion contours. csPCa lesions showed significantly higher compartmental T2 values in compartment 1 
(p << 0.001) and compartment 2 (p < < 0.001) than normal tissue. In addition, the compartmental T2 values 
of compartment C3 were significantly lower in csPCa lesions (p << 0.001). The compartmental T2 values for 
compartment C4 were not significantly different between csPCa and normal tissues (p = 0.17).

Patient-level analysis of compartmental T2 values by csPCa status
The comparison of compartmental T2 values between patients with and without csPCa is shown in Fig. 4. In 
both cohorts, patients with csPCa had higher compartmental T2 values in compartment C1 than patients with 
no csPCa. In cohort 2, median C1 compartmental T2 was significantly higher (p = 0.07 for cohort 1; p = 0.01 for 
cohort 2). Median C3 compartmental T2 was significantly different between csPCa and patients without csPCa 
in both cohorts (p = 0.02 for cohort 1; p = 0.01 for cohort 2). Median C4 compartmental T2 was also significantly 
different in cohort 2 (p < < 0.01). Compartmental T2 values for the other compartments were not significantly 
different between patients with and without csPCa.

Logistic regression model fitting and evaluation of csPCa-detection performance
T2 measurements from RSI compartments 1, 2, and 3 (C1, C2, C3) were included as the T2 parameters of the 
LRM. These three compartments showed significantly different median T2 signal between csPCa lesions vs 
csPCa-negative voxels. The LRM predictors were RSIrs, C1-T2, C2-T2, and C3-T2. The model coefficients with 
95% confidence interval for the y-intercept and RSIrs were 6.367 (6.323, 6.416) and -51.621 (-52.354, -50.888), 
respectively. The weights for C1-T2, C2-T2, and C3 T2 were < 0.005. Example probability maps computed from the 
model are shown in Fig. 5 for two patients with csPCa, alongside maps of RSIrs.

Voxel-level cancer detection
For voxel-level cancer detection, the tenfold cross-validation mean AUC of the LRM was 0.98 [95% CI: 0.957–
0.985], versus 0.98 [95% CI: 0.958–0.986] for maximum RSIrs, indicating that incorporating compartmental T2 
did not improve discrimination over RSIrs alone (p = 0.9).
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Patient-level cancer detection
For cohort 1, the AUC of the LRM was 0.804 [0.648–0.930], versus 0.805 [0.648–0.931] for RSIrs. The mean AUC 
for maximum C1 was 0.695 [0.530–0.851]. The difference in AUCs between RSIrs and the multivariable model 
was not significantly different (p = 0.26). Both RSIrs and the LRM performed significantly better than diffusion 
(maximum C1) alone (both p << 0.001).

For cohort 2, the mean LRM AUC for 10,000 bootstrapped samples was 0.724 [0.650–0.793]. The mean AUC 
of RSIrs for 10,000 bootstrapped samples was 0.725 [0.652–0.794]. For maximum C1 the mean AUC was 0.654 
[0.573, 0.730]. The difference in AUCs between RSIrs and the multivariable model was not significantly different 
(p = 0.54). Both RSIrs and the LRM performed significantly better than diffusion (maximum C1) alone (both 
p << 0.001). ROC curves for both cohorts are shown in Fig. 6.

Discussion
We found that compartmental T2 values were significantly different across RSI diffusion compartments. 
Moreover, compartmental T2 values differed between csPCa lesions and benign tissue or low-grade PCa in RSI 
compartments C1, C2, and C3. At the patient level, there were also differences in whole-prostate T2 between 
patients with no csPCa and those with biopsy-proven csPCa. Quantitative differences in compartmental T2 
may provide insight into the microstructural changes associated with PCa. For example, extracellular matrix 
remodeling may contribute to the increased compartmental T2 observed in C2

12. Lower compartmental T2 

Cohort 1 (n = 46)

Available pathology

Systematic biopsy only 6

Targeted Biopsy Only 0

Systematic and targeted biopsy 20

Prostatectomy 15

No biopsy or prostatectomy* 5

PI-RADS

1 9

2 2

3 10

4 10

5 15

Not available 0

Gleason grade group

Benign 17

1 2

2 9

3 8

4 1

5 4

Cohort 2 (n = 195)

Available pathology

Systematic biopsy only 44

Targeted Biopsy Only 5

Systematic and targeted biopsy 60

Prostatectomy 28

No biopsy or prostatectomy** 31

PI-RADS

1 66

2 10

3 18

4 36

5 27

Not available† 38

Gleason grade group

Benign 38

1 30

2 40

3 32

4 7

5 17

Table 2.  Summary of radiologic and pathologic characteristics of the two cohorts of patients included in this 
study. *4 patients had PI-RADS 1 scores, and 1 patient had PI-RADS 2 scores. **27 patients had PI-RADS 1 
scores, and 4 patients had PI-RADS 2 scores. †Part of a prospective research study without clinical evaluation 
by a radiologist.
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values in C3 may reflect hyperplasia-induced reductions in luminal space13. While the elevated compartmental 
T2 observed in C1 of csPCa patients may seem opposed to the known overall hypointense appearance of csPCa 
on T2-weighted MRI, it is consistent with an increase in nuclear volume fraction that is typical of cancer cells28.

We have previously shown that RSIrs is a useful quantitative DWI biomarker for csPCa at the voxel- and 
patient-level11,24,26. Here, we evaluated whether incorporating compartmental T2 values would improve csPCa 
discrimination over RSIrs alone. We demonstrated that T2 effects have csPCa discriminatory value, as they showed 
higher AUC values compared to diffusion alone in both cohorts. However, consideration of compartmental 
T2 did not significantly improve csPCa-detection performance over maximum RSIrs at the voxel- or patient-
level. This finding may suggest an overlap of microstructural information that is captured by diffusion and T2-
weighted imaging. A number of studies have demonstrated an interdependence between apparent diffusion 
coefficient (ADC) measurements and T2 values29,30. Diffusion measurements from RSI and T2 measurements 
from techniques like Luminal Water Imaging (LWI) are both also strongly correlated with microstructural tissue 
features, including cellularity and luminal water space, that are indicative of cancer31. It may be that the RSI 
and T2 measurements in this study both reflect similar aspects of tissue microstructure, and their combination 
therefore does not yield a substantial increase of diagnostically useful information32.

As with any conventional DWI acquisition, signal from the individual RSI compartments is also partially T2-
weighted. RSIrs further incorporates a measure of global T2-weighted signal in the prostate, namely the median 
signal within the prostate on the b = 0 s/mm2 volume. These T2-weighting factors intrinsic to RSIrs are correlated 
with the values obtained from quantitative T2-mapping, so the addition of T2-mapping may not have provided 
sufficiently complementary information to improve csPCa discrimination performance.

Other advanced imaging techniques have also been used to measure T2 in the prostate. LWI utilizes the 
unique T2 relaxation rates associated with various components of prostate tissue to quantify the fractional 
volume of glandular lumen, denoted as luminal water fraction (LWF)33. This method takes advantage of the 

Fig. 1.  RSI signal contribution (Ci) and compartmental T2 (cT2) maps for two patients with csPCa. (A) 
Patient from cohort 1. (B) Patient from cohort 2. Compartmental T2 maps were computed for each RSI model 
compartment by measuring the T2 -weighted signal decay of the signal-contribution map for different TEs. 
The signal-contribution maps shown here were computed from the DWI acquisition with shorter TE. Whole-
mount (WM) histopathology results were available for the patient from cohort 2 and illustrate the lesion 
contour in the prostate. For cohort 1, the contouring of the prostate zones and tumor lesions was performed 
using MIM software (MIM software version 7.2.6, Inc; Cleveland, OH, USA21). For cohort 2, automated 
prostate contours were obtained using an FDA-cleared commercial product (OnQ Prostate version 1.4, 
CorTechs.ai, San Diego, CA, USA23).
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observed alterations in the composition of prostatic tissue in the presence of cancer and the Gleason grade of the 
cancer for PCa diagnosis31. Hybrid multidimensional MRI (HM-MRI) exploits the interdependence of T2 and 
ADC values to measure prostate volume fractions of the lumen, epithelium, and stroma34. Studies using LWI 
and HM-MRI demonstrate lower T2 values in cancer lesions compared to normal prostate tissue with increasing 
Gleason Grade. The decrease in T2 results from a decrease in luminal volume due to cellular hyperplasia31,35. This 
trend agrees with the decrease observed in this study of T2 in compartment C3 of patients with csPCa. This RSI 
compartment reflects signal from freely diffusing water in the prostate, which we expect to find predominantly 
in luminal tissue and to be impacted by a reduction in luminal space. Prior work with HM-MRI showed that 
the decrease in luminal space is largely the result of epithelial tissue proliferation, indicated by an increase in the 
measured epithelial volume fraction34. Since RSI does not explicitly assign signal contributions to a particular 
tissue type, this aspect of HM-MRI is harder to align with the present study. However, we can be sure that 
the changes observed in the T2 of compartment C1 reflect, at least in part, an increase in the overall tissue 
cellularity36. Signal contributions in this compartment are also dependent upon the nuclear volume fraction of 
cells in the tissue28, and the increase in the T2 observed in C1 of csPCa patients suggests an increase in nuclear 
volume fraction.

While quantitative T2 did not yield improved patient-level csPCa discrimination compared to RSI alone, the 
ROI-based analysis of this study suggests that it may be helpful for lesion-level detection and characterization of 
tumors at a microscopic level. Whole-mount histopathology (WMHP) data are currently being collected as part 
of an ongoing study to map changes in compartmental RSI signal to the histological restructuring of prostate 
tissue due to csPCa. This mapping aims to correlate RSI and T2 signal with specific microscopic alterations 
observed in tumors. This approach could also aid in identifying variations in T2 across different tumor grades, 
providing a non-invasive means to predict grade group and assess the aggressiveness of cancer13, a crucial 
prognostic indicator. Another ongoing, prospective trial (ART-Pro; NCT06579417) is evaluating the impact of 
RSIrs and compartmental T2 on csPCa diagnosis in a heterogeneous multi-center and multi-reader dataset37.

Future work that pairs RSI with a more advanced, multicompartmental approach to T2 measurement, 
such as LWI, would allow for deeper insight into the relationship between compartmental diffusion and T2 
than was achievable here. Our acquisition protocol involved only a sparse sampling of two TEs compared to 
5 b-values, while LWI would provide many more TE measurements to enable a more granular assessment of 
the T2 microenvironment. This would help determine whether diffusion and T2 measurements truly provide 
complementary information about the prostate and serve to enhance csPCa detection accuracy when used 
together.

Limitations
The use of separate acquisitions and only two TEs per patient may have limited the accuracy of voxel-wise 
compartmental T2 measurements. However, the inclusion of additional TEs was restricted to avoid excessive 
protocol length on active clinical scanners.

While other quantitative MRI approaches use lower TEs (< 30 ms) for T2 mapping14,31, the high b-values 
required by RSI to optimally estimate C1 are generally incompatible with very low TEs on clinical scanners. 

Fig. 2.  Violin plots showing the distribution of median T2 values in the whole prostate for each of the four 
RSI model compartments. Within each cohort, compartmental T2 was significantly different between any two 
compartments (p < 0.05). (A) cohort 1 (n = 46). (B) cohort 2 (n = 195). Plots were created using MATLAB 
R2022a (MathWorks, Natick, MA, USA18). For cohort 1, the contouring of the prostate zones and tumor 
lesions was performed using MIM software (MIM software version 7.2.6, Inc; Cleveland, OH, USA21). For 
cohort 2, automated prostate contours were obtained using an FDA-cleared commercial product (OnQ 
Prostate version 1.4, CorTechs.ai, San Diego, CA, USA23).
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Separate acquisitions would therefore be required to evaluate the combination of optimal RSIrs and T2 estimated 
with very low TE. Another limitation of this study is that our voxel-level data included only high-confidence 
csPCa and control categories, leaving little room for improvement over RSIrs for the voxel-level analysis11.

Conclusion
T2 mapping affords insights into characteristics of benign and cancerous prostate tissue, but we did not find 
compelling evidence that acquisitions with multiple TE is necessary for patient-level csPCa detection with RSI.

Fig. 3.  Violin plots showing the distribution of median compartmental T2 values from cohort 1 in both csPCa 
lesions and the surrounding prostate tissue.  Each panel corresponds to one of the RSI diffusion compartments. 
csPCa lesions showed significantly higher compartmental T2 values in C1 (p-value <  < 0.001) and C2 (p-
value <  < 0.001) than tissues outside of csPCa lesions. Compartmental T2 values of C3 were also significantly 
lower in csPCa lesions than outside csPCa lesions (p-value <  < 0.001). A red star indicates a significant 
difference (p-value < 0.05) in compartmental T2 between csPCa lesions and the prostate tissue outside the 
lesions. WP: whole prostate. Plots were created using MATLAB R2022a (MathWorks, Natick, MA, USA18). For 
cohort 1, the contouring of the prostate zones and tumor lesions was performed using MIM software (MIM 
software version 7.2.6, Inc; Cleveland, OH, USA21).
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Fig. 5.  RSI restriction score and multivariable model probability maps of the prostate for patients with csPCa. 
Top panel: Patient from cohort 1 with a lesion in the left peripheral zone. Bottom panel: Patient from cohort 2 
with a lesion in the transition zone. The multivariable model uses compartmental T2 measurements from each 
voxel in addition to the RSI restriction score to determine the probability that it contains csPCa. For the patient 
from cohort 1, the contouring of the prostate zones and tumor lesions was performed using MIM software 
(MIM software version 7.2.6, Inc; Cleveland, OH, USA21). For patient from cohort 2, automated prostate 
contours were obtained using an FDA-cleared commercial product (OnQ Prostate version 1.4, CorTechs.ai, 
San Diego, CA, USA23).

 

Fig. 4.  Violin plots comparing compartmental T2 within the whole prostate between patients with csPCa and 
those without. A red star indicates a significant difference (p-value < 0.05) in whole-prostate compartmental T2 
between csPCa and non-csPCa patients. (A) cohort 1 (n = 46). (B) cohort 2 (n = 195). Plots were created using 
MATLAB R2022a (MathWorks, Natick, MA, USA18). For cohort 1, the contouring of the prostate zones and 
tumor lesions was performed using MIM software (MIM software version 7.2.6, Inc; Cleveland, OH, USA21). 
For cohort 2, automated prostate contours were obtained using an FDA-cleared commercial product (OnQ 
Prostate version 1.4, CorTechs.ai, San Diego, CA, USA23).

 

Scientific Reports |        2024 14:31318 9| https://doi.org/10.1038/s41598-024-82742-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Data availability

Data are available for bona fide researchers who request it from the authors. Please 
contact Dr. Tyler Seibert (tseibert@health.ucsd.edu) if you would like to request the 
data from this study.
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