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Abstract of the Dissertation 

Unsupervised sleep-like processes for enhancing neural networks 

 

by 

 

Jean Erik Delanois 

 

Doctor of Philosophy in Computer Science 

 

University of California San Diego, 2024 

 

Professor Maxim Bazhenov, Co-Chair  

Professor Julian McAuley, Co-Chair 
 

 

Advancing our understanding of neuroscience and artificial intelligence, this dissertation 

aims to progress our understanding of memory representation, consolidation, and robustness 

within neural networks. While the brain serves as a remarkable inspiration for machine learning, 

our comprehension of its complexities remains limited. Gaining insight in how the brain operates 

enables mutual progress in both fields simultaneously, one potential avenue is through exploring 

sleep. Sleep is a significant yet only partially understood phenomena that occurs in biological 

brains. This critical physiological process is prevalent across species due to its pivotal role for 

many biologically relevant metabolic and cognitive functions; importantly sleep has been shown 

to be crucial for memory enhancement and consolidation. Despite the extreme importance of 

natural sleep, there is no true artificial counterpart in machine learning. This work elucidates the 

intricate mechanisms by which sleep enhances memory representation through biophysical 



 

 

 

xi 

 

 

 

modeling and applies these principals to a range of network architectures across the biophysical-

artificial spectrum for a variety of tasks. Specifically, sleep mechanisms are conceptualized and 

illustrated in biophysical Hodgkin-Huxley neural networks capable of realistic wake and sleep 

activity. Similar sleep-like stages are then applied to map-based spiking neural networks to 

mitigate catastrophic forgetting in a sequential learning paradigm. Finally, fully bridging the 

neuroscience / artificial intelligence gap, a sleep based algorithm for artificial convolutional 

neural networks is proposed which bolsters the resilience of convolutional filters thereby 

improving model performance in distorted contexts. Collectively, this dissertation sheds light on 

the role of sleep in shaping memory across diverse neural systems and reimagines the 

relationship between artificial and biological intelligence. 
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S1 Figure. Spike rasters showing network activity across various training regimes. (A-D) 

Representative spike rasters from various training regimes. The vertical axis specifies a unique 

neuron in the network while time in epochs is shown horizontally. Here a single dot represents a 

specific neuron spiking at a given time while the color of the dot dictates what layer that neuron 

belongs to (green, blue, red corresponding to input, hidden, and output layers respectively). 

Panels A, B, C, D correspond to sample activity from Task 1 training, Task 2 training, IT1,T2 

training and IS,T1 training respectively. Note, in panel D activity is taken during a period of 

sleep when the hidden layer is spontaneously activated. Thus, there are hidden (blue) and output 

(red) layer spikes while the input (green) layer is completely silent. 
Supplemental Figures  
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S2 Figure. Model displays graceful degradation in performance as a result of hidden layer 

dropout. (A) Mean performance (red line) and standard deviation (blue lines) over time: 

unsupervised training (white), Task 1 training (blue), Task 1 testing (green). Hidden layer 

neurons are randomly removed during testing period. Gradient bar above Task 1 testing (green) 

displays the number of hidden layer neurons over time starting at 784 and decreasing down to 0. 

The testing performance remains high until ~25% of neurons are left, after which it starts to 

drop. This highlights the formation of a distributed synaptic structure between hidden and output 

layer neurons developed during training, ensuring output layer activity is not dictated by a select 

few hidden layer neurons. (B) Same as in (A) but for Task 2.  
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S3 Figure. Particle responsiveness metric (PRM) shows correspondence between type of 

training and particles preferred by the network. (A-D) Mean and standard deviation (blue bars 

and black lines respectively) of the PRM for various types of training and particle orientations 

across ten trials. The title of each plot reflects the most recently trained stage, the vertical axis 

corresponds to the value of the PRM while the horizontal axis identifies the particle type (bold 

labels indicate ideal particles the network would be attracted to following the corresponding 

training). It can be seen that the metric indicates the network is most responsive to the 

corresponding ideal particle types following a specific training regime e.g. Post Task 1 the 

network is most responsive to horizontal particles (A), Post Task 2 the network is most 

responsive to vertical particles (B), Post IS,T1 the network is most responsive to horizontal and 

vertical particles (C), Post IT1,T2 the network is most responsive to horizontal and vertical 

particles (D).
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S4 Figure. Effect of sleep to protect old memory does not depend on specific properties of noise 

applied during sleep phase. (A) Mean performance (red line) and standard deviation (blue lines) 

over time: unsupervised training (white), InterleavedS,T1 (grey), Task 1/2 testing (green/yellow). 

(B) Mean and standard deviation of performance during testing on Task 1 (blue) and Task 2 

(red). Following InterleavedS,T1, mean performance on Task 1 was 0.60 ± 0.03 while Task 2 

was 0.49 ± 0.05. (In all experiments, 0.5 represents chance performance.) Note that periods of 

Task 1 training interleaved with sleep do not lead to increase in performance on untrained Task 

2, even when Task 2 data from another experiment were used to set up mean firing rates of the 

random input during sleep. (C) Same as in (A) but the sequence of training was: unsupervised 

training (white), Task 1 training (blue), Task 1/2 testing (green/yellow), InterleavedS,T1 (grey), 

Task 1/2 testing (green/yellow). (D) Mean and standard deviation of performance during testing 

on Task 1 (blue) and Task 2 (red) after Task 1 training and after InterleavedS,T1. Following 

Task 1 training, mean performance on Task 1 was 0.70 ± 0.02 while Task 2 was 0.53 ± 0.02. 

Post InterleavedS,T1 training, mean performance on Task 1 was 0.71 ± 0.02 and Task 2 was 0.51 

± 0.02. Task 1 performance remained high after InterleavedS,T1 but no improvement on Task 2 

was observed. (E) Mean performance (red line) and standard deviation (blue lines) over time: 

unsupervised training (white), Task 1 training (blue), Task 1/2 testing (green/yellow), 

InterleavedUS,T2 (burnt orange), Task 1/2 testing (green/yellow). (F) Mean and standard 

deviation of performance during testing on Task 1 (blue) and Task 2 (red). Following Task 1 

training, mean performance on Task 1 was 0.70 ± 0.02 while Task 2 was 0.53 ± 0.02. Post 

InterleavedUS,T2 training, mean performance on Task 1 was 0.67 ± 0.05 and Task 2 was 0.69 ± 

0.03.
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S5 Figure. Interleaving old and new task training allows integrating synaptic information 

relevant to new task while preserving old task information. (A) Mean performance (red line) and 

standard deviation (blue lines) over time: unsupervised training (white), Task 1 training(blue), 

Task 1/2 testing (green/yellow), Task 2 training (red), Task 1/2 testing (green/yellow), 

InterleavedT1,T2 training (purple), Task 1/2 testing (green/yellow). (B) Mean and standard 

deviation of performance during testing on Task 1 (blue) and Task 2 (red). Following Task 

1training, mean performance on Task 1 was 0.69 ± 0.02 while Task 2 was 0.53 ± 0.02. 

Conversely, following Task 2 training, mean performance on Task 1 was 0.52 ± 0.02 while 

Task2 was 0.69 ± 0.04. Following InterleavedT1,T2 training, mean performance on Task 1 was 

0.65 ±0.03 while Task 2 was 0.67 ± 0.04. (C) Distributions of task-relevant synaptic weights 

(blue bars–single trial, orange line / shaded region–mean / std across 10 trails. The distributional 

structure of Task 1-relevant synapses following Task 1 training (top-left) is destroyed following 

Task 2 training (top-middle), but partially recovered following. InterleavedT1,T2 training (top-

right). Similarly, the distributional structure of Task 2-relevantsynapses following Task 2 

training (bottom-middle), which was not present following Task 1training (bottom-left), was 

partially preserved following InterleavedT1,T2 training (bottom-right).(D) Box plots with mean 

(dashed green line) and median (dashed orange line) of the distance to the decision boundary 

found by an SVM trained to classify Task 1 and Task 2 synaptic weight matrices for Task 1, 

Task 2, and InterleavedT1,T2 training across trials. Task 1 and Task 2synaptic weight matrices 

had mean classification values of -0.069 and 0.069 respectively, while that of InterleavedT1,T2 

training was 0.016. (E) Trajectory of H to O layer synaptic weights through PC space. Synaptic 

weights which evolved during InterleavedT1,T2 training (green dots)clustered in a location of 

PC space intermediary between the clusters of synaptic weights which evolved during training 

on Task 1 (red dots) and Task 2 (blue dots). 
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S6 Figure. Freezing a fraction of task specific strong synapses preserves differing degrees of 

performance in a sequential learning paradigm. (A-C) Mean and standard deviation of 

performance during testing on Task 1 (blue) and Task 2 (red). Left, Performance after Task 1 

training. Right, Performance after Task 2 training when a fraction of the strongest (after Task 1 

training) synapses remained frozen– 1% (A), 5% (B), 10% (C). In all cases, after Task 1 training, 

Task 1 performance was 0.70 ± 0.02 and Task 2 performance was 0.53 ± 0.02. (A) Freezing the 

top 1% of Task 1 synapses resulted in a Task 1 performance of 0.54 ± 0.02 and Task 2 

performance of 0.68 ± 0.03. (B) Freezing the top 5% of Task 1 synapses resulted in a Task 1 

performance of 0.65 ± 0.02 and Task 2 performance of 0.61 ± 0.01. (C) Freezing the top 10% of 

Task 1 synapses resulted in a Task 1 performance of 0.70 ± 0.03 and Task 2 performance of 0.53 

± 0.03. Freezing the top 1% of Task 1 synapses was not sufficient to maintain Task 1 

performance, thus enabling Task 2 relevant synapses to dominate the network; however, freezing 

the top 10% of Task 1 synapses fully retains Task 1 performance preventing Task 2 to be 

learned. 
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Conclusion 

 In conclusion, this dissertation offers advancements in the interdisciplinary understanding 

of neuroscience and artificial intelligence. It demonstrates how the incorporation of sleep and 

sleep-like stages can enhance memory consolidation, representation, and robustness across 

neural networks with varying degrees of biological realism. Through biophysical modeling, this 

research proposes potential sleep-induced synaptic dynamics that could be crucial for memory 

consolidation in living organisms. When analogous mechanisms were applied to artificial spiking 

neural networks, the observed memory enhancement indicated the benefits of sleep extend to 

artificial contexts as well. Furthermore, incorporating sleep-like stages in artificial neural 

networks was shown to enhance synaptic memories and feature representations, leading to 

improved model performance. This work not only elucidates potential intricate mechanisms 

underlying sleep and memory consolidation in biological brains but also reconceptualizes the 

relationship between artificial neural networks and sleep-like processes. These advancements 

pave the way for further understanding living brains and developing more robust and brain-like 

artificial intelligence systems, thereby helping to bridge the gap between biological and artificial 

intelligence. 

 

 




