
UC San Diego
Technical Reports

Title
The Overlay Network Content Distribution Problem

Permalink
https://escholarship.org/uc/item/5459z1cr

Authors
Killian, Chip
Vrable, Michael
Snoeren, Alex C
et al.

Publication Date
2005-05-18

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5459z1cr
https://escholarship.org/uc/item/5459z1cr#author
https://escholarship.org
http://www.cdlib.org/

The Overlay Network Content Distribution Problem

Chip Killian, Michael Vrable, Alex C. Snoeren, Amin Vahdat, and Joseph Pasquale

University of California, San Diego
{ckillian,mvrable,snoeren,vahdat,pasquale}@cs.ucsd.edu

ABSTRACT

Due to the lack of deployment of a network-layer multi-
cast service, many overlay multicast protocols have been
designed and deployed across the Internet to support con-
tent distribution. To our knowledge, however, none have pro-
vided a rigorous analysis of the problem or the effectiveness
of their proposed solutions. Here, we set aside the engineer-
ing challenges of protocol design to focus on the fundamen-
tal graph problem.

We begin by formulating the Overlay Network Content
Distribution (OCD) problem and show that variants that at-
tempt to optimize for either speed or bandwidth utilization
are NP-complete. Using both a time-indexed Integer Pro-
gram and a branch-and-bound search strategy, we calculate
optimal solutions for small graphs. While solutions to OCD
provide performance bounds, realistic deployment scenarios
will not have global network information. Hence, we intro-
duce an on-line variant, the Local-knowledge Overlay Con-
tent Distribution (LOCD) problem and show that no constant-
competitive approximation exists. Instead, we present sev-
eral heuristics that perform well in realistic topologies. We
conclude with an evaluation of our global and local heuris-
tics and enumerate a number of open problems.

1. INTRODUCTION

Recently, there has been tremendous interest in building
cooperative content distribution networks to deliver data among
a group of nodes spread across a wide-area network. There
are multiple degrees of freedom in defining the problem, in-
cluding: i) the number of senders, ii) the subset of data each
receiver is interested in, and iii) whether the cooperation is
meant to be one-shot or long-lasting. Similarly, there are a
variety of goals for such systems. The most common goal
is to improve performance, i.e., to remove the bottleneck
associated with a single source attempting to disseminate
content to a large number of receivers. Other target metrics
include fairness (ensuring that nodes contribute roughly in
proportion to one another), reliability, and per-object latency.
Even for the baseline goal of maximizing performance, there
are multiple variants including minimizing average perfor-
mance, worst-case performance, and the total global band-
width required to achieve a performance objective.

Given the very large space of reasonable problem formu-
lations, combined with the peculiarities of Internet graph
structures, varying bandwidth and latency characteristics, fail-
ures, and TCP congestion control behavior, it is not surpris-
ing that there have been a significant number of distinct pro-

posed system architectures, each with a particular variation
on the problem statement and with a particular set of bene-
fits [2, 3, 4, 5, 9, 11, 12, 16, 18, 19].

Perhaps surprisingly, however, there has not been a pre-
cise formulation of the underlying problem that is being ad-
dressed and, hence, no understanding of how a particular so-
lution compares to calculated upper/lower bounds (depend-
ing on the exact formulation) for the problem, either exact
or approximated based on available heuristics. For example,
in our own work on comparing the performance of a variety
of content distribution systems under a variety of emulated
and deployed network settings [10], we had difficulty argu-
ing how well we were doing relative to how well any system
could perform.

Thus, the goal of this paper is to formally define the Over-
lay Network Content Distribution (OCD) problem and show
how our problem formulation can be generalized to a wide
range of existing and potential scenarios being actively pur-
sued by the research and development community. We also
show that the problem is NP-complete and, that while it is
similar to a number of well-known problems in the theory
community, details of the deployment scenario make it dis-
tinct from the problems of which we are aware. In partic-
ular, nodes may duplicate individual items along multiple
output links and the distribution structure is not necessarily
restricted to a tree but may take on an arbitrary mesh of in-
terconnectivity over an underlying graph.

As a starting point for understanding the behavior of this
problem, we develop a simple algorithm and an integer pro-
gramming formulation to calculate optimal behavior for small
graphs with few files. We also develop a global heuristic
to provide approximate answers for larger problem settings
and on-line heuristics that are more amenable to translation
to deployment in realistic large-scale network environments.
Finally, we calculate bounds (not necessarily tight) to pro-
vide a rough notion of the quality of our local and global
heuristics in a range of scenarios.

We hope that our formulation of the Overlay Network Con-
tent Distribution problem will lead to subsequent approxi-
mation algorithms that can, for instance, guarantee approx-
imations with bounded error in realist settings, perhaps by
mapping the problem to other known settings. Further, we
believe that our findings regarding the behavior of a vari-
ety of heuristics have potential implications for how next-
generation overlay content distribution networks should be
architected and deployed as well as whether significant per-
formance improvements are still available relative to a given
implementation and system architecture.

The rest of this paper is organized as follows. We begin in
Section 2 with a survey of related work. Section 3 formally
defines the problem, as well as providing hardness results.
We consider the on-line formulation in Section 4. Section 5
details the performance results of our heuristics. We con-
clude in Section 6 with a brief enumeration of open problems
in this space.

2. RELATED WORK

Overlay content distribution has received a great deal of
attention over the past few years. In general, overlay net-
works construct a single distribution topology—traditionally
a spanning tree, but more recently meshes have come into
favor—which they then use to forward traffic from source
to destination. Systems have focused, with varying degrees,
on constructing topologies that reduce bandwidth consump-
tion, distribution latency, or data loss. We are not considering
lossy channels or node failures here, so we will restrict our
survey to systems that focus on the first two.

Overcast [9], one of the first overlay systems proposed, at-
tempts to construct a bandwidth-optimized overlay tree. An
incoming node joins at the source and probes for acceptable
bandwidth under one of its siblings to descend down the tree.
Obviously, a node’s bandwidth and reliability is determined
by characteristics of the network between itself and its par-
ent.

In an attempt to improve distribution speed, Narada [5]
first constructs a bandwidth and latency-sensitive mesh be-
tween all nodes based on a k-spanner graph. Using the inter-
node characteristics gathered from the mesh, Narada selects
per-source spanning trees for forwarding data. Snoeren et
al. [18] ignore bandwidth costs, and focus on reliable low-
latency delivery by constructing a mesh consisting of k edge
and node disjoint spanning trees. Young et al. [19] construct
an overlay mesh of k edge-disjoint minimum cost spanning
trees (MSTs). The algorithm for distributed construction of
trees uses overlay link metric information such as latency,
loss rate, or bandwidth.

SplitStream [3] aims to construct an interior-node disjoint
forest of k Scribe [15] trees on top of a scalable peer-to-
peer substrate [14]. The content is split into k stripes, each
of which is pushed along one of the trees. This system ac-
counts for physical inbound and outbound link bandwidth of
a node to determine the number of stripes a node can for-
ward. In CoopNet [12], the source of the multimedia content
computes locally random or node-disjoint forests of trees in
a manner similar to SplitStream. The trees are primarily de-
signed for resilience to node departures, with network effi-
ciency as the second goal. Similarly, the FastReplica [4] file
distribution system alleviates the overlay tree’s problem of
reliance on a single node for high bandwidth dissemination.
The source of a file divides the file into n blocks, sends a dif-
ferent block to each of the receivers, and then instructs the
receivers to retrieve the blocks from each other.

A popular alternative to structured content distribution over-
lays, BitTorrent [2] uses peer-to-peer communication to dis-
tribute large files on the Internet. Incoming nodes rely on
a centralized tracker to provide them with a list of existing
system participants and system-wide block distribution for
random peering. No attempt is made, however to provide

optimal bandwidth or latency guarantees. Slurpie [16] im-
proves upon the performance of BitTorrent by using an adap-
tive downloading mechanism to scale the number of peers a
node should have.

Kostić et al. recently proposed an improved version of
Bullet [10, 11] that outperforms previous overlay systems in
terms of download time. In doing so, they consider a number
of engineering tradeoffs common to overlay systems. Some-
what surprisingly, however, neither they nor anyone else that
we are aware of have rigorously formulated or analyzed the
underlying graph problem. The file distribution problem is
related, however, to several classical problems in operations
research.

Perhaps the most fundamental is the well-known trans-
portation problem, in which goods are manufactured in par-
ticular locations, and need to be delivered to consumers in
other locations. Given the cost of transportation between any
two cities, the challenge is to find an assignment of suppliers
to consumers of minimal cost that satisfies demand.

The transportation problem is a specific instance of a class
of problems known as network flow. Network flow consid-
ers a weighted, directed graph with a source and a sink, and
computes the maximum flow rate from source to sink sub-
ject to edge capacities (weights). Many generalizations exist,
including multi-commodity flows, and generalized network
flow, where edges are allowed to have a gain: the rate of the
flow leaving an edge is a linear factor of the flow entering
the edge. The defining constraint of a network flow problem,
however, is the notion of flow conservation: the sum of the
flow leaving a node must be exactly equal to the sum of the
flow entering the node. This is clearly not the case in our sit-
uation, as incoming data can be both stored1 and duplicated.

The overlay content distribution problem is further com-
plicated by the fact that data is not quite like water: each data
element is distinct, and a node cannot forward a particular
piece of data until it has been received. Similar precedence
relations have been considered in the context of the classical
machine scheduling problem, where the task is to complete a
given set of jobs in the shortest amount of time, subject to re-
lease constraints. The problem has been extended to network
scheduling, where each job originates at some network node
but can be processed at other nodes in the network. Moving a
job between machines incurs some latency however, and the
goal is to reduce total completion time [13]. Unfortunately,
there is no notion of job duplication, or a particular affinity
of jobs to machines.

The family of work most closely related to ours is likely
the study of online routing [1] and admission control, but
these problems assume a circuit-like construct, where an edge
can be assigned some number of circuits at a time, and the
task is to schedule given calls as efficiently as possible. Again,
there is no notion of storage or duplication. Recent work
by Goel et al. studies the so-called online FTP problem [7],
which is an instance of the more general set scheduling prob-
lem. Unfortunately, they too consider flows as single-source,
single-receiver, and do not deal with the notion of replica-
tion.

1We note that storage is not hard to model in the traditional network flow sense: simply

add self-edges of infinite capacity at each node.

3. PROBLEM DESCRIPTION

We begin by describing the generalized system model we
will use to formulate the overlay content distribution prob-
lem and its variants. We assume, without loss of generality,
that all content is in the form of unit-sized tokens; files can be
represented as sets of tokens. Tokens start out at one or more
nodes (senders), and the goal is to transfer them to a differ-
ent set of nodes (receivers). For the purposes of this paper,
we will assume all nodes in the network are overlay partici-
pants; hence, they can store, forward, and duplicate tokens at
will. We also assume the network is private: link capacities
are constant, no tokens are lost, and latency does not change
with load—any number of tokens, up to the capacity of the
link, can be transferred across a link in unit time.

3.1 General model

The input is a simple, weighted directed graph G = (V, E),
a set of tokens T , and two functions h : V → 2T and
w : V → 2T . Here, 2T denotes the power set of T . Let
c : E → N denote the function which gives the weight (ca-
pacity) of each arc. (Note multi-arcs can be represented as a
single arc whose capacity is the sum of the multi-arcs.) The
h (have) function denotes the set of tokens that each vertex
in the graph initially possesses. The w (want) function in-
dicates which tokens each vertex would like to eventually
possess.

We will define a move as an assignment of a token to
an arc, and a timestep to be a set of simultaneous moves.
A distribution schedule (or simply schedule) proceeds as a
sequence of timesteps. At each timestep, the number of to-
kens that may be assigned to an arc is limited by its capacity
c(u, v), and a token may only be sent by a vertex if that ver-
tex possesses a copy of the token at the start of the timestep.

More formally, let t ∈ N denote the length of a schedule
(number of timesteps). The schedule is defined by a collec-
tion of functions si : E → 2T , where 0 ≤ i < t; the function
si gives the set of tokens that are sent across arc (u, v) dur-
ing timestep i. For a schedule to be valid, we must be able to
construct a set of functions pi : V → 2T for 0 ≤ i ≤ t that
specify which tokens a vertex possesses at each timestep.
The schedule is subject to the following restrictions:

pi(v) =
⋃

u∈V :
(u,v)∈E

pi−1(v) ∪ si−1(u, v)

p0(v) = h(v) (Initial assignment)
|si(u, v)| ≤ c(u, v) (Capacity)
si(u, v) ⊆ pi(u) (Possession)

A distribution schedule is said to be successful if w(v) ⊆
pt(v) for all vertices v ∈ V . There are two obvious in-
teresting characteristics of successful schedules: how many
timesteps they contain, and their total bandwidth consump-
tion (how many tokens are transferred across an arc; this is
equivalent to the number of moves).

3.2 File distribution times

Define the Fast Overlay Content Distribution (FOCD) prob-
lem as determining a satisfying distribution schedule of min-
imum length, τ . The problem is satisfiable if there exists

some τ for which this is true. The Decisional Fast Overlay
Content Distribution (DFOCD) problem takes as input a Fast
Overlay Content Distribution problem and an integer τ∗, and
determines whether the Overlay Content Distribution prob-
lem is satisfiable in τ∗ steps. Here, τ can be thought of as the
maximum completion time over all downloads. This metric
is often referred to as makespan in the scheduling literature.

Before proceeding to other metrics, we briefly consider the
difficulty of FOCD. For the purposes of discussing problem
sizes, let n = |V | and m = |T |.

THEOREM 1. If an instance of FOCD is satisfiable, it is
satisfiable in m(n − 1) moves.

PROOF. Suppose we are given some successful run for an
FOCD instance. No useful work is accomplished if a vertex
receives a copy of a token it already possesses, so any such
moves can be removed. There are n vertices and m tokens,
each of which is initially possessed by at least one vertex, so
there are only m(n − 1) possible moves that might be made
after our above cleanup.

Corollary: Any satisfiable instance of FOCD may be satis-
fied in m(n− 1) steps (in the worst case, only a single move
is made at each timestep).

THEOREM 2. If an instance of FOCD is satisfiable, then
there exists a successful run that can be described in O(nm ·
(log n + log m)) bits.

PROOF. This follows from the previous theorem. As re-
marked, there is a schedule consisting of at most m(n − 1)
moves. Each move can be described by listing a token and
the arc to move it across. This information can be encoded
with 2 log n+logm bits (there are at most n(n−1) arcs). The
sequence of moves can be segmented into timesteps by giv-
ing a list of the number of moves that make up each timestep,
in log(nm) bits since there are no more than m(n−1) moves
per timestep. In total, the description takes O(nm(log n +
log m)) bits as claimed.

THEOREM 3. FOCD is NP-complete.

PROOF. We need to show both that FOCD is NP-hard,
and that a solution to FOCD can be verified in polynomial
time. For any instance (G, T, h, v) of FOCD, we saw above
that the size of a solution to the FOCD problem consists of
no more than O(nm(log n+log m)), which is polynomial in
n and m. It is easy to see that validity of each move (that the
token is present at the source) can be tested in polynomial
time, as can arc capacity and the starting and ending condi-
tions. In the appendix, we show FOCD is NP-hard by con-
structing a reduction for the Dominating Set problem, which
is known to be NP-complete.

3.3 Bandwidth constraints

Rather than focusing entirely on speed, we can instead
consider the minimum bandwidth necessary to distribute the
tokens to the sinks. If we consider sending one token along
one edge to take one unit of bandwidth, then finding the
minimum-bandwidth distribution schedule is only a small
modification: that is, find a distribution schedule subject to
the same constraints as before, but try to minimize the num-
ber of moves ∑

0≤i<t
(u,v)∈E

|si(u, v)|

h = {0}

w = {0}

w = {0}

w = {0}

Figure 1: A graph in which minimizing the time taken
and the bandwidth required are at odds. The minimum
time schedule takes 2 timesteps and uses 6 units of band-
width; a minimum bandwidth schedule uses 4 units of
bandwidth but takes 3 timesteps.

rather than the number of timesteps t. We call this problem
the Efficient Overlay Content Distribution (EOCD) problem.
Note that simultaneously minimizing the number of timesteps
and the bandwidth used is not always possible; the graph in
Figure 1 illustrates such a case.

It is straightforward to see that EOCD reduces to the gen-
eralized Steiner tree problem, which is known to be NP-
complete [8]. To distribute any token using the minimum
bandwidth is to distribute it along the min-cost tree from
its source(s) to all nodes that want that token with unit-cost
edges. If we do not care about number of timesteps, then
optimal bandwidth can be achieved by distributing each to-
ken serially over the Steiner tree to the nodes that want it.
(It is a small adaptation to the traditional Steiner tree prob-
lem to handle the case where a token is initially at multi-
ple vertexes: augment the graph with 0-cost arcs between all
vertices that initially have the token). Therefore it is a series
of Steiner tree problems that, in the worst case, takes 2nm

timesteps.

3.4 Integer programming formulation

We now construct a time-indexed integer program that at-
tempts to provide a solution to EOCD. First, extend graph
G by adding a self-arc at every vertex. That is, E′ = E ∪⋃

v∈V (v, v). Create a variable xi
(u,v)t for each arc (u, v) and

token t at timestep i. Let wvt = 1 if t ∈ w(v), 0 otherwise.
We are now interested in the solution to:

Min
∑

0<i≤τ
(u,v)∈E,t∈T

xi
(u,v)t

subject to:

xi
(u,v)t ≤

∑

v∈V :
(u,v)∈E′

xi−1
(u,v)t

∑

t∈T

xi
(u,v)t ≤ c(u, v) ∀i ≤ τ, ∀(u, v) ∈ E

xτ+1
(v,v)t ≥ wvt

xi
(u,v)t ∈ {0, 1}

where the initial conditions are given by x0
(v,v)t = 1 if t ∈

h(v), 0 otherwise. It is easy to see that any solution to the IP
is a solution to EOCD. For any solution to IP, define

pi(v) =
⋃

t:xi+1
(v,v)t

=1

t, si(u, v) =
⋃

t:xi
(u,v)t

=1

t.

In realistic situations, we will not be interested solely in
minimizing time or bandwidth, but rather to find some bal-
ance. One such approach is to search for a bandwidth-optimal
solution subject to the constraint that the time be no more
than some constant factor of the optimal time, or vice versa
(time-optimal subject to a bandwidth constraint). Formaliz-
ing this hybrid goal is a subject of ongoing work.

4. ONLINE APPROXIMATION

Our file distribution model is not an entirely realistic model
for how a file might be distributed. In many cases, we can-
not expect to know the entire state of the system at the start,
so as to construct a global plan for which tokens should be
sent where. A more realistic model is to assume that each
node makes a decision about which tokens to send at each
timestep based only on knowledge it has acquired from its
neighbors.

Hence, we now consider an on-line algorithm that attempts
to solve the more realistic problem. In this case, information
about which tokens are available and requested is all avail-
able at the start of the computation, though not known by ev-
ery node. We ask for an algorithm that can run at each node,
making only local decisions that will eventually ensure that
all tokens are distributed where needed. We also care about
how close such an algorithm can come to achieving the op-
timum distribution time.

4.1 Local knowledge

We formulate the Local-knowledge Overlay Content Dis-
tribution (LOCD) problem to capture this idea. The basic
problem is as before, but we formalize the notion of infor-
mation that can be known by each vertex at any timestep,
and require that any algorithm only make decisions based
on this local information.

Let ki(v) denote the knowledge of vertex v at the start
of timestep i. We require that k0(v) be computed by a de-
terministic function of the list of neighbors of vertex v, the
capacity of each edge incident upon v, h(v), and w(v). (Op-
tionally, we might expand the initial knowledge of a vertex
to include additional information about the graph topology,
or other similar information.)

The decision of which tokens should be sent along which
arcs out of a vertex v must be made entirely using current
knowledge of a vertex. That is, at timestep i, for any edge
(v1, v2), si(v1, v2) must a function only of ki(v). If we wish
to allow randomized algorithms, si may be a function of
ki(v) and the output of a random number generator, but no
other information.

The knowledge of each vertex may change at each timestep
as it learns information from its neighbors. We require that
ki+1(v) be computable by a deterministic function that takes
as input only:

• Previous knowledge: ki(v).

• Knowledge acquired from neighbors: ki(u) where ei-
ther (u, v) ∈ E or (v, u) ∈ E. We allow information
to travel bidirectionally along an edge, since even if an
edge is only unidirectional, it may be useful to send
“want” information back to the sender.

• If a randomized algorithm is used, the behavior of node
v and its neighbors at the previous timestep. (For deter-
ministic algorithms, this is not needed as the behavior
of each vertex on the previous timestep can be com-
puted from knowledge received from it.)

Questions that may be asked about the local-decision prob-
lem include: For a given local-decision algorithm, will all to-
kens eventually be distributed to vertices that want them? If
so, is there a bound that can be given for the time taken, rel-
ative to the optimal solution (with global knowledge)? Can
any lower bounds for the additional time required be made
that are independent of the algorithm chosen?

4.2 Nonoptimality in the local case

The performance of on-line algorithms is typically mod-
eled using competitive analysis [17], where the performance
of the on-line variant is compared to that of an optimal pre-
scient algorithm on any sequence of events (in our case, set
of tokens T , sources h(v), and receivers w(v)).

We observe that it will not, in general, be possible for a
local-decision algorithm to perform as well as the optimal
solution to FOCD. It is possible for an on-line algorithm to
always perform within an additive factor of the diameter of
the graph, however, since with this many steps at the start
of computation, full information about the state of the graph
can be propagated to each vertex. Armed with this knowl-
edge, each vertex can compute an optimal solution for the
entire graph (deterministically), then follow this schedule to
distribute the tokens. We are hopeful more sophisticated ap-
proximations may exist, but it is clear their efficiency must
depend on the characteristics of the graph.

THEOREM 4. There exists no c-competitive on-line algo-
rithm for FOCD for any fixed constant c.

Due to space constraints, we provide only a brief sketch of
the proof. Consider the situation of two maximally-separated
vertices in which one has tokens that the other requires. If
the sender has many tokens that the receiver does not want,
then simply sending out tokens in the hopes they are useful
cannot speed up the solution beyond waiting to hear knowl-
edge of which tokens are needed. A similar argument can be
made for the EOCD problem, but the bound depends on the
bandwidth cost of sending knowledge.

5. EVALUATION

Given the complexity of the offline problem and the lack
of provably competitive online approximation algorithms,
we instead consider the empirical performance of several
heuristics. We design both global (offline) and local (online)
heuristics, and simulate their performance over a number of
interesting cases.

5.1 Heuristics

We begin by considering several straight-forward heuris-
tics for the online problem.

Round Robin The round-robin strategy simply sends the
circular queue of tokens over each link (skipping to-
kens it does not have). This is the simplest of the heuris-
tics, and can easily be computed locally as no informa-
tion other than the set of tokens kept locally and the

last token sent to each peer. While simple, this strategy
suffers from sending tokens multiple times to peers and
of duplicating sends that other peers have also sent.

Random We next move on to a basic random heuristic. In
this heuristic we assume that peers have current knowl-
edge about the tokens known by each of their peers at
the beginning of the turn. Each vertex then indepen-
dently chooses at random which tokens to send over
the edge. How a vertex would know this information
is an implementation problem, but it is reasonable to
believe that peers can communicate this information
at the granularity of a turn with good accuracy. Further
exploration may also relax this requirement, instead al-
lowing peers to know about the state ‘k’ turns ago of
their peers.

Local The design of our local heuristic is based on the com-
monly proposed notion of “rarest random.” Rarest ran-
dom is often used in multicast flooding because, by
diversifying the set of tokens known by various ver-
tices, they can share them with each other for increased
bandwidth. To effect rarest random, we therefore have
to make some assumption about a vertex’s knowledge
of rarity. For simplicity, we have assumed that at every
time step, the step’s initial aggregate need and knowl-
edge are distributed to all vertices. This could be im-
plemented by a multicast tree, but the details of such
are ignored at present, though we recognize the poten-
tial need to support a delay in the aggregate knowledge
known. To avoid the problem where two peers send the
same “rare” block in the same direction, our heuristic
subdivides a vertex’s needs to their peers. This is anal-
ogous to a request for blocks. A final note about rarest
random is that prior work typically considers all re-
ceivers wanting all files, so only one aggregate vector
is needed. To handle the general problem, we distribute
both aggregates of what vertices want and what they do
not have.

Bandwidth One problem with the aforementioned techniques
is that they are constructed with no concern for the
bandwith they consume, and are always content to flood
data across any link where it can increase knowledge.
As a result, we developed an online heuristic, albeit
with global knowledge, which more cautiously adds
tokens to a move. This bandwidth heuristic is designed
on the principle that each vertex shall obtain from its
peers in its next turn only tokens that it will eventually
use. We then determine whether a vertex will use the
token by i) if it needs the token, or ii) if it is the clos-
est one-hop-knowledge vertex to a node that needs it.
A one-hop-knowledge vertex is one which for a given
token, could obtain the token in a single turn given the
opportunity.

Turning to global techniques, we consider the general case
of the local heuristic described above.

Global In addition to the aggregate vector, vertices have the
ability to coordinate across each other at each timestep
to ensure that they maximize diversity. This also al-
leviates the need for vertices to request tokens from

other vertices since there is global coordination. Our
implementation of this technique applies a greedy se-
lection algorithm over the set of tokens and edges, and
is thus not guaranteed to maximize diversity. This de-
cision was made to allow the heuristic to function at
large scale, and we are currently considering ways to
improve our greedy algorithm.

In the offline case, regardless of the algorithm used to
compute a schedule, once a satisfing schedule is found, we
can go back and prune any unnecessary moves, reducing
the bandwidth consumption. Pruning first removes all moves
that deliver a token repeatedly to the same vertex, and then
works back from the last move to the first, removing moves
that deliver tokens which were never used by the destination
vertex.

Finally, in an effort to efficiently compute performance
bounds for our algorithms on large graphs, we develop lower
bound approximations for both remaining timesteps and re-
maining bandwidth. The remaining bandwidth algorithm we
use is very simple, counting every token that is wanted but
not known at each vertex. Logically this represents the band-
width that would be consumed if the schedule could be com-
pleted in a single timestep. The remaining move count al-
gorithm is a bit more complicated. We define Mi(v) as the
number of moves vertex v would need to retrieve all to-
kens if all tokens within a radius of i could be retrieved in i
timesteps. This boils down to i + |T ci(v)|/indegree, where

|T ci(v)| is the number of tokens outside the closure around v
of a radius of i. We then take the maximum of all values of
i. While not a tight bound, this approximation can account
both for tokens that are too far away to be retrieved quickly
and tokens that cannot be retrieved fast enough due to a lim-
ited incoming capacity. Additionally, we also consider as a
special case looking ahead one timestep, since we can im-
mediately compute how many tokens can be retrieved in a
single timestep.

5.2 Single file

We begin our evaluation by applying our heuristics to single-
file content dissemination, considering how graph size and
receiver density affect distribution. For the single-file case
we consider both random graphs and transit-stub graphs gen-
erated by the GT-ITM topology generator. For the single file
results, we are considering a file of 200 tokens, and edge
weights chosen randomly between 3 and 15 tokens. These
assignments are arbitrary, but chosen to capture the variety
of real vertex connectedness.

Graph size. First we consider the number of moves and
bandwidth used when a single source distributes a file to all
vertices. In this case we run with graphs from 20 to 1000
vertices, randomly adding edges with uniform probability
2 lnn/n. At this probability, the number of edges in the graph
grows as O(n lnn), which maintains reasonable connected-
ness. We generate several instances of the graph for each size
graph, and repeat our heuristics 3 times2 for each graph.

Figures 2 and 3 show that the number of moves needed
does not correlate with the number of vertices. The number
of moves taken for any particular graph seems to be more

2The variation of the interesting heuristics is very small, typically at most 1 move.

dependent upon the actual connectivity of the graphs and,
in particular, their random edge weights. As mentioned, we
have chosen the edge connection threshold to keep the con-
nectivity at a level to support even distribution as graph size
grows. On the other hand, the bandwidth consumed grows
roughly linearly with the number of vertices of the graph.
We also clearly see that the round robin technique, though
successful, is much slower than the other techniques that ac-
count in one way or another for what their peers have, and
that the bandwidth heuristic is slower than the others when
all nodes want everything, and also does not demonstrate any
savings when compared with random. Furthermore, from the
perspective of the number of moves and bandwidth, random
performs within a constant factor of the smarter heuristics.
This case of all vertices wanting all files is unique however,
since no bandwidth is wasted as long as tokens aren’t re-sent.

Receiver density. The single-source, all receiver problem
is the most common one from the systems currently being
built. Its inclusion demonstrates how though flooding is a
robust solution to disseminate content, due to the circum-
stances it is exempt from bandwidth waste. But we expect
that when flooding to a set of peers who do not want the file
it will use far more bandwidth than necessary. We measured
this using a single source, single file distribution over 200
nodes that were added to the want set depending on their
randomly generated score. We performed the same exper-
iment with both random and transit-stub graphs, but have
only included random since as before it is representative of
both.

Figure 4 shows the result of this experiment both in terms
of bandwidth and number of moves. On the x-axis is the
score threshold that we used to add the vertices to want set
with. What we see from these resuls is that random contin-
ues to do well with respect to number of moves, but is now
roughly double the other heuristics in bandwidth consumed.
Also we note that the bandwidth consumed and the num-
ber of moves is roughly constant for the flooding heuristics
so they are not taking advanage of the smaller number of
vertices that want the tokens.. By constrast, the bandwidth
optimizing heuristic, which is slower than the others by a
small percentage, takes much less bandwidth than all heuris-
tics when the threshold is small, and continues to use less
bandwidth than random until the threshold returns to 1. Fi-
nally, the pruned bandwidth of the heuristics is roughly opti-
mal, and demonstrates how the flooding runs nearly the same
regardless of how many nodes want the file.

5.3 Multiple files

Number of files. The multi-file scenario was developed by
starting with 200 vertices and 512 tokens at a single source.
Initially, all vertices wanted all 512 tokens (1 file). Then, we
subdivide both the file and the vertices, and then each set
of 100 nodes wanted 1 of the 2 files, containing 256 tokens
each. This subdivision process is repeated until there are 128
files of 4 tokens each which are wanted by 1 or 2 vertices
each. What remains constant across this graph is the number
of tokens that need to be distributed from the single source.
As before, the edge weights are chosen at random from 3 to
15. Given our earlier observation about transit-stub graphs,
we continue to present results from random graphs only.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400 500 600 700 800 900 1000

N
u
m

b
e
r

o
f
m

o
v
e
s

Graph Size (number of vertices)

Round Robin
Random

Bandwidth
Local

Global
Lower Bound

(a) Moves

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0 100 200 300 400 500 600 700 800 900 1000

B
a

n
d

w
id

th
 c

o
n

s
u

m
e

d
 (

in
 t

o
k
e

n
s
-e

d
g

e
s
)

Graph Size (number of vertices)

Round Robin
Random

Bandwidth
Local

Global
Pruned

Lower Bound

(b) Bandwidth

Figure 2: Moves and Bandwidth as a function of graph size. Single source and file to all receivers on a random GT-ITM
graph.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700 800 900 1000

N
u
m

b
e
r

o
f
m

o
v
e
s

Graph Size (number of vertices)

Round Robin
Random

Bandwidth
Local

Global
Lower Bound

(a) Moves

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 100 200 300 400 500 600 700 800 900 1000

B
a

n
d

w
id

th
 c

o
n

s
u

m
e

d
 (

in
 t

o
k
e

n
s
-e

d
g

e
s
)

Graph Size (number of vertices)

Round Robin
Random

Bandwidth
Local

Global
Pruned

Lower Bound

(b) Bandwidth

Figure 3: Moves and Bandwidth as a function of graph size. Single source and file to all receivers on a transit-stub
GT-ITM graph.

In Figure 5, we see that after an initial large descent in
number of moves due to the number of tokens being sent to
a bottleneck vertex, nearly all heuristics level off. Given that
their bandwith consumption is also roughly even, this sug-
gests that once again they are performing the same distribu-
tion regardless of how the files are broken up (i.e., sending
all tokens to all nodes). Furthermore, random continues to
perform within a constant factor of the other flooding heuris-
tics, though its separation is now more pronounced. Here,
only the bandwidth heuristic varies and improves as the files
need to go in more constrained directions, though even at its
best it still takes as many turns on this graph as the flooding
protocols. However, bandwidth is substantially lower, track-
ing both the lower bound as well as the pruned versions of
the flooding heuristics.

Multiple senders. The multiple-sender is an adaptation of
the number of files scenario above where the source of each
file was randomly chosen from the set of vertices which did
not want it. Figure 6 closely mimics the Figure 5, so we can
observe the same trends whether the files begins at a sin-

gle place or multiple places. This also demonstrates that al-
though in the distributed file case the number of tokens per
source vertex have decreased the same trend in heuristics oc-
curs.

6. CONCLUSION

In this paper, we formalize the overlay network content
distribution problem, a problem with applicability to a wide
variety of recent efforts. Currently, efforts into building faster,
more reliable, lower latency, etc. overlays are limited by a
lack of understanding of the bounds available in a given sce-
nario for a given problem formulation. We show that the
problem is NP-complete and present a number of global and
online heuristics for a number of problem variants and net-
work topologies. Of course, there are a number of interesting
problem variants not explored by our work. We list several
here.

Changing network conditions. We can consider that the
capacity of each arc, or even the set of arcs themselves changes
between turns. By restricting the types of possible changes,

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
u
m

b
e
r

o
f
m

o
v
e
s

Receiver density (probability threshold)

Round Robin
Random

Bandwidth
Local

Global
Lower Bound

(a) Moves

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

B
a
n
d
w

id
th

 c
o
n
s
u
m

e
d
 (

in
 t
o
k
e
n
-e

d
g
e
s
)

Receiver density (probability threshold)

Round Robin
Random

Bandwidth
Local

Global
Pruned

Lower Bound

(b) bandwidth

Figure 4: Moves and Bandwidth as a function of file density. Single source and file to subset of receivers on a random
GT-ITM graph.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140

N
u
m

b
e
r

o
f
m

o
v
e
s

Number of files

Round Robin
Random

Bandwidth
Local

Global
Lower Bound

(a) Moves

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 20 40 60 80 100 120 140

B
a
n
d
w

id
th

 c
o
n
s
u
m

e
d
 (

in
 t
o
k
e
n
-e

d
g
e
s
)

Number of files

Round Robin
Random

Bandwidth
Local

Global
Pruned

Lower Bound

(b) Bandwidth

Figure 5: Moves and Bandwidth as a function of number of files. All receivers want exactly one file subdivided from the
same set of tokens. Run on a random GT-ITM graph.

this could model cross traffic, dynamic channel conditions,
intermittent mobility, or even denial-of-service attacks. One
interesting scenario would be to construct an on-line algo-
rithm robust to adversarial network conditions and to com-
pare its behavior to one with access to a network oracle that
has perfect knowledge of current and future network condi-
tions.

Encoding. In our problem, we consider a static set of to-
kens. While we admit duplication of tokens, no new types
of tokens are minted within the network. In the face of lossy
channels, it may be useful to introduce redundancy into the
system by generating multiple sub-tokens, only a subset of
which are necessary to reconstruct the original token. While
such coding of the content could introduce significant ad-
ditional degrees of freedom in formulating viable solutions,
determining bounds may become more difficult as well.

Arrivals and departures. In any real system, participants
are unlikely to join simultaneously. Instead, the set of nodes
in the network will vary with time, and the content schedule

should adapt to the changing distribution of token demand.
This variant may be viewed as an instance of the “Changing
network conditions” with capacities to and from particular
nodes going from zero to non-zero and back depending on
whether a node is arriving or departing.

Realistic topologies. In our work, we consider only the
overlay topology, and not the physical links making up our
logical links. We are likely ignoring the reality that many of
our logical links share the same physical link, hence their
capacities are not independent. To properly model this, we
need to take into account physical links and routers, which
do not participate in overlay forwarding, instead simply for-
warding the packets along to a specified overlay node.

Acknowledgments

This paper benefited greatly from discussions with Dejan
Kostić, Kirill Levchenko, Sriram Rambahadran, and Kashi
Vishwanath. We are indebted to Michelle Panik for her edi-
torial assistance.

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100 120 140

N
u
m

b
e
r

o
f
m

o
v
e
s

Number of files

Round Robin
Random

Bandwidth
Local

Global
Lower Bound

(a) Moves

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0 20 40 60 80 100 120 140

B
a
n
d
w

id
th

 c
o
n
s
u
m

e
d
 (

in
 t
o
k
e
n
-e

d
g
e
s
)

Number of files

Round Robin
Random

Bandwidth
Local

Global
Pruned

Lower Bound

(b) Bandwidth

Figure 6: Moves and Bandwidth as a function of number of files. All receivers want exactly one file subdivided from the
same set of tokens sourced at random vertices. Run on a random GT-ITM graph.

7. REFERENCES
[1] AWERBUCH, B., AZAR, Y., AND PLOTKIN, S.

Throughput competitive online routing. In IEEE
Symposium on the Foundations of Computer Science
(1993), pp. 32–40.

[2] Bittorrent. http://bitconjurer.org/BitTorrent.
[3] CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M.,

NANDI, A., ROWSTRON, A., AND SINGH, A.
Splitstream: High-bandwidth Content Distribution in
Cooperative Environments. In Proceedings of the 19th
ACM Symposium on Operating System Principles
(October 2003).

[4] CHERKASOVA, L., AND LEE, J. FastReplica:
Efficient Large File Distribution within Content
Delivery Networks. In 4th USENIX Symposium on
Internet Technologies and Systems (March 2003).

[5] CHU, Y., RAO, S. G., SESHAN, S., AND ZHANG, H.
Enabling conferencing applications on the internet
using an overlay multicast architecture. In ACM
SIGCOMM (Aug. 2001).

[6] GAREY, M. R., AND JOHNSON, D. S. Computers
and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company,
1979.

[7] GOEL, A., HENZINGER, M. R., PLOTKIN, S., AND

TARDOS, E. Scheduling data transfers in a network
and the set scheduling problem. J. Algorithms 28, 2
(2003), 314–332.

[8] HWANG, F. K., RICHARDS, D. S., AND WINTER, P.
The Steiner Tree Problem, vol. 53. North Holland,
1992.

[9] JANNOTTI, J., GIFFORD, D. K., JOHNSON, K. L.,
KAASHOEK, M. F., AND JAMES W. O’TOOLE, J.
Overcast: Reliable Multicasting with an Overlay
Network. In Proceedings of Operating Systems Design
and Implementation (OSDI) (October 2000).

[10] KOSTIĆ, D., BRAUD, R., KILLIAN, C.,
VANDEKIEFT, E., ANDERSON, J. W., SNOEREN,
A. C., AND VAHDAT, A. Maintaining high bandwidth
under dynamic network conditions. In Proceedings of

the USENIX Annual Technical Conference (Anaheim,
CA, Apr. 2005).

[11] KOSTIĆ, D., RODRIGUEZ, A., ALBRECHT, J., AND

VAHDAT, A. Bullet: High bandwidth data
dissemination using an overlay mesh. In Proceedings
of the 19th ACM Symposium on Operating System
Principles (SOSP) (Bolton Landing, NY, Oct. 2003).

[12] PADMANABHAN, V. N., WANG, H. J., AND CHOU,
P. A. Resilient Peer-to-Peer Streaming. In
Proceedings of the 11th ICNP (Atlanta, Georgia,
USA, 2003).

[13] PHILLIPS, C., STEIN, C., AND WEIN, J. Task
scheduling in networks. SIAM J. Discrete Math 10, 4
(Nov. 1997), 573–598.

[14] ROWSTRON, A., AND DRUSCHEL, P. Pastry:
Scalable, Distributed Object Location and Routing for
Large-scale Peer-to-Peer Systems. In
Middleware’2001 (November 2001).

[15] ROWSTRON, A., KERMARREC, A.-M., CASTRO,
M., AND DRUSCHEL, P. SCRIBE: The Design of a
Large-scale Event Notification Infrastructure. In Third
International Workshop on Networked Group
Communication (November 2001).

[16] SHERWOOD, R., BRAUD, R., AND

BHATTACHARJEE, B. Slurpie: A Cooperative Bulk
Data Transfer Protocol. In Proceedings of INFOCOM
(2004).

[17] SLEATOR, D. D., AND TARJAN, R. E. Amortized
efficiency of list update and paging rules.
Communications of the ACM 29, 2 (1985), 202–208.

[18] SNOEREN, A. C., CONLEY, K., AND GIFFORD,
D. K. Mesh based content routing using XML. In
Proceedings of the 18th ACM Symposium on
Operating System Principles (SOSP) (Banff, Canada,
Oct. 2001).

[19] YOUNG, A., CHEN, J., MA, Z., KRISHNAMURTHY,
A., PETERSON, L., AND WANG, R. Y. Overlay mesh
construction using interleaved spanning trees. In IEEE
INFOCOM (2004).

G

t

s

G

G’

Figure 7: A graph in the Dominating Set problem and
the corresponding reduction to FOCD.

APPENDIX

THEOREM 5. The Fast Overlay Content Distribution prob-
lem is NP-hard.

PROOF. We give a reduction from the Dominating Set
problem, which is known to be NP-complete [6]. Briefly,
the Dominating Set problem is to determine, given a graph
G = (V, E) and integer k, whether there exists a set D ⊆ V
of size at most k such that every vertex in V −D is adjacent
to some vertex in D.

Given G = (V, E) and k, we construct a FOCD problem
which will decide whether the graph G has a dominating set
of size at most k. Let n = |V |. We will distribute two files,
consisting of tokens {0} and {1, 2, . . . , n − k}. The graph
for file distribution will consist of 2n + 2 vertices; if V =
{v1, . . . , vn}, let the vertices in the file distribution problem
be called {s, t, v1, . . . , vn, v′1, . . . , v

′
n} = {s, t} ∪ V ∪ V ′.

At the start, vertex s contains copies of all tokens and no
other vertex has any tokens. Vertex t wants tokens {1, . . . , n−
k}, and every other vertex v′i wants {0}. The vertices in V
act as intermediaries in distributing the tokens. There are
arcs s → vi of capacity one for each vi ∈ V , and simi-
larly arcs vi → t for each vi. Finally, there is an arc vi → v′i
for every vi ∈ V , and vi → v′j for each arc (vi, vj) ∈ E.
This reduction is illustrated in Figure 7.

This gives a mapping reduction from the Dominating Set
problem to FOCD; There is a dominating set of size k if and
only if the FOCD problem can be solved in two timesteps.
Note that if G has a dominating set D of size k, then the
file distribution problem may be solved in two time steps by
sending the vertices of the dominating set D token 0 on the
first time step, and the remaining (n− k) vertices in V − D
the tokens {1, . . . , n−k}. On the second timestep, the tokens
{1, . . . , n − k} may be sent to t, and each vertex of v′i ∈ V ′

may receive 0 from either vi if vi ∈ D, or vj ∈ D where
(vi, vj) ∈ E.

Conversely, if it is possible to distribute all tokens in two
steps, then (n − k) vertices from V must receive tokens
{1, . . . , n − k} in order to relay them to t, and so at most k
vertices from V receive 0. Since these k vertices must send
token 0 to all of V ′, they must correspond to a dominating
set.

