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Background: Despite their large numbers and widespread use, very little is known about the 

extent to which per- and polyfluoroalkyl substances (PFAS) can cross the placenta and expose the 

developing fetus.

Objective: The aim of our study is to develop a computational approach that can be used to 

evaluate the of extend of which small molecules, and in particular PFAS, can cross to cross the 

placenta and partition to cord blood.

Methods: We collected experimental values of the central tendency of concentration ratio 

between cord and maternal blood (RCM) for 260 chemical compounds and calculated their 

physicochemical descriptors using the cheminformatics package Mordred. We developed and 

tested an artificial neural network (ANN) and used the compiled database to train the model. 

We then applied our best performing model to make predictions of RCM for a large dataset of 

PFAS chemicals (n=7,982). We, finally, used the calculated descriptors of the chemicals to identify 

which properties correlated significantly with RCM.

Results: We determined that 7855 compounds were within the applicability domain and 

127 compounds are outside the applicability domain of our model. Our predictions of 

RCM for PFAS suggested that 3623 compounds had a log RCM > 0 indicating preferable 

partitioning to cord blood. Some examples of these compounds were bisphenol AF, 2,2-bis(4-

aminophenyl)hexafluoropropane and nonafluoro-tert-butyl 3-methylbutyrate.

Significance: These observations have important public health implications as many PFAS have 

been shown to interfere with fetal development.

1. Introduction

1.1 Chemicals and pregnancy

During pregnancy, the placenta regulates the transfer and exchange of endogenous molecules 

(e.g., hormones), nutrients, gases and waste from the mother to the fetus and vice 

versa.1 As humans are exposed to environmental contaminants in their indoor and outdoor 

environment, these chemicals enter the human body and are transported to the various 

tissues as blood circulates through the body. While the placenta is often efficient at removing 

waste and toxicants from the fetus, many environmental contaminants can cross the placenta 

and expose the fetus.2–4

1.2 Partitioning between maternal and cord blood

Several studies have reported on the occurrence of environmental contaminants in maternal 

and cord blood2,5–7, however, the mechanism by which chemicals cross or are prevented 

from crossing the placenta is not well understood. Transfer through passive diffusion is 

thought to be the driving force behind transplacental transfer, however, active transport 

facilitated diffusion, phagocytosis, and pinocytosis are also expected to play a role.8 With an 

ever-increasing number of chemicals released to the U.S. market, there is a need to develop 

predictive models that can be used to calculate the extent to which chemicals can cross 

the placenta and expose the fetus. Such approaches will allow regulators and the scientific 

community to target compounds with a potential risk for adverse health effects in fetuses 

which can in turn lead to adverse health outcomes later in childhood and adulthood.
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1.3 PFAS

One class of chemicals that has recently come under scrutiny are per- and polyfluoroalkyl 

substances (PFAS).9–11 PFAS compose a diverse group of organofluorine chemicals with 

varying structures and functions. Although the exact number of PFAS currently in the 

environment is unknown, recent efforts to map the known chemicals in this class have 

led to a compiled list by the U.S. Environmental Protection Agency (EPA) that contains 

9,252 chemicals.12 The list (“PFASMASTER”) is available on EPA’s CompTox Chemicals 

Dashboard12,13 (referred to as “the dashboard” from now on) and it is compilation of smaller 

lists from other agencies, such as the Swedish Chemicals Inspection Agency (KEMI).14 It 

should be noted that while the number of PFAS was 9,252 at the time that this manuscript 

was written, this number is expected to change in the future as the dashboard is a dynamic 

project and the chemical lists are continuously updated. Many studies have demonstrated 

the potential for persistence15, bioaccumulation16 and toxicity17 of several PFAS in the 

environment18 and in humans19, however, the vast majority of PFAS on PFASMASTER 

remain uncharacterized.

1.4 PFAS and human health

Exposures to PFAS has been shown to increase the risk of numerous health effects, such 

as immune suppression including decreased vaccine effectiveness20,21, thyroid function22, 

liver disease23 and cancer24, decrease in fertility25 and lower birth weight.26 PFAS 

exposures are widespread in the population, with biomonitoring studies reporting over 

90% of the population exposed to one or more PFAS. Additionally, multiple studies 

report PFAS measurements in paired maternal and cord blood samples, demonstrating 

fetal exposures6,27,28. Many PFAS have been shown to cross the placenta and partition 

preferably to cord blood increasing the risk for adverse effects in the fetus. Some examples 

of PFAS that have shown to preferentially partition to cord blood are perfluorohexanoic acid 

(PFHxA)4, perfluorobutanoic acid (PFBA)29, and perfluorotetradecanoic acid (PFTeDA)4. 

Fetal exposures during pregnancy have been associated with low birth weight30, 

dysregulated lipid metabolism in utero31, adiposity in early childhood in girls,32 and 

neuro-behavioral outcomes in early childhood, such as hyperactivity33. Understanding and 

predicting unknown fetal exposures is of crucial importance in order to protect fetal health 

and development.

Common approaches of predicting fetal exposures involve 1) physiologically based 

pharmacokinetic (PBPK) models34,35 that describe the partitioning of chemicals in the 

various tissues of the mother and fetus and simpler 2) pharmacokinetic models36,37 (PK) that 

may describe the partitioning between mother and fetus as two distinct compartments. While 

these approaches can be useful in developing a mechanistic understanding of the behavior 

of chemicals, they can often be restricted by the limited amount of data that can be used 

for validation, given the difficulties associated with biomonitoring of chemical compounds 

in fetal tissues. For example, for PFAS, there is only a small number of studies that have 

evaluated concentrations in fetal tissues38,39 or in adult human tissues.40 The limited number 

of studies is most likely due to the difficulty of obtaining and analyzing human fetal tissues. 

Other approaches involve describing the partitioning of chemicals between maternal and 

cord blood as a ratio of concentrations (RCM) and/or using concentrations in cord blood 
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as a surrogate for fetal exposures. Contrary to reports of PFAS in fetal tissues, there is 

a substantially larger number of studies that report concentrations of PFAS in matched 

maternal and cord blood samples3,4,27 and have evaluated factors that influence the transfer 

of PFAS from maternal to cord blood. Typically, such approaches use multilinear regressions 

built with physicochemical descriptors (e.g., length or carbon chain) and physiological 

descriptors (e.g., gestational diabetes) as a tool for describing and predicting the partitioning 

of chemical compounds between maternal and cord blood.3,41 While these approaches can 

be informative when it comes to describing the partitioning of chemicals between maternal 

and cord blood, their predictive power is often limited.

Advances in machine learning have enabled us to improve the predictions of such properties, 

like RCM, by utilizing advanced machine learning algorithms, such as random forest (RF), 

artificial neural network (ANN) and support vector machine (SVM), among others. Machine 

learning facilitates the integration of large number of parameters that can be important in the 

predictions and allow the model to determine the importance of each parameter. Improved 

predictions of RCM are useful in characterizing fetal exposures and understanding the related 

health risks.

1.5 Our aim

The overall goal of our study was to develop and evaluate machine learning approaches to 

predict RCM and identify physicochemical properties of PFAS that correlate with increased 

fetal exposures and can be used to predict fetal exposures based on maternal data. To 

accomplish this, we had four aims: 1) to compile a database with RCM values of small 

molecules from the literature to use as a training set for machine learning; 2) to develop a 

predictive machine learning model that can be used to calculate the RCM, 3) to apply the 

algorithm to predict RCM to all PFAS whose physicochemical space overlaps with that of 

the chemicals in our compiled database; and 4) to understand the physicochemical properties 

and the structural characteristics that determine the partitioning of small molecules between 

cord and maternal blood.

2. Methods

2.1 Partitioning

The partitioning of a chemical between cord and maternal blood can be described as the 

ratio between cord and maternal blood concentrations (RCM):

RCM =  
x C
x M

Where, [x]C is the concentration of a chemical x in cord blood and [x]M is the concentration 

in maternal blood. It is important to note that RCM does not describe an equilibrium partition 

ratio, such as the octanol-water equilibrium partition ratio (KOW), but rather a concentration 

ratio representing the current state of a dynamic system. As the placenta is a dynamic 

system, through which, chemicals are actively flowing, it is unlikely that any chemicals will 
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be at equilibrium. The partitioning of chemicals between cord and maternal blood has also 

been described as a concentration ratio in previous studies.28,42,43

2.2 Collecting the data

Our workflow for collecting and compiling the database is presented as a flowchart in Fig. 

1. As a first step, we searched the published literature for studies that measured paired 

maternal and cord blood or serum chemical concentrations in humans for small molecules 

(<1000 Da). The keywords we used to search for relevant studies were: [‘maternal’] AND 

[‘cord’] AND [‘chemical concentration’] OR [‘drug concentration’] OR [‘pharmaceutical 

concentration’] in the following databases: Web of Science, SciFinder, ACS Publications 

and Google Scholar. We selected studies that reported measurements for paired maternal-

cord samples and only chemical concentrations that were above the limit of detection and 

were not 0. This criterion inevitably eliminates chemicals that partition very strongly to one 

of the two phases (maternal or cord blood) leaving immeasurable amounts on the other side.

When possible, we selected central tendency RCM values calculated and reported in the 

paper by the authors. When RCM values were not available, we calculated these values 

ourselves from the concentrations reported in maternal and cord blood. It should be noted 

that when we refer chemical concentrations in maternal or cord blood in the manuscript, we 

refer to serum or plasma. The details of each publication can be accessed by following the 

link to each study in Supplemental Spreadsheet 1.

2.3 Compiling the Database

Due to the great variability in how studies report the central tendency of RCM (mean, 

median, geometric mean) and due to the limited number of studies, we collected all reported 

values and followed a prioritization scheme. We prioritized median over geometric mean 

and geometric mean over arithmetic mean (median > geometric mean > arithmetic mean) 

(Fig. 1). Similar approaches have also been used in previous studies.43 Ideally, we would 

also want to collect the extremes of the reported values (e.g., min and max). However, given 

the large variability in how studies report extremes (e.g., min and max, standard deviation, 

standard error, 25th and 75th percentiles etc.), we focused our efforts on the central tendency 

as a metric of the ability of a chemical to cross the placenta.

In addition to variability in central tendency, there is also some variability in how studies 

report chemical concentrations with regard to lipid weight or wet weight. For example, a 

number of studies measure chemicals that preferentially partition to adipose tissue (e.g., 

PBDEs and PCBs) and thus they may report chemical measurements per g lipid weight 

(lipid-adjusted) and/or measurements per g wet weight. Lipid-adjustment for concentrations 

in blood / serum samples is commonly done by measuring the lipid content of blood /serum 

and then dividing the measured concentrations in blood by the concentrations of lipids in 

blood assuming the same volume units. For example, if the measured concentration of a 

chemical compound x in blood is 4 pg/mL and the concentration of lipids in the sample are 8 

mg/mL then the lipid-adjusted concentration of x as follows:
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x lipid−adjusted =  
x  in wet weigℎt

lipids =  
4 pg

mL
8 mg

mL
= 0.5 pg

mglipid   weigℎt

Both concentrations in lipid weight and wet weight can be used to calculate RCM. 

However, when using lipid-adjusted concentrations, RCM will also be lipid-adjusted due 

to the differences in the concentrations of lipids between maternal and cord blood.2,44,45 

Lipid-adjusted RCM values are consistently higher than non-adjusted due to the higher 

lipid content in maternal blood compared to that in cord blood. Previous studies measured 

and compared the concentration of lipids in maternal and cord blood2,44,45 and calculated 

an average ratio (lipids in maternal blood / lipids in cord blood) of 3.18. Considering 

that all three studies reported similar values after measuring lipid concentrations in 

different populations, it can be assumed, for modeling purposes, that the difference in the 

concentration of lipids between maternal and cord samples on average is constant. Thus, one 

can interpolate between RCM and lipid-adjusted RCM as follows:

RCM lipid adjusted = 3.18   RCM

In order to include as many studies as possible in our database, we used the average lipid 

content ratio (3.18) from three studies2,44,45 to back-calculate non-lipid adjusted RCM values 

for the studies that reported only lipid-adjusted RCM values. We converted all values to non-

adjusted because calculations of lipid-adjusted values are not meaningful for hydrophilic 

chemicals or for chemicals that do not partition to either water or lipids, such as PFAS.

Finally, as many compounds may have more than one measurement of RCM in the literature, 

we calculated the average RCM per compound by averaging across replicates using the 

arithmetic mean. The resulting dataset with one RCM value per chemical compound was 

then used to train and evaluate our models. The original database with all measurements 

and the final file with the averages are provided as Supporting Information in Supplemental 

Spreadsheet 1 (Also available on GitHub under: https://github.com/dimitriabrahamsson/pfas-

maternal-cord).

2.4 Physicochemical descriptors

When curating the chemical structures in the RCM database we tried to adhere to best 

practices previously reported in the literature.46,47 For the chemicals in the RCM database, 

we collected the QSAR-Ready SMILES (simplified molecular-input line-entry system) 

from the dashboard, which are the de-salted, de-isotoped, stereo-neutral forms of the 

chemical structures. These QSAR-Ready SMILES were then used to calculate a series 

of physicochemical descriptors using the cheminformatics package Mordred developed by 

Moriwaki et al.48 Mordred can be used to calculate 1,826 2D and 3D physicochemical 

descriptors, which can then be used as inputs in modeling calculations. These descriptors are 

primarily low-level physicochemical descriptors covering for example the number of atoms 

per molecule, number of functional groups, their potential for van der Waals interactions, 

and their McGowan molecular volume. In that sense, they can cover any molecule with 
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a known structure that can be represented as a SMILES string. Due to the large size 

of the datasets, we chose to calculate all the descriptors with Mordred, instead of using 

experimentally measured descriptors (e.g., for water solubility or hydrophobicity). Including 

experimental descriptors would require an extensive literature search and an additional 

compilation strategy for thousands of chemical compounds, which is beyond the scope of 

the study.

In addition to the Mordred descriptors that were used as inputs for the models, we also 

collected the RDKit bits49 (version 2022.3.4; n step = 2) for each chemical in the database, 

which were used in the statistical analysis to identify the molecular fragments/bits that 

were significantly associated with RCM. RDKit bits are units of information that describe 

structural characteristics of a given compound (e.g., C-C-OH). We used a linear regression 

model to calculate the Pearson r and p-values for every descriptor (Mordred descriptors and 

RDKit bits) and RCM. To correct for multiple hypothesis testing, we applied the approach 

of Benjamini-Hochberg using a false discovery rate of 0.05. The process was repeated once 

for the compounds in the RCM database and once for the compounds on PFASMASTER. 

We only considered compounds that were within the applicability domain of the model 

(described below in the applicability domain section).

2.5 Model development, evaluation and application

In deciding which type of algorithm to use for predicting RCM, we evaluated 3 different 

machine learning algorithms a Support Vector Machine (SVM), a Random Forest (RF), and 

an Artificial Neural Network (ANN) using the platforms scikit-learn50 for SVM and RF and 

Tensorflow51 for ANN (Fig. 1). All code was written in Python52 (version 3.9.7) and it is 

available on GitHub under the following repository: https://github.com/dimitriabrahamsson/

pfas-maternal-cord. These types of algorithms are commonly used in quantitative structure 

activity relationships (QSARs) in the predictions of physicochemical properties or toxicities 

in environmental and health-related applications.53–58 The hyperparameters of models were 

selected using a grid search optimization with a K-fold cross-validation (n=5) using the 

GridSearchCV package of scikit-learn50. The cross-validation was done with an 80/20 split 

(80% of the dataset in the training set and 20% in the testing set). The hyperparameters 

were optimized based on mean absolute error (MAE) of the predictions of RCM for the 

testing set. We then selected the model that showed the lowest MAE for further evaluation. 

More information on the background of these approaches and on the parametrization for our 

exercise are presented in the Supporting Information (Text S1). The results of the grid search 

optimization are presented in Supplemental Spreadsheet 2 and are also available on GitHub 

(https://github.com/dimitriabrahamsson/pfas-maternal-cord).

2.5.1 Cross-validation—The best performing model (lowest MAE for the testing set) 

was then further evaluated using a shuffle-split cross-validation (n=100 times) with an 80/20 

split. The performance of the model was evaluated based on the cross-validation mean 

absolute error (MAE) and on the cross-validation regression coefficient (Q2) for the testing 

set. MAE and Q2 were defined as follows:
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MAE =  
∑i = 1

n yi − xi
n

Where, y is the prediction and x is the true value for observation i and n is the number of 

observations.

Q2 = cov x, y
σxσy

2

Where, cov is the covariance, σX is the standard deviation of x (true values), σY is the 

standard deviation of y (predicted values).

2.5.2 Y-randomization to evaluate model predictive power—Finally, the best 

performing model was evaluated using a y-randomization (n=100 times). Y-randomization is 

used to test the performance of a model built on the original data by comparing it to a model 

built on randomly shuffled y-values.59 This technique allows the evaluation of the model’s 

predictive power relative to randomly generated values. The process was repeated 100 times 

and every time the model was trained on random y-values. The performance of the model 

was evaluated by comparing the cross-validation MAE and the cross-validation (Q2) of the 

testing set for the real measurements to those of the random values.

2.5.3 Model application and predictions—As an initial application for our model 

predictions, we used our best performing models to predict the RCM values of 23 PFAS that 

were included in our database (Supplemental Spreadsheet 1). Similar to the cross-validation 

step, we repeated the process of predicting RCM for these PFAS 100 times and calculated 

the averages of these predictions for each chemical. We then compared the predicted values 

to the experimental RCM values of the 23 PFAS that were present in the database. We 

then followed the same approach and applied it to all the compounds in PFASMASTER 

(n=9,252).

2.5.4 Applicability domain—Before defining the applicability domain of our model, 

it is important to point out that all definitions of an applicability domain for QSARs 

are inherently subjective. When the true values of a property are unknown, there is no 

objective way of knowing whether the predictions of the model for that property are truly 

accurate.60,61 That being said, defining an applicability domain can help us to make an 

educated guess of the expected errors of the model by evaluating the similarity of a target 

compound to compounds in the training set. For the purposes of our study, we defined the 

applicability domain of our model using the following steps: i) we created a hypothetical 

compound (compound H) by calculating the average of every physicochemical descriptor 

(calculated with Mordred) in the training set; ii) we then used a linear regression model to 

calculate the Pearson R2 between the physicochemical descriptors of the target compound 

and those of compound H, which we used as our metric of the applicability domain (AR2); 

iii) AR2 was calculated first for the compounds in the RCM database; and then iv) for 

all PFAS compounds on PFASMASTER. Calculating AR2 for the compounds in the RCM 
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database helps us calculate the lowest boundary of AR2 beyond which a compound would be 

considered outside the applicability domain of the model. We defined that lower boundary as 

the lowest AR2 observed for the chemicals in the RCM database. That cutoff point was then 

used to identify which PFAS were outside the applicability domain of the model.

3. Results

3.1 Data collection and description

3.1.1 The RCM values—Our literature search yielded 88 studies and 496 RCM values, of 

which 323 values were measurements of median RCM, 67 were measurements of geometric 

mean, 62 were measurements of arithmetic mean, and for 40 values it was unclear from the 

publication which calculation of central tendency was used. The references for all the studies 

and all the collected data are presented in Supplemental Spreadsheet 1. After averaging for 

duplicates, 260 unique chemical structures remained in the database. Some examples of the 

chemical categories we collected were: PFAS, PCBs, PBDEs, benzophenones, pesticides 

and pharmaceuticals (Fig. 2; Supplemental Spreadsheet 1). The collected log RCM values 

ranged from −2.89 to 1.02 and had a median value of −0.25 (Fig. S1). The number of 

participants in the collected studies ranged from 1 to 1000s with the majority of the studies 

being in the 10 to 100 participant range. Some of the chemical categories with the highest 

number of participants were thyroid hormones, plasticizers, phthalates and PFAS. (Fig. S1 

and S2)

3.1.2 The RCM values by chemical category—For most chemical categories in the 

RCM database, the median log RCM was below 0 indicating that most chemicals favorably 

partition to maternal blood (Fig. 2). However, as for most categories, RCM centered around 

0, this also indicates that most chemicals can cross the placenta (Fig. 2) and expose the fetus 

at concentrations comparable to those in maternal blood. Polychlorinated dibenzofurans and 

dioxins exhibited the lowest median log RCM. PFAS (n=24) exhibited a median log RCM of 

about −0.2 indicating slight preference for partitioning to maternal blood. However, 7 PFAS 

showed preferential partitioning to cord blood (Fig. 2 and Supplemental Spreadsheet 1).

3.1.3 Physicochemical space—Out of 9,252 structures on PFASMASTER, 7,982 

compounds had available QSAR-Ready SMILES on EPA’s CompTox Chemicals 

Dashboard. A principal component analysis (PCA) of the physicochemical descriptors 

showed that the sum of PC1, PC2 and PC3 explained approximately 50% of the variability 

in the dataset (Fig. S3). We observed a substantial overlap in terms of chemical space 

between the compounds in our compiled RCM database and the PFAS database. Out of the 

7,982 structures, 4,292 structures overlapped in terms of PC1–3 with the RCM database (Fig. 

S4).

3.2 Model Results

3.2.1 Model evaluation—All three models showed comparable errors for the testing 

set with an MAE ranging from 0.35 to 0.40 log units (Supplemental Spreadsheet 2). 

ANN showed the lowest MAE for the testing set with 0.35 log units. The optimized 

hyperparameters are all presented in Supplemental Spreadsheet 2. Further evaluation of 

Abrahamsson et al. Page 9

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2023 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the model with a shuffle-split cross-validation (n=100) showed a Q2 of 0.57 for the training 

set and 0.31 for the testing set, and an MAE of 0.19 log units for the training set and 0.27 for 

the testing set (Fig. 3).

The y-randomization analysis showed that the model performed substantially worse when 

trained with random data both in its predictions for the training and testing sets. The Q2 

dropped from 0.57 to 0.36 for the training set and from 0.31 and 0.0017 for the testing set 

(Fig. 4). This pronounced drop especially for the testing set shows that the model is able to 

clearly recognize patterns in the training set and apply them to the testing set.

3.2.2 Model application—The model application to the 23 PFAS present in the RCM 

database (Fig. 5 and Supplemental Spreadsheet 3), showed comparable values of Q2 and 

MAE to those of the cross-validation exercise (Fig. 3). The model application of the model 

on the compounds from the PFASMASTER list produced a distribution with a mean log 

RCM of −0.031 (Fig. 6), where 4303 compounds had a log RCM < 0 indicating preferable 

partitioning to maternal blood, 3623 compounds had a log RCM > 0 indicating preferable 

partitioning to cord blood, and for 56 compounds the model failed to make predictions 

(predicted log RCM = ∞ or −∞) (Fig. 6).

When examining the applicability domain of our model, we observed that the minimum 

applicability R2 value in the RCM database was 0.34 (Fig. 7). Using this value as a cutoff 

point to determine which compounds from PFASMASTER are expected to be outside the 

applicability domain of the model, we determined that 7855 compounds were within the 

applicability domain and 127 compounds are outside the applicability domain (Fig. 7 and 

Supplemental Spreadsheet 3).

3.3 Significant physicochemical properties and significant molecular fragments

Out of 1825 physicochemical descriptors in total (Mordred), 444 showed a significant 

association with RCM for the chemicals in the RCM database, and 896 descriptors showed a 

significant correlation with the predicted RCM values in the PFAS database (after adjusting 

for multiple hypotheses testing). Among the top physicochemical properties (lowest p-

values) that showed significant associations with RCM were water solubility (LogS), van 

der Waals surface area (e.g., PEOE_VSA6, EState_VSA9), hydrophobicity expressed as 

the octanol/water equilibrium partition ratio (LogP), molecular weight (MW), and the 

McGowan molecular volume (VMcGowan) (Supplemental Spreadsheet 3). Increase in water 

solubility was associated with higher RCM, whereas increase in hydrophobicity, van der 

Waals surface area, molecular weight and molecular volume were associated with lower 

RCM.

We observed significant associations between 13 RDKit bits and RCM for the chemicals 

in the RCM database, and 262 RDKit bits and the predicted RCM values in the PFAS 

database (after adjusting for multiple hypotheses testing). Our analysis of the RDKit bits 

and their relationship with RCM of the chemicals in the maternal-cord database showed 

that chemicals that show higher RCM (preferential partitioning in cord blood) contain polar 

functional groups such as C-O-O, C-N and C-C-N, while chemicals that show lower RCM 

(preferential partitioning in maternal blood) contain non-polar functional groups, such as 
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C-C-Cl, C-Cl and C-C-S (Fig. 8). This observation is also reflected in the predicted RCM 

values for PFAS. PFAS that have a higher RCM (preferential partitioning in cord blood) 

contain polar functional groups such as O-H, C-O-O-H, C-O-O, and F-C-O, while PFAS 

that show a lower RCM contain more non-polar functional groups such as, C(aromatic)-F, 

C(aromatic)-C-F, and C-S (Fig. 8). However, for some PFAS, there are some polar groups 

also in the compounds that showed a higher RCM. Some examples are N-C (triple bond) and 

O-S-O (double bonds).

4. Discussion

Our study generated a large database of RCM values that can be used to further examine 

the transplacental transfer of small molecules and their partitioning between maternal and 

cord blood (Supplemental Spreadsheet 1). To our knowledge, our compiled RCM database 

is the largest publicly available database of RCM measurements from matched maternal 

and cord blood samples. The predictions of RCM for the compounds in PFASMASTER 

centered around 0 with the distribution almost split in half between compounds that partition 

favorably to maternal blood and compounds that partition favorably to cord blood. For 

3623 compounds in PFASMASTER log RCM was higher than 0 indicating preferable 

partitioning to cord blood. This observation has important implications for human health 

risks as compounds that cross the placenta and partition to cord blood could pose a greater 

risk to the developing fetus. To put things into a broader perspective, we compared the 

RCM values calculated for PFAS to two antidepressant pharmaceuticals, Fluvoxamine and 

Fluoxetine, that are often prescribed during pregnancy and have been shown to have very 

limited side effects to the fetus.62–64 As Fluvoxamine and Fluoxetine exhibit log RCM values 

of −3 and −2 respectively (Fig. 6 and Supplementary Spreadsheet 1), their limited impact 

on fetal health can be in part attributed to their inability to efficiently cross the placenta. 

With a log RCM value of −3, for example, the concentration of Fluvoxamine in cord blood 

is expected to be 1000 times lower than the concentration in maternal blood. Compared to 

these compounds, most of the PFAS we tested in this study are expected to crossing the 

placenta and expose the fetus.

Our analysis of the chemical fragments (RDKit bits) and their associations with RCM 

showed that chemicals with polar groups, such as CN and COOH, are more likely to cross 

the placental barrier and partition to cord blood (Fig. 8). This is reflected both in the 

RCM database with the experimental values and in the PFAS database with the predicted 

data (Fig. 8). However, in the case of PFAS, there were also some polar groups, such as 

CN (triple bond) and SO2 (double bonds) in the chemicals that are predicted to partition 

preferentially to maternal blood. This finding likely indicates that even though polarity can 

explain some of the variability in RCM, the process of transplacental transfer is a more 

complex process where other factors also play an important role. These observations are 

in agreement with our conclusions from the analysis of the physicochemical properties 

(Mordred descriptors) and their associations with RCM which showed that water solubility 

(logS), van der Waals surface area, hydrophobicity (logP), molecular weight (MW) and the 

McGowan molecular volume (VMcGowan) were among the most significant parameters 

(lowest p-values) associated with RCM in the RCM database. These parameters were also 

among the most significant parameters in the RCM predictions for the PFAS database. 
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Compounds with higher water solubility, lower van der Waals surface area and smaller 

weight and molecular volumes were more likely to partition to cord blood (Supplemental 

Spreadsheet 3). Some examples of PFAS that are expected to cross the placenta and 

preferentially partition to cord blood are shown in Fig. 9.

Comparing the findings in this report to previous studies that examined how 

physicochemical properties influence the transplacental transfer of small molecules, we 

came across some interesting similarities but also some important differences. Our findings 

are in agreement with the study of Jeong et al.65 who observed that an increase in the 

numbers of chlorines, molecular weight and hydrophobicity were associated with a less 

efficient transplacental transfer and consequently lower concentrations in the cord blood.

Li et al. 66 observed that the partitioning of small molecules between maternal and cord 

blood can be described by a set of physicochemical properties which explained 66.5% of 

the variability in RCM of their dataset (n = 51). While this is similar to our findings of the 

PCA analysis (Fig. S3 and S4), our studies differ on how the physicochemical properties 

affect the partitioning of chemicals between maternal and cord blood. Li et al. 66 suggested 

that the number of heavier atoms, the number of halogens, the mean atomic Van der 

Waals volume, and the McGowan molecular volume were positively associated with RCM, 

while the number of oxygen atoms and the topological polar surface area were negatively 

associated with RCM. In our study, however, we observed that an increase in the number of 

halogens and the McGowan molecular volume was associated with a decrease in RCM while 

an increase in polarity and water solubility was associated with an increase in RCM. It is 

important to note that the dataset we used in our study is about 5 times larger (n = 260) than 

that of Li et al. (n = 51) and perhaps the apparent disagreement is reflective of a difference in 

data size and structural variability.

It is important to also note that RCM is known to be influenced by physiological parameters 

such as gestational age4 and gestational diabetes3. These observations are in good agreement 

with the conventional thermodynamic understanding that the behavior and fate of chemicals 

in the environment is controlled by their physicochemical properties and the properties of 

their environment. Li et al.4 noted that overall transplacental transfer was higher in full 

term birth compared to preterm birth (overall increase in RCM: 0.12 – 0.54), and Eryasa 

et al.3 observed that overall transplacental transfer was higher in mothers with gestational 

diabetes3 (overall increase in RCM: 0.13 – 0.44). This further indicates a limitation, and 

future need, in this research area. Our analysis focused on central tendency values for RCM. 

However, factors such as preexisting conditions, in addition to other biological factors, such 

as genetics and age are likely to influence the variability of the maternal cord partitioning 

of chemicals as they change the properties of the environment where chemicals partition in. 

Evaluating the upper or lower confidence limits of RCM is a challenging task due to the great 

variability on how studies report the upper and lower limits (e.g., min and max, standard 

deviation, standard error, 25th and 75th percentiles). It is, however, an important aspect that 

needs to be addressed in future studies to better characterize the variability in RCM.

Finally, we should note that as the collected RCM values from the literature are composed 

of arithmetic means, geometric means and medians, there may be some noise associated 
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with the modeled endpoint. However, we should also point out that 65% of the values are 

medians leaving 35% for geometric means and arithmetic means. Thus, we would expect 

that the effect of that noise would likely be moderate.

To our knowledge, this is the first study to predict RCM values for over 7,000 PFAS 

compounds. Approximately, half of the PFAS in the database show a predicted preferential 

partitioning to cord blood, which is concerning considering the toxicity potential of many 

PFAS that has been demonstrated in toxicological and epidemiological studies. Our findings 

underscore the importance of regulation of PFAS and the need for safer alternatives. We 

should note that while our study focuses on PFAS as a case study, our model is applicable 

to other chemical categories also as long as their molecular structures are known, and they 

are within the applicability domain of the model. EPA’s CompTox chemicals dashboard lists 

about 1,000,000 chemicals that are expected to be of environmental importance. For the vast 

majority of these chemicals, there is very little information on their toxicity or their potential 

to expose the fetus during pregnancy. Some categories that would be of interest for future 

studies are plasticizers, pesticides and chemicals used in personal care products.
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Impact statement

Understanding the behavior of chemicals in the human body during pregnancy is critical 

in preventing harmful exposures during critical periods of development. Many chemicals 

can cross the placenta and expose the fetus, however, the mechanism by which this 

transport occurs is not well understood. In our study, we developed a machine learning 

model that describes the transplacental transfer of chemicals as a function of their 

physicochemical properties. The model was then used to make predictions for a set 

of about 9,000 per- polyfluorinated alkyl substances that are listed on EPA’s CompTox 

Chemicals Dashboard.
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Figure 1: 
Workflow for compiling the RCM database and for training and testing the models. The 

database workflow consisted of three main steps: 1) collection of RCM values from the 

literature, 2) back-calculating missing values from lipid-adjusted values and completing non-

lipid adjusted data and 3) collection of chemical identifiers, SMILES and physicochemical 

descriptors (Mordred descriptors). The modeling workflow consisted of data processing, 

model development and model application in predicting RCM for PFAS in the PFAS master 

list from EPA’s CompTox Chemicals Dashboard.
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Figure 2: 
Log non-lipid adjusted RCM of the chemicals in the compiled database presented by 

chemical category and sorted by median RCM from the highest to the lowest. The gray 

dashed line shows the 0 value on the x-axis representing the point at which the concentration 

of the chemicals in maternal blood is the same as the concentration in cord blood. The 

underlying data are available in Supplemental Spreadsheet 1.
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Figure 3: 
Cross validation using a shuffle-split method (n=100 times) for dividing the data set into 

training and testing with an 80:20 split. The results of the cross-validation are presented 

as true vs predicted values for the best performing ANN model. The solid diagonal line is 

the 1-to-1 agreement line and the dashed lines show the ± 1 log unit deviation from the 

1-to-1 agreement line. Each dot shows the average of predictions for 1 chemical from 100 

iterations. The n is the same for both the training and the testing set as after 100 iterations all 

chemicals in the database had at least one chance to be in the training and in the testing sets.
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Figure 4: 
Y-randomization analysis following a cross-validation using a shuffle-split method (n=100 

times) for dividing the data set into training and testing with an 80:20 split. The results of 

the cross-validation are presented as measured vs predicted values for the best performing 

ANN model. The solid diagonal line is the 1-to-1 agreement line and the dashed lines show 

the ± 1 log unit deviation from the 1-to-1 line. Each dot shows the average of predictions for 

1 chemical from 100 iterations. The n is the same for both the training and the testing set as 

after 100 iterations all chemicals in the database had at least one chance to be in the training 

and in the testing sets.
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Figure 5: 
Predictions of log RCM for the 23 PFAS from the maternal-cord database when the 23 

compounds were included in the training set and in when they were included in the 

testing test. Each dot represents the average of 100 iterations following a shuffle-split 

cross-validation. The solid diagonal line is the 1-to-1 agreement line and the dashed lines 

show the ± 0.1 log unit deviation from the 1-to-1 agreement line. The n is the same for both 

the training and the testing set as after 100 iterations all chemicals in the database had at 

least one chance to be in the training and in the testing sets.
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Figure 6: 
Model predictions for PFAS in the PFASMASTER list shown as a kernel density estimation 

plot. For comparison purposes, we also show the reported RCM of Fluvoxamine and 

Fluoxetine, which are two anti-depressant pharmaceuticals that are commonly prescribed 

during pregnancy and are considered safe. The dashed vertical line shows 0 for the log 

RCM which corresponds to a ratio of 1 in linear space and represents the point at which 

the concentration of a chemical in the maternal blood is equal to the concentration in cord 

blood.
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Figure 7: 
Applicability R2 (AR2) calculated for the chemicals in the RCM database and in 

PFASMASTER shown as a kernel density estimation plot. The applicability R2 calculation 

is described in detail in the methods section of the manuscript. Briefly, the metric shows the 

similarity of a target compound to the “average” compound in the RCM database in terms of 

physicochemical properties calculated using Mordred.
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Figure 8: 
Examples of RDKit bits (n steps = 2) that showed a significant (p<0.05) positive or 

negative association with RCM for the chemicals in the RCM database (n=260), and for 

the compounds from the PFAS database (n=7,982) based on the predicted RCM values using 

the trained model. The bit number is shown in black letters and the frequency of that bit in 

chemicals in the database is shown in grey. Yellow circles represent aromatic carbons and 

dashed lines show the approximate electron distribution in aromatic bonds.
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Figure 9: 
Examples of PFAS that are expected to cross the placenta and preferentially partition 

to cord blood (RCM > 0). The highest log RCM observed was 0.31 for bisphenol AF 

indicating that cord blood concentrations of bisphenol AF are expected to be 3.1 times 

higher than the concentrations in maternal blood. All predicted RCM values are presented in 

the Supplemental Spreadsheet 3.
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