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Abstract

Epigenetic control of gene expression in children remains poorly understood, but new technologies 
can help elucidate the relationship between expression and DNA methylation. Here, we utilized the 
nCounter Analysis System to characterise the expression of 60 genes in 69 9-year-old children from 
a cohort with a high prevalence of obesity. nCounter expression levels ranged broadly (from 3 to 
over 10 000 messenger RNA counts) and were divided into four categories: high (>2000 counts), 
moderate (200–1000 counts), low (100–200 counts) and marginal (<100 counts). For a subset of five 
genes (ADIPOR1, PPARG1, GSTM1, PON1 and ACACA) from different expression level categories, we 
validated nCounter data using reverse transcription-polymerase chain reaction (RT-PCR), and expanded 
RT-PCR analysis of ADIPOR1 to include 180 children. Expression data from the two methodologies 
were correlated for all five genes included in the validation experiment, with estimates ranging from 
rs = 0.26 (P = 0.02) to rs = 0.88 (P < 5 × 10−6). ADIPOR1 and PPARG1 nCounter expression levels were 
negatively correlated (r = −0.60, P < 5 × 10−5), and this relationship was stronger in overweight children 
(r = −0.73, P < 5 × 10−5) than in normal weight children (r = −0.42, P = 0.016). Using methylation data from 
the Infinium HumanMethylation450 BeadChip (n = 180), we found eight CpG sites in ADIPOR1 and 
PPARG where methylation level was associated with expression by RT-PCR (P < 0.05). Hypomethylation 
of PPARG gene body site cg10499651 was associated with increased expression as measured by both 
RT-PCR and nCounter (P  <  0.05). We found no statistically significant relationships between either 
expression or methylation of ADIPOR1 and PPARG and body mass index or waist circumference. In 
addition to demonstrating the validity of expression data derived from nCounter, our results illustrate 
the use of new technologies in assessing epigenetic effects on expression in children.

Introduction

Over the past three decades, childhood obesity rates in the USA have 
been steadily increasing (1–3). Although there is recent evidence 
that obesity prevalence in young children is declining (4), rates of 
childhood obesity in Mexican-American children remain consider-
ably higher than in non-Hispanic whites (5–7). It is well accepted 
that obesity has a heritable component, yet genome-wide associa-
tion studies have identified few genetic polymorphisms related to 
obesity (8,9). Although certain variants in genes such as LEP, LEPR, 
POMC, PCSK1 and MC4R can lead to obesity, these variants are rare 
and therefore explain only a fraction of obesity’s observed 40–70% 
heritability (8,10). It is possible that a portion of this unexplained 
heritability, an example of the ‘missing heritability problem’ (11), is 
due to epigenetic changes that alter the expression of genes involved 

in obesity. DNA methylation, the most commonly investigated epi-
genetic mark, may be a relevant biological mechanism which can 
influence obesity risk (12,13). DNA methylation refers to the addi-
tion of methyl groups to cytosine residues at specific locations in the 
genome, termed CpG sites, which are clustered in CpG-rich regions 
known as CpG islands and flanked on either side by larger spans of 
DNA called shores and shelves (14). CpG methylation can result in 
altered gene expression, which, in turn, is detectable with expression 
assays (9,15).

Although quantitative reverse transcription-polymerase chain 
reaction (RT-PCR) is a standard method utilised in gene expres-
sion analysis, there are a variety of powerful new technologies for 
the assessment of both gene expression and DNA methylation. The 
NanoString nCounter Analysis System is a digital single molecule 
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count-based detection system that can assess the expression of many 
genes in a single multiplexed reaction (16,17). Recently, nCounter 
has been utilised for transcriptomics in studies investigating a vari-
ety of topics including cancer (18,19), infectious disease (20) and 
immunology (21), but has yet to be employed in the assessment of 
expression changes associated with obesity in humans. The nCoun-
ter Analysis System has a variety of advantages, especially in regards 
to genetic analyses using banked samples from epidemiological stud-
ies. nCounter is relatively affordable and allows for the simultane-
ous quantification of hundreds of targets in a single small-volume 
sample. The nCounter method of labelling transcripts with unique 
colour-barcodes allows for the generation of direct counts of RNA 
transcript, which is a more readily interpretable data format than the 
fluorescence values or cycle thresholds (Ct) that are obtained from 
other expression methodologies. Lastly, nCounter does not rely on 
a PCR amplification step, meaning it is not vulnerable to variabil-
ity caused by differences in amplification efficiency between tran-
scripts (22). One recent study reported that nCounter and expression 
microarray data were highly correlated, especially for genes with sig-
nificant expression variability (23).

DNA methylation analysis in this study was performed through 
use of the Illumina Infinium HumanMethylation450 BeadChip. The 
450 BeadChip offers genome-wide coverage of methylation, allow-
ing for the interrogation of over 450 000 CpG sites spanning 99% 
of RefSeq genes (24,25). Many of the CpG sites covered by the 450 
BeadChip are located in CpG islands and are thought to be involved 
in transcriptional control. Although the 450 BeadChip does not 
achieve the same level of resolution as sequencing-based methyla-
tion analysis methods, it is more affordable and generates data that 
are comparatively easy to interpret (26). The 450 BeadChip has 
been utilised in epigenetic studies investigating a wide variety of 
topics, including cancer (20,24,27), arthritis (28), stress (29) and 
obesity (30).

Here, we employed both the NanoString nCounter Analysis 
System and the Infinium HumanMethylation450 BeadChip to assess 
the expression and methylation of 60 genes involved in metabolism 
and oxidative stress, with a focus on those that may play a role in 
obesity development. In particular, we investigated the relationships 
between CpG methylation and gene expression of ADIPOR1 and 
PPARG, two genes with well-known roles in maintaining metabolic 
homeostasis. ADIPOR1, which encodes one of the major skeletal 
muscle receptors for the protein hormone adiponectin, plays an 
important role in glucose and lipid metabolism (31). PPARG is 
alternatively spliced to form two mature messenger RNAs (mRNAs) 
(PPARG1 and PPARG2) that encode peroxisome proliferator-acti-
vated receptor (PPAR) gamma 1 and 2, nuclear receptors that act 
to control the expression of genes involved in adipogenesis, lipid 
metabolism and inflammation (32).

In order to assess relationships between expression and meth-
ylation, we used banked blood samples from children enrolled in 
the Center for the Health Assessment of Mothers and Children 
of Salinas, CA (CHAMACOS) longitudinal birth cohort study 
(33,34). CHAMACOS children have a particularly high rate of 
obesity (57% overweight or obese at age 9) (35), even compared to 
Mexican-American children in the National Health and Nutrition 
Examination Survey (36). Previously, CHAMACOS studies have 
shown associations between obesity and genetic susceptibility (37), 
adipokine hormone levels (38), perinatal factors (39) and environ-
mental exposures (35,40,41). Here, we describe the use of new tech-
nologies in cohort studies and examine the relationship between the 
expression and methylation of obesity-related genes in children.

Materials and Methods

Study population
The CHAMACOS study is a longitudinal birth cohort that aims to 
assess the health effects of pesticides and other exposures on growth 
and development in Mexican-American children living in the agri-
cultural region of Salinas Valley, CA (33,34). Mothers were enrolled 
during pregnancy in 1999–2000 and interviewed when their chil-
dren were 6  months of age and repeatedly for the next 9  years. 
Developmental assessments of children, including anthropometrics, 
were conducted at birth and at the time of each maternal interview. 
Signed informed consent was obtained from all mothers in the 
study. The Committee for the Protection of Human Subjects at the 
University of California, Berkeley, approved all study procedures.

Anthropometric measurements
Children’s weights and heights were measured at the 9-year-visit 
using a calibrated electronic scale (Tanita Mother-Baby Scale Model 
1582; Tanita Corp.) and stadiometer, respectively. Child height was 
measured in triplicate and the average of measurements was used. 
Child waist circumference was measured at the 9-year-visit with 
a tape placed above the crest of the ileum. Measurements were 
recorded to the nearest 0.1 cm after the child exhaled, performed 
in triplicate and averaged. Body mass index (BMI) was calculated 
as mass in kilograms divided by the square of height in metres. 
Children were categorised as normal weight, overweight or obese 
using the sex- and age-specific BMI cut-offs (85th and 95th percen-
tile, respectively) provided by the 2000 Centers for Disease Control 
and Prevention child growth data.

Blood collection
Whole blood was collected in BD vacutainers (Becton, Dickinson 
and Company, Franklin Lakes, NJ, USA) containing either heparin 
as an anticoagulant or no anticoagulant. Aliquots of whole blood, 
plasma, buffy coat, red blood cells, serum and clot were stored at 
−80°C until isolation of RNA or DNA.

RNA and DNA isolation
Total RNA was isolated from randomly selected banked whole blood 
samples from CHAMACOS 9-year-old children using RiboPure 
Blood RNA Purification Kits (Life Technologies, Waltham, MA, 
USA) according to the manufacturer’s protocol. Briefly, RNA was 
purified from 100 μl of whole blood from each subject. Following 
cell lysis in guanidinium-based solution, RNA was extracted using 
acid-phenol:chloroform. Isolated RNA was purified by solid-phase 
extraction on glass fibre filter columns included in the RiboPure kit.

DNA was isolated from banked blood clot samples from the 
same CHAMACOS 9-year-old children using Clotspin Baskets 
and QIAamp DNA Blood Maxi Kits (Qiagen, Valencia, CA, USA) 
according to the manufacturer’s protocol, with minor modifications 
as previously described (42). Briefly, blood clots were de-clotted 
using Clotspin baskets, treated with lysis buffer and protease and 
incubated overnight in a 70°C water bath. DNA was then ethanol-
extracted from lysed clots and purified using QIAamp DNA purifica-
tion columns.

Quality and concentrations of RNA and DNA were assessed 
using the NanoDrop 2000 Spectrophotometer (Thermo Scientific, 
Waltham, MA, USA) and concentrations were normalized to 20, 
1 and 55 ng/μl before nCounter, RT-PCR or methylation analy-
ses, respectively. RNA quality was also verified using the 2100 
Bioanalyzer (Agilent, Santa Clara, CA, USA). Purified RNA was 
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stored up to 2 weeks at −80°C and DNA was stored at −20°C until 
analysis.

Analysis of gene expression
The nCounter Analysis System (NanoString Technologies, Seattle, 
WA, USA) was used to simultaneously assess the absolute expres-
sion of 60 genes of interest per subject (n = 80). Candidate genes 
of interest were selected based on previous findings in our own 
research (37,39) or because of their putative or published relation-
ships with obesity or oxidative stress (10,43–45). Purified RNA sam-
ples were sent to NanoString Technologies for analysis. Inter- and 
intra-cartridge replicates were included in the assay. Normalisation 
of nCounter results was carried out using nSolver Analysis Software 
Version 1.1 (NanoString Technologies), according to the manufac-
turer’s guidelines. To address both sample and platform sources of 
variation, RNA counts were normalised using the expression of four 
reference genes (ACTB, OAZ, HUPO, HPRT) and positive spike-
in controls included in each sample. Geometric means of positive 
control and reference gene concentrations were calculated for each 
lane. Geometric means for all lanes were averaged, and this aver-
age was divided by each lane’s geometric mean to determine lane-
specific scaling factors for both reference gene and positive control 
expression.

Quality assessment and control were also carried out using 
nSolver Analysis Software, following the manufacturer’s recom-
mendations. Samples were dropped from the dataset if (i) <75% 
of counts per field of view were successful, (ii) binding density was 
>2.25 or <0.05, (iii) positive control scaling factor was >3 or <0.3, 
(iv) reference gene scaling factor was >10 or <0.1, (v) correlation 
between known and measured positive control concentrations was 
less than R2 = 0.9 or (vi) lowest level positive control was under two 
standard deviations higher than the average of all negative controls. 
Eleven samples were removed from the dataset due to poor perfor-
mance, leaving a final subject count of n = 69.

To validate expression results from nCounter, relative expression 
of a subset of five genes of interest (ADIPOR1, PPARG1, GSTM1, 
PON1 and ACACA) spanning different ranges of expression was 
assessed via RT-PCR in the 69 subjects with nCounter results. The 
expression of ADIPOR1, the gene with the highest level of nCoun-
ter expression, was also assessed in an additional 111 subjects to 
maximise overlap with the 450 BeadChip. Expression of the refer-
ence gene ACTB was measured for use as an endogenous control. 
Analysis was completed using QuantiTect Primer Assays and Rotor-
Gene SYBR Green RT-PCR Kits (Qiagen), according to the manu-
facturer’s protocol for one-step RT-PCR. Reactions were carried out 
on a Rotor-Gene 6000 (Qiagen, formerly Corbett Life Science). After 
verifying amplicon specificity via melt curve analysis, Ct were calcu-
lated for each gene for each sample. All reactions were performed in 
duplicate. Internal and negative controls were included in all experi-
ments. Samples or genes with poor coefficients of variance (<5%) 
between replicates or abnormally high mean Ct (>36) were excluded 
from analysis.

Site-specific methylation analysis
Site-specific methylation analysis was conducted using the Infinium 
HumanMethylation450 BeadChip (Illumina, San Diego, CA) on 
DNA samples from the same 9-year-old CHAMACOS children 
that were included in expression analysis. Whole genome amplifi-
cation, enzymatic fragmentation and purification were performed 
before DNA was applied to the 450 BeadChips according to the 
Illumina methylation protocol. BeadChips were processed with 

robotics and analysed using the Illumina Hi-Scan system. Sample 
data were extracted using Illumina GenomeStudio Software Version 
XXV2011.1, Methylation Module 1.9 (Illumina). All samples 
included in analysis met a quality threshold of having detection P 
values below 0.01 for 95% of sites. Sites mapping to probe single 
nucleotide polymorphisms in the Illumina annotation or having P 
values >0.01 for more than 95% of samples were excluded from 
analysis. Raw signal intensities were first background corrected, 
then normalised for colour-channel bias using the All Sample Mean 
Normalization method as described previously (46). Lastly, the 
BMIQ algorithm was applied to make interpretation between type 
I  and type II probes comparable (47). Data were expressed as M 
values, which are calculated as the log2 ratio of the intensities of 
methylated probe to unmethylated probe (48). Negative M values 
therefore signify that the unmethylated form of a CpG site is more 
abundant than the methylated form.

Glutathione S-transferase (GSTM1 and GSTT1) 
genotyping
Study participants (n  =  61 of the 69 included in nCounter) were 
also genotyped for GSTM1 and GSTT1 homozygous deletion poly-
morphisms in order to determine whether expression levels were 
substantially lower in subjects possessing deletions for one or both 
of these genes. Genotyping was accomplished using the Multiplex 
Polymerase Chain Reaction Kit (Qiagen) with some modifications 
(49). As an internal positive control to verify DNA amplification 
in double null subjects, a 212-bp section of the albumin gene was 
co-amplified. Gene fragments were simultaneously amplified by 
using a 96-Well GeneAmp PCR System 9700 (Applied BioSystems, 
Waltham, MA, USA). The null GSTM1 and GSTT1 genotypes were 
detected by the absence of a band at 267 and 434 bp, respectively, 
after electrophoresis and visualisation on a 3.5% agarose gel stained 
with ethidium bromide.

Statistical analyses
In order to directly compare results from different gene expression 
methodologies, relative expression values were computed for both 
nCounter and RT-PCR. For nCounter data, relative values were cal-
culated by taking the log2 of the ratio of normalised expression val-
ues of the gene of interest and ACTB, a reference gene. For RT-PCR 
data, the difference in Ct between the gene of interest and ACTB 
is directly interpretable as a 2-fold change, so no transformation is 
necessary. Therefore, each unit in the relative values from either plat-
form represents a 2-fold difference in expression relative to ACTB.

Linear regression and Spearman correlation analysis were used 
to assess the relationships between relative values for each gene by 
method of analysis. If both technologies were unbiased estimators of 
gene expression relative to ACTB, linear regression models would be 
expected to have slopes of one and y-intercepts of zero. Significant 
deviation from these expected model parameters could suggest bias 
in either technology.

As a proof of principle, we assessed whether nCounter GSTM1 
and GSTT1 expression levels differed between subjects with null or 
wild-type genotypes for these genes, as carriers of null genotypes 
were expected to have much lower levels of expression. Because 
expression results from nCounter were not normally distributed, 
the Wilcoxon rank-sum test was used to test for differences in gene 
expression between GSTM1 and GSTT1 null and wild-type subjects. 
Subjects were divided into two groups based on their GSTM1 or 
GSTT1 genotypes, and P values were calculated to assess the statisti-
cal significance of the differences in expression.
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Gene expression results from either nCounter or RT-PCR were 
compared to methylation M values for ADIPOR1 and PPARG 
obtained by the 450 BeadChip. First, separate linear regressions 
were performed to assess the relationship of each individual CpG 
site with expression as measured by either nCounter or RT-PCR. 
Reverse stepwise elimination was used to build multivariable linear 
regression models for assessment of these relationships. Any CpG 
sites with methylation M values associated with gene expression at a 
significance level of P < 0.05 were selected for inclusion in the final 
model. Child sex was considered for inclusion as a variable in the 
model, but did not substantially affect the results. When RT-PCR 
data were used as the outcome, regression models were adjusted for 
the expression of the reference gene ACTB.

Since ADIPOR1 and PPARG1 both contribute to metabolic 
homeostasis and fat use and storage, Pearson correlation analysis was 
used to assess the existence of a relationship between log2-transformed 
expression values from nCounter for these two genes. Relationships 
between gene expression, methylation and obesity were assessed via 

several approaches. Both 9-year BMI and categorical overweight sta-
tus were independently considered for inclusion in the methylation 
and expression models described above. The relationship between 
ADIPOR1 or PPARG1 expression and obesity was assessed via linear 
or logistic regression, depending on whether BMI, waist circumference 
or overweight status was used as the outcome variable.

The threshold for significance was set to 5% (α = 0.05) for all 
statistical tests. The Benjamini–Hochberg procedure was used to 
control the false discovery rate for nCounter and RT-PCR com-
parisons and for separate linear regressions for each CpG site. All 
analyses were conducted using statistical software packages Stata 
Version 12.0 (StataCorp, College Station, TX, USA) and R Version 
3.0.2 (www.R-project.org).

Results

Subject characteristics
Subject characteristics for both the nCounter pilot subset (n = 69) 
and the full set of subjects included in ADIPOR1 RT-PCR (n = 180) 
are presented in Table 1. Similar to 9-year-old obesity prevalence 
levels in the full CHAMACOS cohort (35), over half (53%) of chil-
dren were classified as overweight based on BMI above the 85th 
percentile. Of the 180 children included in this study, 42 and 15% 
carried homozygous deletions for GSTM1 and GSTT1, respectively.

nCounter expression analysis
Figure  1 shows the range of mean expression levels observed for 
the 60 genes of interest and four reference genes assessed by the 
NanoString nCounter Analysis System in whole blood samples. 
Table 2 summarises four broad categories of observed expression 
ranges. Only two genes (ADIPOR1 and IL8) were highly expressed, 
with normalised mean mRNA counts >2000. Thirty-three genes 
(including PPARG1, GSTM1 and PON1) were low to moderately 
expressed, with normalised mean mRNA counts >100. Twenty-five 
genes, including ACACA, had normalised mean mRNA counts <100 
and were comparable with background level and therefore consid-
ered marginally expressed.

Table 1.  Subject characteristics

nCounter mean 
(SD)

RT-PCR mean 
(SD)

Total subjects 69 180a

Age (years) 9.1 (0.1) 9.1 (0.2)
% Female 49.3% 53.9%
Anthropometric measures
  BMI (kg/m2) 20.3 (4.4) 20.7 (4.6)
  Waist circumference (cm) 73.3 (11.7) 73.9 (11.8)
  Normal weight (<85th percentile) 46.4% 46.7%
  Overweight (>85th,  
<95th percentile)

20.3% 15.0%

  Obese (>95th percentile) 33.3% 38.3%
GSTM1 and GSTT1 genotypes
  GSTM1 nullb 44.3% –
  GSTT1 nullb 14.8% –

an = 180 for ADIPOR1 and 69 for all other genes.
bn = 61 for GST genotypes.

Figure 1.  NanoString nCounter expression results. Mean expression values observed for all genes included in NanoString nCounter. Arrows indicate genes 
validated by RT-PCR.
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Comparison of RT-PCR and nCounter 
expression data
To validate findings from nCounter, expression analysis via RT-PCR 
was carried out for five genes (ADIPOR1, PPARG1, GSTM1, PON1 
and ACACA) with a range of expression levels as shown in Figure 1 
and Table 2. Summary statistics for RT-PCR Ct and nCounter RNA 
counts for these five genes are presented in Table 3.

Results of the comparisons between nCounter and RT-PCR 
methodologies, assessed relative to the reference gene ACTB, are pre-
sented in Figure 2. Statistically significant correlation was observed 
between expression data measured by the two expression analysis 
methods for all five genes, with correlation estimates ranging from 
0.26 to 0.88 (P < 0.05 for all). Genes with higher expression lev-
els had stronger correlations between methodologies. For example, 
the strongest correlation was observed for ADIPOR1 (rs  =  0.88, 
P  <  5 × 10−6), the gene for which we observed one of the highest 
mean RNA counts. Fairly strong correlation was also observed for 
PPARG1 (rs = 0.62, P < 5 × 10−6), a gene with low to moderate expres-
sion. Somewhat unexpectedly, a low but statistically significant cor-
relation between methodologies was observed for ACACA (rs = 0.26, 
P = 0.02), the gene with one of the lowest expression levels of all 60 
genes analysed by nCounter. The remaining two genes (GSTM1 and 
PON1) had intermediate correlation estimates (rs = 0.31, P < 0.005 
and rs = 0.47, P < 2 × 10−5, respectively) for the comparison between 
the two assays. All five correlations remained statistically significant 
after Benjamini–Hochberg adjustment.

In addition to correlation analysis, linear regression was also 
used to assess the consistency between the two methodologies. 
Because all values were expressed relative to a reference gene and 
on a log2 scale, regressions were expected to produce slope estimates 

of approximately one and y-intercept estimates of approximately 
zero for each comparison. Slope estimates ranged from 0.14 for 
ACACA to 0.86 for ADIPOR1, with all five comparisons having 
slope estimates lower than one (P < 0.05). PON1 was the only gene 
for which the y-intercept estimate did not differ significantly from 
zero (β0 = −0.95, P = 0.43). The linear models for ACACA, GSTM1 
and PPARG1 had y-intercepts significantly below zero (β0 = −7.03, 
β0  =  −4.85, β0  =  −2.39, respectively), while the y-intercept for 
ADIPOR1 was greater than zero (β0 = 4.36).

Glutathione S-transferase genotypes
Gene deletion variants that inhibit the production of functional pro-
tein are common for the phase II detoxification enzymes encoded 
by GSTM1 and GSTT1 (Table 1). Subjects homozygous for these 
deletion variants are expected to show little to no mRNA expression. 
In order to determine whether nCounter data were consistent with 
this expectation, expression results were compared between subjects 
with or without null (homozygous deletion) genotypes for either 
GSTM1 or GSTT1 (44 and 15% of subjects, respectively). Results 
for these comparisons are shown in Figure 3. As expected, subjects 
with the null genotype had substantially lower expression levels 
for both GSTM1 (null mean  =  54.55, wild-type mean  =  114.34, 
P < 5 × 10–5) and GSTT1 (null mean = 2.23, wild-type mean = 49.36, 
P < 5 × 10−5). The variability observed in wild-type subjects is most 
likely explained by the inclusion of both homozygous and heterozy-
gous subjects in this group.

CpG methylation of ADIPOR1 and PPARG
CpG methylation data from the Illumina Infinium 
HumanMethylation450 BeadChip included 17 CpG sites in 
ADIPOR1 and 21 CpG sites in PPARG after quality filtering. M 
value ranges, summary statistics and gene region information for 
each CpG site are presented in Figure 4 and supplementary Table 1, 
available at Mutagenesis Online. For ADIPOR1, the 450 BeadChip 
included 6 CpG sites in the gene promoter, 9 in the 5′ untranslated 
region (5′ UTR), 1 in the gene body and 1 in the 3′ UTR. Mean 
observed M values ranged from −8.80 to 3.58. For PPARG, the 450 
BeadChip included 14 CpG sites in the gene promoter, 3 in the 5′ 
UTR, and 4 in the gene body. Mean observed M values ranged from 
−8.35 to 3.38. Both genes had groups of CpG sites where methylation 
levels were correlated. Correlation values for sites 2–3 and 14–17 in 
ADIPOR1 ranged from r = 0.49 to r = 0.70, and correlation values 
for sites 1–2 and 13–21 in PPARG ranged from r = 0.40 to r = 0.88. 
We observed a general pattern of decreasing methylation in the gene 

Table 2.  Summary of nCounter expression results

Expression 
category

Number of genes Mean count (SD) Examples

High (>2000)   2 2575.6 (1567.3) ADIPOR1, IL8
Moderate 
(200–1000)

12 290.9 (108.0) NFKB2, GPX1, 
HDAC1, GSTP1, 
PRDX1, RXRA, 
TNFA, CAT, 
IL1B

Low (100–200) 21 140.6 (33.0) PON1, GSTM1, 
PPARG1

Marginal (<100) 25 54.5 (27.2) ACACA, APOE

Table 3.  Summary of RT-PCR and nCounter data

Gene Function RT-PCR nCounter

Mean count (SD) Min Max Median count (SD) Min Max

ADIPOR1 Receptor for adiponectin, promotes fatty acid 
breakdown

23.1 (2.1) 20.2 29.8 3204.0 (2398.2) 607.5 10 535.6

ACTB Beta-actin, reference gene 18.5 (1.1) 16.3 21.9 3317.6 (1140.6) 2087.9 8233.6
PPARG1 Nuclear receptor, stimulates lipid uptake and 

adipogenesis
24.5 (0.9) 22.3 25.9 59.3 (111.1) 4.7 644.5

GSTM1 Glutathione S-transferase, catalyses phase II 
detoxification reactions

21.3 (0.5) 20.4 22.5 72.4 (82.7) 2.9 423.8

PON1 Paraoxonase, multifunctional enzyme involved in 
oxidative stress and organophosphate metabolism

30.9 (1.3) 28.5 35.2 45.3 (105.1) 2.9 563.9

ACACA Acetyl-CoA carboxylase, participates in fatty acid 
synthesis

29.4 (1.6) 26.4 33.7 8.3 (10.1) 2.7 57.3
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promoter as locations approached the transcription start sites of both 
genes, with a change to hypermethylation in gene bodies.

Relationship between ADIPOR1 and PPARG1 
expression and CpG methylation
To analyse the relationship between CpG methylation and gene 
expression, we first conducted individual linear regressions to assess 
the relationships between each CpG site in ADIPOR1 and PPARG 
and either nCounter or RT-PCR expression (supplementary Table 1,  
available at Mutagenesis Online). Next, we used reverse stepwise 
elimination to build multivariable linear regression models using 
only those sites that were statistically significantly associated with 
gene expression (Table 4). Regression models after stepwise elimina-
tion showed that three out of 17 ADIPOR1 CpG sites had methyla-
tion levels associated with gene expression as measured by RT-PCR 
(P < 0.05), but no sites were associated with expression measured 
by nCounter. For PPARG, four CpG sites had methylation levels 
associated with gene expression measured by RT-PCR only, and 
one CpG site (cg10499651) showed association between methyla-
tion and expression measured by both expression assays (P < 0.05). 
Moreover, for this PPARG gene body CpG site, both platforms 
showed the same direction of epigenetic effect, wherein hypermeth-
ylation was associated with reduced expression (lower RNA counts 
in nCounter and higher Ct values in RT-PCR).

Gene expression, CpG methylation and obesity 
parameters
We observed a strong negative association between ADIPOR1 
and PPARG1 nCounter gene expression (r  =  −0.60, P  <  5 × 10−5). 
Interestingly, this correlation was substantially stronger in over-
weight children (r = −0.73, P < 5 × 10−5) than in normal weight chil-
dren (r = −0.42, P = 0.016) (Figure 5).

Both 9-year child BMI and categorical overweight status were 
separately considered for inclusion in the expression and methyla-
tion stepwise models described above, but showed no evidence of 
statistically significant association. Using linear and logistic regres-
sion, we did not find any associations between ADIPOR1 or PPARG 
expression or methylation and BMI, waist circumference or odds of 
being overweight at 9 years of age (data not shown).

Discussion

nCounter RNA expression data were compared to Ct data generated 
by RT-PCR, the historically standard method, for five genes with a wide 

Figure  2.  Relationship between nCounter and RT-PCR expression data for 
five genes. Results from nCounter and RT-PCR are expressed relative to 
the expression of ACTB, a reference gene, such that each unit represents a 
2-fold difference from ACTB expression. Linear regression and Spearman 
correlation were used to assess the relationship between expression data 
from each platform.

Figure 3.  Comparisons of glutathione S-transferase expression by genotype. 
‘Null’ subjects possess homozygous deletions and do not produce functional 
enzyme. As expected, both GSTM1 (P < 5 × 10−5) and GSTT1 (P < 5 × 10−5) show 
significantly lower gene expression in GST-null subjects. P values were 
computed using the Wilcoxon rank-sum test.
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range of observed expression levels. For all genes tested, we observed 
statistically significant correlations between results (rs = 0.26–0.88), 
with much stronger correlation estimates for genes with higher expres-
sion in blood. Parameters of regression models indicate that although 

nCounter and RT-PCR results are correlated, one or both platforms 
may produce somewhat biased results. For example, RT-PCR is vul-
nerable to biases resulting from differences in PCR amplification effi-
ciencies, which is not an issue in nCounter (22). However, the results 
of our RT-PCR validation of nCounter data suggest that both meth-
odologies can be reliably used to compare gene expression between 
subjects within cohort or case–control studies (i.e. to determine which 
subjects are ‘high’, ‘medium’ or ‘low’ expressers). We also showed that 
subjects with homozygous GST deletion genotypes had substantially 
lower nCounter expression levels than wild-type subjects. The high 
expression levels observed for some GSTM1-null subjects may be 
attributable to compensation by another gene in the GST superfamily. 
For example, Bhattacharjee et al. (50) have reported that GSTM2 is 
99% homologous to GSTM1 and capable of compensating for low 
enzyme expression in individuals with the GSTM1-null genotype. 
Altogether, our results augment existing nCounter validation efforts 
using both expression microarrays and RT-PCR (16,23), and confirm 
nCounter’s potential for use in population studies.

We focused our analyses of gene expression and CpG meth-
ylation on ADIPOR1 and PPARG, two important obesity-related 
genes. Adiponectin receptor 1 is one of the major receptors for the 
protein hormone adiponectin, and plays a significant role in glu-
cose and lipid metabolism (31). PPARG is one member of a family 
of three PPARs that control the expression of a network of genes 
involved in adipogenesis, lipid metabolism, inflammation and the 
maintenance of metabolic homeostasis (32). Animal studies have 
demonstrated that upregulated expression of ADIPOR1 leads to 
increased AMPK and PPARα activation, thereby reducing gluco-
neogenesis, increasing levels of fatty acid oxidation and ameliorat-
ing diabetes (51,52). Conversely, the nuclear receptors PPARγ1 and 
PPARγ2 act to promote adipogenesis and lipid uptake when an 
excess of fat is present (53).

Consistent with the biological roles of these two genes, we 
observed a significant inverse relationship between ADIPOR1 and 
PPARG1 expression. Interestingly, this negative correlation was 
substantially stronger in overweight children than in normal weight 
children, possibly indicating that metabolism in overweight children 
is less balanced and more strongly polarised towards either lipid 
uptake or fatty acid oxidation. To our knowledge, this relationship 
between ADIPOR1 and PPARG1 expression in overweight children 
has not been previously reported. However, it has been shown that 
obese adults tend to have lower levels of PPARG1 expression (54) 

Figure 4.  Range of observed methylation M values for CpG sites in ADIPOR1 and PPARG. CpG site box plots are ordered according to their location in the genetic 
sequence. Horizontal bars indicate whether individual CpG sites are located within gene promoters or CpG islands.

Table 4.  Association between CpG methylation and expression

CpG site β P value Regulatory region

ADIPOR1 nCounter expression
  No sites significantly associated with nCounter expression
ADIPOR1 RT-PCR expressiona

  cg06525051 0.60 0.019 5′ UTR, island
  cg15730680 −0.18 0.012 5′ UTR, island
  cg09157008 0.69 0.034 Gene body
PPARG1 nCounter expression
  cg10499651 −59.25 0.049 Gene body
PPARG1 RT-PCR expressiona

  cg04748988 0.37 0.020 Promoter, island
  cg13518792 0.08 0.016 Promoter, island
  cg21859053 −1.38 0.013 Promoter, shore
  cg04908300 0.87 0.009 5′ UTR, shelf
  cg10499651 0.53 0.024 Gene body

aNote that higher Ct values and positive β estimates in RT-PCR are indica-
tive of lower expression.

Figure 5.  Relationship between ADIPOR1 and PPARG1 nCounter expression 
by overweight status. A strong negative correlation was observed between 
ADIPOR1 expression and PPARG1 expression (r  =  −0.60, P  <  5 × 10−5). This 
relationship was substantially stronger in overweight children (r  =  −0.73, 
P < 5 × 10−5) than in normal weight children (r = −0.42, P = 0.0156).
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and higher levels of ADIPOR1 expression than non-obese indi-
viduals, possibly to compensate for the reduced levels of plasma 
adiponectin observed in obesity (55). Although it is not yet estab-
lished in the literature, it is also possible that genetic polymorphisms 
(such as the pro12ala allele in PPARG, present in 10% of Mexican-
Americans) may affect both obesity risk and the expression of these 
two genes (56–59). Since the expected number of variants would 
be low given our sample size, we did not genotype ADIPOR1 and 
PPARG polymorphisms in this study.

We were also interested in assessing whether expression or meth-
ylation of ADIPOR1 and PPARG were associated with obesity 
parameters such as BMI and waist circumference. It has already been 
established that changes in DNA methylation can affect the expres-
sion of genes involved in adipogenesis and metabolism, suggesting 
epigenetic dysregulation may be an essential mechanism for obesity 
development in children (60–62). In our study, however, we did not 
observe statistically significant associations between DNA methyla-
tion in these two genes and BMI, waist circumference or odds of 
being overweight at 9 years of age.

Finally, we demonstrated that specific CpG sites may be capable 
of altering ADIPOR1 and PPARG transcription. Using nCounter, 
RT-PCR, and the 450 BeadChip, we identified three CpG sites in 
ADIPOR1 and five CpG sites in PPARG that were significantly 
associated with gene expression. These sites spanned a variety of 
regions, including CpG islands, shores, 5′ and 3′ UTRs and gene 
bodies. Six of these CpG sites were associated with lower expression 
and two with higher expression. Though CpG island methylation 
is often considered to exert significant control over transcription, 
recent results from published studies indicate that CpG methylation 
in other gene regions may affect expression in unique ways (63–66), 
and the relationship between methylation and expression appears to 
be highly contextual (14). For one of the CpG sites in PPARG, we 
were able to validate our results across both nCounter and RT-PCR 
platforms. This particular CpG site is located in the gene body of 
PPARG, a gene region that has previously been shown to participate 
in splicing control (14). It is possible that this CpG site could be 
involved in PPARG splicing, since PPARG1 mRNA is one of two 
possible alternatively spliced PPARG gene products (32).

There are several strengths to the design of our study. It is one 
of few that directly assess the relationship between site-specific 
DNA methylation and gene expression, an area of epigenetics that 
is still poorly understood. Additionally, studies of this type seldom 
investigate minority or youth populations such as the CHAMACOS 
cohort. We also took advantage of data on the presence or absence 
of null genotypes for GSTM1 and GSTT1 in our subjects to assess 
the relationships between these genotypes and nCounter expression 
levels. Lastly, we further validated nCounter expression results using 
RT-PCR, the standard method for expression analysis.

Limitations of our study include relatively small sample size and 
selective analysis of CpG sites by the 450 BeadChip. Other CpG sites 
not interrogated by the 450 BeadChip may also regulate gene tran-
scription or show association with obesity parameters; these sites 
can be assessed by targeted sequencing in future studies. The lack of 
observed association between methylation and obesity parameters 
in our study could also be attributed to the existence of longitudinal 
effects of methylation, important effects of other obesity-related genes 
or characteristics of this unique minority cohort. Additionally, we con-
ducted this cohort study using DNA and RNA from blood because 
it is a readily accessible tissue and relatively non-invasive to collect, 
but we are mindful that methylation and expression variability may 
be tissue-specific (13,67,68). However, a wide variety of studies have 

successfully used blood as a biomarker of altered methylation patterns 
(69,70), and some analyses suggest that changes to the blood methyl-
ome can reflect broader changes across other tissues (71,72).

Conclusion
In this study, we employed two methods of gene expression analysis 
and a site-specific DNA methylation assay to investigate the relation-
ship between methylation and expression in Mexican-American chil-
dren. Using nCounter, RT-PCR and the 450 BeadChip, we reported 
several associations between DNA methylation and expression for the 
obesity-related genes ADIPOR1 and PPARG, and also showed that 
the expressions of these two genes are inversely correlated, especially 
among overweight children. Our findings suggest that individual CpG 
sites may be capable of either up- or down-regulating gene expression, 
and that sites in both gene promoter and gene body regions may be 
important in controlling transcription. These findings may contrib-
ute to understanding how DNA methylation may act through gene 
expression to influence metabolism and obesity development.

Supplementary data

Supplementary Table 1 is available at Mutagenesis Online.
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