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Abstract

Type 2 diabetes (T2D) is a multifactorial disease with substantial genetic risk, for which the 

underlying biological mechanisms are not fully understood. We identified multi-ancestry T2D 

genetic clusters by analyzing genetic data from diverse populations in 37 published T2D genome-

wide association studies (GWAS) representing >1.4 million individuals. We implemented soft 

clustering with 650 T2D-associated genetic variants and 110 T2D-related traits, capturing known 

and novel T2D clusters with distinct cardiometabolic trait associations across two independent 

biobanks representing diverse genetic ancestral populations (African, N=21,906; Admixed 

American, N=14,410; East Asian, N=2,422; European, N=90,093; South Asian, N=1,262). The 

twelve genetic clusters were enriched for specific single-cell regulatory regions. Several of the 

polygenic scores derived from the clusters differed in distribution between ancestry groups, 

including a significantly higher proportion of lipodystrophy-related polygenic risk in East Asian 

ancestry. T2D risk was equivalent at a BMI of 30 kg/m2 in the European subpopulation and 24.2 

(22.9–25.5) kg/m2 in the East Asian subpopulation; after adjusting for cluster-specific genetic risk, 

the equivalent BMI threshold increased to 28.5 (27.1–30.0) kg/m2 in the East Asian group. Thus, 

these multi-ancestry T2D genetic clusters encompass a broader range of biological mechanisms 

and provide preliminary insights to explain ancestry-associated differences in T2D risk profiles.

Introduction

Type 2 diabetes (T2D) is a complex genetic disease mediated by multiple biological 

pathways. Ongoing efforts have focused on advancing precision medicine in diabetes by 

identifying unique clinical trajectories or treatment approaches based on diabetes subtype1. 

Multiple strategies have been applied to identify T2D disease pathways and subtypes, 

incorporating clinical, biomarker, and/or genomic data2.

Previously, we used genetic data and implemented a soft clustering approach using Bayesian 

non-negative matrix factorization (bNMF) to identify five physiologically informed clusters 

of T2D genetic loci3. The bNMF procedure groups T2D loci in distinct, but sometimes 

overlapping, clusters that influence specific groups of clinical or biochemical phenotypic 

traits. We found two T2D clusters related to mechanisms of insulin deficiency and three 

related to insulin resistance. More recently, we developed a high-throughput pipeline to 

analyze a larger set of genome-wide association studies (GWAS) to increase our power to 

detect T2D clusters4. This approach recapitulated our previous five clusters and identified 
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five additional clusters. At least two other efforts aimed at identifying T2D genetic clusters 

also appeared to capture some of these clusters, based on the top traits and loci5,6.

Here, we expand our analysis pipeline to investigate multi-ancestry cohorts. Previously, 

we focused on European genetic ancestry groups, due to limited data availability and 

methodological limitations when analyzing genetic data from diverse populations. We 

hypothesized that incorporating individuals from diverse populations could potentially 

explain ancestry-associated differences in T2D risk while avoiding the exacerbation of 

health disparities7. Thus, we now leverage recent multi-ancestry genetic studies8–10 to 

investigate T2D genetic clusters in diverse ancestral populations. We recapture our previous 

T2D genetic clusters and identify three new clusters. We confirm that common pathways 

contribute to T2D risk across multiple ancestral populations and are distinctively enriched 

for tissue- and single-cell regulatory regions. Additionally, we describe associations of the 

genetic clusters with clinical phenotypes. Finally, we analyze ancestry-specific variation in 

genetic clusters to investigate why individuals in certain populations are more susceptible to 

T2D at a lower body mass index (BMI).

Results

Multi-ancestry approach yields twelve T2D genetic clusters

We previously developed a high-throughput pipeline to generate T2D clusters using T2D 

GWAS summary statistics4. Here, we expanded the set of input T2D GWAS to include 

participants with different ancestries (Supplementary Table 1) and updated our pipeline 

to account for varying allele frequencies across populations (Extended Data Fig. 1). We 

included 37 T2D GWAS representing over 1.4 million individuals across varied genetic 

ancestral backgrounds: African/African American (AFR), Admixed American (AMR), East 

Asian (EAS), European (EUR), South Asian (SAS), or multi-ancestry (Supplementary 

Table 1). After performing quality control and removing correlated elements, we obtained 

a final set of 650 variants with independent genome-wide significant T2D associations 

(Supplementary Table 2) and 110 GWAS of T2D-associated traits (Supplementary Table 3), 

with which we applied our bNMF clustering algorithm.

We identified a total of twelve T2D multi-ancestry genetic clusters (Fig. 1, Table 1, 

Supplementary Table 4). Compared to our prior work4, we identified three novel clusters 

(Lipodystrophy 2, Cholesterol, and Bilirubin), and we recaptured eight out of ten previously 

identified clusters, each now including more top-weighted variants (Extended Data Fig. 2). 

The two remaining clusters from our prior work (SHBG and LpA) collapsed into a single 

cluster, denoted here as SHBG-LpA.

The novel Lipodystrophy 2 cluster contained genetic determinants of lipid metabolism, 

liver dysfunction, and insulin resistance. The top-weighted traits included increased hepatic 

enzymes, increased Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), and 

decreased insulin sensitivity index. The top-weighted loci included PNPLA3 and PPARG, 

which regulate the accumulation of fatty acids in liver and adipose tissue11,12. Compared to 

our prior work, the previous single Lipodystrophy cluster appeared to split into two clusters 

(Extended Data Fig. 2), with traits related to body composition (such as increased visceral 
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adipose tissue) remaining in the Lipodystrophy 1 cluster and traits related to hepatic function 

moving to the novel Lipodystrophy 2 cluster.

The novel Cholesterol cluster was associated with decreased LDL levels. The top-weighted 

locus was APOE, which mediates lipid metabolism13. Another top locus included 

rs5744672, located near the POLK and HMGCR loci. HMGCR encodes HMG-CoA 

reductase, which catalyzes the rate-limiting step of cholesterol synthesis. To support the 

hypothesis that the observed variation in cholesterol levels is mediated via HMGCR, we 

searched for expression quantitative trait loci (eQTL) in the Genotype-Tissue Expression 

Project (GTEx). We found a significant association between rs5744672 and HMGCR 
expression levels in skeletal muscle (normalized effect size = 0.14, P = 2.9 × 10−6), and 

there was strong linkage disequilibrium (LD) between rs5744672 and the top eQTL variant 

for HMGCR (rs3846662, r2 = 0.91).

Finally, the novel Bilirubin cluster was associated with increased bilirubin levels. This 

cluster only included two variants, both located near the complex UGT1A locus, although 

the two variants were independent (r2 = 0.004). The UGT1A locus encodes multiple 

enzymes in the UDP-glucuronosyltransferase family, which mediate excretion of bilirubin 

metabolites. We again characterized this genetic locus by searching for eQTLs in GTEx. 

We found that the top locus in the bilirubin cluster (rs887829) was significantly associated 

with UGT1A3 expression in the liver (normalized effect size = 0.46, P = 3.8 × 10−14); once 

again, there was strong LD between rs887829 and the top eQTL for UGT1A3 (rs869283, r2 

= 0.58).

T2D genetic clusters are shared across ancestry groups

To determine whether the genetic clusters were shared across populations, we repeated 

our clustering pipeline for each individual ancestry group. Our findings were similar; all 

groups had at least two clusters related to beta cell dysfunction and at least two related 

to insulin resistance (Extended Data Fig. 3, Supplementary Tables 5–8). We identified 

fewer clusters in the AFR and AMR groups, likely because the GWAS sample sizes were 

smaller, yielding fewer variants for the clustering algorithm. Subsequently, we focused our 

remaining analyses on the multi-ancestry clusters, since they included all variants from the 

ancestry-specific analyses and also included the trait GWAS with the largest sample sizes.

T2D genetic clusters capture distinct clinical associations

We tested associations between the multi-ancestry clusters and specific continuous traits 

or disease outcomes. To accomplish this, we implemented cluster-specific partitioned 

polygenic scores (pPS) using individual-level data, or if not available, using published 

GWAS summary statistics (GWAS-pPS) (see Methods; Supplementary Table 9).

To characterize glycemic physiology, we assessed the associations of clusters with 

glycemic traits (Homeostatic Model Assessment of β-cell function [HOMA-B], HOMA-IR, 

proinsulin, and corrected insulin response), using GWAS summary statistics included as 

inputs in the bNMF clustering algorithm (Fig. 2A, Supplementary Table 10). The Beta 

Cell 1, Beta Cell 2, and Proinsulin clusters were associated with decreased HOMA-B (β = 

−0.002 to −0.01, P < 1 × 10−4), suggesting a primary mechanism of insulin deficiency. The 
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Obesity, Lipodystrophy 1, and Lipodystrophy 2 clusters were associated with increased 

HOMA-IR (β = 0.005 to 0.007, P < 1 × 10−8), suggesting a primary mechanism of 

insulin resistance. Two clusters (Liver-Lipid and ALP Negative) were associated with both 

increased HOMA-IR (β = 0.005 to 0.007, P < 0.02) and fasting insulin adjusted for BMI (β 
= 0.0120 to 0.0128, P < 9 × 10−5), consistent with prior work suggesting a mechanism of 

insulin resistance; additionally, they were also now associated with decreased HOMA-B (β 
= −0.005 to −0.006, P < 4 × 10−3), potentially also indicating a more complex mechanism. 

The Hyper Insulin and Cholesterol clusters were not significantly associated with HOMA-B 

or HOMA-IR, but were associated with other variables suggestive of a mechanism of insulin 

resistance (fasting insulin, insulin sensitivity index adjusted for BMI). The final two clusters 

(Bilirubin and SHBG-LpA) were not clearly associated with insulin deficiency or resistance.

Next, to assess how the T2D clusters inform individual-level clinical differences, we 

calculated pPS in biobank participants. We performed our primary analysis in the All of 

Us cohort and replicated our findings in the Mass General Brigham (MGB) Biobank. Here, 

we present our findings from a meta-analysis of over 100,000 participants (including over 

14,000 with T2D) from the two cohorts (Supplementary Table 11).

First, in biobank participants with and without T2D, we validated the relationship between 

cluster pPS and clinical measurements (Fig. 2B, Supplementary Tables 12–13). For example, 

we confirmed that the clusters had varied associations with lipid measurements: the 

Cholesterol pPS was associated with lower LDL (β = −0.07 standard deviations [SD] of 

LDL per SD of pPS, P = 3.5 × 10−73), the Liver/Lipid pPS with lower triglycerides (β = 

−0.08, P = 4.3 × 10−104), and the Lipodystrophy 1 pPS with lower HDL (β = −0.04, P = 3.6 

× 10−33) and higher triglycerides (β = 0.09, P = 1.2 × 10−125).

We also analyzed measures of waist and hip circumference (only available in All of Us), 

as well as measures of subcutaneous adipose tissue (SAT) and visceral adipose tissue 

(VAT) (only available in ~9,000 MGB Biobank participants). The Lipodystrophy 1 pPS 

was associated with increased VAT/SAT ratio (β = 0.06, P = 3.1 × 10−12) and increased 

waist-hip ratio (β = 0.05, P = 6.1 × 10−39). In contrast, the Lipodystrophy 2 pPS had a 

weaker association with VAT/SAT and was not associated with waist-hip ratio. Findings 

were similar after adjusting for BMI as a covariate. We observed sex-specific effects for the 

Lipodystrophy 1 cluster; for example, in females the VAT/SAT ratio association was driven 

by an increased VAT (βfemale = 0.05, P = 3.5 × 10−4) with no significant effect on SAT 

(βfemale = −0.003, P = 0.86), whereas in males it was driven by a decreased SAT level (βmale 

= −0.07, P = 8.7 × 10−6) with no significant effect on VAT (βmale = 0.01, P = 0.35; Extended 

Data Fig. 4, Supplementary Table 13).

Second, we tested the association between pPS and cardiometabolic phenotypes (chronic 

kidney disease [CKD], hypertension [HTN], coronary artery disease [CAD], non-alcoholic 

fatty liver disease [NAFLD], diabetic retinopathy, and diabetic neuropathy) (Fig. 2C, 

Supplementary Tables 14–15). The Lipodystrophy 2 cluster was associated with increased 

NAFLD risk (OR = 1.24, P = 1.0 × 10−44), whereas the Liver-Lipid cluster was associated 

with decreased NAFLD risk (OR = 0.95, P = 3.0 × 10−4; Fig. 2C, Supplementary Table 

15). The Cholesterol pPS was nominally associated with decreased CAD risk (OR = 0.97, 
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P = 2.3 × 10−3) in the individual-level data, and this negative association reached greater 

significance in the GWAS-pPS analysis (OR = 0.97, P = 2.8 × 10−27; Supplementary 

Table 10). Among individuals with T2D, we also analyzed the risk of two microvascular 

complications, diabetic retinopathy and diabetic neuropathy. No cluster was significantly 

associated with microvascular complications at the Bonferroni-adjusted threshold.

Third, we analyzed the extremes of each cluster. Across both individual-level cohorts, 

we found that 35% of all individuals with T2D had a pPS in the top decile of exactly 

one cluster, similar to the expected proportion under a binomial distribution with twelve 

independent clusters. Furthermore, individuals who fell in the top decile of a single 

cluster pPS had unique phenotypic differences (Supplementary Table 16). For example, 

among individuals with T2D, those in the top decile of the Cholesterol cluster pPS had a 

mean medication-adjusted LDL of 124.3 mg/dL, compared to 134.1 mg/dL for all other 

individuals (P = 3.1 × 10−3). Thus, for a substantial portion of the population, a single 

genetic cluster contributed more to T2D genetic risk than any other cluster did.

T2D cluster loci are enriched in relevant tissues

To further explore biological mechanisms of the multi-ancestry T2D genetic clusters, 

we assessed for epigenomic evidence of transcriptional activity across a wide array of 

human tissues. We examined single-cell epigenomic data in CATLAS14, as well as tissue-

specific data generated by the Roadmap Epigenomics Consortium15. We found cluster-

specific enrichment of epigenomic annotations in biologically relevant tissues (Fig. 3, 

Supplementary Table 17). The Beta Cell 1 cluster was enriched for epigenomic annotations 

in a diverse range of cell types, including pancreatic beta cells, while the Beta Cell 2 cluster 

was specifically characterized by pancreatic islet cell enrichment in alpha, beta, gamma, 

and delta cells (False Discovery Rate [FDR] < 0.01) (Fig. 3A). The associations between 

the two Beta Cell clusters and pancreatic islets were also captured in the Roadmap analysis 

(Fig. 3B). Meanwhile, the Liver-Lipid cluster was enriched in fetal hepatoblasts (FDR < 

0.01), while the Lipodystrophy 1 and 2 clusters were enriched in adipose tissue (FDR < 

0.01). These findings confirm that the genetic clusters capture variants with distinct effects 

in specific tissue types, and these effects relate to suspected disease mechanisms.

Distribution of T2D genetic clusters differs by ancestry

Next, we assessed whether the multi-ancestry T2D genetic clusters had varying 

contributions to overall T2D genetic risk in different populations. We applied principal 

component analysis to classify individuals by genetic ancestry in both All of Us and MGB 

Biobank16. After confirming that the distribution of T2D genetic clusters was similar in both 

cohorts, we performed a meta-analysis of both biobanks. For all individuals, we calculated 

pPS using the multi-ancestry T2D genetic clusters.

We found that the cluster-specific distribution of T2D genetic risk differed according to 

genetic ancestry. For example, the median Beta Cell 1 pPS was highest in the AFR ancestry 

group, whereas the median Lipodystrophy 1 and 2 pPS were highest in the EAS ancestry 

group (Fig. 4A; Extended Data Fig. 5). Furthermore, within each ancestry group, we found 

varied proportions of T2D genetic risk attributable to each cluster (Extended Data Fig. 6). 
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For example, 12.7% of the total T2D genetic risk across all clusters was present in the 

Lipodystrophy 1 cluster for the EAS ancestry group, which was significantly higher than 

the other groups (AFR: 8.1%, AMR: 9.6%, EUR: 9.0%, SAS: 9.6%; P < 10−300, one-way 

ANOVA).

Lipodystrophy 1 and 2 clusters modulate T2D-BMI relationship

We then investigated whether ancestry-specific variation in T2D genetic risk resulted in 

phenotypic differences between ancestry groups. Given that individuals with East Asian 

genetic ancestry develop T2D at lower BMI levels17, which may be due to a tendency 

for metabolically unhealthy or “lipodystrophic” fat distribution18, we hypothesized that 

this phenomenon could be partly explained by genetics. We focused on the multi-ancestry 

Lipodystrophy 1 and 2 clusters, which were associated with decreased BMI but increased 

VAT/SAT ratio and T2D risk (Fig. 2, Supplementary Tables 12, 13). After classifying 

individuals by genetic ancestry, we first analyzed the relationship between BMI and T2D 

risk in both All of Us and MGB Biobank separately; then, we performed a meta-analysis of 

both cohorts together.

Within each ancestry group, we calculated BMI thresholds with equivalent T2D risk and 

found they were largely consistent with prior reports19–22. For example, at a BMI of 30 

kg/m2 (typically used to define obesity), the risk of T2D within the EUR ancestry group 

was 11.7%. However, to achieve the same risk of T2D, the corresponding BMI cutoff 

varied in other groups: AFR, 25.2 kg/m2 (95% confidence interval 24.7–25.7); AMR, 23.7 

kg/m2 (23.1–24.3); EAS, 24.2 kg/m2 (22.9–25.5); and SAS, 20.8 kg/m2 (19.4–22.2) (Fig. 

4B). After adjusting for the Lipodystrophy 1 and 2 pPS, to achieve the same risk of T2D 

as an individual with a BMI of 30 kg/m2 in the EUR ancestry group, the corresponding 

BMI cutoffs were: AFR, 25.1 kg/m2 (24.6–25.6); AMR, 25.0 kg/m2 (24.4–25.5); EAS, 28.5 

kg/m2 (27.1–30.0); and SAS, 22.0 kg/m2 (20.6–23.4) (Fig. 4C). Thus, by accounting for 

cluster-specific pPS, the difference in T2D risk-equivalent BMI thresholds between the EAS 

and EUR ancestry groups decreased by approximately 4 kg/m2.

We confirmed that the difference between T2D risk-equivalent BMI thresholds was 

primarily driven by the Lipodystrophy 1 and 2 clusters, as our findings were similar when 

we adjusted for pPS from all 12 clusters simultaneously. Furthermore, our findings were 

similar after restricting the population to individuals with similar Lipodystrophy 1 pPS 

(Extended Data Fig. 7A–B), and the relationship between Lipodystrophy 1 pPS and T2D 

risk remained strong even within the EUR ancestry group (Extended Data Fig. 7C). In 

addition, we did not find evidence for artifacts in ancestry-specific variants that could 

explain significant variation in cluster pPS across ancestry groups (Extended Data Fig. 8).

Next, we investigated the mechanism by which the Lipodystrophy 1 and 2 pPS impacted 

the BMI threshold for T2D risk. In the subset of ~9,000 MGB Biobank participants with 

available VAT and SAT measurements, we investigated the relationship between T2D risk, 

VAT/SAT ratio, and triglyceride levels. We found that the Lipodystrophy 1 and 2 pPS partly 

explained the relationship between VAT/SAT ratio and T2D risk across subpopulations, as 

well as the relationship between BMI and triglyceride levels (Extended Data Fig. 9).
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Potential clinical application of T2D genetic clusters

In current clinical practice, providers frequently use ancestry-based BMI ranges when 

counseling patients about T2D prevention and treatment; for example, obesity has been 

defined by a BMI > 30 kg/m2 in White individuals and > 27.5 kg/m2 in certain Asian 

populations23. While applying subpopulation-based normal ranges is intended to provide 

individualized care, such practices remain controversial due to both accuracy-related and 

ethical concerns24. To illustrate a potential clinical application of the T2D genetic clusters, 

we used the All of Us participants to develop individualized BMI thresholds that do not 

rely on a person’s race or genetic ancestry (see Methods). When we uniformly selected all 

individuals with a BMI of 30±10%, the T2D risk (adjusted for age and sex) was 24.6% in 

the EAS group compared to 11.5% in the EUR group (P = 0.013). If instead we selected all 

individuals with a BMI equivalent to their population-level risk threshold ±10%, the adjusted 

T2D risk was 14.6% for the EAS group and 11.1% for the EUR group (P = 0.38). Finally, 

when we selected all individuals with a BMI equivalent to the individual-level risk threshold 

±10%, the adjusted T2D risk was 9.5% for the EAS group and 10.3% for the EUR group 

(P = 0.82). Thus, we demonstrated that cluster pPS can be applied in a clinical setting to 

determine an individual’s target BMI level, regardless of their genetic ancestry.

Discussion

In this study, we assembled a diverse set of GWAS to analyze 650 independent T2D-

associated variants and 110 relevant traits, and we identified twelve potential T2D genetic 

clusters. By including genetic variants from multiple ancestry groups, we validated and 

expanded on our prior T2D clustering work, which focused on European populations and 

included only 323 variants3,4. We confirmed the existence of eight previously identified 

T2D genetic clusters, and we found that the previously defined SHBG and Lipoprotein A 

clusters4 merged into a single cluster. A new cluster, which we denoted as Lipodystrophy 

2, split from the previous Lipodystrophy cluster, and we identified novel clusters associated 

with cholesterol and bilirubin. These clusters were significantly enriched in regulatory 

genomic regions in both bulk tissue and single cell epigenomic datasets, implicating tissues 

and cells consistent with predicted disease mechanisms. Additionally, we characterized the 

clinical features of the genetic clusters, notably including sex-specific analyses as well as 

association results with NAFLD.

One of the new clusters, the Cholesterol cluster, captures the complex relationship between 

T2D, CAD, and LDL cholesterol. While multiple genetic loci confer increased risk for both 

T2D and CAD25,26, this cluster of T2D risk alleles was associated with reduced LDL levels 

and decreased CAD risk. The cluster included an eQTL for HMGCR, the target of statin 

medications, which lower LDL cholesterol and CAD risk, but are also known to increase 

T2D risk27. Hence, this cluster supports the notion that a subset of individuals have a genetic 

mechanism causing divergent CAD and T2D risk28.

Aside from HMGCR, our multi-ancestry T2D genetic clusters confirmed the role of multiple 

genetic variants encoding proteins that serve as drug targets. For example, the Lipodystrophy 

1 and 2 clusters included rs17036160 near PPARG, the target of thiazolidinediones, which 
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promote insulin sensitivity. Furthermore, the Hyper Insulin cluster included rs10305420 near 

GLP1R, the target of GLP1 receptor agonists, which potentiate insulin secretion.

The biological significance of the novel Bilirubin cluster is unclear. The top locus included 

an eQTL for UGT1A3, which mediates bilirubin metabolism. Although the cluster suggests 

a positive correlation between bilirubin levels and T2D risk, previous epidemiologic studies 

have demonstrated a negative association29. In addition, bile acid sequestrants may be used 

for treatment of T2D30; however, the link between bile acid sequestrants and serum bilirubin 

levels is uncertain.

The Lipodystrophy cluster from our previous work split into two clusters, Lipodystrophy 

1 and 2 (Extended Data Fig. 2). The pPS for both clusters were significantly associated 

with the classic “lipodystrophy-like” phenotype of increased triglycerides, insulin resistance, 

and VAT/SAT ratio, but decreased HDL and BMI (Supplementary Table 10, 12, 13). Both 

cluster pPS were also significantly associated with increased risk of HTN, CAD, CKD, 

and NAFLD (Supplementary Table 15) and were epigenetically enriched in adipocytes (Fig. 

3B). However, the Lipodystrophy 1 cluster was driven more by traits and loci related to 

body composition (e.g. gluteofemoral and visceral fat measures; COBLL131, FAM13A32), 

whereas Lipodystrophy 2 was driven by liver-related loci and phenotypes (e.g. ALT, AST; 

PNPLA311, ERLIN133). Indeed, only the Lipodystrophy 1 pPS (not the Lipodystrophy 2 

pPS) was associated with increased VAT and increased waist-hip ratio (Extended Data Fig. 

4, Supplementary Table 13).

We also demonstrated how the Lipodystrophy clusters can help explain the heterogeneity of 

T2D across populations. Individuals from various self-identified non-White populations are 

more susceptible to T2D at lower BMIs, compared to self-identified White individuals17,21, 

and many authors have suggested that population-specific BMI thresholds should be used 

to define obesity19,20,22. For example, certain guidelines suggest that individuals should be 

screened for diabetes if their BMI is ≥25 kg/m2, or if they identify as Asian and their BMI 

is ≥23 kg/m2 34. Some studies have suggested that population-level differences in adipose 

tissue distribution may explain the varied relationship between BMI and T2D risk18. In 

practice, however, applying varied guidelines according to race and ethnicity raises ethical 

concerns about perpetuating structural racism, and accuracy may be limited for individuals 

who identify with more than one race35.

In this study, after classifying individuals by genetic ancestry, we confirmed prior 

observations17,21 that individuals in the EUR ancestry group had the lowest risk of 

T2D at all BMI strata. Furthermore, we demonstrated that variation in the BMI-T2D 

relationship is at least partially explained by variation in the Lipodystrophy 1 and 2 genetic 

clusters (Fig. 4A). After adjusting for the Lipodystrophy 1 and 2 pPS, the difference 

in T2D risk-equivalent BMI thresholds between the EAS and EUR ancestry groups was 

reduced by about 4 kg/m2 (Fig. 4B, C). These findings represent a potential step toward 

developing individualized, genetically informed BMI recommendations. For instance, as 

genetic information becomes more widely available, decision support tools may incorporate 

an individual’s Lipodystrophy 1 and 2 pPS to help clinicians recommend an individualized 

target BMI for preventing or treating diabetes.
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Notably, however, the Lipodystrophy 1 and 2 pPS were not markedly elevated in the 

other groups (AFR, AMR, and SAS) compared to the EUR subpopulation, so adjusting 

for these scores did not substantially affect T2D risk estimates. In particular, across the 

BMI spectrum, T2D risk was strikingly elevated in the SAS group compared to other 

subgroups, consistent with prior observations that individuals with South Asian ancestry 

have elevated T2D risk despite lower BMI36. Hypothesized mechanisms for this observation 

include decreased insulin secretion, decreased lean muscle mass, or ectopic fat deposition 

in lean muscle tissue37. It is possible that the multi-ancestry genetic clusters did not 

adequately account for genetic risk in the SAS group, as the input GWAS had relatively low 

representation of individuals with SAS ancestry. Thus, further work is needed to investigate 

genetic and non-genetic factors affecting the BMI-T2D relationship in SAS ancestry and 

other populations.

In parallel to our current study, the T2D Global Genomics Initiative (T2DGGI) also 

investigated T2D genetic clusters in multi-ancestry GWAS6. The T2DGGI clustering 

approach used genetic variants from a single, large multi-ancestry GWAS. In contrast, 

the study presented here used genetic variants from multiple ancestry-specific and multi-

ancestry GWAS. Furthermore, the T2DGGI approach used a hard clustering method, 

compared to the soft clustering method presented here. Nevertheless, both studies 

demonstrated high degrees of similarity in several clusters, including the Beta Cell, Obesity 

and Lipodystrophy 1 clusters (Extended Data Fig. 10). Each study also included certain 

clusters that were not captured by the other study, and further downstream analyses will be 

necessary to determine the relative utility of both results.

Although our results demonstrate the importance of analyzing diverse ancestral populations, 

our findings were limited by the availability of genetic data. In particular, the largest 

available GWAS primarily include individuals with European genetic ancestry, underscoring 

the necessity of broadening genetic research across the globe. Likewise, the majority of 

individuals in our biobank analyses had European genetic ancestry, limiting our ability 

to make inferences in other populations. Finally, while our analysis linked genetic loci 

to disease mechanisms, experimental models are needed for functional validation, and the 

cluster pPS are not yet able to definitively assign an individual to a specific genetic subtype.

Overall, we demonstrated that similar patterns of T2D genetic clusters occur across multiple 

populations. Using a multi-ancestry approach, we identified novel clusters that help to 

elucidate the complex relationship between BMI, T2D, CAD, and NAFLD. We also 

demonstrated how genetic variation across ancestry groups can cause differences in body 

fat composition, thereby altering T2D risk. To advance the care of patients with diabetes, 

current and future studies may focus on precision medicine strategies to target specific 

biological mechanisms highlighted by the T2D genetic clusters.

Methods

Our research complied with all relevant ethical regulations. The research protocol was 

approved by the Mass General Brigham Institutional Review Board.
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Pipeline for input variant–trait association matrix for clustering

The pipeline’s data preprocessing steps are detailed in the flowchart shown in Extended 

Data Fig. 1. For the multi-ancestry clusters, GWAS-significant (P < 5 × 10−8) variants were 

extracted from a diverse set of T2D GWAS (Supplementary Table 1), including studies 

performed in European, East Asian, African, Admixed American, South Asian and mixed 

cohorts. After removing indels and variants found in the major histocompatibility complex 

(MHC) region, variants underwent five independent iterations of LD-pruning (LD r2 < 0.05, 

MAF < 0.001), one for each population’s reference panel. Variants were only retained 

if found to be independent in all five populations. If any of the pruned variants had high-

missingness across the trait GWAS, was multi-allelic or was ambiguous (A/T, C/G), then it 

was replaced with a high-LD (r2 > 0.8) proxy variant. As a final check, the variants were 

queried in the largest multi-ancestry T2D GWAS and were removed if they had P > 0.05 

or if there were discrepancies in the noted risk alleles. The final set of 650 T2D-associated 

variants is shown in Supplementary Table 2.

For the traits included in the clustering, we compiled an extensive list of 165 continuous 

phenotypes GWAS and allowed the pipeline to determine which were relevant to the T2D 

variants (Supplementary Table 3). We prioritized sex-specific and multi-ancestry GWAS; 

however, if those were not available for a specific trait, then European-based GWAS were 

used. Traits were filtered out if their median sample size was below 5,000 or if their 

minimum P value for the final variant set was not Bonferroni-significant (Pmin > 0.05/650 

variants). Finally, we removed highly correlated traits (R > 0.80), prioritizing traits by their 

maximum variant-trait association (Supplementary Table 4C). With this final set of variants 

and traits (650 variants x 110 traits), we generated a matrix of standardized and scaled 

z-scores, which had been aligned to the T2D risk-increasing alleles. To fill in any remaining 

missing variant-trait associations in this final matrix, we used z-scores from proxies (LD r2 > 

0.5) where possible, and otherwise assigned the trait’s median value.

The ancestry-specific clusters were generated using the same general steps; however, the 

input T2D GWAS were limited to studies where the cohort matched the population of 

interest. For the African and Admixed American clusters, the T2D P value threshold was 

lowered to P < 5 × 10−6, to account for the less powerful GWAS. The variants were pruned 

in a single iteration, using the appropriate reference panel for each population. For the traits, 

ancestry-specific GWAS were prioritized, followed by multi-ancestry and European-based 

summary statistics (Supplementary Table 3).

Statistical comparison of cluster overlap

To compare different versions of the T2D genetic clusters, we focused on the cluster weights 

assigned to the T2D-related traits. For each pair of clusters, we calculated the Pearson 

correlation coefficient (R) between each set of trait cluster weights. We compared the multi-

ancestry clusters generated in this study to the T2D genetic clusters identified in our prior 

studies3,4. We also compared the ancestry-specific clusters to the multi-ancestry clusters and 

to the T2D genetic clusters from our prior study3.
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To compare the multi-ancestry clusters and the T2D clusters generated by the T2DGGI 

study6, we focused on the genetic loci included in each cluster, since the clustering 

method used by the T2DGGI study did not assign traits to specific clusters or generate 

cluster weights. First, we matched genetic variants included in the T2DGGI clusters to a 

corresponding high-LD variant (r2 > 0.5) from our multi-ancestry clusters. By doing so, 

we were able to transfer our variant weights to the T2DGGI clusters. We then assessed the 

correlation between genetic variant weights across the T2DGGI and multi-ancestry clusters 

using the Wilcoxon rank-sum test.

Calculation of partitioned polygenic scores

We created partitioned polygenic scores (pPS) by calculating a weighted sum of the genetic 

variants in each cluster. We used individual-level data when possible; when unavailable, 

we used GWAS summary statistics. To calculate GWAS-partitioned pPS, we extracted the 

genetic variants from summary statistics of GWAS for specific traits. We combined the 

variants using inverse-variance weighted fixed effects meta-analysis, weighting each variant 

according to its GWAS effect size. We chose GWAS for several key glycemic traits (such 

as disposition index, proinsulin, and fasting insulin) as well as for measures of adipose 

tissue distribution or cardiometabolic outcomes. In addition, we calculated individual-level 

pPS using genotype data from two external biobanks: the All of Us research program38 

and the Mass General Brigham (MGB) Biobank39. For individual-level pPS, we weighted 

the genetic variants according to the cluster weights generated by the bNMF algorithm. We 

only included those variants with a weight above 0.7802, a threshold that was calculated to 

maximize the signal-to-noise ratio, as described in Kim et al.4 For these analyses, we also 

calculated a total genetic risk score (GRS) using the effect sizes of all 650 T2D variants.

Biobank Analyses

For individual-level data, we performed a meta-analysis of two datasets. Each dataset 

was independent of the GWAS cohorts used to generate the clusters. Informed consent 

was obtained from all participants in both datasets. We complied with all relevant ethical 

regulations when analyzing genetic data from human research participants. Individuals were 

not compensated for participation in this study.

All of Us: Analysis of the All of Us cohort38 was approved by an institutional Data 

Use and Registration Agreement between MGB and the All of Us Research Program 

(study protocol 2020P002213). We used the All of Us Controlled Tier Dataset v6. Full 

details on the demographic distribution of the dataset are provided in Supplementary Table 

11. Individuals were classified as having type 2 diabetes if they were identified by an 

algorithm from Northwestern University as part of the Electronic Medical Records and 

Genomics (eMERGE) consortium40, or if they self-identified as having type 2 diabetes on 

the All of Us participant survey41. The eMERGE algorithm classifies individuals based on 

diagnosis codes, medication prescriptions, and laboratory values. All individuals who were 

not classified as having type 2 diabetes were labeled as controls; however, individuals were 

excluded from the control group if they were less than 30 years old, or if they ever had a 

hemoglobin A1c greater than or equal to 6.5%. Other phenotypes were defined as described 

in Supplementary Table 14. Sex was derived from medical records.
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MGB Biobank: We used clinical and genomic data from the MGB Biobank39, which was 

current as of October 2022. Analysis of the MGB Biobank was approved by the MGB IRB 

(study protocol 2016P001018). Full details on the demographic distribution of the dataset 

are provided in Supplementary Table 11. Type 2 diabetes was defined using a phenotype 

algorithm developed by the MGB Biobank39, with a set positive predictive value of 0.95. 

Once again, individuals were excluded from the control group if they were less than 30 

years old, or if they ever had a hemoglobin A1c greater than or equal to 6.5%. Other 

phenotypes were defined as described in Supplementary Table 14. Sex was derived from 

medical records.

Statistics and reproducibility

Detailed methods related to the clustering algorithm are provided under “Pipeline for input 

variant-trait association matrix for clustering”. In particular, no statistical method was used 

to predetermine sample size. We assembled the largest available GWAS for T2D and 

related traits. Variants and traits were excluded according to specified criteria (e.g. high 

missingness, high correlation with other traits) that would diminish the effectiveness of the 

clustering algorithm.

Detailed methods related to individual-level analyses are provided under “Biobank 

Analyses”. No statistical method was used to predetermine sample size. In both All of Us 

and MGB Biobank, we started with all participants who consented to the study and who had 

genomic data available. Individuals were excluded from the control group if they were less 

than 30 years old, as they could still develop T2D later in life. Additionally, individuals were 

excluded from the control group if they ever had a hemoglobin A1c greater than or equal to 

6.5%, as these individuals may have been misclassified and likely had diabetes. All analyses 

were retrospective, and individuals were not prospectively allocated to experimental groups. 

Therefore, the experiments were not randomized, and the investigators were not blinded to 

allocation during experiments and outcome assessment.

All statistical analyses were performed using the following software packages: R version 4, 

Python version 3.

Assessment of transcriptional activity

We analyzed transcriptional activity of genetic loci using two databases of epigenomic 

information. For our primary analysis, we used CATLAS, a resource that maps regions 

of accessible chromatin across the human genome at single-cell resolution14. CATLAS 

uses ATAC-Seq to identify over 1 million candidate cis-regulatory elements across more 

than 200 distinct human cell types (both adult and fetal cells). As a secondary analysis, 

we used information from the Roadmap Epigenomics Consortium, which includes maps 

of regulatory elements for over 100 tissue types at the bulk tissue level15. To assess for 

enrichment of epigenomic annotations, we first defined 99% credible sets for each locus. 

To do this, we calculated approximate Bayes factors (aBFs) for all variants within a 500 kb 

window that had r2 ≥ 0.1 with the index variant, as described previously42. We calculated 

a posterior probability for each variant by dividing the aBF by the sum of all aBFs in 

the credible set. Next, within each cluster, we overlapped credible set variants with cell 
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type genomic annotations and calculated the cumulative posterior probability (cPPA) for 

each annotation. We used a permutation test to assess the significance for annotations in 

each cluster. For each cluster, we permuted locus and cell type annotations and recalculated 

the cPPA based on shuffled labels. After performing 10,000 permutations, we compared 

the observed cPPA to the permuted background using a one-tailed test to determine the 

significance of each annotation. We corrected for multiple tests and defined statistically 

significant enrichment at q value thresholds of 0.1 and 0.001.

Determination of genetic ancestry

We performed principal component analysis to uncover population stratification in each 

dataset (MGB Biobank and All of Us). Measurements that capture genetic similarity (such 

as principal components) are preferred when performing genomics research. However, due 

to privacy restrictions, we were unable to combine genomic data from both datasets to 

generate a single set of principal components. Therefore, we used principal component data 

to apply population descriptor labels at the level of continental ancestry, acknowledging that 

these labels are imprecise. We used a random forest classifier model to assign participants 

in each biobank to one of six continental ancestry groups (African, Admixed American, East 

Asian, European, Middle Eastern, or South Asian), following the method of the Pan-UK 

Biobank16. For any given individual, if the probability of each ancestry group was less than 

50%, then the individual’s genetic ancestry was left as “unclassified”. The total number of 

individuals in each genetic ancestry group is listed in Supplementary Table 11. We excluded 

any population with fewer than 500 individuals in a given dataset; therefore, the Middle 

Eastern ancestry group was excluded from downstream analyses.

Individual-level cluster associations with clinical phenotypes

After generating individual-level pPS, we analyzed the association of the pPS with various 

clinical phenotypes, using linear regression (for continuous outcomes) or logistic regression 

(for binary outcomes). We analyzed all associations in a meta-analysis of both biobanks 

(MGB Biobank and All of Us), using a random effects model. Each regression model was 

adjusted for the following covariates: age, sex, and genetically inferred ancestry. Certain 

regression models were also adjusted for type 2 diabetes status and/or BMI, as noted. A 

subset of analyses was performed separately for female or male participants only; these 

analyses included age and genetically inferred ancestry as covariates. Clinical measurements 

that were not normally distributed were log-transformed to obtain a normal distribution43; 

following previous studies, these measurements included BMI and triglycerides4,44.

For validation tests that confirmed known associations between cluster pPS and variables 

used in the clustering algorithm, we did not use multiple test correction to denote statistical 

significance. Of note, clinical phenotypes were not directly used in the clustering algorithm, 

but several traits that were included in the clustering (i.e. glucose, hemoglobin A1c, 

creatinine, cystatin C, systolic blood pressure, and diastolic blood pressure) can define T2D, 

CKD, and HTN. In contrast, tests with the remaining phenotypes (CAD, NAFLD, diabetic 

retinopathy, and diabetic neuropathy) revealed associations with cluster pPS. For these 

discovery tests, we defined statistical significance using a Bonferroni-adjusted threshold of 

0.05/(K x N), where K represents the number of clusters tested and N represents the number 
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of phenotypes tested. For individual-level testing, we excluded any binary outcome in which 

fewer than 500 participants met the outcome in either biobank; therefore, ischemic stroke 

was excluded from downstream analyses.

For patients taking lipid-lowering medications, we adjusted lipid levels for medication use 

as described previously45. In particular, total cholesterol was divided by 0.8, LDL by 0.7, 

and triglycerides by 0.85. Due to the low frequency of individuals taking non-statin lipid-

lowering medications (e.g. bile acid sequestrants), we did not adjust for these medications. 

In addition, we did not adjust HDL levels for medication use due to the lack of a clear 

quantitative relationship, although statins are generally felt to cause a modest increase in 

HDL levels.

Calculation of ancestry-specific BMI cutoff values

We determined ancestry-specific BMI cutoff values with equivalent risk of type 2 diabetes 

as described previously17, except we used log transformation of BMI rather than fractional 

polynomials, following standard statistical practices43. For the outcome measure, we used 

the probability of type 2 diabetes generated from a logistic regression model, rather than 

type 2 diabetes incidence, as we were unable to reliably ascertain new diagnoses of type 

2 diabetes in the biobank cohorts. We fitted a logistic regression model of type 2 diabetes 

status versus log(BMI), adjusted for age, sex, and genetic ancestry group. We determined 

the predicted probability of type 2 diabetes for an individual with European genetic ancestry 

and a BMI of 30. For each ancestry group, we calculated the BMI that would yield the same 

predicted probability of type 2 diabetes. Then, we repeated this process after adjusting the 

logistic regression model for the specified cluster pPS values. All tests were performed in a 

meta-analysis of MGB Biobank and All of Us, using a random effects model.

Analysis of body composition metrics

For participants in MGB Biobank, we used image-based body composition metrics derived 

from a machine learning algorithm46,47. This algorithm quantifies the cross-sectional areas 

of muscle, subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT), as 

measured in abdominal computed tomography (CT) imaging at the level of the L3 vertebral 

body. For participants in All of Us, we used measurements of waist and hip circumference, 

which were measured for most participants at the time of enrollment.

Development of genetically-informed BMI thresholds

To identify personalized BMI thresholds, we analyzed individual-level data in the All of Us 

cohort. First, we randomly divided the All of Us participants into a training cohort (70%) 

and a validation cohort (30%). In the training cohort, we used a regression model to capture 

T2D risk, adjusting for age, sex, BMI, Lipodystrophy 1 pPS, and Lipodystrophy 2 pPS. 

Then, in the validation cohort, we calculated the BMI threshold that conferred equivalent 

T2D risk for each ancestry group as well as for each individual.

Data Availability

All referenced GWAS summary statistics are publicly available and are cited in 

Supplementary Tables 1, 3 and 9. Researchers can apply to access individual-level data 
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in the All of Us program (researchallofus.org). Individual-level data in the Mass General 

Brigham biobank are only available with approval from the Mass General Brigham 

Institutional Review Board. Databases of epigenomic activity are available online for 

CATLAS (https://catlas.org) and Roadmap (https://egg2.wustl.edu/roadmap/).

Code Availability

Code for variant pre-processing, bNMF clustering, and basic visualizations is available at 

https://github.com/gwas-partitioning/bnmf-clustering.
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Extended Data

Extended Data Fig. 1. 
Overview of high-throughput bNMF pipeline for multiancestry (MA) clusters.
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Extended Data Fig. 2. 
The multi-ancestry clusters recapture several key pathways that were identified in our 

previous papers.
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Extended Data Fig. 3. 
Common T2D genetic clusters are shared across individual ancestry groups.
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Extended Data Fig. 4. 
Sex-stratified association of multi-ancestry T2D genetic clusters with anthropometric traits.
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Extended Data Fig. 5. 
Variation in distribution of multi-ancestry T2D genetic clusters across ancestry groups

.
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Extended Data Fig. 6. 
Proportion of total T2D genetic risk attributable to each multiancestry T2D cluster.
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Extended Data Fig. 7. 
Validation of relationship between T2D genetic clusters, BMI, and T2D risk.
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Extended Data Fig. 8. 
Comparison of cluster-specific risk allele frequencies (RAF) in EUR and other ancestry 

groups.
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Extended Data Fig. 9. 
Ancestry-specific variation in adipose volume and triglycerides.
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Extended Data Fig. 10. 
Conservation of biological pathways between the multiancestry and T2DGGI clusters.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Key loci and traits of multi-ancestry T2D genetic clusters
Each plot displays the top-weighted loci and traits within each multi-ancestry T2D genetic 

cluster. The length of the bars corresponds to the cluster weight determined by the bNMF 

algorithm. Green bars represent genetic loci, red bars represent traits with increased values, 

and blue bars represent traits with decreased values within each cluster. Female- and male-

specific traits are appended with “_F” and “_M”, respectively. A maximum of 30 elements 

(loci and traits) with the highest weights are displayed in each cluster. A legend for all 

abbreviations is included in Supplementary Table 3.

Smith et al. Page 30

Nat Med. Author manuscript; available in PMC 2024 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. Multi-ancestry T2D genetic cluster associations with continuous traits and clinical 
phenotypes
(A) Each plot displays associations between selected multi-ancestry T2D genetic clusters 

and selected continuous outcomes, based on GWAS-partitioned pPS. Each dot indicates the 

beta coefficient from a meta-analysis of GWAS summary statistics. Error bars represent 

the 95% confidence interval. PI, proinsulin; CIR, corrected insulin response; VAT, visceral 

adipose tissue; GFAT, gluteofemoral adipose tissue; ASAT, abdominal subcutaneous adipose 

tissue.
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(B) Each plot displays cluster associations with selected continuous outcomes, based on 

individual-level pPS obtained from a meta-analysis of MGB Biobank and All of Us. Each 

outcome was normalized to a standard normal distribution. Each dot indicates the effect per 

one standard deviation increase in the pPS. Error bars represent the standard error from a 

linear regression model.

(C) Each plot displays cluster-specific odds ratios of selected clinical phenotypes, based on 

individual-level pPS obtained from a meta-analysis of MGB Biobank and All of Us. Each 

dot represents the odds ratios per one standard deviation increase in the pPS. Error bars 

represent the 95% confidence interval.

For all components, positive associations are colored in red and negative associations are 

colored in blue. P values were obtained from two-sided t tests and are indicated with 

asterisks (* P < 0.05, ** P < 0.01, *** P < 0.001). A legend for all abbreviations is included 

in Supplementary Table 3. Complete statistics (including exact P values and the number of 

individuals measured for each phenotype) are provided in Supplementary Table 10 (Panel 

A), Supplementary Table 12 (Panel B), and Supplementary Table 15 (Panel C).
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Fig. 3. Enrichment for cell type specific enhancers in multi-ancestry type 2 diabetes clusters.
Heatmaps display the significant cluster-specific enrichment of genomic annotations, 

represented by cumulative posterior probability, in (A) CATLAS single cell accessible 

chromatin data from 222 cell types and (B) Epigenomic Roadmap chromatin state calls from 

28 cell types. Q values were corrected for false discovery rate (FDR). For both analyses, 

only cell types with at least one association of FDR < 0.1 are included in the figure, with 

additional data in Supplementary Table 17.
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Fig. 4. Ancestry-specific relationship between T2D genetic clusters, BMI, and T2D risk
(A) Ancestry-specific distribution of Lipodystrophy 1 and Lipodystrophy 2 pPS (normalized 

to a standard normal distribution).

(B) Relationship between BMI and T2D risk (unadjusted), classified by genetic ancestry. 

T2D risk was assessed in a logistic regression model, controlling for age, sex, BMI, and 

genetic ancestry group. The horizontal dashed line represents the T2D risk for participants 

with European genetic ancestry and a BMI of 30 kg/m2 (typically used to define obesity). 

The vertical dashed lines indicate the BMI thresholds needed to develop an equivalent risk 

of T2D in the European and East Asian ancestry groups.

(C) Relationship between BMI and T2D risk, adjusted for Lipodystrophy 1 pPS and 

Lipodystrophy 2 pPS.

All analyses were performed in a meta-analysis of MGB Biobank and All of Us.
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Table 1.

Overview of multi-ancestry T2D genetic clusters. Refer to Supplementary Table 3 for trait abbreviations 

legend.

Cluster (# 
Variants)

Expected 
physiological 
impact

Key top-weighted traits Key top-
weighted loci

Suspected 
mechanism Note

Beta Cell 1 (82) Insulin 
deficiency

CIR (−), disposition index 
(−)

CDKAL1, 
C2CD4A, 
HHEX, 
ST6GAL1, 
LDHB, TET2

Beta cell 
function, glucose 
homeostasis

Recaptures part of Beta Cell 
cluster from Udler et al 2018 
[3] and Beta Cell 1 from 
Kim et al 2022 [4]

Beta Cell 2 (40) Insulin 
deficiency

HbA1c female (+), 
FGadjBMI (+), glucose 
male (+), proinsulin (+)

GCK, TCF7L2, 
SLC30A8, 
SLC2A2, 
ADCY5, DGKB

Beta cell 
function, insulin 
processing

Recaptures part of Beta Cell 
cluster from Udler et al 2018 
[3] and Beta Cell 2 from 
Kim et al 2022 [4]

Proinsulin (16) Insulin 
deficiency PI (−), VAT (−)

ARAP1/
STARD1, 
LINC01512

Insulin synthesis
Recaptures Proinsulin 
cluster from Udler et al 2018 
[3] and Kim et al 2022 [4]

Obesity (76) Insulin 
resistance

BMI male (+), SAT (+), 
waist C female (+), Trunk 
fat % female (+)

FTO, MC4R, 
TMEM18, BDNF

Obesity-
mediated insulin 
resistance

Recaptures Obesity cluster 
from Udler et al 2018 [3] 
and Kim et al 2022 [4]

Hyper Insulin 
(41)

Insulin 
resistance DI (+), CIR (+) PDE3A, RBM6, 

TRAF3, CNTN2
Insulin secretion, 
inflammation

Recaptures Hyper Insulin 
cluster from Kim et al 2022 
[4]

Cholesterol (5) Insulin 
resistance

CRP male (+), Cholesterol 
(−), Apolipoprotein A (+)

APOE, 
NECTIN2, 
TM6SF2, POLK/
HMGCR

HMGCR 
expression New cluster in this study

Lipodystrophy 1 
(47)

Insulin 
resistance

GFATAdjBMI (−), VAT/
GFAT (+), adiponectin (−)

VEGFA, 
CCFC92, 
LINC01625/
CITED2, 
GRB14/
COBLL1, 
FAM13A

Fat distribution-
mediated insulin 
resistance

Recaptures Lipodystrophy 
cluster from Udler et al 2018 
[3] and Kim et al 2022 [4]

Lipodystrophy 2 
(29)

Insulin 
resistance

ALT (+), 
ISIadjAgeSexBMI (−), 
AST (+), GGT (+)

PNPLA3, 
PPARG, 
LOC646736/
IRS1, PEPD, 
ANKRD55, 
ERLIN1

Hepatic steatosis
New cluster in this 
study; split from previous 
Lipodystrophy cluster

Liver-Lipid (7) Insulin 
resistance

TG female (−), SHBG 
male (+), IGF female (+), 
Albumin male (−)

GCKR, FADS1, 
PPIP5K1

Liver/lipid 
metabolism

Recaptures Liver-Lipid 
cluster from Udler et al 2018 
[3] and Kim et al 2022 [4]

Bilirubin (2) Unclear Bilirubin (+) UGT1A3 Bilirubin 
metabolism New cluster in this study

SHBG-LpA (3) Unclear
SHBG male (−), Lp(a) 
female (+), oestradiol 
female (−)

SHBG, 
SLC22A3, 
STAG1

SHBG and Lp(a) 
metabolism

Merged from LpA and 
SHBG clusters from Kim et 
al 2022 [4]

ALP Negative (6) Insulin 
resistance

ALP (−), RBC count (−), 
Hgb concentration (−) ABO, FADS1 ALP activity 

levels
Recaptures ALP Neg cluster 
from Kim et al 2022 [4]
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