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Abstract

Reinforcement Learning: A Computational Framework of Cognition

by

Milena Rmus

Doctor of Philosophy in Psychology

University of California, Berkeley

Professor Anne G. E. Collins, Chair

The thesis investigates applications and extensions of reinforcement learning (RL) algorithms
to modeling human cognition, and focuses on development of new tools for fitting cognitive
models to behavioral data. The first part of the thesis examines the effect of choice ab-
straction on recruitment of RL mechanisms. This work challenges the basic RL assumption
that action space is always finite and defined, and tests the variability in processes that best
describe the data when the appropriate choice features are ambiguous (e.g. abstract). Re-
sults indicate that when choices of multiple levels of abstraction are plausible, less abstract
choices (e.g. simple motor actions) interfere with more abstract choices (e.g. goal selection).
Further cognitive modeling and experimental tests showed that working memory (WM) con-
tribution to more abstract choice process was reduced relative to that of RL, potentially due
to the use of WM resources for defining the appropriate choice features in the abstract con-
dition. Second project explored the effect of subgoals, the intermediate learning milestones,
on learning in the context of hierarchical reinforcement learning (HRL) framework. In this
project we operationalized subgoals in a way that removes the features commonly associated
with subgoals (novelty, reward associations, frequency) and sought to test whether subgoals
contribute to learning hierarchically organized policies and generalization through a pseu-
doreinforcing effect independent of these features. The results revealed that participants
solved the hierarchical task, with data patterns implying the effect of subgoals on behavior;
generalization tests showed that generalization of subgoals, under the constraint of our sub-
goal definition, was possible but predicated on explicit recognition of subgoal features. The
third project focused on development of new cognitive model-fitting tool leveraging artificial
neural networks (ANN). The results demonstrating ANN efficacy in fitting parameters and
identifying models with tractable and intractable likelihoods, with comparable (or better)
performance relative to standard methods where standard methods were applicable.
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Chapter 1

Introduction

1.1 Computational cognitive models of reinforcement

learning

Reinforcement learning (RL) models occupy a significant role in cognitive science research.
The basic premise of RL models is that the learning process can be characterized as a trial-
and-error interaction between the learner and the environment (Sutton and Barto, 1990,
2018; Wagner and Rescorla, 1972). In other words, the learner occupies a state in the
environment, enacts choices and receives outcome from the environment; the learner then
encodes certain actions as more rewarding (at specific states) than others. This simple
premise is easily formalized using a set of model equations that can be applied to model the
behavioral data from learning experiments, designed to test various properties of learning and
decision-making. Model parameters embedded in equations are then used to quantify various
features of cognitive processes, such as the rate of learning, decision noise, etc. As such,
RL models have been useful for understanding individual variability in learning/decision-
making in clinical populations (Adams et al., 2016; Huys et al., 2016; Maia and Frank, 2011;
Montague et al., 2012), different developmental groups (Eckstein, Master, Dahl, et al., 2022;
Nussenbaum and Hartley, 2019; Palminteri et al., 2016), as well as for shedding light on
cognitive mechanisms behind common behavioral patterns (e.g. habitual vs goal-directed
behavior: Collins and Cockburn, n.d.; Daw et al., 2011; Decker et al., 2016).

Another reason for the importance of RL models is that it lies at an intersection of
computer science (Kaelbling et al., 1996; Qiang and Zhongli, 2011), neuroscience (Dayan
and Daw, 2008; Niv, 2019; Schultz et al., 1997) and cognition (Collins and Frank, 2012; Daw
et al., 2011; Frank and Badre, 2012). Indeed, direct mapping of RL equations to neural
mechanisms, such as the reward prediction error signaling of dopaminergic neurons (Schultz
et al., 1997), grants credibility to RL models through linking neural signaling to cognitive
mechanisms and behavioral output. In addition many domains in computer science have
leveraged RL principles to design complex algorithms in computer vision (object recognition
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examples), robotics (training agents) and AI (Abbeel et al., 2006; Konidaris and Barto, 2007;
Le et al., 2022; Mnih et al., 2013).

A general property of computational cognitive models that pertains to their capability
to define how cognitive mechanisms relate to one another with high precision applies to
RL models as well. Therefore, many researchers leverage this specificity to characterize
and dissect different components of reward-based learning by applying RL models to data
from cognitive experiments, with parameters characterizing different aspects of how agents
process information (Eckstein, Master, Xia, et al., 2022; K. Miller et al., 2024), including but
not limited to decision noise, rate of learning (from positive and negative feedback), choice
perseveration, degree of random lapses.

While RL has indeed been an important framework used to examine learning and de-
cision making, it by no means provides a complete explanation of the underlying cognitive
mechanisms. For instance, there are learning patterns that deviate significantly from RL
predictions. One example of that is immediate learning based on single exposure, otherwise
known as one-shot learning (which is frequently observed in humans). Basic RL alone does
not account for such learning behaviors, as learning under RL assumptions is essentially
incremental. Modifying RL algorithms to include equations that represent contributions of
alternative learning mechanisms (such as various forms of memory) can in part address this
issue by enabling immediate storage of information. For instance, previous work showcased
that integrating RL models with models of working memory (WM) that assume immediate,
but temporary and capacity-limited information storage captures fast learning, especially
when the amount of information is within the limits of WM capacity (Collins, 2018; Collins
and Frank, 2012; Collins et al., 2014). Similarly, other examples of work have shown that
hybrid RL models equipped with episodic memory (Bornstein et al., 2017) and attention
(Radulescu et al., 2019) mechanisms provide a better, more robust accounts of learning be-
havior. The results from cognitive modeling indicate that integrating reinforcement learning
(RL) with other learning mechanisms, like memory and attention, often leads to a more com-
prehensive theory of cognition compared to using RL in isolation. This integration aligns
with findings from neural data. Specifically, the basal ganglia, a brain structure known for
its role in RL computations (Joel et al., 2002), has strong connections with the prefrontal
cortex and the hippocampus, which are involved in working memory, attention and episodic
memory functions (Atallah et al., 2004; Hazy et al., 2007; Packard and Knowlton, 2002;
Zhao et al., 2018). These connections explain the observed functional association between
the basal ganglia and the areas responsible for memory and attention, supporting the idea
that a combined approach of RL with memory and attention mechanisms provides a more
accurate model of cognitive processes.

Furthermore, RL algorithms have restrictive assumptions. For instance, the key ingre-
dients of baseline RL computations are clearly defined and finite state and action spaces
(Rmus et al., 2021). This is not always the case, as the state/action spaces may be continu-
ous, not fully known or highly dimensional. Indeed, basic RL algorithms have been criticized
for not scaling up to high-dimensional environments, since the increase in dimensionality of
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state and action spaces renders RL computations exponentially inefficient (Botvinick, 2008;
McGovern and Barto, 2001; Stolle and Precup, 2002; Xia and Collins, 2021). In addition to
this, decisions do not always map onto action for execution, and may involve more complex
goal-action contingencies - a variability that is commonly not reflected in RL equations.
Furthermore, RL assumes that an outcome is observed after each action, allowing the agents
to evaluate their actions immediately as either rewarding or not rewarding. Rewards are,
however, sometimes sparsely observed (e.g. with a time delay or after multiple actions have
been executed). This set of assumptions indeed limit the range of problems RL can be
applied to as a candidate cognitive model.

The following sections provide more detailed background on previous research addressing
the mentioned limitations of RL, and introduce the projects in thesis chapters designed to
contribute to this ongoing research expanding RL applications to instances which challenge
its basic premises.

1.2 Effect of choice abstraction on reinforcement

learning and working memory contributions

RL interacts with other cognitive processes that contribute to
learning

While a family of RL algorithms offers simple and precise mechanistic descriptions of learning
and decision making, it does not provide a full picture. Specifically, in addition to trial-
and-error learning humans sometimes require less interaction with the environment, and
instead perform immediate learning - through leveraging retrieval of previously acquired
useful information (e.g. from episodic memory Bornstein et al., 2017; Gershman and Daw,
2017), or by narrowing down the task space by assigning higher weight to the features of
environment most relevant to the task (Niv et al., 2015; Radulescu et al., 2016, 2019). Indeed,
the patterns of human behavior (pertaining to learning and decision-making) that depart
from RL predictions have been documented in previous work (Bornstein et al., 2017; Collins
and Frank, 2012; Collins et al., 2014; Radulescu et al., 2019). One area of this research
focuses on the role of cognitive functions referred to by the umbrella term of executive
functions (Bunge, 2024). The unifying idea behind this work is that RL does not operate
in isolation, and instead interacts with other cognitive processes, such as attention and
working memory. For instance, humans might rely on working memory that supports fast,
one-shot learning when the amount of information required to be learned is constrained, and
arbitrate towards RL when the information exceeds their working memory capacity (Collins,
2018; Collins et al., 2017). Similarly, attention might serve to isolate most relevant features
of the task, thus constraining it to the size RL can efficiently compute over (Radulescu
et al., 2016, 2019). Models of how these cognitive systems interact are supported by their
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neural/biological underpinnings. Specifically, the executive functions have been consistently
linked to prefrontal cortex (Badre and Nee, 2018; Friedman and Robbins, 2022; Gilbert
and Burgess, 2008; Koechlin and Summerfield, 2007), which has strong projections to the
striatal/basal ganglia system (Hazy et al., 2007; Middleton and Strick, 2000; O’Reilly and
Frank, 2006) frequently associated with RL functions. For instance, fMRI results have shown
that increased PFC activation linked to recruitment of WM resources suppresses the reward
prediction error (RPE) in striatum in instances where the information load is small enough
to be learned using working memory (Collins et al., 2017).

Working memory contribution to RL in defining the choice space
through credit assignment

Defining a choice space is a component of RL computations that may be impacted by the
contribution of working memory. Specifically, choice space refers to the set of actions avail-
able to the agent for construction of policies, which define how agent operates in environment
with a goal of maximizing rewarding outcomes. Choice spaces are sometimes simple (e.g.
simple motor actions), but sometimes they are more complex, consisting of multiple features
(e.g. position or labels of different options that can be selected via executing different motor
actions), where there may be ambiguity as to which one is relevant. For instance, if there
are two yogurt cups, a pink and a white one, on left and right side respectfully and pink
yogurt is more tasty , should a learning agent credit the good flavor to the color or to the
simple act of reaching out to the left side? The effect the variability in abstraction level of
choice space may have on RL (and how WM may contribute to this effect) has scarcely been
examined in modeling applications. Previous research (Luk and Wallis, 2013) suggests that
less (motor action) and more abstract (goal stimulus) choices are encoded by orbitofrontal
cortex and anterior cingulate cortex - implying different neural mechanisms recruited for
different choice types.

Chapter 2 of the thesis focuses on exploring how working memory contributes to RL in
conditions where choice space is either concrete, or more abstract/flexible - contributing to
the ongoing work aiming to construct a more complete picture of how different cognitive
systems interact, especially in instances that challenge the basic premises of RL. The goal
of this project was to examine whether 1) when two different choice types of different levels
of abstraction are available these choice processes impact one another other, and 2) what
contribution of WM is to learning and the choice process in the instances where there is
amibguity as to what defines a correct choice dimension.
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1.3 Hierarchy in reinforcement learning

Leveraging hierarchy to explain how learning unfolds efficiently

Basic reinforcement learning has frequently been criticized for not scaling well to large ac-
tion/state spaces. Under assumptions of RL, agents learn rewarding policies by visiting
states in the state space, enacting different actions and encoding the rewarding state-action
associations based on the feedback. However, this rapidly becomes infeasible as the num-
ber of potential states/actions increases - quickly resulting in a combinatorial explosion of
possible state/action associations for the agent to learn. Indeed, outside of simple labora-
tory experiments, humans learn increasingly more complex policies that simply cannot be
captured with basic RL models. As a response to this limitation, researchers have leveraged
the concept of hierarchy in learning (Botvinick et al., 2009; Stolle and Precup, 2002; Sutton
et al., 1999), which has been an efficient concept for explaining how humans organize in-
formation efficiently in a way that permits robust learning (Botvinick, 2008; Lashley et al.,
1951; G. A. Miller et al., 2017). Hierarchical Reinforcement Learning (HRL) framework is
an extension of basic RL that proposes the primitive actions can be chunked into tempo-
rally extended policies, which can be further recombined into more complex policies that are
added to an action repertoire an agent can exploit upon encountering novel problems (Sol-
way et al., 2014; Tomov et al., 2021). For instance, knowledge of steps required to prepare
ingredients for breakfast can be successfully transferred to the task of preparing lunch. For-
mally, the temporally-extended policies referred to as options (Konidaris and Barto, 2007;
Stolle and Precup, 2002; Xia and Collins, 2021) are initially acquired through trial-and-error
exploration that subsequently leads to chunking of simple actions into complex sequences
that can more robustly be applied in service of the task.

In addition to providing an account of how people might learn complex solutions to
problems, the options/HRL framework offers an important insight into another one of the
critical limitations of classic RL - lack of explanation of how learning occurs in environments
with sparse rewards. Specifically, RL assumes presence of feedback at each time-step, but
fails to account for environments in which feedback is not observed until much later after the
action execution. In HRL framework, problems can be decomposed into sets of subgoals -
intermediate milestones that can support learning until the final outcome is reached (Diuk et
al., 2013; Ribas-Fernandes et al., 2019; Solway et al., 2014). For instance, reaching a hallway
on the way from one room to the next can be considered a milestone. Different research
lines have focused on different properties of subgoals. Because subgoals are not rewarding
in a way primary rewards are (e.g. food, money) (Diuk et al., 2013; Ribas-Fernandes et al.,
2019; Sutton et al., 1999), some researchers have conceptualized subgoals as novelty signals
that drive curiosity and/or novelty, making it more likely the agent will encode information
observed thus far as meaningful (Baldassarre and Mirolli, 2013; Chentanez et al., 2004; Singh
et al., 2010). Some researchers have focused on the structural aspect of the state spaces,
defining subgoals as the states that are most frequently visited en route to terminal reward
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(Diuk et al., 2013; McGovern and Barto, 2001), or states with highest degree of connections
with other states (Şimşek and Barto, 2008). However, there is not enough work that looks at
specifically whether subgoals affect learning through means independent of external effects
such as surprise, structural factors or reliable association with rewarding outcomes.

Subgoals in hierarchical reinforcement learning

Subgoals also serve the function of enabling generalization of policies between different tasks
(e.g. reaching a hallway is relevant for both changing rooms and exiting the building), and
as such are an important ingredient of robust, generalizable behavior frequently observed in
humans (a feature artificial agents frequently fall short of).

Chapter 3 outlines a project in which we designed a hierarchical learning task, where
individual actions are combined into simple policies that in turn make up a more complex,
final policy. Execution of simple policies was marked by an appearance of a potential subgoal
signaling a rewarding sequence. Importantly, we ensured that 1) the subgoals were not
entirely predictive of rewards (e.g. could occur in non-rewarded sequences) thus ensuring
they don’t inherit value from rewards, 2) the subgoals do not occur with higher frequency
relative to non-subgoals, 3) subgoals may be observed on each trial and thus are not more
surprising. These manipulations permitted us to test the isolated pseudoreinforcing effects of
subgoals on learning, independent of associations with external value, intrinsic or structural
factors.

1.4 Broadening cognitive modeling methods

Cognitive models, including reinforcement learning, occupy a critical role in computational
cognitive science, because they provide a simple way to translate cognitive theories into
relatively simple algorithms that can be related to behavioral data and used to 1) quantify
different aspects of cognition (such as rate of learning, forgetfulness, etc.), and 2) arbitrate
between which theories provide better accounts of observed behavior (Lee and Webb, 2005;
Montague et al., 2012; Shultz, 2003). However, the extent to which cognitive models may be
useful is determined by the existing statistical tools that enable researchers to relate them
to the data.

To fit computational models to the data, we commonly compute the likelihood of par-
ticipants’ behavior (e.g. choices) (D) under the model specification (M), where likelihood is
defined in accordance with the Bayes rule:

P (M |D) =
P (D|M) · P (M)

P (D)

Most traditional model-fitting methods (such as Maximum Likelihood Estimation, MLE;
Maximum A-posterior Estimation, MAP; Hierarchical Bayesian Modeling) rely on computing
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and maximizing likelihood, for the purpose of estimating model parameters and quantifying
model fitness (Cousineau and Helie, 2013; Myung, 2003; Rigoux et al., 2014). In other words,
in parameter estimation, many model-fitting optimization tools search for parameter values
that optimize the likelihood of the data under the given model; in model-identification, like-
lihood serves as an ingredient for calculating model fitness - how well the model captures the
data patterns (e.g. Akaike Information Criterion, AIC (Akaike, 1998; Bayesian Information
Criterion, BIC (Schwarz, 1978).

Despite the prevalence of likelihood-based model-fitting methods there is a large body of
computational models for which computing the likelihood is not tractable. In other words,
computing likelihood for the full data sequence, even for a single participant, is not feasible.
For example, models with strong sequential dependencies (e.g. observation on each trial is
dependent on all the preceding trials) which assume latent variables that affect behavior on
each trial but are not observed in the data (e.g. an unobserved rule or an attention state that
governs behavior, Frank and Badre, 2012; Solway et al., 2014) require full marginalization
over all the latent variable possibilities across the entire trial history. This quickly becomes
intractable beyond the first handful of trials. For instance, if the model assumes presence
of a latent state which is not observed in the actual data, computing the likelihood requires
the following:

L(θ) =
T∑
t=1

logIP(at|ht, ht−1, θ)

=
T∑
t=1

log
(∑

l

IP(at|ht, lst = l; θ)IP(lst = l, ht−1; θ)
)

where ls = latent state, l ∈ { set of possible latent states }, ht−1 corresponds to the
history of all trial observations up to the trial t. Computing likelihood requires summing
over latent states in the equation (e.g. all possible latent state and respective trial history
trajectories) which is in practice impossible beyond the first few trials.

To ensure that cognitive researchers can test a broader range of theories, including the
ones best formalized by models with intractable likelihood, there have been different ap-
proaches that aim to substitute traditional model fitting methods in instances where using
them is not possible. One group of alternative methods focuses on likelihood approximation
(such as inverse binomial sampling, van Opheusden et al., 2020; assumed density estimation,
Minka, 2013; particle filtering, Djuric et al., 2003), aiming to approximate rather than com-
pute the exact likelihood. One of the most frequently used approximation methods in cog-
nitive science is Approximate Bayesian Computation (ABC, Palestro et al., 2018; Sunn̊aker
et al., 2013; Turner et al., 2013). ABC involves reducing dimensionality of data sequences,
often consisting of hundreds of observations, into summary statistics (e.g. average accu-
racy, error rates, learning curves). Next, parameter values are sampled to simulate the data
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from the specified model, followed by computing the summary statistics. The parameters
that generate simulated summary statistics closest to the summary statistics of real data
(based on the rejection process) are then estimated as the best parameters. While the ABC
does provide a workaround solution it suffers critical limitations - including that insufficient
summary statistics (frequently chosen by the researcher) can result in significantly incorrect
parameter estimates, and unstable application to models with sequential dependencies.

More recently, there has been a lot of effort dedicated to leveraging the power and flexi-
bility of neural networks for estimating parameters of cognitive models (Boelts et al., 2022;
Fengler et al., 2021; Radev, Voss, et al., 2020; Radev et al., 2021; Schmitt et al., 2021).
Many of these methods actually build on ABC computations by using the neural networks
to automate summary statistics selection process, with neural network architecture designed
to compute and optimize summary statistics (Radev, Mertens, et al., 2020; Radev, Voss,
et al., 2020). In general, these approaches are examples of simulation-based inference, where
large amounts of data are simulated as a training set used to train the neural network to
estimate parameter values based on the simulated data sequences. The trained network can
then be applied to estimate parameters of the data set it has not observed yet (e.g. human
data from experiments). Some of the network approaches, however, are not easily applied
to models with strong sequential dependencies (Fengler et al., 2021; van Opheusden et al.,
2020).

Chapter 4 offers a discussion of a method that uses artificial neural network approach to
estimate parameters and perform model identification using models with sequential depen-
dencies and intractable likelihood. We evaluated this approach by running a comparison to
the set of standard, likelihood-based model-fitting methods (MLE, MAP) applied to mod-
els with tractable likelihood, and approximation method (ABC) applied to models with
intractable likelihood. We evaluated the performance of our method in application to pa-
rameter recovery and model identification. Furthermore, we extended the baseline approach
to afford uncertainty quantification of parameter estimates. This project contributes to the
larger body of work focused on improvement of alternative methods that will enable testing
a less restricted range of cognitive theories.

1.5 Aim of the thesis

The aim of this thesis was to formulate projects that examine application of reinforcement
learning algorithms (and their extensions) to instances in which basic RL assumptions are
challenged, including 1) the task environment with ambiguous choice definition, and 2)
the task environment with sparse rewards and temporally extended policies. Specifically,
the first project deployed a combination of the experimental design and modeling to probe
recruitment of potentially different learning mechanisms for less/more abstract choices in
experiment 1; experiment 2 builds on the results of experiment 1 by including working
memory manipulation in the task, and hybrid working memory-reinforcement learning model.
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The second project aimed to examine the effect of controlled/defined features of subgoals to
learning and generalization in a hierarchical setting. Lastly, in project 3 we aimed to develop
an alternative model-fitting tool based on artificial neural network implementation that
bypasses the likelihood estimation/approximation drawbacks commonly present in standard
likelihood-based methods (e.g. inability to fit cognitive models with intractable likelihood).

The key results of the 3 thesis projects can be summarized as follows:

• Project 1: Choice types that are less/more abstract recruit RL mechanisms differently.
Specifically, experiment 1 showed that when both types of choices are possible, the
less abstract choices (such as motor actions) interfere with more abstract choices (goal
selection). This was shown both in behavioral analyses in model comparison favoring
the model with policy mixture parameter, responsible for capturing the interference,
present only in abstract choice condition. Experiment 2 outlined working memory
contribution to reinforcement learning in different choice type conditions: working
memory weight, parameter that quantifies the extent to which the working memory
contributes to the choice selection relative to RL, was lower in more abstract condition
relative to less abstract condition. We reasoned that when action space is abstract, WM
resources (e.g. capacity) may be leveraged to define the choice space more concretely
and in a way that can be effectively used by a reinforcement learning system - resulting
in reduced WM contribution to the actual choice process in abstract choice condition.
Furthermore, the policy mixture parameter which captured interference patterns was
not specific to either WM or RL.

• Project 2: Participants who passed the screening procedure (based on evidence of task
engagement) were able to solve the hierarchical task, and have shown sensitivity to
its hierarchical structure (e.g. based on the patterned response times consistent with
chunking of simpler sequences into more complex ones). Furthermore, we found that
subgoals can exert a pseudo-reinforcing effect on learning independently from their
ability to predict rewards, novelty/surprise or frequency. Generalization of subgoals,
however, was limited to only a subset of the participants; these participants were able
to explicitly identify subgoal features, and have shown bias for subgoals over non-
subgoals in a test of preference. These results imply that while the subgoal effect on
learning may be isolated from that of novelty, frequency and reward prediction the
generalization of subgoals is predicated on explicit recognition of subgoal features.

• Project 3: Artificial neural networks (ANNs) can be leveraged to fit a broad range
of cognitive models, including the ones with intractable likelihood. We simulated a
set of likelihood-tractable cognitive models from different families (e.g. reinforcement
learning and Bayesian inference) on two tasks representative of tasks frequently ran
in cognitive experiments. We evaluated our method by comparing its parameter esti-
mation accuracy to that of the standard model likelihood-based fitting methods, and
found that in most cases it performed just as well, if not better, compared to the best
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case of standard methods. We also evaluated our approach based on the model iden-
tification, and found that our ANN method significantly outperformed the standard
methods. We also simulated likelihood-intractable models, and evaluated the ANN in
comparison to a standard likelihood approximation method commonly applied to fit
cognitive models with intractable likelihoods. The ANN performed significantly better,
and demonstrated a robust performance in model identification. We also extended the
baseline ANN to include evidential learning in order to enable quantification of un-
certainty around parameter estimates. In addition, we performed a set of robustness
checks (e.g. based on model misspecification where the network is trained to estimate
parameters of one model but tested on recovery of parameters simulated from a different
model, missing trials, different parameter range) and we found that in some cases our
method was quite robust to misspecification, presenting some loss of accuracy which
was not catastrophic (e.g. in case of misspecified nested models). In misspecification
instances in which our network was impacted (e.g. different classes of models), it was
not any more impacted than the standard methods. Our results in total show that our
approach represents a contribution to the growing body of work on the application of
simulation based inference to computational cognitive models.
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Chapter 2

Choice Type Impacts Human
Reinforcement Learning

(Previously published: Rmus, M., Zou, A., & Collins, A. G. (2023). Choice Type Impacts
Human Reinforcement Learning. Journal of Cognitive Neuroscience, 35(2), 314-330.)

2.1 Abstract

In reinforcement learning (RL) experiments, participants learn to make rewarding choices in
response to different stimuli; RL models use outcomes to estimate stimulus–response values
that change incrementally. RL models consider any response type indiscriminately, ranging
from more concretely defined motor choices (pressing a key with the index finger), to more
general choices that can be executed in a number of ways (selecting dinner at the restaurant).
However, does the learning process vary as a function of the choice type? In Experiment 1,
we show that it does: Participants were slower and less accurate in learning correct choices
of a general format compared with learning more concrete motor actions. Using computa-
tional modeling, we show that two mechanisms contribute to this. First, there was evidence
of irrelevant credit assignment: The values of motor actions interfered with the values of
other choice dimensions, resulting in more incorrect choices when the correct response was
not defined by a single motor action; second, information integration for relevant general
choices was slower. In Experiment 2, we replicated and further extended the findings from
Experiment 1 by showing that slowed learning was attributable to weaker working memory
use, rather than slowed RL. In both experiments, we ruled out the explanation that the dif-
ference in performance between two condition types was driven by difficulty/different levels
of complexity. We conclude that defining a more abstract choice space used by multiple
learning systems for credit assignment recruits executive resources, limiting how much such
processes then contribute to fast learning.
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2.2 Introduction

The ability to learn rewarding choices from non-rewarding ones lies at the core of successful
goal-directed behavior. However, what counts as a choice? When a child tries a pink yogurt
in the left cup and a white yogurt in the right cup, and then prefers the right cup, what choice
should they credit this rewarding outcome to? In their next decision, should they repeat
their previously rewarding reach to the yogurt on the right, independently of its color, or
should they figure out where the white yogurt is before reaching for it? Selecting the type
of yogurt is a more abstract choice: It requires subsequently paying attention to the other
dimension (Where is the white yogurt?) and applying the appropriate motor program to
execute the choice. Thus, making the more abstract choice additionally involves less abstract
choices, but in this case, only the abstract choice should be credited for the yogurt’s tastiness.
Knowing the relevant dimension of choice to assign credit to is essential when learning. How
does choice type impact how we learn?

The theoretical framework of reinforcement learning (RL) is highly successful for studying
reward-based learning and credit assignment (Sutton and Barto, 2018). However, RL as a
computational model of cognition typically assumes a given action space defined by the
modeler, which provides the relevant dimensions of the choice space (i.e., either the yogurt
color or the cup position)—there is no ambiguity in what choices are (i.e., color such as
pink/white, or side such as left/right), and the nature of the choice space does not matter
(Rmus et al., 2021). As such, RL experiments in psychology tend to not consider the type
of choices (a single motor action such as pressing a key with the index finger; Collins et al.,
2017; Tai et al., 2012), or the more general selection of a goal stimulus that is not tied to a
specific motor action (Daw et al., 2011; Foerde and Shohamy, 2011; Frank et al., 2007) as
important, and researchers use the same models and generalize findings across choice types.
Recent research has shed some light on how participants might identify relevant dimensions
of the state and choice space (Farashahi et al., 2017; Niv, 2019); however, this research
does not address how learning occurs when the learner knows the relevant choice space but
multiple dimensions of choice are nonetheless available, such as in our yogurt example.

Examining learning of responses when multiple-choice dimensions may be relevant is
important, however, as most of our choices in everyday life are ambiguous: Did I pick the
white yogurt or the one of the left? In some cases, these dimensions are hierarchically
interdependent: Choices can be represented at multiple levels of abstraction (e.g., have
breakfast; have yogurt; have pink yogurt; have the yogurt on the right; reach for the yogurt
on the right side). In such cases, a choice along a relevant dimension (yogurt color) requires
a subsequent choice on a reward-irrelevant dimension (position/motor action), which then
needs to be considered for the choice’s execution, but not credited during learning. By
contrast, in other cases, some choice dimensions may neither be relevant for learning nor
for executing the choice—for example, the child should learn to fully ignore the color of the
plate that the yogurt is on for both their choice and their credit assignment.

Different types of choices may recruit different cognitive/neural mechanisms (Rescorla
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and Solomon, 1967). For example, previous animal models of decisionmaking suggest that
the orbitofrontal cortex and the anterior cingulate cortex index choice outcomes for goal
stimulus choices and motor action choices, respectively (Luk and Wallis, 2013). Ventral
striatum lesions in monkeys impaired learning to choose between rewarding stimuli, but not
between rewarding motor actions (Rothenhoefer et al., 2017). In humans, recent behavioral
evidence suggests that the credit assignment process is what differentiates learning more
relevant choice dimensions from less relevant (here motor) ones (McDougle et al., 2016),
and that there might be a hierarchical gradation of choices in terms of credit assignment.
In particular, while people are capable of learning the value of both abstract rule choices
and concrete action choices in parallel (Ballard et al., 2018; Eckstein et al., 2019), they
also seem to assign credit to more concrete actions by default when making abstract choices
that need to be realized through motor actions (Shahar et al., 2019). The brain relies on
multiple neurocognitive systems for decision-making, but whether choice format impacts
learning similarly across systems remains unexplored. Specifically, although RL models
provide a useful formalism of learning, they do not easily relate to underlying processes.
Indeed, RL models are known to summarize multiple processes that jointly contribute to
learning (Eckstein et al., 2021), such as the brain’s RL mechanism, but also episodic memory
(Bornstein and Daw, 2013; Bornstein et al., 2017; Poldrack et al., 2001; Vikbladh et al., 2019;
Wimmer and Shohamy, 2012), or executive functions (EFs) (Collins and Frank, 2012; Rmus
et al., 2021). Here, we focus on working memory (WM), which has also been shown to
contribute to learning alongside RL (Collins, 2018; Collins and Frank, 2012; Collins et al.,
2017). If choice type matters for learning, does it matter equally for each cognitive system
that contributes to learning, or differently so?

In summary, there is a twofold gap in our understanding of how choice format impacts
learning. First, when multiple-choice dimensions are available but only one is relevant, does
the type of the relevant choice dimension impact learning, and if so, through what computa-
tional mechanisms? We consider, in particular, the important case where one relevant choice
dimension needs to be executed through a second, irrelevant choice dimension (a motor ac-
tion), and how this contrasts to learning when one dimension is fully irrelevant to both choice
and learning. Second, are the differences rooted in the brain’s RL system, WM, or both? To
address this gap, we designed a task that directly compares learning to make choices along
two orthogonal dimensions, with different levels of generality or interdependence, when there
is no ambiguity about which choices are relevant to the learning problem.

In our task, one choice dimension is a spatial position that directly maps onto a con-
sistent motor action, and the other is a more general choice dimension, conceptualized as
the selection of stimulus goals that constrain a downstream selection of an overall irrelevant
spatial position and corresponding motor action. In a second experiment, we manipulated
learning load to separately identify WM and RL contributions to learning, and investigated
with computational modeling how choice matters in both systems. Our results across two
experiments suggest that choice type strongly impacted learning, resulting in slower learning
when the relevant choice dimension was more general and required execution along another
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dimension. This was in part driven by an incorrect, asymmetric credit assignment to less
general choices when they were irrelevant. Furthermore, WM (rather than RL) mechanisms
seemed to drive the deficits in performance in the more general choice format condition,
indicating that defining a more general action space, shared by multiple choice systems,
recruited limited executive resources. In both experiments, we ruled out the simple explana-
tion that the performance difference was driven by an effect of difficulty by 1) implementing
experimental controls that minimize this concern and 2) ruling out predictions of a pure
difficulty effect in analyses and modeling.

Figure 2.1: Experiment design. (A) Participants played a card-sorting game with three
different conditions: label (learning which box color is correct for each card – more general
choice), position (learning which motor action/position is correct for each card – less general
choice), control (identical sorting rules as position condition, but without labeled boxes). (B)
We assumed that participants track card-dependent reward history for both positions and
labels, and that both of these contribute to the choice selection process, sometimes resulting
in interference errors. Note that the card-dependent reward history is cumulative (tracked
across all past trials during which the given card was presented, rather than only one-trial
back), but for simplicity of illustration, we only show 1-back trial in (B).

2.3 Results

Experiment 1: Behavioral Results.

We first asked whether participants learned differently across experimental conditions. Learn-
ing curves show that participants learned well in all conditions, as their accuracy increased
with more exposure to each card (Fig. 2.2A). A repeated-measures one-way ANOVA con-
firmed that there was a main effect of Condition (label/position/control) on performance,



CHAPTER 2. CHOICE TYPE IMPACTS HUMAN REINFORCEMENT LEARNING 15

F(2, 61) = 97.7, p < .001, η2 = .62. We next tested which specific conditions contributed
to this significant difference and found a marginal difference between control and position
conditions; however, this difference did not reach statistical significance (paired t test: t(61)
= 1.61, p = .11, Cohen’s d = 0.20). This result suggests that the additional choice feature
(the labels) in the position condition did not have a strong impact on the choice process.
Performance in the label condition, however, was significantly lower than that in the position
and the control conditions (paired t test: position: t(61) = 11.1, p < .001, Cohen’s d = 1.42;
control: t(61) = 12.9, p < .001, Cohen’s d = 1.65). We next examined why label condition
performance was worse. We hypothesized that choice was not simply noisier in the label
condition, but instead that choice might be contaminated by the reward history of irrele-
vant motor choices. To test this hypothesis, we computed the cumulative card-dependent
label/position reward history (see Methods section) and quantified the proportion of error
trials in which participants incorrectly chose a box with high reward history of an incorrect
feature (Fig. 2.1). In the position condition, participants did not make more interference
errors than expected at chance level (for two possible errors; Fig. 2.2B; t(61) = 0.13, p = .89,
Cohen’s d = 0.01). This confirms that the presence of labels in the position condition did
not impact choice compared with the control condition. By contrast, in the label condition,
the proportion of interference errors was significantly higher than chance (Fig. 2.2B; t(61) =
2.54, p = .01, Cohen’s d = 0.32). Furthermore, the proportion of interference errors in the
label condition was significantly greater than interference errors in the position condition,
t(61) = 2.13, p = .03, Cohen’s d = 0.27. This result suggests an asymmetry in interference
between different choice spaces, in that the values of less general/motor action choices seem
to contaminate the more general choice process (but not the other way around). To rule
out the possibility that the effect we observed was driven by the block/condition order (i.e.,
transfer of incorrect strategy from the previous block), we ran a mixed-effects general linear
model predicting accuracy with previous versus current block conditions. The result of this
analysis showed that participants’ performance was affected by the current block condition
( p < .001), but not the previous block condition ( p = .45), thus ruling out order effects
as a possible explanation of our results. In addition, our results were replicated in the sec-
ond experiment (as reported later), where we removed the control condition altogether, and
counterbalanced the remaining condition blocks such that participants could either experi-
ence position or label condition blocks first. This further supports the conclusion that the
observed results are unlikely to be explained by the order effects.

Next, we performed a trial-by-trial analysis to examine the effect of card/label values
on correct trials’ RTs. For each condition, we used a mixed-effects linear model to predict
log(RT ) from the RHD between chosen and unchosen choices (see Methods section), where
choice referred to label in one predictor and position in the other. The rationale behind this
analysis is that, if participants are engaging in the appropriate decision strategy, then RTs
should decrease with the higher RHD in the conditionrelevant dimension (label or position),
because a higher RHD means greater evidence in favor of the correct response. On the other
hand, in the event of interference, we expected participants’ RTs to be modulated by the
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RHD of the incorrect dimension (e.g., position RHD in label condition). We controlled for
the trial number in the model.

As predicted, in models for each condition (position condition model F 2 = .27; label
condition model F 2 = .154), participants’ RTs decreased with increased respective RHD
(Fig. 2.2C; label condition: βlabel = −0.04, p < .001, position condition: βposition = −0.06,
p < .001). Label RHD did not affect the RTs in the position condition (βlabel = −0.004, p
< .055). Hence, the mixed-effects model aligned with interference errors, confirming that
participants’ choices were not affected by the presence of an additional feature (the labels) in
the position condition. On the other hand, the position RHD surprisingly increased RTs in
the label condition (βposition = −0.034, p < .001), suggesting that the interference of motor
action values with label values may have resulted in the delay of choices (Fig. 2.2C). We
compared the subject-level β estimates of the effect of incorrect dimension RHD on RTs
in position and label conditions, and found that the incorrect RHD effect was significantly
greater in the label condition (paired t test: t(61) = 3.87, p < .001, Cohen’s d = 0.49),
confirming the asymmetry between conditions that was revealed in previous analyses.

Figure 2.2: Experiment 1 model-independent results. (A) Proportion of correct choices as a
function of number of previous rewards obtained for a given stimulus. Participants performed
worse in the label condition, compared with the position and control conditions. Performance
in the position and control conditions did not differ statistically. (B) Asymmetric value
interference: The values of motor actions interfered with values of correct labels in the label
condition, thus resulting in the interference errors, but not the other way around. (C) Mixed-
effects regression model shows that the interference of motor action reward history/values
may have resulted in the longer RTs in the label condition. *Indicates statistical significance
at p < .05.
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Experiment1: Modeling results.

We used computational modeling to tease apart the mechanisms driving condition effects.
We fit several variants of RL models and focus here on four models that represent the main
different theoretical predictions (Fig. 2.3A,B). The standard RL model (M1) assumes no
difference between the conditions and serves as a baseline that cannot capture the empirical
effect of condition. RL model M2 lets learning rates depend on condition and tests the
prediction that slower learning with labels is driven by different rates of reward integration.
Model M3 extends model M2 with an additional mechanism, parameterized by the value
mixture (ρL), that enables the position value to influence policy in the label condition.
Ruling out the difficulty explanation using computational modeling. Model M4, the dual-
noise model, is an RL model with a condition-dependent noise parameter (ϵ). M4 captures
the hypothesis that the label condition is more difficult, resulting in a noisier choice process.
Models M1–4 all assume ρP = 1, with no influence of labels in position blocks. Other models
considered separate decay (ϕ) parameters and a free position condition ρP , but did not
improve fit.

Model M3 offered the best quantitative fit to the data, as measured by AIC (Fig. 2.3B).
Furthermore, only model M3 was able to qualitatively reproduce patterns of behavior. Specif-
ically, for each of the models, we simulated synthetic data sets with fit parameters and tested
whether the model predictions matched the empirical results. We focused on two key data
features in our model validation: performance averaged over the stimulus iterations (learning
curves) and asymmetrical interference errors. Model validation showed that only the model
with two learning rates and one ρ parameter (M3) captured both properties of the data (Fig.
2.3 A). These results confirm that the learned value of (irrelevant) motor actions influenced
the selection of more general label choices. Furthermore, model comparison results show
that slower learning in the label condition was not because of a noisier choice process, but
because of a reduced learning rate. Indeed, the position condition was significantly greater
than the label condition α (sign test; z = 6.35, p < .001, effect size: .81; Fig. 2.3C). Inter-
estingly, the learning rates in the two conditions were correlated (Spearman ρ = .39, p =
.003; Fig. 2.3C), suggesting that the learning process in the two conditions was driven by
related underlying mechanisms.
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Figure 2.3: Experiment 1: Modeling results. (A) Model validation comparing the observed
data to predictions of tested models; M3 reproduces behavior best. (B) Parameters used in
models M1–4 (left); M3 has best group-average AIC. (C) Comparison of condition-dependent
learning rates shows that learning rates are correlated, and that label condition learning rates
are significantly lower compared with position condition learning rates.

Experiment 2: Behavioral Results.

The results of the first experiment suggest that the choice type affects learning. However,
given the experimental design, our conclusions could not dissociate whether the difference
in RL parameters actually reflected a difference in RL mechanisms or in WM mechanisms.
Recent work (Collins, 2018; Collins and Frank, 2018), nevertheless, suggest that RL behav-
ior recruits other learning systems, such as WM. Hence, the variations that may appear to
be driven by RL mechanisms might conceal what is actually a WM effect. To address the
question of whether the choice definition matters for learning at the level of RL or WM,
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and whether slowed learning stems from slowed WM or RL, we ran a second experiment.
In Experiment 2, we varied the number of cards (set size) to manipulate WM involvement.
Furthermore, we fit variants of the RL WM model to test the contribution of WM mecha-
nisms.

Experiment 2 results replicated findings from Experiment 1, showing that there was a
main effect of Condition (Fig. 2.4A; repeated-measures one-way ANOVA, F(1, 56) = 98.95,
p < .001, η2 = .63). Furthermore, we replicated the pattern of interference errors, suggesting
that the value of position choices interferes with that of label choices, but not the other way
around (Fig. 2.4B; t(55) = 2.89, p = .006, Cohen’s d = 0.38)

We next investigated how set size manipulation affected these results. As predicted,
performance decreased with set size in both conditions, position: F(3, 56) = 11.83, p < .001,
η2 = .38; label: F(3, 56) = 23.498, p < .001, η2 = .55. There was an interaction between set
size and condition, F(3, 56) = 16.21, p < .001, η2 = .46 (Fig. 2.4A). There was a marginal
set size effect in interference errors that did not reach significance, F(3, 56) = 2.17, p = .09,
η2 = .20 (Fig. 2.4C).

To better understand the source of the set size effect, we ran a general linear mixed-effects
model to predict trial-by-trial performance. Our mixed-effects model included predictors
indexing WM mechanisms (set size and delay between presentations of the current stimulus
and the most recently rewarded stimulus; indexing capacity and susceptibility to decay
properties of WM, respectively) and RL effects (dimension relevant, card-dependent reward
history, calculated from the cumulative number of earned points for each card, indexing
reward-based learning). We also ran a model that tests for an interaction between individual
RL/WM factors and the task condition.

A likelihood ratio test provided evidence in favor of the interaction model over a model
without interactions (model without interactions f 2 = .42; model with interactions f 2 = .43;
LR p < .05). The interaction model showed that, as expected, participants’ performance
increased as a function of reward history (β = .62, p < .001), and decreased as a function of
set size (β =−0.18, p = .00011). There was no effect of Block (β = .04, p = .58) or Delay (β =
−0.04, p = .37), suggesting that neither overall task exposure nor delay affected performance
over and above reward history and set size. The only significant interaction term was the
Condition × Reward History interaction (β = .16, p = .01), suggesting that the reward
history more heavily contributed to an increase in performance in the label condition. To
understand our results on a more mechanistic level, we turned to computational modeling.
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Figure 2.4: Experiment 2 results. (A) Participants’ overall performance varied by set size
(a marker of WM contribution) and was worse in the label condition. (B) The asymmetry
in value interference replicated from Experiment 1, showing that values of position choices
interfere with values of label choices, but not the opposite. (C) The interference errors did
not vary by set size.

Experiment 2: Modeling Results.

The set size manipulation in Experiment 2 enables us to identify distinct contributions of
RL and WM (Collins and Frank, 2012) with the full RL-WM model (see Methods sec-
tion). Briefly, RL-WM disentangles an incremental, value-learning process (RL), as well
as a rapid-learning, but decay-sensitive, short-term, memory-based decision process (WM).
Choice policy is a weighted mixture of RL and WM (Fig. 2.6A,B), where the weighting
is proportional to one’s WM capacity. In other words, the model architecture posits that
if one’s WM capacity is low, one might be more likely to rely on RL than WM, especially
when set size (number of items) is high. We first replicated in Experiment 2 that models
including only one of those mechanisms could not adequately capture the set size effect, as
has been shown before (Collins and Frank, 2012). We then approached model comparison
by systematically varying the complexity of the RL-WM model (Fig. 2.6A), to establish
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whether specificity in RL or WM module parameters (or both) is necessary to capture the
divergence between behavioral patterns in the two conditions. Because the RL-WM model
assumes the policy for choice generation at the level of both RL and WM, we also tested if
integrating irrelevant dimension interference with a mixture parameter in the policy of RL
module or WM module (or both) could best capture our data. We were interested in the
condition-based dissociation between parameters. Exploring all possible parameter combi-
nations was computationally prohibitive. Thus, we explored a subset of the most relevant
models (see Methods section; in the main text, we focus only on a subset of models). Using
AIC comparison, we identified the simplest model that allowed us to capture the properties
of the data (M1, Fig. 2.3A). In M1, the WM weight (ω) and ρ parameters were condition-
dependent (with free ρ parameter for label condition, and position condition ρ fixed to 1).
Capacity (K), learning rate (α), decay (ϕ), LB, and noise (ϵ) were shared across the two
conditions—model comparison showed no benefits to making them independent (Fig. 2.9).

We further consider three other variants of this model: no value interference ρ (M2), ρ
in RL policy alone (M3), and ρ in WM policy alone (M4; 2.5A). Last, we consider a control
model with condition-dependent ϵ and α, which would primarily attribute the decline in
label condition performance to noise/RL system (M5).

Consistent with Experiment 1 results, the AIC comparison revealed that M5 could not
capture data well, and that M1 without ρ (M2) fit worse (Fig. 2.5A), providing additional
evidence for the necessity of the interference mechanism to capture choice data and, thus, the
existence of motor value interference in label blocks. However, the AIC comparison failed to
significantly distinguish between the remaining models M1 (ρ in RLWM), M3 (ρ in RL), and
M4 (ρ in WM; repeated-measures ANOVA: F(2, 56) = 2.63, p = .07, η2 = .08), although in
RL, models fit numerically worse, supporting the idea that we needed to include motor value
interference in the WM module to account for the results. Therefore, we henceforth focus
on the simplest model, M1 with condition-dependent ω and ρ in RL and WM policy, as this
model makes the fewest specific assumptions about RL-WM dissociation between the two
conditions. Note that model comparison results were identical (and stronger) when using
Bayesian Information Criterion instead of AIC, and that protected exceedance probability
supported M1 over other models. The M1 model adequately captured the data patterns in (1)
learning curves (Fig. 2.5B), (2) overall interference errors (Fig. 2.5C), and (3) interference
errors by set size (Fig. 2.5D). Furthermore, the WM weight ω was significantly reduced in
the label condition compared with the position condition in M1 (Fig. 2.5E). Overall, the
results suggested that the performance decrease in the label condition was driven primarily
by deficits in WM, specifically by a smaller WM weight that indexes the set-size-independent
contribution of WM to learning. Therefore, the choice type (more/less general) impacted
learning, and it seemed to do so by decreasing participants’ ability to use WM for learning.
However, the value interference appeared to be present in both RL and WM mechanisms.
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Figure 2.5: (A) AIC comparison allowed us to narrow down the space of models. Models with
condition-specific WM weight (ω) fit the best (M1–M4). Removing the mixture parameter
(ρ) harmed the model fit (M2). A model assuming impairment in RL did not fit as well
(M5). See main text for model specifications. (B) Model simulations of the best model M1
captured the behavioral data patterns. (C) Model validation for M1 (ρ) and M2 (no ρ)
confirms the necessity of ρ parameter in capturing the interference error patterns. (D) M1
captured interference errors in different set sizes. We note that the numerical dip in set size
3 is not statistically significant. While it is unclear why the model simulations reproduce
it, it is possible that it arises from a pattern in the stimulus sequences, which is used by
participants and model simulations. (E) Comparison of condition-dependent parameters
shows that ω is lower in the label condition.
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2.4 Discussion

Humans and animals make many types of choices, at multiple levels of generality, where some
choices are dependent on others. We designed a new experimental protocol to investigate
whether and how different choice types impact learning. Across two experiments, behavioral
analyses and computational modeling confirmed our prediction that the generality of choice
type impacts learning, with worse performance for choices that do not map onto a simple
motor action. Computational modeling revealed two separable sources of impairment. First,
value learning for relevant choices of a more general type was slower, as revealed by smaller
learning rates (α) in Experiment 1. Second, choices were contaminated by irrelevant motor
action values. Experiment 2 examined whether this dissociation originated in different neu-
rocognitive systems’ contributions to learning, namely, RL and/or WM. Our results revealed
that the reduction in learning speed for general-format choices stemmed more from WM than
the RL process, with WM weight (ω) reduced but RL (α) unchanged, when controlling for
WM contributions. However, the interference of low level values appeared to be present in
both mechanisms. The selective reduction in WM weight implies that participants’ executive
resources might be leveraged to define the choice space that is then used by both the RL and
WM system; a more generalized choice space requires a higher degree of such computation,
thus leaving reduced resources for actual learning.

In both experiments, we found an asymmetry in interference between choice types. When
participants learned to make more general choices (selecting a label) that required a sub-
sequent motor action (pressing the key corresponding to the label’s location), their choices
were influenced by the irrelevant reward history of motor actions. By contrast, when par-
ticipants learned to make less general choices (the correct response is defined by pressing
the same key corresponding to the box location), they were not influenced by the irrelevant
reward history of box labels. This result is consistent with a choice hierarchy interpretation,
where participants may be unable to turn off credit assignment to irrelevant choice dimen-
sions when the realization of their (abstract) choice does involve this dimension (Eckstein
and Collins, 2020), but are able to do so when the irrelevant choice dimensions are more
abstract, as shown here.

Although our results imply that participants exhibit a decision bias toward motor actions,
we acknowledge that our protocol cannot disambiguate between the motor actions themselves
and the corresponding spatial location of the boxes. That is, we cannot confirm whether the
participants track the value of specific motor actions (index/middle/ring finger key press) or
of the corresponding box positions (left/middle/right). Hence, a competing interpretation
of our results would be that spatial positions, rather than motor actions, are prioritized in
tracking value, compared with other visual features such as labels. To completely rule out
this possibility, we would need to modify the current task with a condition where the motor
actions are not aligned with the specific positions, and inspect whether the interference
effect persists in such a condition. However, we think this account is less likely than a choice
abstraction account, which explains our results more parsimoniously, without requiring a
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“special status” for a “position” visual feature.
Furthermore, animal research supports this interpretation, as it shows differences in the

neural code of choices, which are defined primarily as motor actions versus more abstract
choices (Luk and Wallis, 2013; Rothenhoefer et al., 2017). Specifically, these studies have
utilized recordings from neurons of animals trained to perform a task that contrasted motor
action choices with stimulus goal choices, to identify the neural substrates that differentiate
between the two. The results seem to implicate pFC, ACC, OFC, and striatal regions (ventral
striatum) as areas that differentiate between how choices with different levels of abstraction
are coded in the brain. Therefore, it is likely that it truly is dissociation between motor
actions, rather than positions, and more abstract choices that led to the interference and the
effects we observed in our work. Our results have implications for research on hierarchical
representations. Specifically, although simple RL algorithms are useful to capture reward-
based learning, they are commonly criticized because they fail to capture the flexibility and
richness of human learning. Hierarchical reinforcement learning was developed in part to
address limitations of standard RL (Botvinick et al., 2009; Collins and Frank, 2013; Stolle
and Precup, 2002; Xia and Collins, 2021). Previous research suggests that the choice space
might be hierarchically represented, with the lower level of hierarchy consisting of primitive
actions, and the higher level consisting of temporally extended actions (state-dependent,
extended policies), also known as options (Stolle and Precup, 2002). Evidence from this
research suggests that hierarchical representations are useful for enabling transfer; instead of
learning from scratch in the novel context, an agent can leverage higher-level representations
to speed up learning (Xia and Collins, 2021). The transfer results also suggest that choices
at different levels of hierarchy show an asymmetry in flexibility in novel contexts (lower level
choices being less flexible). Our results are consistent with this finding because motor actions
seem less flexible and less impacted by competing reward information, providing additional
supporting claims for hierarchical representations in choice space.

In addition to this, there is evidence of hierarchical representations at the neural level. In
particular, frontal areas (primarily pFC) and BG are also frequently investigated as neural
mechanisms that support hierarchical reasoning/learning (Collins and Frank, 2013). Con-
verging insights suggest that the cortico-BG loops support representations of both low-level
associations and abstract rules/task sets, giving rise to latent representations that can be
used to accelerate learning in novel settings (Collins and Frank, 2013; Eckstein et al., 2019;
Stolle and Precup, 2002; Xia and Collins, 2021).

Both experiments implicated overall slowed learning, in addition to value interference, in
the worse performance for more general choices. Our first experiment (which allowed us to
test RL models only) implicated the learning rate (usually interpreted as a marker of the RL
system; Eckstein et al., 2019) as the mechanism driving the difference between conditions
with different choice types. However, our second experiment enabled us to test the more
holistic hybrid model of RL and WM, and revealed that the impairment in the more general
choice condition likely stemmed from the WM system, rather than RL. Previous work has
shown that EF, in its different forms (i.e., WM, attention), contributes to RL computations
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(Collins, 2018; Niv, 2019). The general summary of this work is that high-dimensional
environments/tasks pose difficulty to RL; EF then acts as an information compressor, making
the information processing more efficient for RL (Rmus et al., 2021). Operating in a more
generalized choice space might more heavily rely on the contribution of EF (in this case WM)
relative to operating in the less abstract condition. Therefore, resource-limited WM might
be leveraged to define the choice space (i.e., relevant features of the choice space, like labels
in label condition). As a result, the WM weight included in the WM + RL hybrid model,
which indexes the WM contribution to learning, appears to be reduced in the label condition.
Our interpretation of this result is that this reduction in WM contribution may indicate that
some of participants’ limited WM resources are recruited elsewhere, and specifically that it
has already been used to define the choice space over which learning and decision making
occurs.

Although we conclude that WM is used for defining the choice space, consistent with
prior results on EF contributions to RL computations (Todd et al., 2008), we do not make
any particular assumptions about how the use of choice space is divided between RL and
WM once it is defined. We tested different model variations, with the parameter mixing
label/position values, to explain value interference at the policy level of RL, WM, or both.
If there was clear evidence in favor of the mixture parameter in either the RL or WM policy,
it would imply that the policy generation based on choice space is primarily driven by that
system. However, our model comparison revealed no evidence that the mixture parameter
is specific to either RL or WM, suggesting that the choice space is shared between the two.
This will be important to further explore in future research.

A competing interpretation for our findings of slowed learning for more abstract choices
is that the label condition required more attention and was more difficult. Although this
is true, we took steps to mitigate this potential confound on two levels—task design and
modeling. In the task design, we constructed the single trial structure such that participants
had a chance to see box labels first, before the onset of the card. By doing this, we aimed to
eliminate potential advantages of the position condition, where participants do not need to
perform an additional process of identifying the label location before executing the response.
Furthermore, our modeling enabled us to validate the effects of our task design. Specifically,
in both experiments, we tested the model with condition-dependent noise parameters, which
predicts that different noise/difficulty levels are what drive the performance difference in
our conditions. This model did not fit the data well (Experiment 1: best model AIC > 2
noise model AIC t(56) = −5.179 , p = 3.13e − 06, Cohen’s d = 0.69; Experiment 2: best
model AIC > 2 noise model AIC t(56) = −5.05, p =4.98e− 06, Cohen’s d = 0.67), making
it unlikely that difficulty-induced lack of attention/motivation could explain our condition
effect.

A competing interpretation of our results might be that participants simply did not pay
attention to the labels in the position condition, accounting for the observed asymmetry.
That is, because the labels are not informative for selecting a correct response in the position
condition, participants might simply not be attending to them at all, as opposed to encoding
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them, with the choice process remaining unaffected by the interfering information from labels.
However, we think this competing account is unlikely, for multiple reasons. First, the labels
were very salient (colors, and presented before the stimulus); thus, participants would need to
actively avoid them to not perceive them. While we have no direct measure of participants’
attention to the labels, it is unlikely that they did not process them at all. Second, there is
evidence from previous work that participants encode and use information from unattended
stimuli, especially when the unattended stimuli might be relevant for the reward structure in
the task (Gutnisky et al., 2009; Sasaki et al., 2010). Therefore, the labels (even if not strongly
attended to in the position condition) would be a part of the input in the choice process
that, according to the results, does not strongly impact the choice of the position, which
is consistent with our interpretation. We thus consider the more probable interpretation
to be that the participants do perceive and attend to the irrelevant labels, but successfully
avoid learning their values. However, future work should investigate more directly how much
attention participants pay to irrelevant labels.

Another limitation is that our design did not manipulate the degree of value interference
between the choice dimensions, because we equally counterbalanced the position of labels.
Instead, introducing a systematic bias such that, in a label block, for example, some positions
had higher value because of overlapping with correct labels more frequently, would provide
an opportunity to induce and measure different magnitudes of interference. This would be
an interesting question to explore in the future.

Surprisingly, we found that participants’ RTs on correct trials increased as a function of
position RHD in the label condition. This implies that when both label and position sorting
rules were in agreement on the best choice to make (i.e., the blue box was the correct box
and was in the position that had been most rewarded so far), RTs tend to be longer (the
corresponding effect was not observed in the position condition, where label RHD had no
effect on RTs). This is, therefore, a counterintuitive effect, as we would expect the congruent
information to accelerate response execution, rather than slow it, as observed here. One
possibility might be that participants do engage in a form of arbitration between selection of
different response types. Specifically, they might be biased to execute the motor action based
on the RHD, as it seems to present itself as a default option based on our results. However,
because they are informed that the response based on label selection is correct for the given
block, they might delay the response execution, to override the default. Nevertheless, this
is a speculation—careful modeling of RTs is required to further explain this effect, which is
beyond the scope of this article. This account would also predict the highest degree of conflict
in this congruent situation, rather than in situations where both rules disagree. It will be
an important question to solve in future research. Our results highlight the importance of
correct credit assignment and investigation of mechanisms, which might lead to errors in the
credit assignment process.

Our results are consistent with the previous research suggesting that motor actions might
have a stronger effect on the choice selection process than is usually considered (Shahar et al.,
2019). Our modeling approach allowed us to show that the mixture of Q values at the policy
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level is what may lead to the interference effect/incorrect credit assignment. However, as of
now, we cannot conclusively say whether the mixture happens selectively at the policy level
of RL, WM, or both.

Identification of correct rewarding responses is a critical building block of adaptive/goal-
directed behavior. Impairments in one’s ability to identify the appropriate choice space,
which is then used for one’s inference process, may consequently result in maladaptive/suboptimal
behavioral patterns. Our interference effect results suggest that some aspects of the choice
space might be incorrectly overvalued, thus resulting in choice patterns that reflect re-
peated erroneous selection of incorrect choice types or an inability to utilize flexible stimu-
lus–response mappings. These kinds of perseverative responses are reminiscent of the inabil-
ity to disengage from certain actions, observed in conditions such as obsessive–compulsive
disorder (Rosa-Alcázar et al., 2020). It would be interesting to use our task and computa-
tional modeling approach to investigate whether the mixture/interference of values at the
policy level could also explain the behavior of such populations.

Conclusion

In conclusion, our findings provide evidence that the choice type and how we define a choice
have important implications for the learning process. The behavioral patterns (i.e., value
interference from less abstract choices) are consistent with the premises of hierarchy in learn-
ing and behavior (i.e., lower levels in hierarchy impacting processing in higher levels), which
has become an increasingly promising topic of research (Collins and Frank, 2013; Eckstein
and Collins, 2020; Stolle and Precup, 2002). We also demonstrate additional evidence, rel-
evant to the definition of the choice space, that EF (specifically WM) contributes to RL in
reward-driven behaviors (Rmus et al., 2021), further demonstrating the complex interplay
between various neurocognitive systems.

2.5 Methods

Participants

Experiment 1. Our sample for Experiment 1 consisted of 82 participants (40 women, age
mean = 20.5 years, SD = 1.93 years, age range = 18–30 years) recruited from the University
of California, Berkeley, Psychology Department’s Research Participation Program. We based
our sample size on samples from previous similar behavioral experiments (Collins, 2018: 91
participants; Collins et al., 2014: 85 participants; Collins and Frank, 2012: 78 participants).
In accordance with the University of California, Berkeley, institutional review board policy,
participants provided written informed consent before taking part in the study. They received
course credit for their participation. To ensure that the participants included in analyses
were engaged with the task, we set up an exclusion criterion of or greater average accuracy
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across all task conditions. This cutoff was determined based on an elbow point in the group’s
overall accuracy in the task (Fig. 2.12). We excluded 20 participants based on this criterion,
resulting in a total sample of 62 participants for the reported analyses.

Experiment 2. For the second experiment, we recruited 75 participants(54 women, 1 pre-
ferred not to answer; age mean = 20.34 years, SD = 2.4 years, age range = 18–34 years)
from the University of California, Berkeley, Research Participation Program. One of the pre-
requisites for participating in Experiment 2 was that participants had not previously taken
part in Experiment 1. We also relied on previous research to decide on the sample size, as in
Experiment 1. Participants completed the experiment online (De Leeuw, 2015) and received
course credit for their participation. Using the same exclusion criteria as the previous exper-
iment (based on the distribution of average accuracy), we excluded 18 participants, resulting
in the total sample of 57 participants.

Experimental Protocol

Experiment 1

Learning blocks. Participants were instructed that they would be playing a card sorting
game, and that on each trial, they would sort a card into one of three boxes. Their goal was
to use reward feedback to learn which box to sort each card into. The boxes were labeled
with three different colors (green, blue, and red), and participants chose one of the boxes
by pressing one of three contiguous keyboard keys (corresponding to the box position) with
their index, middle, and ring finger. Importantly, the color of the boxes changed positions
on different trials (i.e., the blue box could appear on the right side on trial n, and in the
middle on trial n + 1). Participants received deterministic feedback after each selection (+1
if they selected the correct box for the current card, 0 otherwise).

Before the experiment, participants read detailed instructions and practiced each task
condition. The task then consisted of eight blocks, divided into three conditions. Each of the
three conditions was defined by its distinct sorting rule. In the label condition, the correct box
for a given card was defined deterministically by the box’s color label (2.1A). For instance,
if the blue box was the correct choice for a given card, participants were always supposed to
select the blue box in response to that card, regardless of which key mapped onto the blue
box on a given trial. In the position condition, the correct box was defined deterministically
by the box’s position (left/middle/right). For example, the correct response of a given card
would always be achieved by pressing the leftmost key with the index finger, regardless of the
box color occupying the left position (2.1B). The sorting rule in the position control condition
was identical to the sorting rule in the position condition, but the boxes were not tagged
with color labels. This condition allowed us to assess participants’ baseline performance
when only one response type (e.g., position, but not the label) was available. Importantly,
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participants were explicitly told the sorting rule (position or label) at the beginning of each
block, to avoid any performance variability that may arise as a function of rule inference and
uncertainty. Following the eight learning blocks, participants performed two additional tasks;
these are not the focus of the current article and are not analyzed here. Out of eight blocks in
total, two were control condition blocks, three were position conditions, and three were label
conditions. Block order was pseudorandomized: Participants completed a control block first
and last, whereas the conditions of Blocks 2–7 were randomly chosen within participants,
but counterbalanced across participants. In each block, participants learned how to sort
six different cards; we used a different set of images to represent cards in each block. The
boxes were labeled with the same three colors across all blocks, except the position control
blocks, where the boxes were not labeled. Participants experienced 15 repetitions of each
card, resulting in 90 trials per block; trial order was pseudorandomized to ensure a uniform
distribution of delays between repetitions of the same card in a block. We controlled for the
card-dependent position–label combinations across trials. Specifically, each label occurred
in each position an equal number of times (i.e., the blue label occurred 5 times on the left,
right, and middle box for each card). We also ensured that the position–label combinations
were evenly distributed across the task (i.e., the blue–middle combination did not occur only
during the first quarter of block trials).

Single trial structure. On each trial, participants first saw the three boxes with their
color labels underneath a fixation cross at the center of the screen. After 1 sec, the card
appeared in the center of the screen, replacing the fixation cross. Participants were allowed
to press a key only when the card appeared, with a 1-sec deadline. Following their response,
participants received feedback (+1 or 0) that remained on the screen for 1 sec, followed by
a 1-sec intertrial interval (fixation cross). This trial structure was designed to mitigate the
concern that condition-based differences in performance might stem from the label condition
being more difficult, by giving participants time to identify where each color label was posi-
tioned. This minimizes a potential advantage of the position condition, where participants
did not need to know where colors were on a trial-by-trial basis to make a correct response.
Giving participants time to identify where each color is positioned before card presentation
decreases the difference between the conditions in terms of difficulty, making this confound
less likely.

We designed the label and position conditions to engage choice processes with different
degrees of generality. The position condition should capture the less general choice process in
which the rewarding response is defined by a single motor action, and the label is irrelevant
to both choice and learning. The label condition, on the other hand, captures a more general
choice process in which the rewarding response (i.e., choice of the correct label) can be made
by identifying one of three positions and executing any of the three motor actions, depending
on where the correct box label is positioned on the given trial, such that the other dimension
(position) remains irrelevant for learning but becomes relevant for choice.
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Experiment 2. The task design for Experiment 2 was the same as the task design for Ex-
periment 1, with one important exception - we varied the number of cards per block between
2 and 5, for both position and label conditions. This manipulation has previously been shown
to enable computational modeling to disentangle WM and RL processes (Collins and Frank,
2012).The order of blocks was counterbalanced across participants; they completed either
label or position blocks first, with the order of set sizes randomized for the first completed
condition, and then repeated for the second. In addition, we removed the control condition,
given that we previously observed no difference between position and control. Participants
completed four blocks of position and label each, where each block within each condition
had a different set size.

Analyses

Model-independent analyses. In addition to general diagnostics and standard statistical
analyses (see Results), we sought to analyze participants’ choices and RTs as a function of
how often each motor action and each label had been rewarded for each card. Specifically,
we computed card-dependent cumulative reward history (CRH) for both positions P and
labels L on each trial for a card C, in each condition:

CRHP
k (C,P ) =

t∑
k=1

(rk ∗ 1(Cardk = C,Choicek = P ))

CRHL
k (C,L) =

t∑
k=1

(rk ∗ 1(Cardk = C,Choicek = L))

where rk is the outcome at trial k in the block, and 1 is the indicator function that takes
a value of 1 if the card and position/label match C and P/L, and 0 otherwise. We used
this metric to analyze how the integration of two value sources shaped choices when choice
format was less/more general. In particular, in the example of the position condition, the
position CRH for a card and its associated correct position indicated the past number of
correct choices, whereas the CRH for other positions was 0. By contrast, in the same position
condition, the label CRH for a card reflected how often each label had been rewarded because
of this label being in the correct position. All label CRH values in the position condition
were expected to be close to each other because label positions were counterbalanced, but
slight differences because of past choice randomness could be predictive of biases in future
choices. The opposite was true in the label condition.

To analyze how the value integration for each type of choice shaped decisions, we focused
on the error trials and computed the proportion of errors driven by the other irrelevant
choice dimension. We reasoned that if participants were randomly lapsing, any of the two
possible errors should be equally likely. However, if participants experienced value interfer-
ence, they should be more likely to select the error with the higher CRH in the irrelevant
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dimension. In the label condition, such an interference error would look like selecting the
position/motor action that was rewarded on the previous trial, although the correct label
had switched positions since (2.1B). In the position condition, an interference error would
occur when participants selected the previously rewarded label that had switched positions,
instead of the label currently corresponding to the position/motor action that is always
correct for the given card (2.1B). We ran a trial-by-trial analysis using a mixed effects gen-
eral linear model to characterize choices. We used trialby-trial reward history difference
(RHD) = CRH(chosen) − mean(CRH(unchosen)) between chosen and unchosen boxes,
for both positions and labels, and tested whether this discrepancy modulated accuracy and
RTs. If participants implemented an optimal decision strategy, their accuracy and RTs
should increase and decrease, respectively, with an increased RHD in the relevant choice
dimension (i.e., label RHD in label condition, position RHD in position condition). Alterna-
tively, contribution by the irrelevant dimension RHD (i.e., position RHD in label condition
or vice versa) would serve as evidence of value interference. Our mixed-effects models had
the following general structure:

Performance = 1 + β1pRHD + β2lRHD + β3t

+β4block + (1 + β1pRHD

+β2lRHD + β3t+ β4block|Subject)

where pRHD is RHD based on position reward history and lRHD is RHD based on
label reward history. Performance can refer to either accuracy (coded as correct/incorrect)
or RTs. In the analysis of Experiment 2 data, we also ran mixedeffects models including
predictors that indexed WM mechanisms (set size and delay between presentations of the
current stimulus and the most recently rewarded stimulus, which, respectively, correspond to
indexing capacity and susceptibility to decay properties of WM) and RL effects (dimension-
relevant, card-dependent reward history, calculated from the cumulative number of earned
points for each card, indexing reward-based learning):

Performance = 1 + βRLRL+ βWMWM + βtt

+βbblock + (1 + βRLRL

+βWMWM + βtt+ βbblock|Subject)

where RL corresponds to RL factors such as reward history, and WM corresponds to
WM factors such as decay and set size. Note that this is a general structure to demonstrate
how we structured the mixed-effects model, but set size and decay were entered as separate
predictors. In other words, we explored the effects of interest on a group level, as well as how
the estimates of these effects vary across individual participants. We included a predictor
for trial number in this model, to ensure that reduction in RTs is not simply conflated
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with practice effects/task progression. In addition, we added block number as one of the
regressors, to capture overall improvement in performance across the task.

Computational Modeling

RL-WM. To computationally quantify the differences in learning processes between the
motor choice/general choice conditions, we used a set of hybrid RL and WM models. Our
baseline assumption was that, in the RL process, participants track and update two inde-
pendent sets of stimulus-action value tables, corresponding to the two possible choice spaces:
a card-position value table and a card label value table. We also assumed that the choice
policy may reflect a mixture of both the relevant and the irrelevant value tables, potentially
leading to interference errors when the value of irrelevant choice dimension (position/label)
contributes to the choice process (Fig. 2.6A). In addition to the RL module, a WMmodule al-
lows us to capture the contribution of WM to performance. The WM memory module learns
fast, but is sensitive to short-term forgetting and cognitive load, and is thus particularly iden-
tifiable in the second experiment where the set size varies between 2 and 5 (Collins, 2018;
Collins and Frank, 2012, 2018). WM also potentially tracks associations between cards and
two choice types, and like RL, its policy may reflect a mixture of both relevant and irrelevant
associations. We investigated a range of models to pinpoint the computational mechanisms
of divergence between the learning processes in the two conditions, by varying the extent to
which the models allowed for condition-dependent specificity/model-parameters.

Figure 2.6: (A) In Experiment 1, we used RL model variants, which assume incremental,
feedback-driven learning. In Experiment 2, we combined RL and WM modules, under the
assumption that learning is a weighted interaction between RL and WM systems. (B) The
extent to which participants relied on WM was determined by the WM weight parameter
(ω), proportional to participants’ WM capacity (K), and inversely proportional to set size.

RL Rule. The RL module assumes incremental learning through a simple delta rule (Sut-
ton and Barto, 2018). Specifically, on each trial t, the values of labels QL(c, l) and positions
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QP (c, p) for the trial’s card c and chosen labels and positions l and p are updated in propor-
tion to the reward prediction error:

QP
t+1(c, p) = QP

t (c, p) + α ∗ (r −QP
t (c, p))

QL
t+1(c, l) = QL

t (c, l) + α ∗ (r −QL
t (c, l))

where α is the learning rate and r = 0/1 is the outcome for incorrect and correct trials.
Q-tables are initialized at 1/3 (3 = total number of positions/labels) at the start of each
block to reflect initial reward expectation in the absence of information about new cards.

WM Rule. Unlike RL, WM processes can encode and retain the previous trial’s informa-
tion perfectly, thus enabling one-shot learning. Note that other cognitive processes (such as
episodic memory) could also support one-shot learning and contribute to learning behavior in
this experiment; however, here, we focus on RL and WM processes only, as our protocol does
not allow us to disentangle other contributions (Yoo and Collins, 2022). Following previous
works (Collins, 2018; Collins and Frank, 2012; Collins et al., 2014), we model the one-shot
learning in WM by storing the immediate outcome as the stimulus–response weight:

W P
t+1(ct, pt) = rt

WL
t+1(ct, lt) = rt

Prior work in similar tasks (Frank et al., 2007; Gershman, 2015; Katahira, 2018; Niv et
al., 2012) has shown an asymmetry in learning based on positive/negative feedback, such that
individuals are less likely to integrate negative feedback while learning rewarding responses.
Thus, we included a learning bias (LB) parameter (0 ≤ LB ≤ 1), which scales the learning
rate α by LB when participants observe the negative feedback. We applied LB to both
RL and WM (for both position and label dimensions, showing only an example for position
here):

QP
t+1(c, p) = QP

t (c, p) + LB ∗ α(0−QP
t (c, p))

W P
t+1(c, p) = W P

t (c, p) + LB ∗ α(0−W P
t (c, p))

To capture the phenomenon that maintenance of information in WM is short term and
subject to interference, the weights stored in WM are susceptible to decay (ϕ) at each trial,
which pulls all position and label weights to their initial values (W P0 , WL0) following the
application of the WM forgetting rule:

W P
t+1 = W P

t + ϕ ∗ (W P0 −W P
t )

WL
t+1 = WL

t + ϕ ∗ (WL0 −WL
t )
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Whereas information stored in WM decays over time, reflecting the well-documented
short time-scale of WM maintenance, RL is assumed to be a more robust system that is
less susceptible to forgetting. Therefore, it is theoretically less justified to include a decay
mechanism for Q-values. Nevertheless, for completeness, we fit the version of the model with
a separate decay process in the RL module as well and confirmed that it does not improve
the model fit. Thus, in further implementations of the RL-WM model, we limited decay
implementation to the WM module only.

Policy. We used the softmax function to transform WM weights and RL Q-values into
choice probabilities to produce position choice policies P P

RL and P P
WM :

P P
RL(p|c) =

exp(β ∗QP
t (c, p))∑3

i=1 exp(β ∗QP
t (c, pi)

P P
WM(p|c) = exp(β ∗W P

t (c, p))∑3
i=1 exp(β ∗W P

t (c, pi)

We applied the same softmax transformation to the label Q and W-tables to obtain the
label and choice policies P P

RL and P P
WM . This policy permits the selection of choices with

higher Q-values/weights with higher probability. The softmax β is the inverse temperature
parameter, which controls how deterministic the choice process is.

For each module, the overall choice policy is a mixture of both policies, determined by
mixture parameters, ρ:

PRL(pi|pos.block) = ρP ∗ P P
RL(pi) + (1− ρP )

∗PL
RL(label(pi))

PWM(pi|pos.block) = ρP ∗ P P
WM(pi) + (1− ρP )

∗PL
WM(label(pi))

We apply the same mixture process with mixture weight ρL for the label dimension
blocks:

PRL(li|lab.block) = ρL ∗ PL
RL(li) + (1− ρL)

∗P P
RL(position(li))

PWM(li|lab.block) = ρL ∗ PL
WM(li) + (1− ρL)

∗P P
WM(position(li))
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The RL-WM model posits that choice comes from a weighted mixture of RL and WM,
where one’s reliance on WM is determined by the WM weight (ω) parameter:

P (p|c) = ω ∗ PWM(p|c) + (1− ω) ∗ PRL(p|c)
P (l|c) = ω ∗ PWM(l|c) + (1− ω) ∗ PRL(l|c)

where ω reflects the likelihood of an item being stored in WM and is proportional to the
ratio of capacity parameter (K) and block set size (or number of stimuli; ns), scaled by the
baseline propensity to rely on WM (ω0; Fig. 2.6):

ω = min(1,
K

ns
) ∗ ω0

We further modified the policy to parameterize additional processes. For instance, in-
dividuals often make value-independent, random lapses in choice while doing the task. To
capture this property of behavior, we derived a secondary policy by adding a random noise
parameter in choice selection (Nassar and Frank, 2016):

P ′ = (1− ϵ) ∗ P + ϵ ∗ 1

nA

where nA is the total number of possible actions and 1/nA is the uniform random policy
and is the noise parameter capturing the degree of random lapses. We fit the different
configurations of the full RL-WM model to the data from Experiment 2, where we varied
set size, which permitted us to modulate WM involvement. Note that previous research
with experiments including multiple set sizes has shown that single process models (such
as RL with decay or interference) are insufficient to capture set-size effects; indeed, these
processes can be decomposed into both pure cognitive load and increased forgetting with
longer delays between stimuli across set sizes. Thus, in Experiment 2, we do not consider
RL-only models. In the absence of a set-size manipulation, it is not possible to separately
identify the WM module from the RL module. Thus, in the first experiment, where set size
is fixed, we only consider the RL module as approximating the joint contributions of both,
and do not include a WM module. Because the RL module summarizes both RL and WM
contributions, we add to it a short-term forgetting feature of the RL-WM’s WM module:
Specifically, we implemented decay in Q-values for all cards and all choices at each trial:

QP
t+1 = QP

t + ϕ ∗ (Q0 −QP
t )

QL
t+1 = QL

t + ϕ ∗ (Q0 −QL
t )



CHAPTER 2. CHOICE TYPE IMPACTS HUMAN REINFORCEMENT LEARNING 36

whereas in the RL-WM model, the forgetting parameter is limited to the WM module
only. The list of baseline parameters for RL-WM model (Experiment 2) includes learning
rate (α), inverse temperature (β), lapse (ϵ), LB, decay (ϕ), capacity (K), WM weight (ω),
and value mixture (ρ). The baseline RL model (Experiment 1) include learning rate (α),
inverse temperature (β), lapse (ϵ), LB, decay (ϕ), and value mixture (ρ). We explored
different model variants by making different parameters fixed/varied across conditions. In
the RL-WM (Experiment 2) model, the parameters did not vary as a function of set size
(i.e., same label/position parameter values for all set sizes).

Model Fitting and Comparison

Fitting procedure. In both Experiment 1 and Experiment 2 modeling, we used maxi-
mum likelihood estimation to fit participants’ individual parameters to their full sequence of
choices. All parameters were bound between 0 and 1, with the exception of the β parame-
ter, which was fixed to 100 (found to improve parameter identifiability here and in previous
similar tasks; Master et al., 2020), and the capacity parameter (K) of Experiment 2 models,
which could take on one of the discrete values between 2 and 5. To find the best fitting pa-
rameters, we used 20 random starting points with MATLAB’sfmincon optimization function
(Wilson and Collins, 2019).

Model validation. To validate whether our models could indeed capture the behavioral
properties we set out to model, we simulated performance from the best parameter esti-
mates for each participant 100 times per participant. We then compared whether the model
predictions from the simulated data captured the patterns we observed in the actual data
set.

These simulations also allowed us to ensure that our fitting procedure could adequately
recover parameters in our experimental context, by fitting the model to the simulated data
and evaluating the match between the true simulation parameters and recovered parameters
fit on simulated data.

Model comparison. Exploring the full model space would lead to a combinatorial ex-
plosion of models, given the possible variations along all parameters. Thus, to explore the
model space, we took a systematic approach by starting with the most complex model (all
parameters varied across conditions), and gradually decreasing model complexity, while also
monitoring the goodness of model fit. Specifically, we reduced the model complexity only
if we found that removing a parameter improved the model fit. We chose this approach
to conduct model comparison systematically, testing out plausible parameter configurations
with varying complexity. We compared the models using the Akaike Information Criterion
(AIC; Wagenmakers and Farrell, 2004), which evaluates model fit using likelihood values and
applies a complexity penalty based on the number of parameters. To ensure that our models
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were identifiable with AIC, we computed a confusion matrix (Wilson and Collins, 2019) by
creating synthetic data sets from each model, fitting each model to the simulated data sets,
and performing AIC based comparison where the ground truth was known. This confirmed
that AIC was adequately penalizing for model complexity in our situation.

2.6 Supplementary Materials

Experiment 1 additional model comparisons. We tested whether an additional decay
parameter, an additional mixture parameter, a mixture parameter shared across the two
conditions and free softmax temperature parameter improved the fit to the data. These
models did not improve the fit compared to M3 (our winning model).

Figure 2.7: Additional models tested in Experiment 1.

Experiment 1 confusion matrix. To demonstrate the identifiability of our models (i.e.
models are meaningfully different from one another), we simulated the data from each model
on 62 iterations (number of participants). We used best parameter estimates for each par-
ticipant to create a synthetic data set on each iteration. We then fitted each of the models
to each simulated data set with 20 random starting points, to match the fitting procedure to
participants’ data. Next, we computed the proportion of the times each model fit the best.
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If the models are identifiable, the model the data was simulated from should fit the best on
most iterations (i.e. the matrix should have the highest proportion of best fit values on its
diagonal). The confusion matrix showed that our models are identifiable.

Figure 2.8: Confusion matrix of the main models tested in Experiment 1.

In our second experiment, we fit a considerable range of models, starting with the most
complex (all RL + WM parameters condition-dependent), to the simplest (all parameters
shared across conditions). We systematically varied the complexity of the model, while mon-
itoring the model fit/complexity tradeoff using AIC scores, in order to test which parameters
are necessary for capturing the difference between the conditions while also making sure our
models are not overfitting (Fig. 2.9).
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Figure 2.9: AIC comparison of models tested in Experiment 2. Here we show the difference
in individual AIC scores between M3, and all other models that were tested.

Experiment 2 Confusion Matrix. We tested the identifiability of our models in Ex-
periment 2 by creating a confusion matrix, similarly to Experiment 1 (Wilson and Collins,
2019). We constructed two different confusion matrices, which test for identifiability of our
model along 2 different dimensions. Our first confusion matrix allowed us to test whether the
models with different placements of the ρ parameter (i.e. with wrong choice dimension policy
mixture in RL, WM or both) are meaningfully dissociable. The confusion matrix shows that
the models with mixture ρ in RL and WM policy can be dissociated (Fig. 2.10). The data
simulated from the model with ρ parameter in both WM and RL policy was fit equally well



CHAPTER 2. CHOICE TYPE IMPACTS HUMAN REINFORCEMENT LEARNING 40

by that model and the model with ρ in WM policy alone. This is consistent with our results,
as model comparison revealed that AIC scores did not meaningfully differ between these two
models. Note that the models included in the confusion matrix are nested models (differing
by at most 1 parameter), or in the case of the second confusion matrix, identical models in
terms of number of parameters, but with different rho parameter placements. Therefore, we
did not expect the AIC scores to be considerably different for paired model fits paired with
data simulated across different models.

Figure 2.10: Confusion Matrix 1. Proportion of times the models fitted different simu-
lated data sets best, based on cross-fit AIC scores for models with different placement of ρ
paramater.

Our second confusion matrix tested whether we can dissociate the model we converged
on in the main text (M1, ω with RL-WM ρ) from variations of model with 1) no ρ parameter,
and 2) shared WM weight ω. Our results showed that our models are mostly identifiable,
with an exception of M2 (Fig. 2.11). However, M2 cannot produce the observed qualitative
error patterns, providing another method to rule out this model.
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Figure 2.11: Confusion Matrix 2. Proportion of times the models fitted different simulated
data sets best, based on cross-fit AIC scores for models with condition dependent ρ and ω
parameters (M1), condition dependent ω (M2), and condition dependent ρ.



CHAPTER 2. CHOICE TYPE IMPACTS HUMAN REINFORCEMENT LEARNING 42

Figure 2.12: Exclusion criteria based on the task performance. We averaged accuracy across
all conditions. Based on the “elbow point”, most participants’ performance is above .60, so
we used .60 as criteria for exclusion.



CHAPTER 2. CHOICE TYPE IMPACTS HUMAN REINFORCEMENT LEARNING 43

Figure 2.13: Parameter recovery for the best models in Experiment 1 and Experiment 2.
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Figure 2.14: Parameter recovery for the best models in Experiment 1 and Experiment 2.

M1 M2 M3 M4 M5

0.20 0.18 0.19 0.22 0.18

Table 1. Protected Exceedance Probability of tested models in Experiment 2,
computed based on AIC evidence. Bayes Omnibus Risk BOR (indexing the prob-
ability that model frequencies are equal) = 0.94, which suggests that frequency
is not strongly differentiable between models.

M1 M2 M3 M4 M5

1 0 0 0 0
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Table 2. Since BIC provided stronger differentiation between models, we com-
puted the protected exceedance probability based on BIC evidence. Bayes Om-
nibus Risk (BOR) = 1.29e − 12, with PXP (M1) = 1,suggests that M1 has the
highest frequency.



46

Chapter 3

Subgoals in Hierarchical
Reinforcement Learning

3.1 Abstract

In the hierarchical reinforcement learning framework, complex learning problems are decom-
posed into sub-components that lead to subgoals, and that can flexibly be combined and
used to solve a problem in an absence of immediate rewards. Subgoals are hypothesized
to be reinforcing. Little is known about how subgoals are used to support learning, with
different theories proposing different factors subgoals depend on to affect learning. Here, we
show that subgoals reinforce choices even when controlling for other factors often associated
with subgoals (such as novelty, bottleneck or external rewards), and that people strategi-
cally search the subgoal space. Pseudo-reinforcing effect of subgoals can also transfer to an
independent task, with the caveat that its generalizability seems to be possible only with
explicit recognition of subgoal features.

3.2 Introduction

Representational hierarchy of information, which assumes simple, concrete bits of informa-
tion are organized into increasingly more complex and abstract levels is a concept which has
been critical in characterizing how humans efficiently process large amounts of information
(Botvinick, 2008; Lashley et al., 1951; G. A. Miller et al., 2017). For instance hierarchical
organization can be leveraged to understand how humans solve complex tasks: high-level
strategies can be used to inform individual decisions (Badre and D’esposito, 2009; Collins
and Frank, 2013), final goal of the task can be represented using a set of intermediate goals
that can be accessed more readily (Diuk et al., 2013; Ribas-Fernandes et al., 2011; Solway et
al., 2014), perceived input is processed from a coarse to increasingly more fine level (Fleuret
and Geman, 2001; Hegdé, 2008). Beyond offering a theoretical framework for understanding
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a range of cognitive processes, an extensive array of neuroscience research supports the con-
cept of hierarchical organization within neural systems (Badre and D’esposito, 2009; Badre
and Nee, 2018; Koechlin and Summerfield, 2007; Koechlin et al., 2003; E. K. Miller and
Cohen, 2001). This empirical evidence closely aligns with the theoretical models that posit
a structured, hierarchical organization of cognition.

A computational framework that formalizes how hierarchy is leveraged for problem solv-
ing is hierarchical reinforcement learning (HRL,Botvinick et al., 2009; McGovern and Barto,
2001). The HRL framework posits that agents interact with their environment through
primitive actions, and over time acquire more complex policies (Sutton et al., 1999). These
temporally-extended policies, also referred to as options (Stolle and Precup, 2002), can be
flexibly applied to accelerate learning when encountering new problems (Solway et al., 2014;
Tomov et al., 2021). This is a departure from the flat reinforcement learning which is con-
strained to learning of individual state-action associations through a trial-and-error process
(Sutton and Barto, 2018), where an agent forms individual state-action associations, based
on the observed feedback at each time-step. The benefit of HRL is that it (through tempo-
rally extended policies/options) accounts for learning in highly dimensional tasks that would
quickly lead to a combinatorial explosion of individual state-action associations an agent
would need to explore under the premise of basic RL. In addition, environments with sparse
rewards (e.g. where feedback is not observed at each time-step) represent a critical limitation
of RL algorithms, that HRL addresses through subgoals - intermediate task milestones that
can support learning in the absence of feedback.

Specifically, subgoals serve the function of decomposing problems into policies that ter-
minate when the subgoal is reached (Dayan and Hinton, 1992; Karlsson, 1994; Vezhnevets et
al., 2017). Reaching a subgoal produces a pseudo-reward signal that strengthens formation
of local policies by reinforcing preceding action sequences, even in the absence of external
reward (Diuk et al., 2013; Ribas-Fernandes et al., 2011; Ribas-Fernandes et al., 2019). The
pseudo-reinforcing effect distinguishes subgoals from rewards: subgoals do not reinforce the
global policy of the agent toward an overall goal (presumably a standard reward), only the
local policy leading to the subgoal. Various research studies have explored and proposed
mechanisms through which the pseudo-reinforcing effect of subgoals manifests, but many
questions remain. Some accounts indicate that subgoals rely on shared neural substrates as
standard rewards for their reinforcing effects (McDougle et al., 2022), others have shown dis-
tinct neural prediction error signals associated with rewards and subgoals (Ribas-Fernandes
et al., 2011). Account of intrinsic motivation and curiosity argues that subgoals depend on
effects of novelty and surprisal to encode preceding action sequences as meaningful (Bal-
dassarre and Mirolli, 2013; Chentanez et al., 2004; Singh et al., 2010). For instance, when
feedback is not immediately delivered, encountering a novel or surprising event can provide
a signal that actions that led to that event are meaningful and should be repeated (Eckstein
and Collins, 2021; Schmidhuber, 1991). Indeed, there is evidence that neural data aligns
with this computational theory, showing that novelty/surprise recruit neural signals (e.g.
dopaminergic signaling) that are typically associated with rewards (Bromberg-Martin et al.,
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2010). An alternative explanation defines subgoals as bottleneck states that are most fre-
quently visited in successful attempts to reach the final reward (Diuk et al., 2013; McGovern
and Barto, 2001); they have also been defined using concepts of graph theory, such as cen-
trality, as states that have the highest degree of connectedness in the state space (Şimşek
and Barto, 2008).

It is noteworthy that some of the accounts of how subgoals support learning might be in
conflict with the premise that subgoals are not reinforcing in a way rewards are. Specifically,
if subgoals are defined as states that most frequently precede rewards, then the effect of sub-
goals might entirely be dependent on the value inherited from the terminal reward through
TD-like mechanisms (O’Doherty et al., 2003; Schultz et al., 1997; Sutton, 1988; Sutton and
Barto, 1990). Relatedly, intrinsic motivation accounts might conflate subgoals with novelty
and surprise, when there is no evidence that subgoals necessitate either of these. In other
words, it is unclear whether pseudo-reinforcing effect of subgoals can be isolated beyond that
of reward association, novelty/surprise or structure.

To explore this question, we developed a hierarchical learning task that involves com-
bining simple actions sequences, followed by subgoals, into more complex ones to secure
rewards. We carefully decoupled subgoals from rewards by incorporating subgoals into both
rewarding and non-rewarding trial sequences. In addition, we separated subgoals from ele-
ments of novelty and surprise by ensuring participants could anticipate observing them on
each trial. This allowed us to behaviorally test the more isolated pseudo-reinforcing effect
of subgoals. Moreover, given the critical characteristic of subgoals in HRL is their ability to
be generalized to enhance performance in new tasks, we investigated whether these subgoals
could inform decision-making across a set of separate tasks.

Our findings indicate that participants generally utilized subgoals to hierarchically solve
the task, strategically navigating through potential subgoal options to organize their actions
in the absence of immediate rewards. While behavioral patterns of the majority of partici-
pants indicated sensitivity to subgoals, only a subset displayed generalization of subgoal to
separate tasks - potentially restricted only to participants who explicitly recognized features
that defined the subgoals. These outcomes suggest that subgoals can influence behavior
beyond motivations based on surprise or direct prediction of rewards, though their broad
application, under this restrictive definition, across different task contexts is not assured.

3.3 Methods

Experiment

Participants.

We collected data from a total of 107 participants (70 women, age mean = 22.2 years, SD
= 4.25 years, age range = 18–38 years) from the University of California, Berkeley, Psychol-



CHAPTER 3. SUBGOALS IN HIERARCHICAL REINFORCEMENT LEARNING 49

ogy Department’s Research Participation Program and from online research platform Prolific
(www.prolific.com). All participants provided written informed consent before beginning the
experiment, in accordance with the University of California, Berkeley, Institutional Review
Board (IRB) policy. Participants from RPP pool received course credit for their participa-
tion; participants who took part in the study through Prolific received monetary compen-
sation ($10.63/hour, the Prolific recommended rate). We excluded 13 participants who did
not meet participation criteria required by our IRB protocol.

Performance exclusion criteria. We further excluded 31 participants based on their
performance. Specifically, we excluded participants who failed to discover at least one correct
action sequence throughout the entire task, if their response patterns suggested that they
were not compliant with the task (e.g. repeating the same keys or same sequences across
blocks). This resulted in the final sample of 63 participants whose data was analyzed.

Learning phase.

Participants played a game where their goal was to obtain golden coins by inputting 4 keys
sequentially into a machine (Fig. 3.1). The machine generated a coin if the input 4-key
sequence (composed of two simpler 2-key subsequences) was correct for the current block.
Each trial was divided into two subtrials, marked by an execution of the first and the second
2-key sub-sequence. At the completion of each 2-key sub-sequence, a token appeared on the
machine screen, followed by the final outcome of the trial. To obtain a coin, participants
were required to learn a valid 4-key sequence composed of 2 valid sub-sequences and signaled
by 2 subgoals represented by the tokens. Participants had 2500ms to press each key; if they
failed to do so within specified time frame they received a warning to respond faster and
the trial terminated. If the trial was correct participants received a golden coin; if not they
observed a puff of smoke. Feedback was presented for 500ms, after which the next trial
commenced.

Tokens were defined by 2 dimensions: shape (balloon, boat, car) and color (red, blue,
yellow) - resulting in 9 possible token combinations. For each participant only one token
dimension (either shape or color) was relevant, with specific features of the relevant dimension
reliably signaling reaching a subgoal toward the final goal of producing a gold coin. The
tokens of relevant dimension were consistently observed on correct trials, and reliably signaled
occurrence of a subgoal. There were 6 possible sub-sequences of two different individual key
presses, 3 of which were valid (reliably generating a specific feature of a relevant dimension)
and three of which were invalid (reliably generating a feature of the irrelevant dimension).

For example, if the relevant token dimension was shape, and [01] was a correct partial
sequence that produced the balloon shape, then every time participants entered [01] they
observed a balloon-shaped token. This token shape could appear in any one of three colors,
sampled with equal probability. On the other hand, if participants pressed the keys in the
reverse order [10], they would always observe a specific color of a token (e.g. yellow) that

https://www.prolific.com
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could take on any of the 3 shapes (again with equal probability) (Fig. 3.1A). Each of the 3
valid sub-sequences was a part of a valid 4-key sequence in some experimental blocks; invalid
sub-sequences never contributed to a valid 4-key sequence (Fig. 3.1B). Therefore, executing
a valid 2-key sequence and observing a relevant token dimension (e.g. balloon) could be
considered as reaching a subgoal towards final reward at the end of the trial.

Only one 4-key sequence was correct and lead to coins in a single block. Each of the 3
valid 4-key sequences were repeated 6 times across the task, resulting in the total of 18 blocks.
Blocks had a maximum of 40 trials, but if participants reached a criterion of a minimum of
10 trials, and at least 8 of the last 10 trials were correct, they proceeded to the next block.
Relevant dimension and valid sub-sequences were counterbalanced across participants.

The rationale for the complex nature of the subgoal definition rested on 2 major factors.
First, we needed subgoals and non-subgoals to appear equally often, in order to equate the
surprise/novelty/bottleneck features for subgoals and non-subgoals . Second, we needed to
subgoals to appear as a part of both rewarded and non-rewarded trials, in order to equate
extrinsic value for subgoals and non-subgoals, thus ruling out the possibility that subogals
impact behavior simply because they are more extrinsically valuable than their counterparts
because they always predict rewards.
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Figure 3.1: A) Participants sequentially pressed 4 keys, observed two tokens after each 2-key
presses, and received the final outcome at the end of the trial. Subgoal tokens appeared on
both correct and incorrect trials. B) Each of the 3 possible 4-key sequence was repeated 6
times for a total of 18 blocks. C) Participants learned to press subgoal-generating two-key
sequences increasingly across the correct sequence iterations (inset), and as a function of
the number of times they successfully discovered valid 4-key sequences (top), demonstrating
learning of the subgoal structure.

Test

A critical property of subgoals we were interested in is that they can be generalized to novel
tasks to accelerate learning (Solway et al., 2014; Tomov et al., 2021). We wanted to test
whether our participants generalized subgoals and their pseudo-reinforcing properties to a
separate set of tasks they were administered after the learning phase (assuming they inferred
the correct subgoal structure in the first place).

First, participants completed a 2-arm bandit reversal task (Fig. 3.2A), which served as an
implicit test of whether subgoals’ impact on behavior transfers to a separate learning task.
This test phase consisted of 4 blocks. In the first block, participants saw 2 novel images
they hadn’t encountered in the task before (e.g. a star and a diamond). Their task was to
choose between the two images to collect points. One of the images was correct: selecting
this image by pressing the key corresponding to the position of that image on the screen
resulted in gaining 1 point. Selection of the rewarding image resulted in a reward until the
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reversal, following which the previously incorrect image became the rewarding one. In the
remaining three blocks, participants performed the same type of tasks, with an important
difference: outcomes in these blocks were actual token dimensions instead of the points. That
is, selection of the rewarding image resulted in a correct subgoal dimension. For example,
if previously correct dimension was shape, then participant should always select an image
that leads to one of the 3 shapes, instead of an image that leads to one of the colors. In each
of the 3 subgoal blocks, we used 3 different pairwise shape-color combinations as outcomes.
Each block had 24 trials, with at least 8 trials required for a reversal to occur (3 possible
reversals per block). Participants had 1000ms to make their selection; trial feedback was
also presented for 1000ms.

Next, participants performed a preference task (Fig. 3.2B). In this task, they observed
isolated components of each dimension as stimuli (3 colors and 3 shapes). On each trial,
they were presented with a pair of stimuli (e.g. a shape and a color) and asked to select their
preferred option. The aim of this task was to test if participants showed a stronger preference
for the dimension associated with subgoal tokens from earlier tasks. Participants performed
60 trials of this task - presented in a single block, with 48 trials of cross-dimension pairs (e.g.
shape-color), and 12 trials of within-dimension pairs (e.g. shape-shape, color-color). We
added within-dimension pair trials to check whether participants showed a bias for particular
colors/shapes within dimension. On each trial participants had 1500 ms to respond, and they
were not given any feedback. Trials were separated by a 500ms presentation of a fixation
cross.

Finally, at the very end of the experiment we asked participants which dimension they
thought was the correct one in the task, as well as to rate their confidence in their answer
(on the scale of 1-5) (3.2C).

We constructed different tests with an aim to gauge 1) whether participants inferred the
subgoals in the training phase, and 2) if so whether subgoals generalized to impact choices
in separate tasks in



CHAPTER 3. SUBGOALS IN HIERARCHICAL REINFORCEMENT LEARNING 53

Figure 3.2: A) An implicit test of subgoal effect on performance in a new learning task, where
subgoals are treated as trial outcomes. B) Preference test probing whether participants
showed preference for the subgoal dimension, independent of feedback. C) Final question
probing participants’ explicit knowledge of the correct subgoal dimension.

Modeling

To get a better understanding of the extent and manner in which subgoals are generalized
from the training phase to the test phase, we analyzed how test phase performance was
predicated on individual color and shape values learned in the training phase by applying
different computational models. These models were based on different underlying assump-
tions regarding the generalization of subgoals (Fig. 3.3).

Baseline models

The baseline assumption of the models we tested was that the values (V ) associated with
each of the shapes and colors are independent, and are thus learned and updated individually.
Initially, we assigned uniform values to each color and shape at 1

ND
, with ND=6 representing

the total count of distinct colors and shapes. The 6 values were continuously tracked and
updated across trials throughout the 18 learning blocks. The baseline model assumption was
that these values then served as the primary criteria for decision-making in the test phase.

On each trial of the 18 training blocks, the color and the shape of two sub-trial tokens
observed were updated according to the delta rule (Sutton and Barto, 1999):

δshape1 = r − Vshape1

δcolor1 = r − Vcolor1

where δ represents the reward prediction error (RPE, the discrepancy between the ex-
pected and the observed outcome), the variable r denotes the final outcome of the trial, the
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number 1 indicates the index of the sub-trial (either 1 or 2), and Vshape/Vcolor refer to the
values of the token’s shape/color, respectively, observed during the sub-trial. The reward
prediction error for the second sub-trial (indexed as 2) was calculated in the same way.

The values of observed token shape and color were updated at the individual learning
rate α:

Vshape1 = Vshape1 + α · δshape1
Vcolor1 = Vcolor1 + α · δcolor1

Following the last training block, we modeled participants’ choices during the implicit
test phase, specifically within the subgoal blocks. Since participants encountered stimuli
they haven’t observed before, we set their values (Q) uniformly to 1

nS
, where nS = 2. Each

outcome within the subgoal blocks corresponded to one of the previously encountered colors
or shapes, with their respective learned values inherited from the training blocks. The
assumption was that if subgoals generalized from the training phase, the correct dimension
would be treated as a rewarding outcome (e.g. if shape was a correct dimension, then
participants should be more likely to select one of the two images that produces the shape
outcome).

To estimate the likelihood of participants’ choices, we used the softmax function to trans-
form Q values to stimulus choice probabilities:

P (s) =
exp(βQt(s))∑nS
i=1 exp(βQt(si))

where the β parameter corresponds to the decision noise, with higher values indicating
more deterministic choices (i.e. choosing the stimulus with higher Q value with higher
probability).

The accuracy of participants’ choices was assessed based on whether the selected stimulus
matched the correct stimulus for the current block, where the correct stimulus was defined
as the stimulus with the correct subgoal dimension as an outcome.

We next assessed the subjective reward, noting a key distinction from the points block,
where rewards are objectively defined (+1 or 0 points). In the subgoal blocks, the reward
was based on the participant’s learned value of the color and shape outcomes. The subjective
reward (r) was determined as follows: if the value of the observed outcome (Vobserved) - be it
color or shape—exceeded that of the alternative (Valternative) then r was assigned 1; otherwise,
it was assigned 0:

r(t) =

{
1 if Vobserved > Valternative

0 if Vobserved ≤ Valternative
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This allowed us to decouple the subjective value of outcomes from their accuracy. Specif-
ically, a participant might correctly identify a stimulus that results in a subgoal outcome,
but experience a lower subjective reward. This scenario is plausible because subgoals might
be part of both rewarded and non-rewarded trials in the training phase, potentially lead-
ing to situations where a subgoal outcome has a marginally lower value than a non-subgoal
outcome.

We then used the subjective reward and stimulus Q values to compute the reward pre-
diction error, and update the Q value of the selected stimulus according to the learning rate
(different from training phase learning rate):

δ = r −Q(s)

Q(s) = Q(s) + αtest · δ

Therefore, our baseline model has 3 parameters: training phase learning rate (α), test
phase softmax beta parameter (β) and test phase learning rate (αtest).

Next, we expanded this model to account for participants’ tendency to repeat the stimulus
selection from the previous trial (common behavioral strategy observed in this type of task):

P (s) ∝ exp(βQ+ κ same(s, st−1)) (3.1)

with κ parameter referring to stickiness (higher κ values quantifying higher tendency to
repeat the stimulus selection from the previous trial).

The expanded baseline model had the following parameters: training phase learning rate
(α), test phase softmax beta parameter (β), test phase learning rate (αtest) and stickiness
parameter (κ).

Subgoal-consistent boost models

We aimed to explore the hypothesis that subgoals influence choices via a mechanism distinct
from the straightforward reward-driven value acquired during the training phase. To investi-
gate this, we introduced a subgoal boost parameter (η) to the value of the correct dimension
for the current block:

V (subgoal) = V (subgoal) + η

In this way, the model enforces qualitative differentiation between subgoal and non-
subgoal outcomes, beyond the differences in baseline values that should in average be null,
as per the design of our experiment, and thus should only reflect variability.

This model had the following parameters: training phase learning rate (α), test phase
softmax beta parameter (β), test phase learning rate (αtest) and subgoal boost (η). Like in
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the baseline model, we also considered the variation of the subgoal boost model with added
stickiness.

Figure 3.3: Modeling approach. A) Each token was defined by a shape and a color, and the
values of each shape/color was updated as a function of the observed feedback at the end
of the trial (with values increasing if followed by a reward, and decreasing if followed by no
reward). Values of each color/shape are treated as independent and are learned and updated
individually across learning blocks. Because subgoals can occur in non-rewarded trials the
correct subgoal token dimension does not necessarily have a higher value. B) Results of
AIC comparison show that majority of participants’ data was better fit by the models in
M1 group - the set of models assuming no subgoal generalization beyond the value acquired
through reward prediction.

3.4 Results

Performance

We started by examining whether participants were sensitive to the subgoal structure in
the task by examining the probability with which they executed 2-key sequence actions
that reliably led to the correct subgoal dimension. We examined this proportion both as a
function of correct sequence iteration (each of the 3 correct 4-key sequences was repeated 6
times), and the number of times participants finished the block early by showing sufficient
evidence that they have succesfully inferred the correct sequence (minimum of 10 trials, with
at least 8 being correct, Fig. 3.4A). We used the latter due to the fact that occasionally
participants do not discover a correct sequence until later blocks due to the high number of
possible key combinations they need to explore in order to discover a correct one; therefore,
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aligning their performance to the block number might not be an informative indication of the
learning progress. We found that participants overall tended to select 2-key sequences that
led to subgoal dimension and reliably resulted in a rewarding outcome more than expected
by chance (subtrial 1: t(62) = 9.58, p = 3.7e-14; subtrial 2: t(62) = 8.74, p = 1.02e-12 , and
they did so more consistently with more acquired evidence. This suggests that participants
were able to discover the correct 4-key sequences throughout the task.

Next, we were interested in exploring whether participants treated the 4-key sequences
as a hierarchical composition of simpler sub-sequences. We examined participants response
times associated with each of the 4 keys in the trial (Fig. 3.4C). We found that for each of the
sub-sequence, participants’ first responses were faster at the completion of the sequence (key
presses 2 and 4), compared to the initiation of the sequences (key presses 1 and 3) (correct
trials K1 >K2 : t(62) = 8.74∗, K3 >K4 : t(62) = 6.03∗; incorrect trials K1 >K2 : t(62)
= 9.31∗, K3 >K4 : t(62) = 9.08∗; ∗all results were at the p <.001 level of significance)
- replicating the previous results of patterned RTs indicative of hierarchical composition
structure (Eckstein and Collins, 2021). This was true for both correct and incorrect trials.
Response time associated with the first key of the sub-sequence was faster for the first sub-
sequence compared to the second sub-sequence, with an exception of second key comparison
in correct trials (correct trials K1 >K3 : t(62) = 3.05∗, K2 >K4 : t(62) = 1.40, p = .26;
incorrect trials K1 >K3 : t(62) = 4.90∗, K3 >K2 >K4 : t(62) = 3.25∗; ∗ all results were
at the p <.05 level of significance). These results imply that 1) participants represented
4-key sequences as a hierarchical composition of simpler 2-key sub-sequences, and 2) that
second sub-sequence was contingent on the first, thus leading to the faster initiation through
a potential frontloading mechanism (Eckstein and Collins, 2021).

Since participants showed evidence of hierarchical representation (e.g. composition of
sub-sequences rather than individual keys), and there were many possibilities participants
could explore to combine 3 possible keys into a 4-key sequence, we tested whether participants
leverage the compositional representation of the 2 sub-sequences to construct a patterned
exploration of the subgoal space. We examined whether participants were more likely to
repeat the 2-key sequence from the previous trial on the first or second subtrial. To do so,
we only computed the probability of repetition based on the trials before participants observe
their first reward in the block. We restricted the trial window to only trials before the first
reward occurrence because we did not want potential response strategies to be biased by
the reward discovery. The results showed that participants were more likely to repeat the
first subtrial sequence compared to second subtrial sequence (Wilcoxon Z score = 263, p =
3.39e-07, Fig. 3.4B). This implies that participants potentially picked a sub-sequence, and
explored different combinations on the second subtrial before backtracking to switch to a
different first subtrial sub-sequence. This strategy potentially aided participants in exploring
as much of the subgoal space as possible in a systematic way.
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Figure 3.4: Pariticipants tend to press 2 key sequences that lead to subgoals increasingly
over the task. B) Prior to observing rewards, participants were more likely to repeat the first
than second sub-sequence, suggesting that they implement a systematic search of the subgoal
space. C) Response times suggest participants represent 4-key sequences as hierarchically
chunked sets of sub-sequences: key presses were faster at sub-sequence initiation, and for the
second sub-sequence, replicating previous findings(Eckstein and Collins, 2021)

Do subgoal dimensions affect responses?

Results so far indicated that participants were able to discover valid sequences in the task.
However, in theory, they could discover 4-key sequences without necessarily paying close at-
tention to the tokens, or using the tokens to guide their action selection at all. We performed
a trial-by-trial logistic regression analysis, which enabled us to assess the effect of observed
token dimensions on subsequent action choice and accuracy.

We constructed different regressors representing different types of subgoal representation
through the trial history of 1) previously chosen actions, 2) observed tokens and 3) final trial
outcomes (Fig. 3.5A). We then used these regressors to predict either accuracy or repetition
of the sequence on the subsequent trial. The regressors mapped on to: correct subgoal model
(participants replicated the same 2-key action sequences on previous two trials, observed the
relevant token dimension and received a reward), correct subgoal model rewarded only on
the previous trial (participants executed different 2-key action sequences on previous 2 trials,
observed the relevant token dimension on both trials, but recieved reward only on the trial
t−1), correct subgoal model rewarded two trials ago (same as the previous regressor, except
the correct trial occurred on t − 2), irrelevant subgoal model (participants replicated the
same 2-key sequence on the two previous 2 trials, observed same incorrect token dimension
and received no reward). In addition to this, we controlled for the final outcome on the
previous trial t−1, as well as the pattern of choices that suggest absence of a subgoal model.

We found that having a correct subgoal model significantly contributed to higher accuracy
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(median β coefficient = 0.55, Wilcoxon = 38, p = 3.12e-11, Fig. 3.3B). On the other hand,
having an irrelevant subgoal model impacted accuracy negatively (mean β coefficient = -.30,
t(62) = -8.90, p = 1.06e-12). In sequence repetition regression, we found that both relevant
(median β coefficient = .47, Wilcoxon = 89, p = 3.14e-10) and irrelevant (mean β coefficient
= 0.41, t(62) = 9.82, p = 2.93e-14) subgoal model increased the likelihood of in repeating
the actions from trial t-1 to trial t (Fig. 3.5C). This suggests that subgoal tokens did guide
choice selection, potentially beyond the simple effect of being predictive of rewards (e.g.
since participants were more likely to repeat actions to reproduce the tokens with dimension
that did not represent a subgoal, suggesting a potential incorrect subgoal model that had a
pervasive effect on behavior). We used one sample t-test on coefficients which were normally
distributed, and otherwise used a non-parametric version (Wilcoxon test).

To verify that participants were actively engaging with the task and paying attention to
the tokens, we interspersed probe trials at random intervals throughout the training blocks.
During these trials, participants were prompted to identify two out of nine possible tokens
that they had observed in the most recent trial. The results from these probe trials indicate
that participants were generally successful in identifying the correct tokens, confirming their
attentiveness. Participants were able to identify the token they previously observed both
by relevant (subtrial 1: relevant dimension t(62) = 15.96, p = 1.21e-23 subtrial 2: t(62)
= 14.16, p = 4.23e-21) and irrelevant dimension (subtrial 1: t(62) = 15.39, p = 7.45e-23 ,
subtrial 2: t(62) = 11.85 , p = 1.39e-17) more accurately than expected by chance. There
was no significant difference in accuracy for relevant and irrelevant dimension (subtrial 1:
t(62) = 0.31 , p = 0.75; subtrial 2: t(62) = 0.26 , p = 0.78, Supplementary Fig. 3.7).
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Figure 3.5: A) Trial-by-trial regression model predictors used to to test the effect of different
subgoal representations inferred by participants on 1) accuracy and 2) sub-sequence repeti-
tion through trial history of observed tokens, outcomes and selected actions. Note that we
only show first sub-trial for the clarity of explanation of how the regressors were constructed
but we have done the same for the second sub-trial. B) Subgoal outcomes impact accuracy
and C) sequence repetition.

Identifying subgoal generalization

The preliminary findings suggest that, on the whole, most participants were able to complete
the task; we also found evidence of the effect of subgoal model on sequence choice and
accuracy. Next, we sought to determine if the subgoals could extend their influence to
action selection and learning behavior in a separate task, thereby providing more robust
evidence of subgoals effects beyond mere associations with rewards or intrinsic motivational
elements driven by surprise and novelty.
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We designed three distinct assessments to explore participants’ understanding of subgoals,
as detailed in the Methods section. In both the preference task and the final question, we
inquired whether participants could explicitly discern the specific dimension (either shape
or color) that delineated the subgoals - through preference for the subgoal dimension and
explicit recognition of the difference between correct/incorrect dimension respectively. For
the implicit assessment, we utilized token dimensions as learning outcomes to test whether
participants were more biased towards choices leading to outcomes that were represented by
a relevant subgoal dimension.

Overall we observed a lot of variability in performance across 3 tests (Supplementary Fig.
3.8). To conduct an analysis in a systematic way, we opted to first identify if participants
showed sensitivity to subgoals beyond what can be explained by the value inherited through
association with reward. We did so by fitting different models to participants’ choices in
the implicit test phase, based on the value of each of the three colors and shapes learned
during 18 blocks of training (Fig. 3.3). In other words, we assumed that participants learn
the value (V) of each color and shape, based on the observed feedback, at a rate unique
to each participant (α). Because each of the token dimensions can occur during rewarded
and non-rewarded trials, the expected values for each of the 3 colors and shapes should, by
design, be roughly the same; we confirmed this (Supplementary Fig. 3.10). Consequently,
decisions in the implicit test based solely on these values should reflect no bias for outcomes
associated with previously identified subgoals.

Further, we explored models incorporating a hypothesis that participants add a subgoal
boost (η) to the value of the correctly identified subgoal dimension during the test phase,
thus valuing choices leading to subgoal outcomes more highly. In total, we examined four
models (including variations with and without a stickiness parameter κ), two of which relied
solely on value (V), and two that incorporated an additional subgoal bonus (η).

After fitting the models to the data from the implicit test phase and conducting an AIC
(Akaike Information Criterion, Akaike, 1998) comparison, we found that the model assuming
addition of subgoal bonus to the reward-driven value of the relevant dimension had the best
average AIC score, and that stickiness improved fit in both models (Supplementary Fig.
3.9). However, a closer look at individual participants’ AIC scores revealed that the data of
majority was better fit by the model without the η parameter (Supplementary Fig. 3.9). We
divided our sample into two groups: M1, consisting of participants whose data was better fit
by the models without the subgoal bonus, and M2, comprising those whose data was better
fit by the model with the subgoal bonus. Out of 63 participants, 42 were in the M1 group
and 21 in the M2 group, indicating that approximately one-third of the sample showed signs
of subgoal generalization, as evidenced by a reward-independent subgoal boost (Fig. 3.3).

In our subsequent analysis, we assessed the performance of both M1 and M2 groups
during each phase of the three tests. For the M1 group during the implicit test phase, there
was no discernible influence of subgoals on their decision-making. This was evident from
their lack of preference for choices leading to subgoals, with their selection probabilities not
exceeding what would be predicted by random chance (t(41) - .86, p = .39, Fig. 3.6B).
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They did not show preference for subgoal dimension during the preference task, performing
at levels comparable to guessing (t(41) = -2.16, p = 0.98). Additionally, only 24 out of 42
(57%) participants were able to identify the correct token dimension when asked explicitly
(Fig. 3.6A).

In contrast, participants in the M2 group displayed a clear pattern of subgoal generaliza-
tion (post-reversal accuracy difference from chance t(20) = 6.03, p = 6.76e-06; post-reversal
accuracy difference from points condition: t(20) = 1.78, p =0.9, Fig. 3.6C). They favored
options that led to subgoal outcomes and were able to adapt their decisions following changes
in which options were correct. Furthermore, their performance in preference test was signif-
icantly better than chance level (t(20) = 4.79, p = .0001, Fig. 3.6B), and compared to M1
group (t(60) = 4.69, p = 1.57e-05). Furthermore, 17 out of 21 (80%)were able to explicitly
identify the correct subgoal dimension based on the final question (Fig. 3.6A).

Finally, we compared two groups of participants based on the number of correct responses
in the final question. We found that at the 5% level of significance, there is sufficient evidence
to conclude that a larger proportion of M2 group participants identified a correct subgoal
compared to M1 group (z = 1.86, p = .03, Fig. 3.6A). This result implies that generalization
of subgoals between tasks might be contingent on explicit recognition of subgoal features.
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Figure 3.6: A) Participants who showed evidence of subgoal generalization based on modeling
(M2 group) were able to identify subgoal features more frequently than expected by chance,
and compared to participants who showed no evidence of subgoal generalization (M1 group).
B) Participants in M2 group were also more likely than those M1 group to show preference
for token dimensions that previously signaled subgoals, and C) displayed patterns of behavior
consistent with aligning their choices to produce previous subgoals as outcomes.

We examined the training data further to identify differences in behavioral patterns be-
tween participants in the M1 and M2 groups, aiming to understand how these differences
might influence the generalization of subgoals. However, our analysis did not revealed sig-
nificant differences in the probability of subgoal identification among participants or in how
various subgoal models affected their accuracy and sequence repetition (Supplementary Fig.
3.11).

Overall, our findings suggest that subgoals can influence decision-making through mech-
anisms that are distinct from external rewards or the element of surprise. However, it’s
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important to note that the generalization of subgoals (an important subgoal property) was
observed in only a subset of our sample, seeming to be contingent on explicit recognition of
subgoal features.

3.5 Discussion

Subgoals enable structured problem solving, and are essential for supporting learning in the
absence of immediate feedback, by signaling what information is meaningful and should be
encoded (Baldassarre and Mirolli, 2013; Chentanez et al., 2004; Eckstein and Collins, 2021;
Singh et al., 2010). However, the nature of pseudoreinforcing effect of subgoals is unclear,
as most previous research has conflated subgoals with rewards (by having subgoals always
be experienced in instances where rewards are observed, McGovern and Barto, 2001) and
general factors that drive curiosity/intrinsic motivation (Chentanez et al., 2004; Eckstein and
Collins, 2021; Singh et al., 2010). Thus, it is not clear whether/how the subgoal effects on
behavior would manifest once stripped of all of these components. In this project, we aimed
to decouple subgoals from rewards and surprise/novelty in order to test a more isolated effect
of subgoals on learning, and whether these subgoals subsequently carry reinforcing properties
to a separate set of tasks (test phases). Our results replicated previous results (Eckstein and
Collins, 2021) by confirming that participants were sensitive to hierarchical representations
in the task, reflected in the composition of action sequences. Furthermore, we found that
in the sample of participants who showed evidence of engaging in the task many inferred
correct subgoals during the learning phase - evidence of isolated pseudoreinforcing subgoal
effect on learning. However, a large proportion of this sample did not also show evidence
of generalizing subgoals outside of the context in which they’re acquired - suggesting that
perhaps some of the properties our experimental manipulation stripped away from subgoals
may be important for their robust generalization.

It is important to note that our task was very challenging; on each trial participants had
a high number of possible individual-action and action-sequence combinations to explore.
As a function of this, it is not surprising that many of the participants did not infer a correct
4-key sequence until later blocks (if at all). This impacted our data in two major ways: 1)
high exclusion rate, and 2) of the participants whose data was included many took multiple
blocks to solve the task, but their patterned exploration of sequences disqualified them from
exclusion criteria, as this implied possible strategic behavior and not noise. This potentially
made subgoal inference less robust, resulting in a fairly limited number of participants who
showed evidence of subgoal generalization. It is also noteworthy that we could not have
made the task more simple, as further simplifying the action sequences or number of subgoal
dimensions would have trivialized the hierarchy in our task.

Our results pose an interesting question about the extent to which subgoal learning in-
ference is deliberate or implicit. We have designed different test phases to help us assess the
explicit bias for subgoals (e.g. preference test and final question) and more how previously
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learned subgoals might implicitly guide action selection in a novel task (implicit test). We
found that participants who showed the implicit effect of subgoals on action selection also
displayed the bias towards subgoals in the preference test, and were able to correctly identify
the correct subgoal dimension in the final question. This suggests that the ability to gener-
alize the subgoals between different tasks (including the ones where subgoals are treated as
new outcomes) might be contingent on whether they are explicitly recognized as subgoals.
Furthermore, subgoal inference may be incidental, since our task can in theory be solved
without paying any attention to the subgoals (although we did implement occasional probe
checks to ensure participants were paying attention to the tokens, we cannot determine with
certainty the extent to which subgoals were actively intentionally or incidentally learned).

An important limitation of our results is that only one third of the sample showed effect
of generalization. We attempted to trace the differences in generalization to potential dif-
ferences in behavioral pattern in the learning phase. Our follow-up analyses did not reveal
any major differences between the two groups of participants (Supplementary Fig. 3.11),
providing no clear explanation as to why some participants were able to generalize subgoals
and some were not. It is possible that generalization variability may be explained by some
aspects of our challenging task that the performance analyses we designed don’t capture or
are not sensitive to (such as a test which would probe explicit/implicit recognition during
learning).

While we aimed to render the pseudoreinforcing effect of subgoals independent from re-
ward association and factors that may drive learning purely due to an unexpected occurrence
(novelty/surprise) to test the extent to which it can be isolated, it is very likely that these
factors do affect what people perceive to be subgoals, and how they are used to decompose
tasks (Diuk et al., 2013; Solway et al., 2014; Tomov et al., 2021). It will be extremely valuabe
for the future work to systematically vary the factors of reward predictiveness, surprise, and
structural frequency to evaluate which one of these is more critical do defining subgoals.

The concept of subgoals is valuable for constructing a formal theory of how humans
learn to solve complex tasks, and generalize behavior - features which are still challenging
to achieve for artificial agents. Our results suggest that subgoal effects on behavior can be
achieved independently from reward association and surprise; nevertheless, despite the fact
that overall participants showed inference of subgoals only a subset of participants engaged in
subgoal generalization. Future work will be required to construct a more careful experimental
design that might be able to identify learning patterns that may permit generalization from
those that do not.
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3.6 Supplementary Materials

Figure 3.7: Participants’ accuracy on probe trials, evaluated by whether they identified
irrelevant/relevant dimension of the token they observed on the most recent trial on A)
subtrial 1 and subtrial 2. Chance level is 1/3.
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Figure 3.8: Distribution of performance in A) implicit and B) preference test.
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Figure 3.9: Model comparison based on AIC scores (top) and number of participants best
fit by each of the models (bottom).
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Figure 3.10: Model comparison based on AIC scores (top) and number of participants best
fit by each of the models (bottom).
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Figure 3.11: Group differences in training phase performance between participants in M1
and M2 groups. Two groups did not differ significantly in subgoals’ impact on A) accuracy,
B) sequence repetition or C) overall probability of selecting the subsequence that led to
subgoals on 2 subtrials. P-values are based on Mann-Whitney U tests.
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Chapter 4

Artificial neural networks as tools for
fitting cognitive models

(Currently under review at PLOS Computational Biology as: Rmus, M., Pan, T., Xia, L. &
Collins, A. G. E. (2024). Artificial neural networks for model identification and parameter
estimation in computational cognitive models)

4.1 Abstract

Computational cognitive models have been used extensively to formalize cognitive processes.
Model parameters offer a simple way to quantify individual differences in how humans pro-
cess information. Similarly, model comparison allows researchers to identify which theories,
embedded in different models, provide the best accounts of the data. Cognitive model-
ing uses statistical tools to quantitatively relate models to data that often rely on com-
puting/estimating the likelihood of the data under the model. However, this likelihood is
computationally intractable for a substantial number of models. These relevant models may
embody reasonable theories of cognition, but are often under-explored due to the limited
range of tools available to relate them to data. We contribute to filling this gap in a sim-
ple way using artificial neural networks (ANNs) to map data directly onto model identity
and parameters, bypassing the likelihood estimation. We test our instantiation of an ANN
as a cognitive model fitting tool on classes of cognitive models with strong inter-trial de-
pendencies (such as reinforcement learning models), which offer unique challenges to most
methods. We show that we can adequately perform both parameter estimation and model
identification using our ANN approach, including for models that cannot be fit using tradi-
tional likelihood-based methods. We further discuss our work in the context of the ongoing
research leveraging simulation-based approaches to parameter estimation and model iden-
tification, and how these approaches broaden the class of cognitive models researchers can
quantitatively investigate.
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4.2 Introduction

Computational modeling is an important tool for studying behavior, cognition, and neural
processes. Computational cognitive models translate scientific theories into algorithms us-
ing simple equations with a small number of interpretable parameters to make predictions
about the cognitive or neural processes that underlie observable behavioral or neural mea-
sures. These models have been widely used to test different theories about cognitive processes
that shape behavior and relate to neural mechanisms (Lee and Webb, 2005; Montague et al.,
2012; Palminteri et al., 2017; Shultz, 2003). By specifying model equations, researchers can
inject different theoretical assumptions into most models, and simulate synthetic data to
make predictions and compare against observed behavior. Researchers can quantitatively
arbitrate between different theories by comparing goodness of fit (Akaike, 1998, Wei and
Jiang, 2022) across different models. Furthermore, by estimating model parameters that
quantify underlying cognitive processes, researchers have been able to characterize impor-
tant individual differences (e.g. developmental: Eppinger et al., 2013; Hauser et al., 2015;
Nussenbaum et al., 2022; Rmus et al., 2023; clinical: C. Chen et al., 2015; Collins et al.,
2014; Gillan et al., 2016; Peterson et al., 2009; Zou et al., 2022) as well as condition effects
(Sheynin et al., 2015; Weber et al., 2022).

Researchers’ ability to benefit from computational modeling crucially depends on the
availability of methods for model fitting and comparison. Such tools are available for a large
group of cognitive models (such as, for example, reinforcement learning and drift diffusion
models). Examples of commonly used model parameter fitting tools include maximum like-
lihood estimation (MLE, Myung, 2003), maximum a-posteriori (MAP, Cousineau and Helie,
2013), and sampling approaches (Baribault and Collins, 2023; Lee, 2011).Examples of model
comparison tools include information criteria such as AIC and BIC (Akaike, 1998; Schwarz,
1978), and Bayesian group level approaches, including protected exceedance probability (Pi-
ray et al., 2019; Rigoux et al., 2014). These methods all have one important thing in common
- they necessitate computing the likelihood of the data conditioned on models and parame-
ters, thus limiting their use to models with tractable likelihood. However, many models do
not have a tractable likelihood. This severely limits the types of inferences researchers can
make about cognitive processes, as many models with intractable likelihood might offer bet-
ter theoretical accounts of the observed data. Examples of such models include cases where
observed data (e.g. choices) might depend on latent variables - such as the unobserved rules
that govern the choices (Eckstein and Collins, 2020; Frank and Badre, 2012; Solway et al.,
2014), or a latent state of engagement (e.g. attentive/distracted, Ashwood et al., 2022; Fin-
dling et al., 2021) a participant/agent might be in during the task. In these cases, computing
the likelihood of the data often demands integrating over the latent variables (rules/states)
across all trials, which grows exponentially and thus is computationally intractable. This
highlights an important challenge - computing likelihoods is essential for estimating model
parameters, and performing fitness comparison/model identification, and alternative models
are less likely to be considered or taken advantage of to a greater extent.
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Some existing techniques attempt to bridge this gap. For example, Inverse Binomial
Sampling (van Opheusden et al., 2020), particle filtering (Djuric et al., 2003), and assumed
density estimation (Minka, 2013) provide approximate solutions to the Bayesian inference
process in specific cases. Many of these methods, however, require advanced mathematical
expertise for effective use and adaptation beyond specific cases they were developed for,
making them less accessible many researchers. Approximate Bayesian Computation (ABC,
Lintusaari et al., 2017; Palestro et al., 2018; Sunn̊aker et al., 2013; Turner and Sederberg,
2014; Turner et al., 2013) offers a more accessible avenue for estimating parameters in mod-
els limited by intractable likelihoods. More widely employed in cognitive modeling, the
approach of basic ABC rejection algorithms involves translating trial-level data into sum-
mary statistics. Parameter values of the candidate model are then selected based on their
ability to produce simulated data that is closely aligned with summarized data, guided by
some predefined rejection criterion.

While ABC rejection algorithms provide a useful workaround solution, it’s important to
acknowledge their inherent limitations. Specifically, ABC results are sensitive to the choice of
summary statistics (and rejection criteria) and sample efficiency of ABC demonstrates scales
poorly in cases of high-dimensional data (Cranmer et al., 2020; Lavin et al., 2021; Sunn̊aker
et al., 2013). Recent strides in the field of simulation-based inference/likelihood-free inference
have addressed these limitations by using artificial neural network(ANN) structures designed
to optimize summary statistics, and consequently infer parameters. These methods enable
automated (or semi-automated) construction of summary statistics, minimizing the effect
the choice of summary statistics may have on the accuracy of parameter estimation (Y.
Chen et al., 2020; Fearnhead and Prangle, 2012; Jiang et al., 2017; Lavin et al., 2021;
Radev, Mertens, et al., 2020; Radev, Voss, et al., 2020). This innovative approach serves
to amortize the computational cost of simulation-based inference, opening new frontiers in
terms of scalability and performance (Boelts et al., 2022; Fengler et al., 2021; Ghaderi-
Kangavari et al., 2023; Radev, Mertens, et al., 2020; Radev, Voss, et al., 2020; Radev et al.,
2021; Schmitt et al., 2021; Sokratous et al., 2023).

Here, we test a related, general approach that leverage advances in artificial neural net-
works (ANNs) to estimate parameters and perform model identification for models with and
without tractable likelihood, entirely bypassing the likelihood estimation (or approximation)
step. ANNs have been successfully used to fit intractable models in different fields, including
weather models (Lenzi et al., 2023) and econometric models (Wei and Jiang, 2022), and more
recently cognitive models of decision making Radev, Mertens, et al., 2020; Radev, Voss, et
al., 2020. We develop similar approaches to specifically target the intractability estimation
problem in the field of computational cognitive science, including both parameter estimation
and model identification, and thoroughly test it in a challenging class of models where there
are strong dependencies between trials (e.g. learning experiments).

Our approach relies on the property of ANNs as universal function approximators. The
ANN structure we implemented was a recurrent neural network (RNN) with feed-forward
layers inspired by Dezfouli et al., 2019 (Fig: 4.1) that is trained to estimate model parame-
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ters, or identify which model most likely generated the data based on input data sequences
simulated by the cognitive model. Our approach is similar to previous work in the domain
of simulation-based inference (Radev, Mertens, et al., 2020; Radev, Voss, et al., 2020), with
a difference that such architectures are specifically designed to optimize explicit summary
statistics that describe the data patterns (e.g. invertible networks). Here, rather than em-
phasizing steps involving the reduction of data dimensionality through the creation (and
selection) of summary statistic vectors and subsequent inference based on parameter value
samples, our focus is on the direct translation of raw data sequences into precise parame-
ter estimates or the identification of the source model (via implicit summary statistics in
network layers).

To validate and benchmark our approach, we first compared it against standard model
parameter fitting methods most commonly used by cognitive researchers (MLE, MAP, re-
jection ABC) in cognitive models from different families (reinforcement learning, Bayesian
Inference) with tractable likelihood. Next, we demonstrated that neural networks can be
used for parameter estimation of models with intractable likelihood, and compared it to
standard approximation method (ABC). Finally, we showed that our approach can also be
used for model identification. Our results showed that our method is highly successful and
robust at parameter and model identification while remaining technically lightweight and
accessible. We highlight the fact that our method can be applied to standard cognitive data
sets (i.e. with arbitrarily small number of participants, and normal number of trials per
participant), as the ANN training is fully done on a large simulated data set. Our work con-
tributes to the ongoing research focusing on leveraging artificial neural networks to advance
the field of computational modeling, and provides multiple new avenues for maximizing the
utility of computational cognitive models.

4.3 Results

We focused on two distinct artificial neural network (ANNs) applications in cognitive mod-
eling: parameter estimation and model identification. Specifically, we built a network with
a structure suitable for sequential data/data with time dependencies (e.g. recurrent neural
network (RNN); Dezfouli et al., 2019). Training deep ANNs requires large training data
sets. We generated such a data set at minimal cost by simulating a cognitive computational
model on a cognitive task a large number of times. Model behavior in the cognitive task (e.g.
a few hundred trials of stimulus-action pairs or stimulus-action-outcome triplets (depending
on the task) for each simulated agent) constituted ANN’s training input; true known param-
eter values (or identity of the model) from which the data was simulated constituted ANNs’
training targets. We evaluated the network’s training performance in predicting parameter
values/identity of the model in a separate validation set, and tested the trained network on
a held out test set. We tested RNN variants and compared their accuracy against tradi-
tional likelihood-based model fitting/identification methods using both likelihood-tractable
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and likelihood-intractable cognitive models. See Methods section for details on the ANN
training and testing process.

Figure 4.1: Artificial neural network (ANN) approach. A) Traditional methods rely on
computing log-likelihood (LLH) of the data under the given model, and optimizing the
likelihood to derive model parameter estimates. B) The ANN is trained to map parameter
values onto data sequences using a large simulated data set; the trained network can then be
used to estimate cognitive model parameters based on new data without the need to compute
or approximate likelihood. C) The ANN structure inspired by Dezfouli et al., 2019 is suitable
for data with strong inter-trial dependencies: it consists of an RNN and fully connected feed-
forward network, with an output containing ANN estimates of parameter values the data
was simulated from for each agent. D) As in parameter estimation, traditional tools for
model identification rely on likelihood to derive model comparison metrics (e.g. AIC, BIC)
that are used to determine which model likely generated the data. E) ANN is instead trained
to learn the mapping between data sequences and respective cognitive models the data was
simulated from. F) Structure of the ANN follows the structure introduced for parameter
estimation, with the key difference of final layer containing the probability distribution over
classes representing model candidates, with highest probability class corresponding to the
model the network identified as the one that likely generated the agent’s data.
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Parameter recovery

Benchmark comparison

First, we sought to validate our ANN method and compare its performance to existing meth-
ods by testing it on standard likelihood-tractable cognitive models of different levels of com-
plexity in the same task: 2-parameter (2P −RL) and 4-parameter (4P −RL) reinforcement
learning models commonly used to model behavior on reversal tasks (Gläscher et al., 2009;
Hampton et al., 2006; Hauser et al., 2015; Peterson et al., 2009), as well as Bayesian Inference
model (BI) and Bayesian Inference with Stickiness (S −BI) as an alternative model family
that has been found to outperform RL in some cases (Costa et al., 2015; Perfors et al., 2011;
Särkkä and Svensson, 2023). We estimated model parameters using multiple traditional
methods for computing (maximum likelihood and maximum a-posteriori estimation; MLE
and MAP) and approximating (Approximate Bayesian Computation; ABC) likelihood. We
used the results of these tools as a benchmark for evaluating the neural network approach.
Next, we estimated parameters of these models using two variants of RNNs: with gated
recurrent units (GRUs) or Long-Short-Term-Memory units (LSTM).

We used the same held out data set to evaluate all methods (the test set the ANN has
not observed yet, see simulation details). For each of the methods we extracted the best
fit parameters, and then quantitatively estimated the method’s performance as the mean
squared error (MSE) between estimated and true parameters across all agents. Methods
with lower MSE indicated better relative performance. All of the parameters were scaled for
the purpose of loss computation, to ensure comparable contribution to loss across different
parameters. To quantify overall loss for a cognitive model we averaged across all individual
parameter MSE scores; to calculate fitting method’s MSE score for a class of cognitive models
(e.g. likelihood tractable models) we averaged across respective method’s MSE scores for
those models (See Methods for details about method evaluation).

First, we examined the performance of standard model-fitting tools (MLE, MAP and
ABC). The standard tools yielded a pattern of results that are expected based on noisy,
realistic-size data sets (with several-hundred trials per agent). Specifically, we found that
MAP outperformed MLE (Fig. 4.2A, average MSEs: MLE = .67,MAP = .35), since
the parameter prior applied in MAP regularizes the fitting process. ABC was also worse
compared to MAP (Fig. 4.2A, average MSE: ABC = .53). While fitting process is also
regularized in ABC, worse performance in some models can be attributed to signal loss that
arises from approximation to the likelihood. Next, we focused on the ANN performance;
our results showed that for each of the models, ANN performed better than or just as well
as the traditional methods (Fig. 4.2A, average MSEs for different RNN variants: GRU =
.32, LSTM = .35). Better network performance was more evident for parameter estimation
in more complex models (e.g. models with higher number of parameters such as 4P-RL and
S-BI; average MSE across these 2 models: MLE = .95,MAP = .43, ABC = .71, GRU =
.38, LSTM = .44).
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Next, we visualized parameter recovery. We found that for each of the cognitive models
the parameter recovery was largely successful (Spearman ρ correlations between true pa-
rameter values and estimated values: β ρMAP , ρGRU = [.90, .91], α+ ρMAP , ρGRU = [.53, .52],
α− ρMAP , ρGRU = [.88, .89], κ: ρMAP , ρGRU = [.78, .79], Fig. 4.2B; all correlations were sig-
nificant at p < .001). For conciseness, we only show recovery of the more complex model
parameters from the RL model family (and only MAP method as it performed better com-
pared to ABC and MLE, as well as only GRU since it performed better than LSTM), as
we would expect a more complex model to emphasize superiority of a fitting method more
clearly compared to simpler models. Recovery plots of the remaining models (and respective
fitting methods) can be found in supplementary materials. Our results suggest that 1) ANN
performed as well as traditional methods in parameter estimation based on the MSE loss;
2) more complex models may limit accuracy of parameter estimation in traditional methods
that neural networks appear to be more robust against. We note that for the 4P−RL model,
parameter recovery was noisy for all methods, with some parameters being less recoverable
than others (e.g. α+ , Fig. 4.2B). This is an expected property of cognitive models applied
to realistic-sized experimental data as found in most human experiments (i.e. a few hundred
trials per participant). To check whether the limited recovery can be attributed to param-
eter identifiability rather than pitfalls of any specific method, we looked at the correlation
between parameter estimates obtained using the standard model fitting method (MAP) and
the ANN (GRU) (Fig. 4.16) - with parameters that are not well recovered (e.g. α+ in 4P-RL
model) being of particular interest. High correlation between estimated parameters obtained
via 2 methods imply systematic errors in parameter identification that apply to both meth-
ods - thus suggesting that the weaker correlation between true and fit parameters for some
parameters is more likely due to limitations in the model applied to the data set than method
specifications such as poor optimization performance. We further discuss the implications in
discussion section - highlighting that computational models should be carefully crafted and
specified regardless of the tools used for model fitting.
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Figure 4.2: A) Parameter recovery loss from the held out test set for the tractable-likelihood
models (2P-RL, 4P-RL, BI, S-BI) using each of the tested methods. Loss is quantified as the
mean squared error (MSE) based on the discrepancy between true and estimated parameters.
Bars represent loss average for each parameter across all agents, with errorbars representing
standard error across agents. B) Parameter recovery from the 4P-RL model using MAP and
GRU. ρ values represent Spearman ρ correlation between true and estimated parameters.
Red line represents a unity line (x = y) and black line represents a least squares regression
line. All correlations were significant at p < .001.
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Testing in cognitive models with intractable likelihood

Next, we tested our method in two examples of computational models with intractable
likelihood. As a comparison method, we implemented Approximate Bayesian Computation
(ABC), alongside our ANN approach to estimate parameters. The two example likelihood-
intractable models we used had in common the presence of a latent state which conditioned
sequential updates: RL with latent attentive state (RL−LAS), and a form of non-temporal
hierarchical reinforcement learning (HRL, Eckstein and Collins, 2020). Since we cannot fit
these models using MAP or MLE we used only ABC as a benchmark. Because we found
LSTM RNN to be more challenging to train and achieve similar results when compared to
GRU, we focused on GRU for the remainder of comparisons. We found that average MSE was
much lower for the neural network compared to ABC for both RL-LAS (Fig. 4.3A, average
MSEs: ABC = .62, GRU = .21) and HRL (Fig. 4.3A, average MSEs: ABC = .28, GRU =
.19). Spearman correlations were noisier for ABC compared to GRU in both models ( Fig.
4.3B, RL-LAS : β ρABC , ρGRU = [.72, .91], α ρABC , ρGRU = [.83, .95], T ρABC , ρGRU =
[.5, .81]; HRL : β ρABC , ρGRU = [.86, .89], α ρABC , ρGRU = [.85, .9]; all correlations were
significant at p < .001). Furthermore, some parameters were less recoverable than others
(e.g. the T parameter in RL-LAS model, which indexed how long participants remained
in an inattentive state); this might be in part due to less straightforward effect of T on
behavior; see supplementary materials (Fig. 4.12). Note that in order to obtain our ABC
results we had to perform an extensive exploration procedure to select summary statistics
- ensuring reasonable ABC results. Indeed, the choice of summary statistics is not trivial
and represents an important difficulty of applying basic rejection ABC (Lavin et al., 2021;
Sunn̊aker et al., 2013), that we can entirely bypass using our new neural network approach.
We acknowledge that recent methods that rely on ANNs replaced standard ABC methods
by automating (or semi-automating) construction of summary statistics (Y. Chen et al.,
2020; Fearnhead and Prangle, 2012; Jiang et al., 2017; Lavin et al., 2021; Lenzi et al., 2023;
Radev, Mertens, et al., 2020; Radev, Voss, et al., 2020). However, we aimed to explore
an alternative approach, independent of explicit optimization of summary statistics, and
focused on the ABC instantiation that has been most frequently implemented in the field of
cognitive science as a benchmark(Sunn̊aker et al., 2013; Turner and Sederberg, 2014; Turner
et al., 2013).
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Figure 4.3: A) Parameter recovery loss from the held out test set for the intractable-likelihood
models (RL-LAS, HRL) using ABC and GRU network. Loss is quantified as the mean
squared error (MSE) based on the discrepancy between true and estimated parameters.
Bars represent MSE average for each parameter across all agents, with errorbars representing
standard error across agents; see supplementary (Fig. 4.23) for variability across seeds. B)
Parameter recovery from the RL-LAS and HRL models using ABC (green) and GRU network
(yellow). ρ values represent Spearman ρ correlation between true and estimated parameters.
Red line represents a unity line (x = y) and black line represents a least squares regression
line.All correlations were significant at p < .001.

Uncertainty of parameter estimates

Thus far, we have outlined a method that provides point estimates of parameters based
on input data sequences, as is typically the use for much lightweight cognitive modeling
(e.g. maximum likelihood estimation or MAP). However, it is sometimes also valuable to
compute the uncertainty associated with these estimates (Lee, 2011). It is possible to ex-
tend our approach to add this capability. While there are various alternative ways to do so



CHAPTER 4. ARTIFICIAL NEURAL NETWORKS AS TOOLS FOR FITTING
COGNITIVE MODELS 81

(e.g. Bayesian neural networks), the approach we have opted for is incorporating evidential
learning into our method (Amini et al., 2020). Evidential learning differs from Bayesian
networks in that it places priors over likelihood function, rather than network weights. The
network leverages this property to learn both statistical (aleatoric) and systematic (epis-
temic) uncertainty during the process of estimating a continuous target based on the input
data sequences. This marks a shift from optimizing a network to minimize errors based on
average prediction, without considering uncertainty.

We applied our method with integrated evidential learning to tractable and intractable
versions of the RL models (2P-RL and RL-LAS, Fig. 4.4). We found that incorporating this
modification did not compromise the point estimate parameter recovery (e.g. compared to
our baseline method focused only on maximizing the accuracy of the predictions). Addition-
ally, it enabled the estimation of the uncertainty around the point estimate, as demonstrated
by Amini et al., 2020. This extension appears to be more computationally expensive (with
longer training periods) than our original method, but not to a prohibitive extent.
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Figure 4.4: Using evidential learning to evaluate uncertainty of parameter estimates for A)
2-parameter RL model (tractable likelihood) and B) RL model with latent attention states
(intractable likelihood). Vertical lines around point estimates illustrate model uncertainty.
We are showing only 100 data points for the purpose of cleaner visualization, Spearman ρ
values are computed based on the total number of agents in the held-out test data (3k).

Model identification

We also tested the use of our ANN approach for model identification. Specifically, we sim-
ulated data from different cognitive models, and trained the network to make a prediction
regarding which model most likely generated the data out of all model candidates. The net-
work architecture was identical to the network used for parameter estimation, except that
the last layer became a classification layer (with one output unit per model category) instead
of a regression layer (with one output unit per target parameter).

For models with tractable likelihood, we performed the same model identification process
using AIC (Akaike, 1998) that relies on likelihood computation, penalized by number of
parameters, to quantify model fitness as a benchmark. We note that another common
criterion, BIC (Wei and Jiang, 2022), performed more poorly than AIC in our case.The best
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fitting model is identified based on the lowest AIC score - a successful model recovery would
indicate that the true model has the lowest AIC score compared to other models fit to that
data. To construct the confusion matrix, we computed best AIC score proportions for all
models, across all agents, for data sets simulated from each cognitive model (Fig: 4.5; see
methods).

As shown in Figure 4.5A, model identification performed using our ANN approach was
better compared to the AIC confusion matrix, with less ”confusion” - lower off-diagonal
proportions compared to diagonal proportions (correct identification). Model identification
using AIC is likely in part less successful due to some models being nested in others (e.g.
2P −RL in 4P −RL, BI in S−BI). Specifically, since AIC score represents a combination
of likelihood and penalty incurred by the number of parameters it is possible that the data
from more complex models is incorrectly identified as better fit by a simpler version of that
model (e.g. the model with fewer parameters; an issue which would be more pronounced
if we used a BIC confusion matrix). The same phenomenon is observed with the network,
but to a much lesser extent, showing better identification out of sample - even for nested
models. Furthermore, the higher degree of ANN misclassification observed for BI/S − BI
was driven by S −BI simulations with stickiness parameter close to 0, which would render
the BI and S −BI non-distinguishable (Fig. 4.13).

Because we cannot compute the likelihood for our likelihood-intractable models based
on closed-form solutions via MAP, we only report the confusion matrices obtained from our
ANN approach In the first confusion matrix we performed model identification for 2P −RL
and RL− LAS, as we reasoned these two models differ by only one mechanism (occasional
inattentive state), and thus could potentially pose the biggest challenge to model identifica-
tion. In the second confusion matrix, we included all models used to simulate data on the
HRL task (HRL model, Bayesian inference model, Bayesian inference with stickiness model).
In both cases, the network successfully identified the correct models as true models, with a
very small degree of misidentification, mostly in the nested models. Based on our benchmark
comparison to AIC, and the proof of concept identification for likelihood intractable models,
our results indicate that the ANN can be leveraged as a valuable tool in model identification.
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Figure 4.5: Model identification results.A) Confusion matrix of likelihood-tractable models
from PRL task based on 1) likelihood/AIC metric, and 2) ANN identification. AIC confusion
matrix revealed a much higher degree of misclassification (e.g. true simulated model being
incorrectly identified as a different model). B) Confusion matrix of likelihood-intractable
models using ANN (2P-RL and RL-LAS models were simulated on the PRL task; HRL, BI
and S-BI models were simulated on the HRL task).

Robustness tests

Robustness tests: influence of different input trial sequence lengths

ANNs are sometimes known to fail catastrophically when data is different from the training
distribution in minor ways (Liang et al., 2017; Moosavi-Dezfooli and Alhussein Fawzi, 2017;
Nguyen et al., 2015; Szegedy et al., 2013). Thus, we investigated the robustness of our
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method to differences in data format we might expect in empirical data, such as different
numbers of trials across participants. Specifically, we conducted robustness experiments by
varying the number of trials in each individual simulation contributing to training or test
sets, fixing the number of agents in the training set.

To evaluate the quality of parameter recovery, we used the coefficient of determination
score (R2) which normalizes different parameter ranges. We found that the ANNs trained
with a higher trial number reach high R2 scores in long test trials. However, their perfor-
mance suffers significantly with smaller number of test trials. The results also show a similar
trend in model identification tasks except that training with higher trial number doesn’t
guarantee a better performance. For instance, the classification accuracy between HRL task
models of the ANN trained with 300 trials reaches 87% while the ANN trained with 500
trials is 84%.

Data-augmentation practices in machine learning increase robustness of models during
training (Shorten and Khoshgoftaar, 2019) by introducing different types of variability in
the training data set (e.g. adding noise, different data sizes). Specifically, slicing time-
series data into sub-series is a data-augmentation practice that increases accuracy (Iwana
and Uchida, 2021). Thus, we trained our ANN with the fixed number of simulations of
different trial numbers. As predicted, we found that the ANNs trained with a mixture of
trial sequence lengths across simulations (purple line) consistently yielded better performance
across different numbers of test trials for both parameter recovery and model identification
(Fig. 4.6A,B).

Robustness tests: prior parameter assumptions

We also tested the effects of incorrect prior assumptions about the parameter range on
method performance. Specifically we 1) trained the network using data simulated from a
narrow range of parameters (theoretically informed) and 2) trained the network based on
broader range of parameter values. Next, we tested both networks in making out-of-sample
predictions for test data sets that were simulated from narrow and broad parameter ranges
respectively. The network trained using a narrow parameter range made large errors at
estimating parameters for data simulated outside of the range it was trained on; training
the network on a broader range overall resulted in smaller error, with some loss of precision
for the parameter values in range of most interest (e.g. the narrow range of parameters
the alternative network is trained on). We observed similar results with MAP, where we
specified narrow/broad prior (where narrow prior would place high density on a specific
parameter range). Notably, training the network using a broader range of parameters while
oversampling from a range of interest yielded more accurate parameter estimation compared
to MAP with broad priors (Approach described in Fig. 4.15).
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Robustness tests: model misspecification

In addition to testing the effects of incorrect priors, we also tested the effect of model
misspecification on standard method and ANN performance (focusing on MAP and GRU
network, as they performed the best in parameter recovery tests on benchmark models). We
fit the Bayesian inference model (without stickiness) to the data simulated from the Bayesian
inference model with stickiness using MAP. For the ANN, we trained the neural network to
estimate parameters of the Bayesian inference model, and tested it on the separate test set
data simulated from the Bayesian inference model with stickiness. For each method, we
looked at the correlation between the ground truth Bayesian inference with stickiness model
parameters, and the method’s parameter estimates (Fig. 4.19). Our results suggest that the
parameters shared between the 2 models are reasonably recoverable using both MAP and
ANN (e.g. the recovery is noisier but comparable to that of parameters in Bayesian models
without model misspecification (Figs. 4.10, 4.11)); furthermore, the correlation between
ground truth and estimated values is similar for the two methods.
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Figure 4.6: Robustness checks using different training (different line colors) and testing (x-
axis) trial sequence lengths. A) Parameter estimation in both RL-LAS and HRL show that
training with a mixture of trial sequence lengths (purple line) yields more robust out-of-
sample parameter value prediction compared to fixed trial sequence lengths. B) Best model
identification results, performed on different combinations of model candidates, were also
yielded by mixed trial sequence length training. The number of agents/simulations used for
training was kept constant across all the tests (N agents = 30k).

To make the model misspecification more extreme, we additionally simulated data from a
Bayesian inference model, and estimated RL model parameters from the simulated data. We
did this using standard methods (MAP) and ANN, and repeated the same process in reverse
(simulating data from an RL model, and fitting Bayesian inference model parameters). We
found that both MAP and ANN exhibited similar patterns. That is, in the case of simulating
Bayesian inference model and fitting RL model parameters, the estimated β captured the
variance from the true β and pswitch, while the estimated α parameter captured the variance
driven by the Bayesian updating parameters preward and pswitch (Supplementary fig. 4.20).
In the case of simulating RL model and fitting Bayesian inference model parameters, pswitch
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parameter captured the noise in the simulated data coming from the β parameter, and
the variance from the α parameter was attributed to the preward parameter (Supplementary
fig. 4.21). We also correlated parameter estimates generated by the two methods. High
correlation implies that MAP and GRU generate similar parameter estimates, suggesting
that they are impacted by model misspecification in a similar way (Supplementary fig. 4.17).

4.4 Discussion

Our results demonstrate that artificial neural networks (ANNs) can be successfully and
efficiently used to estimate best fitting free parameters of likelihood-intractable cognitive
models, in a way that is independent of likelihood approximation. ANNs also show remark-
able promise in successfully arbitrating between competing cognitive models. While our
method leverages “big data” techniques, it does not require large experimental data sets:
indeed, the large training set used to train the ANNs is obtained purely through efficient
and fast model simulation. Thus, our method is applicable to any standard cognitive data
set with a normal number of participants and trials per participants. Furthermore, while our
method requires some ability to work with ANNs, it does not require any advanced math-
ematical skills, making it largely accessible to the broad computational cognitive modeling
community.

Our method adds to a family of approaches from other attempts at using neural networks
for fitting computational cognitive models. Specifically, previous work leveraging amortized
inference has focused on taking advantage of large-scale simulations and invertible networks.
This approach involves training the summary segment of the network to adeptly learn rel-
evant summary statistic vectors, while concurrently training the inference segment of the
network to approximate the posterior distribution of model parameters based on the outputs
generated by the summary network (Radev, Mertens, et al., 2020; Radev, Voss, et al., 2020;
Schmitt et al., 2021). This method has successfully been applied to both parameter estima-
tion and model identification (and performs in a similar range as our method when applied
to intractable models we implemented in this paper), bypassing many issues of ABC. In par-
allel, work by Fengler et al., 2021 showcased Likelihood Approximation Networks (LANs) as
a method that approximates likelihood of sequential sampling models (but requires ABC-like
approaches for training), and recovers posterior parameter distributions with high accuracy
for a specific class of models (e.g. drift diffusion models); more recently, Boelts et al., 2022
used a similar approach with higher training data efficiency. Work by Lueckmann et al.,
2017 used Approximate Bayesian Computation (ABC) in conjunction with mixture density
networks to map data to parameter posterior distributions. Unlike most of these approaches
our architecture is not dependent on Boelts et al., 2022; Fengler et al., 2021 or explicitly
designed to optimize Radev, Mertens, et al., 2020; Radev, Voss, et al., 2020; Schmitt et al.,
2021 summary statistics. By necessity, hidden layers of our network do implicitly compute a
form of summary statistic that are translated into estimated parameters/model class in the
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output layer; however, we do not optimize for such statistics explicitly, beyond their ability
to support parameter/model recovery.

Other approaches have used ANNs for different purposes than fitting cognitive models
(Thompson et al., 2022). For example, Dezfouli et al., 2019 leveraged flexibility of RNNs
(which inspired our network design) to map data sequences onto separable latent dimensions
that have different effects on decision-making behavior of agents, as an alternative to cogni-
tive models that make more restrictive assumptions. Similarly, work by Ger et al., 2023 also
used RNNs to estimate RL parameters and make predictions about behavior of RL agents.
Our work goes further than this approach in that it focuses on both parameter recovery
and model identification of models with intractable likelihood, without relying on likelihood
approximation. Furthermore, multiple recent papers (Eckstein et al., 2023; Ji-An et al.,
2023) use ANNs as a replacement for cognitive models, rather than as a tool for supporting
cognitive modeling as we do, demonstrating the number of different ways ANNs are taking
a place in computational cognitive science.

It is important to note that while ANNs may prove to be a useful tool for cognitive
modeling, one should not expect that their use immediately fixes or overrides all issues that
may arise in parameter estimation and model identification. For instance, we have observed
that while ANNs outperformed many of the traditional likelihood-based methods, recovery
for some model parameters was still noisy (e.g. learning rate α in the 4P-RL model, Fig. 4.2).
This is a property of cognitive models when applied to experimental applied to data sets that
range in hundreds of trials. Standard methods (e.g. MAP) fail in a similar way - as shown by
the high correlation between MAP and ANN parameter estimates (Fig. 4.16), which suggests
that parameter recovery issues have more to do with identifiability limitations of the data
and model, rather than other issues such as optimization method. Similarly, often times
model parameters are not meaningful in certain numerical ranges, and sometimes model
parameters trade off in how they impact behavior through mathematical equations that
define the models - making the parameter recovery more challenging. Furthermore, when it
comes to model identification, particularly with nested models, the specific parameter ranges
can influence the outcome of model identification, favoring simpler models over more complex
ones (or vice versa). This was evident in our observations regarding the confusion between
Bayesian inference models with and without stickiness, wherein the ground truth values of
stickiness played a decisive role in the model identification. This is to say ANNs should be
treated as a useful tool that is only useful if the researchers apply significant forethought to
developing appropriate, identifiable cognitive models.

In a similar vein, it is important to recognize that the potential negative implications of
model misspecification extend to neural networks, much like they impact traditional model-
fitting approaches. For instance, our estimation of parameters may be conducted under the
assumption of model X, whereas, in reality, model Y might be the most suitable for explain-
ing the data - leading to poor parameter estimation and model predictions. Our test of the
systematic effects of model misspecification involved utilizing a network trained to estimate
parameters from one model (e.g. Bayesian Inference) to predict parameters for the held-out
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test set data simulated from a different model (e.g. Bayesian Inference with stickiness, or
RL). We compared this to model misspecification with a standard MAP approach.Notably,
neither method exhibited significant adverse effects. When models were nested, the pa-
rameters shared between the two models were reasonably well recovered. When the model
misspecificpation was more extreme (with models from different families), we again observed
similar effects on the two methods, where variance driven by one parameter tended to be
recovered similarly. Thus, our approach appears equally (but not worse) subject to the
risk of model misspecification as other fitting methods. In light of these findings, our key
takeaway is to exercise caution against assuming that the use of a neural network reme-
dies all issues typically associated with modeling. Instead, we advocate for the application
of conventional diagnostics (e.g., model comparison, predictive checks) that are commonly
employed in standard methods to ensure robust and accurate results.

Relatedly, we have shown that the parameter estimation accuracy varies greatly as a
function of the parameter range the network was trained on, along with whether the under-
lying parameter distribution of the held out test-set is included in that range or not. This
is an expected property of ANNs that are known to underperform when the test data sys-
tematically differs from training examples (Liang et al., 2017; Nguyen et al., 2015; Szegedy
et al., 2013). As such, the range of parameters/models used for inputs constitutes a form of
prior that constrains the fit, and it is important to carefully specify it with informed priors
(as is done with other methods, such as MAP). We found that training the network using
a broader parameter range, while heavily sampling from a range of interest (e.g. plausible
parameter values based on previous research) affords both accurate prediction for data gen-
erated outside of the main expected range, with limited loss of precision within the range of
interest (Fig. 4.15 ). This kind of practice is also consistent with practices in computational
cognitive modeling, where a researcher might specify (e.g. using a prior) that parameter
might range between two values, with most falling within a certain, more narrow range.

One factor that is specific to ANN-based methods (as opposed to standard methods) is the
effect different hyperparameters (e.g. size of the neural network, choice of the learning rate,
dropout values, etc.) may have on network performance - commonly resulting in overfitting or
underfitting. We observed that the network performance, particularly in parameter recovery,
is most significantly influenced by the number of units in the GRU layer and the chosen
dropout rate. A suitable range for the number of GRU units is typically between 90 and
256, covering the needs of most cognitive models. A dropout rate within the range of 0.1 to
0.2 is generally sufficient. We have outlined the details of parameter ranges we tested in the
table in supplementary materials (4.1). To address this challenge, we employed an automated
hyperparameter tuning approach, as outlined by Bergstra, Yamins, and Cox (2013). This
Bayesian optimization for tuning hyper-parameters helps reduce the time required to obtain
an optimal parameter set by learning from previous iterations. Additionally, in the process of
training a neural network, the initialized random weights play a significant role in determining
the network’s convergence and the final performance. Different random seeds can result in
different initializations of the network weights, which may affect the optimization process
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downstream, and potentially yield different final solutions. It is important to be mindful of
this; we have inspected effects of setting different seeds on our network performance (Fig.
4.23), and found that overall network performance was stable across different seeds, with
slight variations (1 seed) for both parameter estimation and model identification - showcasing
the need for cautious practice of inspecting network’s performance under multiple seeds.

We compared our artificial neural network approach against existing methods that are
commonly used to estimate parameters of likelihood-intractable models (e.g. ABC, Sisson
et al., 2018; Sunn̊aker et al., 2013). While traditional rejection ABC provides a workaround
solution, it also imposes certain constraints. Specifically, it is more suitable for data with
no sequential-dependencies, and the accuracy of parameter recovery is largely contingent on
selection of appropriate summary statistics, which is not always a straightforward problem.
More recent advances in the domain of simulation-based inference (Fearnhead and Prangle,
2012; Jiang et al., 2017; Lavin et al., 2021; Radev, Mertens, et al., 2020) solve many ABC-
issues by automating the process of construction of summary statistics. For the purpose
of this project we have focused on the methods that are most commonly used in cognitive
modeling (e.g. maximum likelihood/maximum a posteriori), but future work should extend
to conducting the same benchmarking procedure involving these inference methods.

Alternative approximation methods (e.g. particle filtering (Djuric et al., 2003); density
estimation (Minka, 2013)); inverse binomial sampling (van Opheusden et al., 2020) may
prove to be more robust, but frequently require more advanced mathematical knowledge
and model case-based adaptations, or are more computationally expensive; indeed, some of
them may not be usable or tractable in our type of data and models where there are sequential
dependencies between trials Acerbi and Ma, 2017; van Opheusden et al., 2020. ANN-based
methods such as ours or others’ Radev, Mertens, et al., 2020; Radev, Voss, et al., 2020;
Sokratous et al., 2023, on the other hand, offers a more straightforward and time-efficient
path to both parameter estimation and model identification. Developing more accessible and
robust methods is critical for advances in computational modeling and cognitive science, and
the rising popularity of deep learning puts neural networks forward as useful tools for this
purpose. Our method also offers an advantage of requiring very little computational power.
The aim of the project at its current state was not to optimize our ANN training in terms
of time and computing resources; nevertheless, we used Nvidia V100 GPUs with 25 GB
memory and required at most 1 hour for model training and predictions. This makes the
ANN tool useful, as it requires a low amount of computing resources and can be done fast
and inexpensively. All of our code is shared on GitHub.

We primarily focused on extensive tests using synthetic data, in particular in the context
of learning experiments that present important challenges for some methods (such as BADS
(Acerbi and Ma, 2017) or ABC (Sunn̊aker et al., 2013; Turner and Sederberg, 2014; Turner et
al., 2013) due to the dependency between trials, and have not been thoroughly investigated
with other ANN-based approaches. A critical next step will be to further validate our
approach using empirical data (e.g. participant data from the tasks). Similarly, we relied
on RNNs due to their flexibility and capacity to handle sequential data. However, it will

https://github.com/MilenaCCNlab/MI-PEstNets.git
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be important to explore different structures, such as transformers (Devlin et al., 2018),
for potentially improved accuracy in parameter recovery/model identification, as well as
alternative uses in cognitive modeling.

In addition, our baseline approach lacks the capability to quantify the complete un-
certainty in parameter estimation, offering only point estimates. This is similar to many
lightweight cognitive modeling approaches (such as MAP and LLH), but stands in contrast
to other methods that integrate simulation-based inference with neural network structures
(Boelts et al., 2022; Fengler et al., 2021; Radev, Mertens, et al., 2020; Radev, Voss, et al.,
2020; Radev et al., 2021), where the ability to capture full uncertainty represents a notable
strength. Nevertheless, we have showcased that our method can easily be extended to provide
uncertainty estimates by incorporating evidential learning techniques (Amini et al., 2020), at
a slight computational cost, but minimal impact on point estimates’ accuracy. Furthermore,
we included both RL and Bayesian inference models to demonstrate our approach can work
with different classes of computational models. Future work will include additional models
(e.g. sequential decision making models) to further test robustness of our approach.

In conclusion, we propose an accessible ANN-based method to perform parameter and
model identification across a broad class of computational cognitive models for which appli-
cation of existing methods is challenging. Our work should contribute to a growing litera-
ture focused on developing new methods that will allow researchers to quantitatively test a
broader family of theories than previously possible.

4.5 Methods

Tasks

Probabilistic reversal learning task. We have simulated data from different models
(see the Models section) on a simple probabilistic reversal learning task (PRL; Cools et al.,
2002). In the task, an agent chooses between two actions on each trial, and receives binary
outcome (r = 1 [reward] or r = 0 [no reward]). One of the two actions is correct for a
number of trials; a correct action is defined as the action that gets rewarded with higher
probability (e.g. p(r = 1|action = correct) = 0.80), with 1 − p probability of getting no
reward if selected. After a certain number of trials, the correct action reverses; thus the action
that was previously rewarded with low probability becomes the more frequently rewarded
one (Fig: 4.1). This simple task (and its variants) have been extensively used to provide
mechanistic insights into learning from reinforcement, inferring probabilistic structure of the
environment, and people’s ability (or failure) to update the representation of a correct choice.

Hierarchical reinforcement learning task. We developed a novel task environment
that can be solved using a simple but plausible model with intractable likelihood. In this
task, an agent observes N arrows (in different colors), each pointing at either left or right
direction. The agent needs to learn which arrow is the correct one, by selecting an action that
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corresponds to either left or right side (consistent with the direction the arrow is pointing
at) in order to get rewarded. Selecting the side the correct arrow is pointing at rewards
the agent with high probability (p = .9); choosing an action by following direction of other
arrows leads to no reward (r = 0) with same high probability. The correct arrow changes
unpredictably in the task, which means that the agent must keep track of which arrow most
reliably leads to the reward, and update accordingly upon the change. We refer to this task
structure as hierarchical because the choice policy (left/right) depends on the higher-level
rule (color) agents choose to follow.

Cognitive Models

PRL task models

.
We implemented multiple models of the PRL task to test the artificial neural network (ANN)
approach to parameter estimation. First, we cover the benchmark models; these are the
models that we can fit using traditional methods (MLE, MAP), as well as the ANN, to
ensure that we can justify using the ANN if it performs at least just as well as (or better
than) the traditional methods.

Reinforcement learning models family.
Two-parameter reinforcement learning model. We simulated artificial data on the
PRL task using a simple 2-parameter reinforcement learning model (2P-RL). The model
assumes that the agent tracks the value of each action contingent on the reward history, and
uses these values to inform the action selection on each trial.
The model uses simple delta rule to update action values on each trial upon outcome obser-
vation, by first computing the reward prediction error (RPE, δ) as the discrepancy between
the expected and the observed outcome, and then adjusting the value of the chosen action
using the RPE scaled by the learning rate (α) (Sutton and Barto, 2018):

δ = r −Qt(a)

Qt+1(a) = Qt(a) + α δ
(4.1)

We also allowed for counterfactual updating, where the value of the non-chosen action also
gets updated on each trial (Eckstein, Master, Dahl, et al., 2022; Hauser et al., 2015):

δunchosen = (1− r)−Qt(1− a)

Qt+1(1− a) = Qt(1− a) + α δunchosen
(4.2)

The action values are transformed into action probabilities using the softmax function, thus
defining a policy where actions with higher value are chosen with higher probabilities. The β
parameter controls how deterministic the choices are with higher values of β corresponding
to more deterministic choices:
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P (a) =
exp(β Qt(a))∑nA

i=1 exp(β Qt(ai))
(4.3)

The 2p-RL model contained following free parameters: learning rate (α) and softmax beta
(β).

Four-parameter reinforcement learning model. The four parameter RL (4P-RL) model
follows the same updating and policy structure as the 2-parameter RL, with 2 main differ-
ences. The 4P-RL model differentiates between positive and negative feedback (Niv et al.,
2012), by using different learning rates - α+ and α− for updating action values after positive
and negative outcomes respectively:

Qt+1(a) =

{
Qt(a) + α+ δ if δ > 0

Qt(a) + α− δ if δ ≤ 0

Furthermore, 4P-RL model also includes the stickiness parameter κ which captures the
tendency to repeat choice from the previous trial:

P (a) ∝ exp(βQ+ κ same(a, at−1)) (4.4)

Like in the 2P-RL we also included counterfactual updating of values for non-selected actions.
The 4P-RL model included following free parameters: positive learning rate (α+), negative
learning rate (α−), softmax beta (β) and stickiness (κ).

Bayesian models family.

Bayesian inference model. Bayesian inference model (BI) assumes that an agent infers
the latent state in the environment, updates the latent state based on new observations,
and uses the inference process to make rewarding choices. For instance, in the PRL task,
the agent infers a latent state corresponding to the correct action (Ct : aright = cor or
Ct : aleft = cor) at time t. The agent tracks and updates their belief over which one of the
two actions is currently the correct one based on 1) their estimate of the switch frequency
(pswitch) and 2) how noisy the reward is (preward) from the history of observations up to
the previous trial Ht−1. On each trial, the belief is updated according to the Bayes rule -
based on the prior belief (agent’s model of the task) and likelihood of observed evidence (the
outcome given the choice):

p(Ct = i|rt, at, H1:t−1) =
P (rt|Ct = i, at)P (Ct = i|H1:t−1)∑
j(P (rt|Ct = j, at)P (Ct = j|H1:t−1)
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where i and j are in [left/right], p(Ct = i|H1:t−1) is the prior probability, and p(rt|Ct = i, at)
is the likelihood of outcome given the action. The likelihood is defined in accordance to
whether the choice matches the latent state:

p(rt = 1|at = i, Ct = i) = preward

where preward is the parameter controlling the probability of receiving the reward given the
choice of correct action. Posterior belief for the correct action is updated to a prior belief for
the upcoming trial in accordance with the pswitch parameter, which determines the probability
that the correct action might have reversed on the current trial:

p(Ct+1 = i|H1:t−1) = (1− pswitch)p(Ct = i|H1:t−1) + pswitch(1− p(Ct = i|H1:t−1))

Like in the RL models, the action selection in Bayesian models also followed the softmax
policy; however, instead of being informed by the Q values the action probabilities were
determined by the belief W given the choice and reward history H and the choice parameter
β:

Wt+1 = p(Ct+1 = i|H1:t)

P (at+1) =
exp(β Wi(t+ 1))∑
i=j exp(β Wj(t+ 1))

The BI model included following parameters: inferred probability of reward given the action
determined by the current belief (preward), likelihood of the correct action reversing (pswitch)
and softmax beta (β).

Bayesian inference model with stickiness. We also added a variation of the Bayesian
inference model that accounts for sticky choice behavior (e.g. repeating actions) by intro-
ducing a stickiness parameter κ that augments the belief associated with the action chosen
on the previous trial:

Wt+1 = p(Ct+1 = i|H1:t) + κ(i = at)

Intractable likelihood

As a proof of concept, we implemented a simple model that assumes a latent state of agent’s
attention (engaged/disengaged). This model can’t be fit using methods that rely on com-
puting likelihood. While models can have intractable likelihood for a variety of reasons, we
focused on leveraging latent variables (e.g. attention state), that are not readily observable
in the data. Thus, in the data that is being modeled, only the choices are observed - but
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not the state the agent was in while executing the choices. The learned choice value which
affects the choice likelihood depends on the trial history, including which state the agent
was in. Thus, if there are 2 such states, there are 2N possible sequences that may result in
different choice value estimates after N trials. To estimate choice values and likelihood on
any given trial one must integrate over the uncertainty of an exponentially increasing latent
variable - thus making the likelihood intractable.

RL and latent engagement state . We simulated a version of a 2p-RL model for a
probabilistic reversal learning (PRL) task that also assumes that an agent might occupy
two of the latent attention states — engaged or disengaged— during the task (RL-LAS).
The model assumes that in the engaged state an agent behaves in accordance with the task
structure (e.g. tracks and updates values of actions, and uses action values to inform action
selection). In the disengaged state, an agent behaves in a noisy way, in that 1) it does
not update the Q value of actions , and 2) chooses between the two actions randomly (e.g.
uniform policy) instead of based on their value (e.g. through softmax). 1 The agent can shift
between different engagement states at any point throughout the task, and the transition
between the states is controlled by a parameter τ . Specifically, for each agent we initialized a
random value T between 10 and 30 (which roughly maps onto approximately how many trials
an agent spends in a latent attention state), and then used a non-linear transformation to
compute τ : 1-(1/T). The value of τ , thus quantifies the probability of transitioning between
the two states. The agent was initialized to be in an attentive state at the onset of trials.

The likelihood of this model can be computed:

L(θ) =
T∑
t=1

logIP(at|ht, ht−1, θ)

=
T∑
t=1

log
(∑

l

IP(at|ht, lst = l; θ)IP(lst = l, ht−1; θ)
)

where ls = latent state, l ∈ { 0 = disengaged state, 1 = engaged state }, ht−1 corresponds
to the history of actions and rewards up to the trial t. However, it is in practice intractable,
because of the sum over latent states in the equation, which cannot be factored out.

Cognitive models of the HRL task

Bayesian models of the HRL task .

1Note that assumption 1) is different from a previous version of the model our group considered (Li, Shi,
Li, and Collins, 2023; Li, Shi, Li, and Collins, 2023), and is the core assumption that renders the likelihood
intractable.
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Bayesian models of the HRL task assume an inference process over the latent variable
of which arrow is currently the valid arrow, and thus which side (R/L) (given the current
trial’s set of arrows) is most likely to result in positive outcome. The inference relies on
the generative model of the task determined by parameters pswitch and preward, history of
trial observations Ot, set of arrows and stochastic choice based on this inference. Initial
prior belief over arrows is initialized uniformly prior = 1/nA, where nA corresponds to the
number of arrows.

To determine the agent policy over arrows at trial t, we first implemented a softmax
function with decision parameter β and prior belief of which arrow is the correct one; once
the arrow is selected , the agent implements an ϵ-greedy policy conditioned on the selected
arrow At to choose a R/L side:

P (side(At)|At) = 1− ϵ

Likelihood p(rt = 1|At, side(At)) and posterior are then updated into the prior belief for
the next trial using the pswitch model of the task parameter:

p(Ct+1 = i|O1:t−1) = (1− pswitch) ∗ p(Ct = i|O1:t−1) + pswitch(1− p(Ct = i|O1:t−1))

This belief is subsequently used to inform arrow choices on the next trial. This model
differs from the Bayesian Inference model for the probabilistic task in that 1) preward and
pswitch parameters are not free/inferred and 2) the choice of the side is stochastic, allowing
for a potential lapse in selecting the side that is not consistent with the selected arrow. This
model, thus has following free parameters: decision parameter β and noise parameter ϵ.
Like in the in Bayesian inference model for the PRL task, we also tested the model variant
with stickiness κ parameter that biases beliefs associated with the arrow/side chosen on the
previous trial. Both models have tractable likelihoods.

Hierarchical reinforcement learning . We also simulated a simple hierarchical rein-
forcement learning (HRL) model to simulate the performance on a HRL task (see tasks
section, 4.7). This model assumes that an agent tracks the value of each of the arrows, and
chooses between the arrows noisily:

P (arrow) =
exp(β Qt(arrow))∑nA

i=1 exp(β Qt(arrowi))
(4.5)

We have also explored the model with an assumption that an agent has a tendency to
repeat the choice from the previous trial, captured by the stickiness parameter κ:

P (arrow) =
exp(β Qt(arrow) + κ(arrow = arrowt−1))∑nA

i=1 exp(β Qt(arrowi))
(4.6)
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Once the agent chooses the arrow,it greedily chooses the direction based on which side
(left/right) the arrow is pointing at (observable). Note that we only know the side the agent
selected (left/right), because the arrow the agent chooses is non-observable. The agent then
observes an outcome, and updates the value of the selected arrow based on the observed
outcome:

Qt+1(arrow) = Qt(arrow) + α(r −Qt(arrow))

In the case of this model, the likelihood is intractable because of the need to integrate
over uncertainty of what rule (which arrow) the agent followed on all of the past trials;
because the integration exponentially increases with each time point, the likelihood is not
tractable beyond the first several trials:

L(θ) =
T∑
t=1

logIP(at|ht, ht−1, θ)

=
T∑
t=1

logIP
(∑

c

IP(at|ht, rulet = c; θ)IP(rulet = c, ht−1; θ)
)

where at corresponds to the action dictating which side the agent selected (left/right),
ht−1 corresponds to the task history encoding rewards, selected actions/sides, arrow direc-
tions, and c correspond to identity/color of the correct arrow.

Likelihood-dependent methods.

Maximum likelihood and Maximum a posteriori estimation

Maximum likelihood estimation (MLE) represents a cornerstone of modeling that leverages
probability theory and estimation of likelihood (P (D|M, θ)) of the data given the model
parameters and assumptions (Myung, 2003). The parameter estimates are determined as
the values that maximize the likelihood of the data:

θMLE = argmaxP (D|θ)

= argmax
∏
i

P (Di|θ)

= argmax
∑
i

logP (Di|θ)

Thus, to estimate best fitting parameters via MLE, the likelihood of the data is computed
and maximized with respect to parameter values via an optimization algorithm (often a
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blackbox one, such as fmincon in MATLAB or optimize.minimize from scipy toolbox in
python). Maximum a posteriori estimation (MAP) relies on much the same principle, with
an addition of a prior p(θ) to maximize the posterior:

θMAP = argmax
∑
i

logP (Di|θ)logP (θ)

As a prior for the MAP approach, we used an empirical prior derived from the true
simulating distribution of parameters (see supplement for details). We note that this gives
an advantage to the MAP method above what would be available for empirical data, allowing
MAP to provide a ceiling performance on the test set.

Because MAP and MLE rely on likelihood computation, their use is essentially limited
to models with tractable likelihood. We used MAP and MLE to estimate parameters of
tractable-likelihood models as one of the benchmarks against which we compared our ANN
approach. Specifically, we fit the models to the test-set data used to compute the MSE of
the ANN, and compared fit using the same metric across methods (see main text).

Likelihood approximation methods

Because models with tractable likelihood comprise only a small subset of all possible (and
likely more plausible) models, researchers have handled the issue of likelihood intractabil-
ity by implementing various likelihood approximation methods. While there are different
likelihood approximation tools, such as particle filtering (Djuric et al., 2003) and assumed
density estimation (Minka, 2013), we focus on Approximate Bayesian Computation (ABC;
Lintusaari et al., 2017; Palestro et al., 2018; Sisson et al., 2018; Sunn̊aker et al., 2013), as
it is more widely accessible and does not require more extensive mathematical expertise.
ABC leverages large scale model simulation to approximate likelihood. Specifically, a large
synthetic data set is simulated from a model, with parameters randomly sampled from a
specific range for each agent. Summary statistics that describe the data (e.g average accu-
racy or variance in accuracy) are used to construct the empirical likelihood that can be used
in combination with classic methods.

We implemented a basic form of ABC - the rejection algorithm (Sunn̊aker et al., 2013).
This algorithm first samples a set of model parameters θ, simulates the data D̂ from the
model M using these parameters and computes the predetermined summary statistic S(D̂)
of the simulated data which we refer to as the sample. The summary statistics of the real
data S(D) and the sample S(D̂) are then compared - if the distance between the two sets of
summary statistics ρ is greater than the predetermined criterion ϵ, the sample is rejected:

ρ(S(D̂), S(D)) ≤ ϵ

The distance metric, like the rejection criterion, is determined by the researcher. The
samples that are accepted are the samples with distance to the real data smaller than the
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criterion, resulting in the conclusion that parameters used to generate the sample data set
can plausibly be the ones that capture the target data. Thus, the result of the ABC for each
data set is a distribution of plausible parameter values which can be used to obtain point
estimates via the mean, median, etc.

ABC is a valuable tool,but standard ABC has serious limitations (Sunn̊aker et al., 2013).
For instance, the choice of summary statistics is not a trivial problem, and different summary
statistics can yield significantly different results. Similarly, in the case of rejection algorithm
ABC, researchers must choose the rejection criterion which can also affect the parameter es-
timates. A possible way to address this is using cross validation to determine which rejection
criterion is the best, but this also requires specification of the set of possible criteria values
for the cross validation algorithm to choose from. Furthermore, one of ABC assumptions is
independence of data points, which is violated in many sequential decision making models
(e.g. reinforcement learning).

To compare our approach to ABC, we used network training set data as a large scale
simulation data set, and then estimated parameters of the held out test set also used to
evaluate the ANN.

To apply ABC in our case, we needed to select summary statistics that adequately
describe performance on the task. We used the following summary statistics to quantify
the agent for the models simulated on the PRL task:

• Learning curves: We computed agents’ probability of selecting the correct action,
aligned to the number of trials with reference to the reversal point. Specifically, for
each agent we computed an average proportion of trials where a correct action was
selected N trials before and N trials after the correct action reversal point, for all
reversal points throughout the task. This summary statistic should capture learning
dynamics, as the agent learns to select the correct action, and then experiences dip
in accuracy once the correct actions switch, subsequently learning to adjust based on
feedback after several trials.

• 3-back feedback integration: The 3-back analysis quantifies learning as well; however,
instead of aligning the performance to reversal points, it allowed us to examine agents’
tendency to repeat action selection from the previous trial contingent on reward his-
tory - specifically the outcome they observed on the most recent 3 trials. Higher
probability of repeating the same action following more positive feedback indicates
learning/sensitivity to reward as reported in Zou et al., 2022

• Ab-analysis: The Ab-analysis allowed us to quantify probability of selecting an action
at trial t,contingent both on previous reward and action selection history (trials t− 2
and t− 1, Beron et al., 2021; Zou et al., 2022).

For the models simulated on a hierarchical task we used the learning curves as summary
statistics (same as for the PRL), where reversal points were defined as the switch of the
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correct rule/arrow to follow. In addition, we quantified agent’s propensity to stick with the
previously correct rule/arrow, where the agent should be increasingly less likely to select the
side consistent with the arrow that was correct before the switch as the number of trials since
the switch increases. Similarly, we used a version of the 3-back analysis where the probability
of staying contingent on the reward history referred to the probability of potentially selecting
the same cue across the trial window, based on observed choices of the agent. All summary
statistics are visualized in the supplementary figure 4.14.

Model comparison

To perform benchmark model comparison, we used the Akaike Information Criterion (AIC)
metric (Akaike, 1998), commonly used to evaluate relative model fitness, with an aim of
identifying the best model candidate that might have generated the data. The AIC score
combines model log likelihood and number of parameters to quantify model fitness, while
also penalizing for model complexity in order to prevent overfitting:

AIC = −2(LLH) + 2K

where K corresponds to the number of parameters. The model with the lowest AIC
scores corresponds to the best fitting model for the given data. A related metric that is
commonly used is the Bayesian Information Criterion (BIC, Schwarz, 1978), which considers
the number of observations (N) as well, and similarly uses the lowest score to signal the best
fitting model:

BIC = −2(LLH) +K ∗ log(N)

We used AIC score as it outperformed BIC model comparison, and thus provided us with
ceiling benchmark to evaluate the ANN.

To perform proper model comparison, it is essential to not only evaluate the model fitness
(overall AIC/BIC score), but also to test how reliably the true models (that generated the
data) can be identified/successfully distinguished from others. To do so, we constructed a
confusion matrix based on the AIC score (Fig. 4.5A). We used the test set data simulated
from each model, and then fit all candidate models to each of the data sets while also
computing the AIC score for each fit. If the models are identifiable, we should observe that
AIC scores for true models (e.g. the models the data was simulated from) should be the
lowest for that model when it’s fit to the data compared to other model candidates.

Artificial neural network-based method

Parameter recovery

To implement ANNs for parameter estimation we have used the relatively simple neural
network structure inspired by the previous work (Dezfouli et al., 2019). In all experiments, we
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used 1 recurrent GRU layer followed by 3 fully connected dense layers with 2000 dimensional
input embeddings (4.1). To train the network, we simulated a training data set using known
parameters. For each model, we used 30000 training samples, 3000 validation samples, and
3000 test samples that are generated from simulations separately. For probabilistic RL, the
input sequence consisted of rewards and actions. For hierarchical RL, the sides (left/right)
of three arrow stimuli are added to the rewards and actions sequences. The network output
dimension was proportional to the number of model parameters. We used a tanh activation
in the GRU layer, reLu activations in 2 dense layers, and a linear activation at the final
output. Additional training details are given below:

• We used He normal initialization to initialize GRU parameters (He et al., 2015).

• We used the Adam optimizer with mean square error (MSE) loss and a fixed learning
rate of 0.003. Early stopping (e.g. network training was terminated if validation loss
failed to decrease after 10 epochs) was applied with a maximum of 200 epochs.

• We selected network hyperparameters with Bayesian optimization algorithms (Bergstra
et al., 2013) applied on a validation set. Details of the selected values are shown in
Supplementary Materials.

All of the training/validation was run using TensorFlow (Abadi et al., 2016). The training
was performed on Nvidia V100 GPUs with 25 GB memory.

Network evaluation. The network predicted the values of parameter on the test set that
is unseen in the training and validation. We also conducted robustness tests by varying trial
numbers (input size).

To evaluate the output of both ANN and traditional tools we used the following metrics
(ensuring our results are robust to the choice of performance quantification):

• Mean squared error (MSE): To evaluate parameter estimation accuracy we calculated
a mean squared error between true and estimated model parameter across all agents.
Prior to calculating MSE all parameters were normalized, to ensure comparable con-
tribution to MSE across all parameters. Overall loss for a cognitive model (across all
parameters) was an average of individual parameter MSE scores. Overall loss for a
class of models (e.g. likelihood-tractable models) was an average across all model MSE
scores.

• Spearman correlation (ρ): We used Spearman correlation as an additional metric for
examining how estimated parameter values relate to true parameter values, with higher
Spearman ρ values indicating higher accuracy. We paired Spearman correlations with
scatter plots, to visualize patterns in parameter recoverability (e.g. whether there are
specific parameter ranges where parameters are more/less recoverable).
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• R-Squared (R2 or the coefficient of determination): R-Squared represents the propor-
tion of variance in true parameters that can be explained by a linear regression between
true and predicted values. It thus indicates the goodness of fit of an ANN model. We
calculated an R-Squared score for each individual parameters across all agents and
used it as an additional evaluation for how well the data fit the regression model.

Uncertainty estimation To compute uncertainty of parameter estimates we have incor-
porated evidential learning into our method (Amini et al., 2020). In the application of
evidential learning to continuous regression (Amini et al., 2020) observed targets follow a
Gaussian distribution, characterized by its mean and variance. Conjugate Gaussian prior,
normal inverse-gamma distribution, is created by placing a prior on both the mean (Gaus-
sian distribution) and the variance (inverse-gamma distribution). By sampling from this
distribution, specific instance of the likelihood function is obtained (based on both mean
and the variance). This approach not only aims for accurate target predictions but also
takes into account the uncertainty (quantified by the variance term). For more insights and
details into evidential learning, refer to the work by Amini et al., 2020. Their research also
introduces a regularization term, which is useful for penalizing incorrect evidence and data
that falls outside the expected distribution.

For the purpose of visualization (Fig. 4.4) we have created upper and lower bounds
of targets by adding/subtracting variance from the predicted target values. We then re-
scaled these values by applying the inverse scaler (e.g. from the scaler applied to normalize
parameters for network training). This provides a scale-appropriate and more interpretable
visualization of parameter recovery and uncertainty for each parameter.

Alternative models. We have also tested the network with long short-term memory
(LSTM) units since LSTM units are more complex and expressive than GRU units; never-
theless they achieved the similar performance as GRU units but are more computationally
expensive, and thus we mostly focused on the GRU version of the model. Since LSTM
worked, but not better than GRU, the LSTM results are reported in the supplementary
materials.

Model identification

The network structure and training process were similar to that of the network used for
parameter recovery, with an exception of the output layer that utilized categorical cross-
entropy loss and a softmax activation function. The network validation approach was the
same as the one we used for parameter recovery (e.g. based on the held-out test set). We
also observed a better performance when training with various trial numbers.
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Robustness test: influence of different input trial numbers

For all robustness experiments, we followed the same training procedures as described pre-
viously while varying the training data. The details of training data generation are given
below:

Parameter Recovery We simulated 30,000 training samples with 2000 trials per simula-
tion in the probabilistic reversal learning task. For shorter fixed trial sequence lengths per
training samples (e.g 500), we used the same training set truncated to the first 500 trials.
To generate the training data with different trial numbers across training samples, we reused
the same training set, with sequences of trials truncated to a given number. There were 6000
training samples of 50, 100, 500, 1000, 1500, and 2000 trials, each.

Model Identification The process of data generation for model identification robustness
checks was similar to parameter recovery. However, we only simulated 500 trials for each
model because we found no significant increase in accuracy with higher trial numbers.
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4.8 Supplementary Materials

Figure 4.7: Tasks. A) Probabilistic reversal learning task. We simulated artificial agents
using cognitive models of behavior on a Probabilistic reversal learning (PRL) task, which
provides a dynamic context for studying reward-driven learning (Cools et al., 2001; Lawrence
et al., 1999). In this task, an agent chooses between two actions, where one of the actions
gets rewarded with higher probability (p(r) = .80) and one with lower (1 − p). After a
certain number of correct trials, the reward probabilities of the two actions reverse. The
task provides an opportunity to observe how agents update their model of the task (e.g.
correct actions) based on observed feedback. B) Hierarchical reinforcement learning task. In
this task, three differently colored arrows represent three potential rules an agent can follow
when selecting one of the two actions (left/right) corresponding to the side the chosen arrow
is pointing at. Selecting a side consistent with correct arrow is rewarded with probability
p = .90. Correct arrow switches after a certain number of trials. The task provides a
possibility to examine how following latent rules may shape agents’ learning behavior.
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Figure 4.8: 2 Parameter RL (2P-RL) model parameter recovery using different fitting meth-
ods. ρ corresponds to Spearman correlation coefficient, red line represents a unity line (x=y),
and black line represents a least squares regression line.
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Figure 4.9: 4 Parameter RL model (4P-RL) parameter recovery using different fitting meth-
ods. ρ corresponds to Spearman correlation coefficient, red line represents a unity line (x=y),
and black line represents a least squares regression line.
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Figure 4.10: Bayesian Inference (BI) model parameter recovery using different fitting meth-
ods. ρ corresponds to Spearman correlation coefficient, red line represents a unity line (x=y),
and black line represents a least squares regression line.
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Figure 4.11: Bayesian Inference with stickiness (S-BI) model parameter recovery using dif-
ferent fitting methods. ρ corresponds to Spearman correlation coefficient, red line represents
a unity line (x=y), and black line represents a least squares regression line.
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Figure 4.12: Correlation between the average experienced time intervals in attentive state
and the τ parameter in RL-LAS model that captures transition between disengaged/engaged
attention states estimated by the ANN.
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Figure 4.13: Misclassification of Bayes and sticky Bayes model is contingent on the value of
the stickiness parameter κ. The misclassification percentage is higher at κ values closer to
0.
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Figure 4.14: Summary statistics for Approximate Bayesian Computation (ABC). Top row
shows summary statistics computed for all models simulated on a probabilistic reversal learn-
ing task; the figure only shows agents simulated using a 4-parameter RL model. Bottom
row shows summary statistics computed for all models simulated on a hierarchical reversal
learning task; the figure only shows performance of HRL model agents. Both rows depict
200 out of 3000 test set agents. Gray lines represent individual agents; black line represents
an average across the agents.
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Figure 4.15: Effect of prior misspecification on parameter estimation in MAP and our ANN
approach. A) Applying too narrow prior specification to the fitting procedure (prior in
MAP, training samples in ANN) results in difficulty estimating out-of-range parameters for
both MAP and ANN. Broader prior specification addresses this issue, with only a slight
loss of precision in specific target ranges. Training the network with a broad range of
parameters while oversampling parameters from regions of interest yields most robust results.
B) Visualization of fitting with MAP and ANN with a wide prior, tested on a full range/wide
range data set - training the network with broader range while oversampling from the most
plausible range yields less noisy performance in the range compared to MAP. Red lines
delineate the range of the narrow prior, which corresponds to the main text results. C) The
broad prior was designed by sampling from the full broader range (β ∈ [0, 10], α ∈ [0, 1]), with
the constraint that 70% of samples are in the expected narrow range (β ∈ [2, 6], α ∈ [0.5, 1],
and 30% outside.)
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Figure 4.16: Consistency between methods for parameter estimation. A) The correlation
between parameter estimates in the 4P-RL model derived using MAP and ANN, is high,
and indeed stronger than the correlation between true and derived parameters (see Fig. 4.2),
showing that both methods systematically misidentify some parameters similarly, likely due
to specific data patterns. B) The correlation between parameter estimates in the Bayesian
inference model derived using MAP and ANN shows similar results.
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Figure 4.17: Consistency between methods for parameter estimation in two model misspec-
ification cases. A) The correlation between MAP and GRU RL model parameter estimates,
fit to data simulated from Bayesian Inference model. B) The correlation between MAP and
GRU Bayes model parameter estimates, fit to data simulated from the RL model. High
correlation would imply similarities in estimates between MAP and GRU, suggesting that
ANNs are similarly impacted by model misspecification as traditional methods such as MAP.
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Figure 4.18: Comparison of model predictions of ground truth simulated behavior (black line)
and choices simulated using A) MAP and B) GRU estimated parameters (gray line) of the 4P-
RL model. We randomly sampled 100 agents from the test set, and the respective parameter
estimates for each of the methods. We simulated data from the model and compared it to
ground truth. Both methods successfully recover choices from the ground truth agents.
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Figure 4.19: Effect of model misspecification on standard method and ANN performance.
A) We fit the Bayesian Inference model (without stickiness) to the data simulated from the
Bayesian Inference Model with stickiness using MAP. We correlated the estimated Bayesian
inference model parameters (y axis) with the ground truth parameters from the model with
stickiness (x-axis). B) For the ANN, we trained the neural network to estimate parameters of
the Bayesian inference model, and tested it on the data simulated from the Bayesian inference
model with stickiness. We looked at the correlation between the ground truth parameters
(from a separate test set), and the predictions of the network trained on the model without
stickiness. Both methods show that parameters shared between the misspecified models
can be reasonably and similarly recovered. Both ANN and MAP generated some non-zero
estimates of stickiness when data simulated from model without stickiness was fit using the
model/network that assumes presence of stickiness in the model; however, these values were
closely clustered around 0, to a similar degree between methods (Fig. 4.22).
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Figure 4.20: Effect of model class misspecification on standard method and ANN perfor-
mance. We fit the RL model to the data simulated from the Bayesian Inference model in
the probabilistic reversal learning task (see Methods section on Tasks and Cognitive Models)
using A) MAP and B) GRU. We correlated the estimated RL model parameters (y axis) with
the ground truth parameters from the Bayesian inference model (x-axis). MAP and GRU
show similar patterns between estimated and true parameters, such that variance driven by
true parameter β pswitch are both captured in the fit β parameters, while the fit learning rate
parameter α captures behavioral variance driven by the Bayesian update parameters preward

and pswitch.



CHAPTER 4. ARTIFICIAL NEURAL NETWORKS AS TOOLS FOR FITTING
COGNITIVE MODELS 119

Figure 4.21: Effect of model class misspecification on standard method and ANN perfor-
mance. We fit the Bayesian Inference model to the data simulated from the RL model in
the probabilistic reversal learning task (see Methods section on Tasks and Cognitive Models)
using A) MAP and B) GRU. We correlated the estimated Bayesian inference model parame-
ters (y axis) with the ground truth parameters from the RL model (x-axis). MAP and GRU
again show similar patterns between estimated and true parameters. In particular, we see
that in both cases, noise in behavior due to β in the RL model tends to be attributed to the
pswitch fit parameter rather than the fit Bayesian model β parameter. Effect of learning rate
parameter α are attributed to preward by both methods.
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Figure 4.22: Stickiness parameter estimates from the data simulated from the Bayesian infer-
ence model without stickiness from A) fitting the Bayesian inference model with stickiness
using MAP, and B) utilizing the ANN trained to estimate parameters of the model with
stickiness. Despite both methods producing non-zero estimates of stickiness, they tend to
cluster around the value of 0.
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Figure 4.23: Neural network performance variability by different seeds for model identifica-
tion and parameter estimation. For conciseness, we show tests from 10 different seeds on
model identification with 4 models simulated on the PRL task (e.g. same as Fig. 4.5) and
parameter estimation of one of the likelihood-intractable models (e.g. RL-LAS model). We
found that overall both model identification and parameter estimation had relatively stable
results across different seeds, with an exception of one seed value in both cases.
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Tasks Parameter Recovery Model Identification

Cognitive Models 2P-RL 4P-RL
RL-
LAS

HRL PRL

2P-
RL
&
RL-
LAS

HRL

Batch size 256 256 256 256 128 128 128
GRU units 128 90 256 256 151 151 151

1st dense units 64 45 128 128 75 75 75
2nd dense units 32 22 64 64 37 37 37

Dropout after RNN 0.2 0.3 0.2 0.2 0.187 0.187 0.187

2nd dropout 0.1 0.2 0.1 0.1 0.04 0.04 0.04

3rd dropout 0.01 0.05 0.02 0.01 0.02 0.02 0.02

Table 4.1: Summary of hyper-parameter values selected from Bayesian optimization
algorithms.
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Chapter 5

Conclusions

5.1 Effect of choice abstraction on reinforcement

learning and working memory

Reinforcement learning algorithms applied in cognitive models often assume a strictly defined
action space, and a direct mapping between stimuli and simple actions. However, choice
spaces are often more complex and often involve layered execution, such as choosing the
high level, goal option (e.g. which yogurt color to select) which constrains the motor action
execution (reaching in the direction of chosen color). Oftentimes, choices at these different
levels are treated the same in computational models. The project outlined in chapter 2
tested variability in computational mechanisms of reinforcement learning in conditions with
more/less abstract choice spaces, and found that 1) less abstract choices (e.g. motor actions)
tend to interfere with more abstract choices (e.g. choice of a goal stimulus), and 2) a model
that accounts for working memory contribution to reinforcement learning indicated that
working memory deployment (quantified by the working memory weight paramter) is reduced
in more abstract choice condition. This has implications for how we understand choice spaces
as an integral part of reinforcement learning algorithms. First, different choice types are
dissociable, and may recruit RL mechanisms differently, and this should merit more careful
consideration when defining how the choice process is modeled in RL algorithms. Second,
working memory resources might be used up to constrain a more abstract choice space, which
results in reduced contribution of working memory to the actual choice process. Our work,
however, did not identify RL or WM as the source of interference of motor actions with
stimulus goal selection, with lack of evidence in favor of models that place policy mixture
parameter selectively in RL or WM module. Future work is required to investigate this in
closer detail.

Identification of relevant features of the choice space is a critical building block of cor-
rect credit assignment and adaptive behavior. Failure to identify what feature of choice
space defines rewarding responses would likely result in suboptimal and maladaptive behav-
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ioral patterns. The finding that the certain types of choice interfere with others, leading to
increased rate of interference errors and erroneous selections may be characteristic of per-
severative responses and inability to disengage from certain actions commonly observed in
obsessive-compulsive disorder. Future work could implement this design, or its variation, to
explore the effect of choice abstraction and relevant WM/RL mechanisms in choice process
in clinical populations.

In addition to explaining human behavior, this paradigm could be used to explore the
differences in strategies human and artificial agents implement in service of goal-directed
behavior. We recently explored how a large language model (GPT 3.5) solves the task
comparable to position condition administered in experiment 2 (e.g. simple actions with
varying set size). We observed that the large language model exploited associations irrelevant
to the task structure when making choices. For instance, if the instructions stated to choose
one of the actions labeled by a digit (action 1, action 2 or action 3) in responses to each of
the stimuli also labeled by digits (e.g. stimulus 1, stimulus 2, stimulus 3), it tended to match
actions and stimuli based on their digit labels (e.g. choosing action 1 for stimulus 1, action
2 for stimulus 2, etc.) even when this was not a correct mapping, occasionally requiring a
lot of training to override this bias. Updated version of the model (GPT 4) did not show
this tendency, but the overall result may have a potential implication for the extent to which
artificial agents can be likened to humans in ways they solve problems, especially with the
rising popularity in applications of artificial intelligence and large language models.

This work represents an addition to the line of research that attempts to outline a more
holistic picture of reinforcement learning in cognition, including how the computational
mechanisms of RL trades off with different cognitive processes, including the executive func-
tion. More specific applications (e.g. with regards to clinical populations and artificial
agents) may be possible.

5.2 Do we need subgoals for generalization?

Chapter 3 presented work looking at how subgoals are used to hierarchically organize sim-
ple action sequences into complex policies in service of reward collection in the context of
hierarchical reinforcement learning. We have defined subgoals in a way that decouples them
from reward values and internal motivators (e.g. curiosity drive from novelty/surprise). We
found that participants showed evidence of using subgoals to solve the task, and through
the regression analysis we found that tokens used to represent subgoals impacted partici-
pants’ accuracy, and their tendency to repeat action sequences. This implies that subgoals
can exert pseudo-reinforcing effects on performance and choices, independently of factors we
controlled for. We also tested if the subgoals are successfully generalized to separate tasks.
We found that only a subset of our participant sample (one third) showed evidence of sub-
goal generalization, under our subgoal specifications. Participants who did show evidence
of subgoal generalization were able to identify the subgoal features when explicitly probed
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to do so; they also displayed preference for subgoal over non-subgoal features, which led us
to conclude that subgoal generalization, under our definition of subgoals, is plausible but
predicated on explicit recognition of subgoal features.

We explored the role of subgoals in hierarchy in the context of learning; however, hierar-
chical organization is present in other domains - such as language. Language can be viewed
as hierarchically organized due to its compositional structure (e.g. letters construct words,
words construct sentences, sentences construct paragraphs, etc.). Therefore, subgoals may
be present in the language domain as well, in form of a type of word, or its position in
the sentence, that may signal termination of one syntactic/semantic unit and initiation of
a new one (much like action sub-sequences). These insights could prove to be valuable in
streamlining language instructions for artificial agents (e.g. in large language models, where
identifying proper ways of instructing the model remains a challenge), where the structure or-
ganized around subgoals may improve comprehension of instructions, and better translation
into direct output.

5.3 The future of cognitive modeling

Chapter 4 focused on method development aimed to construct a tool that will enable fitting
computational cognitive models with intractable likelihoods and strong sequential depen-
dencies by leveraging the power of artificial neural networks. This approach is based on
feeding a large set of simulated data sequences to and training the neural network to esti-
mate model parameters, or identify which model the data was simulated from without the
need to compute model likelihood. The simple neural network architecture consisting of an
RNN (recurrent neural network) and densely connected layers was successfully applied to
model parameter recovery and model identification for various models - both tractable and
intractable. Furthermore, our tool allows for a simple add-on of evidential learning that
permits quantification of parameter estimate uncertainty. In addition, the neural network
approach is not computationally expensive and provides a fast way to relate cognitive models
to the data.

In our project we focused on basic properties of cognitive modeling - parameter estima-
tion and model identification. However, with tools such as neural networks, alternative uses
in service of cognitive modeling may be possible. For instance, instead of model parame-
ter estimation/model identification, future projects could focus on extracting agent’s latent
task-solving strategies from data sequences which may evolve throughout the task. Such
application may be possible with an alternative neural network architecture that permits
a sequence-to-sequence translation, whereby instead of single parameter estimate or model
label for the agent we obtain a sequence of strategies the agent deployed to solve the task
across trials.

Recently, neural networks have been applied to cognitive modeling in a different way,
departing from fitting hand-crafted cognitive models to the data and instead using ANNs
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as hybrid cognitive model ”replacements” (Eckstein et al., 2023). The motivation behind
this approach is to exploit advantages of both cognitive modeling and ANNs (interpretable
outputs and flexibility respectively), while mitigating their limitations (potential poor fit
to the data, and opaque, black-box mechanisms that are not interpretable). This approach
essentially permits substitution of model functions with ANNs, and extraction of information
(e.g. learning rules) beyond what is specified by the cognitive model (e.g. by inspecting
neural network weights).

It is evident that, whether through merely substituting model-fitting tools or augmenting
cognitive models by offering additional insights into processes underlying the behavioral data,
artificial neural networks are increasingly taking an important place in cognitive modeling
research. The properties of ANNs, specifically their flexibility and capacity for capturing
complex data patterns, make them an attractive tool for cognitive modeling that many
researchers might gravitate towards. While it may be expected that the literature leveraging
ANNs for cognitive models may expand in the future, it will be important for the researchers
to exercise caution when applying ANNs, be cognizant of their limitations, as well interpret
the results with caution (considering both the practices of applying the ANNs, and the
assumptions about tested cognitive theories).

5.4 Summary

We completed three projects with the goal of outlining computational mechanisms of rein-
forcement learning in human cognition - in the context of hierarchy and interaction with other
learning systems in settings that challenge basic RL premises. We also devoted a project
to developing tools that will help us, and other cognitive researchers, test a broader range
of cognitive models by replacing traditional model-fitting techniques with neural networks.
Results combined across the first 2 projects imply that while basic RL algorithms have high
utility and have been of immense importance in cognitive science, they pose restrictive as-
sumptions and fail to account for many robust learning patterns - some of which could be
accounted for by modeling an interaction with other learning mechanisms (including that
of working memory) and leveraging hierarchical representations. Our third project offers a
simple and light-weight approach to relating cognitive models with complex intractable like-
lihoods to behavioral data through neural networks. This project aims to broaden the range
of testable cognitive theories, including those previously deemed infeasible due to intractable
likelihood, that might offer better explanations of learning processes.
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