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Abstract

Deep neural networks, in particular convolutional networks, have rapidly become a popular choice 

for analyzing histopathology images. However, training these models relies heavily on a large 

number of samples manually annotated by experts, which is cumbersome and expensive. In 
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addition, it is difficult to obtain a perfect set of labels due to the variability between expert 

annotations. This paper presents a novel active learning (AL) framework for histopathology image 

analysis, named PathAL. To reduce the required number of expert annotations, PathAL selects 

two groups of unlabeled data in each training iteration: one “informative” sample that requires 

additional expert annotation, and one “confident predictive” sample that is automatically added 

to the training set using the model’s pseudo-labels. To reduce the impact of the noisy-labeled 

samples in the training set, PathAL systematically identifies noisy samples and excludes them 

to improve the generalization of the model. Our model advances the existing AL method for 

medical image analysis in two ways. First, we present a selection strategy to improve classification 

performance with fewer manual annotations. Unlike traditional methods focusing only on finding 

the most uncertain samples with low prediction confidence, we discover a large number of 

high confidence samples from the unlabeled set and automatically add them for training with 

assigned pseudo-labels. Second, we design a method to distinguish between noisy samples 

and hard samples using a heuristic approach. We exclude the noisy samples while preserving 

the hard samples to improve model performance. Extensive experiments demonstrate that our 

proposed PathAL framework achieves promising results on a prostate cancer Gleason grading 

task, obtaining similar performance with 40% fewer annotations compared to the fully supervised 

learning scenario. An ablation study is provided to analyze the effectiveness of each component in 

PathAL, and a pathologist reader study is conducted to validate our proposed algorithm.

Keywords

Histopathology Image Analysis; Active Learning; Noisy Label Detection; Curriculum Learning

I. INTRODUCTION

DEEP neural networks (DNNs) have achieved great success in a wide variety of medical 

image analysis tasks [1]. However, noise-free expert annotations are crucial to achieve high 

performance. Unfortunately, in medical image analysis, obtaining enough annotations can be 

expensive and time-consuming for many tasks. In histopathology images analysis, the size of 

the collected dataset can be large, and performing annotations requires years of professional 

training and domain knowledge. In addition, the labels provided by different pathologists 

can demonstrate high inter-reader variability. For example, in prostate cancer grading using 

Gleason scoring, the concordance rate of multiple pathologists can be as low as 57.9% 

[2], which results in noisy annotations. DNNs are capable of fitting to noisy annotations, 

but they may not generalize to unseen data, which is an important component of clinical 

applications. Furthermore, it is challenging to distinguish mislabeled samples from hard 

samples. Mislabeled samples are samples with incorrect annotations, while hard samples 

have the correct label, but the samples themselves are not “typical.” The lack of large 

and noise-free annotation sets is a significant challenge in histopathology image analysis, 

preventing DNNs to scale to the size of collected data.

Recent studies have investigated methods for dealing with annotation challenges in medical 

imaging, such as semi-supervised learning, multi-instance learning, and transfer learning [3]. 

One of these solutions that is of particular interests is to use active learning (AL) [4]. AL 
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aims to reduce the amount of labeled data necessary for the learning task. It employs various 

methods to select samples from an unlabeled set. The selected samples are then annotated by 

experts and used to train the model. A carefully designed sampling method can reduce the 

overall number of labeled data points required to train the model and make the model robust 

to class imbalances. However, traditional AL methods do not address the noisy label issue.

A few studies have also sought to detect noisy labels in training data and enhance the 

performance of DNNs in medical image analysis. Specifically, addressing the issue of noisy 

labels remains an ongoing challenge for the medical imaging analysis community. Dgani 

et al. [5] adopted a noisy channel in neural networks, which models the stochastic relation 

between the correct label and the observed noisy label. Xue et al. [6] proposed an online 

uncertainty sample mining strategy to suppress the noisy samples. However, these methods 

do not distinguish mislabeled samples from hard samples. Making this distinction could 

greatly improve histopathology images analysis tasks with noisy labels.

In this work, we present a histopathology AL framework (PathAL) that is able to 

dynamically identify noisy labels and sample images that need to be annotated. Our goal 

is to provide a solution that is able to reduce annotations required from experts and to 

simultaneously handle noisy labels. For each iteration of PathAL, we first train the network 

using annotated images. We then force the network to modulate between overfitting and 

underfitting by adjusting the hyper-parameters. In this process, we monitor and rank the 

normalized average loss of every labeled sample and the normalized average predictive 

entropy of every unlabeled sample. We also measure the complexity of data points using 

their distribution density in the feature space and rank their complexity in an unsupervised 

manner. By doing so, the noisy labeled samples can be identified and discarded, while the 

hard and minority samples can be preserved. The unlabeled images that are most informative 

to the model are selected for annotations and added for training for next iteration. In 

addition, the typical unlabeled samples with the highest predictive confidence are added to 

the training pool with pseudo annotations generated by the model itself. This cost-effective 

sample selection strategy is able to improve the classification performance with far fewer 

manual annotations. Our proposed method is a tailor-made strategy for histopathology image 

analysis. The main contributions of this paper include: 1) an AL framework (PathAL) 

that is able to dynamically identify important samples to annotate and to distinguish noisy 

from hard samples in the training set, 2) extensive experiments that demonstrate model 

improvement with less annotation effort and noisy samples; and 3) a reader study performed 

by a domain expert to validate our algorithm.1

II. RELATED WORK

A. Active Learning

A typical AL framework consists of a method to evaluate the informativeness of each 

unannotated data point xu given f′(x|L′), where f′ is a model trained on a labeled 

dataset L′. In literature, methods to evaluate informativeness can be generally classified 

into two types: 1) calculate the uncertainty, and 2) calculate the representativeness. In 

1The related code is available at https://github.com/Wenyuan-Vincent-Li/PathAL
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uncertainty-related methods, it is assumed that the more uncertain a prediction, the more 

information we can gain by including the ground truth for that sample in the training set. 

Wen et al. [7] proposed an AL method that uses uncertainty sampling to support quality 

control of nucleus segmentation in pathology images. Gal et al. [8] introduced Bayesian 

CNNs to measure the uncertainty of predictions (mc-dropout). They demonstrated their 

approach for skin cancer diagnosis to show significant performance improvements over 

uniform sampling using the method for sample selection [9], which sought to maximize the 

mutual information between predictions and model posterior. Kuo et al. [10] measured the 

uncertainty through the lens of query-by-committee (QBC). They used Jensen-Shannon(JS) 

divergence between multiple models and demonstrated that it works best for intracranial 

hemorrhage detection. Konyushkova et al. [11] proposed to exploit geometric smoothness 

priors in the image space to aid the segmentation process in AL. They demonstrated 

state-of-the-art performance on mitochondria segmentation from electron microscopy (EM) 

images and on an magnetic resonance imaging (MRI) tumor segmentation task for both 

binary and multi-class segmentation. Another area of work focuses on the measure of 

representativeness in addition to uncertainty measures. This research uses the idea that 

methods only concerned with uncertainty have the potential to focus only on small regions 

of the distribution, and that training on samples from the same area of the distribution will 

introduce redundancy to the selection strategy or may skew the model towards a particular 

area of the distribution. Therefore, the selection method should also cover a large range 

of the data distribution in order to increase sample representativeness. Yang et al. [12] 

presented Suggestive Annotation, a deep AL framework for medical image segmentation, 

which uses an alternative formulation of uncertainty sampling combined with a form of 

representativeness density weighting. They demonstrated state-of-the-art performance using 

50% of the available data on the MICCAI gland segmentation challenge and a lymph 

node segmentation task. Smailagic et al. [13] proposed MedAL, an AL framework for 

medical image segmentation. They proposed a sampling method that combines uncertainty 

and distance between feature descriptors to extract the most informative samples from 

an unlabeled dataset. Ozdemir et al. [14] proposed a Borda-count based combination 

of an uncertainty and representativeness measure to select the next batch of samples. 

They introduced new representativeness measures such as “Content Distance,” defined as 

the mean squared error between layer activation responses of a pre-trained classification 

network. Sourati et al. [15] proposed a method for ensuring diversity among queried samples 

by calculating the Fisher Information. They demonstrated the performance of their approach 

improved after labelling a small percentage of voxels, outperformed random sampling, and 

achieved higher accuracy than entropy based querying.

Our proposed PathAL model combines both uncertainty and representativeness measures 

in the data selection algorithm. Unlike the methods discussed above, our AL framework 

also involves a complementary sampling strategy, in which the framework selects from an 

unlabeled dataset with: 1) a set of most uncertain samples to be annotated by an oracle, and 

2) a set of highly certain samples that are “pseudo-labeled” by the framework. A similar idea 

has been proposed by [16] in natural images, but it has never been used in histopathology 

images. Furthermore, PathAL also considers the noisy label issue, which can deteriorate the 

performance of the AL framework in histopathology analysis. To the best of our knowledge, 
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joint modeling of uncertainty and representation has not been explored in the previous 

literature in histopathology image analysis.

B. Noisy Label Detection

Addressing noisy labels in machine learning is an ongoing challenge. Several attempts have 

been made in natural image and medical image tasks [17]. In general, there are two types of 

solutions to deal with noisy labels in a training dataset: 1) train models to detect the noisy 

labels and then clean or remove them to reduce their impact in the model training; and 2) 

directly train a noise-robust model with noisy labels. In line with the first approach, Koh and 

Liang [18] proposed an influence function to measure samples that were “harmful” to model 

training. Lee et al. [19] proposed CleanNet, which was a joint neural embedding network. 

This approach summarized the knowledge of label noise from a fraction of manually verified 

classes. Transfer learning was then conducted to transfer the knowledge to other classes 

to handle label noise. Han et al. [20] proposed co-teaching, in which two deep networks 

were trained simultaneously. Each network selected which samples the other network used 

for training. Each of the networks taught the other to identify noisy labels. In [21], Guo 

et al. proposed CurriculumNet, in which training data were divided into several subsets by 

ranking their distribution density as a measure of complexity. The subsets were formed as 

a curriculum to teach the model to understand label noise gradually. A similar idea was 

proposed in [22]. In this work, a MentorNet was trained to identify potential noisy labels. 

The network then provided a data-driven curriculum for StudentNet, which was trained on 

the less noisy data samples. Huang et al. [23] proposed O2U-Net to make the network 

transition from overfitting to underfitting (O2U) automatically. By monitoring the training 

loss variation, they could detect and remove noisy labels from the original dataset.

On the other hand, several other approaches that directly train a noise-robust model with 

noisy labels have been proposed. Goldberger and Ben-Reuven [24] proposed to model label 

noise by adding softmax layers to estimate the transition between correct labels and noisy 

labels. Xiao et al. [25] proposed a probabilistic model to describe the relations among 

images, true labels, noisy labels, and noise types. This probabilistic model required a small 

set of verified labels without noise. Reed and Lee [26] proposed the idea of consistency to 

model noisy labels. Sample reconstruction errors were applied as the consistency objective 

to estimate the noise distribution. There are a few studies that have addressed issues of noisy 

labels in medical imaging. Dgani et al. [5] used a noise adaptation layer similar to [24] on 

a mammography classification task and outperformed standard training methods. Xue et al. 
[6] proposed an online uncertainty sample mining method (OUSM) to detect the noisy labels 

and iteratively re-weight sample losses. We refer interested readers to Karimi et al. [17] for a 

detailed and comprehensive review on recent research works on noisy labels.

To the best of our knowledge, we are the first to incorporate a noisy sample detector in 

an AL framework. In our proposed PathAL, we adopt O2U-Net as a noisy label detector. 

It enhances our AL framework for the following reasons: 1) O2U-Net is a noise-cleansing 

method, so AL can be conducted after noisy label detection and removal to reduce the need 

for human annotations and improve the generalization capacity of the model; 2) other noise-

cleansing methods require either particular assumptions on noise distribution estimation or 
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extra specifically designed loss functions or networks (e.g. Co-teaching and MentorNet), 

while O2U-Net only requires adjusting the hyper-parameters of deep networks; and 3) by 

leveraging curriculum learning, in which images are divided into several subsets by ranking 

their distribution density in deep feature space, we can distinguish between the noisy labeled 

samples and the hard samples, which is a challenging task in histopathology image analysis.

III. METHODS

In this section, we first formally define our problem and the notations we use in this study. 

We then introduce curriculum sample classification and noisy sample detection methods, 

two key components of our proposed PathAL model. Finally we describe our proposed 

PathAL method in detail.

A. Problem Definition

In traditional AL, we assume there is a large pool of unlabeled data U available and an 

oracle to help with labeling for every unlabeled data point xu to add to labeled set L. We 

consider the whole training set to be T = L ∪ U = L1 ∪ U1 = · · · = Lk ∪ Uk, where Li, 
Ui represents the labeled and unlabeled sets in ith iteration. AL starts from a small labeled 

set L1 and tries to find the most informative samples x1, j* ∈ U1. All the informative samples 

selected by the algorithm form a set I1 and will be annotated by domain experts and added 

to the labeled set for model training in the next iteration. Thus, we have L2 = L1 + I1 and in 

general Li+1 = Li + Ii.

In contrast to the traditional AL model, our proposed PathAL considers three groups of 

samples in the data pool: 1) annotated samples that are in the training dataset that have a 

high probability of incorrect label assignment (noisy samples), denoted as the noisy set Ni; 

2) unlabeled samples that are most informative to the current model (informative samples), 

denoted as the informative set Ii; and 3) unlabeled samples for which the current model 

is confident in its predictions (confident samples), denoted as the confident set Ci. PathAL 

will discard the noisy samples, require experts to annotate the informative samples and 

add them to the training pool, and add confident samples to the data pool with their own, 

model-assigned annotations, simultaneously. Thus we have Li+1 = Li − Ni + Ii + Ci, where 

Ni ⊆ Li, Ii ⊆ Ui, and Ci ⊆ Ui, and the training set T = Li+Ui. The general process of PathAL 

is illustrated in Figure 1(a). The core goals for PathAL are: 1) detect the noisy samples and 

distinguish them from hard samples, and 2) detect the informative samples to be annotated 

and add confident samples automatically. To meet these goals, we first briefly discuss our 

curriculum sample classification method, inspired by CurriculumNet [21] and O2U-Net [23] 

noisy sample detection, upon which these two questions are answered in PathAL.

B. Curriculum Sample Classification

A key component of our PathAL framework is to leverage curriculum learning to classify 

each example in a training set to be easy, medium, or hard based on its complexity. We 

extend CurriculumNet [21] for AL scenarios and use it in a fully unsupervised fashion. In 

each iteration, we use a trained model to compute a deep representation for each image 

in the training set T. This step aims to roughly map all training images into a feature 
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space where the underlying structure and the complexity of the images can be discovered. 

We then classify each sample into different complexity levels, ranging from easy samples 

with high confidence labels to difficult samples whose labels may contain noise. To do so, 

we first reduce the dimension of the deep features using t-distributed Stochastic Neighbor 

Embedding (t-SNE) [27]. With this set of reduced features, we use the K-means algorithm 

to cluster the images into different groups. Each group will ideally contain images with 

similar diagnoses. This step aims to help the following process select representative samples 

covering the whole training sample space. Next, we calculate a Euclidean distance matrix 

D ⊆ ℝn × n as,

Di, j = f Ii − f Ij
2

(1)

where n is the number of images in the same group, Ii, Ij are two images in this group, f(Ii), 
f(Ij) are the feature vectors of the two images in deep feature space. Di,j indicates a similarity 

value between Ii and Ij. Then we calculate a local density (ρi) for each image,

ρi = ∑
j

X Di, j − dc (2)

where

X(d) = 1 d < 0
0 other (3)

dc in the above equation is a distance threshold we select for determining the local density. 

It is selected by first sorting n2 distances from small to large values, and choosing the 

top k%. Following the practice in [21], we set k = 60 in all our experiments. The local 

density ρi counts how many samples are closer to image Ii than the threshold dc in the deep 

feature space. Finally, we use a K-means clustering method to classify each sample as easy, 

medium, or hard based on the local density for each group. To this end, we assume that 

a group of easy images with correct labels will often have similar visual characteristics, 

project closely to each other in the feature space, and therefore have a high ρi. By contrast, 

hard images often have more visual diversity, resulting in a sparse distribution with a smaller 

ρi. Figure 1(b) illustrates the workflow of our curriculum classification (CC) algorithm. We 

also summarize the CC in Algorithm 1.

Algorithm 1

Curriculum Classification

Require: trained DNN (f), images (xi) in training set T;

 (1) Generate deep image features f(xi) for each image xi;

 (2) Reduce dimensionality using t-SNE, then use K-means cluster algorithm to cluster these features into k different 
groups g1, g2, …, gk;

 (3) Calculate a Euclidean distance matrix D ⊆ Rn × n as Di,j = ||f(xi) − f(xj)||2;

 (4) Calculate a local density function for each image ρi = ∑jX Di, j − dc ;
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 (5) Use K-means cluster algorithm to classify each image xi to easy, medium, or hard based on their local density ρi 
in each group gi.

Note that although our curriculum classification algorithm is inspired by CurriculumNet 

[21], it is substantially different from it in the following aspects. CurriculumNet is 

performed in weakly supervised learning settings, where the authors have access to all the 

labels of the samples and are able to use the subgroup with the same label for curriculum 

classification. In this study, our curriculum classification is performed in each iteration of 

AL, where we do not have full access to the annotations of training samples. Therefore, we 

have to use unsupervised K-means clustering to first group the training images, and then 

classify the samples in each group based on the local density. In this way, we are able to 

sample the unlabeled images evenly in the deep feature space.

As our model evolves during each AL iteration, it is hard to distinguish whether a sample is 

a noisy sample that has a wrong label or is a complex sample that the model has not learned 

yet. Accordingly, we introduce another key component of PathAL, with which we are able to 

distinguish noisy samples from hard ones, and discover the most informative samples to be 

annotated.

C. Noisy Sample Detection

It is challenging to determine whether an incorrectly classified sample is a noisy one with 

the wrong label or a complex one that is inherently hard to learn for deep learning models. 

The CC algorithm in Section III-B only considers the visual complexity of the training 

samples, but does not provide much information about how well the current AL model 

learns these samples. To help with this, we introduce a noisy sample detector by using 

O2U-Net [23].

The key observation from O2U-Net is that noisy-labeled samples are usually memorized at 

the late stages of training, as is the case with hard samples. At the beginning of training, 

when the network is still underfitting, the losses of noisy and hard samples are larger than 

those of easy samples because the model quickly fits to easy samples. Conversely, during 

the late stages of training, the network usually overfits to the training set. It memorizes 

both the noisy/hard samples and easy samples, so that the losses generated from them are 

indistinguishable. Therefore, by tracking the variation of loss for every sample at different 

stages of training, it is possible to detect noisy and hard samples. Based on this idea, 

the O2U-Net attempts to cycle training between underfitting and overfitting by tuning the 

learning rate, while observing the variation of loss for every sample in Li. Specifically, at 

the beginning of training, a large learning rate is set. The learning rate gradually decreases 

to some extent during training and is then reset to the original learning rate. This process 

repeats for multiple rounds until enough loss statistics are gathered. When the network 

almost converges to some minimum (nearly overfitting), a large learning rate can make the 

network jump out of the minimum. As a result, the network will quickly start underfitting 

the data. By monitoring the training loss for each sample, we can expect samples with larger 

average loss after cyclical training to have higher probability of being a mislabeled or hard 

sample. We apply the same network to detect noisy labels and to train the final classifier 
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using EfficentNet-B0 [28] (see Section IV-C for more training details). For a more detailed 

description of O2U-Net, please refer to [23].

The original O2U-Net only monitors the training loss for each sample in Li. We extend it to 

monitor the predictive entropy for every sample in the unlabeled dataset Ui. Specifically, we 

do inference after each epoch in the O2U training cycles. We record the predictive entropy 

for each sample in Ui and find the samples with highest average predictive entropy. These 

samples are the most “informative” samples to the current model because they cannot be 

predicted confidently and may not be represented in the feature space of the current labeled 

set Li. We summarize the O2U training workflow in Algorithm 2. We point out that the 

O2U-Net alone cannot distinguish between noisy samples and hard samples. With the help 

of curriculum classification, however, we are able to heuristically separate these two types of 

samples, which we will discuss in the next section.

Algorithm 2

Training O2U

Require: trained DNN (f), labeled image xli, unlabeled image xui;

 for Each epoch do

  Adjust learning rate via Equation (7).

  for Each labeled image xli do

   (1) Compute and record training loss lssi;

   (2) Update the network f;

  end for

  for Each unlabeled image xui do

   (1) Compute and record predictive entropy enti;

  end for

 end for

 (1) Compute the normalized average loss lssi of every labeled sample among all the epochs;

 (2) Compute the normalized average predictive entropy enti of every unlabeled sample among all the epochs;

 (3) Obtain the order by ranking all the labeled samples by lssi and all the unlabeled samples by enti.

D. PathAL

After introducing the CC algorithm and the O2U process, we now specify the core goals 

of PathAL: 1) detect noisy samples and distinguish them from hard samples, and 2) detect 

informative samples to be annotated and add confident samples using “pseudo-labeles” 

assigned by the model itself.

At the ith iteration of PathAL, we first train a network using the current labeled dataset Li 

until it converges. Then we apply the O2U process to continue the training. We monitor 

the loss variation of each labeled sample and predictive entropy of each unlabeled sample. 

Simultaneously, we apply the CC algorithm on the samples in training set T and classify 

them as easy, medium, or hard samples based on their local density in the feature space. 
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To detect noisy samples, we find those that have large loss variations in Li and are also 

classified as easy by the the CC algorithm. On one hand, these samples have large loss 

variations, which means they are hard to learn by the current network. On the other hand, 

the samples must have a high local density in the deep feature space in order to be 

labeled as “easy”, i.e. they are typical samples that are visually similar to other samples 

in T. Thus, there is a higher probability that the pathologist annotations for these samples 

contain noise. To prevent them from impacting the model’s training and performance, we 

discard these samples in the next training iteration. To detect the informative samples 

that require additional expert annotations, we select the samples with the highest average 

predictive entropy during O2U training. As discussed in Section III-C, these samples are 

most informative because they cannot be predicted confidently by the current model. In 

addition, we add unlabeled samples that have the lowest predictive entropy and are classified 

as “easy” or “medium” by the CC algorithm. Our model is confident in these predictions, 

and they are “typical” samples in the deep feature space, so there is a high probability that 

the model predictions are correct. Therefore, it is cost-effective to add them automatically 

into Li+1 with self-assigned “pseudo-labels.” Algorithm 3 illustrates the workflow of our 

PathAL algorithm.

Algorithm 3

PathAL

Require: a DNN (f), training set T, initial selected labeled image

 set L1 and the rest unlabeled image set U1;

 for Each iteration of PathAL do

  (1) Train DNN f based on the current labeled image set Li until it is converged;

  (2) Perform CC and O2U training in training set T;

  (3) Select noisy samples Ni, most informative samples Ii, and confident predicted samples Ci based on CC and O2U 
results;

  (4) Update the training set for next iteration as Li+1 = Li − Ni + Ii + Ci;

 end for

As the model evolves during the training process, both the CC and O2U results change. 

Therefore, we do not discard the noisy samples completely. Instead, we keep them in a pool 

and examine if they need to be added back throughout the training process. In the later 

stage, if noisy samples have been identified as informative, we add them back with their 

original annotated labels. If noisy samples are identified as easy, we add them back with 

model-assigned “pseudo-labels”. In doing so, we build a mechanism for the model to correct 

errors made at the beginning of the AL process. We performed a detailed analysis on this 

mechanism in Section IV-E5. We summarize how to combine the CC and O2U results based 

on their relationship in Figure 1(c).

IV. DATASETS, EXPERIMENTS AND RESULTS

In this section, we first introduce the dataset and evaluation metrics we used in our 

experiments. We then discuss the implementation details of our model, followed by the 
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description of several baseline models. Finally, we demonstrate and discuss the experimental 

results.

A. Dataset and Pre-processing

To demonstrate the effectiveness of our PathAL technique, we use the Kaggle dataset from 

the “Prostate cANcer graDe Assessment using the Gleason grading system” (PANDA) 

challenge to simulate the AL scenario. The dataset consists of over 11,000 whole-slide 

images of digitized H&E-stained biopsies originating from two centers (Karolinska Institute 

and Radboud University Medical Center). Different slide scanners with slightly different 

maximum microscope resolutions were used for digitization and labels were generated 

from different pathologists. The Karolinska dataset was labeled by a single experienced 

pathologist. Label noise may exist in this dataset due to the lack of label validation by 

another pathologist. The Radboud dataset was read by trained students. For this dataset, 

some minor label noise may also exist in the training set due to mistakes in the annotation 

process or inconclusive results. Though the label noise presents a modeling challenge, it 

resembles many real-world scenarios. As mentioned above, even experts in the field with 

years of experience do not always agree on how to interpret prostate histology.

Each sample image in the PANDA dataset is a large, which requires an efficient algorithm 

to locate areas of concern on which to focus. We used our previously developed tiling 

algorithm with a blue-ratio selection criteria to identify the most informative tissue areas 

[29]. Specifically, the algorithm consists of four steps. First, a binary mask of the tissue 

on the slide is created by setting a threshold for the average intensity. This threshold is set 

empirically to 90% of the maximum image intensity value. Second, the mask is smoothed 

using morphological closing and the skeleton of the smoothed mask is then found and 

branches are removed by finding the endpoints with the maximum geodesic distance. Third, 

the mid-line is partitioned based on the patch size and overlap, tangent lines are found at 

each of these locations by looking at the neighborhood of nine pixels along the mid-line 

and the perpendicular line is drawn until intersection with the mask boundary. Finally, a set 

of patches that intersect with more than 60% with the mask are chosen to calculate their 

blue ratio, and the top k blue-ratio patches are selected. In this work, a patch size of 256 

× 256 pixels was used, and 36 patches were selected for each slide. Figure 2 illustrates the 

pre-processing steps of the PANDA dataset.

B. Evaluation Metrics

The task of the PANDA challenge is to predict the ISUP grade on a 0–5 scale for each 

biopsy image based on Gleason grading system. Gleason grading is a subjective task, with 

high inter- and intra-observer variability. Agreement between pathologists is often measured 

using Cohen’s kappa. Therefore we used the quadratic weighted kappa (QWK) to evaluate 

our model’s performance. QWK measures the agreement between two outcomes. It typically 

varies from 0 (random agreement) to 1 (complete agreement), though it may be negative if 

there is less agreement than expected by chance.

The QWK is calculated as follows. First, an N × N histogram matrix O is constructed, such 

that Oi,j corresponds to the number of ISUP grade i (actual) that received a predicted value 
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j. An N × N matrix of weights, w, is calculated based on the difference between actual and 

predicted values as,

wi, j = (i − j)2

(N − 1)2 (4)

After that, an N × N histogram matrix of expected outcomes, E, is calculated assuming that 

there is no correlation between values. This is calculated as the outer product between the 

actual histogram vector of outcomes and the predicted histogram vector, normalized such 

that E and O have the same sum. From these three matrices, the QWK is calculated as,

κ = 1 − ∑i, jwi, jOi, j
∑i, jwi, jEi, j

(5)

C. Network Backbone, Loss Function, and Other Training Details

In this study, we used EfficientNet-B0 [28] for all of our experiments as it achieved 

competitive results in the PANDA challenge without high computational cost compared 

to other network architectures, such as ResNeXt34 and ResNeXt50. However, we note that 

PathAL does not require a specific network backbone and can be easily adapted to use 

other networks to best fit various scenarios. We used normal Adam optimization in all the 

experiments. The model is trained on one single Tesla V100S GPU in PyTorch.

To predict an ISUP grade on a 0–5 scale, we used the ordinal regression loss function at 

the final layer of our network. This loss can better capture the ordinal relationship between 

grade and severity in the training set compared to multi-class classification or the mean 

square error loss function. Specifically, we used binary cross entropy loss with binning 

labels. For example, label Y = [r0, 0, 0, 0, 0] means ISUP grade 0, Y = [r1, 0, 0, 0, 0] means 

ISUP grade 1, and Y = [r1, 1, 1, 1, 1] means ISUP grade 5. The output of our model is a 

vector P with the same dimension of label Y. Assume pi and yi represent i th value of P and 

Y, the loss function will be,

ℒ = ∑
i = 1

N
− yilog pi + 1 − yi log 1 − pi , (6)

where N is our ISUP grade scale, i.e. 5 in our case.

We performed four-fold stratified cross-validation to demonstrate the effectiveness and 

robustness of PathAL. In each fold, we used a hold-out set as the testing set, and the rest 

as the training set. For comparison, we asked an expert pathologist to annotate 10% of the 

training samples each time. We compared PathAL performance with other baseline models 

alongside the pathologist annotations. In each iteration of PathAL, we excluded 1% of the 

whole training set |T| as noisy samples, added the other 10% * |T| annotated data and 5% * 

|T| confidently predicted samples with their “pseudo-labels”.
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D. Baselines

We compared our model with state-of-the-art AL baselines including MC-Dropout [30], 

QBC [10], VAAL [31], and Core-Set [32]. The comparison is conducted using the identical 

four-fold cross-validation data split. In this section, we describe the acquisition methods 

used by these baseline models briefly.

• Monte Carlo Dropout to obtain model uncertainty for each sample in the 

unlabeled dataset and detect the top uncertain samples (MC-Dropout) [30]. 

Specifically, in MC-Dropout we simply collect the results of stochastic forward 

passes through drop out and measure the entropy of the predictions. Samples 

with the highest entropy are chosen for annotation.

• Query-by-committee to choose the data points for the next iteration (QBC). 

Similar to [10], we use Jensen-Shannon (JS) divergence to measure the 

uncertainty of unlabeled samples and select the top ones.

• Variational Adversarial Active Learning method to select unlabeled samples for 

annotation (VAAL) [31]. This method learns a low dimensional latent space from 

labeled and unlabeled data using Variational Autoencoder (VAE) and selects 

instances for labeling from the unlabeled pool that are sufficiently different in the 

latent space through a discriminator.

• Core-Set to select unlabeled samples to be annotated for the next round (Core-
Set) [32]. Specifically, in the Core-Set method, we choose k data points to be 

labeled so that the largest distance between a data point and its nearest center is 

minimized.

E. Experimental Results

We first conducted a toy example run to show the effectiveness of our methods on 

identifying hard and noisy samples. Then we performed experiments in various settings 

and compared PathAL with other AL baselines. Note that the ISUP grade for samples in Ui 

is not available in the real AL scenario. However, we used the label in the dataset as ground 

truth to provide a quick sanity check and demonstrate that PathAL worked as expected.

1) Illustration of Toy Example: To illustrate the effectiveness of our method, we 

created a toy example for 2-class classification. Figure 4(a) demonstrates the sample-

distributions of the classification problem. The dotted circle indicates the decision boundary 

while we have class 0 (C=0) inside the circle and class 1 (C=1) outside the circle. Samples 

that are far away from the decision boundary are considered as easy samples (blue dots for 

C=0 and orange dots for C=1), while samples that are close to the decision boundary are 

considered as hard samples. We also randomly inserted noisy samples (indicated by larger 

purple dots) that have the wrong label. We tackled this problem with a simple NN that had 

one hidden layer with four neurons. We applied CC and O2U after the model converged 

with 100 training epochs. Figure 4(b) shows a heat map of averaged predictive entropy 

of each samples. As expected, the easy samples have smaller averaged predictive entropy 

during the O2U process, while the harder samples have larger averaged predictive entropy. 

The noisy samples have the largest predictive entropy since whenever the model went from 
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overfitting to underfitting, their predictive entropy spiked. Using CC and the strategy of 

Figure 1(c), we classified samples into easy, hard, and noisy, and compared them with their 

original categories (easy, hard, and noisy). Figure 4(c) demonstrates a confusion matrix with 

horizontal axis representing the classified results and vertical axis representing the original 

setting. As can be seen, our proposed method was able to classify most of the samples 

correctly. 98% easy samples were identified correctly, and for hard and noisy samples, the 

percentages are 87% and 82%, demonstrating the effectiveness of the proposed method.

2) Illustration of Curriculum Classification: We first illustrate the process of the CC 

algorithm to help explain its effectiveness. As training proceeds, the deep image features 

should be more separable according to their ISUP grades in feature space. In other words, 

if we use k-means to group them in a fully unsupervised fashion, the label diversity 

within each group should decrease. We defined a metric called “grade concentration” to 

measure the ISUP diversity for each cluster group at each iteration in PathAL. The “grade 

concentration” was calculated as an average negative entropy of the ISUP grade distribution 

of each group. Figure 3(a) demonstrates the t-SNE plot in the deep feature space. Each 

point in the figure represents a slide whose color indicates its ISUP grade. As expected, in 

the early iterations of PathAL, different ISUP gardes were not well separated in the feature 

space, indicating the model was not able to achieve high accuracy in its predictions. As 

training progressed, ISUP images became more separable according to their grades. As a 

result, the subsets clustered by k-means methods would have higher “grade concentration”. 

Figure 3(b) depicts the trend of “grade concentraion.” The insets of the figure demonstrate 

a typical ISUP distribution for the clusters. At the beginning of the training iterations, the 

ISUP grades were more spread, while at the end of the training, each cluster had lower label 

diversity.

3) Illustration of O2U Cyclic Training: In this illustration, we demonstrate the cyclic 

training in the O2U process. After the model converged in each iteration, we adjusted the 

learning rate periodically so that the network could transition from overfitting to underfitting 

cyclically. The learning rate was adjusted based on a cosine annealing function in each 

cyclic round as,

lr = lrmin + 1
2 lrmax − lrmin (1 + cos( Tcur

Tmax
π)) (7)

where Tmax was the epoch for one cycle, lrmin and lrmax were the minimum and maximum 

learning rates in one cycle.

We monitored the training loss for every sample in Li, and the predictive entropy for 

every sample in Ui. This process is illustrated in Figure 3(c)–(d). After the cyclic training, 

the samples were ranked according to their losses and predictive entropy variation. The 

samples were plotted in terms of three groups: top 0%–40% ranked samples, top 40%–80% 

ranked samples, and the rest of the samples. It was observed that the training losses and 

predictive entropy fluctuated with the cyclical adjustment of the learning rate. The training 

losses of the top 40% of samples fluctuated drastically during the cyclical training when 

compared to the rest of the samples, which may indicate they were noisy or hard samples 
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(see Figure 3(c)). It is also observed in Figure 3(d) that the top 40% samples ranked for 

predictive entropy did not change during early iterations, which implies that the samples in 

Li contained limited information for the model to classify these samples. As the training 

proceeded, we observed that the predictive entropy of the top 40% started to fluctuate, as 

the samples in Li contained more information about the samples in Ui, even for the most 

uncertain group.

4) PathAL Performance: We compared our proposed PathAL with the four AL 

baselines mentioned in Section IV-D. Figure 5(a) demonstrates the comparison results 

of QWK on ISUP grade prediction between PathAL and the baselines. The QWK was 

calculated as the average performance of the four folds. The dotted black line shows the 

fully supervised learning performance. As shown in the figure, PathAL improved the QWK 

performance with fewer required annotations. It achieved a higher QWK compared with the 

full training set supervision baseline with only 60% of the annotations required from the 

expert. The VAAL method performed the second best with the PANDA dataset, achieving 

comparable performance with PathAL at the early stage of AL (when the annotated 

samples were limited). However, it only achieved the fully-supervised baseline with 70% 

of annotated data. While PathAL did not outperform the fully-supervised baseline by a large 

margin, we argue that it achieved slightly better performance because it discarded the noisy 

labels. Here, we report the mean value across the four cross-validation runs. However, our 

model that achieves 89.5% QWK on the training data produces a 93.1% QWK on the final 

private leaderboard, which is among top 10 results in the challenge. As our work aims 

to demonstrate that we can achieve similar performance to state-of-the-art methods with 

only 60% of labeled data, we argue that our results can achieve the same state-of-the-art 

performance with much less data annotation burden. To illustrate the effectiveness of each 

component in PathAL, we performed an ablation study in Section IV-E7.

To determine whether: 1) the samples we discarded in each iteration were noisy with low 

QWK, 2) the samples we asked the expert to annotate were “informative” with low QWK, 

and 3) the samples we added with their “pseudo-label” were correct with high QWK, we 

plotted the QWK for each group during the training process in Figure 5(b). It is observed 

that the noisy sample group Ni had a relatively low QWK even though their labels were used 

for training, while the confident predicted samples in Ui have a much higher QWK. Samples 

in Ii that were re-annotated by the expert had low QWK, indicating that those samples were 

most “informative” to the current models, and would improve the model’s performance by a 

large margin if added to Li with annotations. Both QWK of Ii and Ni increases throughout 

the training and the curve for Noisy Ni becomes higher than Informative Ii at the later stage 

of the training. We argue that this is because Ni are samples from the labeled dataset Li and 

they are directly used to train the model in the ith iteration, while Ii, Ci are samples from 

the unlabeled dataset Ui and they are not used to train the model. At the later stage of the 

training, the model became well-trained on easy samples and started to memorize the label 

of noisy samples (i.e., overfitting), which is why we observed that Noisy Ni become higher 

than Informative Ii in the figure.
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5) Keeping Noisy Samples in a Pool: As mentioned in Section III-D, during the 

PathAL process, we do not discard the noisy samples completely. Instead, we keep them 

in a pool and examine if they need to be added back throughout the training process. To 

analyze how this mechanism works, we calculated the percentage of the noisy samples that 

were returned to training in later iterations. Specifically, assume we have Ni samples that are 

identified as noisy samples in the ith iteration, among them we have ni+1 samples returned 

back for training in the (i+1)th iteration, ni+2 samples in the (i+2)th iteration, …, then the 

percentage is defined as,

Pi = ∑
m = i + 1

nm/Ni . (8)

We plot the average percentage across the four runs in Figure 5(c). As can be seen in the 

figure, there were around 25% noisy samples in the initial iteration that would return to 

training during the whole process, indicating the necessity of keeping them in a pool instead 

of discarding them. As the iteration continued, the percentage dropped quickly, indicating 

that the model became more capable of distinguishing noisy samples. The shaded area 

indicates the standard deviation among four runs. As expected, it became smaller as we went 

through the training process.

6) Noisy vs. Expert Pathologists: The labels provided by the pathologists might vary 

depending on their experience. In order to simulate the impact of acquiring labels from 

an inexperienced annotator, we applied random noise to the labels in each iteration. We 

randomly change the ground truth labels for 15% and 30% of the training set to have an 

incorrect label. In our experiments, we did not constrain the distance between the noisy 

label and ground truth label, instead we uniformly sample from the ISUP grades. Figure 5 

(d) shows how a noisy annotator affects the performance of PathAL and random sampling. 

We observed that PathAL constantly outperformed random sampling, although the relative 

performance with noisy labels fell compared to experts. As the percentage of noisy labels 

increased, PathAL performance was closer to the random sampling, as expected.

7) Ablation Study: To illustrate the effectiveness of each component in PathAL, we 

performed an ablation study with varying amounts of labeled data until 60% of expert 

annotations were added to Li, when PathAL would have access to all sample labels either 

through expert’s annotations or pseudo-assigned labels. Table I demonstrates the results 

when only parts of PathAL components were used. The QWK is shown as an average for 

four different folds with a calculated standard deviation.

From the table, we observed that using a simple predictive entropy measure by O2U in 

row 2 (Entropy (O2U)) to select the most “informative” samples improved the QWK by 

1.3% compared with the random selection baseline, while PathAL improved the random 

baseline by 2.4%. When we excluded the noisy samples in row 3 (Entropy + Noisy (O2U)), 

we saw QWK improve by 0.3%, while adding the high-confidence predictive samples by 

self-assigned pseudo-labels (row four Entropy + Conf Preds) improved the QWK by 0.4%. 

To illustrate whether the O2U and CC component helped with the selection of Ni, Ii, Ci, 

we implemented PathAL with selection based on the predictive entropy (row 5 PathAL (w/o 
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O2U & CC)), i.e., our selection was solely based on the model’s predictive entropy in this 

experiment. Specifically, we selected the top ranked samples in Li based on the model’s 

predictive entropy as Ni (the high entropy of theses labeled samples indicates they are most 

likely to be noisy samples), the top ranked samples in Ui as Ii (the high entropy of these 

unlabeled samples indicates the model is uncertain about their prediction), and the bottom 

ranked samples as Ci (the low entropy of these unlabeled samples indicates the model is 

pretty certain about their prediction). We showed that using O2U and CC in combination as 

a sample selective strategy improved the QWK by 1.3%, indicating the effectiveness of their 

roles in PathAL.

8) Pathologist Validation: To validate our algorithm for detecting easy, noisy, and 

hard samples, two pathologists (AS and DS) with expertise in Gleason grading performed 

an independent reader study. Specifically, we provided three groups of slides that were 

labeled as easy, noisy, and hard by our algorithm. Each group consisted of 100 slides. The 

pathologists were asked to give final ISUP grades without knowing the ground truth labels 

provided by the dataset. As shown in Table II, we measured the QWK of each group, 

between the ground truth labels and each reader. As expected, the QWK of the “easy” group 

was very high, with highest value 1 that indicates 100% agreement between the pathologist 

and the ground-truth label for the 100 samples. Conversely, the QWK of the “noisy” group 

was −0.14 and −0.06 between the ground truth labels and the two pathologists, respectively. 

The QWK between the two pathologists was 0.7922, which was much higher compared 

to the ground truth labels. This demonstrates that the high variance between the dataset 

labels and pathologist readings can be explained by noise in the dataset labels. The QWK 

of the “hard” samples was 0.10 and 0.15 for the two pathologists, which was slightly higher 

than that of the “noisy” group. Comparing the readings between the two pathologists, we 

observed 0.58 QWK. This was lower than the 0.79 QWK of the “noisy” group, indicating 

the intrinsic hardness of grading these samples. Although it is not as low as comparing 

with the ground truth, we believe it can be partially explained by the fact that the two 

pathologists have gone through similar training and review slides using the same grading 

criteria. Furthermore, by visually inspecting the discordant slides in the “hard” group, we 

found that some of the slides were also likely to have incorrect labels. In other slides, the 

cancerous regions were either small or ambiguous, so it was difficult for the pathologists 

to spot the cancerous areas or reach a consensus. In general, we found that our algorithm 

robustly distinguished between “easy” and “hard & noisy” groups, and was able to tell 

“hard” and “noisy” samples apart in a reasonable way. However, there is still room for 

improvement in distinguishing between “hard” and “noisy” samples. For more details, 

please refer to the Appendix.

V. LIMITATIONS

There are many hyper-parameters in our approach, and to a degree, these parameters 

require task-sensitive tuning. A potential direction for future work is to develop a hyper-

parameter robust version of PathAL. Another limitation of our approach is the extra training 

time needed for PathAL. The computational overhead compared to other AL baselines is 

dominated by the O2U process. In the PANDA dataset, the O2U process can take up to 20 
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minutes to collect the statistically meaningful averaged training loss and predictive entropy, 

while other sampling strategies of common AL baselines require several minutes. However, 

other AL methods are not able to distinguish noisy and hard samples, which is a key 

innovation of our work. Furthermore, our model does not impact inference time as the CC 

algorithm and O2U process are all performed during training.

VI. CONCLUSION

In this paper, we have proposed PathAL, a novel AL framework for histopathology 

image analysis. Unlike prior studies in medical image AL, which only consider the most 

“informative” samples to be added in each iteration, PathAL also heuristically excludes 

noisy samples and adds confident predictive samples with self-assigned pseudo-labels. 

Specifically, the combination of a CC algorithm and an O2U process was used to detect 

noisy, confident, and informative samples. Our proposed method achieved competitive 

performance while requiring only 60% of samples to be annotated, compared to the fully 

supervised learning baseline on the PANDA challenge. Extensive experiments conclude 

the effectiveness of each component in PathAL. We expect to apply PathAL to other 

histopathological image analysis scenarios in the future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(a) Schematics of our proposed PathAL. The core algorithm of PathAL consists of three 

steps in the ith iteration: 1) discarding noisy samples Ni; 2) requesting human experts 

to annotate informative samples Ii and adding them to Li+1; and 3) adding confident 

predictictive samples Ci with their “pseudo-labels” to Li+1. The curriculum classification 

(CC) algorithm and overfitting to underfitting (O2U) monitor are used to select Ni, Ii, Ci. 

(b) Illustration of the CC algorithm. Tissues from one slide are mapping to one single point 

in deep feature space, where K-Means Clustering is used to group them in subsets. The 

CC algorithm is applied to each subset and the image complexity is classified as “easy”, 

“medium” or “hard” based on their local density. (c) Principles on how to determine Ni 

and Ci based on CC and O2U results. A sample that is classified as “easy” based on its 

complexity but has large training loss variation is more likely to be incorrectly annotated. 

If it is classified as “hard” for its complexity, it is more likely to be a difficult sample. If a 

sample’s complexity is classified as “easy” and the variation of its predictive entropy is low 

by the current model, we will have a higher confidence that the current prediction is correct.
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Fig. 2. 
Illustration of data pre-processing steps. A binary mask of tissue is first extracted; then the 

mid-line is found using morphological closing; after that, the mid-line is partitioned to form 

patches based on the batch size and overlap; finally, the blue ratios of patches are calculated 

and the top k patches are selected.
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Fig. 3. 
(a) t-SNE plot in deep feature space. Each point in the figure represents a slide whose 

color indicates its ISUP grade. As training progressed, different ISUP grades became 

more separable in the deep feature space, indicating the model captured more essential 

information to make correct predictions. (b) The trend of “grade concentraion” that 

measured the ISUP grade distribution within subsets clustered by k-means. The insets 

of the figure demonstrate typical ISUP distributions for the subsets. At the beginning of 

training, the ISUP grades were more diffuse, while at the end of the training, each cluster 

concentrated on fewer grades. (c)(d) The training loss for every sample in Li, and predictive 

entropy for every sample in Ui during the O2U process.
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Fig. 4. 
(a) Toy example for a 2-class classification. The dotted circle indicates the decision 

boundary while inside the circle we have class 0 (C=0) and class 1 (C=1) out side the 

circle. Samples that are far away from the decision boundary are considered as easy samples 

(blue for C=0 and orange for C=1), while samples that are closer to the decision boundary 

are considered as hard samples. We also randomly insert noisy samples (indicated by larger 

purple dots) that have wrong labels. (b) A heat map of averaged predictive entropy of each 

samples during the O2U process. (c) A confusion matrix of easy, hard, and noisy samples 

with horizontal axis representing the classified results and vertical axis representing the 

original categories.
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Fig. 5. 
(a) Performance comparison between PathAL and other AL baselines. (b) QWK for each 

group (Ni, Ci, Ii) during the training process. (c) Percentage of noisy samples that returned 

for training in later iterations. (d)Performance comparison between PathAL and random 

sampling with noise samples injection.
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TABLE I

Ablation Study of PathAL.

QWK

Random 87.1 ± 0.6

Entropy (O2U) 88.4 ± 0.5

Entropy + Noisy (O2U & CC) 88.6 ± 0.3

Entropy + Conf Preds (O2U & CC) 88.8 ± 0.5

PathAL (w/o O2U & CC) 88.6 ± 0.4

PathAL 89.5 ± 0.5
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TABLE II

Pathologist Reader Study.

Easy Hard Noisy

Ground Truth vs. Reader1 1.0000 0.1074 −0.1438

Ground Truth vs. Reader2 0.9494 0.1488 −0.0591

Reader1 vs. Reader2 0.9494 0.5805 0.7922
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