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Development and validation of a deep-learning model
to predict 10-year atherosclerotic cardiovascular
disease risk from retinal images using the UK Biobank
and EyePACS 10K datasets
Ehsan Vaghefi, PhD,* David Squirrell, FRANZCO,* Song Yang, MSC,*
Songyang An, MSC,* Li Xie, PhD,* Mary K. Durbin, MD, PhD,† Huiyuan Hou, PhD,†

John Marshall, PhD,‡ Jacqueline Shreibati, MD, MS,x Michael V. McConnell, MD MSEE,k

Matthew Budoff, MD{
From the *Toku Eyes, Auckland, New Zealand, †Topcon Healthcare, Oakland, New Jersey, ‡Institute of

Ophthalmology, University College of London, London, United Kingdom, xSan Mateo Medical Center,
San Mateo, California, kDivision of Cardiovascular Medicine, Stanford University School of Medicine,
Stanford, California, and {Department of Medicine, Lundquist Institute at Harbor-UCLA Medical
Center, Torrance, California.
BACKGROUND Atherosclerotic cardiovascular disease (ASCVD) is a
leading cause of death globally, and early detection of high-risk in-
dividuals is essential for initiating timely interventions. The authors
aimed to develop and validate a deep learning (DL) model to predict
an individual’s elevated 10-year ASCVD risk score based on retinal
images and limited demographic data.

METHODS The study used 89,894 retinal fundus images from
44,176 UK Biobank participants (96% non-Hispanic White, 5% dia-
betic) to train and test the DL model. The DL model was developed
using retinal images plus age, race/ethnicity, and sex at birth to
predict an individual’s 10-year ASCVD risk score using the pooled
cohort equation (PCE) as the ground truth. This model was then
tested on the US EyePACS 10K dataset (5.8% non-Hispanic White,
99.9% diabetic), composed of 18,900 images from 8969 diabetic in-
dividuals. Elevated ASCVD risk was defined as a PCE score of�7.5%.

RESULTS In the UK Biobank internal validation dataset, the DL
model achieved an area under the receiver operating characteristic
Address reprint requests and correspondence: Dr Ehsan Vaghefi, Toku
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curve of 0.89, sensitivity 84%, and specificity 90%, for detecting in-
dividuals with elevated ASCVD risk scores. In the EyePACS 10K and
with the addition of a regression-derived diabetes modifier, it
achieved sensitivity 94%, specificity 72%, mean error -0.2%, and
mean absolute error 3.1%.

CONCLUSION This study demonstrates that DL models using
retinal images can provide an additional approach to estimating
ASCVD risk, as well as the value of applying DL models to different
external datasets and opportunities about ASCVD risk assessment
in patients living with diabetes.
KEYWORDS Cardiovascular disease risk; Pooled cohort equation;
Retinal imaging; Artificial intelligence

(Cardiovascular Digital Health Journal 2024;5:59–69) © 2024 Heart
Rhythm Society. This is an open access article under the CC BY-NC-
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Atherosclerotic cardiovascular disease (ASCVD) is the most
common cause of hospitalization and premature death in the
United States.1 The risk of an individual experiencing an
ASCVD event includes both nonmodifiable variables (age,
sex, and race/ethnicity) and modifiable variables such as dia-
betes,2 hypertension,3 dyslipidemia,4 and smoking.5 Across a
population, the risk of experiencing an ASCVD event varies
greatly. Risk-based equations have therefore been developed
to identify those who are at greatest risk of ASCVD so that
preventive treatments can be initiated appropriate to the indi-
vidual’s risk.6 The landmark Framingham Heart Study was
the first to demonstrate that multivariable equations could
identify an individual’s ASCVD risk with far greater accu-
racy than the existing metrics based solely on blood pressure
and cholesterol.7 Since the Framingham-based equations
were first published, other equations have been developed
to serve different and more diverse populations with refined
accuracy.8,9

The retina is unique in being the only part of the human
vasculature where the microvascular system is visible at
micron-level resolution by noninvasive means. The auto-
mated detection of components within retinal images to pre-
dict ASCVD risk has been used with moderate degrees of
C BY-NC-ND https://doi.org/10.1016/j.cvdhj.2023.12.004
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success previously,10,11 but in recent years there has been an
exponential increase in the number of studies that have used
artificial intelligence (AI), and deep learning (DL) in partic-
ular, to extract data from retinal images.12,13 There is now
growing interest in using the retinal image data generated
by DL models to augment the traditional means of estimating
ASCVD risk.14 In this study we used retinal photographs and
limited demographic data from the UK Biobank to develop
and validate a DL model designed to predict an individual’s
elevated 10-year ASCVD risk, based on the US-derived
pooled cohort equation (PCE).15

The primary aim of this study was to develop and test a DL
model to predict an individual’s 10-year ASCVD risk based
on their retinal photographs plus age, race/ethnicity, and sex
at birth and then further validate the findings in an external
database. This model was built upon our previous work on
detecting and grading retinopathy, maculopathy, macular
degeneration, and effects of smoking in retinal images.16–18

Although the Framingham risk score is recommended to
perform cardiovascular risk assessment in some
countries,19 the 2018 American Heart Association (AHA)
Cholesterol Clinical Practice Guidelines recommend using
the US-derived PCE to estimate the 10-year risk for hard
ASCVD events (coronary heart disease death, nonfatal
myocardial infarction, fatal or nonfatal stroke).15 Our DL
model was trained on and validated against the 10-year
ASCVD risk as calculated by the PCE from individuals in
the UK Biobank dataset (Level 3 in Figure 1; Supplemental
Appendix 2). Further external validation was provided by
testing on a US-based dataset, EyePACS 10K, with substan-
tially greater racial diversity and predominantly from patients
living with diabetes.
Figure 1 The process of training and validation of the deep learning prediction m
disease; CNN 5convolutional neural network; PCE 5 pooled cohort equation.
Methods
Datasets
The composition of datasets used in this study is shown in
Table 1. The UK Biobank (IRB UOA-86299) was used for
training and internal validation. The validation subset repre-
sented 20% of the data, selected randomly prior to develop-
ment. The data from the UK Biobank can be accessed via a
direct request to the UK Biobank, and was obtained using
approved data management and data transfer protocols. A to-
tal of 89,894 fundus images from 44,176 unique participants
from the UK Biobank were used in this study. Participants in
the UK Biobank were recruited from a UK general popula-
tion with only approximately 5% of the UK Biobank popula-
tion self-identified as having diabetes “diagnosed by doctor.”

As described below, a dataset from the US-based Eye-
PACS study (IRB UCB 2017-09-10340), with multiple dif-
ferences from UK Biobank, was used for external
validation. The dataset used for this analysis (EyePACS
10K) consisted of a subset of 9947 individuals who had suf-
ficient clinical data to calculate a traditional PCE risk score.
Of these, 978 were excluded because they had established
ASCVD prior to the date of retinal imaging. The external
validation dataset thus comprised 18,900 images from 8969
individuals. The research presented in this study, and the da-
tasets used in it, adhered to the principles outlined in the
Declaration of Helsinki. The mean age of individuals in the
EyePACS 10K dataset was 56 6 10 years (compared to 57
6 8.3 years in the UK Biobank). They predominantly self-
identified as Hispanic, whereas the UK Biobank population
was predominantly non-Hispanic White. As the EyePACS
10K population consisted almost exclusively of people living
with diabetes presenting for diabetic retinopathy screening,
odel using the UKBiobank dataset. ASCVD5 atherosclerotic cardiovascular



Table 1 The demographic and risk factor makeup of the UK Biobank–derived training and internal test datasets and the EyePACS 10K external
validation dataset used in this study

UK Biobank: training
N 5 35,570

UK Biobank: test
N 5 8606

EyePACS 10K
N 5 8969

Mean SD Mean SD Mean SD
Age (years) 56 8.3 57 8.3 56 10
Systolic blood pressure (mm Hg) 134 18.1 134* 17 131** 12
Diastolic blood pressure (mm Hg) 81.4 10.1 81** 9.8 71** 8.9
HbA1c (%) 5.4% 0.6% 5.4%** 0.5% 8.1%* 1.7%
Total cholesterol (mg/dL) 220 44.1 219** 43.2 179** 43.7
HDL cholesterol (mg/dL) 58 15.1 58** 15.1 47** 12.3
BMI 27.2 4.7 27.1 4.6 Not known Not known
Sex at birth Male Female Male Female Male Female

16,313 (46%) 19,257 (54%) 3991 (46%) 4615 (54%) 3923 (46%) 5046 (54%)
Current smoker True False True False True False

4526 (13%) 29,535 (87%) 1100 (13%)† 7122 (87%) 507 (6%)† 8414 (94%)
Diabetes (%) 5.0% 4.8% 99.9%
Race/ethnicity Non-Hispanic White 93.2% 93.0% 5.8%

South Asian 2.1% 2.1% 6.5%
East Asian 0.36% 0.27% 0.40%
Black/African American 2.14% 1.93% 6.80%
Hispanic N.A. N.A. 65.7%
Multiracial 0.71% 0.80% 0.05%
Native American N.A. N.A. ??
Other 1.16% 1.16% 1.80%
Prefer not to answer 0.33% 0.35% 0.05%
Declined/do not know 0.04% 0.03% 12.9%

BMI 5 body mass index; N.A. 5 not available.
Significance test was performed between UK Biobank training and test, as well as Biobank training and EyePACS 10K external validation (*P , .01 z test;

**P, .001 z test; †P, .01 c2). Refer to Supplemental Appendix 2 for aligning race/ethnicity terminology between the UK Biobank and EyePACS 10K datasets.
The UK Biobank did not include Hispanic ethnicity as an option and the White participants were predominantly of British and Irish origin. EyePACS 10K included
choices of Hispanic, Black, or White, so separating Hispanic Black participants from Hispanic White participants was not possible.
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the mean hemoglobin A1c (HbA1c) level of this population
was high (8.1% 6 1.7%). Additional demographics from
both datasets are summarized in Table 1.
Inclusion/exclusion criteria
Individuals in both datasets who had established ASCVD
(Supplemental Appendix 1) prior to the acquisition of the
retinal images were excluded. A previously trained
DL-based image quality model was used to screen all retinal
images for acceptable image quality.17 Only the earliest
acceptable images and the individual’s accompanying bio-
metrics obtained on that same visit were used from the UK
Biobank data. For the EyePACS 10K dataset, the earliest
acceptable images which had accompanying biodata, taken
no earlier than 1 year before image acquisition, were used.
Model assessment
Receiver operating characteristic curve, sensitivity, and
specificity metrics
To assess the DL model’s ability to predict an elevated 10-
year ASCVD risk score, we compared the score the DL
model issued with that generated by the PCE equation. The
DL model’s performance was based on a PCE score of
�7.5% being the ground truth for elevated risk. The receiver
operating characteristic (ROC) curve, the precision recall
curve, and the overall performance of the DL model on the
UK Biobank and EyePACS 10K datasets were determined.
The sensitivity and specificity of the model to detect individ-
uals with an elevated ASCVD risk in the UK Biobank and
EyePACS 10K datasets were also calculated. To investigate
the performance of the model in different demographic
groups in the UK Biobank, the performance of the model
across sex, age, and race/ethnicity were also calculated. To
investigate the impact the retinal image had on the DL
model’s performance, and to ascertain whether the retinal
data contributed positively to the output, we reran the DL
model withholding the retinal image input data and recalcu-
lated the area under the receiver operating characteristic
curve (AUROC), sensitivity, and specificity.
Comparison of the performance of the DL model and the PCE
equation to predict 10-year ASCVD risk and events
The performance of the DL model vs PCE was also as-
sessed by way of a data binning technique.20 Patients in
the UK Biobank and EyePACS 10K datasets were first ar-
ranged in ascending order by their DL model predicted
scores and then by their PCE-calculated 10-year ASCVD
risk scores. Both datasets were then divided into 20 bins
with equal population numbers by an ascending order of
their ASCVD risk scores, ie, from the lowest 5%, every
5% to the top 5%. The mean 10-year ASCVD risk scores



Figure 2 The structure of the deep learning prediction model developed in this work. ASCVD5 atherosclerotic cardiovascular disease; PCE5 pooled cohort
equation.
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generated by the DL model and the PCE equation were
then plotted for each bin in both the UK Biobank and Eye-
PACS 10K datasets. The magnitude of the deviation be-
tween the 2 sets of results generated for each dataset was
then assessed by measuring the mean error and the mean
absolute error per case.

For the UK Biobank the above exercise was then repeated
using actual observed ASCVD events, categorized by risk as
determined by the DL model and the PCE equation. This ex-
ercise was not possible for the EyePACS 10K dataset, as
there were no future ASCVD events recorded after the retinal
images were acquired. In accordance with ACC/AHA Work
Group guidelines, an ASCVD event for the purposes of out-
comes was defined as the first nonfatal acute myocardial
infarction, fatal or nonfatal stroke, or fatal coronary artery
disease.21 The ICD codes used to define a hard ASCVD event
are provided in Supplemental Appendix 1.

Finally, to assess the probabilistic performance of the 2
methods for predicting 10-year ASCVD risk, the Brier score
loss was calculated for both the DL model and the PCE
equation.
Model development
The DL model pipeline encompasses approximately 50
distinct DL models, classified into 2 primary categories:
image-based models and non-image-based models. The
former uses image data as input, while the latter relies on
vectorized interpretations of participant information,
including their biometrics. This dichotomy results in a di-
versity of input data and target formats within the pipeline.
For instance, the systolic blood pressure (SBP) model uses a
retinal image as input, with the corresponding SBP value
serving as the target. This model’s function is independent
of additional factors, thereby enabling it to be trained on
samples missing the HbA1c value, provided the SBP data
are accessible. Another model of note is the PCE ASCVD
prediction model. It uses outputs from preceding image-
based models, with the calculated PCE results serving as
the target. However, the PCE equation requires multiple
variables, including SBP, HbA1c, total cholesterol, and
HDL (high-density lipoprotein) cholesterol. Only partici-
pants with all of the above-mentioned components available
were used in this study.
Model ensemble
The DL prediction model ensemble used is demonstrated in
Figure 2 and comprises 3 different levels.

The first level (Level 1) includes an image quality check
convolutional neural network (CNN) (described above), a
laterality (left eye / right eye) detector CNN, and an image
location (fovea / non-fovea) detector CNN. The input of
this layer is retinal images only. This process ensures that
only foveal-centered images that are of sufficient quality
are accepted into the model. Identifying the laterality of the
image ensures that only a single fovea-centered image for
each eye for each individual is used during the analysis.
The final available dataset after requiring high- or medium-
quality, fovea-centered images, 1 per eye, consisted of
89,894 images, representing 44,176 patients. This was
divided into an 80/20 split for training and validation, respec-
tively. The training dataset thus consisted of 76,321 images
(representing 35,570 patients). Meanwhile, the test dataset
comprised 19,080 images representing 8606 patients who
had valid biometrics. The demographics of the final dataset
did not significantly differ from those that included images
of low quality. The patient demographics of the test and
training datasets were statistically compared with a 2-
sample Kolmogorov-Smirnov test to ensure that the demo-
graphic distribution of the training and test group were
similar. There was no statistically meaningful difference be-
tween the 2 datasets, comparing the age, sex, and race/
ethnicity makeup of the 2 groups (Supplementary material).
The training of these models is explained elsewhere, and
these models were not tuned or retrained for this study.17

The second level (Level 2) includes 9 ensembles of AIs,
each consisting of 5 CNNs (45 in total). The retinopathy,
maculopathy, drusen, pigmentary abnormality, advanced
age-related macular degeneration, and smoking CNNs were
previously trained on other datasets.16,22,23 The rest of the
CNNs were trained using the unique UK Biobank labels in
the fundus images: “hba1c_result,” “tchdl_result,” “systo-
lic_bp,” “systolic_bp2,” “smoking_status.” “Systolic_bp”
and “systolic_bp2” are 2 consecutive blood pressure
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measurements in the UK Biobank and in this study we used
the mean of the two.

These CNNs follow modified versions of the Inception-
Resnet-V2 or ResNet50 structures. Taking the single retinop-
athy CNN model as an example, the model has a deep struc-
ture, consisting of 164 layers, and uses a combination of
inception and residual blocks. The inception blocks use a com-
bination of convolutional layers with different filter sizes,
while the residual blocks use skip connections to enable the
model to learn from previous layers. We also employed batch
normalization and bottleneck layers to improve training effi-
ciency. Overall, the model architecture is designed to extract
features at multiple scales and capture fine-grained details in
images, making it well suited to detect the level of retinopathy
or other biomarkers. For each CNN in Level 2, the image plus
biomarkers dataset was split for training, validation, and
testing: 70%, 15%, 15%, respectively. The excessive back-
ground of the fundus images was cropped, and the resulting
image was resized to 800 ! 800 pixels. A batch size of 8
was chosen to optimize GPU memory during training.
Adam optimizer was adopted with a learning rate 1 ! 10e-3
to update parameters toward the minimization of the loss.
Dropout was enabled with a rate p 5 0.2, and the model
was trained for at least 100 EPOCHs. All codes related to
this work were implemented using Python 3.7.

Additionally, we developed a complex jury system to arrive
at the ultimate prediction for each biomarker. To elaborate, us-
ing the retinopathy model as an example, there exist 6 distinct
levels of retinopathy (R0–R5). Five jury models were em-
ployed to assess each eye, resulting in 30 probability values
per eye. These probabilities were merged and consolidated
for both eyes, thereby yielding a final value for each patient.

The third level (Level 3) is a multilayer perceptron, which
uses the output of the second-level CNNs, plus the patient’s
chronological age, sex, and race/ethnicity to estimate their
PCE ASCVD risk score. This PCE-derived ASCVD risk
score is the ground-truth label, calculated from the relevant
9 fields in the UK Biobank dataset for each participant
(age, sex, race/ethnicity, smoking status, blood pressure, dia-
betes, serum total cholesterol, HDL cholesterol, blood
pressure–lowering medication; https://tools.acc.org/
asASCVD-risk-estimator-plus/#!/calculate/estimate/). The
architecture of the model comprises an input layer, followed
by 5 dense layers that exhibit a gradual decrease in neuron
counts, namely 1024, 512, 256, 128, and 32. These layers
are interspersed with batch normalization and LeakyReLU
activation functions with a leaky rate of 0.1. To address over-
fitting concerns, dropout layers with a rate of 0.3 were incor-
porated after the third, fourth, and fifth dense layers. The
ultimate layer, encompassing a single neuron and a linear
activation function, predicts the target value. For optimiza-
tion purposes, an Adam optimizer is used with an exponen-
tially decaying learning rate schedule, initialized at 3e-3
and decaying by a factor of 0.95 every 1000 steps. The Huber
loss function was employed to guide the model parameters’
updating. To curb overfitting and ensure efficient training,
early stopping was implemented.
Post hoc regression–based diabetes modifier
We anticipated that our DLmodel, initially trained on the UK
Biobank dataset, may require calibration to accurately predict
the 10-year ASCVD risk scores for individuals with diabetes
as represented in the EyePACS 10K dataset. To address this,
we derived a “diabetes modifier,” an adjustment factor
derived from a linear regression model, which would correct
the output of the DL model trained on the general population
of the UK Biobank to predict ASCVD risk more accurately in
people living with diabetes. This modifier considers individ-
ual patient factors such as age and sex, as well as the initial
prediction of ASCVD risk (pce_pred), to tailor the risk
assessment for diabetic individuals. The regression equation
that we subsequently developed for this adjustment is as
follows:

Final risk score 5 DL model risk score 1 max(diabetes_
adjustment, 0) where the diabetes_adjustment is calculated
as: diabetes_adjustment 5 -10.4156 1 (0.3560 * age) 2
(4.5422 * sex) 2 (0.5410 * pce_pred) with sex encoded as
0 for male and 1 for female.
Results
The ability of the DL model to identify elevated-risk individ-
uals (PCE-generated ASCVD score�7.5%), compared to the
PCE equation, for both the UK Biobank and EyePACS 10K
datasets are shown in Table 2. In UK Biobank, the DL model
achieved an AUROC of 0.89, a sensitivity of 83%, and a
specificity of 90%. Withholding the retinal image data from
the DL model resulted in lower performance, with AUROC
0.84, sensitivity 70%, and specificity 88%. Assessment of
the performance of DL model across different subgroups re-
vealed there was a significant difference between age groups,
with the model performing better for individuals over 60
compared to those under 60. There was no significant differ-
ence in DL model performance between male/female or
different race/ethnic groups (Table 3).

In EyePACS 10K, the DL model achieved a similar
AUROC: 0.90, with a lower sensitivity of 52% and a higher
specificity of 95%. The ROC and the accompanying
precision-recall curve plots are shown in Figure 2. Assess-
ment of the performance of DL model across different sub-
groups revealed there was a small but significant difference
between those individuals of Black/African-American race
compared to all other groups. The model also performed bet-
ter for individuals over 60 years old compared to those under
60. There was no significant difference in DL model perfor-
mance between the other race/ethnic groups (Table 4).

In post hoc analysis, applying a regression-based diabetes
modifier to the DL model output, the sensitivity and speci-
ficity to detect individuals with elevated risk against PCE
in the EyePACS 10K dataset were 94% and 72%, respec-
tively. Assessment of the performance of DL model across
different subgroups revealed there was a small but significant
difference between those individuals of Black/African Amer-
ican race compared to all other groups. The model also per-
formed better for individuals over 60 years old compared to

https://tools.acc.org/asASCVD-risk-estimator-plus/#!/calculate/estimate/
https://tools.acc.org/asASCVD-risk-estimator-plus/#!/calculate/estimate/


Table 2 Confusion matrices comparing the deep learning model–predicted atherosclerotic cardiovascular disease score vs pooled cohort
equation–calculated scores

UK BioBank EyePACS 10K EyePACS 10K 1 diabetes modifier

PCE-generated
ASCVD score
,7.5%

PCE-generated
ASCVD score
�7.5%

PCE-generated
ASCVD score
,7.5%

PCE-generated
ASCVD score
�7.5%

PCE-generated
ASCVD score
,7.5%

PCE-generated
ASCVD score
�7.5%

DL model–
generated
ASCVD score
,7.5%

5923 (69%) 331 (4%) 4126 (46%) 2238 (25%) 3015 (34%) 279 (3%)

DL model–
generated
ASCVD score
�7.5%

642 (7%) 1710 (20%) 217 (2%) 2388 (27%) 1328 (15%) 4347 (48%)

ASCVD 5 atherosclerotic cardiovascular disease; DL 5 deep learning; PCE 5 pooled cohort equation.
Results are n (%) of people.
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those under 60. There was no significant difference in DL
model performance between the other race/ethnic groups
(Table 5).

The AUROC values were then calculated for each demo-
graphic segment of both the UK Biobank and EyePACS 10K
datasets (Tables 3–5). The DL model performed well across
both sexes and all races/ethnicities, but its performance in
younger individuals (� 60 years) in UK Biobank was
lower than in older individuals (AUROC 0.72 vs 0.84).

Relationship between ASCVD risk scores generated
and observed ASCVD event rates using the
traditional PCE score and the DL model predicted
score

UK Biobank
The predicted 10-year ASCVD risk scores generated by the
PCE equation and the DL model, plotted for each bin in
the UK Biobank, are shown in Figure 3A. The predicted
10-year ASCVD risk scores rose equally and proportionally
for all risk categories in both cohorts. Across the UK
Table 3 Performance of deep learning model (area under receiver operat
demographics in the UK Biobank test dataset

Demographic segment

Sex assigned at birth Female
Male

Race/ethnicity† Non-Hispanic White
South Asian
East Asian
Black/African American
Other/multiracial

Age bracket Age �60
Age .60

AUROC 5 area under the receiver operating characteristic curve; PCE 5 pooled
†Participants self-identified as belonging to a particular race/ethnicity group (Sup
‡Sex subgroups comparison (female to male), Delong test statistic: -0.6114, P value
ethnicity subgroup comparisons: White vs Asian, Delong test statistic: 1.513, P valu
Black, Delong test statistic: -1.681, P value: .09.
Biobank, the predicted 10-year ASCVD risk scores from
PCE and the DL model were very similar (mean error
0.3%, mean absolute error 2.4%). The actual ASCVD event
rates observed in both the PCE and DL model, when catego-
rized by ascending order of predicted risk, are also shown in
Figure 3A. The actual ASCVD event rate rose steadily from
the nonelevated to elevated risk categories in both the PCE
and DL models across all individuals in the UK Biobank.
The magnitude of the actual ASCVD event rates was again
very similar to the predicted 10-year ASCVD risk score pro-
duced by the PCE and DL models for all risk categories. The
actual ASCVD event rates observed when the results gener-
ated by the PCE and DL models were subdivided into the bi-
nary classification (predicted risk score ,7.5% or �7.5%)
are shown in Table 6. The ASCVD event rate observed in
those individuals from the UK Biobank allocated a “nonele-
vated” score by the traditional PCE method was the same as
those allocated a “nonelevated” score by the DL prediction
model (2.2% vs 2.0%). The same finding was observed in
the “elevated” risk groups (ASCVD event rate: traditional
PCE 7.5%, DL model 7.5%). Analysis with the point-
ing characteristic curve score) across different races/ethnicities and

AUROC‡ Group size N where PCE �7.5%

0.88 4615 217
0.89 3991 1824
0.87 8023 1945
0.83 206 44

0.89 166 24
0.93 202 25
0.72 5112 417
0.84 3494 1624

cohort equation.
plemental Appendix 2).
: .54. Age subgroups comparison, Delong test: -14.3876, P value: .000. Race/
e: 0.13; White vs Black, Delong test statistic: -0.814, P value: .416; Asian vs



Table 4 Performance of deep learning model (area under receiver operating characteristic curve score) across different races/ethnicities and
demographics in EyePACS 10K dataset

Demographic segment AUROC‡ Segment size N where PCE �7.5%

Sex assigned at birth Female 0.89 5352 1975
Male 0.86 3612 2648

Race/ethnicity† Hispanic 0.91 5893 2817
Black/African American 0.85 609 426
Non-Hispanic White 0.91 517 323
East Asian 0.9 586 361
Declined/do not know 0.92 1158 575
South Asian 0.95 37 18
Other 0.89 169 106

Age bracket Age �60 0.88 5572 1751
Age .60 0.84 3392 2872

AUROC 5 area under the receiver operating characteristic curve; PCE 5 pooled cohort equation.
†Race/ethnicity was self-reported by study participants (Supplemental Appendix 2).
‡Age subgroups comparison, Delong test statistic: 5.9290, P value: ,.001. Race/ethnicity subgroup comparisons: White vs African American, Delong test sta-
tistic: 3.290, P value: .001; White vs Asian, Delong test statistic: 0.624, P value: .53; Asian vs African American, Delong test statistic: 2.730, P value: .006; Latin
American vs White, Delong test statistic: -0.057, P value: .95; Latin American vs African American, Delong test statistic: 4.157, P value: ,.001.
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biserial correlation coefficient revealed that the 10-year
ASCVD risk score produced by the PCE and the DL model
were both significantly correlated with actual ASCVD
events: calculated PCE vs ASCVD events: 0.144 (P ,
.01); DL model predicted risk score vs ASCVD events:
0.152 (P , .01). The accuracy of the PCE equation to
correctly predict an ASCVD event was identical to that of
the DL model, with the Brier score loss for both 0.067.
EyePACS 10K dataset
The ASCVD risk scores generated by the PCE equation and
the DLmodel, plotted for each bin in the EyePACS 10K data-
set, are shown in Figure 3B. For all risk categories the pre-
dicted 10-year ASCVD risk score, as measured by the PCE
equation, was substantially higher than that produced by
the DL model (mean error 3.6%, mean absolute error
4.4%). Comparison between Figure 3A and 3B reveals that
Table 5 Performance of deep learning model (area under receiver operat
demographics in EyePACS 10K dataset when diabetes modifier is applied

Demographic segment A

Sex assigned at birth Female 0
Male 0

Race/ethnicity† Hispanic 0
Black/African American 0
Non-Hispanic White 0
East Asian 0
Declined/do not know 0
South Asian 0
Other 0

Age bracket Age �60 0
Age .60 0

AUROC 5 area under the receiver operating characteristic curve; PCE 5 pooled
†Race/ethnicity was self-reported by study participants (Appendix 2).
‡Sex subgroups comparison, Delong test: 0.7657, P value: .44. Age subgroups comp
ison: White vs African American: Delong test statistic: 2.778, P value: .005; White v
Delong test statistic: 3.203, P value: .001; Latin American vs White, Delong test st
statistic: 5.054, P value: ,.001.
the performance of the DL model was very consistent across
both the UK Biobank and EyePACS 10K. However, the PCE
equation predicted consistently higher scores across all risk
profiles in the EyePACS dataset, unlike in UK Biobank.

As the ROC curves indicated that the performance of the
DL model was very similar in both the internal (AUROC
0.89) and external (AUROC 0.90) validation datasets, but
with differing sensitivities and specificities, we hypothesized
that there was a systematic difference between the 10-year
ASCVD risk score produced by the PCE and our DL model
when it was applied to people living with diabetes. We there-
fore derived a correction factor: a “diabetes modifier,” which
would translate the 10-year ASCVD risk score produced by
our DL model to that produced by the PCE, across all risk
profiles.24 The ASCVD risk score generated by the DLmodel
with the diabetes modifier applied, plotted for each bin in the
EyePACS 10K dataset, is shown in Figure 3B. The results
ing characteristic curve score) across different races/ethnicities and

UROC‡ Segment size N where PCE �7.5%

.92 5352 1975

.91 3612 2648

.94 5893 2817

.87 609 426

.92 517 323

.92 586 361

.94 1158 575

.97 37 18

.92 169 106

.9 5572 1751

.86 3392 2872

cohort equation.

arison, Delong test: 5.6842, P value: .00. Race/ethnicity subgroups compar-
s Asian, Delong test statistic: -0.339, P value: .74; Asian vs African American,
atistic: 1.635, P value: .10; Latin American vs African American, Delong test



Figure 3 Receiver operating characteristic (ROC) curves (left-hand graphs) and precision-recall curves (right-hand graphs) for UK Biobank (top) and Eye-
PACS 10K (bottom) datasets.
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produced by the DLmodel with the diabetes modifier applied
were now very similar to PCE (mean error -0.2%, mean ab-
solute error 3.1%). The sensitivity and specificity of the
new diabetes-modified DL model to detect individuals with
elevated risk against PCE in the EyePACS 10K dataset
were 94% and 72%, respectively.
Discussion
In this study we developed and validated a novel DLmodel to
calculate a 10-year ASCVD risk score using more than
90,000 retinal images from the UK Biobank dataset and
then externally validated it on more than 18,000 retinal im-
Table 6 UK Biobank atherosclerotic cardiovascular disease (ASCVD) ev
pooled cohort equation–based ASCVD risk score compared to dep learnin

10-year ASCVD risk score: PCE Individuals (ASCVD events) 10

,7.5% 6565 (146)
2.2%

,

�7.5% 2041 (153)
7.5%

�

ASCVD 5 atherosclerotic cardiovascular disease; DL 5 deep learning; PCE 5 p
Values in each cell represent #people (#ASCVD events) and % events/cases.
ages from the EyePACS 10K dataset. Our DL model reliably
detected those individuals with elevated ASCVD risk scores
(�7.5%) in both datasets using only the retinal image and the
individuals’ age, race/ethnicity, and sex with AUROCs of
0.89–0.90.

The actual observed ASCVD event rate in UK Biobank
was very similar between the DL model and PCE. There
was also a significant correlation between the risk scores pro-
duced by both models and actual ASCVD events and the
probabilistic accuracy of the DL model to correctly predict
an ASCVD event was identical to that of the PCE.

There was a clear difference between the PCE and the DL
model–predicted 10-year ASCVD risk scores in the
ent rates in those with and without elevated ASCVD risk scores by
g model–predicted ASCVD risk score.

-year ASCVD risk score: DL model Individuals (ASCVD events)

7.5% 6254 (123)
2.0%

7.5% 2352 (176)
7.5%

ooled cohort equation.



Figure 4 A: Ten-year atherosclerotic cardiovascular disease (ASCVD)
risk scores (crosses) andASCVD event rates (dots) when categorized accord-
ing to the traditional pooled cohort equation (PCE)–calculated risk score
(red) or deep learning (DL) model–predicted risk score (green) in the UK
Biobank. B: Ten-year ASCVD risk when categorized according to the tradi-
tional PCE-calculated risk score (red) or DL model–predicted risk score
(green) or DL model–predicted score after application of the diabetes mod-
ifier (blue) in the EyePACS 10K dataset.

Vaghefi et al CLAiR, Validated on UK and US Databases 67
EyePACS 10K dataset. When assessed by the PCE, 48% of
individuals in the EyePACS 10K dataset were deemed to be
“nonelevated” and 52% were deemed “elevated” risk. The
DL model apportioned the risk differently: 70% “nonele-
vated” risk, 30% “elevated” risk. Unlike what was observed
in the UK Biobank, when the 10-year ASCVD risk scores
generated by the PCE and the DL model from the EyePACS
10K dataset were grouped into bins of ascending risk scores,
the magnitude and distribution of the predicted 10-year
ASCVD risk scores generated by the PCE and the DLmodel
were quite different; mean error was 3.6%, mean absolute
error as measured by each index case was 4.4%
(Figure 3B). As the performance of the DL model assessed
by the AUROC was very similar in both the UK Biobank
and EyePACS 10K datasets, and the principal difference
in the 2 datasets was low vs high rate of diabetes, we hypoth-
esized that it should be possible to regress a correction fac-
tor—a “diabetes modifier”—to transform the ASCVD risk
score produced by our DL model to that produced by the
PCE. Applied to the EyePACS 10K dataset, this post hoc
analysis showed that 10-year ASCVD risk scores generated
by the DL model were substantially better aligned to the
PCE after the diabetes modifier was applied (Figure 3B).
The subsequent sensitivity and specificity of the “dia-
betes-modified” DL model to detect individuals with
“elevated” risk in the EyePACS 10K dataset were also
improved, at 94% and 72%, respectively (Figure 4).

Regardless of diabetes type and status, the PCE equation
currently treats all people living with diabetes as a uniform
group and it effectively adds a modifier to the regression
equation, which serves to elevate their risk score compared
to nondiabetic individuals. Recently it has been suggested
that the traditional regression-based equations, like the
PCE, may overestimate ASCVD risk in many people living
with diabetes.25,26 The application of DL algorithms to pre-
dict ASCVD risk-related outcomes from retinal images has
been comprehensively reviewed by Hu and colleagues.27

This review revealed that, to date, a heterogeneous array of
models have been developed using a variety of different in-
puts: retinal images only, retinal images 1 various biodata,
and reporting against different cardiac-related outcomes. To
date, only 2 other groups have reported the results of a DL
model trained and then externally validated to predict the
ASCVD 10-year risk from retinal photographs.24–26 Our
results support the accumulating evidence that indicates DL
algorithms can use retinal images to accurately predict
ASCVD risk and they compare favorably with the 1 other
DL model that has been validated on the UK Biobank,
which had sensitivity and specificity of 83% and 88%,
respectively.28–30
Strengths and limitations
The primary strengths of this study include the following: we
have trained and validated a DL model designed to predict an
individual’s ASCVD 10-year risk based on nothing more
than a retinal photograph and limited demographic data;
the DL model was not only able to reliably match the PCE
scores, but also showed similar prediction to PCE of actual
ASCVD events; and the DL model was externally validated
on a very different dataset. Our DL model performed simi-
larly (by AUROC) on the external EyePACS 10K dataset
as it did on the UK Biobank, and we investigated the applica-
tion of a “diabetes modifier” to the output of our DL model to
better match the sensitivity and specificity of the PCE when
applied to individuals living with diabetes. However, as there
were no future hard ASCVD events in the EyePACS 10K da-
taset, we could not validate the DL model on this key metric.
Although the DL model performed well on all races/ethnic-
ities, (AUROC scores�0.87 in all groups), there was a small
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but significant difference in its performance on individuals of
Black/African American race compared to all other race/
ethnic groups. This highlights the need to ensure that AI tools
are trained and thoroughly tested in the target population
groups to avoid exacerbating existing health inequalities.
Finally, it is highly probable that the ground truth for the
smoking DL model, namely self-reported smoking status,
lacks robustness, as it is widely accepted that individuals
tend to under-report their smoking habit.31
Conclusion
In conclusion, our results show that it is possible to train a
DL model that can assess ASCVD risk as well as the tradi-
tional PCE method, using nothing more than a retinal photo-
graph and limited demographic data. We have also shown
that the application of a “diabetes modifier” to our DL
model is a promising approach to matching the PCE in peo-
ple living with diabetes. If these results can be replicated in
other large population-based datasets, DL models like ours
may offer the potential to significantly improve access to
ASCVD risk detection strategies, as the risk predictions
these models produce do not require multiple clinical and
laboratory assessments to generate an individual’s ASCVD
risk score.
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