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Original Article

Understanding the Influence of Receptive Field and Network
Complexity in Neural Network-Guided TEM Image Analysis

Katherine Sytwu1 , Catherine Groschner2 and Mary C. Scott1,2
1Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA and 2Materials Science and Engineering, University of
California Berkeley, Berkeley, CA 94720, USA

Abstract

Trained neural networks are promising tools to analyze the ever-increasing amount of scientific image data, but it is unclear how to best
customize these networks for the unique features in transmission electron micrographs. Here, we systematically examine how neural net-
work architecture choices affect how neural networks segment, or pixel-wise separate, crystalline nanoparticles from amorphous back-
ground in transmission electron microscopy (TEM) images. We focus on decoupling the influence of receptive field, or the area of the
input image that contributes to the output decision, from network complexity, which dictates the number of trainable parameters. For
low-resolution TEM images which rely on amplitude contrast to distinguish nanoparticles from background, we find that the receptive
field does not significantly influence segmentation performance. On the other hand, for high-resolution TEM images which rely on
both amplitude and phase-contrast changes to identify nanoparticles, receptive field is an important parameter for increased performance,
especially in images with minimal amplitude contrast. Rather than depending on atom or nanoparticle size, the ideal receptive field seems to
be inversely correlated to the degree of nanoparticle contrast in the image. Our results provide insight and guidance as to how to adapt
neural networks for applications with TEM datasets.
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Introduction

Machine learning and computer vision algorithms are promising
techniques to quantify and analyze the ever-increasing amount of
scientific image data. Trained neural networks, in particular, have
consistently outperformed traditional image analysis methods at a
variety of transmission electron microscopy (TEM) image analysis
tasks, including identifying clean graphene areas (Sadre et al.,
2021), denoising (Vincent et al., 2021), and classifying crystal
structures (Aguiar et al., 2019). Neural networks can, in part,
associate their high performance with their ability to take on
any functional form. These effective functions are influenced by
both the training data that dictate the learned features and the
chosen neural network architecture.

One common TEM dataset type is an image of nanoparticles
on a substrate. These nanoparticle TEM images are often analyzed
to extract statistics on nanoparticle size, shape, and crystallinity
as nanoparticle function is commonly tied to its structure.
Additionally, in situ TEM videos create stacks of images that
need to be accurately analyzed to quantify nanoscopic and
atomic-scale nanoparticle changes under reaction conditions.

Under high enough magnification, these TEM images provide
insights into the atomic structure of a nanoparticle, but it
becomes difficult to develop analytic methods that can reliably
identify these nanoparticles because there are multiple factors
that contribute to nanoparticle contrast. Neural networks, on
the other hand, can accurately identify nanoparticles at both
low and high magnification regimes (Groschner et al., 2021;
Yildirim & Cole, 2021). However, due to the variety of image
features in TEM images that change depending on microscope
magnification, neural networks often need to be trained to detect
image features specific to a given TEM image dataset.

When choosing a neural network, it is unclear whether the
same neural network architectures that work well for natural
images (i.e. images of the natural world) are also ideal for TEM
images. Large labeled datasets of natural images have been a key
factor to the success of modern neural networks, allowing the tra-
ditional computer vision community to train large networks
which can capture more complex behavior and deliver higher per-
formance (Sun et al., 2017). TEM and other scientific data
streams, on the other hand, are often either much smaller or
more expensive to label. These smaller datasets necessitate either
networks with fewer trainable parameters and/or utilizing net-
works that are pre-trained on much larger datasets of natural
images (Akers et al., 2021). Additionally, natural images and
TEM images are inherently different in various image character-
istics, including the number of channels, feature sizes, and feature
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complexity. Given these differences, it would benefit the micros-
copy community to build intuition as to how these TEM image
features are reflected in neural network architecture and hyper-
parameter choices. Narrowing down potential network architec-
tures for TEM images would also reduce development time and
lower the barrier to entry for training neural networks on a
custom TEM image analysis task.

Recent literature has shown that a neural network’s receptive
field is influential in improving network performance when
extending to new datasets, particularly those different from natu-
ral images. The receptive field of a network is the theoretical max-
imal area of the input image that the network can use to make its
final decision. The receptive field is affected by the number, order,
and types of layers in a neural network as well as their hyperpara-
meters like filter and stride size, and can be calculated by the
following equation:

RF =
∑L
ℓ=1

(kℓ − 1)
∏ℓ−1

j=1

sj

[ ]
+ 1, (1)

where L is the number of layers, kℓ is the filter size of the ℓth
layer, and sj is the stride of the jth layer (Araujo et al., 2019).
Modifying the receptive field to account for dataset-specific fea-
ture sizes has lead to increased performance in acoustic scene
classification (Koutini et al., 2019), ultrasound image segmentation
(Behboodi et al., 2020), and high-resolution TEM image denoising
(Vincent et al., 2021). Specifically with TEM images, it has been
suggested that the receptive field needs to account for the larger
length scales of the features of interest (Horwath et al., 2020), and
by increasing the receptive field accordingly, researchers were able
to achieve much better denoising performance (Vincent et al.,
2021). However, given the numerous factors that contribute to net-
work performance and the “black-box” nature of neural networks, it
is difficult to attribute exactly which neural network features, or
even dataset features, affect performance the most.

In this paper, we systematically explore how both neural net-
work architecture and training dataset features affect
neural-network-based analysis of nanoparticle TEM images. On
the architecture side, we study how performance changes as we
independently vary network receptive field and complexity,
both of which are hypothesized to affect network performance
but are often coupled together. Using curated TEM image datasets
with controlled acquisition and sample parameters, we evaluate
the role of changing nanoparticle contrast conditions on neural
network performance. By developing an understanding of how
neural network architecture and dataset features interplay with
one another, we can move toward informed decisions as to how
to create neural networks that analyze TEM images.

As an example, we focus on the task of nanoparticle segmen-
tation, or pixel-wise classification of the nanoparticle from the
amorphous background. Segmentation is useful for unraveling
network behavior as it naturally identifies image regions where
the neural network incorrectly interprets the image. As each
pixel is considered an independent decision and image areas
can be used to train multiple pixels, segmentation also does not
require a massive amount of acquired images to accurately train
a deep neural network, given large-enough images. From an
application standpoint, segmentation maps are also a useful first
step for further size analysis (Yildirim & Cole, 2021), nanoparticle
tracking (Yao et al., 2020), and nanoparticle classification
(Groschner et al., 2021); therefore, our results have the potential

to improve automated data analysis pipelines for high throughput
and in situ TEM nanoparticle datasets.

Materials and Methods

Dataset Acquisition

2.2 nm Au nanoparticles with citrate ligands were purchased from
Nanopartz. 5, 10, and 20 nm Au nanoparticles capped with tannic
acid were purchased from TedPella. To create the TEM sample,
5 μL of the nanoparticle solution was dropcasted onto ultrathin
carbon TEM grids from TedPella, allowed to rest for about 5min,
and then excess liquid was wicked off with a Kimwipe.

High-resolution TEM images of the 2.2, 5, and 10 nm Au nano-
particles were acquired using an aberration-corrected TEAM 0.5
TEM at 300 kV. High-resolution images were 4096 × 4096 pixels
in size at an approximate dosage of 423 e/Å2. Low-resolution
TEM images of 20 nm Au nanoparticles were taken with a non-
aberration-corrected TitanX TEM at 300 kV. Low-resolution images
were 2048 × 2048 pixels in size at an approximate dosage of 16 e/Å2.

Dataset Creation

Each image was manually segmented and labeled using LabelBox.
For preprocessing, pixel outliers from x-rays were detected and
removed, and then each image was standardized (mean set to 0
and standard deviation set to 1). Images were then split up into
512 × 512 pixel patches to reduce memory requirements during
training. Patches that only consisted of amorphous background
were removed from the dataset to avoid class imbalance issues dur-
ing training. Dataset characteristics are summarized in Table 1, with
dataset size referring to the number of unique patches.

The patches were then split 70-10-20 into training, validation,
and test sets, ordered such that patches from the same image were
not likely to be in both the training and test sets. Each set was
then augmented with the 8 dihedral transformations, and then
randomly shuffled.

Computational Framework

Our network architecture is a UNet structure constructed with
residual blocks. The UNet architecture is commonly used in
image segmentation, consisting of a contracting encoder arm
and an expansive decoder arm, with the two arms mirroring
each other in structure and connected to one another via skip
connections (Fig. 1) (Ronneberger et al., 2015). Each arm is

Table 1. Datasets Used in this Paper.

Used in
Figure(s)

Nanoparticle
Diameter
(nm)

Pixel
Size
(nm)

Dataset
Size Source

2, 4, 6,
7, 8

5 0.02152 216 Groschner
et al.
(2021)

2, 5 20 0.1243 132 This paper

3 2.2 0.02 355 This paper

3 5 0.02 211 This paper

3 10 0.02 128 This paper

Dataset size refers to the number of unique 512 × 512 pixel patches before augmentation.
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composed of N residual blocks connected by max pooling layers
which downsample the residual block output features. The resid-
ual block structure consists of a convolutional layer, followed by a
batch norm layer, then a rectified linear unit (ReLU) layer, and
then repeated. An additive skip connection connects the input
of the residual block to the final ReLU layer, creating a structure
where the first five layers are learning the “residual” between the
input and the output (He et al., 2016). We set the number of fil-
ters in each convolutional layer to be constant for each residual
block, starting with four filters and doubling with each new resid-
ual block. The size of each convolutional filter is kept constant at
3 × 3 pixels with a stride of 1 pixel.

To change the receptive field without modifying the number of
trainable parameters, we vary the max pooling filter size (and the
corresponding upsampling filter size) to be either k = 2, 4, or 8
pixels. The max pooling operation outputs the maximum value
in a k × k area and does not have any trainable parameters.
Therefore, we can construct networks that share the same number
of parameters (i.e. complexity) but have varying receptive fields.
As the stride (s) of the max pooling layer scales with the filter
size, this leads to a much wider range of receptive fields (see equation
(1)) than simply modifying filter size. We restrict our study to archi-
tectures with receptive fields smaller than the total image size and
have provided the calculated receptive fields for all network architec-
tures in Supplementary Table S1. In this paper, we present the recep-
tive field size in nanometers rather than pixels to better contextualize
the receptive field size in relation to nanoparticle features.

To understand how network complexity affects our results, we
utilize three architectures with different numbers of residual
blocks from N = 2–4, with the total number of trainable network
parameters shown in Table 2. More complex, or deeper, neural
networks perform better as deeper architectures can better
construct functions that capture nonlinear image features. By
comparing a lightweight network (N = 2) against a more tradi-
tional deep UNet structure (N = 4) at similar receptive field val-
ues, we can identify to what extent more complexity is needed.

Network Training and Evaluation

We set all training hyperparameters to be constant between models,
such that the only differences between networks are the architec-
tural choices. The augmented training set, the order in which the

network sees batches of images, and the initialized weights are
also kept constant when comparing across different neural network
architectures. The validation set is used to determine the number of
training epochs for each dataset to prevent overfitting; networks are
trained for either 100 or 150 epochs. Training using early stopping
(see Supplementary Fig. S1) did not affect results.

Networks are trained with a cross-entropy loss function which
pixel-wise penalizes the network for predictions far from ground
truth, and with the Adam optimizer using a learning rate of 10−4.
Each network is trained five times with different initialized
weights, and the reported performance is the average and stan-
dard deviation of those five runs on the test set. Training was
done either locally on a Nvidia RTX3090 GPU or on a cluster
with a Nvidia K80 GPU.

Segmentation performance is evaluated by the dice score
which measures the similarity between two images and quantifies
it between 0 and 1, with 1 being a perfect replication of the
ground truth label. We are primarily interested in the networks’
ability to identify nanoparticles, and so we treat this as a binary
prediction, and calculate the dice score as follows:

D = 2|X > Y|
|X| + |Y| , (2)

where X is the predicted segmentation, Y is the ground truth, and
the | : | operation calculates the number of pixels classified to be a
nanoparticle. Since there are only two classes (nanoparticle and
background), the dice score penalizes undersegmentation or
false negatives (missing an area that is labeled as nanoparticle)
more than oversegmentation or false positives (classifying back-
ground as nanoparticle) (see Supplementary Material for proof).
This makes the dice score a useful metric for nanoparticle

Fig. 1. Overview of the UNet-based neural network architectures. We track segmentation performance as we vary the receptive field by either changing the number
of residual blocks, N = 2, 3, 4, and/or the max pooling kernel size, k = 2, 4, 8. The purple shaded boxes show example receptive fields for a single pixel decision.

Table 2. Neural Network Architecture Details.

No. of Residual Blocks No. of Trainable Parameters

N = 2 8,074

3 32,730

4 130,682

The three architectures used in this paper and their number of trainable parameters.
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segmentation because missing nanoparticle regions is a more dire
consequence as false positives can be eliminated later on in an
image analysis pipeline. The dice score can be calculated in two
ways: either using the binary predictions (hard dice score) or
using the predicted probabilities of each class (soft dice score).
In this paper, we use the hard dice score to measure performance
but also report the soft dice scores in the Supplementary Material
(Figs. S2, S3, and S4), which give a better indication of how
confident a network is in its prediction.

Fourier Filtering

Traditionally, nanoparticle segmentation in high-resolution TEM
images is done via Fourier filtering, which then can be used as a
benchmark for performance (Groschner et al., 2021). Fourier fil-
tering identifies nanoparticle regions using the lattice fringes from
the crystalline nanoparticles; these periodic image features result
in a localized signal in Fourier space, which can be filtered and
transformed back to real space to highlight nanoparticle regions.
To Fourier filter the high-resolution TEM images, we fast Fourier
transform (FFT) the image and then apply a bandpass filter to
select the dominant Bragg peaks. The bandpass location and
width are chosen such that they capture the dominant first-order
Fourier peaks in the FFT. The masked FFT is then inverted to
obtain an image that highlights the areas that corresponded to
the Bragg peaks, then blurred with a Gaussian filter (9 pixel filter
size) to smooth out the resulting lattice fringe. For each Fourier
filtered image, all pixels above a threshold value determined by
Otsu’s method are classified as nanoparticle.

Dilated Convolution

Another strategy to increase receptive field without modifying
network complexity is to dilate the convolution filters, which
increases the filter size without changing the number of filter pix-
els. Dilation is quantified by a parameter α which sets the spacing
between pixels within the convolution filter. As noted by Araujo
et al. (2019), to calculate the receptive field with dilated convolu-
tion layers, one just replaces the filter size kℓ in equation (1) with
α(kℓ− 1) + 1. We set the dilation parameter to be constant within
each residual block, and the exact architectural parameters are
given in Supplementary Table S2.

Results

From an image analysis perspective, there are two regimes of
TEM imaging: low-resolution and high-resolution. In low-
resolution TEM images, nanoparticles are primarily identified
using image contrast; because of amplitude contrast, nanoparti-
cles appear dark against a bright background (Fig. 2a). On the
other hand, in high-resolution TEM images, nanoparticle ampli-
tude and phase contrast lead to slightly darker regions with visible
lattice fringes; nanoparticles are then distinguished from the back-
ground using both image contrast and image texture (Fig. 2b).
Low-resolution TEM images, then, require a network that can
detect changes in image contrast, while high-resolution TEM images
need a network that can both detect macroscopic changes in image
contrast and distinguish between amorphous and crystalline tex-
tures. Therefore, networks trained for these distinct image tasks
will likely behave differently and have distinct characteristics.

We first examine how receptive field affects networks that are
trained to segment low-resolution TEM images. We train three

neural network architectures with different complexities
(N = 2, 3, or 4) on a 20 nm Au nanoparticle dataset and vary
the receptive field for each architecture. As the receptive field
is increased, segmentation performance remains high, with
only a slight decrease in performance at large receptive fields
(Fig. 2c). For a simple 2-residual block network, the dice score
is 0.974 ± 0.001 when the receptive field is 5.5 nm or a quarter
of the nanoparticle diameter, and then becomes 0.963 ± 0.007
when the receptive field is 48.7 nm, or over twice the average
nanoparticle size. Increasing complexity leads to a slight increase
in performance, with the 3-residual block and 4-residual block
networks outperforming the 2-residual block network at all
receptive field values.

On the other hand, when we repeat the same training but
with high-resolution TEM images of 5 nm nanoparticles, we
notice a stronger dependence on receptive field (Fig. 2d). For
this contrast and texture-based segmentation task, performance
increases with larger receptive fields but then plateaus at a cer-
tain receptive field size. Again, for a 2-residual block network,
the dice score starts at 0.727 ± 0.004 for networks with a small
receptive field of 0.95 nm, but then increases to 0.783 ± 0.007
for networks with the same number of parameters but larger
receptive field of 8.4 nm. This plateauing trend is seen in both
the 2-residual block and 3-residual block networks, but not for
the 4-residual block networks as it starts off with a receptive
field around the plateau region. In contrast to the low-resolution
TEM images, both complexity and receptive field influence
segmentation performance in high-resolution TEM images.
Given the same receptive field, a more complex network may
perform better. However, a simpler network with a large-enough
receptive field can outperform a more complex network with a
smaller receptive field. This suggests that receptive field is an
important consideration when working with high-resolution
TEM images.

This receptive field dependence is seen in all high-resolution
TEM images, regardless of nanoparticle size. We repeat the recep-
tive field experiment on three new high-resolution TEM datasets
taken at the same magnification, each of either 2.2, 5, or 10 nm
Au nanoparticles on an ultrathin carbon substrate. In all three
datasets, segmentation performance increases then plateaus with
a larger receptive field, though the dependence becomes less
noticeable as nanoparticle size increases (Fig. 3). Interestingly,
the receptive field value at which performance starts to plateau
is greatest for the small (2.2 nm) nanoparticles, requiring a recep-
tive field much greater than the average diameter of the nanopar-
ticles for peak performance. We hypothesize that the inverse
relationship between nanoparticle size and necessary receptive
field is due to the greater nanoparticle contrast as diameter
(and, therefore, thickness) increases. By comparing the histo-
grams of pixel values in the three datasets, we see that the contrast
between nanoparticle and background increases with larger nano-
particle size. As receptive field is less important in high contrast
images, as noted in Figure 2c, it is likely that as the nanoparticles
become easier to identify, the network requires less spatial infor-
mation to gauge changes in contrast, and therefore, there is less
dependence on the receptive field.

In addition to modifying the pooling layers, there are multiple
strategies that can modify receptive field, including changing
hyperparameters like filter size, stride, and/or number of layers.
To further demonstrate that our results are not limited to this
pooling strategy, we repeat our receptive field investigation on
the high-resolution TEM images of 5 nm Au nanoparticles but
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now vary the dilation parameter of our convolutional filters
(Fig. 4a) instead of the max pooling kernel size. As seen in
Figure 4b, as receptive field is increased using dilated convolution,
we observe an increase in segmentation performance, followed by
a plateau around 5 nm, similar to our results on the same dataset

using max pooling (Fig. 2d). Quantitatively, both methods simi-
larly saturate around 0.79 in the hard dice score. The similarities
in behavior despite technical differences in the neural network
architecture further cement that receptive field is influential to
performance.

Fig. 2. Receptive field dependence on low-resolution and high-resolution TEM images. (a,b) Example images and ground truth labels from the (a) low-resolution
TEM image dataset of 20 nm Au nanoparticles and (b) high-resolution TEM image dataset of 5 nm Au nanoparticles. (c,d) Segmentation performance as receptive
field is increased for the (c) low-resolution dataset and (d) the high-resolution dataset. Results are plotted for three different network complexities.

Fig. 3. Receptive field dependence in high-resolution TEM datasets of 2.2, 5, and 10 nm Au nanoparticles. For each dataset, we show a sample image from the test
set, the pixel value histograms of the training set separated by label, and the segmentation performance as a function of receptive field and network complexity.
The vertical lines in the histograms denote median values.
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Discussion

In contrast-based low-resolution TEM images, the receptive field
does not seem to be an important factor in segmentation perfor-
mance. The network does not show any increase in performance
as it changes from a receptive field smaller than half of the nano-
particle diameter to much larger than the nanoparticle diameter.
These results suggest that for these higher-contrast TEM images,
neural networks do not need contextual information about nano-
particle size in order to perform well.

The slight decrease in performance with increasing receptive
field can be attributed to aliasing effects from the larger max pool-
ing filters. Since max pooling takes the maximal value in a k × k
pixel area (and its corresponding upsampling procedure repeats
the maximal value in a k × k area), we lose fine detail information
as k increases. This can be qualitatively seen in Figure 5, which
shows how three 2-residual-block networks, which only differ
by their receptive fields, perform when segmenting three test
images. We see that qualitatively, all three networks correctly seg-
ment the nanoparticles, but the results from the 48.7 nm receptive
field network have rough, blockier edges, which we attribute to
the large max pooling filter size. Note that in practice, when
optimizing for high performance on a segmentation task, max
pooling is often kept to k = 2 to avoid these blocky artifacts.

High-resolution TEM images, however, quantitatively and
qualitatively show a significant difference as receptive field is
increased. In Figure 6, we again compare segmentation results
from three 2-residual-block networks of various receptive fields.
For an ideal high-resolution TEM image in which the lattice
fringes are visible for the entire nanoparticle (Fig. 6a), all three
networks perform equally well at identifying the nanoparticle
region. The network with the smallest receptive field occasionally
misclassifies parts of the background region as nanoparticle, but
the larger receptive field networks do not make the same mistake.
The results from the 8.4 nm receptive field network also show the
same blocky artifacts seen in the 48.7 nm receptive field network
in Figure 5; since these two networks have the exact same archi-
tecture, we further confirm that these artifacts are from the max
pooling filter size.

The small receptive field network also misclassifies nanoparti-
cle regions where there are fainter or no visible lattice fringes, but
larger receptive field networks are able to segment those same

regions correctly (Figs. 6b, 6c). By human eye, these regions are
still identified as part of the nanoparticle due to both the slight
change in contrast from the background and contextual informa-
tion about the nanoparticle shape (i.e. spherical and convex). This
again supports our findings in Figure 3 that larger receptive fields
enable the better segmentation of low-contrast nanoparticles.

These misclassified nanoparticle regions, denoted as false nega-
tives, happen to be areas that Fourier filtering, a purely texture-only
image segmentation technique for high-resolution TEM images,
also miss. To compare, we manually Fourier filter the non-
augmented test images and compare their false negative regions
against the false negative regions from the 0.95, 2.6, and 8.4 nm
receptive field networks (Figs. 7a, 7b). All segmentation techniques
struggle with nanoparticle edges, but the false negative regions from
Fourier filtering look more similar to the 0.95 nm receptive field
results than the 8.4 nm receptive field results. For most of the test
images, the smaller receptive field network has false negatives
most similar to Fourier filtering (see Supplementary Fig. S8 for sta-
tistics), suggesting that smaller receptive field networks may be
learning a function similar to Fourier filtering. We hypothesize
that the spatial constraints force the neural network to learn the
simplest way to segment with limited contextual clues—by identi-
fying lattice fringes. Once that spatial constraint is expanded, the
network learns to incorporate macroscopic contrast information
and therefore improves performance.

If small receptive fields lead to trained neural networks with
results similar to Fourier filtering, then we also have an alternative
explanation as to why small receptive field networks still perform
well on large (10 nm) Au nanoparticles. When using Fourier fil-
tering to segment, the 10 nm nanoparticle dataset has the highest
dice score (Supplementary Table S3), likely because it has more
areas with visible lattice fringes. Therefore, we might see a smaller
increase in performance with larger receptive fields because there
are fewer areas with faint/no visible lattice fringes, which are often
the areas that small receptive field networks misclassify.

Similar to prior denoising results, we also find that the receptive
field needs to account for the larger (in pixel size) atomic image fea-
tures in high-resolution TEM images (Vincent et al., 2021). Given
the differences in image task (denoising vs. segmentation) and net-
work architecture but similar results with respect to receptive field,
we conclude that receptive field is an important consideration when

Fig. 4. Neural network performance when increasing the receptive field using dilated convolutions. (a) Schematic depicting how dilation changes the convolution
filters. (b) Segmentation performance on high-resolution TEM images of 5 nm Au nanoparticles when receptive field is increased using dilated convolutions for
three different network complexities.
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Fig. 5. Example segmentation results on low-resolution TEM images of 20 nm Au nanoparticles for a 2-residual-block network with different receptive fields, with
the hard dice score values displayed in the upper right corner. Colored squares superimposed on the TEM image in (a) outline the relative size of the receptive fields
of the three networks.

Fig. 6. Example segmentation results on high-resolution TEM images of 5 nm Au nanoparticles for a 2-residual-block network with different receptive fields, with
the hard dice score values displayed in the upper right corner. Colored squares superimposed on the TEM image in (a) outline the relative size of the receptive fields
of the three networks.
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working with high-resolution TEM images. Our results suggest that
receptive field may be limiting performance in lower complexity net-
works. We not only observe plateauing behavior when only increas-
ing the receptive field, but also that the increase in performance by
using a more complex network is mostly from differences in the
receptive field, particularly in images with low nanoparticle contrast.
As seen in Figures 2d and 3, the 3-residual-block networks can reach

similar performances to 4-residual-block networks once their recep-
tive fields are about the same. However, receptive field is not the sole
determinant of network performance. As seen in Figure 3, increasing
the receptive field of the 2-residual-block network does not reach
equal performance to that of the 3- and 4-residual-block networks.
Additionally, our results suggest that the ideal receptive field size is
related to the degree of nanoparticle contrast, not the number of

Fig. 7. Comparing false negative regions in UNet segmentation results against false negative regions from Fourier filtering. (a,b) Example test images and their
corresponding false negative maps after segmentation via Fourier filtering and three 2-residual-block networks with varying receptive fields.

Fig. 8. Comparison of segmentation results for a ∼2.6 nm receptive field using either max pooling or dilation. (a,b) Two test images from the high-resolution data-
set of 5 nm Au nanoparticles and their respective segmentation results. (c) A zoom-in of the test image in (b) highlights the edge artifacts from both max pooling
and dilation.
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atoms in the receptive field nor the nanoparticle size. Taken together,
our findings suggest that the receptive field should be considered in
addition to network complexity, especially for high-resolution TEM
images with a low nanoparticle contrast.

In practice, the choice of how to increase receptive field will
depend on the image analysis task and the acceptable types of
image artifacts. By qualitatively comparing performance between
a neural network with increased receptive field using max pooling
versus dilated convolution, we see that these different strategies
lead to similar segmentation results but different image artifacts
at the nanoparticle edges (Fig. 8). Both networks misclassify sim-
ilar regions, as seen in the bottom right of the test image in
Figure 8a and bottom left of the test image in Figure 8b, suggest-
ing that the two networks are identifying similar features. If we
zoom in (Fig. 8c), the larger max pooling kernel size leads to
blocky edges, as noted before, while dilation leads to gridding arti-
facts near the nanoparticle edges which make it difficult to iden-
tify the exact location of the edge. Therefore, for a dense image
analysis task like nanoparticle segmentation where informations
about the edges are important, one would likely avoid using
max pooling or dilation to increase receptive field but instead
utilize average pooling/bilinear upsampling, larger convolution
filters, more layers, or other novel ideas being proposed in com-
puter vision (Wang & Ji, 2021). On the other hand, for a classifi-
cation task which associates an entire image with a label, the
choice in strategy may not matter as much.

Finally, we note that the receptive field reported here is the the-
oretical maximal area that contributes to the final decision. In
reality, the receptive field is not equally weighted and the effective
receptive field, or the area that significantly influences the deci-
sion, is smaller (Luo et al., 2016). The effective receptive fields
of our trained UNets are dominated by pixels nearby the decision
pixel due to skip connections, even as the maximal receptive field
is increased (Supplementary Fig. S9). Further examination shows
that the edges of the larger receptive field networks still contrib-
ute, and we hypothesize that these large receptive field networks
maintain their high performance because they incorporate both
local and global information.

Summary

In summary, by systematically modifying the receptive field for
various combinations of neural network complexities and TEM
image datasets, we have identified how neural network constraints
affect nanoparticle segmentation. Our results suggest that while
low-resolution, contrast-based nanoparticle TEM images seem
to be insensitive to the size of a neural network’s receptive field,
high-resolution contrast- and texture-based nanoparticle TEM
images require neural networks with a large-enough receptive
field in order to perform well. Receptive field is especially impor-
tant when segmenting small and/or low-contrast nanoparticle
regions, as only large-enough receptive fields can detect the subtle
change in contrast. Our results provide intuition as to how neural
network architecture choices affect TEM image analysis and guid-
ance for microscopists interested in customizing neural network
architectures for their datasets.
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