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Abstract of the Dissertation

Unsupervised sleep-like processes for enhancing neural networks
by
Jean Erik Delanois
Doctor of Philosophy in Computer Science
University of California San Diego, 2024

Professor Maxim Bazhenov, Co-Chair
Professor Julian McAuley, Co-Chair

Advancing our understanding of neuroscience and artificial intelligence, this dissertation
aims to progress our understanding of memory representation, consolidation, and robustness
within neural networks. While the brain serves as a remarkable inspiration for machine learning,
our comprehension of its complexities remains limited. Gaining insight in how the brain operates
enables mutual progress in both fields simultaneously, one potential avenue is through exploring
sleep. Sleep is a significant yet only partially understood phenomena that occurs in biological
brains. This critical physiological process is prevalent across species due to its pivotal role for
many biologically relevant metabolic and cognitive functions; importantly sleep has been shown
to be crucial for memory enhancement and consolidation. Despite the extreme importance of
natural sleep, there is no true artificial counterpart in machine learning. This work elucidates the

intricate mechanisms by which sleep enhances memory representation through biophysical



modeling and applies these principals to a range of network architectures across the biophysical-
artificial spectrum for a variety of tasks. Specifically, sleep mechanisms are conceptualized and
illustrated in biophysical Hodgkin-Huxley neural networks capable of realistic wake and sleep
activity. Similar sleep-like stages are then applied to map-based spiking neural networks to
mitigate catastrophic forgetting in a sequential learning paradigm. Finally, fully bridging the
neuroscience / artificial intelligence gap, a sleep based algorithm for artificial convolutional
neural networks is proposed which bolsters the resilience of convolutional filters thereby
improving model performance in distorted contexts. Collectively, this dissertation sheds light on
the role of sleep in shaping memory across diverse neural systems and reimagines the

relationship between artificial and biological intelligence.
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Can sleep protect memories from
catastrophic forgetting?

Oscar C Gonzélez'", Yury Sokolov'!, Giri P Krishnan', Jean Erik Delanois™?,
Maxim Bazhenov'*

"Department of Medicine, University of California, San Diego, La Jolla, United
States; “Department of Computer Science and Engineering, University of California,
San Diego, La Jolla, United States

Abstract Continual learning remains an unsolved problem in artificial neural networks. The brain
has evolved mechanisms to prevent catastrophic forgetting of old knowledge during new training.
Building upon data suggesting the importance of sleep in learning and memory, we tested a
hypothesis that sleep protects old memories from being forgotten after new learning. In the
thalamocortical model, training a new memory interfered with previously learned old memories
leading to degradation and forgetting of the old memory traces. Simulating sleep after new
learning reversed the damage and enhanced old and new memories. We found that when a new
memory competed for previously allocated neuronal/synaptic resources, sleep replay changed the
synaptic footprint of the old memory to allow overlapping neuronal populations to store multiple
memories. Our study predicts that memory storage is dynamic, and sleep enables continual
learning by combining consolidation of new memory traces with reconsolidation of old memory
traces to minimize interference.

Introduction

Animals and humans are capable of continuous, sequential learning. In contrast, modern artificial
neural networks suffer from the inability to perform continual learning (Ratcliff, 1990; French, 1999;
Hassabis et al., 2017; Hasselmo, 2017; Kirkpatrick et al., 2017). Training a new task results in
interference and catastrophic forgetting of old memories (Ratcliff, 1990, McClelland et al., 1995;
French, 1999; Hasselmo, 2017). Several attempts have been made to overcome this problem
including (a) explicit retraining of all previously learned memories - interleaved training (Has-
selmo, 2017), (b) using generative models to reactivate previous inputs (Kemker and Kanan, 2017),
or (c) artificially ‘freezing’ subsets of synapses important for the old memories (Kirkpatrick et al.,
2017). These solutions help prevent new memories from interfering with previously stored old mem-
ories, however they either require explicit retraining of all past memories using the original data or
have limitations on the types of trainable new memories and network architectures (Kemker and
Kanan, 2017). How biological systems avoid catastrophic forgetting remains to be understood. In
this paper, we propose a mechanism for how sleep modifies network synaptic connectivity to mini-
mize interference of competing memory traces enabling continual learning.

Sleep has been suggested to play an important role in learning and memory (Paller and Voss,
2004; Walker and Stickgold, 2004; Oudiette et al., 2013; Rasch and Born, 2013; Stickgold, 2013;
Weigenand et al., 2016; Wei et al., 2018). Specifically, the role of stage 2 (N2) and stage 3 (N3) of
Non-Rapid Eye Movement (NREM) sleep has been shown to help with the consolidation of newly
encoded memories (Paller and Voss, 2004; Walker and Stickgold, 2004; Rasch and Born, 2013;
Stickgold, 2013). The mechanism by which memory consolidation is influenced by sleep is still
debated, however, a number of hypotheses have been put forward. Sleep may enable memory con-
solidation through repeated reactivation or replay of specific memory traces during characteristic
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sleep rhythms such as spindles and slow oscillations (Paller and Voss, 2004; Clemens et al., 2005;
Marshall et al., 2006; Oudiette et al., 2013; Rasch and Born, 2013; Weigenand et al., 2016;
Ladenbauer et al., 2017, Wei et al., 2018; Xu et al., 2019). Memory replay during NREM sleep
could help strengthen previously stored memories and map memory traces between brain struc-
tures. Previous work using electrical (Marshall et al, 2004; Marshall et al, 2006;
Ladenbauer et al., 2017) or auditory (Ngo et al., 2013) stimulation showed that increasing neocorti-
cal oscillations during NREM sleep resulted in improved consolidation of declarative memories. Simi-
larly, spatial memory consolidation has been shown to improve following cued reactivation of
memory traces during NREM sleep (Paller and Voss, 2004; Oudiette et al., 2013; Oudiette and
Paller, 2013; Papalambros et al., 2017). Our recent computational studies found that sleep dynam-
ics can lead to replay and strengthening of recently learned memory traces (Wei et al., 2016;
Wei et al., 2018; Wei et al., 2020). These studies point to the critical role of sleep in memory
consolidation.

Can neuroscience inspired ideas help solve the catastrophic forgetting problem in artificial neuro-
nal networks? The most common machine learning training algorithm - backpropagation
(Rumelhart et al., 1986; Werbos, 1990; Kriegeskorte, 2015) — is very different from plasticity rules
utilized by brain networks. Nevertheless, we have recently seen a number of successful attempts to
implement high level principles of biological learning in artificial network designs, including imple-
mentation of the ideas from ‘Complementary Learning System Theory' (McClelland et al., 1995),
according to which the hippocampus is responsible for the fast acquisition of new information, while
the neocortex would more gradually learn a generalized and distributed representation. These ideas
led to interesting attempts of solving the catastrophic forgetting problem in artificial neural networks
(Kemker and Kanan, 2017). While few attempts have been made to implement sleep in artificial
networks, one study suggested that sleep-like activity can increase storage capacity in artificial net-
works (Fachechi et al., 2019). We recently found that implementation of a sleep-like phase in artifi-
cial networks trained using backpropagation can dramatically reduce catastrophic forgetting, as well
as improve generalization performance and transfer of knowledge (Krishnan et al,
2019; Tadros et al., 2020). However, despite this progress, we are still lacking a basic understand-
ing of the mechanisms by which sleep replay affects memories, especially when new learning inter-
feres with old knowledge.

The ability to store and retrieve sequentially related information is arguably the foundation of
intelligent behavior. It allows us to predict the outcomes of sensory situations, to achieve goals by
generating sequences of motor actions, to ‘mentally’ explore the possible outcomes of different nav-
igational or motor choices, and ultimately to communicate through complex verbal sequences gen-
erated by flexibly chaining simpler elemental sequences learned in childhood. In our new study, we
trained a network, capable of transitioning between sleep-like and wake-like states, to learn spike
sequences in order to identify mechanisms by which sleep allows consolidation of newly encoded
memory sequences and prevents damage to old memories. Our study predicts that during a period
of sleep, following training of a new memory sequence in awake, both old and new memory traces
are spontaneously replayed, preventing forgetting and increasing recall performance. We found that
sleep replay results in fine tuning of the synaptic connectivity matrix encoding the interfering mem-
ory sequences to allow overlapping populations of neurons to store multiple competing memories.

Results

The network model, used in our study, represents a minimal thalamocortical architecture implement-
ing one cortical layer (consisting of excitatory pyramidal (PY) and inhibitory (IN) neurons) and one
thalamic layer (consisting of excitatory thalamic relay (TC) and inhibitory reticular thalamic (RE) neu-
rons) — with all neurons simulated by Hodgkin-Huxley models (Figure 1A). These models were built
upon neuron models we used in our earlier work (Krishnan et al., 2016; Wei et al., 2016;
Wei et al., 2018). This model exhibits two primary dynamical states of the thalamocortical system —
awake, characterized by random asynchronous firing of all cortical neurons, and slow-wave sleep
(SWS), characterized by slow (<1 Hz) oscillations between Up (active) and Down (silent) states
(Blake and Gerard, 1937; Steriade et al., 1993; Steriade et al., 2001). Transitions between sleep
and awake (Figure 1B/C) were simulated by changing network parameters to model effect of neuro-
modulators (Krishnan et al., 2016). While the thalamic population was part of the network, its role
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Figure 1. Network architecture and baseline dynamics. (A) Basic network architecture (PY: excitatory pyramidal neurons; IN: inhibitory interneurons; TC:
excitatory thalamocortical neurons; RE: inhibitory thalamic reticular neurons). Excitatory synapses are represented by lines terminating in a dot, while
inhibitory synapses are represented by lines terminating in bars. Arrows indicate the direction of the connection. (B) Behavior of a control network
exhibiting wake-sleep transitions. Cortical PY neurons are shown. Color represents the voltage of a neuron at a given time during the simulation (dark
blue — hyperpolarized potential; light blue / yellow — depolarized potential; red - spike). (C) Zoom-in of a subset of neurons from the network in B (time
is indicated by arrows). Left and right panels show spontaneous activity during awake-like state before and after sleep, respectively. Middle panel shows
example of activity during sleep. (D) Left panel shows the initial weighted adjacency matrix for the network in B. The color in this plot represents the
strength of the AMPA connections between PY neurons, with white indicating the lack of synaptic connection. Right panel shows the initial weighted
adjacency matrix for the subregion indicated on the left.
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was limited to help simulate realistic Up and Down state activity (Bazhenov et al., 2002), as all syn-
aptic changes occurred in the cortical population. The initial strength of the synaptic connections
between cortical PY neurons was Gaussian distributed (Figure 1D).

We set probabilistic connectivity (p=0.6) between excitatory cortical neurons within a defined
radius (Rampapy.pvy=20). Only cortical PY-PY connections were plastic and regulated by spike-timing
dependent plasticity (STDP). During initial training, STDP was biased for potentiation to simulate ele-
vated levels of acetylcholine (Blokland, 1995; Shinoe et al., 2005; Sugisaki et al., 2016). During
testing/retrieval, STDP was balanced (LTD/LTP = 1). STDP remained balanced during both sleep and
interleaved training (except for few selected simulations where we tested effect of unbalancing
STDP) to allow side by side comparisons. For details, please see Methods and Materials.

Temporally structured sequences of events are a common type of information we learn, and they
are believed to be represented in the brain by sequences of neurcnal firing. Therefore, in this study
we represent each memory pattern as an ordered sequence, S, of activations of populations of corti-
cal neurons (e.g.,, A—B—...), where each 'letter’ (e.g., A) labels a population of neurons, so each
memory could be labeled by a unique ‘word’ of such ‘letters’. We considered memory patterns rep-
resented by non-overlapping populations of neurons as well as memory patterns sharing neurons
but with a different activation order, for example, A—B—C vs. C—B—A. This setup can mimic,
for example, in vivo experiments with a rat learning a track, including: (a) running in one direction on
a linear track (Mehta et al, 1997) would be equivalent to a sequence training
('A—B—C’, '"A—B—C",.. ); (b) forwards and backwards running on a linear track (Navratilova et al.,
2012) would be equivalent to interleaved sequences training (A—B—C’, 'C—B—A’, ‘A—B—C’,...);
(c) running on a belt track first only in one direction and then in reverse one (e.g., using Virtual Real-
ity (VR) apparatus) would be equivalent to first learning a sequence ('A—B—C’, 'A—B—C’,...) and
then the opposite one ((C—B—A’, ‘C—B—A’,.. ).

In our model, training always occurred in the awake state and no input was delivered to the net-
work in the sleep state. Testing was also done in the awake state; during test sessions, the model
was only presented with input to the first group (e.g., A) to test for pattern completion for the
trained sequence (e.g., A—B—C—...). Performance was calculated based on the distance between
the trained pattern (template) and the response during testing. The awake state included multiple
testing sessions: before training, after training/before sleep, and after sleep. For details, please see
Methods and Materials.

The paper is organized as follows. We first consider the scenario of two memory sequences
trained at different (non-overlapping) network locations. We show that SWS-like activity after train-
ing leads to sequence replay, synaptic weight changes, and performance increases during testing
after sleep. Next, we focus on the case of two sequences trained in opposite directions over the
same population of neurons. We show that in such a case training a new sequence in awake would
‘erase’ an old memory. However, if a sleep phase is implemented before complete destruction of
the old memory, both memory sequences are spontaneously replayed during sleep. As a result of
replay, each sequence allocates its own subset of neurons/synapses, and performance increases for
both sequences during testing after sleep. We complete the study with a detailed analysis of synap-
tic weight changes and replay dynamics during the sleep state to identify mechanisms of memory
consolidation and performance increase. In supplementary figures, we compare sleep replay with
interleaved training and show that sleep achieves similar or better performance but without explicit
access to the training data.

Training of spatially separated memory sequences does not lead to
interference

First, we trained two memory patterns, S1 and S2, sequentially (first S1 and then S2) in spatially dis-
tinct regions of the network as shown in Figure 2A. Each memory sequence was represented by the
spatio-temporal pattern of 5 sequentially activated groups of 10 neurons per group. A 5 ms delay
was included between stimulations of subsequent groups within a sequence. S1 was trained in the
population of cortical neurons 200-249 (Figure 2B, top). Training S1 resulted in an increase of syn-
aptic weights between participating neurons (Figure 2D, left) and an increase in performance on
sequence completion (Figure 2B/C, top). When the strength of the synapses in the direction of 51
increased, synapses in the opposite direction showed a reduction consistent with the STDP rule (see
Methods and Materials). The second sequence, S2, was trained for an equal amount of time as S1
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Figure 2. Two spatially separated memory sequences show no interference during training and both are strengthened by subsequent sleep. (A)
Network activity during periods of testing (T), training of two spatially separated memory sequences (51/52), and sleep (N3). Cortical PY neurons are
shown. Color indicates voltage of neurons at a given time. (B) Left panels show an example of training sequence 1 (S1, top) and sequence 2 (S2,
bottom). Middle panels show examples of testing both sequences prior to sleep. Right panels show examples of testing after sleep. Note, after sleep,

Figure 2 continued on next page
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both sequences show better completion. (C) Performance of S1 and S2 completion before any training (baseline), after S1 training, after S2 training, and
after sleep (red). (D) Synaptic weight matrices show changes of synaptic weights in the regions trained for S1 and S2. Left panel shows weights after
training S1; middle panel shows weights after training S2; right panel shows weights after sleep. Color indicates strength of AMPA synaptic

connections. (E) Distributions of the net sum of synaptic weights each neuron receives from all the neurons belonging to its left neighboring group (S1
direction) vs its right neighboring group (opposite direction, defined as S1* direction below) within a trained region at baseline (left), after S1 training
(middle) and after sleep (right). (F) Synaptic weight-based directionality index before/after training (gray bars) and after sleep (red bar).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Sleep replay improves performance for complex non-linear sequences.

but in a different population of neurons 350-399 (W-V-X-Y-Z, Figure 2B, bottom). Training of S2
also resulted in synaptic weight changes (Figure 2D, middle) and improvement in performance
(Figure 2B/C, bottom). Importantly, training of S2 did not interfere with the weight changes encod-
ing S1 because both sequences involved spatially distinct populations of neurons (compare
Figure 2D, left and middle). It should be noted that though testing resulted in reactivation of mem-
ory traces, there was little change in synaptic weights during testing periods because of a relatively
small number of pre/post spike events. (Simulations where STDP was explicitly turned off during all
testing periods exhibited similar results to those presented here.)

We next calculated the net sum of synaptic weights each neuron received from all neurons
belonging to its left vs right neighboring populations (e.g., total input to a neuron B;, belonging to
group B, that it received from all the neurons in group A vs all the neurons in group C) and we ana-
lyzed the difference of these net weights. The initial distribution was symmetric reflecting the initial
state of the network (Figure 2E, left). After training, it became asymmetric, indicating stronger input
from the left groups (i.e., total input to B; from all the neurons in group A was larger than that from
all the neurons in group C) (Figure 2E, middle). These results are consistent with in vivo recordings
from a rat running in one direction on a linear track (Mehta et al., 1997), where this phenomenon
was called ‘receptive field backwards expansion’, i.e., neurons representing locations along the track
became asymmetrically coupled such that activity in one group of neurons (one location) led to
activation of the next group of neurons (new location) even before the corresponding input occurred
(before the animal moved to the new location).

After successful training of both sequences, the network went through a period of sleep (N3 in
Figure 2A) when no stimulation was applied. After sleep, synaptic weights for both memory sequen-
ces revealed strong increases in the direction of their respective activation patterns and further
decreases in the opposing directions (Figure 2D, right). In line with our previous work (Wei et al.,
2018), these changes were a result of sequence replay during the Up states of slow oscillation (see
next section for details). Synaptic strengthening increased the performance on sequence completion
after sleep (Figure 2B, right; 2C, red bar). Analysis of the net synaptic input to each neuron from its
left vs right neighboring groups, revealed further shift of the synaptic weight distribution (Figure 2E,
right). This predicts that SWS following linear track training would lead to further receptive field
backwards expansion in the cortical neurons. To quantify this asymmetry we calculated a ‘directional-
ity index’, I, for synaptic weights (similar to Navratilova et al., 2012 but using synaptic weights),
based on synaptic input to each neuron from its left vs right neighboring populations (‘Directionality
Index’=0 if all the neurons receive the same input from its left vs right neighboring groups and
‘Directionality Index’=1 if all the neurons receive input from one ‘side’ only; see Methods and Mate-
rials for details). This analysis showed an increase in the directionality index from naive to trained cor-
tical networks and further increase after sleep (Figure 2F). Note, that the backwards expansion of
the place fields was reset between sessions in CA1 (Mehta et al., 1997), but not in CA3 (Roth et al.,
2012), where the backward shift gradually diminished across days, possibly as memories became
hippocampus independent (see Discussion).

The goal of this study was to reveal basic mechanisms of replay and therefore we focus on the
‘simple’ linear (e.g., S1) memory sequences. Our results, however, can be generalized to much more
complex non-linear sequences (see Figure 2—figure supplement 1). In simulations from Figure 2—
figure supplement 1, training a sequence in awake was not long enough to ensure reliable
pattern completion, however, performance was significantly improved after replay during SWS.
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Sleep replay improves pattern completion performance for memory
sequencies

Why do SWS dynamics lead to improvement in memory performance? The hypothesis is that mem-
ory patterns trained in awake are spontaneously replayed during sleep. With this in mind, we next
analyzed the network firing patterns during Up states of the slow oscillation to identify replay. We
focused our analysis on pairs of neurons (as opposed to the longer sequences) because (a) having
different elementary units of a sequence (neuronal pairs) replayed independently would still be suffi-
cient to strengthen the entire sequence; (b) in vivo data suggest that memory sequence replay often
involves random subsets of the entire sequence (e.g., Euston et al., 2007, Roumis and Frank,
2015; Joo and Frank, 2018; Swanson et al., 2020); (c) we want to compare results in this section to
the analysis of the overlapping opposite sequences in the following sections, however, we could not
reliably detect replay of the full sequences in the latter case possibly because of highly overlapping
spiking between sequences.

For each synapse in direction S1 (we refer to it below as $1 synapse) and each Up state, we (a)
calculated the time delay between nearest pre/post spikes; (b) transformed this time delay through
an STDP-like function to obtain a value characterizing its effect on synaptic weight; and (c) calculated
the total net effect of all such spike events. This gave us a net weight change for a given synapse
during a given Up state. If we observed a net weight increase, we labeled this S1 synapse as being
preferentially replayed during a given Up state. Finally, we counted all the Up states where a given
synapse was replayed as defined above. This procedure is similar to off-line STDP, however, instead
of weight change over entire sleep, we obtained the number of Up states where a synapse in the
direction of S1 was (preferentially) replayed.

Figure 3A shows, for each synapse in the direction of S1, the total change of its synaptic strength
across entire sleep (Y-axis) vs number of Up states when that synapse was replayed (X-axis). As
expected, it shows a strong positive correlation. Synaptic weight changes became negative
when the number of Up states where an S1 synapse was replayed dropped below half of the total
number of Up states (blue vertical line in Figure 3A). In Figure 3B we plotted only those S1 synapses
which were replayed reliably — for more that 66% of all Up states (dotted line in Figure 3A). We
found such synapses between all neuronal groups (gray boxes in Figure 3B) as well as between neu-
rons within groups.

In Figure 3C, we illustrated all the synapses identified in the analysis in Figure 3B, that is, synap-
ses that were replayed reliably (in more than 6% of all Up states) in direction of S1. We also colored
in blue neurons receiving at least one of these synapses as identified in Figure 3B. We concluded
that there were multiple direct and indirect synaptic pathways connecting the first (A) and last (E)
groups of neurons that were replayed reliably during sleep. These synapses increased their strength
which explains reliable memory recall during testing after sleep.

Sequential training of overlapping memory sequences results in
interference
We next tested whether our network model shows interference during awake when a new sequence
(S1*) (Figure 4A) is trained in the same population of neurons as the earlier old sequence (S1). S1*
included the same exact groups of neurons as S1, but the order of activation was reversed, that is,
the stimulation order was E-D-C-B-A (Figure 4B). S2 was once again trained in a spatially distinct
region of the network (Figure 4A/B). Testing for sequence completion was performed immediately
after each training period. This protocol can represent two somewhat different training scenarios: (a)
two competing memory traces (S1 and S1*) are trained sequentially before sleep; (b) the first (old)
memory S1 is trained and then consolidated during sleep followed by training of the second (new)
memory S$1* followed by another episode of sleep. We explicitly tested both scenarios and they
behaved similarly, so in the following we discuss the simpler case of two sequentially trained memo-
ries followed by sleep. This setup can simulate in vivo experiments with a rat running on a belt in a
VR apparatus, first in one direction only (learning $1) and then in the opposite direction (learning
S1*). An example of the second scenario is presented in Figure 5—figure supplement 1 and dis-
cussed below.

In the model, training S1 increased performance of S1 completion (Figure 4C, top/left). It also
led to decrease in performance for S1* below its baseline level in the 'naive’ network (Figure 4C,
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Figure 3. Sleep replay strengthens synapses to improve memory recall. (A) Change in synaptic weight over entire sleep period as a function of

the number of Up states where a given synapse was replayed. Each star represents a synapse in the direction of 51. Dashed line indicates the threshold
(66% of Up states) used to identify synapses that are replayed reliably for analysis in B; purple line indicates the maximum number of Up states; blue
line demarcates the 50% mark of the total number of Up states. (B) Thresholded connectivity matrix indicating synaptic connections (blue) showing
reliable replays in the trained region. Grey boxes highlight between group connections. (C) Network's graph showing between group (top) and within
group (bottom) connections. Edges shown here are those synapses which revealed reliable replays of S1 as shown in B, Nodes are colored blue if they
receive at least one of the synapses identified in panel B.

bottom/left). (Note that even a naive network displayed some above zero probability to complete a
sequence depending on the initial strength of synapses and spontaneous network activity). Training
S2 led to an increase in 52 performance (S1 performance also increased, most-likely due to the ran-
dom reactivation of S1 in awake). Subsequent training of S1* resulted in both a significant increase
in §1* performance and a significant reduction of 51 performance (Figure 4C). To evaluate the
impact of S1* training on S1 performance, we varied the duration of S1* (later memory) training
(Figure 4D). Increasing the duration of S1* training correlated with a reduction of S1 performance
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Figure 4 continued on next page
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The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Interleaved training of the old and new memory sequences prevents the old sequence from forgetting and improves

performance for both memories

up to the point when S1 performance was reduced to its baseline level (Figures 4D and 400 sec
training duration of S1*). This suggests that sequential training of two memories competing for the
same population of neurons results in memory interference and catastrophic forgetting of the earlier
memory sequence.

The model predicts that in experiments with a rat running on a belt in a VR apparatus, training
the backward direction after training the forward one would ‘erase’ the effect of the forward train-
ing. While we are not aware of such experiments, studies done with a rat running forward and back-
ward on a liner track (Navratilova et al., 2012), which would be equivalent to interleaved training
S1— S1*— S1— S1*...,, revealed that, in the hippocampus, spatial sequences of opposite direction
are rapidly orthogonalized, largely on the basis of differential head direction system input, to accom-
modate both trainings. Thus, at each location, some neurons had their receptive field expanded in
one direction and others in the opposite direction (Navratilova et al., 2012). To compare our model
with these data, we tested interleaved training of 51 and S1* (Figure 4—figure supplement 1) and
found performance increase for both sequences. Importantly, in agreement with in vivo data, differ-
ent neurons became specific for $1 vs S1* as reflected in the overall increase of the directionality
index (Figure 4—figure supplement 1F). In the next section we test if sleep can achieve the same
goal.

Sleep prevents interference and leads to performance improvement for
overlapping memories

So far we found that when a single sequence was trained, it replayed spontaneously during sleep
resulting in improvement in performance (Figures 2 and 3). For two opposite sequences trained in
the same network location we found competition and interference during sequential training in
awake (Figure 4). However, when the same two sequences were trained using alternating protocol
(interleaved training), both increased in performance (Figure 4—figure supplement 1C). We next
tested the effect of SWS following sequential training of two opposite sequences in awake. Two out-
comes are possible: (a) the stronger sequence could dominate replay and eventually suppress the
weaker one, or (b) both sequences can be replayed during sleep and increase in performance after
sleep. To test these possibilities, we simulated SWS (N3) after the sequences $1/52/S1* were trained
sequentially in the awake state (51— S1—...— S2— S2—...— S1*— S1*—..) (Figure 5A), as
described in the previous sections (Figures 2 and 4). We stopped training the new memory S1*
before the old memory trace S1 was completely erased (300 sec of S1* training, see Figure 4D).
Since we biased STDP towards LTP during awake, both memories S1 and S$1* showed above base-
line performance after training.

We found that sleep improves sequence completion performance for all three memories, includ-
ing competing memory traces - 51 and $1*. Figure 5B shows raster plots of the spiking activity
before vs after sleep, which revealed significant improvements in sequence completion. These
results are summarized in (Figure 5C). Thus, we predict that sleep replay is not only able to reverse
the damage caused to the old memory (S1) following S1* training, but it can enhance S1 perfor-
mance at the same time as it enhances performance of S1*.

As for a single sequence, we next calculated the net sum of synaptic weights each neuron
received from all the neurons belonging to its left vs right neighboring groups, and we analyzed the
difference of these net weights. The initial distribution was symmetric reflecting the initial state of
the network (Figure 5D, left). After S1 training, the distribution became asymmetric, indicating
stronger input from the left (Figure 5D, middle/left). Training the opposite sequence, S1*, reversed
the process and the distribution became more symmetric again, however, it also became wider with
some neurons in each population preferring sequence S1 (i.e., for some group B neurons, B;, input
from group A was stronger than input from group C) and others preferring S1* (i.e., for other group
B neurons, B, input from group C was stronger than input from group A) (Figure 5D, middle/right).
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Figure 5. Sleep prevents the old memory sequence from forgetting and improves performance for all memories. (A) Network activity (PY neurons)
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Figure 5 continued on next page
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performance for all three sequences after sleep (red bars). (D) Distributions of the net sum of synaptic weights each neuron receives from all the
neurons belonging to its left vs right neighboring groups within a trained region at baseline (left), after training S1 (middle/left), after training S1*
(middle/right), and after sleep (right). Wider distribution indicates presence of neurons that are strongly biased to one sequence or the other. (E)
Synaptic weight-based directionality index before/after training (gray bars) and after sleep (red bar).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Training of a new memory that interferes with previously consolidated old memory leads to forgetting that can be reversed by

subsequent sleep.

After SWS, the width of the distribution further increased indicating that sleep, similar to interleaved
training, changes the network connectivity to develop neurons which become strongly specific for
one sequence or another (Figure 5D, right). The synaptic weight-based directionality index that
summarizes these changes (see above and Methods and Materials for details) also increased after
sleep (Figure 5E).

Our study predicts that in experiments with a rat running on a belt in a VR apparatus, training the
backward direction after training the forward one can damage (erase) the effect of forward training,
however, SWS following training can reverse the damage. Additionally, similar to interleaved training
(Navratilova et al., 2012), directionality index should increase after SWS.

As we mentioned previously, the training protocol we have focused on in this study was of two
memories trained sequentially before sleep. We have also tested the scenario where the first (old)
memory is trained and consolidated during sleep before the second (new) memory is trained and
then consolidated during a second period of sleep (Figure 5—figure supplement 1). The main
results from both training protocols remain the same. Thus, performance for S1 improved after first
episode of sleep (initial consolidation) (Figure 5—figure supplement 1B,C). Training new memory
S1* in the same population of neurons damaged S1 and led to improvement of S1*. Consistent with
empirical results on proactive interference (McDevitt et al., 2015), training S1* took longer in that
scenario to achieve a high level of performance. Note, that even longer training of S1*
further improved its performance but could also completely erase S1 (Figure 5—figure supplement
1D). Finally, both S1 and S1* showed an improvement after a subsequent episode of sleep (Fig-
ure 5—figure supplement 1B,C). Thus, the training paradigm ‘S1— sleep— S1*— sleep’ shows
qualitatively similar results to the ‘S1— S1*— sleep’ paradigm. This result is also consistent with the
‘Complementary Learning Systems Theory’ prediction that the old memories interfering with new
learning have to be replayed during new phase of memory consolidation to avoid forgetting
(McClelland et al., 2020).

Competing memories are replayed spontaneously during Up states of
slow oscillation

In this section we focus our analysis on the competing sequences S1 and S1*. We asked the follow-
ing questions: (a) What kind of network dynamics during Up states of SWS allows for replay and
improvement of both memory traces S1 and S1*? (b) Do the same neurons participate in replay of
both sequences or do different subsets of neurons uniquely represent each memory? (c) Do both
memory sequences replay during the same Up state or do different Up states become biased for
replay of one memory or the other?

We performed spike timing analysis similar to what we did for S1 alone (Figure 3), but we now
analyzed separately synaptic connections in direction of S1 and S1*. Figure 6A plots, for each syn-
apse in direction of S1 (left) and S1* (right), the net change in synaptic strength across the entire
sleep period vs total number of Up states (slow-waves) where that synapse was preferentially
replayed. As before, we found a strong positive correlation. We next plotted only those synapses
which replayed reliably — more that 66% of all Up states (Figure 6B). We found that such synapses
exist between all neuronal groups and for both sequences (in Figure 6B blue color indicates synap-
ses in the direction of S1 and red in the direction of S1*). This analysis revealed two important prop-
erties. First, after sleep, each pair of neurons preferentially supported only one sequence, S1 or S1*
(note that the connectivity matrix in Figure 6B is strictly asymmetric). Second, individual neurons can
be divided into two groups - those participating reliably in only one sequence replay (either S1 or
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Figure 6. Sleep promotes replay of both overlapping memory sequences during each Up state. (A) Change in synaptic weight over entire sleep period
as a function of the number of Up states where a given synapse was preferentially replayed. Each star represents a synapse in the direction of 51 (left)
or S1* {right). Dashed line indicates the threshold (66% of Up states) used to identify synapses that are replayed reliably for analysis in (B); purple line
indicates the maximum number of Up states; blue line demarcates the 50% mark of the total number of Up states. (B) Thresholded connectivity matrix
indicating synaptic connections showing reliable replays for 51 (blue) or $1* (red). Grey boxes highlight between group connections. (C) Number

of replay events for inter-group synapses per Up state across all Up states (left) and a subset of Up states (right) for 51 (blue) and S1* (red). Note that
Figure 6 continued on next page
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Figure 6 continued

both sequences show similar high number of replays across all Up states, suggesting that both sequences are replayed during each Up state. (D)
Network's graphs showing between group (top/middle) and within group (bottom) connections after sleep. Edges shown here are those which revealed
reliable replays of 51 (blue) and S1* (red) as shown in B (right). Nodes are colored blue (red) if more than 50% of their incoming connections show
reliable replay in direction of S1 (51*). Green nodes indicate neurons with high in-degrees, receiving the same number of ‘replayed’ synapses from left
and right, and black indicates that none of these conditions are met.

S1*) and those participating in both sequences replays (see Figure 6B, where some target neurons
(X-axis) receive input from source neurons (Y-axis) in only one network ‘direction’, left (blue) or right
(red), and others receive input from both ‘directions’).

To confirm that both memories are replayed within the same Up state (i.e., some synapses replay
S1 and others replay S1* during a given Up state), we counted, for each Up state, the total number
of individual replay events across all synapses that were identified to replay S1 and
S1* reliably (Figure 6C). This revealed fluctuations from one Up state to another, but the count
remained high for both S1 and S1* confirming our prediction that partial replays of both sequences
occur during the same Up state, that is, any given Up state participates in replay of both memories.
Still, zoom-in to the replay count diagram (Figure 6C, right) revealed an antiphase oscillation, that is,
one Up state would replay more $1 synapses, while ancther one (commonly next one) would replay
more S1* synapses. Note, our model predicts that partial sequences (specifically spike doubles) of
both memories can be replayed during the same Up state and not that both are replayed simulta-
neously (at the same exact time). Comparing replays during first vs second half of an Up state, we
found that more replay events happened during the first half of any given Up state (particularly near
the Down to Up transition) compared to the second half (not shown). This result is consistent with
electrophysiological data suggesting that memory replay is strongest at the Down to Up state transi-
tion (Johnson et al., 2010).

Finally, in Figure 6D, we plotted all the synapses identified by the analysis in Figure 6B, that is,
those involved in reliable (in more than 66% of all Up states) replay during sleep: top plot shows syn-
apses in 51 direction (in blue) and bottom one shows synapses in S1* direction (in red). For each neu-
ron we compared the number of such synapses it received from its left (S1 direction) vs right (S1*
direction) neighboring population (e.g., for a neuron in group B, we compared if it received more
synapses demonstrating reliable replay from group A or from group C). We then colored in blue
(red) neurons receiving more synapses demonstrating reliable replay from its left (right) neighbors
(Figure 6D). In green we colored neurons receiving the same number of ‘replayed’ synapses from
left and right. While we found that many neurons (blue or red) participated reliably in only one
sequence replay, S1 or S1*, a few neurons (green) participated equally in replay of both sequences,
creating ‘'network hubs’.

Sleep replay leads to competition between synapses
In order to further understand how sleep replay affects S1 and $1* memory traces to allow enhance-
ment of both memories, we next analyzed the dynamics of individual synaptic weights within the
population of neurons containing the overlapping memory sequences (i.e. neurons 200-249).
Figure 7A shows distributions of synaptic weights for synapses in the direction of S1 (top row) and
in the direction of S1* (bottom row) before (blue) and after (red) specific events. Different columns
correspond to different events, i.e. after S1 training (Figure 7A, left), after S1* training (Figure 7A,
middle), after sleep (Figure 7C, right). Prior to any training, synaptic weights in the direction of
either memory sequence were Gaussian distributed (Figure 7A, blue histogram, left). After S1 train-
ing, the weights for S1 strengthened (shifted to the right), while the weights for S1* weakened
(shifted to the left). As expected, this trend was reversed when S1* was trained (Figure 7A, middle).
After sleep, for each sequence (S1 or 51*) there was a subset of synapses that were further strength-
ened, while the rest of synapses were weakened (Figure 7A, right). This suggests that sleep pro-
motes competition between synapses, so that specific subsets of synapses uniquely representing
each memory trace can reach the upper bound to maximize recall performance while other synapses
would become extinct to minimize interference.

Because of the random ‘anatomical’ connectivity, the cortical network model included two classes
of synapses: recurrent/bidirectional, when a pair of neurons (e.g., n1 and n2) are connected by
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Figure 7. Sleep promotes unidirectional synaptic connectivity with different subsets of synapses becoming specific to the old or new memory
sequences. (A) Dynamics of synaptic weight distributions from the trained region. Top row shows strength of synapses in direction of $1. Bottom row
shows strength of synapses in direction of $1*. Blue shows the starting points for weights, and red shows new weights after different specific events,
for example, S1 training, S1* training, sleep. (B) Scatter plots show synaptic weights for all reciprocally connected pairs of neurons before and after
training (left/middle) and after sleep (right). For each pair of neurons (e.g., n1-n2), the X-coordinate shows the strength of W,; > synapse and the
Y-coordinate shows the strength of W, ... synapse. The green (Ko} and purple (Kio) boxes show the locations in the scatter plot representing synaptic
pairs with strong preference for S1* (green) or S1 (purple). (C) The evolution of the mean synaptic strength (solid line) and the standard deviation
(dashed line) of recurrent connections in S1 (blue) and S1* (red) direction. Note the large standard deviation after sleep indicating strong synaptic
weight separation, so each recurrent neuronal pair supports preferentially either S1 or S1*. (D) The evolution of the mean synaptic weight (solid line)
and the standard deviation (dashed line) of unidirectional connections in S1 (blue) and S1* (red) direction. Note the overall increase in synaptic strength
after sleep. (E) The number of functionally recurrent and unidirectional connections in the trained region of the network as a function of time, obtained
after thresholding the network connectivity matrix with threshold 0.065 (which is smaller than the initial mean synaptic strength). Note the decrease of
functionally recurrent connections and increase of functienally unidirectional connections after sleep.

Figure 7 continued on next page
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The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Interleaved training revealed synaptic weight dynamics that are similar to sleep but result in less segregation of synaptic

weights.

Figure supplement 2. Synaptic plasticity that is biased towards LTP or LTD also results in memory orthogonalization during sleep .

opposite synapses (n1— n2 and n2— n1) and unidirectional (n1— n2 or n2— n1). In the following we
looked separately at these two classes. We also compared synaptic weights dynamics during sleep
(Figure 7) vs interleaved training (Figure 7—figure supplement 1).

In the scatter plots of synaptic weights for the recurrent synapses (Figure 7B), for each pair of
neurons (e.g., n1-n2), we plotted a point with the X-coordinate representing the weight of n1— n2
synapse and the Y-coordinate representing the weight of n2— n1 synapse. Any point with X- (Y-)
coordinate close to zero would, therefore, indicate a pair of neurons with functionally unidirectional
coupling in S1* (S1) direction. The initial Gaussian distribution of weights (Figure 7B, left) was
pushed towards the bottom right corner of the plot (Ko, purple box), indicating increases in S1
weights and relative decrease of S1* weights in response to 51 training (Figure 7B, middle/left). It
should be noted that a small subset of synaptic weights increased in the direction of S1* during S1
training. Analysis of this population of synaptic weights revealed that these connections were com-
prised solely of 'within group’ connections. It is important to note that these synapses did not impair
the consolidation of the trained memory but instead helped to increase activity within each group
regardless of which sequence was recalled.

Training of S1* caused an upward/left shift representing strengthening of S1* weights and weak-
ening of $1 weights (Figure 7B, middle/right). For very long S$1* training (not shown) almost all the
weights would be pushed to the upper left corner (Kq1, green box). Sleep appears to have taken
most of the weights located in the center of the plot (i.e., strongly bidirectional synapses) and sepa-
rated them by pushing them to the opposite corners (K, green box, and Kig purple box)
(Figure 7B, right). In doing so, sleep effectively converted recurrent connections into unidirectional
connections which preferentially contributed to one memory sequence or another. It should be
noted that interleaved training resulted in similar separation of weights such that some previously
recurrent synapses became functionally unidirectional (Figure 7—figure supplement 1A, B). Inter-
leaved training, however, retained more recurrent weights than sleep likely contributing to the
smaller improvement in performance during post-interleaved training testing (Figure 4—figure sup-
plement 1C).

Sleep-dependent synaptic weight dynamics are further illustrated in Figure 7 panels C-E. The
mean strength of all recurrent connections in the trained region decreased slightly during sleep
(Figure 7C), however the standard deviation increased significantly (see dashed lines in Figure 7C).
The last reflected strong asymmetry of the connection strength for recurrent pairs after sleep, again
indicating that sleep effectively converts recurrent connections into unidirectional ones. Indeed, the
mean strength of all unidirectional connections increased during sleep (Figure 7D, blue and red
lines). We next counted the total number of functionally recurrent and unidirectional connections
after training and after sleep (Figure 7E). In this analysis if one branch of a recurrent pair reduced in
strength below the threshold, it was counted as unidirectional. After sleep, the number of recurrent
connections dropped to just about 15% of what it was after training. Interleaved training resulted in
similar but smaller changes to unidirectional and bidirectional connections (Figure 7—figure supple-
ment 1C, D, E). Together these results suggest that sleep decreases the density of recurrent con-
nections and increases the density of unidirectional connections, both by increasing the strength of
anatomical unidirectional connections and by converting anatomical recurrent connections to func-
tionally unidirectional connections. This allows the assignment of individual neurons to unigue mem-
ories, that is, orthogonalization of memory representations, so that multiple memories could replay
without interference during the same Up states of slow oscillations and can be recalled successfully
after sleep.
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LTP or LTD biased synaptic plasticity still leads to orthogonalization of
memory representations during sleep

In all previous simulations, LTP and LTD were balanced during sleep and interleaved training. To test
that the orthogonalization of the memory traces during sleep is independent of the specific balance
of LTP/LTD (A./A, see Methods and Materials), we performed additional simulations biasing the
LTP/LTD ratio during sleep towards either LTD (Figure 7—figure supplement 2A; A./A =0.0019/
0.002) or LTP (Figure 7—figure supplement 2B; A,/A =0.0021/0.002). We found that in both cases,
sleep resulted in the orthogonalization of memory representations. Scatter plots of bidirectional syn-
aptic connections (the same analysis as in Figure 7B) revealed that sleep formed strongly memory
specific configurations of weights by pushing some of the recurrent connections to either the top
left (S1* preferential) or bottom right (S1 preferential) corners of the plot. The red lines on these
plots depict the threshold used to identify neuronal pairs that are either strongly preferential for S1
(bottom right corner) or S1* (top left corner). The number of synapses above these thresholds were
quantified in the bar plots below showing that sleep increases the density of the memory specific
connections between neurons regardless of the LTP/LTD ratio (Figure 7—figure supplement 2, bot-
tom panels). The vector field plots (Figure 7—figure supplement 2, middle panels) provide
a summary of the average synaptic weight dynamics during training (left and middle plots) and dur-
ing sleep (right plot). It revealed convergence towards the corners (note arrows pointing to the cor-
ners during sleep phase) which represent cell pairs being strongly enrolled either to sequence S1 or
sequence S1* encoding.

It should be noted that because our model does not have homeostatic mechanisms to regulate
‘average’ synaptic strength during sleep, the case of LTD biased sleep revealed a net reduction of
synaptic strengths, while the LTP biased condition showed a net increase. For LTD biased sleep,
many recurrent synapses decreased the strength while a fraction of synapses kept or even increased
the strength. These synapses became memory specific after sleep. This observation may be in line
with ideas from Tononi and colleagues showing net reductions of synaptic weights during sleep
(Tononi and Cirelli, 2014) however, more analysis of the model including additional homeostatic
rules is need to make this conclusion based on model simulations.

Neurons participating in sleep replay are the same as those responding
earlier during memory recall
In the previous sections, we found that for overlapping memories sleep leads to segregation of the
entire population of neurons into two subsets based on (a) asymmetric synaptic input from left/right
neighboring groups (e.g., subset B; of neurons from group B receives stronger total synaptic input
from group A compare with total input from group C; subset B; of neurons from group B receives
stronger input from C than from A) (Figure 5D,E); (b) preference to participate reliably in only one
specific sequence replay during sleep (e.g., subset By of neurons from group B receives more synap-
ses demonstrating reliable replay from group A than from group C; this is reversed for subset B, of
neurons from group B) (Figure 6D). Here we tested if these groups of neurons, identified by synaptic
strength and replay, overlap. We also compared them to the subset of neurons responding earliest
within each group during memory recall.

Instead of stimulating only groups A or E, here we stimulated independently every single group -
A, B, C, D, E (Figure 8A). We then obtained the response delay for each neuron in groups B, C, D
when its respective left vs right neighboring groups were stimulated, and we calculated the differ-
ence of delays. Thus, for example, we measured a difference of response delays for each neuron in
group B when either group A or group C was stimulated. This analysis is similar to what was done in
(Navratilova et al., 2012), where the difference of place cell responses at a specific location on a lin-
ear track was calculated when a rat was approaching that location from one direction vs the other.
Figure 8B shows the distribution of delays at different times. As expected, it became asymmetric
after S1 training (e.g., in group B more neurons responded earlier upon stimulation of group A vs
stimulation of group C), symmetric again after S1* training, and finally symmetric but wider after
sleep. The last suggests that sleep increases segregation of neurons into two groups specific to each
memory based on response delay (e.g., in group B some neurons, B, responded earlier upon stimu-
lation of group A vs stimulation of group C; while other neurons, B,,, responded earlier upon stimu-
lation of group C vs stimulation of group A). Indeed, the directionality index based on delays
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Figure 8. Population of neurcns participating in reliable replay during sleep overlaps with the early responders during memory recall. (A) Characteristic
examples of the network activity showing spiking events during stimulations of each individual ‘letter’ of a memory sequence in awake. (B) Distributions

of the differences in response delay for all neurons from the trained region when the respective left vs right neighbering groups are stimulated, as
shown in A. (C) Response delay-based directionality index before/after training of each sequence (S1/51*) in gray, and after sleep (red). (D) 3-D surface
plot showing, for each neuron from a trained region, the number of incoming synapses demonstrating reliable replays during sleep (z-axis), mean
Figure 8 continued on next page
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Figure 8 continued

response delay during testing (as in panel A) after sleep (y-axis), and total synaptic input to a neuron after sleep (x-axis). Note that neurons receiving
highest total synaptic inputs in specific network direction after sleep are also those who respond with shortest delay during testing recall in that
direction after sleep and also those who receive the highest number of synapses demonstrating reliable replay during sleep. (E) Simplified cartoon of
the network connectivity after different training phases followed by sleep. Arrows indicate connections between neurons (nodes) with blue arrows being
connections strong for S1 and red for S1*. Blue and red nodes represent neurons that contribute (weakly - light colors; strongly - dark colors) to recall of
S1and S1*, respectively. Top, network configuration after S1 training — all nodes and connections are allocated to S1. Middle/Top, network
configuration after initial S1* training — nodes/connections start to learn S1* and ‘unlearn’ $1. The information about the old memory S1 is still available.
Middle/Bottom, network configuration after continuing S1* training — all nodes/connections are allocated to S1*. All information about S1 is lost.
Bottom, network configuration when initial S1* training is followed by sleep — orthogonalization of memory traces, some nodes/connection are
allocated to S1 and others to S1*.

(Figure 8C) revealed an increase after S1 training, drop after S1* training, and increase again after
sleep.

In Figure 8D, we summarized our results by putting together three main characteristics we dis-
cussed in this study: Mean response delay of a neuron during stimulation of its neighboring group,
Total synaptic input a neuron receives from that neighboring group, and Number of connections to
a neuron from that neighboring group that are replayed reliably during sleep. We found a strong
correlation between these three measures, that is, the neurons who responded with a shortest delay
during a given sequence recall after sleep are the same neurons who received strongest synaptic
input in that sequence direction after sleep and were involved in most of that sequence replays dur-
ing sleep.

Together, our study proposes the following network connectivity dynamics during learning and
sleep (Figure 8E). Initial training allocates all available neuronal/synaptic resources to a single mem-
ory (S1) (Figure 8E, top); some neurons contribute stronger than others (light vs dart colors in
Figure 8E; based on Figure 7B). Subsequent training of a competing memory (S1*) progressively
erases the initial memory trace by reallocating synaptic resources to the new memory; an initial seg-
regation of neurons is formed (Figure 8E, middle/top). Continuing training of a competing memory
(S1*) leads to complete and irreversible damage to the old memory (S1) — catastrophic forgetting
(Figure 8E, middle/bottom). A sleep phase implemented before the old memory is erased allows
replay of both old and new memory traces; this divides resources between competing memories
leading to the formation of the orthogonal memory representations which allows the co-existence of
multiple memories within overlapping populations of neurons (Figure 8E, bottom).

Discussion

We report here that sleep can reverse catastrophic forgetting of previously learned (old) memories
after damage by new training. Sleep is able to accomplish this task through spontaneous reactivation
(replay) of both old and new memory traces, leading to reorganization and fine-tuning of synaptic
connectivity. As a result, sleep creates unique orthogonal representations of the competing memo-
ries that allow their co-existence without interference within overlapping ensembles of neurons.
Thus, if without competition, a memory is represented by the entire available population of neurons
and synapses, in the presence of competition, its representation is reduced to a subset of neurons/
synapses which selectively encode a given memory trace. Our study predicts that memory represen-
tations in the brain are dynamic; after each new episode of training followed by sleep, the synaptic
representations of the old memories, sharing resources with the new task, may change to achieve an
optimal separation among the memory traces occupying overlapping ensembles of neurons. Our
study suggests that sleep, by being able to directly reactivate memory traces encoded in synaptic
weight patterns, provides a powerful mechanism to prevent catastrophic forgetting and enable con-
tinual learning.

Catastrophic forgetting and continual learning

The work on catastrophic forgetting and interference in connectionist networks was pioneered by
Meccloskey and Cohen, 1989 and Ratcliff, 1990. Catastrophic interference is observed when a pre-
viously trained network is required to learn new data, e.g., a new set of patterns. When learning new

19



ELife Research article

Neuroscience

data, the network can suddenly erase the memory of the old, previously learned inputs
(French, 1999; Hasselmo, 2017; Kirkpatrick et al., 2017). Catastrophic interference is thought to
be related to the so-called ‘plasticity-stability’ problem. This problem comes from the difficulty of
creating a network with connections which are plastic enough to learn new data, while stable enough
to prevent damage to the old memories. Due to the inherent trade-off between plasticity and mem-
ory stability, catastrophic interference and forgetting remains to be a difficult problem to overcome
in connectionist networks (French, 1999, Hasselmo, 2017, Kirkpatrick et al., 2017).

A number of attempts have been made to overcome catastrophic interference (French, 1999;
Hasselmo, 2017; Kirkpatrick et al., 2017). Early attempts included changes to the backpropagation
algorithm, implementations of a ‘sharpening algorithm’ in which a decrease in the overlap of internal
representations was achieved by making hidden-layer representations sparse, or changes to the
internal structure of the network (French, 1999; Hasselmo, 2017; Kirkpatrick et al., 2017). These
attempts were able to reduce the severity of catastrophic interference in specific cases but could not
provide a complete and generic solution to the problem. Another popular method for preventing
interference and forgetting is to explicitly retrain or rehearse all the previously learned inputs while
training the network on the new data - interleaved training (Hasselmo, 2017). This idea recently led
to a number of successful algorithms to constrain the catastrophic forgetting problem, including
interleaved training focusing on the previously known items overlapping with new training data
(McClelland et al., 2020), generative algorithms to generate previously experienced stimuli during
the next training period (Zz and Hoiem, 2018; van de Ven and Tolias, 2018) and generative mod-
els of the hippocampus and cortex to generate examples from a distribution of previously learned
tasks in order to retrain (replay) these tasks during a sleep phase (Kemker and Kanan, 2017).

In agreement with these previous studies, we show that interleaved training can prevent cata-
strophic forgetting resulted from sequential training of the overlapping spike patterns. This method,
however, does not necessarily achieve optimal separation between old and new overlapping mem-
ory traces. Indeed, interleaved training requires repetitive activation of the entire memory patterns,
so if different memory patterns compete for synaptic resources (as for the opposite sequences stud-
ied here) each phase of interleaved training will enhance one memory trace but damage the others.
This is in contrast to replay during sleep when only memory specific subsets of neurons and synapses
may be involved in each replay episode. Another primary concern with interleaved training is that it
becomes increasingly difficult/cumbersome to retrain all the memories as the number of stored
memories continues to increase and access to the earlier training data may no longer be available.
As previously mentioned, biological systems have evolved a mechanism to prevent this form of for-
getting without the need to explicitly retrain the network on all previously encoded memories.
Studying how bioclogical systems overcome catastrophic forgetting can provide insights into novel
techniques to combat this problem in artificial neural networks.

Sleep and memory consolidation

Though a variety of sleep functions remain to be understood, there is growing evidence for the role
of sleep in consolidation of newly encoded memories (Paller and Voss, 2004; Walker and Stick-
gold, 2004; Oudiette et al., 2013; Rasch and Born, 2013; Stickgold, 2013; Weigenand et al.,
2016; Wei et al., 2018). The mechanism by which memory consolidation is influenced by sleep is still
debated, however a number of hypotheses have been put forward. One such hypothesis is the
'Active System Consolidation Hypothesis' (Rasch and Born, 2013). Central to this hypothesis is the
idea of repeated memory reactivation (Wilson and McNaughton, 1994; Skaggs and McNaughton,
1996; Paller and Voss, 2004; Mednick et al., 2013, Oudiette et al., 2013; Oudiette and Paller,
2013; Rasch and Born, 2013, Stickgold, 2013, Weigenand et al., 2016). Although NREM sleep
was shown to be particularly important for reactivation of declarative (hippocampus-dependent)
memories (Marshall et al., 2006; Mednick et al., 2013), human studies suggest that NREM sleep
may be also involved in the consolidation of the procedural (hippocampus-independent) memories.
This includes, for example simple motor tasks (Fegel and Smith, 2006), or finger-sequence tapping
tasks (Walker et al.,, 2002; Laventure et al., 2016). Selective deprivation of NREM sleep, but not
REM sleep, reduced memory improvement for the rotor pursuit task (Smith and MacNeill, 1994).
Following a period of motor task learning, the duration of NREM sleep (Foegel and Smith, 2006) and
the number of sleep spindles (Morin et al., 2008) increased. The amount of performance increase in
the finger tapping task correlated with the amount of NREM sleep (Walker et al., 2002), spindle
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density (Nishida and Walker, 2007) and delta power (Tamaki et al., 2013). In a recent animal study
(Ramanathan et al., 2015), consolidation of the procedural (skilled upper-limb) memory depended
on bursts of spindle activity and slow oscillations during NREM sleep.

Model predictions

The model of awake training and sleep consolidation presented in our new study was designed to
simulate learning and consolidation of procedural memory tasks. Indeed, in our model, training a
new task directly impacts cortical synaptic connectivity that may be already allocated to other (old)
memories. We found that as long as damage to the old memory is not sufficient to completely erase
its synaptic footprint, sleep can enable replay of both old and newer memory traces and reverse the
damage while improving performance. Thus, to avoid irreversible damage, new learning in our
madel is assumed to be slow which may correspond to learning a procedural task, for example, new
motor skill, over multiple days allowing sleep to recover old memory traces that are damaged by
each new episodes of learning.

Nevertheless, we suggest that our model predictions, at least at the synaptic level, are not limited
to a specific type of memory (declarative vs procedural) or specific type of sleep (NREM vs REM).
Replay during REM sleep (Louie and Wilson, 2001) may trigger synaptic weight dynamics similar to
that we described here. Though REM is characterized by less synchronized spiking activity, the
occurrence of memory replay during REM is supported by place cell recordings (Louie and Wilson,
2001) and electroencephalography studies in humans (Atienza and Cantero, 2001). While synchro-
nized activity is helpful for replay and may allow (because of high spike precision) for replay to eccur
at compressed time scales, as observed during NREM sleep (Euston et al., 2007), the crucial com-
ponent of replay is the defined spike ordering which may be happening during REM sleep even
when the overall network synchronization is low. Indeed, we observed similar synaptic weight
dynamics and orthogonalization of memory representations when periodic Up/Down state oscilla-
tions were replaced by continuous REM-like spiking activity. While our model lacks hippocampal
input, we showed previously (Wei et al., 2016; Sanda et al., 2019) that sharp wave-ripple (SWR) like
input to the cortical network would trigger replay of previously learned cortical sequences during
SWS. This suggests, in agreement with (Skelin et al., 2019), that replay driven by hippocampal
inputs may reorganize the cortical synaptic connectivity in a matter similar to spontaneous replay we
described here.

Our model predicts the possibility of the partial sequence replays, that is, when short snippets of
a sequence are replayed independently, within the cortex. Furthermore, we showed that reliable
partial replays of overlapping memory traces can occur during the same cortical Up state. That is to
say, during an Up state rather than replaying the entire sequence A-B-C-D-E, we observed replay of
individual transitions (e.g. A-B, D-E, C-D). We can speculate that for strongly overlapping sequences,
as we modeled in this study, such partial replay would allow to replay snippets of both sequences
with less interference during the same Up state. Indeed, recent data (Ghandour et al., 2019) have
shown evidence for partial memory replay during NREM sleep (also see Swanson et al., 2020).

Importantly, our model of sleep consolidation predicts that the critical synaptic weight informa-
tion from previous episodes of learning is still preserved after new training even if recall performance
for the older task is significantly reduced. Because of this, spontaneous activity during sleep
combined with unsupervised plasticity can trigger reactivation of the previously learned memory pat-
terns and modify synaptic weights reversing damage from the new learning. It further suggests that
the apparent loss of performance for older tasks in the artificial neuronal networks after new training
- catastrophic forgetting - may not imply irreversible loss of information as it is generally assumed.
Indeed, our recent work (Krishnan et al., 2019) revealed that simulating a sleep-like phase in feed-
forward artificial networks trained using backpropagation can provide a solution for the catastrophic
forgetting problem in agreement with our results from the biophysical model presented here. Few
changes to the network properties, normally associated with transition to sleep, were critical to
accomplish this goal: relative hyperpolarization of the pyramidal neurons and increasing strength of
excitatory synaptic connectivity. Both are associated with known effects of neuromodulators during
wake-sleep transitions (McCormick, 1992) and were previously implemented in the thalamocortical
model (Krishnan et al., 2016) that we used in our new study. Interestingly, these changes would
make neurons relatively less excitable and, at the same time, increase contribution of the strongest
synapses, effectively enhancing the dynamical range for the trained synaptic patterns and reducing
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contribution of synaptic noise; together this would promote replay of the previously learned
memories.

The ‘Sleep Homeostasis Hypothesis' (Tenoni and Cirelli, 2014) suggests that homeostatic mecha-
nisms active during sleep should result in a net synaptic depression to renormalize synaptic weights
and to stabilize network dynamics. In our model, LTP and LTD were generally balanced during sleep
and no homeostatic mechanisms were implemented to control net synaptic dynamics. However,
when synaptic plasticity during sleep was explicitly biased towards LTD, sleep was still able to selec-
tively increase a subset of synaptic weights, thus making them memory specific, while reducing the
strength of other synapses. We predict that this mechanism may aid in increasing the memory capac-
ity of the network by only strengthening the minimal number of connections required for the preser-
vation of memories and resetting other synapses towards baseline strength during sleep. The
network would then be able to use these synapses to encode new memories thus potentially facili-
tating continual learning without the consequence of retroactive interference.

Comparison to experimental data and model limitations

There are evidences that memory replay during SWS occurs predominantly near the Down to Up
state transitions (Johnson et al., 2010). This observation comes from in vivo studies in which multi-
ple brain regions, including the hippocampus and cortex, are in continual communication during
SWS. It has been shown that sharp-wave ripples tend to occur at the Down to Up state transition
(Sanda et al., 2019; Skelin et al., 2019), which may explain the predomiance of the hippocampus
driven replay at the beginning of cortical Up states. We did not explicitly model the hippocampus or
hippocampal inputs in our study. Rather, we assumed that memory traces are already embedded to
the cortical connectivity matrix either because of the earlier hippocampal-dependent consolidation
or because these memories are hippocampal-independent (as for procedural memories). We found
that such cortical memory traces also tend to replay more during the initial phase of an Up state,
possibly because of the higher firing rate, but replay continues throughout the entire Up state dura-
tion. This predicts that hippocampal dependent replay of new memories, that are not yet encoded
in the cortex, may occur earlier in the Up state compared to the spontaneous replay of the old mem-
ory traces, which may occur later in the Up state.

Qur results are consistent with in vive experiments with rats running on a linear track and we
make several specific predictions for future experiments. Specifically, our model predicts: (a) running
in one direction on a linear track would lead to backwards receptive field expansion (confirmed for
hippocampus [Mehta et al., 1997)); (b) forwards and backwards running on a linear track would lead
to developing asymmetric receptive fields for different neurons (confirmed for hippocampus
[Navratilova et al., 2012]); (c) running on a belt track in a VR apparatus first only in one direction
and then in reverse one could damage the learning associated with first task; (d) SWS implemented
after training would reverse damage and further enhance task specificity of neurons.

It is important to note that (Mehta et al., 1997) found that backwards expansion of the place
fields was reset between sessions. Later, (Roth et al., 2012) found that the resetting of the back-
wards expanded place fields between sessions was a phenomenon specific to the CA1 and place
fields did not reset in CA3. These results suggest that synapses in CA3 vs CA1 may have different
plasticity properties. Furthermore, the neocortex may have entirely different synaptic dynamics since
its goal is long term storage as opposed to temporal memory encoding. With successive sleep peri-
ods, cortical memories become hippocampal independent (Lehmann and McNamara, 2011) and
this may explain why resetting of the place fields was observed in CA1 (Mehta et al., 1997). Our
study predicts that the cortical (such as associate cortex) representations of the sequence memories
undergo a similar form of backwards expansion as it was observed in CA1. This form of backwards
expansion, however, persists and even increases after sleep.

The phenomena of backwards memory replay and decrease in number of memory replays over
time have been observed in rat hippocampus for recent memories. Within the hippocampus, back-
wards replay is predominantly observed during a post-task awake resting period (Foster and Wil-
son, 2006). The studies of hippocampal replay (O'Neill et al., 2008; Giri et al., 2019) found
decreases in replay of familiar sequences over time, which may occur because of the hippecampal
SWRs inducing persistent synaptic depression within the hippocampus (Nerimeoto et al., 2018). We
did not observe backwards replay; rather, forward replay in the model persisted during sleep. How-
ever, we believe there is no definitive evidence for either backwards replay or decrease in memory

22



ELife Research article

Neuroscience

replays in the cortex. The opposite, in fact, may be true. Cortical replay of recently formed memories
results in a tagging of synapses involved in consolidation of those memories by increasing their syn-
aptic efficacy (Langille, 2019). These tagged synapses may likely be reactivated throughout sleep
thereby resulting in more cortical replay during both NREM and REM sleep (Diekelmann and Born,
2010; Langille, 2019).

To summarize, our study predicts that sleep could prevent catastrophic forgetting and reverse
memory damage through replay of old and new memory traces. By selectively replaying new and
competing old memories, sleep dynamics not only achieve consolidation of new memories but also
provide a mechanism for reorganizing the synaptic connectivity responsible for previously learned
memories — re-consolidation of old memory traces — to maximize separation between memory repre-
sentations. By assigning different subsets of neurons and synapses to primarily represent different
memory traces, sleep effectively orthogonalizes memory representations to allow for overlapping
populations of neurons to store competing memories and to enable continual learning.

Materials and methods

Thalamocortical network model

Network architecture

The thalamocortical network model used in this study has been previously described in detail
(Krishnan et al.,, 2016; Wei et al., 2016; Wei et al., 2018) and the code is available in (https://
github.com/o2gonzalez/sequencelearningSleepCode; copy archived at https://github.com/elifes-
ciences-publications/sequencelearningSleepCode; Gonzdlez, 2020b). Briefly, the network was com-
prised of a thalamus which contained 100 thalamocortical relay neurons (TC) and 100 reticular
neurons (RE), and a cortex containing 500 pyramidal neurons (PY) and 100 inhibitory interneurons
(IN). The model contained only local network connectivity as described in Figure 1. Excitatory synap-
tic connections were mediated by AMPA and NMDA connections, while inhibitory synapses were
mediated through GABA, and GABAg. Starting with the thalamus, TC neurons formed AMPA con-
nections onto RE neurons with a connection radius of 8 (Raypacrc.re=8)- RE neurons then projected
inhibitory GABA, and GABAg connections onto TC neurons with Rgapa.aretc)=8 and Rgasa.sre-
16=8. Inhibitory connections between RE-RE neurons were mediated by GABA, connections with
RGaga-are-re)=5. Within the cortex, PY neurons formed AMPA and NMDA connections onto PYs and
INs with Rampary-pn=20, Rumpaey-pn=5, Rameapyany=1, and Rumpapy.n=1. PY-PY AMPA connec-
tions had a 60% connection probability, while all other connections were deterministic. Cortical
inhibitory IN-PY connections were mediated by GABA, with Rgaga-aun-pvy=5. Finally, connections
between thalamus and cortex were mediated by AMPA connections with Rampacrc-pvy=15, Rampacre-

\N)=3. RAMPA(PY-TC)=10: and RAMPA(FY-RE)=8-

Wake - Sleep transition

To model the transitions between wake and sleep states the model included synaptic and intrinsic
mechanisms which reflect the changes in neuromodulatory tone during these different arousal states
as previously described in Krishnan et al., 2016. We included the effects of acetylcholine (ACh), his-
tamine (HA), and GABA. ACh modulated potassium leak currents in all neuron types and excitatory
AMPA connections within the cortex only. HA modulated the activation of the hyperpolarization-acti-
vated mixed cation current in TC neurons only, and GABA modulated the strength of inhibitory
GABAergic synapses in both cortex and thalamus. As compared to the awake state, the levels of
ACh and HA were reduced during NREM slow wave sleep, while the level of GABA was increased.
This was done to reflect experimental observations of changes in the relative concentrations of ACh,
HA, and GABA during different sleep stages (Vanini et al., 2012).

Intrinsic currents

All neurons were modeled with Hodgkin-Huxley kinetics. Cortical PY and IN neurons contained den-
dritic and axo-somatic compartments as previously described (Wei et al.,, 2018). The membrane
potential dynamics were modeled by the following equation:
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dvp Na Nap . ; o
Cﬂ,tT = AN NP R — 8O ACh IS — 1Y — I — g (Vi — V) — 17",

2(Vp—Vs) = =18 — 15" —I¥,

where C,, is the membrane capacitance, Vp,s are the dendritic and axo-somatic membrane voltages
respectively, " is the fast sodium (Na®) current, /" is the persistent Na* current, I*" is the slow
voltage-dependent non-inactivating potassium (K*) current, IX* is the slow calcium (Ca®*)-depen-
dent K current, AChy, represents the change in K* leak current /*- which is dependent on the level
of acetylcholine (ACh) during the different stages of wake and sleep, IV is the high-threshold Ca®*
current, I is the chloride (CI) leak current, g is the conductance between the dendritic and axo-
somatic compartments, and /" is the total synaptic current input to the neuron (see next section for
details). IN neurons contained all intrinsic currents present in PY with the exception of the /Y. All
intrinsic ionic currents () were modeled in a similar form:

P =g (V- E;)

where g; is the maximal conductance, m (activation) and # (inactivation) are the gating variables, V is
the voltage of the corresponding compartment, and E; is the reversal potential of the ionic current.
The gating variable dynamics are described as follows:

dx X — X0

dt Ty

(1/ (s +B.))

! Or
_ ®x
e (2 +B,)

where x=m or h, 7 is the time constant, Qr is the temperature related term,
Qr = QU-23/10 =2 9529, with 0 =2.3 and T = 36.

Thalamic neurons (TC and RE) were modeled as single compartment neurons with membrane
potential dynamics mediated by the following equation:

C% R L L Vo Y7 Loy Ly Ly () EUN
where IV is the fast Na* current, IX is the fast K* current, /X" is the K* leak current, I” is the low-
threshold Ca®* current, /" is the hyperpolarization-activated mixed cation current, I* is the CI leak
current, and /" is the total synaptic current input to the neurons (see next section for details). The /"
was only expressed in the TC neurons and not the RE neurons. The influence of histamine (HA) on /"
was implemented as a shift in the activation curve by HA,, as described by:

1
My =—/m————————.

VoI5 HA,
l+exp(%ﬂ)

A detailed description of the individual currents can be found in our previous studies
(Krishnan et al., 2016; Wei et al., 2018).

Synaptic currents and spike-timing dependent plasticity (STDP)

AMPA, NMDA, and GABA,, synaptic current equations were described in detail in our previous stud-
ies (Krishnan et al., 2016; Wei et al., 2018). The effects of ACh on GABA, and AMPA synaptic cur-
rents in our model are described by the following equations:

,f;::aa = Ycana, s (O] (V - E.‘.‘\.”)‘
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EMPY = AChampa gon [O(V — Egn).
where g, is the maximal conductance at the synapse, [0] is the fraction of open channels, and E,,,, is
the channel reversal potential (Egapaa = -70 mV, Eappa = 0 mV, and Eypmpa = 0 mv). Parameter
Yoam, Modulates the GABA synaptic currents for IN-PY, RE-RE, and RE-TC connections. For IN neu-
rons Ygapa, was 0.22 and 0.44 for awake and N3 sleep, respectively; yg,4,, for RE was 0.6 and 1.2
for awake and N3 sleep. AChyps defines the influence of ACh levels on AMPA synaptic currents for
PY-PY, TC-PY, and TC-IN. AChyyps for PY was 0.133 and 0.4332 for awake and N3 sleep. AChuupy
for TCis 0.6 and1.2 for awake and N3 sleep.

Spontaneous miniature excitatory post-synaptic potentials (EPSPs) and inhibitory post-synaptic
potentials (IPSPs) were implemented for PY-PY, PY-IN, and IN-PY connections. The synaptic dynam-
ics were similar to regular post-synaptic potentials (PSPs) described above and their arrival times
were modeled by a Poisson process with time-dependent mean rate, with next release time e
given by:

letease = (2/(1 + exp(=(1 —10) /v)) — 1)/250 ,

where 1, is the time of the last presynaptic spike. The maximal conductances for miniature PSPs

were g, Ly, =003 S, gy, =0.02 S, and gl ., =0.02 uS. vis the mini PSP frequency:
LAMPA _ AMPA _ GABA _ i i i
Uninitpy—pr) = 300 Vpitiipy vy = 30, and w0, ) = 30. Short-term depression of intracortical AMPA

synapses was included. The maximal synaptic conductance was multiplied by a depression variable
(D<1), which represents the amount of available ’'synaptic resources’ as described in
Bazhenov et al., 2002. This short-term depression was modeled as follows:

D=1-(1-Dyl -U))ap(—’;"')

where D, is the value of D immediately before the iy, event, (r—1) is the time after the i, event,
U =0.073 is the fraction of synaptic resources used per action potential, and 7 = 700ms is time con-
stant of recovery of synaptic resources.

Potentiation and depression of synaptic weights between PY neurons were regulated by spike-
timing dependent plasticity (STDP). The changes in synaptic strength (gampa) and the amplitude of
miniature EPSPs (A .epsp) have been described previously (Wei et al., 2018):

gampa — Zampa + Gmax F(AL),

Amgpsp — Amgpsp + fApy—py F(AT),

where g, is the maximal conductance of gyyp4, and f = 0.01 represents the slower change of STDP
on Apgpsp as compared to gawpa. The STDP function F is dependent on the relative timing (At) of the
pre- and post-synaptic spikes and is defined by:

CJALe T A0
Flan= { —A_ e W if Ar<0

where A, set the maximum amplitude of synaptic change. A,,. = 0.002 and 1,, = 20 ms. A_ was
reduced to 0.001 during training to reflect the effects of changes in acetylcholine concentration dur-
ing focused attention on synaptic depression during task learning observed experimentally (Blok-
land, 1995; Shinoe et al., 2005; Sugisaki et al., 2016).

Sequence training and testing

Training and testing of memory sequences was performed similar to our previous study (Wei et al.,
2018). Briefly, trained sequences were comprised of 5 groups of 10 sequential PY neurons. Each
group of 10 were sequentially activated by a 10 ms DC pulse with 5 ms delay between subsequent
group pulses. This activation scheme was applied every 1 s throughout the duration of the training
period. Sequence 1 (S1) consisted of PY groups (in order of activation): A(200-209), B(210-219), C
(220-229), D(230-239), E(240-249). Sequence 2 (S2) consisted of PY groups (in order of activation): W
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(360-369), V(350-359), X(370-379), Y(380-389), Z(390-399) and can be referred as non-linear due to
the non-spatially sequential activations of group W, V, and X. Sequence 1* (S1*) was trained over the
same population of neurons trained on S1 but in the reverse activation order (i.e. E-D-C-B-A). During
testing, the network was presented with only the activation of the first group of a given sequence (A
for S1, W for S2, and E for $1*). Performance was measured based on the network's ability to recall/
complete the remainder of the sequence (i.e. A-B-C-D-E for S1) within a 350 ms time window. Similar
to training, test activation pulses were applied every 1 s throughout the testing period. Training and
testing of the sequences occurred sequentially as opposed to simultaneously as in our previous
study (Wei et al., 2018).

Data analysis

All analyses were performed with standard MatLab and Python functions. Data are presented as
mean + standard error of the mean (SEM) unless otherwise stated. For each experiment a total of 10
simulations with different random seeds were used for statistical analysis.

Sequence performance measure

A detailed description of the performance measure used during testing can be found in Wei et al.,
2018 and the code is available in (https://github.com/o2gonzalez/sequencePerformanceAnalysis;
copy archived at https://github.com/elifesciences-publications/
sequencePerformanceAnalysis; Gonzadlez, 2020a). Briefly, the performance of the network on recall-
ing a given sequence following activation of the first group of that sequence (see Methods and
Materials: Sequence training and testing) was measured by the percent of successful sequence
recalls. We first detected all spikes within the predefined 350 ms time window for all 5 groups of
neurons in a sequence. The firing rate of each group was then smoothed by convolving the average
instantaneous firing rate of the group’s 10 neurons with a Gaussian kernel with window size of 50
ms. We then sorted the peaks of the smoothed firing rates during the 350 ms window to determine
the ordering of group activations. Next, we applied a string match (SM) method to determine the
similarity between the detected sequences and an ideal sequence (ie. A-B-C-D-E for S1). SM was cal-
culated using the following equation:

N
SM=2%N =" |L(Siest; Ssuni]) — i,

i=1

where N is the sequence length of Siest, Stest is the test sequence generated by the network during
testing, Syup is @ subset of the ideal sequence that only contains the same elements of S, and
L(Sest Ssun[i]) is the location of the element S,,[i] in sequence S;es. SM was then normalized by dou-
ble the length of the ideal sequence. Finally, the performance was calculated as the percent of
recalled sequences with SM>Th, where Th is the selected threshold (here, Th = 0.8) indicating that
the recalled sequence must be at least 80% similar to the ideal sequence to be counted as a success-
ful recall as previously done in Wei et al., 2018.

Sequence replay during N3 sleep

To find out whether a trained sequence is replayed in the trained region of the network during the
Up state of a slow-wave in N3 sleep, we first identified the beginning and the end of each Up state
by considering sorted spike times of neurons in each group. For each group, the time instances of
consecutive spikes that occur within a 15 ms window were considered as candidate members of an
Up state, where the window size was determined to decrease the chance of two spikes of the same
neuron within the window. To eliminate spontaneous spiking activity of a group that satisfies the
above condition but is not part of an Up state, we additionally required that the period between
two upstate was at least 300 ms, which corresponds to a cortical Down state. The values for window
durations reported above were identified to maximize the performance of the Up state search
algorithm.

Once all Up states were determined, we defined the time instances when groups were active in
each Up state. A group was defined as active if the number of neurons from the group that spikes
during 15 ms exceeded the activation threshold, and the instance when the group is active was
defined as the average over spike times of a subgroup of neurons with the size equals to the
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activation threshold within the 15 ms window. In our study the activation threshold was selected to
be half of a group size (i.e. five neurons). Using sorted time instances when groups are active, we
counted the number of times a possible transition between arbitrary groups, and if all four transi-
tions of a sequence were observed sequentially in the right order then we counted that as a replay
of the sequence.

Analysis of total sequence specific synaptic input

For every neuron from a group we computed the total synaptic weight ‘from left’ and ‘to right’, by
considering the sum of all weights of synapses projecting to the neuron from neurons in preceding
group, with respect to propagation of activity within a memory sequence if such a group exists, and
the sum of all weights of synaptic connections from the neuron to the following group, if there is
such a group. We omitted all synaptic connections within the group to which the neuron, for which
the total synaptic weight is computed, belongs.

Weight directionality index

To see how learning recruits neurons in encoding one of the competing sequences, we looked at
the evolution of deviation from the center of unit square in a two dimensional subspace of total syn-
aptic input from left and right neighboring neuronal groups. For this, we first found the total synap-
tic input from both sides, embedded it into a unit square, and computed Euclidean distance from
the center of the square.

Weight directionality index =/ (Ii = 0.5)*+(ri — 0.5)°,
where [i (ri) is the total synaptic input to a neuron from its left (right) neighboring neuronal group.

Delay directionality index

To see whether neurons respond preferentially to one of the sequences, we evaluated signed
(Figure 8B) and unsigned (Figure 8C, D) delay directionality indices, which are defined as follows.
For each neuron, we found its response delays, 15, and f,., after corresponding left and right neigh-
boring neuronal groups were stimulated, respectively. Using these quantities, we computed the indi-
ces as

. Lo . Atg. — Alg,
signeddirectionality index = L 1 s
Atgy. + Algy
Atgy. — At
unsigned directionality index = M i
Aty + Alsy
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Figure 2—figure supplement 1. Sleep replay improves performance for complex non-linear sequences. (A) Example of the training protocol used for
training a long non-linear sequence - BACEDFHGLJ. (B) Average group activations during baseline testing (left), after sequence training (middle), and
after sleep (right). Top panels show average group firing rates during testing periods. Letters above each line indicate the group in the sequence. Sleep
results in increase of the firing rates (higher peaks) and sharpening of the response times (narrower distribution) as compared to "before sleep".

Bottom panels show normalized average group responses during testing periods. Sleep leads to an improvement and tuning of the responses such

Figure 2—figure supplement 1 continued on next page
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Figure 2—figure supplement 1 continued

that testing after sleep results in the correct ordering of group activations and faster completion of the sequence. (C) Synaptic weight matrices in the
trained region of the network before (left) and after (right) sleep. Color indicates synaptic strength. (D) Performance of the sequence completion at
baseline, after training, and after sleep (red).
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training of S1/51* (green bar). (B) Example of stimulation protocol used for interleaved training of $1/51*, (C) Testing of $1, 2, and S1* shows increase
in performance of 1 and $1* after interleaved training (green). (D) Weighted adjacency matrices showing changes after initial sequential training of S1
and S1*, and after interleaved $1/51* training. (E) Distributions of the net sum of synaptic weights each neuron receives from all the neurons belonging
to its left vs right neighboring groups within a trained region at baseline (left), after training S1 (middle/left), after training $1* (middle/right), and after

interleaved training (right). (F) Synaptic weight-based directionality index before/after training both sequences (gray bars) and after interleaved training
(green bar).
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stimulation was applied during sleep. (B) Examples of testing pericds for each trained memory at different times. The top row correspends to the
testing of sequence 1 (S1) and bottom is testing of sequence 1* (S1*). Arrows indicate time of specific testing pericd. (C) Performance of 51 (51%) at
baseline, after each training period and after each sleep period (red) for the network shown in A and B. (D) Performance of S1 (51*) at baseline, after
each training period and after each sleep period (red) for a network with longer (450 s) S1* training.
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Figure 7—figure supplement 1. Interleaved training revealed synaptic weight dynamics that are similar to sleep but result in less segregation of
synaptic weights. (A) Dynamics of synaptic weight distributions from the trained region. Top row shows strength of synapses in direction of S1. Bottom
row shows strength of synapses in direction of S1*. Blue shows the starting points for weights, and red shows new weights after different specific
events, for example, 51 training, $1* training, interleaved training. (B) Scatter plots show synaptic weights for all pairs of neurons contributing to both
S1 and S1* before and after training (left/middle) and after interleaved training (right). For each pair of neurons (e.g., n1-n2), the X-coordinate shows the
strength of W,,;_,.» synapse and the Y-coordinate shows the strength of W, 5,1 synapse. The green (Ky) and purple (K;q) boxes show the locations in
the scatter plot representing synaptic pairs with strong preference for $1* (green) or §1 (purple). (C) The evolution of the mean synaptic strength (solid
line) and the standard deviation (dashed line) of recurrent connections in S1 (blue) and S1* (red) direction. (D) The evolution of the mean synaptic
weight (solid line) and the standard deviation (dashed line) of unidirectional connections in 51 (blue) and S1* (red) direction. Note the lack of averall
increase in synaptic strength after interleaved training as compared to sleep (Figure 7C). (E) The number of functionally recurrent and unidirectional
connections in the trained region of the network as a function of time obtained after thresholding connectivity matrix with threshold 0,065 (which is
smaller than the initial mean synaptic strength).
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Figure 7—figure supplement 2. Synaptic plasticity that is biased towards LTP or LTD also results in memory erthogonalization during sleep .

Synaptic dynamics for LTP/LTD ratio biased towards LTD (A, /A =0.0019/0.002) (A) or LTP (A, /A =0.0021/0.002) (B). Top, Scatter plots showing synaptic
weights for all reciprocally connected pairs of neurons before and after training (left/middle) and after sleep (right). For each pair of neurons (e.g., n1-
n2), the X-coordinate shows the strength of W,1_,.2 synapse and the Y-coordinate shows the strength of W, 2, synapse. The red lines indicate the
thresholds used to determine synapses which are preferentially strong for §1 (bottom right ) or S1* (top left ). Middle, Vector fields summarizing the
average synaptic weights dynamics of the scatter plots in the top panel. Arrows point in the direction of the average movement of synaptic weights and
length of the arrows indicates the amplitude of the movement. Bottom, Total number of synapses which are preferentially strong for 51 (blue) or $1*
(red) after training S1*/before sleep (left) and after sleep (right). Thresholds for determining preference for either sequence are indicated by red lines in

the scatter plots.
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Abstract

Artificial neural networks overwrite previously learned tasks when trained sequentially, a
phenomenon known as catastrophic forgetting. In contrast, the brain learns continuously,
and typically learns best when new training is interleaved with periods of sleep for memory
consolidation. Here we used spiking network to study mechanisms behind catastrophic for-
getting and the role of sleep in preventing it. The network could be trained to learn a complex
foraging task but exhibited catastrophic forgetting when trained sequentially on different
tasks. In synaptic weight space, new task training moved the synaptic weight configuration
away from the manifold representing old task leading to forgetting. Interleaving new task
training with periods of off-line reactivation, mimicking biological sleep, mitigated cata-
strophic forgetting by constraining the network synaptic weight state to the previously
learned manifold, while allowing the weight configuration to converge towards the intersec-
tion of the manifolds representing old and new tasks. The study reveals a possible strategy
of synaptic weights dynamics the brain applies during sleep to prevent forgetting and opti-
mize learning.

Author summary

Artificial neural networks can achieve superhuman performance in many domains.
Despite these advances, these networks fail in sequential learning; they achieve optimal
performance on newer tasks at the expense of performance on previously learned tasks.
Humans and animals on the other hand have a remarkable ability to learn continuously
and incorporate new data into their corpus of existing knowledge. Sleep has been hypoth-
esized to play an important role in memory and learning by enabling spontaneous reacti-
vation of previously learned memory patterns. Here we use a spiking neural network
model, simulating sensory processing and reinforcement learning in animal brain, to
demonstrate that interleaving new task training with sleep-like activity optimizes the
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network’s memory representation in synaptic weight space to prevent forgetting old
memories. Sleep makes this possible by replaying old memory traces without the explicit
usage of the old task data.

Introduction

Humans are capable of continuously learning to perform novel tasks throughout life without
interfering with their ability to perform previous tasks. Conversely, while modern artificial
neural networks (ANNs) are capable of learning to perform complicated tasks, ANNs have dif-
ficulty learning multiple tasks sequentially [1-3]. Sequential training commonly results in cata-
strophic forgetting, a phenomenon which occurs when training on the new task completely
overwrites the synaptic weights learned during the previous task, leaving the ANN incapable
of performing a previous task [1-4]. Attempts to solve catastrophic forgetting have drawn on
insights from the study of neurobiological learning, leading to the growth of neuroscience-
inspired artificial intelligence (Al) [5-8]. While proposed approaches are capable of mitigating
catastrophic forgetting in certain circumstances, a general solution which can achieve human
level performance for continual learning is still an open question [9].

Historically, an interleaved training paradigm, where multiple tasks are presented within a
common training dataset, has been employed to circumvent the issue of catastrophic for-
getting [4,10,11]. In fact, interleaved training was originally construed to be an approximation
to what the brain may be doing during sleep to consolidate memories; spontaneously reactivat-
ing memories from multiple interfering tasks in an interleaved manner [11]. Unfortunately,
explicit use of interleaved training, in contrast to memory consolidation during biological
sleep, imposes the stringent constraint that the original training data be perpetually stored for
later use and combined with new data to retrain the network [1,2,4,11]. Thus, the challenge is
to understand how the biological brain enables memory reactivation during sleep without
access to past training data.

Parallel to the growth of neuroscience-inspired ANNs, there has been increasing investiga-
tion of spiking neural networks (SNNs) which attempt to provide a more realistic model of
brain functioning by taking into account the underlying neural dynamics and by using biologi-
cally plausible local learning rules [12-15]. A potential advantage of the SNNs, that was
explored in our new study, is that local learning rules combined with spike-based communica-
tion allow previously learned memory traces to reactivate spontaneously and modify synaptic
weights without interference during off-line processing-sleep. Indeed, a common hypothesis,
supported by a vast range of neuroscience data, is that the consolidation of memories during
sleep occurs through synaptic changes enabled by reactivation of the neuron ensembles
engaged during learning [16-20]. It has been suggested that Rapid Eye Movement (REM)
sleep supports the consolidation of non-declarative or procedural memories, while non-REM
sleep supports the consolidation of declarative memories [16,21-23].

Here we used a multi-layer SNN with reinforcement learning to investigate whether inter-
leaving periods of new task training with periods of sleep-like autonomous activity, can cir-
cumvent catastrophic forgetting. The network can be trained to learn one of two
complementary complex foraging tasks involving pattern discrimination but exhibits cata-
strophic forgetting when trained on the tasks sequentially. Significantly, we show that cata-
strophic forgetting can be prevented by periodically interrupting reinforcement learning on a
new task with sleep-like phases. From the perspective of synaptic weight space, while new task
training alone moves the synaptic weight configuration away from the old task’s manifold-a
subspace of synaptic weight space that guarantees high performance on that task—and towards
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the new task manifold, interleaving new task training with sleep replay allows the synaptic
weights to stay near the old task manifold and still move towards its intersection with the man-
ifold representing the new task, i.e., converge to the intersection of these manifolds. Our study
predicts that sleep prevents catastrophic forgetting in the brain by forming joint synaptic
weight representations suitable for storing multiple memories.

Results

Human and animal brains are complex and although there are many differences between spe-
cies, critical common elements can still be identified from insects to humans. From an ana-
tomic perspective, this includes largely the sequential processing of sensory information, from
raw low level representations on the sensory periphery to high level representations deeper in
the brain followed by decision making networks controlling the motor circuits. From a func-
tional perspective, this includes local synaptic plasticity, combination of different plasticity
rules and sleep-wake cycle that was shown to be critical for memory and learning in variety of
species from insects [24-26] to vertebrates [16]. In this new study we model a basic brain neu-
ral circuit including many of these anatomical and functional elements. While our model is
extremely simplified, it captures critical processing steps found, e.g., in insect olfactory system
where odor information is sent from olfactory receptors to the mushroom bodies and then to
the motor circuits, In vertebrates, visual information is sent from the retina to early visual cor-
tex and then to decision making layers in associative cortices to drive motor output. Many of
these steps are plastic, in particular decision making circuits utilize spike timing dependent
plasticity (STDP) in insects [27] and vertebrates [28,29].

Fig 1A illustrates a feedforward spiking neural network (see also Methods: Network Struc-
ture for details) simulating the basic steps from sensory input to motor output. Excitatory syn-
apses between the input (I) and hidden (H) layers were subjected to unsupervised learning
(implemented as non-rewarded STDP) [28,29] while those between the H and output (O) lay-
ers were subjected to reinforcement learning (implemented using rewarded STDP) [30-33]
(see Methods: Synaptic plasticity for details). Unsupervised plasticity allowed neurons in layer
H to learn different particle patterns at various spatial locations of the input layer I, while
rewarded STDP allowed the neurons in layer O to learn motor decisions based on the type of
the particle patterns detected in the input layer [14]. While inspired by the processing steps of
a biological brain, this structure also mimics basic elements of the feedforward artificial neural
networks (ANNs), including convolutional layer (from I to H) and fully connected layer (from
Hto O) [34].

Complementary complex foraging tasks can be robustly learned

We trained the network on one of two complementary complex foraging tasks. In either task,
the network learned to discriminate between rewarded and punished particle patterns in order
to acquire as much reward as possible. We consider pattern discriminability (ratio of rewarded
vs punished particles consumed) as a measure of performance, with chance performance
being 0.5. All reported results are based on at least 10 trials with different random network
initialization.

The paradigm for Task 1 is shown in Fig 1B. First, during an unsupervised learning period,
all 4 types of 2-particle patterns (horizontal, vertical, positive diagonal, and negative diagonal)
were present in the environment with equal densities. This was a period, equivalent to a devel-
opmental critical period in the brain (or training convolutional layers in ANN), when the net-
work learned the environmental statistics and formed, in layer H, high level representations of
all possible patterns found at the different visual field locations (see Fig 2 for details).
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movement. (B) Mean performance (redline) and standard deviation (blue lines) over time: unsupervised training (white), Task 1 training
(blue), and Task 1 (green) and Task 2 (yellow) testing. The y-axis represents the agent’s performance, or the probability of acquiring rewarded
as opposed to punished particle patterns. The x-axis is time in aeons (1 aeon = 100 movement cycles). (C) The same as shown in (B) except
now for: unsupervised training (white), Task 2 training (red), and Task 1 (green) and Task 2 (yellow) testing. (D) Examples of trajectories
through the environment at the beginning (left) and at the end (middle-left) of training on Task 1, with a zoom in on the trajectory at the end
of training (middle-right), and the values of the task-relevant food particles (right). (E). The same as shown in (D) except for Task 2.

https://doi.org/10.1371/journal.pcbi.1010628.g001

Unsupervised training was followed by a reinforcement learning period, equivalent to task spe-
cific training in the brain (or training a specific set of classes in an ANN), during which the
synapses between layers I and H were frozen while synapses from H to O were updated using a
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Fig 2. Receptive fields of output and hidden layer neurons determine the agent behavior. (A) Left, Receptive field of the output layer neuron controlling
movement to the upper-left direction following training on Task 1. This neuron can be seen to selectively respond to horizontal orientations in the upper-left
quadrant of the visual field. Right, Schematic of connections between layers. (B) Examples of receptive fields of hidden layer neurons which synapse strongly
onto the output neuron from (A) after training on Task 1. (C) The same as shown in (A) except following training on Task 2. The upper-left decision neuron
can be seen to selectively respond to vertical orientations in the upper-left quadrant of the visual field. (D) The same as shown in (B) except following training
on Task 2.

https://doi.org/10.1371/journal. pchi.1010628.9002
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Sleep prevents catastrophic forgetting of the old task during new task
training

We next tested whether the model exhibits catastrophic forgetting by training sequentially on
Task 1 (old task) followed by Task 2 (new task) (Fig 3A). Following Task 2 training, mean per-
formance across ten trials on Task 1 was down to no better than chance (0.52 + 0.02), while
performance on Task 2 improved to 0.69 + 0.03 (Fig 3A and 3B). Thus, sequential training on
a complementary task caused the network to undergo catastrophic forgetting of the task
trained earlier, remembering only the most recent task.

Interleaved training was proposed as a solution for catastrophic forgetting [4,10,11]. In the
next experiment, after training on Task 1, we simulated interleaved T1/T2 training (Interlea-
vedry,12) when we alternated short presentations of Task 1 and Task 2 every 100 movement
cycles (Fig 3C). Sample network activity from this period can be seen to closely resemble single
task training (S1C Fig). Following interleaved training, the network achieved a mean perfor-
mance of 0.68 +0.03 on Task 1 and a performance of 0.65 + 0.04 on Task 2 across trials. There-
fore, interleaved training allowed the network to learn new Task 2 without forgetting
previously learned Task 1. However, while interleaved training made it possible to learn both
tasks, it imposes the stringent constraint that all the original training data (in our case explicit
access to the Task 1 environment) be stored for later use and combined with new data to
retrain the network [1,2,4,11].

Sleep is believed to be an off-line processing period when recent memories are replayed to
avoid damage from new learning. We previously showed that sleep replay improves memory
in a thalamocortical network [38-40] and when a network was trained to learn interfering
tasks sequentially, sleep prevented the old task memory from catastrophic forgetting [41]. Can
we implement a sleep like phase to our model to protect an old task and still accomplish new
task learning without explicit re-training of the old task? In vivo, activity of the neocortical
neurons during REM sleep is low-synchronized and similar to baseline awake activity [42].
Therefore, to simulate REM sleep-like activity in the model, the rewarded STDP rule was
replaced by unsupervised STDP, the input layer was silenced while hidden layer neurons
were artificially stimulated by Poisson distributed spike trains in order to maintain spiking
rates similar to that during task training (see Methods: Simulated Sleep for details).

Sample network activity recorded during this sleep phase is visualized in the raster plots
shown in 51D Fig.

Again, we first trained the network on Task 1. Next, we implemented a training phase
consisted of alternating periods of training on Task 2 (new task) lasting 100 movement
cycles and periods of “sleep” of the same duration (we will refer to this training phase as
Interleaveds 1;) (Fig 3E). Importantly, no training on Task 1 was performed at any time
during Interleaveds 1,. Following Interleaveds r,, the network achieved a mean perfor-
mance across ten trials of 0.68 + 0.05 on Task 2 and retained a performance of 0.70 + 0.03
on Task 1 (Fig 3E and 3F), comparable to single Task 1 (0.70 + 002) or Task 2 (0.69 + 0.03)
performances (Fig 1B and 1C) and exceeding those achieved through Interleaved; 1 train-
ing (Fig 3C and 3D).

We interpret these results as follows (see below for detailed synaptic connectivity analysis).
Each episode of new Task 2 training improves Task 2 performance but damages synaptic con-
nectivity responsible for old Task 1. If continuous Task 2 training is long enough, the damage
to Task 1 becomes irreversible. Having a sleep phase after a short period of Task 2 training
enables spontaneous forward replay between hidden and output layers (H->0O) that preferen-
tially benefits the strongest synapses. Thus, if Task 1 synapses are still strong enough to main-
tain replay, they are replayed and weights are increased.
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rewarded STDP rule. The reinforcement learning period was when the network learned to
make decisions about which direction to move based on the visual input. For Task 1, horizon-
tal patterns were rewarded and negative diagonal patterns were punished (Fig 1D). During
both the rewarded training and the testing periods only 2 types of patterns were present in the
environment (e.g. horizontal and negative diagonal for Task 1).

After training Task 1, mean performance across ten trials on Task 1 was 0.70 + 0.02 while
performance on the untrained Task 2 was 0.53 £ 0.02 (chance level). The naive agent moved
randomly through the environment (Fig 1D, left), but after task training, moved to seek out
horizontal patterns and largely avoid negative diagonal ones (Fig 1D, right). The complemen-
tary paradigm for Task 2 (vertical patterns are rewarded, and positive diagonal are punished)
is shown in Fig 1C and 1E. These results demonstrate that the network is capable of learning
and performing either one of the two complementary complex foraging tasks. The similarity
between these tasks is evident in their definition (symmetrical particle orientations; Fig 1D
and 1E), through the similar performances attained by the network on each task (Fig 1B and
1C), and through the similar levels of activity induced in the network when training each task
(S1A and S1B Fig)

To understand how sensitive a trained network was to pruning, we employed a neuronal
dropout procedure which progressively removes neurons from the hidden layer at random (52
Fig). We found the network was able to keep performance steady on either task following
training until around 70% of the hidden layer was pruned. Such high resiliency suggests the
network utilizes a highly distributed coding strategy to develop its policy.

Next, to understand synaptic changes during training, we computed receptive fields of each
neuron in layer O with respect to the inputs from layer I (see schematic in Fig 2A and 2C).
This was done by first computing the receptive fields of all of the neurons in layer H with
respect to I, then performing a weighted average where the weights were given by the synaptic
strength from each neuron in layer H to the particular neuron in layer O. Fig 2A shows a rep-
resentative example of the receptive field which developed after training on Task 1 for one spe-
cific neuron in layer O which controls movements to the upper-left direction. This neuron
responded most robustly to bars of horizontal orientation (rewarded) in the upper-left quad-
rant of the visual field and, importantly, did not respond to bars of negative diagonal orienta-
tion (punished).

Fig 2B shows examples of receptive fields of six neurons in layer H which synapse strongly
onto the upper-left neuron in layer O (the neuron shown in Fig 2A). These neurons formed
high level representations of the input patterns, similar to the neurons in the primary visual
system or later layers of a convolutional neural network [35-37]. The majority of these recep-
tive fields revealed strong selection for the horizontal (i.e. rewarded) food particles in the
upper-left quadrant of the visual field. As a particularly notable example, one of these layer H
neurons (Fig 2B; middle-right) preferentially responded to negative diagonal (i.e. punished)
food particles in the bottom-right quadrant of the visual field. Thus, spiking in this neuron
caused the agent to move away from these punished food particles. Similar findings after train-
ing on Task 2 are shown in Fig 2C and 2D.

To further quantify the network’s sensitivity to various particle types we developed a metric
termed the Particle Responsiveness Metric (PRM) to gauge how specific particles influence
activity of the output layer neurons (see the section Methods: Particle responsiveness metric
for further details). Using PRM on all food particle orientations across ten trials, we found that
following Task 1 training the network is drawn to horizontal particles (S3A Fig) while post
Task 2 training vertical particles drive output layer activity (S3B Fig), thus quantitatively sup-
porting the qualitative results displayed in Fig 2.
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Interleavedr) 12 training allowed new Task 2 learning without forgetting old Task 1. (E) Task paradigm similar to that shown in (A) but
with Interleaveds 1, training (gray) instead of Task 2 training. (F) Mean and standard deviation of performance during testing on Task 1
(blue) and Task 2 (red). Embedding sleep phases to the new Task 2 training protected old Task 1 memory.

https://doi.org/10.1371/journal.pcbi.1010628.g003

Sleep can protect synaptic configuration from previous training but does
not provide training by itself

In simulations presented in Fig 3, during sleep phase, each hidden layer neuron was stimulated
by noise, a Poisson distributed spike train, and we ensured that its firing rate during sleep
would be close to the mean rate of that neuron firing across all the preceding training sessions.
Therefore, intensity of the noise input during Interleaveds 1, was influenced by preceding
Task 1 training and could also vary between H neurons. To eliminate the possibility that such
input may provide direct Task 1 training during sleep, three additional experiments were con-
ducted. First, we applied Interleaveds 1, phase to a completely naive network. Importantly,
even though this network was never trained on Task 2, we used information about hidden
layer neuron firing rates after Task 2 training from another experiment. In other words, we
artificially took into account Task 2 firing rate data to design random input during sleep to
check if this might be sufficient to improve the network performance on Task 2. We found
that the network learns Task 1 but Task 2 performance remained at baseline (54A and S4B
Fig). In a second experiment, a similar period of Interleaveds 1, was applied following Task 1
training (84C and $4D Fig) and we found that it maintained performance on Task 1 but again
without any performance gain for Task 2.

In a third experiment, we repeated the sequence shown in Fig 3E, however, during the sleep
phase, we provided each hidden layer neuron with a Poisson spike train input which was
drawn (independently) from the same distribution, i.e., we used the same input firing rate for
all hidden layer neurons determined by the mean firing of the entire hidden layer population
as opposed to the private spiking history of individual H neurons in the Fig 3E and 3F experi-
ments (termed Uniform-Noise Sleep (US)). The network’s performance under this implemen-
tation of noise, Interleavedys 11, (S4E and S4F Fig) was similar to that from our original sleep
implementation (see Fig 3E and 3F). Taken together, these results suggest that the properties
of the input that drives firing during sleep are not essential to enable replay, any similar to
awake random activity in layers H and O is sufficient to prevent forgetting.

Sleep replay protects critical synapses of the old tasks

To reveal synaptic weights dynamics during training and sleep, we next traced “task-relevant”
synapses, i.e. synapses identified in the top 10% of the distribution following training on that
specific task. We first trained Task 1, followed by Task 2 training (Fig 4A) and we identified
“task-relevant” synapses after each task training. Next, we continued by training Task 1 again
but we interleaved it with periods of sleep: T1->T2->>Interleaveds 1;. Sequential training of
Task 2 after Task 1 led to forgetting of Task 1, but after Interleaveds 1, Task 1 was relearned
while Task 2 was preserved (Fig 4A and 4B), as in the experiments in the previous section (Fig
3C). Importantly, this protocol allowed us to compare synaptic weights after Interleavedg 14
training with those identified as task-relevant after individual Task 1 and Task 2 training (Fig
4C). The structure in the distribution of Task 1-relevant synapses formed following Task 1
training (Fig 4C; top-left) was destroyed following Task 2 training (top-middle) but partially
recovered following Interleaveds 1 training (top-right). The distribution structure of Task
2-relevant synapses following Task 2 training (bottom-middle) was not present following Task
I training (bottom-left) and was partially retained following Interleaveds 1, training (bottom-
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https://doi.org/10.1371/journal.pcbi.1010628.g004

right). It should be noted that this qualitative pattern can be distinctly observed in a single trial
(Fig 4C; Blue Bars), but also generalizes across trials (Fig 4C; Orange Line). Thus, sleep can
preserve important synapses while incorporating new ones.

To better understand the effect of Interleaveds 1y training on the synaptic weights, we
trained a support vector machine (SVM; see Method: Support Vector Machine Training for
details) to classify the synaptic weight configurations between layers H and O according to
whether they serve to perform Task 1 or Task 2 on every trial. Fig 4D shows that the SVMs
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robustly and consistently classified the synaptic weight states after Task 1 and Task 2 training
while those after Interleaveds 1, fell significantly closer to the decision boundary. This indi-
cates that the synaptic weight matrices which result from Interleaveds 1, training are a mixture
of Task 1 and Task 2 states. Using principal components analysis (PCA), we found that while
synaptic weight matrices associated with Task 1 and Task 2 training cluster in distinct regions
of PC space, Interleaveds 1, training pushes the synaptic weights to an intermediate location
between Task land Task 2 (Fig 4E). Importantly, the smoothness of this trajectory to its steady
state suggests that Task 2 information is never completely erased during this evolution. We
take this as evidence that Interleaveds 1, training is capable of integrating synaptic information
relevant to Task 1 while protecting Task 2 information.

This analysis applied during interleaved training of Task 1 and Task 2 (Interleavedy, 1),
revealed similar results (S5 Fig), suggesting that Interleaveds 1) can enable similar synaptic
weights dynamics as Interleavedr, 1> training, but without access to the old task data (old
training environment).

Receptive fields of decision-making neurons after sleep represent multiple
tasks

To confirm that the network had learned both tasks after Interleaveds 1 training, we visualized
the receptive fields of decision-making neurons in layer O (Fig 5; see Fig 2 for comparison).
Fig 5A shows the receptive field for the neuron in layer O which controls movement in the
upper-left direction. This neuron responded to both horizontal (rewarded for Task 1) and ver-
tical (rewarded for Task 2) orientations in the upper-left quadrant of the visual field. Although
it initially appears that this layer O neuron may also be responsive to diagonal patterns in this
region, analysis of the receptive fields of neurons in layer H (Fig 5B) revealed that these recep-
tive fields are selective to either horizontal food particles (left six panels; rewarded for Task 1)
or vertical food particles (right six panels; rewarded for Task 2) in the upper-left quadrant of
the visual field. Other receptive fields were responsible for avoidance of punished particles for
both tasks (see examples in Fig 5B, bottom-middle-right and bottom-middle-left). Thus, the
network utilizes one of two distinct sets of layer H neurons, selective for either Task 1 or Task
2, depending on which food particles are present in the environment. To validate these qualita-
tive results we inspected the PRM metrics for all food particle orientations across ten trials fol-
lowing Interleaveds r; training. The comparatively high mean values for horizontal and
vertical food particle orientations revealed the network’s movement was significantly driven
by these rewarded food particle orientations (horizontal and vertical), quantifying multitask
memory integration into the network’s synaptic weight matrix. (S3C Fig).

Periods of sleep allow for integration of a new task memory without
interference through renormalization of task-relevant synapses

To visualize synaptic weight dynamics during Interleaveds 1, training, traces of all synapses
projecting to a single representative layer O neuron were plotted (Fig 6A). As in Fig 4, we
wanted to monitor task specific synapses, so we used the training paradigm of T1->T2-
>Interleavedg 1, and Task 1 and Task 2 relevant synapses were identified after each individual
task training. At the onset of Interleaveds 1 training (i.e. 240,000 aeons), the network was only
able to perform on Task 2, meaning the strong synapses in the network were specific to this
task. These synapses were represented by a cluster ranging from ~0.08 to ~0.4; the rest of syn-
apses grouped near 0. As Interleavedg 1, training progressed, Task 1 specific synapses moved
to the strong cluster and some, presumably less important, Task 2 synapses moved to the weak
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particles (left half) or vertical food particles (right half) in the upper-left quadrant of the visual field, promoting movement in that direction and
acquisition of the rewarded patters.

https://doi.org/10.1371/journal.pchi.1010628.9005

cluster. After a period of time the rate of transfer decreased and the total number of synapses
in each group stabilized, showing that the network approached equilibrium (Fig 6B).

To visualize how sleep renormalizes task relevant synapses, we plotted two-dimensional
weight distributions for T1->T2 (Fig 6C) and T2->Interleavedg, (Fig 6D) experiments (see
Methods: 2-D Synaptic Weight Distributions for details). To establish a baseline, in Fig 6C (left)
the weight state at the end of Task 1 training (X-axis) (see overall timeline of this experiment
in Fig 4A) was compared to itself (Y-axis). This formed a perfectly diagonal plot. The next
comparison (Fig 6C, middle) was between the weight state after Task 1 training (X-axis) and a
time early on Task 2 training (Y-axis). At that time, synapses were only able to modify their
strength slightly, causing most points to lie close to the diagonal. As training on Task 2 contin-
ued, synapses moved far away from the diagonal (Fig 6C, right). Two trends were observed: (a)
set of synapses that had a strength near zero following Task 1 training increased strength fol-
lowing Task 2 training (Fig 6D, right, red dots along Y-axis); (b) many strongly trained by
Task 1 synapses were depressed down to zero (Fig 6C, right, red dots along X-axis). The latter
illustrates the effect of catastrophic forgetting—complete overwriting of the synaptic weight
matrix caused performance of Task 1 to return to baseline after training on Task 2.

Does sleep prevent overwriting of the synaptic weight matrix? Fig 6D plots used the weight
state at the end of training Task 2 as a reference which is then compared to different times dur-
ing Interleavedg ) training. The first two plots (Fig 6D, left/middle) are similar to those in Fig
6C. However, after continuing Interleavedg r, training (Fig 6D, right) many synapses that were
strong following Task 2 training were not depressed to zero but rather were pushed to an inter-
mediate strength (note cluster of points parallel to X-axis). Thus, Interleaveds 1 training pre-
served strong synapses from a previously learned task while also introducing new strong
synapses to perform the new task.

Can we prevent old task forgetting simply by freezing a fraction of old task-relevant synap-
ses to prevent their damage by new training? We found that freezing 1% of Task 1-relevant
weights allowed Task 2 to be learned, but was not capable of preserving Task 1 (S6A Fig).
Freezing 5% of Task 1-relevant weights (S6B Fig) resulted in modest performance on both
tasks, but significantly below that seen after Interleaveds 1, (see Fig 3F). Finally, freezing 10%
of Task 1-relevant weights (S6C Fig) was capable of fully preserving Task 1 performance, but
prevented Task 2 from being learned.

Thus, in all cases, some degree of retroactive or prospective interference was observed
highlighting the fact that the sleep-like phase performs a significantly more sophisticated mod-
ification to the weight matrix than simply freezing (or amplifying) task relevant synapses.
Sleep is capable of intelligently selecting which certain strong synapses to maintain in addition
to which weak synapses should be strengthened. Indeed, the sleep phase results in a large clus-
ter of weights being renormalized around an intermediate value of synaptic strength in the net-
work. This may also explain why we observed somewhat better overall performance
(combined performance on both tasks) after sleep compare with interleaved training (see Fig
3). Indeed, interleaved training requires repetitive activation of the entire memory pattern, so
if different memory patterns compete for synaptic resources then each phase of interleaved
training will enhance one memory trace but damage the others. This is in contrast to spontane-
ous replay during sleep when only task specific subsets of neurons and synapses may be
involved in each replay episode. It is worth mentioning that freezing a fraction of synaptic
weights that are most relevant to old tasks (however, implemented in more complex form) is
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incoming synapses to a single output layer neuron during Interleaveds 1, training shows the synapses separate into two clusters. The network was trained in the
following order: T1->T2->Interleaveds 1. (B) Number of synapses in the strong (red) and weak (blue) clusters during Interleaveds r,. (C) Two-dimensional
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https://doi.org/10.1371/journal.pcbi.1010628.9006
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one of the approaches in machine learning to avoid catastrophic forgetting-Elastic Weight
Consolidation [7].

Periods of interleaved sleep and new task training push the network weight
state towards the intersection of Task 1 and Task 2 synaptic weights
configuration manifolds

Can many distinct synaptic weight configurations support a given task, or is each task sup-
ported by a unique synaptic connectivity matrix? OQur previous analysis suggests that each task
can be served by at least two different configurations—one unique for that task (Task 1 or Task
2) and another one that supports both Task 1 and Task 2. To further explore this question and
to identify possible task-specific solution manifolds (Mr; and M) and their intersection
(Myyr72) in synaptic weights space, we used multiple trials of Task 1 and Task 2 training to
sample the manifolds (Fig 7A). Here, red/blue dots indicate an exclusive high degree of perfor-
mance on Task 1/2 respectively, while cyan and greed dots indicate states where the network is
able to perform on both tasks simultaneously. Since this analysis was generated utilizing a wide
variety of simulation paradigms with many corresponding trials differing in randomness, we
believe it allows us to draw generalized conclusions. We therefore interpret these results as evi-
dence that synaptic weight space includes a manifold, My;, where different configurations of
weights (red, green, cyan dots) all allow for Task 1 to perform well. This manifold intersects with
another one, M, where different weights configurations (blue, green, cyan dots) are all suitable
for Task 2. Fig 7B and 7C show 2D dimensionality reductions to PCA space, and include trajec-
tories in addition to end states. One can see that PC 1 seems to capture the extent to which a syn-
aptic weight configuration is associated with Task 1 (positive values) or Task 2 (negative values),
while PC 2 and PC 3 capture the variance in synaptic weight configurations associated with Task
1 and Task 2, respectively. Note, the trajectories through this space (red/blue lines) during Inter-
leavedy, 1, and Interleaveds 1 training would also belong to the respective task manifolds as
performance on the old tasks was never lost in these training scenarios.

We next calculated the distance from the current synaptic weight configurations to M,
(Fig 7D), My (Fig 7E), and M7= (Fig 7F; see Methods: Distance from Solution Manifolds for
details) during different training protocols. Fig 7D and 7E show that while Sequential (T1-
>T2 or T2->T1) training causes synaptic weight configurations to diverge quickly from its
initial solution manifold (i.e. M7, or My,) and to remain far (suggesting quick forgetting of the
original task), both Interleavedr; 1, and Interleaveds /2 training cause synaptic weight con-
figurations to stay relatively close to the initial solution manifold as a new task was learned.
(Note, that we certainly under sampled My, and My, which may explains initial distance
increase.) Importantly, Fig 7F shows that both Interleavedr 1, and Interleaveds /1> training
cause synaptic weight configurations to smoothly converge towards My, 7, while Sequential
training avoids this intersection entirely.

In Fig 7G we present a schematic depiction of these results. The task-specific manifolds,
My and M, are depicted in 3D as two volumes whose boundaries are defined by two orthog-
onal elliptic paraboloids with opposite orientation. The ellipsoidal intersection approximates
the volume comprising M1, Fig 7H and 71 depict a cartoon of trajectories taken by the net-
work in this space following Task 2 and Task 1 training, respectively. Sequential training
causes the network to jump directly from one task-specific solution manifold to the other,
resulting in catastrophic forgetting. In contrast, interleaving new task training with sleep
(Interleaveds 11,12) prevents catastrophic forgetting by keeping the network close to the old
task solution manifold as it converges towards My, 1, —a region capable of supporting both
tasks simultaneously.
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https://doi.org/10.1371/journal.pcbi.1010628.9007

Discussion

We report that a multi-layer spiking neural network utilizing reinforcement learning exhibits
catastrophic forgetting upon sequential training of two complementary complex foraging
tasks, however the problem is mitigated if the network is allowed, during new task training, to
undergo intervening periods of spontaneous reactivation which are equivalent to the periods
of sleep in a biological brain. Old task was spontaneously replayed during sleep, therefore
interleaving new task training with sleep was effectively equivalent to explicit interleaved train-
ing of the old and new tasks without the need to store and train on previous task data or envi-
ronments. At the synaptic level, training a new task alone led to complete overwriting of
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synaptic weights responsible for the old task. In contrast, interleaving periods of reinforcement
learning on a new task with periods of unsupervised plasticity during sleep preserved critical
old task synapses to avoid forgetting and enhanced synapses relevant for a new task to allow
new task learning. Thus, in synaptic weight space, the network weight configuration was
pushed towards the intersection of the manifolds representing synaptic weight configurations
associated with individual tasks—an optimal compromise for performing both tasks.

The critical role that sleep plays in learning and memory is supported by a vast, interdisci-
plinary literature spanning both psychology and neuroscience [16,22,43-45]. Specifically, it
has been suggested that REM sleep supports the consolidation of non-declarative or proce-
dural memories while non-REM sleep supports the consolidation of declarative memories
[16,21,22]. In particular, REM sleep has been shown to be important for the consolidation of
memories of hippocampus-independent tasks involving perceptual pattern separation, such as the
texture discrimination task [16,46]. Despite the difference in the cellular and network dynamics
during these two stages of sleep [16,22], both are thought to contribute to memory consolidation
through repeated reactivation, or replay, of specific memory traces acquired during learning
[16,21,39,44,47-49]. These studies suggest that through replay, sleep can support the process of
off-line memory consolidation to circumvent the problem of catastrophic forgetting.

From mechanistic perspective, the sleep phase in our model protects old memories by
enabling spontaneous reactivation of neurons and changing synapses responsible for previ-
ously learned tasks. We previously reported that in the thalamocortical model a sleep phase
may enable replay of spike sequences learned in awake to improve post-sleep performance
[38-40] and to protect old memories from catastrophic forgetting [41]. Here we found, how-
ever, that a single episode of new task training using reinforcement learning could quickly
erase old memories to the point that they cannot be recovered by subsequent sleep. The solu-
tion was similar to how the brain slowly learns procedural (hippocampal-independent) memo-
ries [16,21,22,46,50]. Each episode of new task training improves new task performance only
slightly but also damages slightly synaptic connectivity responsible for the older task. Subse-
quent sleep phases enable replay that preferentially benefits the strongest synapses, such as
those from old memory traces, to allow them to recover.

We found that multiple distinct configurations of synaptic weights can support each task,
suggesting the existence of task specific solution manifolds in synaptic weight space. Sequential
training of new tasks makes the network to jump from one solution manifold to another,
enabling memory for the most recent task but erasing memories of the previous tasks. Inter-
leaving new task training with sleep phases enables the system to evolve towards intersection
of these manifolds where synaptic weight configurations can support multiple tasks (a similar
idea was recently proposed in the machine learning literature to minimize catastrophic inter-
ference by learning representations that accelerate future learning [51]). From this point of
view having multiple episodes of new task training interleaved with multiple sleep episodes
allows gradual convergence to the intersection of the manifolds representing old and new
tasks, while staying close to the old task manifold. In contrast, a single long episode of new task
learning would push the network far away from the old task manifold making it impossible to
recover by subsequent sleep.

Although classical interleaved training of the old and new tasks showed similar perfor-
mance results in our model as interleaving new task training with sleep, we believe the latter to
be superior on the following theoretical grounds. Classical interleaved training will necessarily
cause the system to oscillate about the optimal location in synaptic weight space which can
support both tasks because each training cycle uses a cost function specific to only a single
task, While this can be ameliorated with a learning rate decay schedule, the system is never
actually optimizing for the desired dual-task state. Sleep, on the other hand, can support not
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only replays of the old task, but also support replays which are a mixture of both tasks
[41,52,53]. Thus, through unsupervised plasticity during sleep replay, the system is able to per-
form approximate optimization for the desired dual-task (or multi-task) state.

Our results are in line with a large body of literature suggesting that interleaved training is
capable of mitigating catastrophic forgetting in ANNs [4,10,11] and SNNs [12,13], which led
to a number of replay-like algorithms involving storing a subset of previous veridical inputs
and mixing them with more recent inputs to update the networks (reviewed in [9]). The novel
contribution from our study is that the data intensive process of storing old data and using
them for retraining can be avoided in SNN by implementing periods of noise-induced sponta-
neous reactivation during new task training; similar to how brains undergo offline consolida-
tion periods during sleep resulting in reduced retroactive interference to previously learned
tasks [16,50]. Indeed, we recently successfully implemented a similar approach in feedforward
ANNSs, where sleep-like phase prevented catastrophic forgetting and improved generalization
and adversarial robustness [54-56]. And our results are in line with previous work done in
humans showing that perceptual learning tasks are subject to retroactive interference by com-
peting memories without an intervening period of REM sleep [21,46]. Moreover, performance
on visual discrimination tasks in particular have been shown to steadily improve over succes-
sive nights of sleep [46], consistent with our findings that interleaving multiple periods of sleep
with novel task learning leads to optimal performance on each task.

In comparing our modeling results to those found in the literature on biological learning, it
is important to note an important difference in the “baseline” state of an animal undergoing
an experimental training condition versus a neural network model. In our model, and indeed
in all neural network models, the system begins as a “blank slate” without knowledge of any
previous learning or competing demands. In contrast, animals under experimental training
paradigms have a wealth of experiences which would serve as priors to bias the subsequent
learning during training, leading potentially to proactive interference. Moreover, training is
typically conducted across multiple days, with intervening periods during which the animal
will be subject to an array of various task-irrelevant stimuli and organismal demands possibly
leading to retroactive interference. Both of these ensure that the baseline state of the animal
entering a given training session is far from that of the “blank slate” a neural network model
enters with, as well as that recently learned memories may start degrading quickly in the brain
while the network weights remain unchanged post training (unless new task is explicitly
trained). Due to this stark differences, we focus our attention on the interference phenomena
which follow training on an initial task as opposed to initial learning. Viewed from this per-
spective, initial task training in our network can serve a similar role to the prior personal his-
tory of an animal subject.

While our model represents a dramatic simplification of a living system, we believe that it
captures some important elements of how animal and human brains interact with the external
world. The primary visual system is believed to employ a sequence of processing steps when
visual information is increasingly represented by neurons encoding higher level features [35-
37]. In insects, complex patterns of olfactory receptors activation by odors are encoded by
sparse patterns of the mushroom body Kenyon cells firing [57-59]. This processing step is also
similar to the function performed by convolutional layers of an ANN [34] and it was reduced
to very simple convolution from the input to hidden layer in our model. Subsequently, in the
vertebrate brain, associative areas and motor cortex are trained to make decisions based on
reward signals released by neuro modulatory centers [10,60-62]. In insects, Kenyon cells make
plastic (subject to rewarded STDP) projections to the lobes [27,63]. This was reduced in our
model to synaptic projections from the hidden to output (decision making) layer implement-
ing rewarded STDP to learn a task [30-32]. While NREM sleep in vertebrates is characterized
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by complex patterns of synchronized neuronal activity [16], REM sleep is characterized by
low-synchronized firing [42], similar to activity during sleep-like phase in our model and para-
doxical sleep with similar properties has been reported in honeybee and fruit fly [64-66].

Our study predicts synaptic level mechanisms of how sleep-based memory reactivation can
protect old memory traces during training of a new interfering memory task. It suggests that,
at least for procedural memories that are directly encoded to the cortical network connectivity
during new training, multiple episodes of training interleaved with periods of sleep provide
necessary mechanisms to prevent forgetting old memories. Interleaving new task training with
sleep enables the connectivity matrix to evolve towards the joint synaptic weight configuration,
representing the intersection of manifolds supporting individual tasks. Sleep makes this possi-
ble by replaying old memory traces without explicit usage of the old training data.

Methods
Environment

Foraging behavior took place in a virtual environment consisting of a 50x50 grid with ran-
domly distributed “food” particles. Each particle was two pixels in length and could be classi-
fied into one of four types depending on its orientation: vertical, horizontal, positively sloped
diagonal, or negatively sloped diagonal. During the initial unsupervised training period, the
particles are distributed at random with the constraints that each of the four types are equally
represented and no two particles can be directly adjacent. During training and testing periods
only the task-relevant particles were present. When a particle was acquired as a result of the
virtual agent moving, it was removed from its current location (simulating consumption) and
randomly assigned to a new location on the grid, again with the constraint that it not be
directly adjacent to another particle. This ensures a continuously changing environment with
a constant particle density. The density of particles in the environment was set to 10%. The vir-
tual agent can see a 7x7 grid of squares (the “visual field”) centered on its current location and
it could move to any adjacent square, including diagonally, for a total of eight directions.

Network structure

The network was composed of 842 spiking reduced (map-based) model neurons (see Methods:
Map-based neuron model below) [67,68], arranged into three feed-forward layers to mimic a
basic biological circuit: a 7x7 input layer (I), a 28x28 hidden layer (H), and a 3x3 output layer
(O) with a nonfunctional center neuron (Fig 1). Input to the network was simulated as a set of
suprathreshold inputs to the neurons in layer I, equivalent to the lower levels of the visual sys-
tem, which represent the position of particles in an egocentric reference frame relative to the
virtual agent (positioned in the center of the 7x7 visual field). The most active neuron in layer
O, playing the role of biological motor cortex, determined the direction of the subsequent
movement. Each neuron in layer H, which can be loosely defined as higher levels of the visual
system or associative cortex, received excitatory synapses from 9 randomly selected neurons
inlayer L. These connections initially had random strengths drawn from a normal distribution.
Each neuron in layer H connected to every neuron in layer O with both an excitatory (Wij)
and an inhibitory (WTij) synapse. This provided an all-to-all connectivity pattern between
these two layers and accomplished a balanced feed-forward inhibition [69] found in many bio-
logical structures [69-74]. Initially, all these connections had uniform strengths and the
responses in layer O were due to the random synaptic variability. Random variability was a
property of all synaptic interactions between neurons and was implemented as variability in
the magnitude of the individual synaptic events.
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Policy

Simulation time was divided up into epochs of 600 timesteps, each roughly equivalent to 300
ms. At the start of each epoch the virtual agent received input corresponding to locations of
nearby particles within the 7x7 “visual field”. Thus 48 of the 49 neurons in layer I received
input from a unique location relative to the virtual agent. At the end of the epoch the virtual
agent made a single move based on the activity in layer O. If the virtual agent moved to a grid
location with a “food” particle present, the particle was removed and assigned to a randomly
selected new location.

Each epoch was of sufficient duration for the network to receive inputs, propagate activity
forward, produce outputs, and return to a resting state. Neurons in layer I which represent
locations in the visual field containing particles received a brief pulse of excitatory stimulation
sufficient to trigger a spike; this stimulation was applied at the start of each movement cycle
(epoch). At the end of each epoch the virtual agent moved according to the activity which has
occurred in layer O. Each simulation consisted of millions of these movement cycles / epochs,
therefore a unit of time was introduced termed aeon (1 aeon = 100 epochs) for concise
reporting.

The activity in layer O controlled the direction of the virtual agent’s movement. Each of the
neurons in layer O mapped onto a specific direction (i.e. one of the eight adjacent locations or
the current location). The neuron in layer O which spiked the greatest number of times during
the first half of the epoch defined the direction of movement for that epoch. If there was a tie,
the direction was chosen at random from the set of tied directions. If no neurons in layer O
spiked, the virtual agent continued in the direction it had moved during the previous epoch.

There was a 1% chance on every move that the virtual agent would ignore the activity
inlayer O and instead move in a random direction. Moreover, for every movement cycle that
passed without the virtual agent acquiring a particle, this probability was increased by 1%. The
random variability promoted exploration vs exploitation dynamics and essentially prevented
the virtual agent from getting stuck in movement patterns corresponding to infinite loops.
While biological systems could utilize various different mechanisms to achieve the same goal,
the method we implemented was efficient and effective for the scope of our study.

Neuron models

For all neurons we used spiking model identical to the model used in in [14,15] that can be
described by the following set of difference equations [68,75,76]:

Vo =LV L, + 8,),

L=1,—u(V,+1)+po + po,,

where Vn is the membrane potential, In is a slow dynamical variable describing the effects of
slow conductances, and n is a discrete time-step (0.5 ms). Slow temporal evolution of In was
achieved by using small values of the parameter ¢ << 1. Input variables 3, and g,, were used to
incorporate external current ' (e.g. background synaptic input): 8, = g1, 0, = o°I",.
Parameter values were set to o = 0.06, ° = 0.133, ¢° = 1, and g = 0.0005. The nonlinearity fa
(V,,1,,) was defined in the form of the piece-wise continuous function:

a(1-V,)" +1, V, <0

LVL) = a+1, 0<V,<a+IL&V, <0
-1 o+I,<V,orV, , >0,
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where ¢ = 3.65. This model is very computationally efficient, and, despite its intrinsic low
dimensionality, produces a rich repertoire of dynamics capable of mimicking the dynamics of
Hodgkin-Huxley type neurons both at the single neuron level and in the context of network
dynamics [68,75,77].

To model the synaptic interactions, we used the following piece-wise difference equation:

o [ (1= R4 2XR)g,, /W, spike,,
it =08, + .
0, otherwise,

o _ gy ypost
L= =g (Vi = V).

Here gsyn is the strength of the synaptic coupling, modulated by the target rate Wj of receiving
neuron j. Indices pre and post stand for the pre- and post-synaptic variables, respectively. The
first condition, spikepre, is satisfied when the pre-synaptic spikes are generated. Parameter y
controls the relaxation rate of synaptic current after a presynaptic spike is received (0 <y < 1).
The parameter R is the coefficient of variability in synaptic release. The standard value of R is
0.12. X is a random variable sampled from a uniform distribution with range [0, 1]. Parameter
Vrp defines the reversal potential and, therefore, the type of synapse (i.e. excitatory or inhibi-
tory). The term (1-R+2XR) introduces a variability in synaptic release such that the effect of
any synaptic interaction has an amplitude that is pulled from a uniform distribution with
range [1-R,1+R] multiplied by the average value of the synapse.

Synaptic plasticity
Synaptic plasticity closely followed the rules introduced in [14,15]. A rewarded STDP rule
[30-33] was operated on synapses between layers H and O while a standard STDP rule oper-
ated on synapses between layers I and H. A spike in a post-synaptic neuron that directly fol-
lowed a spike in a pre-synaptic neuron created a pre before post event while the converse
created a post before pre event. Each new post-synaptic (pre-synaptic) spike was compared to
all pre-synaptic (post-synaptic) spikes with a time window of 120 iterations.

The value of an STDP event (trace) was calculated using the following equation [28,29]:

—lt — ¢,
T

c

tr, = K’

where £, and #, are the times at which the pre- and post-synaptic spike events occurred respec-
tively, Tc is the time constant and is set to 40 ms, and K is maximum value of the trace tr; and
is set to -0.04 for a post before pre event and 0.04 for a pre before post event.

A trace was immediately applied to synapse between neurons in layers I and H. However,
for synapses between neurons in layers H and O the traces were stored for 6 epochs after its
creation before being erased. During storage, a trace had an effect whenever there was a
rewarding or punishing event. In such a case, the synaptic weights are updated as follows:

traces
WJII
W, — W;JH(I + *AA),
k i

A s tr, Sum,,
PP\ —t ) Avg,
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traces

_ tr,
tr

Sum, = —_—
—t—t+c

Avg, — (1 —0)Avg, + dSum,,

where ¢ is the current timestep, S,, is a scaling factor for reward/punishment, trk is the magni-
tude of the trace, tk is the time of the trace event, c is a constant (= 1 epoch) used for decreasing
sensitivity to very recent spikes, W; = X; Wj; is the total synaptic strength of all connections
from the neuron i in layer H to all neurons in layer O, W, is a constant that is set to the initial
value(target value) of Wi at the beginning of the simulation. The term W;o/W; helped to keep
the output weight sum close to the initial target value. The effect of these rules was that neu-
rons with lower total output strength could increase their output strength more easily.

The network was rewarded when the virtual agent moved to a location which contained a
particle from a “food” pattern (horizontal in Task 1, vertical in Task 2) and S, = 1, and
received a punishment of S,, = -0.001 when it moved to a location with a particle from a neu-
tral pattern(negative/positive diagonal in Task 1/2). A small punishment of S, = -0.0001 was
applied if the agent moved to a location without a particle present to help the virtual agent
learn to acquire “food” as rapidly as possible. During periods of sleep the network received a
constant reward of S,;, = 0.5 on each movement cycle.

To ensure that neurons in layer O maintained a relatively constant long-term firing rate,
the model incorporated homeostatic synaptic scaling which was applied every epoch. Each
timestep, the total strength of synaptic inputs W; = X; Wj; to a given neuron in layer O was set
equal to the target synaptic input Wj, —a slow variable which varied over many epochs depend-
ing on the activity of the given neuron in layer O-which was updated according to:

w

A=

Wy (1 + D,,) spike rate < target rate
Wy (1 = D,,) spike rate > target rate

To ensure that the net synaptic input W; to any neuron was unaffected by plasticity events
at the individual synapses at distinct timesteps and equal to W)y, we implemented a scaling
process akin to heterosynaptic plasticity which occurs after each STDP event. When any excit-
atory synapse of neuron in layer O changed in strength, all other excitatory synapses received
by that neuron were updated according to:

w w——-W”'
=,

Additionally, all inhibitory synapses were modified via a similar heterosynaptic update rule fol-
lowing each STDP event where the strength of every outgoing inhibitory weight from a given
neuron was set to the negative mean of all outgoing excitatory synapses of that same neuron.
More rigorously:

1
Wlﬁh—mzw,.j
j

Simulated sleep

To simulate the sleep phase, we inactive the sensory receptors (i.e. the input layer of network),
cut off all sensory signals (i.e. remove all particles from the environment), and decouple output
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Interleavedr, 1, and Interleaveds 1, training. As the network evolved along its trajectory in
synaptic weight space, the distance from the current point in synaptic weight space, pt, to the
two solution manifolds and their intersection were computed as follows:

& (p M,) = min(d"(p,,x)).

Here, d " is the n-dimensional Euclidean-distance function, where » is the dimensionality of
synaptic weight space (i.e. n = 6272 here), M, is the point-set specific to the manifold or inter-
section in question (i.e. either My, M2, or Myy2), and x is a particular element of the point-
set M.

Particle responsiveness metric (PRM)

The particle responsiveness metric (PRM) developed to quantify how responsive the network’s
weight matrix is to specific food particle orientations thereby allowing the quality of the recep-
tive field for a given task to be determined was defined as follows:

PRM(Particle Type) =
Z grand(DirectionMask(O) @ Z W, * Z (W, ® P) * grand(W, © P)*)
WO Output ‘WHeHidden WPeParticleMasks

Here Output is the set of all output layer neurons, O; Hidden is the set of all hidden layer neu-
rons, H; ParticleMasks is the set of masks, P, representing all possible locations of a single
instance of a ParticleType in the input field (e.g., horizontal bars would be a set of masks with a
single horizontal bar placed in all possible locations in the visual field; each particle mask P
consists of a 7 x 7 matrix of zeros with ones being placed in locations that correspond to cur-
rent food pixels). Wy is a 7x7 synaptic weights matrix of a given hidden layer neuron H; ®
gives Hadamard (or element-wise) product of two matrixes, grand(A) is a grand sum of all the
elements of a matrix A (grand(A) = ¢’Ae, where ¢ is all-ones vector). DirectionMask(O) takes
in an output layer neuron, O, and returns a matrix that represents the direction of motion with
respect to the input field. For example, when the neuron that directs the critter to move up and
to the left is supplied as input, the function returns a 7 x 7 matrix of zeros with the top left 3 x 3
submatrix being ones. Wy,_., simply returns the synapse strength from the source (H) to desti-
nation (O) neuron.,

Although this is seemingly an intricate metric, it captures many desired features of the net-
work’s connectivity and responses to food particles present in the visual field. Conceptually,
this metric is similar to the method used for developing the receptive fields of output layer neu-
rons with respect to the input field (Figs 2 and 5). PRM builds upon this qualitative visualiza-
tion, allowing us to numerically assess how specific particles influence output layer neurons to
spike when present in the portion of the visual field that corresponds to the direction of
motion for that neuron. The intuitions of the metric are as follows: WP develops a notion
of how well the current hidden neuron’s (H) connections to the input layer overlaps with the
current food particle (P) placed at specific location. The resulting matrix is then multiplied by
grand(Wg®P)?, which emphasizes contribution of the H neurons receiving input from adja-
cent pixels in correct orientation (i.e., sensitive to the food particles) vs those receiving input
from random pixels. Indeed, when a hidden layer neuron H overlaps strongly with a food par-
ticle P, the chances of spiking are significantly increased, thus this nonlinear term captures the
high impact overlapping receptive fields and food particles has on output layer activity. Wy _.o
captures how strongly the current output layer neuron O is listening to the current hidden
layer neuron H.
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layer activity from motor control (i.e. the output layer can spike but no longer causes the agent
to move). We also change the learning rule between the hidden and output layer from
rewarded to unsupervised STDP (see Methods: Synaptic Plasticity for details) as there is no way
to evaluate decision-making without sensory input or motor output,

To simulate the spontaneous activity observed during REM sleep, we provided noise to
each neuron in the hidden layer in a way which ensured that the spiking statistics of each neu-
ron was conserved across awake and sleep phases. To determine these spiking rates, we
recorded average spiking rates of neurons in the hidden layer H during preceding training of
both Task 1 and Task 2; these task specific spiking rates were then averaged to generate target
spiking rates for hidden layer neurons. Interleavedg 1, training consisted of alternating inter-
vals of this sleep phase and training on Task 1, with each interval lasting 100 movement cycles
(although no movement occurred).

Support vector machine training

A support vector machine with a radial basis function kernel was trained to classify synaptic
weight configurations as being related to Task 1 or Task2. Labeled training data were obtained
by taking the excitatory synaptic weight matrices between the hidden and output layers from
the last fifth of the Task 1 and Task 2 training phases (i.e. after performance had appeared to
asymptote). These synaptic weight matrices were then flattened into column vectors, and the
column vectors were concatenated to form a training data matrix of size number of features x
number of samples. The number of features was equal to the total number of excitatory synap-
ses between the hidden and output layer— 6272 dimensions. We then used this support vector
machine to classify held out synaptic weight configurations from Task 1 and Task 2 training,
as well as ones which resulted from Interleavedr, 1, and Interleaveds , training.

2-D synaptic weight distributions (Fig 6)

First for each synapse we found how its synaptic strength changes between two slices in time,
where the given synapse’s strength at time slice 1 is the point’s X-value and strength at time
slice 2 is its Y-value. Then we binned this space and counted synapses in each bin to make two
dimensional histograms where blue color corresponds to a single synapse found in a bin and
brown corresponds to the max of 50 synapses. These two-dimensional histograms assist in
visualizing the movement of all synapses between the two slices in time that are specified by
the timelines at the top of each plot. Conceptually, it is important to note that if a synapse does
not change in strength between time slice 1 and time slice 2, then point the synapse corre-
sponds to in this space will lie on the diagonal of the plot since the X-value will match the Y-
value. If a great change in the synapse’s strength has occurred between time slice 1 and time
slice 2, then the synapse’s corresponding point will lie far from the diagonal since the X-value
will be distant from the Y-value. The points on the X-(Y-) axis represent synapses that lost
(gained) all synaptic strength between time slice 1 and time slice 2.

Distance from solution manifolds (Fig 7)

Each of the two solution manifolds (i.e. Task 1 and Task 2 specific manifolds) were defined by
the point-sets in synaptic weight space which were capable of supporting robust performance
on that particular task, namely the sets My; and M. This included the synaptic weight states
from the last fifth of training on a particular task(i.e. after performance on that task appeared
to asymptote) and all of the synaptic weight states from the last fifth of both Interleavedy) 12
and Interleaveds 11, training. The intersection of the two solution manifolds (i.e. the point-
set M 72) was defined solely by the synaptic weight states from the last fifth of both
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These described pieces are multiplied together to form a weighted input receptive field of
the output layer neuron with respect to a specific hidden layer neuron and food particle type /
location. The sum of these terms for all hidden layer neurons and food particle locations is
taken for a single output layer neuron, achieving a global view of all hidden layer neurons and
food particle types / locations influencing the current output layer neuron. The grand(A) oper-
ation between the DirectionMask(O) and the previously described summed term is then taken
to see how much the summed weighted receptive fields overlap with the corresponding direc-
tion of movement for output neuron O. This process is repeated for all output layer neurons to
get a global quantification of how the current food particle influences activity in the direction
of motion for all output layer neurons. When this metric is calculated for a given network state
across food particle types we can observe what food particles impact output layer activity and
drive the critter to move, highlighting what particle orientations the network is attracted to.

Supporting information

S1 Fig. Spike rasters showing network activity across various training regimes. (A-D) Rep-
resentative spike rasters from various training regimes. The vertical axis specifies a unique
neuron in the network while time in epochs is shown horizontally. Here a single dot represents
a specific neuron spiking at a given time while the color of the dot dictates what layer that neu-
ron belongs to (green, blue, red corresponding to input, hidden, and output layers respec-
tively). Panels A, B, C, D correspond to sample activity from Task 1 training, Task 2 training,
Iy12 training and I 1, training respectively. Note, in panel D activity is taken during a period
of sleep when the hidden layer is spontaneously activated. Thus, there are hidden (blue) and
output (red) layer spikes while the input (green) layer is completely silent.

(EPS)

S2 Fig. Model displays graceful degradation in performance as a result of hidden layer
dropout. (A) Mean performance (red line) and standard deviation (blue lines) over time:
unsupervised training (white), Task 1 training (blue), Task 1 testing (green). Hidden layer neu-
rons are randomly removed during testing period. Gradient bar above Task 1 testing (green)
displays the number of hidden layer neurons over time starting at 784 and decreasing down to
0. The testing performance remains high until ~25% of neurons are left, after which it starts to
drop. This highlights the formation of a distributed synaptic structure between hidden and
output layer neurons developed during training, ensuring output layer activity is not dictated
by a select few hidden layer neurons. (B) Same as in (A) but for Task 2.

(EPS)

§3 Fig. Particle responsiveness metric (PRM) shows correspondence between type of train-
ing and particles preferred by the network. (A-D) Mean and standard deviation (blue bars
and black lines respectively) of the PRM for various types of training and particle orientations
across ten trials. The title of each plot reflects the most recently trained stage, the vertical axis
corresponds to the value of the PRM while the horizontal axis identifies the particle type (bold
labels indicate ideal particles the network would be attracted to following the corresponding
training). It can be seen that the metric indicates the network is most responsive to the corre-
sponding ideal particle types following a specific training regime e.g. Post Task 1 the network
is most responsive to horizontal particles (A), Post Task 2 the network is most responsive to
vertical particles (B), Post Is 1, the network is most responsive to horizontal and vertical parti-
cles (C), Post It 1 the network is most responsive to horizontal and vertical particles (D).
(EPS)
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$4 Fig. Effect of sleep to protect old memory does not depend on specific properties of
noise applied during sleep phase. (A) Mean performance (red line) and standard deviation
(blue lines) over time: unsupervised training (white), Interleavedg 1 (grey), Task 1/2 testing
(green/yellow). (B) Mean and standard deviation of performance during testing on Task 1
(blue) and Task 2 (red). Following Interleaveds r;, mean performance on Task 1 was

0.60 + 0.03 while Task 2 was 0.49 + 0.05. (In all experiments, 0.5 represents chance perfor-
mance.) Note that periods of Task 1 training interleaved with sleep do not lead to increase in
performance on untrained Task 2, even when Task 2 data from another experiment were used
to set up mean firing rates of the random input during sleep. (C) Same as in (A) but the
sequence of training was: unsupervised training (white), Task 1 training (blue), Task 1/2 test-
ing (green/yellow), Interleaveds ) (grey), Task 1/2 testing (green/yellow). (D) Mean and stan-
dard deviation of performance during testing on Task 1 (blue) and Task 2 (red) after Task 1
training and after Interleaveds ;. Following Task 1 training, mean performance on Task 1 was
0.70 + 0.02 while Task 2 was 0.53 + 0,02. Post Interleaveds r, training, mean performance on
Task 1 was 0.71 £ 0.02 and Task 2 was 0.51 £ 0.02. Task 1 performance remained high after
Interleaveds 1, but no improvement on Task 2 was observed. (E) Mean performance (red line)
and standard deviation (blue lines) over time: unsupervised training (white), Task 1 training
(blue), Task 1/2 testing (green/yellow), Interleavedys 1 (burnt orange), Task 1/2 testing
(green/yellow). (F) Mean and standard deviation of performance during testing on Task 1
(blue) and Task 2 (red). Following Task 1 training, mean performance on Task 1 was

0.70 + 0.02 while Task 2 was 0.53 + 0.02. Post Interleavedys 1 training, mean performance on
Task 1 was 0.67 £ 0.05 and Task 2 was 0.69 £ 0.03.

(EPS)

S5 Fig. Interleaving old and new task training allows integrating synaptic information rele-
vant to new task while preserving old task information. (A) Mean performance (red line)
and standard deviation (blue lines) over time: unsupervised training (white), Task 1 training
(blue), Task 1/2 testing (green/yellow), Task 2 training (red), Task 1/2 testing (green/yellow),
Interleavedr, 1 training (purple), Task 1/2 testing (green/yellow). (B) Mean and standard
deviation of performance during testing on Task 1 (blue) and Task 2 (red). Following Task
Itraining, mean performance on Task 1 was 0.69 + 0.02 while Task 2 was 0.53 + 0.02. Con-
versely, following Task 2 training, mean performance on Task 1 was 0.52 £ 0.02 while Task2
was 0.69 * 0.04. Following Interleavedr, 1, training, mean performance on Task 1 was 0.65
40,03 while Task 2 was 0.67 + 0.04. (C) Distributions of task-relevant synaptic weights (blue
bars-single trial, orange line / shaded region-mean / std across 10 trails. The distributional
structure of Task 1-relevant synapses following Task 1 training (top-left) is destroyed following
Task 2 training (top-middle), but partially recovered following. Interleavedr; > training (top-
right). Similarly, the distributional structure of Task 2-relevantsynapses following Task 2 train-
ing (bottom-middle), which was not present following Task 1training (bottom-left), was par-
tially preserved following Interleavedr, 1, training (bottom-right).(ID) Box plots with mean
(dashed green line) and median (dashed orange line) of the distance to the decision boundary
found by an SVM trained to classify Task 1 and Task 2 synaptic weight matrices for Task 1,
Task 2, and Interleavedr, 1, training across trials, Task 1 and Task 2synaptic weight matrices
had mean classification values of -0.069 and 0.069 respectively, while that of Interleavedr, >
training was 0.016. (E) Trajectory of H to O layer synaptic weights through PC space. Synaptic
weights which evolved during Interleavedr, > training (green dots)clustered in a location of
PC space intermediary between the clusters of synaptic weights which evolved during training
on Task 1 (red dots) and Task 2 (blue dots).

(EPS)
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$6 Fig. Freezing a fraction of task specific strong synapses preserves differing degrees of
performance in a sequential learning paradigm. (A-C) Mean and standard deviation of per-
formance during testing on Task 1 (blue) and Task 2 (red). Left, Performance after Task 1
training, Right, Performance after Task 2 training when a fraction of the strongest (after Task

I training) synapses remained frozen- 1% (A), 5% (B), 10% (C). In all cases, after Task 1 train-
ing, Task 1 performance was 0.70 + 0.02 and Task 2 performance was 0.53 + 0.02. (A) Freezing
the top 1% of Task 1 synapses resulted in a Task 1 performance of 0.54 + 0.02 and Task 2 per-
formance of 0.68 + 0.03. (B) Freezing the top 5% of Task 1 synapses resulted in a Task 1 perfor-
mance of 0.65 + 0.02 and Task 2 performance of 0.61 + 0.01. (C) Freezing the top 10% of Task
1 synapses resulted in a Task 1 performance of 0.70 + 0.03 and Task 2 performance of

0.53 + 0.03. Freezing the top 1% of Task 1 synapses was not sufficient to maintain Task 1 per-
formance, thus enabling Task 2 relevant synapses to dominate the network; however, freezing
the top 10% of Task 1 synapses fully retains Task 1 performance preventing Task 2 to be
learned.

(EPS)

Author Contributions

Conceptualization: Ryan Golden, Pavel Sanda, Maxim Bazhenov.

Data curation: Jean Erik Delanois.

Formal analysis: Ryan Golden, Jean Erik Delanois, Maxim Bazhenov.

Funding acquisition: Maxim Bazhenov.

Investigation: Jean Erik Delanois.

Methodology: Ryan Golden, Jean Erik Delanois, Pavel Sanda, Maxim Bazhenov.
Project administration: Maxim Bazhenov.

Resources: Maxim Bazhenov.

Software: Jean Erik Delanois.

Supervision: Pavel Sanda, Maxim Bazhenov.

Visualization: Jean Erik Delanois.

Writing - original draft: Ryan Golden, Jean Erik Delanois, Pavel Sanda, Maxim Bazhenov.

Writing - review & editing: Ryan Golden, Jean Erik Delanois, Pavel Sanda, Maxim Bazhenov.

References

1. French RM. Catastrophic forgetting in connectionist networks. Trends Cogn Sci. 1999; 3(4):128-35.
https://doi.org/10.1016/s1364-6613(99)01294-2 PMID: 10322466

2. Mccloskey M, Cohen NJ. CATASTROPHIC INTERFERENCE IN CONNECTIONIST NETWORKS:
THE SEQUENTIAL LEARNING PROBLEM. The Psychology of Learning and Motivation. 1989;
24:109-65.

3. Ralcliff R. Connectionist models of recognition memory: constraints imposed by learning and forgetting

functions. Psychol Rev. 1990; 97(2):285-308. https://doi.org/10.1037/0033-295x.97.2.285 PMID:
2186426

4. Hasselmo ME. Avoiding Catastrophic Forgetting. Trends Cogn Sci. 2017; 21(6):407-8. https://doi.org/
10.1016/.tics.2017.04.001 PMID: 28442279

5. Hassabis D, Kumaran D, Summerfield C, Botvinick M. Neuroscience-Inspired Artificial Intelligence.
Neuron. 2017; 95(2):245-58. https://doi.org/10.1016/j.neuron.2017.06.011 PMID: 28728020

67



PLOS COMPUTATIONAL BIOLOGY Sleep prevents networks from catastrophic forgetting by optimizing the weight state

27. Cassenaer S, Laurent G. Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfac-
tory information in locusts. Nature. 2007; 448(7154):709-13. https:/doi.org/10.1038/nature05973
PMID: 17581587

28. BiGQ, Poo MM. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing,
synaptic strength, and postsynaptic cell type. J Neurosci. 1998; 18(24):10464-72. https://doi.org/10.
1523/JNEURQOSCI.18-24-10464.1998 PMID: 9852584

29. Markram H, Lubke J, Frotscher M, Sakmann B. Regulation of synaptic efficacy by coincidence of post-
synaptic APs and EPSPs. Science. 1997; 275(5297):213-5. https://doi.org/10.1126/science.275.5297.
213 PMID: 8985014

30. Farries MA, Fairhall AL. Reinforcement learning with modulated spike timing dependent synaptic plas-
ticity. J Neurophysiol. 2007; 98(6):3648-65. https://doi.org/10.1152/jn.00364.2007 PMID: 17928565

31.  Florian RV. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
Neural Comput. 2007; 19(6):1468-502. https://doi.org/10.1162/neco.2007.19.6.1468 PMID: 17444757

32. Izhikevich EM. Solving the distal reward problem through linkage of STDP and dopamine signaling.
Cereb Cortex. 2007; 17(10):2443-52. https://doi.org/10.1093/cercor/bhl152 PMID: 17220510

33. Legenstein R, Pecevski D, Maass W. A learning theory for reward-modulated spike-timing-dependent
plasticity with application to biofeedback. PLoS Comput Biol. 2008; 4(10):e1000180. hitps://doi.org/10.
1371/journal.pcbi.1000180 PMID: 18846203

34. LeCunY,Bengio Y, Hinton G. Deep learning. Nature. 2015; 521(7553):436—44. hitps://doi.org/10.1038/
nature14539 PMID: 26017442

35. Cadieu CF, Hong H, Yamins DL, Pinto N, Ardila D, Solomon EA, et al. Deep neural networks rival the
representation of primate IT cortex for core visual object recognition. PLoS Comput Biol. 2014; 10(12):
e1003963. https://doi.org/10.1371/journal.pcbi. 1003963 PMID: 25521294

36. ‘Yamins DL, DiCarlo JJ. Using goal-driven deep learning models to understand sensory cortex. Nat Neu-
rosci. 2016; 19(3):356—-65. hitps://doi.org/10.1038/nn.4244 PMID: 26906502

37. Yamins DL, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ. Performance-optimized hierarchi-
cal models predict neural responses in higher visual cortex. Proc Natl Acad Sci U S A. 2014; 111
(23):8619-24. hitps://doi.org/10.1073/pnas.1403112111 PMID: 24812127

38. WeiY, Krishnan G, Bazhenov M. Synaptic Mechanisms of Memory Consolidation during Sleep Slow
Oscillations. Journal of Neuroscience. 2016; 36(15):4231—47. htips:/doi.org/10.1523/JNEUROSCI.
3648-15.2016 PMID: 27076422

39. WeiY, Krishnan GP, Komarov M, Bazhenov M. Differential roles of sleep spindles and sleep slow oscil-
lations in memory consolidation. PLoS Comput Biol. 2018; 14(7):e1006322. https://doi.org/10.1371/
journal.pcbi. 1006322 PMID: 29985966

40. WeiY, Krishnan GP, Marshall L, Martinetz T, Bazhenov M. Stimulation Augments Spike Sequence
Replay and Memory Consolidation during Slow-Wave Sleep. The Journal of neuroscience: the official
journal of the Society for Neuroscience. 2020; 40(4):811-24. https:/doi.org/10.1523/JNEUROSCI
1427-19.2019 PMID: 31792151

41. Gonzalez OC, Sokolov Y, Krishnan GP, Delanois JE, Bazhenov M. Can sleep protect memories from
catastrophic forgetting? Elife. 2020;9. https://doi.org/10.7554/eLife.51005 PMID: 32748786

42. Peever J, Fuller PM. The Biology of REM Sleep. Curr Biol. 2017; 27(22):R1237-R48. https://doi.org/10.
1016/).cub.2017.10.026 PMID: 29161567

43. Oudiette D, Antony JW, Creery JD, Paller KA. The role of memory reactivation during wakefulness and
sleep in determining which memories endure. J Neurosci. 2013; 33(15):6672-8. hitps://doi.org/10.
1523/JNEUROSCI.5497-12.2013 PMID: 23575863

Paller KA, Voss JL. Memory reactivation and consolidation during sleep. Learn Mem. 2004; 11(6):664—
70. https://doi.org/10.1101/Im.75704 PMID: 15576883

Walker MP, Stickgold R. Sleep-dependent learning and memory consolidation. Neuron. 2004; 44
(1):121-33. https://doi.org/10.1016/j.neuron.2004.08.031 PMID: 15450165

Stickgold R, James L, Hobson JA. Visual discrimination learning requires sleep after training. Nat Neu-
rosci. 2000; 3(12):1237-8. https://doi.org/10.1038/81756 PMID: 11100141

47. Hennevin E, Hars B, Maho C, Bloch V. Processing of learned information in paradoxical sleep: rele-
vance for memory. Behav Brain Res. 1995; 69(1-2):125-35. https:/doi.org/10.1016/0166-4328(95)
00013-j PMID: 7546303

48. Lewis PA, Knoblich G, Poe G. How Memory Replay in Sleep Boosts Creative Problem-Solving. Trends
Cogn Sci. 2018; 22(6):491-503. https://doi.org/10.1016/].tics.2018.03.009 PMID: 29776467

49. Oudiette D, Paller KA. Upgrading the sleeping brain with targeted memory reactivation. Trends Cogn
Sci. 2013; 17(3):142-9. https://doi.org/10.1016/}.tics.2013.01.006 PMID: 23433937

68



PLOS COMPUTATIONAL BIOLOGY Sleep prevents networks from catastrophic forgetting by optimizing the weight state

6. Kemker R, Abitino A, McClure M, Kanan C. Measuring Catastrophic Forgetting in Neural Networks.
arXiv:170802072 [Internet]. 2017.

7. Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu AA, et al. Overcoming cata-
strophic forgetting in neural networks. Proceedings of the national academy of sciences. 2017; 114
(13):3521-6. https://doi.crg/10.1073/pnas.1611835114 PMID: 28292907

8. Kemker R, Kanan C. Fearnet: Brain-inspired model for incremental learning. arXiv:171110563. 2017.

9. Hayes TL, Krishnan GP, Bazhenov M, Siegelmann HT, Sejnowski TJ, Kanan C. Replay in Deep Learn-
ing: Current Approaches and Missing Biological Elements. Neural computation. 2021; 33(11):2908-50.
https://doi.org/10.1162/neco_a_01433 PMID: 34474476

10. Flesch T, Balaguer J, Dekker R, Nili H, Summerfield C. Comparing continual task learning in minds and
machines. Proc Natl Acad Sci U S A. 2018; 115(44):E10313-E22. hitps://doi.org/10.1073/pnas.
1800755115 PMID: 30322916

11.  McClelland JL, McNaughton BL, O'Reilly RC. Why there are complementary learning systems in the
hippocampus and neocortex: insights from the successes and failures of connectionist models of learn-
ing and memory. Psychol Rev. 1995; 102(3):419-57. https://doi.org/10.1037/0033-285X.102.3.419
PMID: 7624455

12. Evans BD, Stringer SM. Transformation-invariant visual representations in self-organizing spiking neu-
ral networks. Front Comput Neurosci. 2012; 6:46. https://doi.org/10.3389/fncom.2012.00046 PMID:
22848199

13. Higgins |, Stringer S, Schnupp J. Unsupervised learning of temporal features for word categorization in
a spiking neural network model of the auditory brain. PLoS One. 2017; 12(8):e0180174. https://doi.org/
10.1371/journal.pone.0180174 PMID: 28797034

14. Sanda P, Skorheim S, Bazhenov M. Multi-layer network utilizing rewarded spike time dependent plastic-
ity to learn a foraging task. PLoS Comput Biol. 2017; 13(9):e1005705. https://doi.org/10.137 1/journal.
pcbi. 1005705 PMID: 28961245

15. Skorheim S, Lonjers P, Bazhenov M. A spiking network model of decision making employing rewarded
STDP. PLoS One. 2014; 9(3):e90821. hitps://doi.org/10.1371/journal.pone.0090821 PMID: 24632858

16. Rasch B, BornJ. About sleep’s role in memory. Physiological reviews. 2013; 93(2):681-766. https:/doi.
org/10.1152/physrev.00032.2012 PMID: 23589831

17.  Ji D, Wilson MA. Coordinated memory replay in the visual cortex and hippoecampus during sleep. Nat
Neurosci. 2007; 10(1):100-7. hitps://doi.org/10.1038/nn1825 PMID: 17173043

18. Euston DR, Tatsuno M, McNaughton BL. Fast-forward playback of recent memory sequences in pre-
frontal cortex during sleep. Science. 2007; 318(5853):1147-50. hitps://doi.org/10.1126/science.
1148979 PMID: 18006749

19. Peyrache A, Khamassi M, Benchenane K, Wiener Sl, Battaglia FP. Replay of rule-learning related neu-
ral patterns in the prefrontal cortex during sleep. Nat Neurosci. 2009; 12(7):919-26. hiips://doi.org/10.
1038/nn.2337 PMID: 19483687

20. Barnes DC, Wilson DA. Slow-wave sleep-imposed replay modulates both strength and precision of
memory. J Neurosci. 2014; 34(15):5134-42. https://doi.org/10.1523/JNEUROSCI.5274-13.2014 PMID:
24719093

21.  Mednick SC, Cai DJ, Shuman T, Anagnostaras S, Wixted JT. An opportunistic theory of cellular and
systems consolidation. Trends Neurosci. 2011; 34(10):504—14. hitps://doi.org/10.1016/}.tins.2011.06.
003 PMID: 21742389

Stickgold R. Parsing the role of sleep in memory processing. Curr Opin Neurobiol. 2013; 23(5):847-53.
https://doi.org/10.1016/.conb.2013.04.002 PMID: 23618558

Ramanathan DS, Gulati T, Ganguly K. Sleep-Dependent Reactivation of Ensembles in Motor Cortex
Promotes Skill Consolidation. PLOS Biology. 2015; 13(9):e1002263. https://doi.org/10.1371/journal.
pbio.1002263 PMID: 26382320

24. ZwakaH, Bartels R, Gora J, Franck V, Culo A, Gotsch M, et al. Context odor presentation during sleep
enhances memory in honeybees. Curr Biol. 2015; 25(21):2869-74. hitps://doi.org/10.1016/j.cub.2015.
09.069 PMID: 26592345

25. Melnattur K, Kirszenblat L, Morgan E, Militchin V, Sakran B, English D, et al. A conserved role for sleep
in supporting Spatial Learning in Drosophila. Sleep. 2021; 44(3). https://doi.org/10.1093/sleep/zsaal97
PMID: 32959053

26. Donlea JM, Thimgan MS, Suzuki Y, Gottschalk L, Shaw PJ. Inducing sleep by remote control facilitates

memory consolidation in Drosophila. Science. 2011; 332(6037):1571-6. https://doi.org/10.1126/
science.1202249 PMID: 21700877

69



PLOS COMPUTATIONAL BIOLOGY Sleep prevents networks from catastrophic forgetting by optimizing the weight state

50. McDevitt EA, Duggan KA, Mednick SC. REM sleep rescues learning from interference. Neurobiol Learn
Mem. 2015; 122:51-62. https://doi.org/10.1016/j.nlm.2014.11.015 PMID: 25498222

51.  Javed K, White M. Meta-Learning Representations for Continual Learning. arXiv e-prints [Internet].
2019 May 01, 2019:[arXiv:1905.12588 p.]. Available from: https://ui.adsabs. harvard.edu/abs/
2019arXiv1905125884J.

52.  Roumis DK, Frank LM. Hippocampal sharp-wave ripples in waking and sleeping states. Curr Opin Neu-
robiol. 2015; 35:6—12. https://doi.org/10.1016/j.conb.2015.05.001 PMID: 26011627

53. Swanson RA, Levenstein D, McClain K, Tingley D, Buzsaki G. Variable specificity of memory trace
reactivation during hippocampal sharp wave ripples. Current Opinion in Behavioral Sciences. 2020;
32:126-35. https://doi.org/10.1016/j.cobeha.2020.02.008 PMID: 36034494

Krishnan GP, Tadros T, Ramyaa R, Bazhenov M. Biologically inspired sleep algorithm for artificial neu-
ral networks. arXiv. 2019:1908.02240v1.

Tadros T, Krishnan G, Ramyaa R, Bazhenov M. Biologically inspired sleep algorithm for reducing cata-
strophic forgetting in neural networks. AAAI Conference on Artificial Intelligence 2020. p. 13933-4.

Tadros T, Krishnan GP, Ramyaa R, Bazhenov M. Biologically inspired sleep algorithm for increased
generalization and adversarial robustness in deep neural networks. International Conference on Learn-
ing Representations [Internet]. 2019.

57. Laurent G. Olfactory network dynamics and the coding of multidimensional signals. Nat Rev Neurosci.
2002; 3(11):884-95. https://doi.org/10.1038/nrm964 PMID: 12415296

58. AssisiC, Stopfer M, Laurent G, Bazhenov M. Adaptive regulation of sparseness by feedforward inhibi-
tion. Nature neuroscience. 2007; 10(9):1176-84. https:/doi.org/10.1038/nn1947 PMID: 17660812

59. Perez-Orive J, Bazhenov M, Laurent G. Intrinsic and circuit properties favor coincidence detection for
decoding oscillatory input. The Journal of neuroscience: the official journal of the Society for Neurosci-
ence. 2004; 24(26):6037-47.

60. Schultz W. Dopamine reward prediction-error signalling: a two-component response. Nat Rev Neurosci.
2016; 17(3):183-95. https://doi.org/10.1038/nrn.2015.26 PMID: 26865020

61. Schultz W. Dopamine reward prediction error coding. Dialogues Clin Neurosci. 2016; 18(1):23-32.
https://doi.org/10.31887/DCNS.2016.18.1/wschultz PMID: 27069377

62. Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science. 1997; 275
(5306):1593-9. https://doi.org/10.1126/science.275.5306.1533 PMID: 9054347

Cassenaer S, Laurent G. Conditional modulation of spike-timing-dependent plasticity for olfactory learn-
ing. Nature. 2012; 482(7383):47-52. hitps://doi.org/10.1038/nature10776 PMID: 22278062

Tainton-Heap LAL, Kirszenblat LC, Notaras ET, Grabowska MJ, Jeans R, FengK, et al. A Paradoxical
Kind of Sleep in Drosophila melanogaster. Curr Biol. 2021; 31(3):578-90 6. https://doi.org/10.1016/].
cub.2020.10.081 PMID: 33238155

Kaiser W, Steiner-Kaiser J. Neuronal correlates of sleep, wakefulness and arousal in a diurnal insect.
Nature. 1983; 301(5902):707-9. https:/doi.org/10.1038/301707a0 PMID: 6828153

Sauer S, Kinkelin M, Herrmann E, Kaiser W. The dynamics of sleep-like behaviour in honey bees. Jour-
nal of comparative physiology A, Neuroethology, sensory, neural, and behavioral physiology. 2003; 189
(8):598-607. https://doi.org/10.1007/s00359-003-0436-9 PMID: 12861424

67. Rulkov NF, Bazhenov M. Oscillations and synchrony in large-scale cortical network models. J Biol
Phys. 2008; 34(3-4):279-99. https://doi.org/10.1007/s10867-008-9079-y PMID: 19669478

68. Rulkov NF, Timofeev |, Bazhenov M. Oscillations in large-scale cortical networks: map-based model. J
Comput Neurosci. 2004; 17(2):203-23. https://doi.org/10.1023/B:JCNS.0000037683.55688.7e PMID:
15306740

69. Bazhenov M, Stopfer M. Forward and back: motifs of inhibition in olfactory processing. Neuron. 2010;
67(3):357-8. https://doi.org/10.1016/.neuron.2010.07.023 PMID: 20696373

70. Bruno RM. Synchrony in sensation. Curr Opin Neurobiol. 2011; 21(5):701-8. hitps://doi.org/10.1016/].
conb.2011.06.003 PMID: 21723114

71. DongH, Shao Z, Nerbonne JM, Burkhalter A. Differential depression of inhibitory synaptic responses in
feedforward and feedback circuits between different areas of mouse visual cortex. J Comp Neurol.
2004; 475(3):361-73. https://doi.org/10.1002/cne.20164 PMID: 15221951

72. Pouille F, Scanziani M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhi-
bition. Science. 2001; 293(5532):1159-63. https://doi.org/10.1126/science. 1060342 PMID: 11498596

73. Shao Z, Burkhalter A. Different balance of excitation and inhibition in forward and feedback circuits of
rat visual cortex. Journal of Neuroscience. 1996; 16(22):7353-65. https://doi.org/10.1523/
JNEUROSCI.16-22-07353.1996 PMID: 8929442

70



PLOS COMPUTATIONAL BIOLOGY

Sleep prevents networks from catastrophic forgetting by optimizing the weight state

74.

75.

76.

Silberberg G. Polysynaptic subcircuits in the neocortex: spatial and temporal diversity. Curr Opin Neuro-
biol. 2008; 18(3):332-7. https://doi.org/10.1016/.conb.2008.08.009 PMID: 18801433

Bazhenov M, Rulkov NF, Fellous JM, Timofeev |. Role of network dynamics in shaping spike timing reli-
ability. Phys Rev E Stat Nonlin Soft Matter Phys. 2005; 72(4 Pt 1):041903. hitps://doi.org/10.1103/
PhysRevE.72.041903 PMID: 16383416

Rulkov NF. Modeling of spiking-bursting neural behavior using two-dimensional map. Phys Rev E Stat
Nonlin Soft Matter Phys. 2002; 65(4 Pt 1):041922. hitps://doi.org/10.1103/PhysRevE.65.041922 PMID:
12005888

Komarov M, Krishnan G, Chauvette S, Rulkov N, Timofeev |, Bazhenov M. New class of reduced com-
putationally efficient neuronal models for large-scale simulations of brain dynamics. J Comput Neurosci.
2018; 44(1):1-24. https://doi.org/10.1007/510827-017-0663-7 PMID: 29230640

71



>
vy

nout It
— Hisdden
—JUTput

— Hideiur
= Outout

goo{ . goo{ & )

% 600 & 6001
= =]
k= =
§ 400 s 400
=] =
] L¥]
Z 200 < 200

0 01

0 1 2 3 4 0 1 2 3 4
Epochs Epochs

(@]
O

Inpur
=— Hidden

naur
— HldEn

— Qukout — Cukput

800{ . - ! . 800

X 600 © X600
€ e

§ 400 § 400
3 1 3
[o¥] K @

< 200{ : <200

0 0

0 1 2 3 4 0 1 2 3 4
Epochs Epochs

S1 Figure. Spike rasters showing network activity across various training regimes. (A-D)
Representative spike rasters from various training regimes. The vertical axis specifies a unique
neuron in the network while time in epochs is shown horizontally. Here a single dot represents a
specific neuron spiking at a given time while the color of the dot dictates what layer that neuron
belongs to (green, blue, red corresponding to input, hidden, and output layers respectively).
Panels A, B, C, D correspond to sample activity from Task 1 training, Task 2 training, IT1,T2
training and IS, T1 training respectively. Note, in panel D activity is taken during a period of
sleep when the hidden layer is spontaneously activated. Thus, there are hidden (blue) and output
(red) layer spikes while the input (green) layer is completely silent.
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S2 Figure. Model displays graceful degradation in performance as a result of hidden layer
dropout. (A) Mean performance (red line) and standard deviation (blue lines) over time:
unsupervised training (white), Task 1 training (blue), Task 1 testing (green). Hidden layer
neurons are randomly removed during testing period. Gradient bar above Task 1 testing (green)
displays the number of hidden layer neurons over time starting at 784 and decreasing down to 0.
The testing performance remains high until ~25% of neurons are left, after which it starts to
drop. This highlights the formation of a distributed synaptic structure between hidden and output
layer neurons developed during training, ensuring output layer activity is not dictated by a select
few hidden layer neurons. (B) Same as in (A) but for Task 2.
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S3 Figure. Particle responsiveness metric (PRM) shows correspondence between type of
training and particles preferred by the network. (A-D) Mean and standard deviation (blue bars
and black lines respectively) of the PRM for various types of training and particle orientations
across ten trials. The title of each plot reflects the most recently trained stage, the vertical axis
corresponds to the value of the PRM while the horizontal axis identifies the particle type (bold
labels indicate ideal particles the network would be attracted to following the corresponding
training). It can be seen that the metric indicates the network is most responsive to the
corresponding ideal particle types following a specific training regime e.g. Post Task 1 the
network is most responsive to horizontal particles (A), Post Task 2 the network is most
responsive to vertical particles (B), Post IS, T1 the network is most responsive to horizontal and
vertical particles (C), Post IT1,T2 the network is most responsive to horizontal and vertical
particles (D).
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S4 Figure. Effect of sleep to protect old memory does not depend on specific properties of noise
applied during sleep phase. (A) Mean performance (red line) and standard deviation (blue lines)
over time: unsupervised training (white), InterleavedS,T1 (grey), Task 1/2 testing (green/yellow).
(B) Mean and standard deviation of performance during testing on Task 1 (blue) and Task 2
(red). Following InterleavedS,T1, mean performance on Task 1 was 0.60 + 0.03 while Task 2
was 0.49 £ 0.05. (In all experiments, 0.5 represents chance performance.) Note that periods of
Task 1 training interleaved with sleep do not lead to increase in performance on untrained Task
2, even when Task 2 data from another experiment were used to set up mean firing rates of the
random input during sleep. (C) Same as in (A) but the sequence of training was: unsupervised
training (white), Task 1 training (blue), Task 1/2 testing (green/yellow), InterleavedS,T1 (grey),
Task 1/2 testing (green/yellow). (D) Mean and standard deviation of performance during testing
on Task 1 (blue) and Task 2 (red) after Task 1 training and after InterleavedS,T1. Following
Task 1 training, mean performance on Task 1 was 0.70 £ 0.02 while Task 2 was 0.53 £ 0.02.
Post InterleavedS,T1 training, mean performance on Task 1 was 0.71 £ 0.02 and Task 2 was 0.51
+ 0.02. Task 1 performance remained high after InterleavedS, T1 but no improvement on Task 2
was observed. (E) Mean performance (red line) and standard deviation (blue lines) over time:
unsupervised training (white), Task 1 training (blue), Task 1/2 testing (green/yellow),
InterleavedUS, T2 (burnt orange), Task 1/2 testing (green/yellow). (F) Mean and standard
deviation of performance during testing on Task 1 (blue) and Task 2 (red). Following Task 1
training, mean performance on Task 1 was 0.70 = 0.02 while Task 2 was 0.53 £+ 0.02. Post
InterleavedUS, T2 training, mean performance on Task 1 was 0.67 + 0.05 and Task 2 was 0.69 +
0.03.
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S5 Figure. Interleaving old and new task training allows integrating synaptic information
relevant to new task while preserving old task information. (A) Mean performance (red line) and
standard deviation (blue lines) over time: unsupervised training (white), Task 1 training(blue),
Task 1/2 testing (green/yellow), Task 2 training (red), Task 1/2 testing (green/yellow),
InterleavedT1,T2 training (purple), Task 1/2 testing (green/yellow). (B) Mean and standard
deviation of performance during testing on Task 1 (blue) and Task 2 (red). Following Task
1training, mean performance on Task 1 was 0.69 + 0.02 while Task 2 was 0.53 £+ 0.02.
Conversely, following Task 2 training, mean performance on Task 1 was 0.52 = 0.02 while
Task2 was 0.69 £ 0.04. Following InterleavedT1,T2 training, mean performance on Task 1 was
0.65 +0.03 while Task 2 was 0.67 + 0.04. (C) Distributions of task-relevant synaptic weights
(blue bars—single trial, orange line / shaded region—mean / std across 10 trails. The distributional
structure of Task 1-relevant synapses following Task 1 training (top-left) is destroyed following
Task 2 training (top-middle), but partially recovered following. InterleavedT1,T2 training (top-
right). Similarly, the distributional structure of Task 2-relevantsynapses following Task 2
training (bottom-middle), which was not present following Task 1training (bottom-left), was
partially preserved following InterleavedT1,T2 training (bottom-right).(D) Box plots with mean
(dashed green line) and median (dashed orange line) of the distance to the decision boundary
found by an SVM trained to classify Task 1 and Task 2 synaptic weight matrices for Task 1,
Task 2, and InterleavedT1,T2 training across trials. Task 1 and Task 2synaptic weight matrices
had mean classification values of -0.069 and 0.069 respectively, while that of InterleavedT1,T2
training was 0.016. (E) Trajectory of H to O layer synaptic weights through PC space. Synaptic
weights which evolved during InterleavedT1,T2 training (green dots)clustered in a location of
PC space intermediary between the clusters of synaptic weights which evolved during training
on Task 1 (red dots) and Task 2 (blue dots).
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S6 Figure. Freezing a fraction of task specific strong synapses preserves differing degrees of
performance in a sequential learning paradigm. (A-C) Mean and standard deviation of
performance during testing on Task 1 (blue) and Task 2 (red). Left, Performance after Task 1
training. Right, Performance after Task 2 training when a fraction of the strongest (after Task 1
training) synapses remained frozen— 1% (A), 5% (B), 10% (C). In all cases, after Task 1 training,
Task 1 performance was 0.70 = 0.02 and Task 2 performance was 0.53 + 0.02. (A) Freezing the
top 1% of Task 1 synapses resulted in a Task 1 performance of 0.54 + 0.02 and Task 2
performance of 0.68 = 0.03. (B) Freezing the top 5% of Task 1 synapses resulted in a Task 1
performance of 0.65 £ 0.02 and Task 2 performance of 0.61 + 0.01. (C) Freezing the top 10% of
Task 1 synapses resulted in a Task 1 performance of 0.70 + 0.03 and Task 2 performance of 0.53
+ 0.03. Freezing the top 1% of Task 1 synapses was not sufficient to maintain Task 1
performance, thus enabling Task 2 relevant synapses to dominate the network; however, freezing
the top 10% of Task 1 synapses fully retains Task 1 performance preventing Task 2 to be
learned.
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Chapter 2, in full, is a reprint of the material as it appears in PLOS Computational Biology.
Delanois, J. E., Golden, R., Sanda, P., & Bazhenov, M. (2022). Sleep prevents catastrophic
forgetting in spiking neural networks by forming a joint synaptic weight representation. PLOS

Computational Biology, 18(11), e1010628.
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Abstract—Convolutional neural networks (CNNs) are a foun-
dational model architecture utilized to perform a wide variety
of visual tasks. On image classification tasks CNNs achieve high
performance, however model accuracy degrades quickly when
inputs are perturbed by distortions such as additive noise or
blurring. This drop in performance partly arises from incorrect
detection of local features by convolutional layers. In this work,
we develop a neuroscience-inspired unsupervised Sleep Replay
Consolidation (SRC) algorithm for improving convolutional fil-
ter’s robustness to perturbations. We demonstrate that sleep-
based optimization improves the quality of convolutional layers
by the selective modification of spatial gradients across filters. We
further show that, compared to other approaches such as fine-
tuning, a single sleep phase improves robustness across different
types of distortions in a data efficient manner.

Index Terms—cnn, convolution, sleep, generalization, robust-
ness

I. INTRODUCTION

Over the past few decades, computer science has made
remarkable advancements in the development of models ca-
pable of performing intricate visual tasks. Deep learning, in
particular, has played a pivotal role in driving this progress,
with convolutional neural networks (CNNs) emerging as a sig-
nificant breakthrough. Inspired by the structural characteristics
of the human visual system [8], CNNs owe their success to
the introduction of convolutional layers by Lecun et al. [14],
[15]. By combining convolutional and feedforward layers,
deep networks have achieved state-of-the-art performance for
classification and generative tasks [23].

However, despite their proven usefulness, convolutional
filters still suffer from significant limitations. While the human
visual system excels at accurately performing image-based
tasks, even in the presence of substantial perturbations, CNNs
trained using backpropagation-based methods are highly sen-
sitive to distortions [4]. The impressive performance of these
networks quickly degrade when models operate in real-life
applications and dynamic uncontrolled environments modify
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inputs with perturbations such as additive noise, blur, or
other distortions (e.g., lighting, image quality, background,
contrast, and perspective) [3]. This decrease in performance
could be attributed to the perturbations degrading the quality
of features that the convolutional layers are able to extract.
Since the convolutional layers are trained on unperturbed
(clean) images, they are unable to extract useful features
from distorted ones. Most existing methods for improving the
robustness of convolutional filters often involve explicit fine-
tuning on predefined sets of perturbations or data augmenta-
tions [27], [30]. However, such supervised approaches require
prior knowledge of the specific deformations or extensive
training. These techniques face challenges when limited data
is available for fine-tuning or when unforeseen and untrained
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Fig. 1: Example images from MNIST (a) and CIFAR-10 (b) shown over

distortion types (Gaussian noise (GN), Gaussian blur (GB), Salt & pepper
(SP), and Speckle (SE)) with varying magnitude. Rows determine distortion
type while columns display increasing intensity (Int.) magnitude from left to
right.



distortions are encountered in real-world scenarios, this leads
to a lack of generalization to out-of-distribution examples.

In contrast, biological systems have leveraged other mecha-
nisms to improve memory representation and increase gener-
alizability. Sleep has long been known to enhance learning
in situations with limited experience, facilitate continuous
learning, generalize knowledge acquired during wakefulness,
and enable backward and forward transfer of knowledge [2],
[11], [12], [16], [18], [28]. This functionality is prevalent and
highly stereotyped in a variety of species ranging from insects
[51, [L17], [31] to mammals [2], [18]. Two crucial compo-
nents are believed to underlie the role of sleep in memory
consolidation: the spontaneous replay of memory traces in
the absence of external input and local unsupervised synaptic
plasticity that modifies synaptic weights [22], [29]. Previous
studies have demonstrated that applying sleep-like process-
ing, Sleep Replay Consolidation (SRC), to fully connected
feedforward networks can enhance continual learning during
sequential task training [25] and improve model robustness
and generalizability [24].

‘While several other biologically inspired approaches to
enhance network generalizability to visual distortions exist,
they often suffer from increased computational cost [26],
lack dynamism [6], or require gathering expensive ncural
recordings or other hard to acquire data [7], [19]. To address
these limitations, we present a novel approach that implements
SRC in exclusively convolutional layers, thereby extending
the previous work by making SRC applicable to all segments
of the CNN architecture. Importantly, our method provides a
dynamic solution that does not increase inference computation
Ccosts.

SRC is implemented by converting the CNN to a spiking
neural network (SNN) and simulating unsupervised replay in
SNN. This involves (a) replacing the ReL.U activation function
with a Heaviside function to gain a notion of spikes, (b)
introducing input noise reflective of the training data to induce
network activity, (c) applying local Hebbian-type plasticity
rules to convolutional layers to modify synapses based on
spiking patterns. We evaluate our method using two well-
known image classification data sets, MNIST and CIFAR-10,
and incorporate standard distortions commonly encountered
in both machine learning and real-world environments. These
distortions include Gaussian blur, Additive Gaussian noise,
Salt & pepper, and Speckle, with varying intensities. Figure
1 illustrates the diverse range of distortions used for evalua-
tion. Our findings demonstrate that sleep-based optimization
enhances the structure of convolutional blocks, enabling CNNs
to improve their performance on distorted data.

A. Main contributions

« We develop an unsupervised sleep-like optimization al-
gorithm, Sleep Replay Consolidation (SRC), for convolu-
tional networks to improve robustness and generalization
to noisy inputs.
Our biologically inspired approach is computationally
efficient, does not increase inference cost, and does not
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require prior knowledge of the type of input perturba-
tion while providing improvements across different types
of distortions. In contrast. other biologically motivated
methods are costly and fine tuning approaches only
improve performance on pre-defined augmentations.

We identify that SRC modifies CNN filters through
selective gradient expansion focusing CNN attention to
the critical image features that result in improved gener-
alization,

II. METHODS
A. Data and Distortions

We tested SRC on two standard image classification data
sets, MNIST [15] and CIFARI10 [13]. MNIST consists of
60,000 28x28 monochromatic hand written digits (0-9) while
CIFAR-10 contains 60,000 32x32 color images of 10 classes
(cars, birds, ships, etc). We applied a variety of common
distortions (as used in [4], [6], [19], [26]. [27], [30]) to these
data sets and tested model performance across a variety of
intensities. Certain distortions, such as brightening / darkening,
yielded minuscule degradation in performance causing any
potential benefits to be masked; we therefore only selected
distortions that caused a significant decline in accuracy for
the baseline model. All distorted values were clamped at the
minimum and maximum pixel values to keep inputs in a
reasonable range. Our final set of distortions is detailed below:

» Gaussian blur (GB): Involves convolving the input image
with a Gaussian kernel, varying ¢ values are used to
modify intensity. This type of distortion can be introduced
when items present in the image are in motion.
Additive Gaussian noise (GN): Noise drawn from a
Gaussian distribution is added pixel-wise to the input
image.

Salt and pepper (SP): Also known as impulse noise,
randomly selects input image pixels and sets it to either
the minimum or maximum possible input value, the
frequency of pixels selected controls the intensity. This
type of input noise can arise in digital images taken by
cameras with faulty sensors.

Speckle (SE): A pixel-wise multiplicative noise where a
random value is drawn from a Gaussian distribution and
multiplied with the original pixel value to generate the
new input values. Speckle noise is commonly a result of
wave interference in images that are generated through
the emission of specific frequencies of light, such as
ultrasound and/or radar.

Visualizations of all distortions are shown in Figure 1.

B. Models

In an effort to generate interpretable results, we used
smaller, more simple models with the goal of improving trans-
parency and understandability of the underlying mechanisms.
For MNIST we used a four layer CNN consisting of two
convolutional and two feedforward layers. Both convolutional
layers leveraged 3x3 filters with a stride of one, no padding,
and a ReLU activation, each filter bank had 1/10 input



channels and 10720 output channels respectively. After each
convolution there was a maxpool with a window size and stride
of two. The feedforward layers received an input that matched
the output size of the convolutional layers (500) followed by
a hidden layer of size 64 with an output size of 10. The
hidden layer leveraged a ReLU activation function and dropout
during training with a rate of 0.5. The CIFAR model was of
a similar structure with the only differences being the number
of channels in the convolutional layers which was increased to
3/50 and 50/50 and the size of the feedforward portion of the
network receiving a 1800 dimensional vector as an input with
a 1200 dimensional hidden layer, the output was kept to 10
units. All layers present, both feedforward and convolutional,
omitted bias terms to allow for a standard conversion to a
spiking neural network [1], this did not notably impact the
overall performance of these networks. Model parameters are
summarized in Table L.

| MNIST CIFAR-10
Conv Channels 1. 10, 20 3,50, 30
Filter Size / Stride 3x3/1 3x3/1
Maxpool Size / Stride 272 272
FF Layer Dims 500, 64, 10 1800, 1200, 10
Dropout 0.5 03

TABLE I: Network parameters

C. Sleep Replay Consolidation (SRC)

In short, SRC is applied by first converting a CNN to an
SNN using a standard transformation [1], followed by simu-
lated replay, during which unsupervised synaptic modifications
occur. The altered SNN is then converted back into a CNN
where the updated weights can be used in the conventional
CNN forward pass.

In the SNN conversion, original network structure is pre-
served. A membrane potential (voltage) is simulated for each
node in the network. Voltage is comprised of a running sum of
inputs determined by presynaptic activity combined with the
input weights and is subject to decay, effectively simulating
dynamics of a leaky integrate and fire neuron. The ReLU
activation is swapped for a Heaviside function to develop
a notion of spikes. Once a neuron’s membrane potential
surpasses the given threshold, the neuron emits a spike and
the voltage is reset to 0. To ensure that activity propagated
across layers, layer wise scale factors to synaptic weights are
generated in accordance with the Data-Based Normalization
technique specified in [1] and multiplied by a hyperparameter
coefficient. These modifications are applied to convolutional
layer ncurons, successfully converting CNN to SNN, while
preserving network architecture and synaptic weight structure.

During the sleep phase, the SNN’s activity is driven by
randomly distributed Poisson spiking input with firing rates
determined by the average values of each input pixel ac-
tivation from the training data set. Hebbian style learning
rules are applied to modify the weights: a weight is increased
between two nodes when both pre- and post-synaptic nodes
are activated and a weight is decreased when the post-synaptic
node is activated but the pre-synaptic node is not. After this

Algorithm 1 : Sleep Replay Consolidation

1: procedure SLEEP(nn. I, scales. thresholds) > I is input
2 Initialize v (voltage) = 0 vectors for all neurons
3: fort+ 1toTsdo > T's - Time step duration of sleep
4 S+ 0s

5 S(1) + Convert input I to Poisson-distributed spiking activity

6 S = ForwardPass(S, v, W, scales, thresholds)

7 ‘W = BackwardPass(S, W)

8:  end for

9: end procedure

10: procedure FORWARDPASS(S, v, W, scales, threshold)

11: for I+ 2ton do t= n - number of layers
12 a 4+ scales(l — 1)

13: B3 + threshold(l)

14 o(l) = do(l) + (= W(L1—1) «S(l — 1)) & W(LI-1) - weights
15 > X - decay rate
16 1> Propagate spikes
& Reset spiking voltages

S(1); « 1% i where v(l); > 3
17: u(l); — 0V i where v(l); > 3
18:  end for
19: return S
20: end procedure
21: procedure BACKWARD PASS(S, W)
22: forl« 2tondo
23: if isConvolutionalLayer({) then

> 1 - number of layers

24: I+ getConvolutionalFilters({) > All filters in layer {
25: for f in F do - Loop over all filters
26: Ly « getFillerActivations(f) > Pre/post activations for f
27: for (I;_, 1y )in Ly do & For all input/output filters
28: S(ly_) +gelSpikes(f—). £ Presynaplic activily
29: S(lyy) —getSpikes(f+). > Postsynaptic activity
30: Wl

W(f)i; +ine Vi jwhere S(l;4); =1 & S{Iy_); =1
— {W(f),; —dec Vi,jwhere S(Iy); =1 & S{l;_); =0

W(f)is Otherwise
31 & Conv STDP
32 end for
33: end for
34: else
35: W, 1—1);;

Wl —1),;+inc ¥i,jwhereS(); =1 & S(I—1); =1
= WL L — 1), +dec Vi, j where S(0); =1 & S(I— 1), =0

WL — 1), Otherwise
36: & Linear STDP
37: end if
38:  end for
39: return W
40: end procedure
| MNIST CIFAR
No. of Time Steps (T's) 222 10
Weight Multiplier (scales coefficient) 278 46.81
Voltage Thresholds (thresholds) [4.15, 9.47] [7.00, 23.90]
Decay Rate (A) 0.99 0.94
Synaptic Increase (inc) 3871071 6.52 % 1071
Synaptic Decrease (dec) —3.13% 101 —1.98 +10~*
Dt 0.001 0.001
Max Firing Rate 328.89 64.62

TABLE II: Hyperparameters used for SRC. Corresponding variable names as
used in Algorithm 1 are within parentheses. Dt and the Max Firing Rate are
used 1o generale inpul for the sleep slage.

unsupervised sleep period has been executed, the CNN model
is restored by eliminating the simulated voltage, removing
scale factors, and restoring the original activation functions.
A pseudo code description of SRC is shown in Algorithm 1.

This approach can be directly applied to a fully connected
network (as in [25]) since it produces one-to-one mapping
from any pair of pre and post activations to the corresponding
weights. However, implementing this to convolutional layers
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Fig. 2: MNIST (a-c) and CIFAR-10 (d-g) accuracy vs distortion intensity for Gaussian Noise, Blur, Salt & Pepper. and Speckle. Lines / shaded regions
correspond 1o mean / standard deviation across (rials. Note that the application of SRC notably improves performance on distorted inputs over baseline model.

is more complicated. Because of parameter sharing, a single layers. This model was trained on clean unperturbed images
weight may take part in multiple synaptic events. Thus, based until a plateaued mean performance of roughly 95% (MNIST)
on the network activity, we have an option of updating the and 70% (CIFAR-10) accuracy on the undistorted data set.
same set of weights multiple times during a single iteration
of SRC. Our implementation therefore accumulates synaptic
updates over all activations that are associated to a given
convolutional weight for every iteration.

The SRC hyperparameters were selected through the use of
a standard python Genetic Algorithm implementation tasked
to optimize mean validation performance over the Blur and
Salt & Pepper distortions for a single trial. The optimal hyper
parameters were used across trials to ensure no overfitting
occurred, all the parameters are presented in Table II.

The baseline model was tested across a variety of distor-
tions, specifically additive Gaussian noise, Gaussian blur, Salt
& Pepper, and Speckle (Speckle noise was excluded from
MNIST as maximum intensity minimally degraded baseline
performance) with results displayed in Figure 2. There was
a direct and clear correlation between distortion intensity and
baseline model performance (Figure 2a-g blue line). Increasing
distortion intensity led to a significant drop in accuracy,
sometimes to chance (see Figure 2b,d.f for intensities (6, (.6,
0.6) respectively), as the substantial image distortions destroy
D. Experimental Design convolutional feature representations which in turn causes the

All models underwent a standard training protocol. The decision making layers to predict incorrectly.

naive MNIST / CIFAR model was trained for 50 epochs with After establishing the baseline, SRC was applied exclu-
a learning rate of 0.01 / 0.3 on the undistorted data set until  sively to the convolutional layers, as described above, and
a steady performance was reached. A binary cross entropy  performance was tested again. We found clear improvement in
loss function along with a standard stochastic gradient decent ~ overall model performance across a wide array of perturbation
optimizer was used to alter model parameters. Following intensities (see Figure 2; note that the gray line is above the
baseline training the model underwent periods of SRC and  blue line in all cases except for (e)). Particularly for larger
subsequent Feedforward Fitting (Described in Section 1II-B). distortion values, SRC was capable of improving performance
Each experiment below was repeated for 10 trials, each of 10 up to roughly 15% for MNIST (Figure 2a, difference between
trials received a unique random seed causing differences in  gray and blue) and 10% for CIFAR 10 (Figure 2g, difference
model weight initialization, training sample order, and SRC between gray and blue). Since SRC weight modifications
input noise generation. were only present in convolutional layers, the performance

improvements suggest that filter robustness was increased as

III. RESULTS a result of SRC.

A. SRC improves model performance on distorted data Overall SRC was able to improve performance across most

Our initial set of experiments sought to explore whether  distortion types. However, we found reduced generalizability
SRC was capable of improving CNN generalizability over a to the blur distortion, especially for CIFAR 10 (Figure 2e).
variety of distortions for the MNIST and CIFAR-10 data sets.  Although undesirable, it is in line with a variety of biologically
Ten trials (see Methods) were run using the baseline CNN  inspired works where the given method is not always applica-
model comprised of two convolutional and two feedforward ble to all perturbations [19], [6]. While other distortions are
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Fig. 3: Model performance on MNIST and CIFAR-10 with varying types and degrees of distortion. The unsupervised SRC phase significantly improved model
performance on distorted inputs compared Lo the baseline while other naive unsupervised approaches (Gradient Expansion) fell short. Although [ine-tuning
on distortions can enhance performance, it requires extra data and can lack broad generalization.

comprised of pixel-wise perturbations, blurring by definition
works on a greater spatial distance which makes it unique.
SRC was able to slightly improve MNIST accuracy across
greater blur intensities, suggesting that parameter modification
may improve performance for blur distortion. It is important
to note, the increase in robustness was achieved through a
completely unsupervised learning technique which had no
information about what specific types of distortions may be
used for future testing.

B. Feedforward Fitting (FFF) recovers undistorted perfor-
mance

While we found a clear improvement in performance on
heavily distorted inputs following SRC, we also observed a
drop in accuracy for minimally distorted and clean inputs
on the order of 1.5% and 10% for MNIST and CIFAR-10
respectively (Figure 2a-g gray below blue for small distortion
intensities). Although there may be circumstances where a
general model that performs across a wide array of distortions
is preferable to a model that performs well narrowly on
clean inputs, clearly conserving undistorted performance is
desirable, We hypothesised the drop in clean performance
may result from a “miss-match” between convolutional and
feedforward layers since only convolutional layers were mod-
ified by SRC. To test this, an additional training stage was
implemented referred to below as Feedforward Fitting (FFF).
Here the feedforward head of the network undergoes minimal
training on the undistorted training data set; labels along with
features extracted by the frozen convolutional weights are used
to perform backpropagation on the feedforward layers only.
This process thereby adjusts the decision making head of the
network to the newly developed feature extractors formed after
SRC.

FFF was applied until training set performance was satu-
rated which took 1/ 5 epochs with a learning rate of 0.01 /0.1
for MNIST / CIFAR. This regained lost performance on the
minimally distorted data sets (Figure 2a-g, note orange line
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near blue line for low distortion values) while significantly
maintaining the performance gained for higher distortions
(Figure 2a-g orange line near gray line for higher distortion
values).

C. Fine-tuning Comparisons

The classic machine learning approach to gain model perfor-
mance on new data distributions is fine-tuning (FT). Although
this is an effective paradigm, it requires foresight of specific
potential data perturbations and additional time to train the
model. Nevertheless, it represents an ideal accuracy and is
used as a benchmark. To compare our unsupervised SRC
to this standard supervised method, we developed fine-tuned
models each specializing in a specific distortion with one
model specializing on all distortions. These fine-tuned models
were first initialized using weights from the model trained on
undistorted data. They then underwent 10 additional epochs
of training (with learning rates of 0.05 / 0.15 for MNIST /
CIFAR-10) using the specialized data set comprised of the
undistorted data combined with varying levels of distortion
from their expertise. The average accuracy across 10 trials for
the fine-tuned models along with baseline, SRC, and SRC +
FFF models is presented in Figure 3.

As anticipated, each fine-tuned network demonstrated out-
standing performance on their respective perturbation, estab-
lishing a theoretical performance ceiling for these models
on the corresponding distortions (Figure 3). We intuitively
predicted fine-tuning on a specific distortion would lead to
improved performance on that corresponding perturbation
while showing no significant increase, or even a decline, in
performance on other distortions. This pattern was evident
for the MNIST model fine-tuned on blur which achieved
optimal blur performance ranging from 96% - 76% across
corresponding blur intensities 2 to 6, while performance on
different distortions was below the baseline (Figure 3 left).
Interestingly, when the MNIST model was fine-tuned on GN
or SP, we observed a remarkable degree of transfer learning



to other distortions; all fine-tuned models for CIFAR-10 also
demonstrated this high degree of transfer (Figure 3 right).
The reason behind substantial transfer learning in these ex-
periments was not immediately clear as other studies have
suggested that this should not typically be the case [10].
While a certain degree of transfer learning between similar
distortions might be expected, such as GN and SP (refer to
Figure 1 for visualizations), the transfer between dissimilar
distortions could be attributed to the simplicity of our data
sets or the small size of our models which may act as a form
of regularization.

Overall we found the fine-tuned models to be top performers
in their respective domains, with the model fine-tuned on all
distortions achieving the highest overall average accuracy. We
also saw transfer learning proportional to degree of similarity
between the trained and tested distortion types. SRC was
able to outperform fine-tuned models on untrained distortions
where little transfer learning was observed. When a high
degree of transfer learning was present, the fine-tuned models
outperformed SRC (e.g., fine-tuning on SP, GN and SE led to
higher performance compare to SRC or SRC + FFF across
distortions). However, it is important to note that the fine
tuned models required a significantly higher degree of training.
Specialized models were trained for an additional 10 epochs on
a fine-tuning data set that contained seven times the number of
training examples as in the original training set (one partition
undistorted and 6 partitions of varying degrees of distortions).
In contrast, SRC was able to increase generalizability with no
additional data, highlighting the fact that SRC may also be
a more efficient approach to increase model robustness when
specifics of anticipated distortions are unknown.

D. Gradient Expansion

To gain insight as to why SRC is capable of improving
model performance, we performed a weight analysis on the
convolutional filters. Examining the spatial gradient of convo-
lutional filters is often used as a metric for filter quality [9].
[20], by inspecting the quality of filters across all convolutional
blocks in the network we can determine the quality of the
CNN. We developed a measure that is computed by simply
taking the pixel-wise spatial gradient (for all filters in a given
layer) and fitting a Gaussian probability distribution to their
values, thereby obtaining a probabilistic representation for the
filter gradients in each convolutional layer. We can examine
the properties of this distribution, for instance the variance, to
understand the estimated quality of convolutional blocks. A

| Baseline Baseline + SRC  Bascline + GradExp
MNIST (C1) | 7.21 %1072 1.47 % 1071 2724 1071
MNIST (C2) | 1.06 % 10~2 4.36 % 102 4.18 ¥ 1072
CIRAR (Cl) | 1.48% 101 171 %101 1.83% 10~ 1
CIFAR (C2) 9.75+ 1073 1.04 + 10~ 1.03 %102

TABLE III: The mean standard deviation of spatial gradient variance across
models. C1 and C2 refer to the results for the first and second convolution
layer, respectively. We observe that both the SRC and GradExp models
increase variance of the spatial gradient, however these changes are accom-
panied by a performance increase only in the SRC model.
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narrow distribution would imply many repeated filters while a
wider distribution would suggest a large variety of filters - this
variability could enable rich feature extraction and therefore
be beneficial for classification.

We noted that sleep increases the variance of the convolu-
tional filter’s spatial gradient distribution across layers (com-
pare first two columns in Table II[). This can be interpreted
as SRC producing more diverse and robust feature extractors
through local activation patterns within the network and offers
a possible explanation as to why sleep-like replay is capable
of improving model performance across distortions.

| Baseline / SRC  GradExp / SRC

MNIST (CI) | 14984 %1071 3.1373% 1072
MNIST (C2) | 3.0821 %10~  7.65754 103
CIRAR (C1) | 6.4440+107%  2,8431% 10~
CIFAR (C2) | 87511%10°% 25147+ 1075

TABLE IV: KL divergence values between the baseline & SRC models
(left column), and the Gradient Expansion (GradExp) & SRC models (right
column). CI and C2 refer to resulis for the first and second convolution layer
respectively. Note that distributions on the right are much more similar than
distributions on the left, displaying that the spatial gradient distributions of
SRC and GradExp are similar - while both being different from the baseline.

To test if simply increasing the variance of filter spatial gra-
dient magnitudes would increase performance, we artificially
expanded the spatial gradients of the convolutional filters from
the baseline model to approximate distribution of those in the
SRC model (compare columns 1 and 3 in Table IIT). Thus, we
choose a set of hyperparameters {cy, ..., cr,} (see Table V for
selected values), and increase the absolute value of all filter
elements by that amount (Eq. 1). To account for layer specific
weight statistics, we choose different a; values for each layer
to approximate changes observed following SRC:
W(I) + oy, ifW(I)=0
W(l) — ay, otherwise

To ensure that these generated Gradient Expansion (Grad-
Exp) models have different spatial gradient distributions from
our baseline model yet are similar to SRC models, we
measured the KL divergence of the convolutional filter’s
spatial gradient distributions for baseline vs. SRC and SRC
vs. GradExp models (Table IV). We found a relatively high KL
divergence between baseline and SRC (left column), signifying
SRC is meaningfully modifying filters, and a relatively low
divergence between SRC and GradExp models (right column)
thereby verifying that our artificially generated spatial gradi-
ents are statistically similar to those achieved through SRC.

Two versions of the gradient expanded model were tested
across distortion intensities for both MNIST and CIFAR-10.
The first expanded convolutional filter gradients exclusively,
the second applied Feedforward Fitting (FFF) to the network
head (utilizing the same hyperparameters described in Section
I11-B) following filter gradient expansion to allow the decision
layers to acclimate to the new feature extractors. Average
MNIST and CIFAR-10 accuracy of these models across 10
trials is shown in Figure 3. Both variants of this model
show no improvement over baseline (less than 1%) on any

wi(il) = (n
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Fig. 4: Grad-CAM visualizations for MNIST (a) and CIFAR-10 (b) that display SRC improves attention quality over baseline model.

MNIST, Trial 1 - 10

(1)) [0.700.21 0.32 0.11 043 0.31 0.34 0.34 0.19 0.11 ]

(€2) [ 0.11 0.09 0.09 0.10 0.08 0.14 0.08 0.07 0.12 0.11 ]
CIFAR, Trial 1 - 10

(C1) | [0.0350.050 0.050 0.080 0.070 0.060 0.075 0.060 0.065 0.040 ]

(€C2) | [0.005 0.005 0.004 0.003 0.003 0.005 0.005 0.004 0.004 0.004 ]

TABLE V: Hyperparameters () for Gradient Expansion as described in
Section II1-D. We list values used for each of the 10 random trials. C1 and
C2 refer to results for the first and second convolution layer respectively.

distortion intensity for either data set. This demonstrates that
a general increase of the filter gradients is not sufficient
to create robust filters resistant to input perturbations. This
further suggests that SRC enables selective increases in the
magnitude of convolutional spatial gradients. Additionally, the
fact that applying FFF following gradient expansion does not
increase performance shows that further feedforward training
on equivalent quality convolutional filters is futile. Only if
the feedforward head is allowed to train on higher quality
convolutional blocks, like the ones developed in SRC, is there
an improvement in distorted and undistorted performance.

E. Model attention and Grad-CAM analysis

To gain a deeper qualitative and quantitative understanding
of how SRC impacts the network, analysis was developed
using Gradient-weighted Class Activation Mapping (Grad-
CAM) [21]. Grad-CAM is a visualization technique that
creates an attention map for a given input to identify what the
network focuses on. It operates by supplying an image as input
and performing a forward pass followed by the calculation
of gradients with respect to a given output label. Gradient
values are then used to weight final convolutional activations
(which maintain their spatial relevance), the intuition being
more important features will have higher gradient values. This
approach develops a notion of what input regions the network
is attending to.

Generally speaking, we were able to observe improvements
in attention as a result of SRC, some of the best examples
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from both MNIST and CIFAR-10 are displayed in Figure
4 panels a and b, respectively. The results were particularly
dramatic for MNIST. Given the original input image (Figure
4a, 1°* and 4'* column), the baseline model often attends
to seemingly random pixels even on clear images (Figure 4a,
1%' row, 2" column). However, after SRC, model attention
overlapped with the original input image significantly better
(Figure 4a 3™ and 6" column). Importantly, SRC significantly
enhanced attention on perturbed images. In the presence of
noise the baseline model would often attend to noisy pixels
or attention would be disrupted away from the original digit.
Following SRC, the model was able to cut through the noise
and the attention heat map took the shape of the original
digit, implying the network is focusing on relevant features
as opposed to irrelevant noise. A similar result was obtained
for CIFAR-10 (Figure 4b) although the improvement was
less consistent, some images displayed no improvement while
others displayed clear benefit.

In an attempt to quantify attention improvements, we
constructed a rudimentary metric that was compatible with
the MNIST data set. The metric consisted of developing a
pixel wise mask of the original digit (1’s were assigned to
input locations with nonzero pixel values and (’s everywhere
else) followed by a cosine similarity between the mask and
the attention vector output by Grad-CAM. Values close to
I indicate a large overlap between the clean input image
and the network’s attention while values near 0 signify a
misplaced network focus. This metric was averaged across
all trials for every distortion / intensity combination for each
model with the results displayed in Table VI. The overlap of
attention and the original undistorted input digit is significantly
higher for the model that underwent SRC when compared to
the baseline or GradExp models. This implies the nontrivial
selective filter gradient enhancement provided by SRC was
able to improve convolutional filter quality and focus, even
in the presence of meaningful perturbation; thereby increasing
model performance.



Model | Baseline ~ SRC  SRC + FFF  Grad Exp  Grad Exp + FFF
Attention
Overlap 0.145 0.229 0.193 0.146 0.150

TABLE VI: Grad-CAM Attention Overlap Metric. It can be seen that the
SRC increases attention overlap with the ground truth image over baseline.
Gradient Expansion models also increase accurate attention but without the
performance benelit seen with SRC.

IV. CONCLUSION

In this work we developed a biologically inspired sleep-
like optimization stage, termed the Sleep Replay Consolidation
(SRC) algorithm, and showed it is compatible with CNNs
and capable of improving convolutional filter quality thereby
increasing model performance on distorted data sets. We
examined SRC on standard image classification data sets,
MNIST and CIFAR-10, and found that it substantially im-
proves performance for moderate to high levels of distortion
intensity. We further identified mechanisms of improvement as
related to non-linear selective expansion of the convolutional
filter’s spatial gradient distribution across layers. Our study,
combined with previous work [24], [25], suggests that sleep-
like unsupervised replay may provide multiple benefits to
different classes of ANNs, including improving continual
learning, generalization and adversarial robustness.
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Conclusion

In conclusion, this dissertation offers advancements in the interdisciplinary understanding
of neuroscience and artificial intelligence. It demonstrates how the incorporation of sleep and
sleep-like stages can enhance memory consolidation, representation, and robustness across
neural networks with varying degrees of biological realism. Through biophysical modeling, this
research proposes potential sleep-induced synaptic dynamics that could be crucial for memory
consolidation in living organisms. When analogous mechanisms were applied to artificial spiking
neural networks, the observed memory enhancement indicated the benefits of sleep extend to
artificial contexts as well. Furthermore, incorporating sleep-like stages in artificial neural
networks was shown to enhance synaptic memories and feature representations, leading to
improved model performance. This work not only elucidates potential intricate mechanisms
underlying sleep and memory consolidation in biological brains but also reconceptualizes the
relationship between artificial neural networks and sleep-like processes. These advancements
pave the way for further understanding living brains and developing more robust and brain-like
artificial intelligence systems, thereby helping to bridge the gap between biological and artificial

intelligence.
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