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Abstract

BACKGROUND—Gender is increasingly recognized as an important influence on brain 

development, disease susceptibility, and response to pharmacologic/rehabilitative treatments. In 

regenerative medicine, it remains entirely unknown whether there is an interaction between 

transplanted stem cells and host gender that might bias efficacy and safety in some patients but not 

others.

METHODS—We examined the role of recipient gender in a neonatal rat hypoxia-ischemic injury 

(HII) model, treated with human female neural stem cells (hNSCs), labeled with 

superparamagnetic iron-oxide (SPIO) particles implanted into the contralateral cerebral ventricle. 

We monitored HII evolution (by MRI, histopathology, behavioral testing) and hNSC fate 

(migration, replication, viability).

RESULTS—Recipient gender after implantation did not influence the volume or location of 

ischemic injury (1, 30, or 90d) or behavior (90d). SPIO labeling did not influence HII evolution. 

Implantation had its greatest benefit on mild/moderate injuries which remained stable rather than 

increasing as in severe HII as is the natural history for such lesions.

CONCLUSIONS—Our results suggest that hNSC treatment (including using hNSCs that are pre-

labeled with iron to allow tracking in real time by MRI) would be equally safe and effective for 

male and female human newborns with mild-to-moderate HII.
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INTRODUCTION

Gender is increasingly recognized to play an important role in adult and pediatric neurologic 

disease (1). The relation to outcome is complex as it is associated with at least four primary 

variables: 1) effects on brain development (2); 2) specific biological susceptibility to disease 

(3–6); 3) gender-dependent ability of the nervous system to respond to pharmacologic or 

rehabilitative treatments (7–11); and 4) gender of donor cells and their interactions with host 

tissues in individuals undergoing transplantation (12, 13).

Accumulating clinical and translational evidence suggests that the male neonatal brain is 

more susceptible to HII (1, 5, 6). While the underlying mechanisms remain elusive, it is 

likely that gonadal hormones and differences in gender-dependent gene expression modulate 

many of the cellular reactions. Similarly, compelling data suggest that the female neonatal 

brain responds better to HII neuroprotective treatments (1, 5, 6, 9).

The importance of gender effects from both donor cells and on host tissues is recognized in 

the field of transplantation (12–14) and in view of the strong interest in pursuing stem cell 

treatment for neonatal HII (15, 16), we examined the effect of host gender on the outcome of 

such treatment. Our study evaluated the role of recipient gender in a rat pup model of 

neonatal HII after hNSC implantation. Using a model of unilateral permanent carotid 

occlusion followed by 8% hypoxia in both male and female rat pups, we implanted female 

hNSCs, labeled with and without superparamagnetic iron-oxide (SPIO) particles, into the 

lateral ventricle contralateral to the injury and analyzed 1) progression of HII and 2) 

therapeutic activity and fate of implanted hNSCs, including replication and viability. HII 

progression was determined by (a) serial high field MRI; (b) neurological testing that 

measured motor impairment; (c) behavioral testing that assessed functional outcome; and (d) 

histology and immunohistochemistry.

METHODS

All experimental protocols complied with federal and Loma Linda University Animal 

Health and Safety Committee regulations.

Animal Model of Hypoxic-Ischemic Injury (HII)

HII of the left hemisphere resulted in 20 male and 25 female 10-day-old Sprague-Dawley rat 

pups (Harlan, Livermore, CA) surviving as previously described (17). Using an MRI-based 

rat pup scoring system (RPSS), we categorized injuries as mild (0.25–0.9; n=9), moderate 

(1.0–2.49, n=29) or severe (>2.5, n=7) (Table 1) (18). We divided groups into those treated 

with SPIO-labeled (n=19) vs. unlabeled (n=26) hNSCs.

Neurological Testing

Neurological testing (circling, C-shaped lateral bending, limb flexion, tremors, convulsions, 

righting reflexes, and negative geotaxis), as in our previous studies (17), was done daily 

(P10–13) to assess functional motor impairment. Summed scores ranged from 0–60 (60 = 

most impaired).
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Human Neural Stem Cells (hNSC)

We used hNSCs that are designated as “HFB 2050” cells, a stable line of hNSCs isolated 

from the ventricular zone of a single female human fetal cadaver that had been propagated 

with mitogens under defined conditions (19, 20). These well characterized, genomically and 

phenotypically stable hNSCs have been used safely and effectively for more than 13 years in 

rodent and primate models. Cultured hNSCs were labeled with SPIO particles in a manner 

virtually identical to that previously used with mouse NSCs (17). Freshly trypsinized hNSCs 

were incubated for 24 hours with Feridex (11.2 μg/ml) prior to implantation.

hNSCs were implanted into the contralateral (right) lateral ventricle 3d after HII, as 

previously described (17). Rat pups were anesthetized with 3% Isoflurane in 100% 02. A 

Hamilton syringe was inserted through a burr hole and into the brain parenchyma to the 

ventricle (2mm, +20°) and a 5 μl suspension of ~250,000 hNSCs was infused (1 μl/min for 5 

min). The needle was removed after 5 minutes, the burr hole closed with bone wax, and the 

scalp sutured.

Neuroimaging and Analysis

T2-weighted (T2WI) and diffusion weighted imaging (DWI) were performed at 1, 30 and 

90d post-injury as reported previously(17) on a Bruker Avance 11.7 T MRI (1d) and a 

larger-bore Bruker 4.7 T machine (30, 90d). Data were analyzed using Hierarchal Region 

Splitting (HRS) to rapidly and semi-automatically identify regions of lesions (21). Analyses 

included HII volume, total brain volume with HII volumes expressed as a percent of total 

brain volume.

We employed the same MRI and computational methods as reported previously to estimate 

volumes non-invasively of SPIO-labeled NSCs (17, 22). Location of hNSCs was not 

detectable in pups implanted with unlabeled hNSCs. Although MRI cannot necessarily 

differentiate viable from non-viable cells (23), serial increases in NSC volume likely 

represent viable cell replication, an algorithm which we previously published (17). hNSC 

volumes were normalized to brain volume and averaged across all animals for each group 

(gender and time).

Behavioral Testing

A wide variety of behavioral domains were assessed at 2.5 months similar to that previously 

reported (17, 18). Tests included measures of activity (open field), learning and memory 

(cued and spatial water maze), anxiety (zero maze), and sensorimotor coordination (rotarod).

Histology/Immunohistochemistry

Following 90d, animals were euthanized, perfused transcardially and their brains removed 

and post-fixed. Serial 30μm sections (every 10th section) were stained (0.1% cresyl violet 

acetate). Prussian blue staining for SPIO containing cells was performed (17).

Free-floating sections were blocked with 10% normal goat serum (NGS; Invitrogen, 

Carlsbad, CA) for 10 min. Primary antibodies were diluted in 0.1M PBS containing 10% 

NGS and 0.1% triton x-100 and used at the following concentrations: rabbit anti-human glial 
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fibrillary acidic protein 1:200 (GFAP; Abcam, Cambridge, MA); mouse anti-human nestin 

1:100 (Abcam); mouse anti-human cyclic nucleotide phosphodiesterase 1:100 (CNPase; 

Millipore, Temecula, CA); mouse anti-human nuclei 1:100 (Acris Antibodies, Germany); 

and mouse anti-rat GFAP 1:300 (Sigma-Aldrich, St Louis, MO). Secondary antibodies 

(1:1000; Invitrogen) included: goat anti-rabbit AlexaFluor (488 or 568 nm) or goat anti-

mouse AlexaFluor (488 or 555 nm). Sections were air-dried and coverslipped with 

VectaShield anti-fade mounting media (Vector Labs, Burlingame, CA). Slides were stored 

at 4°C and immunolabeled slides were scanned on a confocal microscope (BioRad 1024). Z-

series of 10–12 images were collected by stepping through ~1μm sections for each tissue.

Statistics

Data analyses used an α-level of 0.05 to define significance. In our behavioral tests, to avoid 

violating statistical assumptions regarding compound symmetry and sphericity, the reported 

values for every repeated-measures analysis reflect the conservative Huynh-Feldt correction 

to the degrees of freedom (SPSS, Armonk, NY). Significant main and interaction effects 

were explored using Scheffe’s post hoc tests. General activity levels and cued spatial 

learning were analyzed with repeated-measures ANOVAs, while swim speed and 

sensorimotor coordination analyses were performed using one-way ANOVAs. MRI data 

significance was tested using one-way or two-way ANOVAs followed by appropriate post 

hoc testing (SigmaPlot V11, Northampton, MA).

RESULTS

Animal weights and neurological scores

No significant weight differences between groups were found, although post-HII weights 

were always lower for females. Compared to mildly-injured animals at 90d post HII (323 ± 

26gm), moderately-injured animals were 3.45% lighter (312 ± 13gm) and severely-injured 

animals were 18.65% lighter (272 ± 24gm). Weights on days 1–4 post-HII were negatively 

correlated with MRI lesion volumes at 1, 30 and 90 days post-HII (lower weight associated 

with larger lesion; r’s=−0.3 to −0.54; p’s<0.05). No overall differences (i.e., at 90d) in 

mortality rates were observed for male (60%) compared to female (50%) rat pups (50 males, 

50 females).

Total neurological scores and righting reflex times were significantly different between 

injury severity groups at 1d but not at 2d post HII. The righting reflex time at 1d post HII 

correlated with weight at 2d post HII (p<0.05). At 48 hrs, righting took 10% and 17% longer 

in moderately and severely injured as compared to mildly injured animals. In moderately 

injured animals, there were no neurological or behavioral differences based on gender or 

iron-labeling.

MRI–based lesion and hNSC volumes

We found no differences in the volume or location of ischemic brain injury on MR images 

for male vs. female pups or labeled vs. unlabeled hNSCs (Figure 1A). HRS lesion volumes 

serially increased for all severities (classified by RPSS; Figure 2), particularly in severely 

injured animals (Figures 1B, 3C), as we have previously established is the natural history of 
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HII lesions (17). Female pups had smaller HII volumes than male pups (Figure 3B, D) but 

were not significantly different.

Transplanted hNSCs were found in the ipsilateral ventricle, on the side of implantation, at 1 

day post-implantation and were detected on the contralateral side (adjacent to the HII lesion) 

at 30 and 90 days (Figures.1B, 4B), suggesting extensive migration and “pathotropism”. 3D 

reconstructions confirmed the unilateral nature of the HII lesion and the bilateral distribution 

of the hNSCs in animals from all severity groups (Figure 1A, B). We have previously 

published an MRI algorithm by which hNSC “volume” can be translated into the degree of 

hNSC migration and proliferation (17).

Rat pup severity scores (RPSS) and lesion volumes

RPSS scores were significantly different between groups (p<0.001) (Table 1). Gender and 

hNSC labeling did not affect RPSS (Table 2). There was a significant (p<0.001) correlation 

between RPSS and lesion volume at 1d, but the correlation was weaker at 30 and 90d 

(Figure 2).

Lesion location and size

The distribution, location and size of the HII lesions were similar among moderately injured 

animals on MRI and confirmed by cresyl violet histology (Figure 3A). MR images and 

histologically stained brains at 90d were matched in lesion size and morphology. Neither 

MRI nor histological analysis showed an effect of gender or iron-labeling on HII lesion 

volumes at 90d (Figure 3A, B). In contrast to untreated animals, lesion volumes in hNSC-

transplanted rats were stable at 1, 30, and 90d in mildly (0.7%, 0.9%, and 0.6% of total brain 

volume) and moderately (5.4%, 5.6%, and 7.5%) injured animals. Despite hNSC 

implantation, lesion volume significantly increased from 1d to 30d to 90d in severely injured 

animals (12.7%, 19.4%, and 25.2%) (Figure 3C).

hNSC volumes and viability

We found greater hNSC volumes in males than in females (p<0.001) at 30d, when these 

measures peaked in both groups, but not at 1 or 90d (Figure 4A). There was a significant 

(p<0.001) increase in hNSC volume over time on the implanted uninjured side but not on 

the injury side (Figure 4B). No significant gender effect was seen between hNSC volumes 

and HII lesion volume at 90d (Figure 4C). No cell overgrowth, tumor formation, 

deformation, or abnormalities were noted.

Immunohistochemistry

Our immunohistological data corroborated our MRI findings that neither gender nor hNSC 

labeling status altered ischemic injury or hNSC volumes. Human GFAP immunoreactive 

(hGFAP) cells exhibiting classical astrocyte morphology were consistently found in the 

striatum (Figure 5A1), with the most robust expression observed along the third ventricle 

adjacent to the ventral hypothalamus (Figure 5A2), exhibiting morphology similar to radial 

glial cells often proximal to the ventricle (Figure 5A2, expanded).

Ashwal et al. Page 5

Pediatr Res. Author manuscript; available in PMC 2015 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Human nestin (hNestin), a marker of undifferentiated neural progenitors, in donor-derived 

cells located in the hemisphere contralateral to the injury was typical of intermediate 

filament proteins (Figure 5B1). hNestin expression was abundant in the lining of the 

ventricles (a region lined by a NSC germinal zone) and next to the lesion (Figure 5B2, 

expanded), but absent within the parenchyma. The hNestin expression within cells along the 

ventricular lining was reminiscent of tangles arising from a central core, as seen in some 

glial morphologies. However, hNestin and hGFAP did not colocalize in the parenchyma or 

along the ventricles (Figure 5C1–3).

Rodent GFAP staining (i.e., marking host cells) was prominent next to the lesion and within 

the tissue parenchyma (Figure 5D1, expanded); hGFAP was expressed, within glial 

processes throughout the parenchyma (Figure 5D2, expanded). hGFAP somata were 

consistently found in or near the corpus callosum (Figure 5C2), ipsilesional cortex (Figure 

5D2), and striatum (Figure 5A1). hGFAP labeled astrocytes (Figure 5D3) were found 

embedded adjacent to native rat astrocytes (Figure 5D2, expanded) but were never found to 

colocalize with these native cells (Figure 5D3, expanded).

Behavioral outcomes

Behavioral assessment just prior to the final 90d time point found no significant differences 

based on gender or hNSC labeling (Figure 6). Neither gender nor labeling had any effects on 

anxiety-like behaviors in the elevated zero maze, although females spent more time in the 

enclosed arms, suggesting some increased anxiety (p<0.02; data not shown).

Mildly injured animals exhibited superior spatial memory during water maze probe trials 

compared to moderately and severely injured animals (p<0.007), independent of gender or 

hNSC labeling status (Figure 6A). When labeling and gender were pooled for a global 

analysis of lesion size on behavior, we found that mild and moderate HII animals habituated 

to the open field with significantly decreased exploratory behavior during their second 

exposure to the open field, whereas severely injured animals did not (p<0.04) (Figure 6B). 

Thus, behavioral evaluation discriminated between injury severities but not gender or hNSC 

labeling status.

DISCUSSION

Our study revealed three clinically relevant and important findings: 1) the gender of an HII 

recipient of an hNSC implant does not affect the volume or location of ischemic injury at 1–

90d post-injury or ultimate behavioral outcomes; 2) hNSC iron labeling did not affect HII 

volume or behavior; and 3) lesion volumes in pups receiving hNSCs remained stable and did 

not increase in size in mild and moderate severity groups but such a beneficial effect was not 

seen in the severely injured group where lesion volume continued to increase. The reparative 

efficacy of implanted hNSC compared to no implantation control groups has been 

previously discussed by us and others in published works (24, 25). The focus of our current 

study was to evaluate whether host gender may impact that efficacy in the neonatal brain (as 

interventions often do in adult stroke) and to assess the risk of toxicity to the developing 

brain from the iron-labeling required to track implanted stem cells by MRI as will be 

required in any clinical trial addressing perinatal HIE.
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Gender effects

Gender has proven important in four broad areas affecting the developing nervous system, 

prompting our studies. Gender effects on brain development have been reviewed, with the 

suggestion that anatomical differences may, explain differences in disease occurrence and 

susceptibility (2). This has been noted in males with a higher incidence of cerebral palsy and 

neurodevelopmental disorders (1).

Increasingly, the significance of gender-specific biological susceptibility to disease is being 

recognized in translational studies (3, 5, 7, 26, 27). Although endogenous estrogen 

production is not initiated before P12 in rodents, the role of maternal gonadal hormones and 

neonatal metabolism of estrogens and androgens, suggest an important role in gender 

susceptibility (5–7). Neurons derived from female brains predominantly use the cytochrome 

caspase 3-dependent apoptotic pathway whereas male neurons tend to use caspase 

independent apoptotic pathways (28). Mechanisms involving mitochondrial resistance to 

injury/recovery also might contribute (26, 29). Clinical studies (e.g., stroke and preterm 

neonatal white matter injury) also have demonstrated gender differences with greater HII in 

males (1, 27); although gender effects on perinatal brain injury remains less certain (7).

Gender-dependent brain responses to treatment have been observed in several studies of 

perinatal brain injury therapeutics. For example, female rat pups respond better to 

erythropoietin (7), hypothermia or copper/zinc superoxide dismutase (30); caspase inhibitors 

(e.g., 2-Iminobiotin) (8, 9); 17β-estradiol (5); and ‘rehabilitative programs’ (11). To a lesser 

degree, improved therapeutic responses in male rodents after neonatal HII have been 

reported (10). In clinical studies Indomethacin reduced the incidence of intraventricular and 

parenchymal hemorrhage (associated with higher childhood verbal scores) in very low birth 

weight boys compared to girls (31). Thus, we felt it critical to ascertain whether such 

differences extended to stem cell-mediated interventions. Our data suggest that they do not – 

an observation heretofore unexplored in the field of perinatal HII treated with stem cells of 

any type. We observed no gender significant differences in the severity of injury, in whole 

body animal weights over time, or in 90d mortality. Implicit in our findings is the suggestion 

that matching the gender of the donor hNSCs to the gender of the recipient is not critical 

(12–14). The exhaustively-characterized hNSCs we employed in these studies was derived 

from a female fetus yet performed equally well in male and female recipient rodent brains. 

The absence of gender effects is clinically relevant, as our data suggest that if hNSC 

transplantation trials in human newborns begin, gender need not be considered in candidate 

screening.

Iron labeling and HII volume/behavior

Iron, the most abundant metal ion in the brain, is important for CNS development and is 

found in high levels within the globus pallidus and striatum, regions frequently affected by 

HII (32, 33). Iron content/distribution in the adult brain is largely established in the neonatal 

period (32). Iron is a cofactor in numerous processes including oxidative metabolism, free 

radical formation and synthesis of nucleotides, proteins, and myelin. Iron chelation in 

immature animals reduces lesion size and improves motor/behavioral activity (32). 

Ashwal et al. Page 7

Pediatr Res. Author manuscript; available in PMC 2015 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conversely, increasing free iron increases superoxide production and impairs memory, 

behavior; and white matter damage (34).

We found no evidence that SPIO labeling of hNSCs altered HII volume (Figure 3B, D) or 

behavior. Our dose of Feridex resulted in an approximate 85% labeling efficiency (17), 

similar to others, but there are considerable variations (35, 36). To our knowledge, our 

findings are the first to demonstrate that iron labeling of stem cells does not increase 

ischemic injury (23, 36). One previous study demonstrated that intracerebral administration 

of iron oxide into normal adult rat brain did not result in neuropathological abnormalities 

(37). This observation is consistent with our previous study in which iron-labeled murine 

NSCs migrated rapidly and survived long term (>1 year) (17). It is also consistent with other 

reports that, for the most part, SPIO labeling imparts virtually no adverse effects on stem 

cell viability and function in vivo at currently used labeling doses (23, 36).

hNSCs effective only in mild/moderate but not in severe HII

Although the primary aim of this study was to examine gender effects, an incidental, yet 

important, observation was that lesion volumes in pups receiving hNSCs did not increase 

over the 90d observation period in the mild and moderate severity groups (countering the 

natural history of such lesions) but were unable to blunt the increase of lesion volume in the 

severe injury group (Figure 3C). This result is consistent with the observations of the effects 

of therapeutic hypothermia in term newborns (38) and in rodent models (39). The likely 

explanation for this finding is that the primary therapeutic action of our undifferentiated and 

non-genetically manipulated hNSCs is neuroprotection, and that severe HII is not simply 

quantitatively different from mild/moderate HII but is also qualitatively different in that host 

cell death happens quickly and extensively so that significant neuroprotection is not feasible. 

The hope, however, will be that, because of their unique properties (40), including being 

genetically-modified to express additional factors (e.g., anti-apoptotic) and/or to be layered 

upon biomaterials and/or to be pre-differentiated down particular neural lineages (e.g., 

bridging interneurons), that stem cells will nevertheless ultimately offer new therapeutic 

approaches to all grades of HII. While additional studies are required to confirm and extend 

these new findings, we provide data suggesting that male and female newborns with HII 

have an equal potential to benefit from treatment with hNSCs.
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Figure 1. Neither gender nor labeling status of hNSC alters lesion volumes
A) No significant effects were observed at any time point when lesion volume was assessed 

for gender (male vs. female) or for whether hNSCs were SPIO labeled/unlabeled. 3D lesion 

volume reconstruction (90d) illustrates this lack gender or labeling status. B) HRS was used 

to extract HII volumes from T2WI (same male/labeled animal shown in panel A, bottom). 

hNSC volumes were similarly extracted. Reconstructions show the extent of the lesion (red) 

and hNSC volumes (blue). (X indicates lesion)
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Figure 2. Manual RPSS and semi-automated HRS produce comparable lesion volumes
RPSS at 1d post-implantation categorized animals based on injury severity. HRS correlated 

well with the RPSS method (R2: 1d = 0.813, 30d = 0.550, 90d = 0.543). (● HRS 1d, ○ HRS 

30d, ▼ HRS 90d)
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Figure 3. Lesion volumes are not influenced by gender or hNSC labeling
A) At 90d post HII T2WI lesions (hyperintensities, X) appeared similar across all gender 

and implant groups. Cresyl violet post-mortem histology (lower panel) showed similar 

lesion size to T2WI (upper panel). Cystic lesions (X) were similar between gender and 

hNSC labeled animals; B) Lesion volumes are not altered by gender or labeling; C) Lesion 

volume evolution over time did not change in mildly injured animals, but there was an 

increase in lesion volume in moderate and severe HII injury groups (see text). Across all 

groups there was a significant difference between severity groups at 1 and 90d (p=0.05). D) 

No significant differences were found in lesion volumes over the 90d experimental period 

by gender or labeling. (Comparison of gender, labeling status and lesion volume, p=0.684) 

(white bar, M Unlabeled, black bar, F Unlabeled, gray bar, M SPIO; hatched bar, F SPIO)
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Figure 4. Labeled hNSCs had no effect on gender or lesion volumes in moderate HII
A) There were no significant differences between hNSC volumes extracted from MR images 

neither between males (●) or females (□) nor between time points (1, 30, 90d; p= 0.099). 

However, a highly significant difference in hNSC volumes was found at 30d (* p= 0.00005) 

compared to 1 or 90d post HII. B) We also observed a significant difference in hNSC 

volumes between the implanted side (left, ●) and the hNSC volumes observed on MRI on 

the injury side (right; □, *p=0.0006), but no differences were seen between males and 

females (p=0.172). C) At 30d post HII, male and female correlation plots of hNSC 

compared to HII lesion volumes did not reveal any significant interactions (males: □, 

R2=0.41, females: ●, R2=0.44). These results further confirmed that iron-labeling of hNSC 

was not influenced by gender resulting in similar lesion volumes in each group over time. 
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However, when male and female cohorts were combined, a significant correlation (dotted 

line, R=0.585, p=0.046) was found demonstrating that increased hNSC volumes were 

associated with smaller HII lesion volumes, irrespective of gender.
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Figure 5. Immunostaining for hNSC reveals immature and mature cellular phenotypes 
independent of gender or hNSC labeling status
A1) Immunostaining for human GFAP (hGFAP) identified positive (+) cells in the 

ipsilateral striatum (Str) adjacent to the lesion that had a mature astrocytic morphology 

distinct from those seen adjacent to the 3rd ventricle. A2) hGFAP+ cells were also observed 

within the periventricular region, the median eminence (ME) and the arcuate nucleus (Arc), 

with fewer hGFAP+ cells were seen in the ventro-medial hypothalamus (VMH). hGFAP+ 

cells lining the 3rd ventricle had similar morphology to astrocytic radial glia. B1) human-

nestin (hNestin) within the contralateral cortex revealed hNSC that exhibited an intermediate 

filament morphology (arrows). B2) In the ipsilateral hemisphere, hNestin staining was 

observed adjacent to the ventricle (V), as well as tissues exposed to cerebrospinal fluid, such 

as cystic regions of the lesion (L), consistent with a more immature cellular phenotype, with 
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only ~50% of these cells nestin+. C1–3) hNestin+ staining (arrows) along the ventricles did 

not colocalize with hGFAP+ cells (arrows). D1) Abundant endogenous rodent (rGFAP) 

astrogliosis (X) was observed in the ipsilateral cortex adjacent to the HII lesion. Higher 

magnification revealed numerous rGFAP+ astrocytes. D2) In contrast, only scattered 

hGFAP+ cells were observed within the cortical regions adjacent to the HII lesion. High 

magnification illustrated typical astrocyte morphology in an hGFAP+ cell. D3) No 

colocalization of human (green) and rat (red) astrocytes was observed. Higher magnification 

illustrates a single human astrocyte (green) surrounded by rodent astrocytes (red) with no 

colocalization. (cal bar – 20um)
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Figure 6. Behavioral testing demonstrated learning and exploratory deficits based on injury 
severity but not on gender or labeling status
A) Behavioral testing based on lesion severity revealed that those animals with mild injury 

had improved spatial memory compared to moderate or severely injured animals (p<0.007). 

B) Similarly, animals with severe injury spent more time exploring an open field than their 

mild and moderate injury counterparts (p<0.04). (● mild, ○ moderate, ■ severe)
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Table 2

RPSS comparisons for injury severity, gender and hNSC labeling status

Injury Severity Female Male p = a

Mild 0.32±0.12 0.31±0.15 0.960

Moderate 1.85±0.13 1.73±0.15 0.548

Severe 3.15±0.33 2.88±0.25 0.654

Moderate Labeled 1.84±0.20 2.00±0.19 0.584

Moderate Un-Labeled 1.86±0.18 1.53±0.19 0.228

a
t-test comparisons
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