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ARTICLE

Association of the IGF1 gene with fasting insulin levels

Sara M Willems1, Belinda K Cornes2,3, Jennifer A Brody4, Alanna C Morrison5, Leonard Lipovich6,7,
Marco Dauriz2,3,8, Yuning Chen9, Ching-Ti Liu9, Denis V Rybin10, Richard A Gibbs11, Donna Muzny11,
James S Pankow12, Bruce M Psaty13,14, Eric Boerwinkle5,11, Jerome I Rotter15, David S Siscovick16,
Ramachandran S Vasan17,18, Robert C Kaplan19, Aaron Isaacs1, Josée Dupuis9,18, Cornelia M van Duijn1

and James B Meigs*,2,3

Insulin-like growth factor 1 (IGF-I) has been associated with insulin resistance. Genome-wide association studies (GWASs) of

fasting insulin (FI) identified single-nucleotide variants (SNVs) near the IGF1 gene, raising two hypotheses: (1) these associations

are mediated by IGF-I levels and (2) these noncoding variants either tag other functional variants in the region or are directly

functional. In our study, analyses including 5141 individuals from population-based cohorts suggest that FI associations near

IGF1 are not mediated by IGF-I. Analyses of targeted sequencing data in 3539 individuals reveal a large number of novel rare

variants at the IGF1 locus and show a FI association with a subset of rare nonsynonymous variants (PSKAT=5.7×10−4).

Conditional analyses suggest that this association is partly explained by the GWAS signal and the presence of a residual

independent rare variant effect (Pconditional=0.019). Annotation using ENCODE data suggests that the GWAS variants may have

a direct functional role in insulin biology. In conclusion, our study provides insight into variation present at the IGF1 locus and

into the genetic architecture underlying FI levels, suggesting that FI associations of SNVs near IGF1 are not mediated by IGF-I

and suggesting a role for both rare nonsynonymous and common functional variants in insulin biology.

European Journal of Human Genetics (2016) 24, 1337–1343; doi:10.1038/ejhg.2016.4; published online 10 February 2016

INTRODUCTION

The IGF1 gene encodes insulin-like growth factor 1 (IGF-I). This
hormone has many biological functions involving cell growth, pro-
liferation, and apoptosis.1 Circulating IGF-I concentrations have been
associated with several human diseases, including cardiovascular
mortality and cardiovascular risk factors such as age, body mass
index, total cholesterol, the presence of diabetes, glomerular filtration
rate, and alcohol consumption.2,3 IGF-I levels are inversely correlated
with insulin resistance3 that may be explained by the insulin-like
effects of IGF-I on glucose-uptake. IGF-I is structurally comparable to
insulin and they both crossreact with the other’s receptor.
Genome-wide association studies (GWASs) of fasting insulin (FI)

levels revealed common noncoding single-nucleotide variants
(SNVs) near the IGF1 gene.4,5 SNV rs35767:A4G (hg18 chr12:
g.101399699A4G), located 1.2 kb upstream of IGF1, was associated
with a 0.010 pmol/l per G allele increase in FI level (P= 3.3× 10− 8) in
a large GWAS meta-analysis.4 Another large GWAS meta-analysis, in
largely overlapping samples, revealed rs2114912:G4T (hg18 chr12:
g.101453133G4T) as the variant most strongly associated with FI in
the IGF1 region.5 This variant is located 54.7 kb upstream of the IGF1

gene and is associated with a 0.024 pmol/l increase in FI per copy of
the T allele. These findings have inspired further assessment of the role
that the IGF1 gene plays in insulin biology.
In this paper we hypothesize that the associations of SNVs near the

IGF1 gene with FI (hence insulin resistance) are mediated by
circulating IGF-I levels, and that the GWAS variants tag other
common or rare functional variants in the IGF1 region associated
with FI levels. To test the first hypothesis, we performed mediation
analyses using imputed genotyping array data, and to test the
second hypothesis we performed association analyses using deep,
high-throughput next-generation targeted sequencing data around
IGF1. We also examined ENCODE Consortium data sets6 of
regulatory elements by viewing the IGF1 region in the UCSC
Genome Browser7 in order to generate testable hypotheses about
direct functional roles and mechanisms of the noncoding
FI-associated GWAS variants.

MATERIALS AND METHODS
An overview of the study design is shown in Supplementary Figure 1.
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Study populations
Individuals of European ancestry from four cohorts of the Cohorts for Heart
and Aging Research in Genomic Epidemiology (CHARGE) consortium were
included in this study: the Atherosclerosis Risk in Communities (ARIC) study,
Cardiovascular Health Study (CHS), Framingham Heart Study (FHS), and the
Rotterdam Study (RS).8

Mediation cohorts. A total of 5141 nondiabetic individuals of CHS (n= 1717),
FHS (n= 3293), and RS (n= 140) were available to contribute to mediation
analyses. Genotypic data and both FI and circulating IGF-I levels were available
on these participants.

Sequencing cohorts. A total of 3539 nondiabetic individuals (ARIC n= 1761;
CHS n= 967; and FHS n= 811) who were part of the CHARGE Targeted
Sequencing Study were available for analyses of targeted sequence data with the
outcome FI. Of these, 567 of the CHS and 78 of the FHS participants included
in these analyses were also included in the mediation analyses. The design of the
CHARGE Targeted Sequencing Study, including the cohort sampling design,
has been described in detail in Lumley et al9 and Lin et al.10 In summary, to set
up the analytic sample a case–cohort design was used in which both a cohort
random sample and participants with extreme phenotypes for each of the 14
cardiometabolic traits (atrial fibrillation, blood pressure, BMI, bone mineral
density, C-reactive protein, carotid intima–media thickness, echocardiography,
electrocardiographic PR and QRS interval, FI, hematocrit, pulmonary function,
retinal venule diameter, and stroke) were included. For FI (≥8 h fast), this
included a sample of 200 participants (100 ARIC, 50 CHS, and 50 FHS) from
the high tail of the distribution in individuals without diabetes, defined as either
being diagnosed by a physician (ARIC), treated for diabetes, or having a fasting
glucose (FG) 47 mmol/l (ARIC, FHS, and CHS). Three FHS participants with
type I diabetes were excluded from selection.

Quantitative trait measurement
FI was measured from fasting plasma (FHS) or fasting serum (CHS and ARIC).
In FHS, plasma was collected after a ≥ 8 h overnight fast and FI was measured
on frozen specimen using the DPC Coat-A-Count RIA (total immunoreactive
insulin) assay (assay sensitivity 1.2 μU/ml). In CHS (≥12 h fast), FI was
measured using a competitive RIA (Diagnostic Products Corp., Malvern, PA,
USA). In ARIC (≥ 8 h fast), FI was measured by radioimmunoassay (125Insulin
kit; Cambridge Medical Diagnosis, Bilerica, MA, USA) (assay sensitivity
2 μU/ml). In CHS, circulating IGF-I levels were measured by ELISA (Immuno-
diagnostic Systems Ltd, Boldon Business Park, Boldon, Tyne & Wear, UK) and
in RS by a radioimmunoassay (Medgenix Diagnostics, Brussels, Belgium). BMI
was measured using standard methods as previously described.5

Genotyping in mediation cohorts
In CHS, genotyping was performed at the General Clinical Research Center’s
Phenotyping/Genotyping Laboratory at Cedars-Sinai using the Illumina
(San Diego, CA, USA) 370CNV BeadChip system. The following exclusions were
applied: call rate o97%, Hardy–Weinberg equilibrium (HWE) P-value o10−5,
42 duplicate errors or Mendelian inconsistencies (for reference CEPH trios),
heterozygote frequency=0, and SNV not found in HapMap. Samples were
excluded from analysis for sex mismatch, discordance with prior genotyping, or
call rate o95%. Imputation was performed using BIMBAM v0.9911 with
reference to HapMap CEU using release 22. In the FHS, genotyping was
conducted using the Affymetrix (Santa Clara, CA, USA) 500K SNP arrays
supplemented with the MIPS 50K array. Samples with call rate o97%, excess
Mendelian errors (≥1000), or average heterozygosity outside of 5 SD of mean
(o5.758% or 429.958%) were excluded. SNPs with minor allele frequency
(MAF) ≥1%, call rate ≥97%, differential missingness P-value ≥10�9, and o100
Mendelian errors were used for imputation based on the haplotypes of the
HapMap CEU release 22 using the MaCH12 software. In the Rotterdam Study,
genotyping was performed using 550 and 610K Illumina arrays. Exclusion criteria
for individuals were excess autosomal heterozygosity, mismatches between called
and phenotypic gender, and outliers identified by an IBS clustering analysis. SNVs
were excluded for HWE P-value ≤10�6, or SNP call rate ≤98%. Genotypes with
MAFs 41% were used for imputation using HapMap CEU release 22 as a
reference panel. Imputation was performed using MaCH.12

Targeted next-generation deep sequencing
Target selection in the CHARGE Targeted Sequencing Study included regions
that had been associated with one of 14 cardiometabolic traits by previous
GWASs and regions that had been shown to exhibit pleiotropy, and included
the IGF1 gene.10 Four regions in or near the IGF1 gene were sequenced at a
mean depth of 50× , including 1 kb downstream, all five exons plus flanking
regions, and five SNVs upstream that were associated with FI in GWAS:4,5

rs35767:A4G, rs860598:G4A (hg18 chr12:g.101422576G4A), rs855213:
A4G (hg18 chr12:g.101432427A4G), rs35747:G4A (hg18 chr12:
g.101436688G4A), and rs2114912:G4T (Supplementary Figure 2). A total
of 57.5 kb per copy of the IGF1 region was sequenced. Sequencing methods
were described in detail in Lin et al.10 An extensive quality control (QC)
pipeline was implemented, consisting of QC procedures in the sequencing
laboratory followed by a series of variant-level filtering steps. These included the
exclusion of variants mapping more than 100 base pairs from the requested
target capture region, exclusion of variants with a Phred-scaled base quality
score13 o30, with less than two reads of the alternate alleles, and variants with
a depth of coverage of o10 total reads. Heterozygote genotypes were removed
if their alternate to reference allele ratio was disproportionate (o0.2 or 40.8
for one allele). For strand bias, only variants with alternate allele reads obtained
from both the positive and negative strands were kept. Finally, SNPs that had
420% missingness across all samples, more than two observed alleles, or were
part of an overly dense SNP cluster (≥3 variants in a 10-bp window) were
removed. Using only samples from the cohort random sample subjects, SNPs
with HWE P-value o1× 10− 5 were filtered. This criterion was not applied in
the samples selected based on extreme phenotypes, potentially enriched for rare
variants, to prevent filtering out interesting rare variants with a possible role in
disease etiology. To validate sequence-based genotypes, cross-validation was
performed with data from the Affymetrix Gene Chip 500K Array Set and 50K
Human Gene Focused Panel in 1096 FHS samples. A total of 558 SNPs were
shared between the two platforms. After excluding missing genotypes, 98.0% of
genotypes were concordant between the two platforms, suggesting high
accuracy of the sequenced genotypes. The targeted sequencing data have been
submitted to dbGaP (phs000651.v6.p10 (FHS), phs000667.v2.p1 (CHS), and
phs000668.v1.p1 (ARIC)).

Variant classification and annotation
Variants identified by sequencing of the IGF1 locus were classified as common
if the MAF was ≥ 1% and rare if the MAF waso1%. Novel variants were those
not found in dbSNP, the 1000 Genomes Project, or ESP 6500 (Exome
Sequencing Project).14,15 Variants were annotated using several bioinformatics
sources. ANNOVAR16 was used to determine whether a variant was synon-
ymous, nonsynonymous, intergenic, upstream (within 1 kb upstream of a
transcription start site), downstream (within 1 kb downstream of a transcrip-
tion end site), intronic, in a 3′ untranslated region (3′UTR), or in a
5′UTR. Variants other than synonymous or nonsynonymous were defined as
noncoding. Noncoding variants were predicted to be functional if they were
predicted to be highly conserved across species using phastCons,17 predicted to
lie in transcription factor binding sites extracted from the HMR Conserved
Transcription Factor Binding Site track of the UCSC Genome Browser,7 in
DNAse I hypersensitive sites or transcription factor binding sites identified by
the ENCODE Project,6 or predicted to be functional using the ORegAnno
database.18 In addition to this functional annotation of the variants present in
the targeted sequencing data, we examined GTEx19 and the ENCODE
Consortium regulatory element data sets (including DNAseI hypersensitive
sites and histone modifications as well as TFBS Chip-seq) and public
transcriptome data in the UCSC Genome Browser to determine whether the
known common noncoding FI-associated GWAS variants might be directly
functional.

Follow-up genotyping in FHS and lookup of selected rare variants
To verify the influence of variant rs151098426:C4T (hg18 chr12:
g.101337467C4T) on FI levels, the variant was genotyped in 1745 FHS
offspring and 3372 FHS generation 3 participants with FI levels available that
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did not overlap with the FHS participants included in the targeted sequencing
analyses. Genotyping was performed using TaqMan (ABI PRISM 7700 HT
Sequence Detection System, Applied Biosystems, Foster City, CA, USA) at the
Joslin Diabetes Center Advanced Genomics and Genetics Core (Boston, MA,
USA). We also did a lookup of the variant in FI exome chip meta-analysis
results from the CHARGE diabetes-glycemia working group, including 38 528
samples.

Statistical analyses
All analyses were adjusted for age, sex, BMI, and study design variables (ie,
clinic site for CHS and ARIC and recruitment cohort for FHS). FI, in pmol/l,
was natural log transformed before analyses to improve normality.

Mediation analyses. To test whether association of FI with GWAS variants in
the IGF1 region (rs35767:A4G, rs860598:G4A, rs855213:A4G, rs35747:
G4A, and rs2114912:G4T, pairwise r2 0.272–1.00 in HapMap2 CEU (see
Supplementary Table 1)) is mediated by IGF-I levels, in each cohort (CHS,
FHS, and Rotterdam Study) two linear regression models per SNP were fitted,
assuming an additive allelic effect. In both models, ln(FI) was the outcome
variable. Results from the three cohorts were combined using inverse variance
weighted fixed effects meta-analysis as implemented in the R package rmeta.20

In the first model, age, sex, and BMI were included as covariates, and in the
second model IGF-I was added as a covariate. From the models, a ratio
βSNP_model2/βSNP_model1 o1 would suggest that IGF-I levels explained part of
the SNP–FI association.

Analyses of targeted sequence data. The analytic strategy of the targeted
sequence data, described briefly below, followed the approach outlined in
Lumley et al9 and Lin et al.10

Four subsets based on functional annotation of rare variants within the IGF1
locus were tested for association with ln(FI) using the Sequence Kernel
Association Test (SKAT).21 The subsets included (1) nonsynonymous variants,
(2) novel nonsynonymous variants, (3) noncoding variants that were predicted
to be functional, and (4) novel noncoding variants that were predicted to be
functional. FHS used a SKAT test that accounted for family structure.22 SKAT
tests were conducted within the three cohorts (CHS, FHS, and ARIC) and
meta-analyzed using a weighted sum of squares of z-statistics from single-
variant score tests. These variant scores were squared, weighted based on
combined allele frequencies across all studies, and summed to create a
Q-statistic. The significance of the Q-statistics was determined using an
asymptotic distribution, as described in Wu et al.21 The weighted squared
z-score for each variant divided by the total Q-statistic can be used to identify
variants contributing most to the signal. To control type 1 error for this part of
the analysis, a P-value o0.05/4= 0.0125 (corrected for four tests: 1 trait × 4
subsets of variants) was used to define statistical significance for the SKAT tests.

To test whether rare variant associations were independent of the known FI
GWAS hits near the IGF1 gene, conditional analysis was performed by
additionally adjusting for the two common variants rs35767 (FI top hit Dupuis
et al4) and rs2114912 (FI top hit Manning et al5) (r2 between these variants=
0.272 in HapMap2 CEU) in the rare variant analysis. As these two variants
were not present in the targeted sequence data, rs2162679:C4T (hg18 chr12:

g.101395389C4T) was used as a proxy for rs35767:A4G (r2= 0.915 in

HapMap2 CEU) and rs2607988:G4A (hg18 chr12:g.101454013G4A)

was used as a proxy for rs2114912:G4T (r2= 0.882 in HapMap2 CEU).

Conditional SKAT analyses were performed in each cohort seperately and then

meta-analyzed. Similar P-values in unconditional and conditional analyses

suggest that rare variant associations are independent of the known common

variant signals.

Although tests of rare variation were the primary aim of the targeted regional
sequencing study, we also tested association of all variants with minor allele

count (MAC) ≥ 50 identified by sequencing with ln(FI). In ARIC and CHS,

standard additive genetic linear regression models were used, whereas in FHS

mixed effects models were used to account for familial correlation. Results from

each cohort were meta-analyzed using standard fixed effect inverse variance

weighted meta-analysis.23 P-values were obtained from unweighted regression

models. Analyses weighted by the inverse of the sampling probability were used

to obtain unbiased estimates of effect size.9 The significance treshold for

common variant analyses was set at P-value o1.0× 10�3 (0.05/49 effective

number of independent variants calculated using the Li and Ji approach24).

For analyses of follow-up genotyping data in FHS, we used linear mixed
effect model to compare the average trait values by genotype category. As we

performed two tests (offspring and generation 3 cohorts separately), we

considered a P-value o0.025 (0.05/2) as significant.

RESULTS

Descriptions of the CHARGE cohort characteristics are depicted in
Table 1. Both in the individuals contributing GWAS data and in the
targeted sequence samples, women were slightly overrepresented. The
mean age ranged from 39 to 71 years in the GWAS samples and from
54 to 72 years in the targeted sequence samples. BMI was in the
overweight range in all cohorts. As previously observed, FI values
varied widely across studies.4 The same was observed for the IGF-I
levels in the GWAS samples.

Mediation analyses
Mediation analyses results are depicted in Table 2. Meta-analyses
P-values were nominal to borderline significant for each SNV in both
models (P= 0.05–0.15). However, effect estimates were similar to the
effect estimates in up to 51 750 samples in the discovery meta-analysis5

and in FHS, the largest contributing cohort, P-values were nominally
significant for each SNV in both models (P= 0.01–0.04) (Table 2).
Both in the meta-analysis and in FHS alone, effect estimates were
similar between model 1 (ln(FI) ~ SNP+age+sex+BMI) and model 2
(ln(FI) ~ SNP+age+sex+BMI+IGF-I). This is consistent with an effect
of the variants near IGF1 on FI levels that is not mediated by
circulating IGF-I levels.

Table 1 Descriptions of the study populations

GWAS samples Targeted sequence samples

CHS FHS RS ARIC CHS FHS

N (% men) 1717 (36.7) 3293 (47.3) 140 (48.6) 1761 (49.7) 967 (44.7) 811 (48.3)

Age (years) 71.6 (4.8) 39.9 (8.8) 66.2 (5.7) 54.7 (5.7) 72.5 (5.4) 54.1 (10.7)

BMI (kg/m2) 26.1 (4.3) 27.0 (5.4) 26.4 (4.0) 27.2 (5.7) 26.4 (5.0) 27.9 (6.5)

FI (pmol/l) 72.2 (42.7) 30.9 (20.1) 90.1 (53.0) 83.1 (73.2) 103.1 (63.9) 32.6 (21.3)

IGF1 (ng/ml) 96 (32.7) 131.1 (42.8) 136.7 (53.3) NA NA NA

Abbreviations: ARIC, Atherosclerosis Risk in Communities Study; BMI, body mass index; CHS, Cardiovascular Health Study; FHS, Framingham Heart Study; FI, fasting insulin; IGF1, insulin-like
growth factor-1; RS, Rotterdam Study.
Values are mean (SD) unless otherwise indicated.
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Analyses of targeted sequence data
Table 3 and Supplementary Table 2 show descriptions of known and
novel variants identified by targeted sequencing of the IGF1 locus.
Deep (mean read depth 50× ) sequencing across the locus identified
1393 variants, 1143 (82.1%) of which were rare and novel. A total of
11 coding nonsynonymous variants were present, including 6 that
were novel. Of the 1376 noncoding variants, 188 (14%) were predicted
to be functional, including 156 that were novel. The large majority of
the variants at the IGF1 locus had MAF o0.1% (Supplementary
Figure 3). Of all variants present at the locus, 893 (64%) were only
observed one time in our samples. Of the novel variants, 198 (17%)
were present in at least two of the three cohorts.

Meta-analyzed SKAT results (Table 4) showed that the subset of 11
rare coding nonsynonymous variants was significantly associated
with ln(FI) (P= 5.7× 10�4). One rare variant (rs151098426:C4T,
MAF= 0.1%) accounted for 92.16% of the overall SKAT Q-statistic
(Supplementary Table 3 and Supplementary Figure 4). This variant
resulted in an alanine-to-threonine substitution and was predicted to
be damaging by PolyPhen-2,25 LRT,26 and MutationTaster.27 In
contrast to the positive effect estimate for the rare T allele of
rs151098426:C4T in the SKAT targeted sequencing analysis
(Supplementary Table 3), 3 of the 1745 FHS offspring participants
and 11 of the 3372 FHS generation 3 participants with follow-up
genotyping of rs151098426:C4T carrying the rare allele had lower
FI levels than the noncarriers (offspring: β=− 0.05; generation 3:
β=− 0.15). These differences between carriers and noncarriers were
nonsignificant (offspring: P= 0.734; generation 3: P= 0.313). The
geometric means and the corresponding confidence intervals in
carriers and noncarriers are shown in Supplementary Figure 5. Lookup
of the variant in CHARGE exome chip results revealed a positive, but
also nonsignificant, effect of rs151098426:C4T on FI levels (MAF=
0.14%, β= 0.02, P= 0.471).
Conditioning on proxies of the known FI GWAS variants rs2114912

and rs35767 attenuated the significant SKAT result to a nominal
significant P-value (Pconditioned= 0.019, Table 4), suggesting that the

Table 2 Association of known fasting insulin GWAS SNPs in the IGF1 region with fasting insulin levels without and with IGF1 levels as

covariate in the model

CHS FHS RS Meta Discovery papera

β SE P β SE P β SE P β SE P β SE P

Model1: ln(FI) ~ SNP+age+sex+BMI
rs2114912:G4T 0.020 0.024 0.41 −0.039 0.015 0.01 0.002 0.093 0.98 −0.021 0.013 0.09 −0.024 0.004 3.4×10−11

rs860598:G4A 0.007 0.020 0.72 −0.032 0.014 0.02 −0.072 0.076 0.34 −0.020 0.011 0.07 −0.021 0.003 6.9×10 −10

rs35747:G4A 0.005 0.019 0.81 −0.032 0.014 0.02 −0.079 0.079 0.32 −0.021 0.011 0.06 −0.021 0.004 8.9×10 −10

rs855213:A4G 0.005 0.020 0.81 −0.032 0.014 0.02 −0.072 0.076 0.34 −0.021 0.011 0.06 −0.021 0.004 1.0×10 −9

rs35767:A4G 0.013 0.020 0.50 −0.031 0.015 0.04 −0.127 0.080 0.11 −0.017 0.012 0.15 −0.022 0.004 2.4×10 −9

Model2: ln(FI) ~ SNP+age+sex+BMI+IGF1
rs2114912:G4T 0.018 0.024 0.45 −0.039 0.015 0.01 0.004 0.094 0.97 −0.022 0.013 0.08 NA NA NA

rs860598:G4A 0.004 0.020 0.85 −0.032 0.014 0.02 −0.071 0.077 0.36 −0.020 0.011 0.07 NA NA NA

rs35747:G4A 0.001 0.019 0.95 −0.033 0.014 0.02 −0.078 0.080 0.33 −0.022 0.011 0.05 NA NA NA

rs855213:A4G 0.002 0.020 0.94 −0.032 0.014 0.02 −0.071 0.077 0.36 −0.023 0.011 0.05 NA NA NA

rs35767:A4G 0.010 0.020 0.61 −0.031 0.015 0.04 −0.125 0.081 0.12 −0.018 0.012 0.13 NA NA NA

Abbreviations: CHS, Cardiovascular Health Study (n=1717); FHS, Framingham Heart Study (n=3293); RS, Rotterdam Study (n=140).
aManning et al5 (n up to 51 750).

Table 3 Descriptions of known and novel SNPs in the IGF1 region in

the CHARGE Targeted Sequencing Study cohorts combined

Known Novela Total

No. of SNPs 248 1145 1393

No. of rare SNPs 133 1143 1276

Coding variants (n=17)
Synonymous 2 4 6

Nonsynonymous 5 6 11

Noncoding variants (n=1376)
Intergenic 165 793 958

Upstream 7 24 31

Downstream 5 20 25

Intronic 39 148 187

UTR3 24 146 170

UTR5 1 4 5

Predicted functionalb 32 156 188

Values are frequencies.
aNot known in dbSNP, 1000 genomes project, or ESP 6500.
bPredicted transcription factor binding site (ENCODE ChipSeq, HMR) and/or DNAse
hypersensitive site (ENCODE DHS) and/or ORegAnno regulatory variant and/or highly conserved
(PhastCons).

Table 4 SKAT meta-analyses results for fasting insulin (BMI

adjusted) from different subsets of rare (MAF o1%) SNPs in the

IGF1 region

Subset of rare SNVs No. of SNVs in subset P

Coding nonsynonymous 11 5.7×10−4

Conditioned on GWAS variantsa 0.019

Coding nonsynonymous novelb 6 0.38

Noncoding predicted functionalc 188 0.38

Noncoding predicted functional novelb,c 156 0.16

aConditioned on proxies of rs2114912:G4T and rs35767:A4G.
bNot known in dbSNP, 1000 genomes project, or ESP 6500.
cPredicted transcription factor binding site (ENCODE ChipSeq, HMR) or DNAse hypersensitive
site (ENCODE DHS) or ORegAnno regulatory variant or highly conserved (PhastCons).
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GWAS signal explains part of the rare variant signal and the presence
of a residual independent rare variant effect. Examination of ENCODE
Consortium regulatory element data sets and public transcriptome
data in the UCSC Genome Browser suggested that GWAS variants in
the vicinity of IGF1 might have a direct functional role. In particular,
rs35767 is ∼ 1.2 kb upstream of the IGF1 promoter and merely
a few bases away from a strong FOXA1 binding site that is observed
in ENCODE ChIP-seq data across a variety of human cell lines.
Similarly, rs2114912:G4T is ∼ 1.7 kb away from a strong ENCODE
DNAseI hypersensitive site seen in multiple cell lines, including
pancreatic islets, that overlaps an ENCODE transcription factor
binding site ChIP-seq cluster for several transcription factors,
including FOXA1. This combination of open chromatin as
delineated by the DNAse I hypersensitive site with transcription
factor binding in ChIP-seq data constitutes a regulatory element
signature that warrants experimental validation. Rs2607988:G4A,
a SNP in high LD with rs2114912:G4T (r2= 0.882 in HapMap2
CEU), is located in a ChIP-seq site for FOXA1 and alters a motif for
FOXA. Interrogating the GTEx database, we did not find evidence
for the GWAS variants to influence gene expression in any of the
available tissues.
Single-variant analyses did not reveal significant associations with FI

for any of the common variants present in the targeted sequence data
(Supplementary Figure 6), including the proxies of the known FI
GWAS hits rs35767:A4G (Pmeta= 0.69) and rs2114912:G4T (Pmeta=
0.54) (Supplementary Table 4), most likely because of the much
smaller sample size in these targeted sequence data compared with the
original, very large discovery sample sizes.

DISCUSSION

This study suggests that previously observed associations between
SNVs near IGF1 with FI levels were not mediated by circulating IGF-I
levels. Further investigation of the IGF1 gene, using deep sequencing
data, revealed a large number of rare variants at the locus that had not
been previously described, the large majority of which was very rare. A
subset of rare coding nonsynonymous variants, including six novel
variants and five variants that had been previously identified, was
significantly associated with FI levels. Conditional analysis suggested
that the common noncoding variants near IGF1 that were identified in
GWAS4,5 explain part of the rare variant signal and the presence of a
residual independent rare variant effect. Examination of ENCODE
Consortium regulatory element catalogs showed that the GWAS
variants were located in the proximity of FOXA1 binding sites and
DNAseI hypersensitive sites, suggesting that they might have a direct
functional role. This finding is noteworthy because FOXA1 is a key
transcriptional regulator implicated in glucose metabolism and insulin
secretion.28,29 Studies in human cell culture and animal models will be
needed to interrogate and validate the function of these noncoding
variants in insulin biology.
One variant, rs151098426:C4T, resulting in an alanine-to-

threonine substitution and predicted to be damaging by several
annotation tools, seemed to drive the rare variant association.
However, follow-up genotyping of rs151098426:C4T in an indepen-
dent set of samples and lookup of the variant in CHARGE exome chip
results did not reveal significant differences in FI levels between
carriers and noncarriers of the rare allele, suggesting the absence of a
single-variant effect for rs151098426:C4T on FI levels. Several
recently published studies have demonstrated the need for large
sample sizes to robustly identify associations of low-frequency variants
with complex traits.30–36 Because of the low MAF of rs151098426:
C4T and thus the relatively small number of carriers, analyzing the

variant in large numbers of additional samples will be required to
definitively conclude whether this variant is associated with FI
levels. Taking the FHS log FI distribution as an example and using a
replication α of 0.05, if the effect was as large as we find in
the SKAT results (1.32 SD), we would need 1657 samples to
demonstrate the effect. However, this effect is likely to be an
overestimate because of the winner’s curse. If the effect was modest
as we found in the FHS offspring (0.17 SD), a sample size of 97 128
would be needed.
We did not find a mediation effect of circulating IGF-I levels on the

association of SNVs near IGF1 with FI levels. However, measurement
errors in IGF-I levels might be responsible for the absent observation
of a mediation effect. Circulating IGF-I levels measured with an
imperfect assay and at a single point in time may not sufficiently
characterize the biologically relevant levels. However, although circu-
lating levels of IGF-I decline with aging,37 the levels do not undergo
large short-term fluctuations.38 Furthermore, in 3977 FHS partici-
pants, circulating IGF-I levels correlated negatively with insulin
resistance, diabetes, and metabolic syndrome,3 suggesting that these
measures do represent biologically relevant levels and thus making
measurement errors a less likely cause for not observing a mediation
effect of IGF-I in our study.
The identification of variants at the IGF1 locus that had not been

previously described has increased our insight into the variation
present at the locus. In line with previous sequencing studies,34,39,40

we identified a large number of very rare variants, the majority (64%)
even observed only one time in our samples. The presence of
large numbers of very rare variants in the human genome is likely
explained by recent explosive human population growth.40,41 It has
been hypothesized that these variants might harbor larger effects
than those observed for common variants, as selection can have
influenced only the most deleterious variants.40 However, even for
rare variants with larger effects, large sample sizes are needed to
definitely conclude whether they influence complex traits because
of the low MAF.
The strengths of this study in the CHARGE Targeted Sequencing

framework include the high average sequence depth combined with
stringent QC applied across the three cohorts, increasing confidence
that even the rarest observed variation is real variation and not a
technical artifact. Furthermore, we genotyped variant rs151098426:
C4T in non-overlapping samples serving as replication cohort and as
further evidence that the variant is real. A limitation of this study is
type 2 error, both in mediation and targeted sequence analyses, where
limited sample sizes have limited power to detect common and rare
variant associations. The targeted sequence samples included only
seven heterozygous carriers of the variant of interest rs151098426:
C4T. With 3539 samples in this discovery set and a significance level
of 0.001, for modest differences such as 0.1 SD in log FI, our power
was 1% for MAF= 1% and 22% for MAF= 10%. Furthermore,
because of the limited number of individuals with both targeted
sequence data and IGF-I levels available in our study, it was not
possible to test whether association of the subset of rare nonsynon-
ymous variants with FI was mediated by IGF-I levels. Mean BMI was
in the overweight range in all cohorts. However, evidence exists that
effect sizes of known glycemic trait-associated variants do not differ
between BMI strata.5 As previously observed, FI values varied widely
across studies, likely because of limited standardization across assays.
Previous gene discovery studies, however, despite the same observation
were successful in identifying FI-associated variants.4,5 Finally, our
study only included individuals of European ancestry, and this might
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limit the generalizability to other ancestries of the observed IGF1
variants and variant associations in this study.
In conclusion, our analyses suggest that association of SNVs near

the IGF1 gene with FI is not mediated by circulating IGF-I levels.
Furthermore, our study increased insight into variation present at the
IGF1 locus and thus into the specific local coding as well as noncoding
genetic architecture underlying FI levels, showing a large number of
novel rare variants present at the locus and suggesting association of
both rare coding nonsynonymous variants and a potential direct
functional effect of common noncoding GWAS SNVs in the region on
FI levels.
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