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ARTICLE

Inferring disease architecture
and predictive ability with LDpred2-auto

Florian Privé,1,* Clara Albiñana,1 Julyan Arbel,2 Bogdan Pasaniuc,3,4,5,6 and Bjarni J. Vilhjálmsson1,7,8
Summary
LDpred2 is a widely used Bayesian method for building polygenic scores (PGSs). LDpred2-auto can infer the two parameters from the

LDpred model, the SNP heritability h2 and polygenicity p, so that it does not require an additional validation dataset to choose best-per-

forming parameters. Themain aim of this paper is to properly validate the use of LDpred2-auto for inferringmultiple genetic parameters.

Here, we present a new version of LDpred2-auto that adds an optional third parameter a to its model, for modeling negative selection.

We then validate the inference of these three parameters (or two, when using the previous model). We also show that LDpred2-auto

provides per-variant probabilities of being causal that are well calibrated and can therefore be used for fine-mapping purposes. We

also introduce a formula to infer the out-of-sample predictive performance r2 of the resulting PGS directly from the Gibbs sampler of

LDpred2-auto. Finally, we extend the set of HapMap3 variants recommended to use with LDpred2 with 37% more variants to improve

the coverage of this set, and we show that this new set of variants captures 12% more heritability and provides 6% more predictive per-

formance, on average, in UK Biobank analyses.
Introduction

Most traits and diseases in humans are heritable. What dif-

fers is the genetic architecture of each trait, which can be

parameterized by three key terms: the heritability (i.e.,

the proportion of phenotypic variation explained by ge-

netics), the polygenicity (i.e., the fraction of genomic var-

iants that have a non-zero effect on the trait), and the

causal effect distribution (i.e., how the effect size distribu-

tion varies across causal variants). Some phenotypes, such

as schizophrenia or height, are highly heritable and highly

polygenic.1–4 Causal effects are larger when a trait is more

heritable and smaller when the trait is more polygenic. As

for the distribution of causal effects relative to their allele

frequencies, it is often investigated through a single

parameter, usually called a or S, to model the effect of nega-

tive selection on complex traits whereby variants with

lower frequencies are expected to have higher causal effect

sizes.5 In this model, the expected phenotypic variance ex-

plained by a genetic variant is proportional to ½f ð1 � f Þ�a,
where f is the allele frequency of this variant. Many

methods have been developed to estimate the SNP herita-

bility (referred to as h2 for brevity) and polygenicity (p),

either globally for the whole genome or locally for specific

regions of the genome, as well as a. These methods (non-

exhaustively) include GCTA6 (h2), BOLT-REML7 (h2 and

p), LD Score regression8 (h2), FINEMAP9 (per-variant p,

also called posterior inclusion probabilities [PIPs], used

for fine-mapping), HESS10 (local h2), LDAK-SumHer11,12
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(h2 and a), S-LD4M3 (p), GRM-MAF-LD13 (a), SuSiE14

(PIPs), SBayesS15 (h2, p, and a third parameter S, similar

to a), and BEAVR16 (local p). Not all methods have the

same modeling assumptions; for example, LDAK-SumHer

assumes a different prior than SBayesS and LDpred2-auto

and does not estimate all the same parameters. It can

estimate the SNP heritability and a. However, it cannot

estimate the polygenicity nor the per-variant probabilities

of being causal (since it inherently assumes an infinites-

imal model, i.e., p ¼ 1). Moreover, since it does not

sample effects, it cannot be used to estimate the

predictive performance r2 with the formula we propose

in this paper.

As previously shown by Daetwyler et al.,17 h2 and p can

also be used to determine how well we can predict a

phenotype using genetic variants alone, with r2max ¼
h2$r2gĝ ¼ h2

1þð1� r2maxÞ
Mp

Nh2

, where r2max is the maximum

achievable squared correlation between the genetic pre-

dictor and the phenotype, r2gĝ is the maximum achievable

squared correlation between the genetic predictor and the

genetic component, N is the sample size, M is the number

of variants, and Mp is the number of causal variants. Such

genetic predictors are called polygenic scores (PGSs), and

they are getting closer to being included as part of existing

clinical risk models for diseases.18–20 LDpred2 is a

widely used PGS method that can directly build PGSs us-

ing resulting summary statistics from genome-wide associ-

ations studies (GWASs), making it highly applicable.21–23
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Figure 1. Overview of what LDpred2-auto
can now provide
For individual CIs of polygenic scores,
please refer to the work of Ding et al.24,25

HapMap3þ is the new extended set of
1,444,196 SNPs we introduce here (material
and methods) and now recommend using
for LDpred2 when power is sufficient (i.e.,
with a large sample size, large h2, and/or
small p). CI means ‘‘confidence interval’’
(often called ‘‘credible interval’’ in a
Bayesian setting).
LDpred2 is a Bayesian approach that uses the SNP

heritability h2 and polygenicity p as parameters of its

model. LDpred2-auto, one variant of LDpred2, can

directly estimate these two parameters from GWAS

summary statistics, making it applicable even when no

validation data are available for tuning these two model

parameters.21

The main aim of this paper is to properly validate the use

of LDpred2-auto for inferring multiple genetic parameters.

Here we extend LDpred2-auto and show that it is a reliable

method for estimating h2 (global and local), p (also per-

variant probabilities [PIPs] used for fine-mapping purposes),

and a (by extending its model to also include this third

parameter). So, on top of providing competitive PGSs,

LDpred2-auto can also provide all these estimates of genetic

architecture. Moreover, we show how it can now also reli-

ably estimate the predictive ability r2 of the PGSs it derives,

allowing for direct assessment of the usefulness of the

derived PGSs, without requiring an independent test set.

An overview of what LDpred2-auto can now provide is pre-

sented in Figure 1. Finally, we extend the set of HapMap3

variants recommended for use with LDpred2, which en-

ables us to capture around 12% more SNP heritability and

achieve around 6% more predictive performance r2, on

average, in UK Biobank (UKBB) analyses. We call this

extended set of 1,444,196 SNPs ‘‘HapMap3þ’’ and recom-

mend using it when power is sufficient (i.e., with a large

sample size, large h2, and/or small p).
Material and methods

We have extensively used R packages bigstatsr and bigsnpr26 for

analyzing large genetic data, packages from the future frame-

work27 for easy scheduling and parallelization of analyses on the

high-performance computing cluster, and packages from the tidy-

verse suite28 for shaping and visualizing results. We have exten-

sively used the UKBB data,29 which is available through a proced-

ure described at https://www.ukbiobank.ac.uk/using-the-resource/

. The UKBB received ethical approval from the NHS National

Research Ethics Service North West (11/NW/0382). The present

analyses were conducted under UKBB data application number

58024.
The American Jour
Data for simulations
For simulations, we use the UKBB imputed (BGEN) data, read as

allele dosages with function snp_readBGEN from R package

bigsnpr.26,29We use the set of 1,054,330HapMap3 variants recom-

mended to use for LDpred2.21 Since we run lots of different

models, we restrict the simulations to chromosomes 3, 6, 9, 12,

15, 18, and 21, resulting in a set of 322,805 SNPs. We restrict indi-

viduals to the ones used for computing the principal components

(PCs) in the UKBB (field 22020). These individuals are unrelated

and have passed some quality control such as removing samples

with a missing rate on autosomes larger than 0.02, having a

mismatch between inferred sex and self-reported sex, and outliers

based on heterozygosity (more details can be found in Bycroft

et al.29). To get a set of genetically homogeneous individuals, we

compute a robust Mahalanobis distance based on the first 16

PCs (field 22009) and further restrict individuals to those within

a log distance of 4.5.30 This results in 356,409 individuals of

Northwestern European ancestry. We randomly sample 200,000

individuals to form a training set (to run the GWAS) and use the

remaining individuals to form a test set (to evaluate the predictive

models).

Data for the UKBB analyses
We use the set of 1,054,330 HapMap3 variants recommended to

use for LDpred221 and the same 356,409 individuals of North-

western European ancestry as in the simulations. We randomly

sample 50,000 individuals to form a test set (to evaluate the predic-

tive models) and use the remaining individuals to form a training

set (to run the GWAS).

We construct and use the same phenotypes as in Privé, Aschard,

et al.31 About half of these consist of phecodes mapped from

ICD10 and ICD9 codes using R package PheWAS.32,33 The other

half consist of phenotypes defined in UKBB fields based on

manual curation.31 As covariates, we first recompute PCs for the

homogeneous subset of individuals previously defined using func-

tion snp_autoSVD from R package bigsnpr and keep four PCs

based on visual inspection.26,30 We also use sex (field 22001),

age (field 21022), birth date (combining fields 34 and 52), and

deprivation index (field 189) as additional covariates (to a total

of eight).

We use the LDmatrix with independent LD blocks computed in

Privé, Arbel, et al.34 We design two other LD matrices: one using a

smaller random subset of 2,000 individuals from the previously

selected ones (which we call ‘‘hm3_small’’), and one based on

10,000 individuals from around South Europe by using the ‘‘Italy’’
nal of Human Genetics 110, 2042–2055, December 7, 2023 2043
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center defined in Privé, Aschard, et al.31 (‘‘hm3_altpop’’). We apply

the optimal algorithm developed in Privé35 to obtain independent

LD blocks, as recommended in Privé, Arbel, et al.34 We finally

define a fourth LD reference by extending the set of HapMap3

variants (see next section) and using 20,000 individuals from the

previously selected ones (‘‘hm3_plus’’).
Extending the set of HapMap3 variants used
The HapMap3 variants generally provide a good coverage of the

whole genome. We recall that the set of 1,054,330 HapMap3 vari-

ants recommended to use for LDpred221 is a subset of the original

set of HapMap3 variants, which does not include duplicated posi-

tions (e.g., multi-allelic variants), nor ambiguous variants (e.g.,

‘‘A’’ and ‘‘T,’’ or ‘‘C’’ and ‘‘G’’), and which includes SNPs only (e.g.,

no indel). Here we propose to extend this set of 1,054,330

HapMap3 variants to make sure many genetic variants are well

tagged by the extended set. To design this new set, we first read

all variants from the UKBB with a minor allele frequency (MAF)

larger than 0.005 in the whole data (i.e., the MAF from the MFI

files). There are around 11.5million such variants. Thenwe restrict

to unrelated UKBB individuals that are not listed as White British

(field 22006) and use these individuals of diverse ancestries29,36 to

compute all pairwise correlations between variants within a 1 Mb

distance, restricting to squared correlations larger than 0.3. Finally,

we design an algorithm that aims at maximizing the tagging of all

these variants read. We want to maximize
P
j

maxk˛HapMap3þr2j;k,
where j spans thewhole set of variants read and k spans the variants

kept in the new set, which we call HapMap3þ. We start by

including all previously used HapMap3 variants. Then, for the

sake of simplicity, we use a greedy approach, where we repeatedly

include the variant that increases this sum most, until no variant

improves it by more than 2. Note that we only allow non-ambig-

uous SNPs to be included. This results in an extended set of

1,444,196 SNPs, of which we compute the LD matrix (within a 3

cM window) and apply the optimal algorithm developed in Privé

(2021)35 to obtain 431 independent LD blocks. Since we use indi-

viduals of diverse ancestries for computing the pairwise variant cor-

relations used for constructing this extended set of variants, we

expect this new set of variants to be beneficial across diverse

ancestries. Indeed, from the 11.5 million variants we aimed at

tagging, 82.1% (respectively, 69.1%), 80.0% (respectively, 66.7%),

79.3% (respectively, 66.1%), 75.4% (respectively, 65.3%), and

66.6% (respectively, 48.6%) are tagged at r2 > 50% (respectively,

r2 > 80%) by at least one HapMap3þ variant in Northwestern Eu-

ropeans, Middle Easterns, South Asians, East Asians, andWest Afri-

cans (results extrapolated from variants in chromosome 22).
Optional extended model and inference with LDpred2-

auto
LDpred2 originally assumed the following model for effect sizes:

bj ¼ Sjgj �

8>><>>:
N

 
0;

h2

Mp

!
with probability p;

0 otherwise;

(Equation 1)

where p is the proportion of causal variants, M the number of var-

iants, h2 the (SNP) heritability, g the effect sizes on the allele scale,

S the standard deviations of the genotypes, and b the effects of the

scaled genotypes.21 In LDpred2-auto, p and h2 are directly esti-

mated within the Gibbs sampler, as opposed to testing several

values of p and h2 from a grid of hyper-parameters (as in
2044 The American Journal of Human Genetics 110, 2042–2055, Dec
LDpred2-grid). This makes LDpred2-auto a method free of hy-

per-parameters that can therefore be applied directly without

requiring a validation dataset to choose best-performing hyper-pa-

rameters.21 h2 is estimated by bTRb, where R is the correlation

matrix between variants and b is a vector of causal effect sizes

(after scaling) from one iteration of the Gibbs sampler. As for

p, it is sampled from Betað1þMc; 1þM � McÞ, where Mc ¼P
j

ðbj s0Þ. Note a small change: we now sample p from

Betað1þMc =l2;1þðM � McÞ =l2Þ, where l2 is the average LD score,

to add more variability in the sampling in order to account for a

reduced effective number of (independent) variants.

Here we provide an extended model and sampling scheme for

LDpred2-auto that can be optionally used by setting parameter

use_MLE ¼ TRUE (otherwise it is run as described in the previous

paragraph when using use_MLE¼ FALSE). In this new option, we

extend LDpred2-auto with a third parameter a that controls the

relationship between MAFs (or, equivalently, standard deviations)

of genotypes and expected effect sizes; the model becomes

bj ¼ Sjgj �
8<:N

�
0;s2

b$
�
S2j

�ðaþ1Þ�
with probability p;

0 otherwise:

:

(Equation 2)

Therefore, it was earlier assumed that a ¼ �1 and s2b ¼ h2=ðMpÞ
in Equation 1. This extended model in Equation 2 is similar to the

model assumed by SBayesS, where a is denoted by S instead.15 In

SBayesS, a and s2b are estimated by maximizing the likelihood of

the normal distribution (over the causal variants from the Gibbs

sampler). When using this 3-parameter model in LDpred2-auto,

in order to add some sampling to these two parameters, we first

sample causal variants with replacement before computing the

maximum likelihood estimators. This maximum likelihood esti-

mation (MLE) is implemented using R package roptim (see the

web resources), and we bound the estimate of a to be between

�1.5 and 0.5 (the default, but can be modified) and the estimate

of s2b to be between 0.5 and 2 times the one from the previous iter-

ation of the Gibbs sampler. Note that we still estimate h2 ¼ bTRb,

but that h2 is not used in the variance of sampled effect sizes

anymore (Equation 2). Note also that, to get local heritability esti-

mates (e.g., for a single LD block), this h2 estimation (bTRb) is sim-

ply restricted to the variants from this LD block. Finally, in both

models and sampling schemes now implemented in LDpred2-

auto, we now detect strong divergence when bTb > 2bbT bb, where

b is the vector of scaled effect sizes from one iteration of the Gibbs

sampler and bb is the marginal scaled effect sizes; corresponding

chains are stopped, and missing values are returned for effect sizes

and estimates of missing iterations.
Inference of predictive performance r2

To infer the out-of-sample predictive performance r2 (and its con-

fidence interval [CI]) of the resulting PGS from LDpred2-auto, we

use the distribution of bT
1Rb2, where b1 and b2 are two sampled

vectors of causal effect sizes (after scaling) from two different

chains of the Gibbs sampler. Intuitively, if the prediction is perfect,

then b1 ¼ b2 and r2 ¼ h2; when power is very low, b1 and b2 are

almost uncorrelated and r2z0. Others have proposed to estimate

r2 from a reference genotype set37 or from an additional set of

external GWAS summary statistics and LD38,39; here we only use

the summary statistics that we input to LDpred2-auto. These

previous works have shown that r2 can be approximated by
ember 7, 2023



ðbT bbtestÞ2=ðbTRbÞwhere b and bbtest are, respectively, the predictive

effects from the training set and the marginal effects from the test

set (after scaling). Note that E½b1� ¼ b, E½bT
1Rb2� ¼ bTRb, and,

when the test sample has the same genetic ancestry as the

GWAS used for training (to get the summary statistics), E½Rb2�zbbtest. Therefore, we propose to use bT
1Rb2 as a sample of r2. This

can also be computed for a specific chain by taking two samples

b1 and b2 that are far enough on the same chain to remove the

possible autocorrelation. This is what we use for SBayesS here,

and also as an alternative means for post-filtering chains for pre-

diction (see next material and methods section). Note that Ding

et al.24 investigated autocorrelation in LDpred2(-grid) and showed

that it decays very quickly. Therefore, picking two LDpred2-auto

samples that are 100 iterations apart should be more than enough

to ensure quasi-independence of these samples.

In this paper, we check this r2 approximation using extensive

simulations (across many genetic architectures) and real data ana-

lyses (across 248 different phenotypes). These are compared to the

partial-r2 (on individual-level data from a separate test set). The

partial correlation is computed with function pcor from R pack-

age bigstatsr, adjusting for the same eight covariates as in the

GWAS, then squared (while keeping the sign). Corresponding

95% CIs are estimated through bootstrapping individual indices.

Post-filtering of chains in LDpred2-auto
Because aGibbs sampler can be unstable, with somany variants and

with possible mismatches between, e.g., the GWAS summary statis-

tics and the LD reference used, we have always recommended

running multiple chains in LDpred2-auto and post-filtering some

of them as quality control.21 We originally proposed to filter chains

by keeping the ones providing PGSs with the largest variances.

Then we tested an almost equivalent and simpler alternative,34

which is to keep only chains that provide top imputed marginal

scaled effect sizes b
�

¼ Rb, where R is the correlation matrix and b

are the PGS scaled effect sizes. This is the default post-filtering of

LDpred2-auto chains that we use here, for both prediction and

inference.

Moreover, here we test two alternative filtering criteria in the first

simulations based on continuous outcomes (and call this ‘‘LDpred2-

auto_altfilter’’). First, forprediction,we testfilteringon theaverageof

bT
1Rb2 within eachchain,which is anestimateof r2 (cf. previousma-

terial andmethods section). Second, for inference, we filter on some

convergence criterion. The split-Rhat statistic is a popular metric to

test for goodmixing and convergence ofMarkov chains.40However,

wehave found this statistic toperformpoorlywhen, e.g., oneparam-

eter gets stuck and is constant; in this case, the chain does not mix

well, but a perfect Rhat of 1.0 is obtained. Instead, we have found

that a two-sample Cramer-von Mises statistic,41 by similarly using

both parts of the chain after burn-in, is often highly correlated

with the split-Rhat statistic while not suffering from the previous

issue.We therefore chose to use this statistic and to average the three

statistics computed forh2, p, anda for eachchain.Weuse a threshold

of 4, abovewhichwefilter out the chain, becausewehave found that

a value of 4 for this statistic often corresponds to a value close to 1.05

for the split-Rhat.
Results

Validating the inference with simulations

For simulations, we use the UKBB imputed data.29 We use

356,409 individuals of Northwestern European ancestry
The American Jour
and 322,805 SNPs across seven chromosomes (material

andmethods). We first simulate continuous phenotypes us-

ing function snp_simuPheno from R package bigsnpr,26

varying three parameters: the SNP heritability h2, the poly-

genicity p (i.e., the proportion of causal variants), and the

parameter a in Equation 2 that controls the relationship be-

tween MAFs and expected effect sizes. This function first

picks a proportion p of causal variants at random, samples

effect sizes g using the variance component parameterized

by a, and then scales the effect sizes so that the genetic

component Gg has a variance h2, where G is the genotype

matrix. Finally, some Gaussian noise is added so that the

final phenotype has a variance of 1. Then, we run a

GWAS to obtain summary statistics using N individuals

(either the 200,000 dedicated to this, or a random subset

of 20,000), using fast linear regressions implemented in bi-

g_univLinReg from R package bigstatsr.26 Finally, we run

LDpred2-auto with and without the option allow_

jump_sign, which was proposed in Privé, Arbel, et al.34

for robustness (when disabled, it prevents effect sizes from

changing sign without going through 0 first), and with

and without the extended model including a third param-

eter a (using option use_MLE; material and methods).

LDpred2-auto is run with 50 Gibbs sampler chains with

different starting values for p (from 0.0001 to 0.2, equally

spaced on a log scale). Then some of these chains are filtered

out for quality control (material and methods).

First, LDpred2-auto generally reliably infers the three pa-

rameters from its model, i.e., the SNP heritability h2, poly-

genicity p, and a (Figures 2, 3, 4, and S1–S6). Compared to

LD Score regression, heritability estimates are as precise

when power is low, and much more precise when power

is large, especially for small polygenicity values (Figures 2,

S1, and S2). When power is low (e.g., N ¼ 20;000 and

h2 ¼ 0:01Þ, LDpred2-auto_noMLE (with only two model

parameters, as in previous versions of LDpred2-auto) and

SBayesS are both over-confident in their estimate of h2

(i.e., CIs are small and do not contain the true parameter

value; Figure S7), and LDpred2-auto_jump overestimates

the heritability (Figure S1). LDpred2-auto_nojump looks

very reliable for estimating h2. When power is low,

LDpred2-auto can overestimate the polygenicity when

the true value is very small (e.g., p ¼ 0:0005) and underes-

timate it when the polygenicity is large (e.g., p ¼ 0:1;

Figure S3). SBayesS, which uses a similar model with the

same three parameters, often overestimates the polygenic-

ity, especially when p%0:02. The a estimate of LDpred2-

auto (with the extended 3-parameter model) can become

very imprecise when power is too low, which can be de-

tected by a small number of chains kept from LDpred2-

auto. Estimates of both p and a from SBayesS are often

over-confident with small CIs that do not include the

true simulated values (Figures S9 and S11). Generally,

95% CIs for all three parameters (h2, p, and a) obtained

from LDpred2-auto_nojump contain the true simulated

value (Figures S7–S12), therefore confirming the validity

of these CIs; this is the preferred method we recommend
nal of Human Genetics 110, 2042–2055, December 7, 2023 2045
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Figure 2. Inferred SNP heritability h2 in simulations with continuous outcomes and N ¼ 20,000
More results can be found in the supplemental information. Horizontal dashed lines represent the true simulated values. For LDpred2-
auto, suffix ‘‘nojump’’/‘‘jump’’ refers to using allow_jump_sign ¼ FALSE/TRUE (and use_MLE ¼ TRUE), ‘‘noMLE’’ refers to using
use_MLE ¼ FALSE (and allow_jump_sign ¼ FALSE), and ‘‘altfilter’’ is similar to ‘‘nojump’’ but uses a different post-filtering of chains
(material andmethods). Note that the recommended option is to use allow_jump_sign¼ FALSE.34 The 95%CIs for the LDpred2-auto
and SBayesS estimates are obtained from the 2.5% and 97.5% quantiles of all the h2 estimates from the iterations (after burn-in) of the
chains kept (note that only one chain is used and kept in SBayesS). The 95% CI for the LD Score regression (LDSC) estimate is obtained
as 5 1.96 of its standard error. Colors for LDpred2-auto models represent the number of chains kept (out of 50).
using. Finally, we also investigate alternative ways of post-

filtering chains in LDpred2-auto, for both prediction and

inference (LDpred2-auto_altfilter compared to LDpred2-

auto_nojump; material and methods); results remain prac-

tically unchanged (Figures S1–S6).

Then, LDpred2-auto can also infer per-variant probabil-

ities of being causal and local per-block heritability esti-

mates, which are well calibrated (Figures S13 and S14).

We recall that calibrated per-variant probabilities of being

causal (also known as PIPs) can be used for fine-mapping

purposes.14 LDpred2-auto provides PIPs that are more cali-

brated thanwith, e.g., SuSiE-RSS,42 whichwe run assuming

there are 10 causal variants per LD block by default

(Figure S15). Finally, LDpred2-auto can also be used to reli-

ably infer the predictive performance r2 of its resulting

polygenic score, directly from within the Gibbs sampler

(material and methods), even when power is low, and we

show it works with results from SBayesS’s Gibbs sampler

as well (Figures S16 and S17). CIs for this r2 estimate very

often encompass the true simulated value, except for

LDpred2-auto_jump when both h2 and N are small

(Figures S18 and S19).

We then run simulations with binary outcomes where

the simulated continuous liabilities are transformed to bi-

nary outcomes using a threshold corresponding to the

prevalence. Results are very similar to when using the

continuous phenotypes above (Figures S20–S23), and
2046 The American Journal of Human Genetics 110, 2042–2055, Dec
they are similar whether we use a linear regression GWAS

and the total sample size N, or a logistic regression

GWAS and the effective sample size (i.e., Neff ¼
4=ð1 =Ncase þ1 =NcontrolÞ). The main difference is that the

h2 and r2 estimates must be transformed to the liability

scale,43 where KGWAS ¼ 0:5 should be used for transform-

ing estimates of h2 and r2 when using Neff in inference

methods.44

Genetic architectures of 248 phenotypes from the UKBB

We use the same 356,409 unrelated individuals of North-

western European ancestry as in the simulations. To form

the test set, we randomly select 50,000 of these, while

the other 306,409 are used to run a GWAS using linear

regression (with function big_univLinReg from R pack-

age bigstatsr) for each of all 248 phenotypes and using

eight covariates (material and methods). We first use the

set of 1,054,330 HapMap3 variants recommended to use

for LDpred2.21 Here, if not otherwise specified, we use op-

tions use_MLE ¼ TRUE (i.e., the extended 3-parameter

model and sampling scheme) and allow_jump_sign ¼
FALSE (when disabled, this prevents effect sizes from

changing sign without going through 0 first and has

been proposed for extra robustness in Privé, Arbel, et al.34).

Consistent with simulations, inferred SNP heritability h2

estimates from LDpred2-auto closely match with those

from LD Score regression, while generally being more
ember 7, 2023
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Figure 3. Inferred polygenicity p in simulations with continuous outcomes and N ¼ 20,000
More results can be found in the supplemental information. Horizontal dashed lines represent the true simulated values. For LDpred2-
auto, suffix ‘‘nojump’’/‘‘jump’’ refers to using allow_jump_sign ¼ FALSE/TRUE (and use_MLE ¼ TRUE), ‘‘noMLE’’ refers to using
use_MLE ¼ FALSE (and allow_jump_sign ¼ FALSE), and ‘‘altfilter’’ is similar to ‘‘nojump’’ but uses a different post-filtering of chains
(material andmethods). Note that the recommended option is to use allow_jump_sign¼ FALSE.34 The 95%CIs for the LDpred2-auto
and SBayesS estimates are obtained from the 2.5% and 97.5% quantiles of all the p estimates from the iterations (after burn-in) of the
chains kept (note that only one chain is used and kept in SBayesS). Colors for LDpred2-auto models represent the number of chains kept
(out of 50).
precise, especially for phenotypes with a small polygenic-

ity (Figure S24). Note that these h2 estimates (and later

the r2 estimates) have not been transformed to the liability

scale (i.e., are on the observed scale). Most phenotypes

have an estimated polygenicity p between 0.001 and

0.04; these have, therefore, a very polygenic architecture,

but not an infinitesimal one (Figure S25). Most phenotypes

have an estimated a between �1.0 and �0.3 with a mode

at �0.65 (Figure S26). As for the inferred predictive perfor-

mance r2 (from the Gibbs sampler of LDpred2-auto; mate-

rial and methods), they are highly consistent with the pre-

dictive performance in the test set; only for standing

height are they overestimated (Figures 5 and S27). Herita-

bility estimates for height are probably overestimated as

well since we use similar formulas for estimating h2 and

r2 (material and methods), and because the SNP heritabil-

ity estimate h2 for standing height is higher than values re-

ported in the literature (also see section application to

height).

To investigate whether estimates from LDpred2-auto are

robust to somemisspecifications, we test using two alterna-

tive LD references (material and methods). Using a smaller

number of individuals for computing the LDmatrix results

in a slightly overestimated p and h2 (and r2) with LDpred2-

auto, while the a estimate remains consistent, and the pre-

dictive performance in the test set remains mostly similar,

except for three phenotypes for which none of the
The American Jour
LDpred2-auto chains is usable (Figure S28). When using

an LD reference from an alternative population (South Eu-

rope instead of Northwest Europe), p, h2, and r2 are slightly

overestimated as well, and a few phenotypes have lower

predictive performance, while there are four phenotypes

for which none of the LDpred2-auto chains is usable

(distinct from the previous three; Figure S29). Interestingly,

using the previous approach (use_MLE ¼ FALSE) seems to

provide more robust results, where we can always get

some chains not to diverge (and therefore get non-zero

predictive performance) for the seven (three and four)

phenotypes mentioned before when using the previous

alternative LD references (Figure S30).

Then, we investigate the effect of disabling the LDpred2-

auto parameter allow_jump_sign on the estimates from

LDpred2-auto; when disabled, this prevents effect sizes

from changing sign without going through 0 first and

has been proposed for extra robustness in Privé, Arbel,

et al.34 Consistent with simulations, p estimates from

LDpred2-auto are conservatively lower than when allow-

ing effects to ‘‘jump’’ sign (i.e., using a standard sampling;

Figure S31). h2 estimates can also be slightly lower, while a

estimates are broadly consistent. As for predictive perfor-

mance r2 (on the test set), they are similar, suggesting there

is no problem of robustness here (when using the North-

western European LD reference) and a standard sampling

can be used in this case (Figure S31).
nal of Human Genetics 110, 2042–2055, December 7, 2023 2047
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Figure 4. Inferred a in simulations with continuous outcomes and N ¼ 20,000
More results can be found in the supplemental information. Horizontal dashed lines represent the true simulated values. Horizontal
dotted lines represent boundaries imposed on the LDpred2-auto estimates. For LDpred2-auto, suffix ‘‘nojump’’/‘‘jump’’ refers to using
allow_jump_sign ¼ FALSE/TRUE (and use_MLE ¼ TRUE), and ‘‘altfilter’’ is similar to ‘‘nojump’’ but uses a different post-filtering of
chains (material and methods). Note that ‘‘LDpred2_noMLE’’ (use_MLE ¼ FALSE) does not infer a. Note also that the recommended
option is to use allow_jump_sign ¼ FALSE.34 The 95% CIs for the LDpred2-auto and SBayesS estimates are obtained from the
2.5% and 97.5% quantiles of all the a estimates from the iterations (after burn-in) of the chains kept (note that only one chain is
used and kept in SBayesS). Colors for LDpred2-auto models represent the number of chains kept (out of 50).
Finally, we investigate different transformations to apply

to some continuous phenotypes used here. Indeed, 49 of

the phenotypes used here seem log-normally distributed or

heavy-tailed (when visualizing their histogram); we there-

fore log-transformthem.However,wedo investigate alterna-

tive transformations here to decide which one should be

preferred and to check how this impacts the inference and

prediction from LDpred2-auto. We first compare to using

raw (untransformed) phenotypes in Figure S32; estimates

of p and a are highly consistent. However, h2 estimates and

predictive performance r2 (in the test set) are generally larger

with the log-transformation; it probably makes sense to

transform these phenotypes. We then compare to using

the rank-based inverse normal (RIN) transformation in

Figure S33; estimates for p and a are also highly consistent.

Except for bilirubin and lipoprotein(a) concentration,

higher h2 estimates and predictive performance r2 are gener-

ally obtained with the RIN transformation than the log-

transformation.

More heritability and predictive accuracy with the new

set of variants

Here we use the same individuals as in the previous section.

We investigate using the extended set of HapMap3 variants

proposed here, HapMap3þ (material and methods), which
2048 The American Journal of Human Genetics 110, 2042–2055, Dec
includes �37% more variants on top of the HapMap3 vari-

ants recommended to use for LDpred2 (i.e., 1,054,330 þ
389,866 variants), to improve the genome coverage of this

set. As expected, compared to HapMap3, higher h2 (average

increase of 12.3% [95% CI: 10.8, 13.7]) and lower p

(decrease of 11.5% [10.7, 12.3]) estimates are obtained

with this extended set HapMap3þ (Figure 6). This is consis-

tent with higher predictive performance r2 in the test set

(increase of 6.1% [4.1, 8.2]). In particular, a much larger h2

estimate is obtained for lipoprotein(a) concentration

(0.508 [0.502, 0.514] instead of 0.324 [0.320, 0.329]), which

is also reflected in a larger predictive performance (r2 in the

test set of 0.516 [0.508, 0.524] instead of 0.344 [0.335,

0.353]). Interestingly, when using this extended set of

HapMap3 variants, more chains are kept on average, which

is a sign of better convergence of the models (Figure S34).

However, running LDpred2 with this extended set of vari-

ants takes around 50%more time; yet we remind the reader

that LDpred2 has been made much faster in Privé, Arbel,

et al.34 and now runs in less than 1 h for 50 chains parallel-

ized over 13 cores (Figure S35), instead of 4–12 h before.

Local heritability and polygenicity

In this section, we use the extended set of variants con-

structed here, HapMap3þ, for which we define 431
ember 7, 2023
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Figure 5. Inferred predictive performance
r2 in the UK Biobank
This compares the r2 inferred from the
Gibbs sampler of LDpred2-auto (material
and methods) versus the ones obtained in
the test set, for all 248 phenotypes defined
from the UKBB. These are stratified by the
SNP heritability estimated from LDpred2-
auto. Green dashed lines represent the 1:1
line. The 95% CI for the LDpred2-auto esti-
mate is obtained from the 2.5% and 97.5%
quantiles of all the r2 estimates from the iter-
ations (after burn-in) of the chains kept. The
95% CI for r2 in the test set is obtained from
bootstrap. Colors represent the number of
chains kept (out of 50). ‘‘F_height’’ and
‘‘M_height’’ use females and males only,
respectively (in both GWAS and test sets).
independent LD blocks (material and methods). We

compute local per-block h2 estimates and report the

UKBB phenotypes for which one block contributes to at

least 10% of the total heritability of all blocks in

Figure S36. For lipoprotein(a) concentration, ‘‘red hair’’

and ‘‘disorders of iron metabolism’’ (phecode 275.1),

almost all heritability comes from one LD block only. We

also perform the same analysis with external GWAS

summary statistics for 90 cardiovascular proteins45; 22

(respectively, 8) of them have at least 50% (respectively,

80%) of their heritability explained by a single block

(Figure S37).

Across 169 UKBB phenotypes with more than 25 chains

kept, we compute the median heritability per block and

compare it to the number of variants in these blocks; the

median heritability explained by a block of variants is

largely proportional to the number of variants in this block

(Figure S38). Theoutlier block explaining amuch larger her-

itability contains the HLA region. Across the same pheno-

types, we then compute per-variant median probabilities

of being causal and report them in a Manhattan-like plot

in Figure S39. Somevariants inmultiple small regions across

the genome have a larger probability of being causal across

many phenotypes; interestingly, these aremapped to genes

that are known to be associated with many different traits

(up to more than 300) in the GWAS catalog.46 To verify

that this is not driven by population structure, we compute

pcadapt chi-squared statistics that quantify whether a

variant is associated with population structure47; the log-

statistics have only a small correlation of 5.9% with the

probabilities of being causal. To verify that this does not

correspond to regions of low LD, we compute LD scores;
The American Journal of Human Genetic
themedianprobabilities of being causal

have a correlation of 32.0%with the LD

scores and of 26.4% with the log of LD

scores. Therefore, the posterior proba-

bilities of being causal obtained from

LDpred2-auto tend to slightly increase

with LD scores.
Finally, since the HapMap3þ variants still represent a

rather small proportion of common variants, we showcase

running LDpred2-auto using a more dense set of variants

from a small region, as usually done for fine-mapping.

We identify the most significant HapMap3þ variant for

height, rs2871960 on chromosome 3, and read all the var-

iants within a 500 kb distance that have a MAF larger than

0.005 and INFO score larger than 0.5 in the UKBB; there are

3,881 such variants. Then, we perform a GWAS for these

variants using the same 305,338 training individuals as

used before (Figure S40). Finally, using the resulting

GWAS summary statistics and an LD reference from the

same set of individuals, we run both SuSiE-RSS and

LDpred2-auto (_nojump). We test two different values for

L, the maximum number of causal variants in SuSiE-RSS

(10 and 100), and three different values for the maximum

value of the estimated p (1, 0.01, and 0.001). Per-variant

posterior probabilities of being causal (also known as

PIPs) are very similar with both methods, especially

when restricting p in LDpred2-auto, which is similar to

what SuSiE-RSS assumes (more conservative; Figure S41).

Application to height

Here we run three LDpred2-auto models for height,

one from the same 305K training UKBB individuals

used before (with available height, out of 306K), one based

on 100K UKBB individuals (as a random subset of

the previous 305K), and one from a large GWASmeta-anal-

ysis of 1.6 million individuals of European genetic ances-

tries.48We first infer the genetic ancestry proportions of in-

dividuals included in the meta-analysis using the method

proposed in Privé36 and find that 81.9% are from
s 110, 2042–2055, December 7, 2023 2049
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Figure 6. LDpred2-auto estimates for UKBB phenotypes using either the HapMap3 or HapMap3þ sets of variants
Only 154 phenotypes withmore than 25 chains kept when using the HapMap3 variants are represented here. Red dashed lines represent
the 1:1 line. The 95% CI for the LDpred2-auto estimate (in green) is obtained from the 2.5% and 97.5% quantiles of all the estimates
from the iterations (after burn-in) of the chains kept. The 95% CI for r2 in the test set is obtained from bootstrap.
Northwestern Europe, 9.5% are from Eastern Europe, 6.5%

are from Finland, 1.5% are of Ashkenazi genetic ancestry,

0.3% are from Southwest Europe, and 0.2% are from

West Africa. For this set of external GWAS summary statis-

tics, we therefore use the same Northwestern European LD

matrix as used in UKBB analyses. Note that we use the

HapMap3þ set of 1,444,196 SNPs here; however, for the

GWAS meta-analysis, only 1,013,499 SNPs (out of

1,373,020) are overlapping with HapMap3þ and passing

quality control.

As expected,49 intercepts from LD Score regression in-

crease with sample size: 1.02 (standard errror [SE]: 0.008)

with N ¼ 100K, 1.11 (0.015) with N ¼ 305K, and 2.31

(0.068) with N ¼ 1.6 million. SNP heritability estimates

are 64.6% (SE: 2.7), 59.7% (2.2), and 39.2% (1.7) with LD

Score regression, respectively, and 60.2% (95% CI: 57.2,

63.2), 63.2% (62.0, 64.4), and 54.2% (53.9, 54.5) with

LDpred2-auto. As expected, estimated predictive perfor-

mance r2 (from the Gibbs sampler of LDpred2-auto) in-

crease with sample size: 29.6% (28.7, 30.5), 42.7% (42.2,

43.1), and 47.0% (46.8, 47.1), respectively. Note that these

r2 estimates are probably overestimated by the samemargin

as the (SNP heritability) h2 estimates and correspond to

�49%,�67.5%, and�87%of h2, respectively. Even though

there are 1.6 million individuals in the meta-analysis, the

predictive performance corresponds to around 87% of the

SNP heritability only; therefore an even larger sample size

is required to be able to better predict height. Polygenicity
2050 The American Journal of Human Genetics 110, 2042–2055, Dec
estimates from LDpred2-auto increase with sample size—

1.2% (1.0, 1.5), 2.3% (2.0, 2.5), and 5.9% (5.6, 6.3)—consis-

tent with results of simulations with a large polygenicity

(p ¼ 10%). Therefore, we estimate that height has at least

50,000 causal variants. These results are similar irrespective

of whether allow_jump_sign is used or not, which is sur-

prising to us. We also identify 1,753 SNPs with a greater

than 95% probability of being causal (fine-mapping),

which are spread over the entire genome (Figure S42). As

for a estimates from LDpred2-auto, they remain consistent,

at �0.71 (�0.75, �0.67), �0.74 (�0.76, �0.72), and �0.78

(�0.82,�0.76), respectively. Finally, we compute per-anno-

tation heritability estimates from LDpred2-auto results to

investigate functional enrichment. We perform this anal-

ysis using 50 non-flanking binary annotations from the

baselineLD v.2.2 model.50 Heritability enrichments that

we obtain from LDpred2-auto results are rather modest,

ranging from 0.7 to 2.5 with a GWAS sample size of N ¼
305,000, and of slightly smaller magnitude with N ¼
100,000, and of slightly larger magnitude with N ¼ 1.6

million (Figure S43).

Application to other external GWAS summary statistics

A description of the eight external GWAS summary statis-

tics used is provided in Table 1; these do not include UKBB

individuals. Quality control of these summary statistics

is performed as described in Privé, Arbel, et al.34 We run

LDpred2-auto using either the HapMap3 or HapMap3þ
ember 7, 2023



Table 1. Summary of external GWAS summary statistics used

Trait GWAS citation
Effective GWAS
sample size # GWAS variants

# matched variants
with HapMap3þ

Asthma Demenais et al.54 67,341.2 2,001,280 946,092

Breast cancer (BRCA) Michailidou et al.55 254,862.6 11,792,542 1,411,710

Coronary artery disease (CAD) Nikpay et al.56 129,014.3 9,455,778 1,325,052

Depression (MDD) (without UKBB) Wray et al.57 168,040.2 9,874,289 1,314,499

Prostate cancer (PRCA) Schumacher et al.58 135,316.1 20,370,946 1,411,710

Type 1 diabetes (T1D) Censin et al.59 13,497.6 8,996,866 1,127,489

Type 2 diabetes (T2D) Scott et al.60 72,143.0 12,056,346 1,408,283

Vitamin D Jiang et al.61 79,366 2,579,296 1,028,171

These do not include UKBB individuals. Note that some of them may contain a substantial amount of non-European genetic ancestry (e.g., >20% for CAD).
variants, with either the extended or previous model

and sampling (via parameter use_MLE). Because of the

increased mismatch between external GWAS summary sta-

tistics and the LD reference we use here (compared to in

simulations and UKBB analyses), we also explore multiple

values for parameter coef_shrink, which is a multiplica-

tive coefficient for shrinking/regularizing off-diagonal ele-

ments of the LD matrix in LDpred2-auto. Note that to

transform r2 and h2 estimates to the liability scale (except

for vitamin D, which is a continuous trait), we use the

prevalence in the UKBB as the population prevalence,

which may be slightly biased.51,52 Results are presented

in Figure S44. In terms of predictive performance, using

the HapMap3þ variants provides equal or better predictive

performance compared to using the HapMap3 variants,

except for type 1 diabetes (T1D); therefore it seems more

useful to use this new set of variants for larger sample sizes.

Using the extended model and sampling scheme (with op-

tion use_MLE) provides equal or better predictive perfor-

mance except for vitamin D, but proves to be less robust,

especially when using coef_shrink close to 1 (low or

no regularization of the LD matrix). The 3-parameter

model also generally provides better predictive perfor-

mance in the UKBB analyses, where power and robustness

are often not an issue (Figure S45). Maximum r2 are

achieved at different LD regularization coefficients coef_

shrink across phenotypes, reflecting possible substantial

mismatches between the GWAS summary statistics and

LD reference used. However, results are virtually un-

changed when regularizing the LD matrix (‘‘hm3_plus_re-

gul’’) by multiplying correlations between variants i and j

by exp ð� 0:5 $di;jÞ, where di;j is the distance in cM between

the two variants (similar to Wen and Stephens53), which is

surprising to us. As for estimates of h2 and r2 (inferred from

the Gibbs sampler), they tend to increase with smaller

values of coef_shrink. This is also the case for estimates

of p when using use_MLE ¼ TRUE. Estimates of a are

largely constant but can become very small (capped at

�1.5) in the case of robustness issues when using, e.g.,

use_MLE ¼ TRUE and almost no regularization on the LD

matrix (i.e., coef_shrink close to 1).
The American Jour
Discussion

LDpred2-auto was originally developed for building poly-

genic scores.21 Here we have extended the LDpred2-auto

model and shown that it can be used to reliably infer ge-

netic architecture parameters such as the SNP heritability

(both genome-wide and more locally), polygenicity (and

per-variant probabilities of being causal, also known as

PIPs, useful for fine-mapping), and the selection-related

parameter a. We remind readers that LDpred2 can also be

used to infer the uncertainty of individual polygenic

scores.24,25 We also introduce a way to infer the out-of-

sample predictive performance r2 of the resulting PGS,

assuming the target sample has the same genetic ancestry

as the GWAS used for training. Others have proposed to

estimate r2 from a reference genotype set37 or from an

additional set of external GWAS summary statistics and

LD38,39; here we only use the summary statistics that we

input to LDpred2-auto. Results across 248 phenotypes

demonstrate that most of these phenotypes are very

polygenic, yet do not have an infinitesimal architecture

(i.e., not all variants are causal); this is consistent with

LDpred2-inf (assuming an infinitesimal architecture, i.e.,

p ¼ 1) generally providing lower predictive performance

than LDpred2-grid (testing different values for parameter

p) or LDpred2-auto (estimating p).21 We also obtain wide-

spread signatures of negative selection, with most a esti-

mates between �1.0 and �0.3 with a mode at �0.65,

consistent with previous findings from SBayesS, where

they find a median S (same as a) of �0.578 (standard devi-

ation [SD]: 0.096).15 In that paper, they found consistent

results with BayesS, although the original BayesS publica-

tion reported weaker effects, with a median of �0.37 (SD:

0.11).62 In Schoech et al.,13 they found an average a of

�0.38 (SE: 0.02) with GRM-MAF-LD, but they also noted

that LDAK estimates were upward biased by 0.4 (originally

centered at �0.25,12 suggesting a likely value would be

close to �0.65, which is what we obtain here).

However, when looking at the heritability enrichments

of several functional annotations for height, we obtain

much smaller magnitudes with LDpred2-auto than with
nal of Human Genetics 110, 2042–2055, December 7, 2023 2051



stratified LD Score regression (S-LDSC).50 For example,

Yengo et al.48 report fold enrichments of more than 103

for, e.g., coding and conserved variants, while we get less

than 23. This is partly due to LDpred2-auto estimates be-

ing more conservative, as they are shrunk toward no

enrichment (the prior); however, we do use a very large

sample size here, so the prior should not matter much.

Another possible reason comes from using variants that

capture the causal effects by LD, while these tagging vari-

ants may be annotated differently from the causal variants,

which could cause functional enrichments to be diluted.63

We also note that this heritability partitioning is per-

formed after running LDpred2-auto for each annotation

independently; therefore, unlike S-LDSC, the LDpred2-

auto heritability partitioning does not depend on the set

of annotations used.

Here we have also extended the set of HapMap3 variants

recommended for use with LDpred2, making it 37% larger

to offer better coverage of the genome. Since we used indi-

viduals of diverse ancestries for computing the pairwise

variant correlations used for constructing this extended

set of variants, this new set of variants is beneficial across

diverse ancestries (material and methods). Increasing the

genome coverage enables us to capture more of the herita-

bility of phenotypes and therefore reduce the missing

heritability, i.e., the difference between the family-based

heritability and the SNP-based heritability. Using the new

HapMap3þ set also improves predictive performance by

an average of 6.1% in UKBB analyses here, and particularly

for lipoprotein(a) concentration, with an r2 of 0.516

instead of 0.344. However, we note that we are able to

achieve an r2 of 0.677 (0.671, 0.682) when using the penal-

ized regression implementation of Privé et al.64 on the

UKBB individual-level data while restricting to all variants

within a 1 Mb window of the LPA gene. This means that

this extended SNP set is still not tagging all variants

perfectly, and that it might be preferable to use a more

localized set of variants for phenotypes for which most

of the heritability is contained in a single region of the

genome. When using external GWAS summary statistics,

using HapMap3þ instead of HapMap3 variants was more

beneficial for larger sample sizes. Our intuition and conclu-

sion is that using more variants is beneficial when power is

sufficient; however, when power is low (e.g., smallN, small

h2, and/or large p), it may actually be detrimental.

Our proposed method has limitations. First, when

power is low (i.e., when Nh2=p is low), estimates of a and

p become less reliable. Therefore, we recommend using

the 3-parameter model (with a, when using use_MLE ¼
TRUE), but only when power is sufficient and when robust-

ness is not an issue (e.g., without substantial misspecifica-

tions such as an ancestry mismatch between the GWAS

and LD panels). We also recommend using option

allow_jump_sign ¼ FALSE for robustness34 and for

getting accurate or conservative p estimates. When still

obtaining a large p estimate (> 1%) with this option, we

recommend rerunning LDpred2-auto without this option
2052 The American Journal of Human Genetics 110, 2042–2055, Dec
to get a less conservative estimate (cf. simulations). How-

ever, LDpred2-auto estimates of h2 and r2 seem always reli-

able, except for height, for which they are probably overes-

timated. We think this is likely due to assortative mating,

which causes GWAS effects to be inflated,65,66 which

causes our estimates to be inflated as well. Second, the h2

from LDpred2-auto is also slightly overestimated when us-

ing a small LD reference panel or when the reference panel

does not closely match with the ancestry of the GWAS

summary statistics. Future work could focus on correcting

these issues. Third, when using external GWAS summary

statistics, it is often beneficial to regularize the LD matrix

(via parameter coef_shrink, especially when using the

extended model and sampling); however, it leads to an

increased estimation for, e.g., r2 and h2. Future work could

focus on correcting these estimates and also on identifying

the best shrinkage regularization coefficient to apply based

on, e.g., some distance metric (mismatch) between GWAS

summary statistics and the LD reference used. Fourth,

because we use a limited set of variants as input for

LDpred2, causal variants identified by LDpred2-auto are

probably tagging variants that are highly correlated with

unobserved causal variants close by. LDpred2-auto can

alsomiss some causal variants when they are poorly tagged

by the set of variants used. Future work will focus on

scaling LDpred2-auto to using more variants to alleviate

this limitation. LDpred2-auto runtime currently depends

on the number of causal variants (or, equivalently, the pol-

ygenicity). When the polygenicity is close to 0, it runs lin-

early with the number of variants. When the polygenicity

is close to 1, it runs quadratically. However, the polygenic-

ity is almost always lower than 0.1 for human traits and

diseases (cf. UKBB results here), which makes running

LDpred2-auto efficient (we report runtimes always under

1 h, even with HapMap3þ variants). Currently, the main

issue is the large size of the LD matrix that grows quadrat-

ically with the number of variants used. For now, to iden-

tify causal variants, one can concentrate on small regions

of the genome, where LDpred2-auto can be rerun using a

much more dense set of variants, as typically done in

fine-mapping analyses (cf. results section local heritability

and polygenicity).

Nevertheless, LDpred2-auto users can now getmuch from

running a singlemethod. The reliable estimates provided by

LDpred2-auto are very encouraging to further extend

LDpred2-auto in multiple directions. As future research di-

rections, we are interested in using LDpred2-auto for

GWAS summary statistics imputation,67,68 for genetic corre-

lation estimation,11,69–72 for multi-ancestry prediction and

inference,73–76 as well as extending it to use more variants

and to leverage functional annotations.63,77,78
Data and code availability

d All code used for this paper is available at https://

github.com/privefl/paper-infer/tree/main/code
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d Descriptions of UK Biobank phenotypes used

here can be found at https://github.com/privefl/

paper-infer/blob/main/phenotype-description.tsv

d Simulation and UKBB results from this study can be

found at https://github.com/privefl/paper-infer/tree/

main/results
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LD matrices for HapMap3þ variants computed from the North-

western European UKBB data used in this paper, https://doi.

org/10.6084/m9.figshare.21305061

Official tutorial on running LDpred2 with R package bigsnpr (for

both prediction and inference), https://privefl.github.io/bigsnpr/

articles/LDpred2.html

roptim: an R package for general purpose optimization with Cþþ,

https://cran.r-project.org/package¼roptim
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A.E., Gaspar, H.A., Coleman, J.R.I., Rimfeld, K., Breen, G., Plo-

min, R., et al. (2021). Evaluation of polygenic prediction

methodology within a reference-standardized framework.

PLoS Genet. 17, e1009021.

23. Kulm, S., Marderstein, A., Mezey, J., and Elemento, O. (2021).

A systematic framework for assessing the clinical impact of

polygenic risk scores. Preprint at medRxiv. https://doi.org/

10.1101/2020.04.06.20055574.

24. Ding, Y., Hou, K., Burch, K.S., Lapinska, S., Privé, F., Vilhjálms-
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36. Privé, F. (2022). Using the UK Biobank as a global reference of

worldwide populations: application to measuring ancestry di-

versity from GWAS summary statistics. Bioinformatics 38,

3477–3480.

37. Mak, T.S.H., Porsch, R.M., Choi, S.W., Zhou, X., and Sham,

P.C. (2017). Polygenic scores via penalized regression on sum-

mary statistics. Genet. Epidemiol. 41, 469–480.

38. Pattee, J., and Pan, W. (2020). Penalized regression and model

selection methods for polygenic scores on summary statistics.

PLoS Comput. Biol. 16, e1008271.

39. Witteveen, M.J., Pedersen, E.M., Meijsen, J., Andersen, M.R.,
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