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Structure Mapping and the Predication of Novel Higher-Order Relations
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John E. Hummel (jhummel@psych.ucla.edu)

Department of Psychology, University of California, Los Angeles
405 Hilgard Ave.

Los Angeles, CA 90095-1563

Abstract

Relations play a central role in human perception and
cognition, but little is known about how relational concepts
are acquired and predicated.  For example, how do we come
to understand that physical force is a higher-order
multiplicative relation between mass and acceleration?  We
report an experiment demonstrating that structure mapping
(a.k.a., analogical mapping) plays a key role in the predication
of novel higher-order relations. This finding suggests that
structure mapping—i.e., the appreciation of analogies—may
play a pivotal role in the acquisition and predication of novel
relational concepts.

Relational Reasoning
The processing of relations plays a central role in human

perception and thought.  It permits us to perceive and
understand the spatial relations among an object’s parts
(Hummel, 2000; Hummel & Biederman, 1992; Hummel &
Stankewicz, 1996), comprehend arrangements of objects in
scenes (see Green & Hummel, 2004, for a review), and
comprehend abstract analogies between otherwise very
different situations or systems of knowledge (e.g., between
the structure of the solar system and the structure of the
atom; Gentner, 1983; Gick & Holyoak, 1980, 1983;
Holyoak & Thagard, 1995).  The power of relational
thinking resides in its ability to generate inferences and
generalizations that are constrained by the roles that
elements play, rather than strictly the properties of the
elements themselves: The sun is similar to the nucleus of an
atom, not because of its literal features, but because of their
shared relations to planets and electrons, respectively.

Experience can cause profound changes in the way we
process relations.  The difference between an expert chess
player and a novice, for example, lies in the ability to
quickly perceive and reason about the meaningful relations
among the pieces on the board (and relations among those
relations).  Relational learning is central to both the most
abstract and uniquely human cognitive abilities (including
mathematical and scientific reasoning), and the most
"everyday" reasoning using analogies, schemas and rules
(Gentner, 1983; Holland, et al., 1986; Hummel & Holyoak,
1997, 2003).

In order to reason explicitly about a relation it is
necessary to predicate that relation, that is, to represent it as
an explicit predicate that takes arguments.  Consider an
example.  In a match-to-sample task, an animal is shown a
sample stimulus (e.g., a red square), and two alternatives,

one that matches the sample (another red square) and one
that does not (e.g., a green square).  The animal’s task is to
indicate which alternative matches the sample.  Many
animals, including honeybees (Giurfa et al., 2001), can learn
to perform this task with simple stimuli such as colors and
shapes (see Holyoak & Thagard, 1995, Thompson & Oden,
2000).  The computational requirements for performing this
task include the ability to explicitly represent values of the
relevant feature dimension (e.g., “red” for the dimension
“color”), and the ability to remember the value of that
dimension in the sample for the purposes of choosing the
correct alternative.  Despite initial appearances, the task
does not require the animal to explicitly appreciate that the
correct choice item is in any way the "same" as the sample.
For example, if color is the relevant dimension, then after
the presentation of a red sample, the animal need only
maintain a representation of “red” until the choice items
appear.  The animal need never reflect explicitly on the fact
that the sample and the correct choice are the same color
(Thompson & Oden, 2000).

However, the task can be generalized to require an
explicit appreciation of “sameness.”  Consider a relational
match-to-sample task, in which the sample depicts two
triangles, alternative A depicts of circle and a diamond, and
alternative B depicts two squares.  Choosing B as the correct
match to the sample requires the reasoner to represent B and
the sample in terms of their shared relation (i.e., same-shape
(x , y)). College students find this comparison trivial, yet
only humans and symbol-trained chimpanzees are known to
be able to perform this task reliably (Thompson & Oden,
2000). (Fagot, Wasserman & Young, 2001, claim to show
relational matching to sample in the baboon, Papio papio.
However, their data—in particular, the baboons' failure to
learn the task when the sample and choice options each
contained only two objects—are more consistent with the
baboons’ responding to stimulus entropy as a holistic
perceptual feature, akin to color, rather than same as an
explicit relation; Hummel & Holyoak, 2003.)

The assumption that people represent the relation same-
shape in the same way for the squares as for the triangles
provides an intuitive account of our ability to perform the
relational match to sample, but it begs the question of why
we see the relation “same shape” in the squares, whereas
most other animals only see squares.  What are the mental
operations that allow us to discover and predicate same-
shape as an explicit relation that retains its properties over
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the sameness of squares to squares and the sameness of
triangles to triangles?

The question of how we discover and predicate new
relations is central to cognitive science because the kinds of
problems a person (or cognitive model) can solve, and the
characteristics of its solutions, depend critically on the
relations the person (or model) does and does not represent
explicitly.  Models of human perception and cognition that
represent relations explicitly (i.e., as predicates that take
arguments) can solve problems far beyond the scope of
models that do not represent relations explicitly (e.g.,
traditional connectionist models, which represent all
concepts as simple lists of features; for reviews see Doumas
& Hummel, in press; Hummel & Holyoak, 1997, 2003;
Marcus, 1998).  But to date, all the models that do represent
relations are simply given, by the modeler, a vocabulary of
relational concepts with which to reason (examples include
ACT-R [Anderson & Lebiere, 1998], LISA [Hummel &
Holyoak, 1997, 2003], SME [Falhenhainer, Forbus &
Gentner, 1989] and, SOAR [Rosenbloom, Newell, & Laird,
1991], among many others).  The question of where these
concepts come from, and the related question of how we
know which relations to predicate in which contexts, is
rarely if ever addressed, and the answer to this question is
far from well understood.  Understanding how the mind
comes to represent relations as explicit predicates would
contribute substantially to our understanding of the origins
of human perception and thinking, and to the development
of symbolic thought (Smith, 1989).

Relational Predication
The question of relational predication subsumes at least

two related questions: First, how do we recognize and
predicate familiar relations for use in novel situations?  It is
one thing to understand abstract relational notions such as
same-as, threatens  or covaries-with ; it is another to
recognize that a relation applies in a given situation and to
explicitly predicate it in the service of understanding that
situation.  Second, how do we discover new relations?  For
example, what happens in the mind of a child between the
time when she does not understand the relation same-shape
(x, y), and the time when she does?  Inasmuch as new
relations are learned as combinations of familiar relations,
or as familiar relations applied to novel dimensions, the
question of relational discovery is clearly related to the
question of predication: Especially for adults, discovering
new relations may often be a process of discovering which
familiar relations apply in a novel situation, and discovering
how they are linked together by higher-order relations.
Consider, for example, the physics student who is first
learning to reason about force as a relation between mass, a
basic property of an object, and acceleration, itself a relation
between velocity and time.  It is this version of the relation
discovery question—how do we discover novel higher-order
relations among familiar relations—that is the focus of the
present paper.

Our ability to appreciate that the relation between the
squares in the relational match to sample task is the same as
the relation between the triangles—and to choose a pair of
squares over a circle and a diamond as the correct match to
a pair of triangles on the basis of that relation—illustrates
that relations are invariant with their arguments (Hummel &
Holyoak, 2003): same-shape (x , y ) is the same relation,
regardless of the particular shapes that happen to be bound
to x and y at the time.  It is precisely this invariance that
allows us to appreciate what same-shape (triangle1,
triangle2) has in common with same-shape (square1,
square2).  As a result of this invariance, same-shape ranges
over all possible shapes, so it is not learnable in terms of the
perceptual features of any particular pair of shapes (see
Kellman, Burke, & Hummel, 1999).  The ability to perform
tasks based on such relations—and to discover and predicate
them—is therefore fundamentally beyond the reach of any
learning algorithm based strictly on the statistical
regularities among the elements of the stimuli in its training
set—i.e., the vast majority of all theories of learning (see
Hummel & Holyoak, 2003).

The problem of relational learning and predication is
further complicated by the sheer number of potentially
relevant relations present in any given situation.  The
number of first-order relations among n items increases
minimally with (n2 – n )/2 (and this assuming that all
relations are commutative, which is not the case for most
relations).  Worse yet, the number of higher-order relations
over these first-order relations is literally unbounded.  Any
task (e.g., category learning, problem solving, etc.) that calls
for the discovery of new higher-order relations is therefore
functionally impossible without additional constraints on the
selection of which relations to predicate.

Given this, how do people discover and predicate new
relations?  An important theme that has emerged in the
literature on relational reasoning is that structure mapping
(a.k.a. analogical mapping)—the process of finding
relational correspondences between the elements of two
systems—plays a central role in all forms of relational
reasoning (see Hofstadter, 2001; Holyoak & Thagard,
1995).  A primary hypothesis motivating the present
research is that structure mapping may also play a central
role in discovery and predication of new relations.  The
reason is that structure mapping is driven more by the
relational roles that objects play than by the features of the
objects themselves.  By revealing relational similarities
between otherwise different-seeming systems, structure-
mapping may bootstrap the discovery of any higher-order
relations the two systems have in common.  Consistent with
this hypothesis, several previous studies have demonstrated
that structure mapping bootstraps the induction of abstract
relational schemas (e.g., Gick & Holyoak, 1983; Ratterman
& Gentner, 1998; Sandhofer & Smith, 2001; Yamauchi &
Markman, 2000), and that comparison helps people
appreciate what lower-order relations might be relevant to a
specific task (Gentner & Namy, 1999; Namy & Gentner,
2002; Yamauchi & Markman, 1998).
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The current experiment was designed to investigate
whether analogical mapping may also help people to
discover the higher-order relations that analogous systems
have in common—that is, whether analogical mapping may
bootstrap the discovery of novel higher-order relations.  If it
does, then analogical mapping may not only be a process
that depends on the relations we can predicate, but may also
be a process that aids us in the predication of new relations.

Experiment
The experiment used a category-learning paradigm to

measure relational predication.  Categories were defined by
an unfamiliar higher-order relation between the elements of
exemplars.  Each exemplar consisted of drawings of three
simple “cells” inside a circular frame (see Figure 1).  Within
an exemplar, the cells varied in their location in the frame,
their shape, the thickness of their membrane, the roundness
of their nucleus, and the number of organelles.  Categories
were defined by a higher-order relation between the cells’
membrane thickness and the roundness of their nuclei: In
Category A, the thicker a cell’s membrane, the rounder its
nucleus; in Category B, the thicker the membrane the more
elliptical its nucleus.  The cells’ locations in the frame,
shape, and number of organelles varied randomly and were
uncorrelated with category membership.

Figure 1.  Two stimuli from Category A and two from
Category B.

The exemplars were designed to make category learning
impossible without discovering the higher-order relation
between relative membrane thickness and nucleus
roundness.  Absolute thickness and roundness were non-
predictive of category membership because the thinnest
membrane (or least round nucleus) in one exemplar of a
category was potentially the thickest (or roundest) in
another exemplar of the same category.  For the same
reason, conjunctions of specific roundnesses and thicknesses
were also non-predictive.  Every exemplar, regardless of
category, had three cells, one of which had a thickest
membrane and another of which had a thinnest (with the
third in between), so the categories were not learnable in
terms of relative (or absolute) membrane thickness.
Likewise, every exemplar, regardless of category, had one
cell with a more round nucleus than the others and one with
a more elliptical nucleus (with the third in between).  In
other words, the categories were not definable, or learnable,
in terms of any basic features or even first-order relations.

For this reason the category structure is unlearnable by
any model that codes exemplars in terms of their features
(e.g., location, color, width, orientation, etc.) or
conjunctions of their features, but cannot explicitly
represent relations among those features and relations
among relations.  Such models constitute the vast majority
of mathematical and computational models of category
learning (e.g., Krushke, 1992, 2001; Nosofski, 1988;
Nosofski & Palmeri 1998), including all connectionist
models (see Doumas & Hummel, in press; Hummel &
Holyoak, 2003; Marcus, 1998).

By contrast, the categories are learnable in the space of
conjunctions of relative membrane thickness and relative
nucleus roundness—that is, in terms of a higher-order
relation between the first-order relations of relative
thickness and relative roundness (which is simply a
restatement of the category-defining higher-order relation).

Two groups of subjects were trained to categorize
exemplars into the two categories.  One group (the Map
group) performed a mapping task halfway through the
category-learning task; the other group (the No Map group)
did not. Subjects in the No Map condition simply studied a
pair of exemplars from the same category (either A or B,
counterbalanced); subjects in the Map condition viewed a
pair of exemplars from the same category and were asked to
indicate which cell in one exemplar corresponded to which
in the other and why.

Our predictions were as follows: (1) To the extent that the
category-relevant higher-order relation between cells’
relative membrane thickness and relative nucleus roundness
is unfamiliar to our subjects, categorization performance on
the pre-mapping trials ought to be near chance.  (2) To the
extent that mapping helps subjects to predicate this relation,
post-mapping categorization performance of subjects who
map correctly in the Map condition should jump abruptly to
ceiling (as a result of predicating the category-defining
relation), but performance in the No Map condition, and the
performance of those who map incorrectly in the Map
condition, should remain near chance.

Methods
Participants:  20 UCLA undergraduates participated for

course credit.
Materials:  Each exemplar consisted of three drawings of

simple cells in a circular frame.  The cells differed in their
shapes, location, membrane thickness, nucleus roundness,
and number of organelles (see Figure 1).

Seven membrane thicknesses and seven nucleus
roundnesses were used to construct the stimuli, making it
possible for the thickest membrane (or roundest nucleus) in
one exemplar of a category to be the thinnest (or most
elliptical) in another exemplar of the same category, thus
making it impossible for subjects to categorize correctly
based on absolute thickness or roundness (i.e., it is
necessary to respond on the basis of relative thickness and
roundness between cells in an exemplar).
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The locations, shapes, and number of organelles of the
cells in an exemplar varied randomly, subject to the
constraint that no cells ever overlapped in the frame.  Each
cell was one of 6 different shapes and contained between 1
and 6 organelles.

We created exemplars used in the pre-mapping, post-
mapping, and mapping phase of the experiment (described
more fully below) withholding membrane thicknesses 3 and
7 (the thickest), and nucleus roundnesses 1 (least round) and
5 for construction of transfer exemplars.  The exemplars
used in the transfer phase were created under the constraints
described above, with the additional constraints that at least
one novel thicknesses and one novel roundness appeared in
each exemplar, and each novel thickness and roundness
appear in at least three of the six transfer exemplars (see
below).  The withheld thicknesses and roundnesses
consisted of values both within the bounds of the values
seen by subjects during the training and test phases of the
experiment and values outside those bounds.  Thus, transfer
trials required subjects to both interpolate and extrapolate
learning to new values.

The exemplars used during the mapping phase consisted
of two exemplars from the same category placed side by
side.

(a) 40 pre-mapping category learning trials

(b) mapping:  map or study

(c) 40 post-mapping
category learning  trials

(d) 6 post-mapping
transfer trials

Figure 2.  Structure of the experimental procedure.  (a)
Training phase, 40 trials; (b) mapping phase; (c) test phase,
40 trials; (d) transfer phase, 6 trials.

Procedure:  Ten subjects were randomly assigned to each
experimental condition.  All stimuli were presented on a
computer screen.  All subjects received 40 pre-mapping
training exemplars (20 A’s and 20 B’s) in a random order
(Figure 2a).  Their task was to indicate (with a key press)
whether each exemplar belonged to Category A or B.   Each
response was followed by accuracy feedback.  Following
the initial training phase, subjects were presented with one

of the two mapping sets (either two As or two Bs; Figure
2b).  Subjects were informed that both exemplars belonged
to the same category but they were not told which category
they belonged to.  Subjects in the No Map condition were
instructed to study the mapping set for one minute.  Subjects
in the Map condition were asked to indicate which cell in
the exemplar on the left corresponded to each cell in the
exemplar on the right, and to state the reason or reasons for
each correspondence.  Conditions and mapping sets were
fully counter-balanced.  All subjects then received 40 post-
mapping training trials (20 A’s and 20 B’s) in a random
order (Figure 2c).  Responses were followed by accuracy
feedback as before.  In the final transfer stage of the
experiment subjects were presented with the six transfer
exemplars (3 A’s and 3 B’s) in random order and their task
was to categorize each (Figure 2d).  They received no
accuracy feedback during this part of the experiment.

Scoring:  All participants were scored for number of
correct responses in the pre- and post-mapping trials
(maximum 40 correct for each) and the transfer trials
(maximum 6 correct).  We also recorded the mappings made
by participants in the Map condition.  At the end of the
experiment all subjects were also asked to state the rule(s)
they had used to categorize the exemplars.

Results
The results of the experiment were exactly as predicted.

An independent-samples t-test showed no main effects for
mapping, t(18) = 1.13, p > .25, on the pre-mapping training
trials (mean-proportion-correctMAP = .52, mean-propotion-
correctNO-MAP = .47), which is expected, as the groups
received exactly the same treatment prior to mapping.
Performance in neither group differed significantly from
chance (50% correct).

A second independent-samples t-test was run for
performance on the post-mapping trials (Figure 3a).  Post-
mapping, categorization performance in the Map condition
was significantly more accurate (mean-proportion-
correctMAP = .77) than in No Map (mean-propotion-
correctNO-MAP = .48), t(18) = 3.84, p < .01.  Accuracy in the
No Map group did not differ from chance.

A similar pattern of results obtained on the transfer trials
(Figure 3b).  Subjects in the map condition performed
significantly more accurately (mean-proportion-correctMAP =
.83) than those in the no map condition (mean-propotion-
correctNO-MAP = .42), t(18) = 4.16, p < .01.  Performance of
the No Map group on the transfer trials did not differ from
chance.

The participants’ reports of their mappings and rule use
also revealed interesting patterns.  First, none of the 10
subjects in the No Map group, and 7 of the 10 subjects in
the Map group correctly stated the rule defining category
membership at the end of the experiment.  Second, there
was a perfect 1:1 correspondence between subjects who
correctly mapped the cells during the mapping phase and
those who correctly stated the rule: All and only those
subjects who identified the correct mappings were able to
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state the category-defining rule at the end of the experiment.
All other subjects either missed the relevant dimensions
completely or mapped based on absolute membrane width
and absolute nucleus roundness, which, as stated previously,
were not sufficient for correct categorization.

.25

.50

.75

1.0

    Mean
Perpotion
  Correct

(a) TEST TRIALS (b) TRANSFER TRIALS

No Map

Map

Figure 3.  (a) Mean number of correct responses on post-
mapping trials as a function of condition.  (b) Mean number
of correct responses on transfer trials as a function of
condition.  The dashed line indicates chance.

Discussion
Relations play a central role in human perception and

thinking, yet little is known about how relational concepts
are acquired and predicated.  The problem of relational
predication is especially difficult because it is
underconstrained.  We hypothesized that structure mapping
might aid in the discovery and predication of novel higher-
order relations.

The results of a category learning experiment support this
hypothesis.  Subjects who mapped exemplars from the same
category onto one another were much better able to learn the
novel, category-defining higher-order relation than subjects
who did not map.  Indeed, performance of the latter group
never got above chance.

Additionally, subjects who mapped were able to both
interpolate and extrapolate learning to new exemplars with
novel stimulus values (i.e., novel membrane thicknesses and
nucleus roundnesses) and to verbally state the relational rule
that defined category membership.  Subjects who did not
map were unable to either transfer to new stimuli or to state
the category-defining rule.  These findings suggest that
mapping aids in the predication of novel relations, and that
the resulting relations are explicit, in the sense of being
available to bind to novel inputs (recall the transfer trials;
also, see Hummel & Holyoak, 1997, 2003).

More broadly, the findings reported here suggest that the
same cognitive mechanisms that underlie our ability to
make analogies—namely, those underlying structure
mapping—may also underlie our ability to discover and
predicate new relational concepts.  If this suggestion is
correct, then the evolution of the capacity for generalized
structure mapping may well be the “great leap forward”
(Newell, 1990) that ultimately gave rise to our capacity for
generalized symbolic thought.
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