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Abstract: Slags from the remote Mota Farun locality above Casaccia (Val Bregaglia, Swiss Alps) have been
analyzed with scanning electron microscopy, X-ray powder diffraction and microfocus synchrotron X-ray
diffraction to determine mineralogical composition and microstructures. Non-magnetic slag samples
are largely composed of euhedral and dendritic iron-rich olivine in a glassy matrix. Locally there are
zones with globular inclusions rich in bornite ((Cu5Fe)S4) and locally metallic copper. Some regions
display dendritic pentlandite ((Fe,Ni)9S8). Magnetic samples are mainly composed of fayalite (Fe2SiO4)
and wüstite (FeO), with minor magnetite (Fe3O4). The mineralogical composition indicates that slags
were the product of copper smelting. The slag compositions and morphologies are analogous to slags
described from the Oberhalbstein (Graubünden, Switzerland) and the Trentino Alps (Italy) which are
attributed to metallurgical exploitations of the Late Bronze Age. While the origin of the ore could not
be determined, it may be related to ore deposits of chalcopyrite in greenschists and serpentinites in the
vicinity, such as Alp Tgavretga (Septimer Pass) and Val Perossa (Val Bregaglia).

Keywords: copper smelting; slags; Swiss alps; Casaccia; scanning electron microscopy;
synchrotron X-rays

1. Introduction

Ancient metallurgy in Europe has been of longstanding interest [1–11] and particularly prehistoric
copper production in the eastern Alps received a lot of attention such as the the Oberhalbstein
in Graubünden (Switzerland) [12], Montafon [13,14], the Silvretta region [15], Kitzbühel [16],
Mitterberg [16,17] and Obersteiermark [18] in Austria and the Trentino region in northern Italy [19–22].
Similar Bronze Age activities have been described from the Western Alps [23]. Copper smelting slags
are often found at remote places, corresponding to local mineral deposits, mainly of chalcopyrite.

In 1972 Remo Maurizio [24] described slags from a locality above Casaccia, Val Bregaglia, in the
Swiss southern Alps. These slags were never analyzed in any detail and attracted our interest in
connection with geological fieldwork [25].

The Casaccia locality is not very far from other mining sites further north in Graubünden where
metal mining and processing started in the Bronze age [26], continued through the Middle Ages to the
late 19th century [27–30]. Compared with other metallurgical mining operations in the Alps described
in the literature [11], Casaccia slags originate from a very small and local operation.
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Casaccia is in uppermost Val Bregaglia, which has been an important trading route for a long
time. While there is currently no evidence for prehistoric habitation, Romans traversed the Alps from
Italy through what is now Casaccia, both over Septimer Pass and over Maloja-Julier Passes, with some
relics preserved such as pillars on Julier Pass as well as remains of roadways.

Figure 1 shows a map of upper Val Bregaglia with principal tectonic units compiled from previous
studies [25,31,32]. The geology is rather complex, with lower Pennine nappes on the southwest overlain
by Austroalpine nappes on the northeast. The Pennine nappes (Suretta, Lizun, Avers and Platta) are
composed largely of muscovite-chlorite gneiss, some marble and with local serpentinite. They represent
a Paleozoic-Mesozoic basement that was metamorphosed during the early Tertiary Alpine orogeny.
The Austroalpine Margna and Err nappes represent largely Hercynian granite, also subjected to Alpine
metamorphism and deformation. On the lower right corner of the map is the young Tertiary Bergell granite
surrounded by the Forno contact zone. During the ice age, lasting until about 10,000 years BP, much of the
area and particularly the valleys were covered by large glaciers, most importantly a glacier from Val Forno
(southeast) that divided at Maloja into a branch that moved northeast into the Engadine, and a branch that
moved southwest into Val Bregaglia and towards the current Lake of Como. Around 1500 BC and 0 AD
there were warm periods, probably with minimal glaciation.
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Figure 1. Map of upper Val Bregaglia in the Swiss Alps with tectonic units (italic). The slag locality of 
Mota Farun and the ore deposits at Alp Tavretga and Val Perossa are indicated by asterisk symbols. 
Coordinates with a square kilometer scheme are from Swiss topographic maps. Universal geographic 
coordinates (NS and EW) are also indicated. 

2. Sample Description and Analytical Methods 

The map in Figure 1 shows the locality Mota Farun west of Casaccia where Maurizio collected 
slags [24]. This place is on a steep slope, 200 m above Casaccia (Swiss coordinates 140.3 km/770.6 km, 
1600 m), now covered largely by Quaternary debris and forests. Here we collected new samples. The 
location is in the Pennine Lizun nappe of greenschist metamorphic grade with dominant muscovite-
chlorite-albite gneiss.  

Slags at the Mota Farun locality occur in various sizes, the largest about 20 cm. They have mainly 
been found in places of recent erosion (e.g., in connection with lumbering) or excavations (for an 
adjacent electric power line). No evidence for mining activities could be identified nor could relics of 
smelters be found. Figure 2 is an image of various slags. Some are homogeneous, others have 
inclusions of host rock (Figure 2c). Some slags, particularly those with platelet morphology, are 
strongly magnetic (Figure 2a,b). Most do not display significant magnetism. 

Figure 1. Map of upper Val Bregaglia in the Swiss Alps with tectonic units (italic). The slag locality of
Mota Farun and the ore deposits at Alp Tavretga and Val Perossa are indicated by asterisk symbols.
Coordinates with a square kilometer scheme are from Swiss topographic maps. Universal geographic
coordinates (NS and EW) are also indicated.
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Here we study samples of slag from the Casaccia site [24] in some detail with modern methods
used in mineralogy to characterize microstructures, identify phases and their morphology. Apart from
analyzing slags we also explore potential source material in the vicinity. This may inspire more
systematic archeological studies of the Casaccia samples, to identify remains of smelting facilities,
radiocarbon age determinations and locating the origin of the ore that was processed in Val Bregaglia.
It also could encourage archeologists to apply these methods to explore details of microstructural
features to slags from classical sites of ancient metal production. They have mainly relied on
conventional geochemistry.

2. Sample Description and Analytical Methods

The map in Figure 1 shows the locality Mota Farun west of Casaccia where Maurizio collected
slags [24]. This place is on a steep slope, 200 m above Casaccia (Swiss coordinates 140.3 km/770.6 km,
1600 m), now covered largely by Quaternary debris and forests. Here we collected new samples.
The location is in the Pennine Lizun nappe of greenschist metamorphic grade with dominant
muscovite-chlorite-albite gneiss.

Slags at the Mota Farun locality occur in various sizes, the largest about 20 cm. They have mainly
been found in places of recent erosion (e.g., in connection with lumbering) or excavations (for an
adjacent electric power line). No evidence for mining activities could be identified nor could relics
of smelters be found. Figure 2 is an image of various slags. Some are homogeneous, others have
inclusions of host rock (Figure 2c). Some slags, particularly those with platelet morphology, are strongly
magnetic (Figure 2a,b). Most do not display significant magnetism.
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Figure 2. Photograph of Casaccia slags. (a,b) Plate-shaped magnetic slags; (c) slag with inclusions of 
host rock and (d–f) non-magnetic slags with bulges. 

From samples chosen for this study polished 30 μm thin sections were prepared and viewed 
with optical microscopy to identify areas of interest. These were then analyzed with a Zeiss-Evo 
scanning electron microscope (SEM) at UC Berkeley. The SEM was operated at 20 kV. For imaging 
backscatter electrons (BSE) were used to highlight variations in atomic weight. Samples were studied 
both at low vacuum (requiring no carbon coating) and at high vacuum (with carbon coating). High 
vacuum microscopy provides higher resolution for BSE images. The chemical composition was 
assessed with energy-dispersive spectroscopy in the SEM, using an EDAX detector and data 
processing software. At low vacuum and without carbon coating, low atomic number elements such 
as carbon and oxygen can be detected. Due to the small grain size of many crystallites, and 
corresponding averaging in the electron beam, volume fractions of elements are qualitative estimates, 
particularly for oxygen.  

In addition the bulk mineralogical composition of the slags was determined with X-ray powder 
diffraction (XRD), using an X’Pert Malvern Panalytical system with monochromatic Co Kα radiation 
(wavelength 1.7902 Å). The X-ray diffraction patterns were analyzed with the Rietveld software 
MAUD [33]. 

Two samples were also investigated with synchrotron X-ray micro-diffraction at beamline 12.3.2 
of the advanced light source, Lawrence Berkeley National Laboratory, to identify local phases by X-
ray diffraction at the micron scale. The instrument used a 5 × 2 μm2 monochromatic beam of 1.23986 
Å wavelength. X-ray diffraction images were collected in transmission geometry with a DECTRIS 
Pilatus 1M area detector (DECTRIS, Baden, Switzerland) positioned at a ~40° angle with respect to 
the incident X-ray beam and at a distance of approximately 185 mm from the sample. For these 
experiments thin sections of the samples were removed from glass slides and mounted on an 
aluminum frame. The 2D diffraction images were then analyzed using the XMAS software [34] to 
identify phases present in local regions. 

Figure 2. Photograph of Casaccia slags. (a,b) Plate-shaped magnetic slags; (c) slag with inclusions of
host rock and (d–f) non-magnetic slags with bulges.
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From samples chosen for this study polished 30 µm thin sections were prepared and viewed with
optical microscopy to identify areas of interest. These were then analyzed with a Zeiss-Evo scanning
electron microscope (SEM) at UC Berkeley. The SEM was operated at 20 kV. For imaging backscatter
electrons (BSE) were used to highlight variations in atomic weight. Samples were studied both at
low vacuum (requiring no carbon coating) and at high vacuum (with carbon coating). High vacuum
microscopy provides higher resolution for BSE images. The chemical composition was assessed with
energy-dispersive spectroscopy in the SEM, using an EDAX detector and data processing software.
At low vacuum and without carbon coating, low atomic number elements such as carbon and oxygen
can be detected. Due to the small grain size of many crystallites, and corresponding averaging in the
electron beam, volume fractions of elements are qualitative estimates, particularly for oxygen.

In addition the bulk mineralogical composition of the slags was determined with X-ray powder
diffraction (XRD), using an X’Pert Malvern Panalytical system with monochromatic Co Kα radiation
(wavelength 1.7902 Å). The X-ray diffraction patterns were analyzed with the Rietveld software
MAUD [33].

Two samples were also investigated with synchrotron X-ray micro-diffraction at beamline 12.3.2 of
the advanced light source, Lawrence Berkeley National Laboratory, to identify local phases by X-ray
diffraction at the micron scale. The instrument used a 5 × 2 µm2 monochromatic beam of 1.23986 Å
wavelength. X-ray diffraction images were collected in transmission geometry with a DECTRIS Pilatus
1M area detector (DECTRIS, Baden, Switzerland) positioned at a ~40◦ angle with respect to the incident
X-ray beam and at a distance of approximately 185 mm from the sample. For these experiments thin
sections of the samples were removed from glass slides and mounted on an aluminum frame. The 2D
diffraction images were then analyzed using the XMAS software [34] to identify phases present in
local regions.

3. Results

XRD on powders provided some information about the bulk mineralogical composition with
olivine (volume fraction ~95%, Ol), pyrrhotite (~4%, Po) and some magnetite (<1%, Mag) for
non-magnetic slags (Figure 3a), and fayalite (~55%, Fa), wüstite (~42%, Wus) and magnetite (~3%, Mag)
for magnetic slags (Figure 3b). Volume fractions of phases were obtained from the MAUD Rietveld
refinement [34]. Dots in the spectra represent measured intensities and the line is the corresponding
Rietveld fit. For some peaks diffraction indices are shown. The relatively high background between
25◦ and 50◦ 2θ in Figure 3a was probably due to an amorphous phase.

SEM-BSE images display complex microstructures. In one sample (Figure 2d) olivine crystals of
various morphologies in an amorphous matrix dominate (Figure 4a). Some regions were enriched in
metallic globules (bright areas in Figure 4b). Figure 4c–f display a region with a metallic nodule at
higher magnification. Figure 4c,e, at higher brightness, emphasized olivine microstructures ranging
from euhedral to acicular and dendritic. Particularly Figure 4e illustrates large olivine crystals with
zoning, expressed by changes in brightness. The outermost zone was brightest, indicative of high iron
content. Figure 4d,f is at low brightness to illustrate microstructures in metallic nodules, divided into
regions with brighter and darker grey shades.

To get more information about mineral compositions elemental maps were recorded with energy
dispersive spectroscope (EDS, Figure 5). Results for a region indicated by a square in Figure 4b display
olivine with variable Fe and Mg content (Mg, Si, Fe) in an amorphous matrix composed of Al, Mg,
Si and Ca. The metal-rich area was composed of Fe-sulfide (darker in Figure 4f and identified as
pyrrhotite Po) and Cu-Fe-sulfide (brighter in Figure 4f, identified as bornite Bn). There were some
bright spots in Figure 4f attributed to native copper (Cu), as well as in EDS scans (Figure 5), and also of
Fe-Ni-sulfide (pentlandite, Pn).

Figure 6 highlights another complex region of a non-magnetic slag (sample in Figure 2e). To display
the microstructure with zoned prismatic olivines and olivine dendrites in a darker matrix, relatively
high brightness has to be used which makes it difficult to display complexities of sulfide and metallic
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phases (Figure 6a). This sample has a higher proportion of metal sulfides in nodules (bornite,
Bn and pyrrhotite Po) and metallic copper, which are best visible at lower brightness (Figure 6b).
Compositional variations are again displayed in EDS maps (Figure 7) which highlight a matrix high in
Al and Ca, as well as a higher concentration of Si than olivine. It also shows a zone of elemental copper
(Cu in Figure 6b).
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(a) Zoned prismatic olivine (Ol) crystals, Fe-rich at the rim, in a matrix with skeletal olivine and olivine 
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is the area on which a SEM-energy dispersive spectroscope (SEM-EDS) scan was performed (Figure 
5). (c,d) Region rich in Cu-Fe sulfides (top) in a matrix of olivine (bottom). (c) High brightness to 
emphasize the olivine matrix, (d) Low brightness to emphasize sulfides. (e) Enlarged area of (c) 
illustrating euhedral zoned olivine and skeletal olivine in the matrix. (f) Enlarged area of (d) with 
pyrrhotite (Po), bornite (Bn), copper (Cu, white dots) and pentlandite (Pn, white dots). Abbreviations 
for minerals here and in other figures refer to IUGS convention [35]. 

Figure 4. SEM-backscatter electron (SEM-BSE) images of a sample of non-magnetic slag (Figure 2d).
(a) Zoned prismatic olivine (Ol) crystals, Fe-rich at the rim, in a matrix with skeletal olivine and olivine
dendrites. (b) Region with a concentration of Cu-Fe rich sulfide nodules. The rectangle in the center is
the area on which a SEM-energy dispersive spectroscope (SEM-EDS) scan was performed (Figure 5).
(c,d) Region rich in Cu-Fe sulfides (top) in a matrix of olivine (bottom). (c) High brightness to emphasize
the olivine matrix, (d) Low brightness to emphasize sulfides. (e) Enlarged area of (c) illustrating
euhedral zoned olivine and skeletal olivine in the matrix. (f) Enlarged area of (d) with pyrrhotite (Po),
bornite (Bn), copper (Cu, white dots) and pentlandite (Pn, white dots). Abbreviations for minerals here
and in other figures refer to IUGS convention [35].
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Figure 6. SEM-BSE images of a sample of non-magnetic slag (Figure 2e). Cu-Fe sulfide nodule (bright) 
composed of pyrrhotite (Po), bornite (Bn) and elemental copper (Cu, white line) in a matrix of zoned 
prismatic olivine (Ol) crystals. Both images are of the same area and the same magnification (scale in 
(b) applies to both figures) but (a) is at high brightness to emphasize olivine microstructure and (b) 
at lower brightness to display complex intergrowth structures of sulfides. 
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image is SEM-BSE. Areas rich in Al, Ca and Si correspond to the amorphous matrix. High brightness 
in Cu map is elemental copper and medium brightness is bornite. 

Figure 5. SEM-EDS maps displaying the elemental abundance in a small area highlighted in Figure 4b.
First image is SEM-BSE. Areas rich in Al, Ca and Si correspond to the amorphous matrix. High brightness
in Cu is elemental copper.
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(b) applies to both figures) but (a) is at high brightness to emphasize olivine microstructure and (b) at
lower brightness to display complex intergrowth structures of sulfides.
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in Cu map is elemental copper and medium brightness is bornite.
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A third sample (Figure 2f) was analyzed in some detail (Figure 8). Again SEM-BSE images
illustrated a microstructure with euhedral prismatic crystals of olivine with zoning expressed by
changes in brightness (Figure 8a). The iron content was highest at the surface and intermediate at the
core. An EDS spectrum for the core is shown in Figure 9a. The olivine composition of the core was about
(Mg0.75Fe0.25)SiO4, at the surface it was (Mg0.5Fe0.5)SiO4. The dark glassy matrix, which accounted for
about 20% of the volume, was composed of Fe-Al-Mg-Ca-Si-O (Figure 9b), with dendrites of olivine
rich in Fe (Figure 8a). Regions of metal-rich nodules occurred in clusters (Figure 8b,c). The bulk is of
bornite composition (Cu3.5Fe1.5)S4 (Figure 9c) with regions of Fe-S corresponding to pyrrhotite FeS
(Figure 9d). Locally there was elemental copper (Figure 8c,d and Figure 9e). Also, again in some areas
FeNiS were documented (Figure 9f) with dendritic morphology (Figure 8d). The composition suggests
pentlandite (Fe,Ni)9S8.

While the three non-magnetic slags, which were analyzed (Figure 2d–f), had similar microstructures
(Figures 4, 6 and 8), the platy magnetic slags (Figure 2a,b) were entirely different. Figure 10
(corresponding to Figure 2a) displays grey skeletal crystals in a matrix of dark prismatic crystals and
occasional bright globules. At higher magnification (Figure 10b) it becomes obvious that the grey
crystals were composed of two different phases (brighter and darker grey shades) and also the bright
globules were not homogeneous.

With EDS maps (Figure 11) the dark prismatic crystals could be identified as fayalite (Fe2SiO4),
grey skeletal crystals as iron oxides wüstite (FeO) and magnetite (Fe3O4) and the bright globules as
copper-iron-sulfide (bornite). The very dark matrix (Figure 10a) was dominantly composed of Al, Si
and Ca (Figure 11).
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Figure 8. SEM-BSE images of a non-magnetic slag (Figure 2f). (a) Zoned prismatic olivine (Ol) crystals,
Fe-rich at the rim, in a matrix with olivine dendrites. (b) Spherical nodule with bornite (Bn, bright) and
pyrrhotite (Po, grey). (c) Metallic nodules with pyrrhotite (dark), bornite (grey) and metallic copper (Cu,
white). (d) Bornite-pyrrhotite nodule with metallic copper (white on left side) and dendritic pentlandite
(Pn, FeNiS) on right side.
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A second magnetic sample (Figure 2b) was also dominantly composed of skeletal iron-oxides (bright
phases in Figure 12a,b), in a matrix of prismatic fayalite (darker in Figure 12a,b). The SEM identification
of phases was based on EDS spectra (Figure 13). The dark matrix, composed of Fe, Si and O is fayalite
(Figure 13a). The bright nodules (Figure 12c,d, corresponding to the skeletal crystals in Figures 10a and 12a)
have been identified as brighter wüstite with a high Fe-O ratio (Figure 13b) and darker magnetite with a
lower Fe-O ratio (Figure 13c). Magnetite is concentrated on the periphery and along fractures of wüstite
(Figure 12d). These minerals confirm the XRD analyses on bulk samples (Figure 3b). Occasionally, also in
this sample, there were inclusions of bornite (very bright regions in Figure 12b,d).
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To ascertain the phase identification of crystals at the micrometer scale microbeam synchrotron
X-ray diffraction was used on two samples (Figure 2b,e). The beamsize was comparable to the particle
sizes and diffractions occurred as fairly sharp spots on Debye rings, rather than continuous rings (left
side of Figure 14), except for fine-grained copper (Figure 14b) and goethite (Figure 14c). On the right
side of Figure 14 identified phases are highlighted with color circles. Bornite and pyrrhotite were
confirmed in regions with metal-rich clusters of the non-magnetic sample (Figure 14a). Bornite and
fine-grained elemental copper (fcc) occurred locally (Figure 14b). In the magnetic sample wüstite,
magnetite and fayalite could be documented (Figure 14c). In addition there is a minor fraction of
fine-grained goethite, probably formed as alteration of iron oxides.
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4. Discussion

4.1. Geochemistry of Copper Slags

Copper ores were processed most likely in small bloomery furnaces [36–40] at temperatures
1200–1400 ◦C [41]. Charcoal used in the furnaces was produced locally in heaps by pyrolysis of
fir wood.

The geochemistry of copper slags has been explored in detail, both experimentally and based
on thermodynamics [42,43]. Figure 15 displays a Fe-Cu-S phase diagram [43–45] with pyrrhotite and
bornite coexisting at 700 ◦C. At higher temperature melting occurs [45]. The temperature of the Mg-rich
core of olivine crystallizing from a melt is about 1200 ◦C [46]. The prismatic euhedral morphologies of
olivine transforming to an acicular/dendritic pattern (Figures 4a and 8a) suggest initially relatively slow
cooling rates at equilibrium conditions changing to a higher degree of undercooling as documented
experimentally and with models for olivine crystallizing from melt [47–50]. Such microstructures were
also described in modern copper slags [51].

The log f O2-temperature phase diagram (Figure 16) illustrates a likely fugacity of −15 at
temperatures of ~1000 ◦C for the magnetic slag [52,53] to account for the prevalence of wüstite
relative to magnetite. Some goethite documented with X-ray microdiffraction (Figure 14c) may be due
to secondary oxidation.
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4.2. Ore Deposits

Metal ore deposits in Graubünden (E-Switzerland) have been explored by Schmidt [54] and then
in more detail by Escher [28], Grünenfelder [29] and Dietrich [30]. These studies focus on mining
activities in the 19th century, most of which were soon abandoned because they were not profitable.
The main copper ore is chalcopyrite. Minor bornite has been described in the Suretta nappe at Alp
Ursera near Andeer [28], at Piz Grisch [29] and the East-Alpine Silvretta nappe at Sertig and Lavin [28].

More closely related to Casaccia are historic and prehistoric Cu-Fe mines in the Oberhalbstein,
associated with ophiolites and serpentinites of the Pennine Platta nappe such as Colm da Bovs (Tinzen),
Marmorera, Crap Fess and Alp Tgavretga S of Bivio [30]. Close to the Mota Farun locality in Val
Bregaglia, chalcopyrite has been described in prasinites near Piz Lizun [55] and Val Perossa [56].
The most likely source of the copper ore is chalcopyrite in metasedimentary layers of the Lizun nappe,
the southern Platta nappe, probably associated with serpentinites, where pentlandite (Ni-S) has been
identified [30].

We have a closer look at two localities. First an ore deposit in the vicinity of Alp Tgavretga near
Septimer Pass (Swiss coordinates 768.96/144.27) at the contact of greenschists with serpentinites in
the Platta nappe (samples Brg1828, 1829). This ore was exploited more recently, in the 19th century,
but without much success [27]. Figure 17a shows a red layer very rich in sulfides and with a very high
density. In hand specimens chalcopyrite (Figure 17b) and a malachite/azurite alteration (Figure 17c)
can be observed. SEM-BSE images document abundant chalcopyrite (Figure 18a,c) with transformation
to magnetite, and in a matrix of chlorite. Locally chromium spinel has been identified (Figure 18b).
Other ore minerals are pyrite, pyrrhotite and ilvaite [30]. It is conceivable that material from Alp
Tgavretga was transported across the Septimer Pass, southwards, because the forests above Casaccia
are the closest providers of fuel for processing.

 
Figure 17. Images of ore deposits. (a–c) Alp Tavretga; (a) outcrop with red ore concentration; (b) hand
specimen with chalcopyrite and magnetite; (c) copper ore altered to malachite. (d,e) Val Perossa;
(d) outcrop with ore-rich layers; (e) hand specimen with pyrite in schist.
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Figure 18. Microstructures in ore sample Brg1828 from Alp Tgavretga (a–c). SEM-BSE images.
(a) chalcopyrite (Ccp, bright), magnetite (Mag, grey) and chlorite (Chl, dark). (b) Chromite (Chr)
surrounded by chlorite (Chl). (c) chalcopyrite (Ccp, bright) and pyrite(P) transforming to magnetite
(Mag, grey). (d) Serpentinite Brg1800 from Blaunca/Plaun dal Sel with pentlandite (Pn) in a matrix of
antigorite (Atg).

Another locality is Val Perossa (formerly Val Parossa, Swiss coordinates 769.5/138.5, samples
Brg1821, 1822), which contains a red zone of ore-rich greenschists (hence the name “rossa”) that
was explored for ore around 1600 under the direction of the Vertemate family in Piuro [24,56]
(Figure 17d). Most of the ore is pyrite (Figure 17e) but SEM observations document local concentrations
of chalcopyrite associated with pyrite (Figure 19). Here the sulfides also oxidized, producing red iron
hydroxides (goethite-lepidocrosite) responsible for the red color. Locally sphalerite (ZnS) was observed
(Figure 19b). The matrix is composed of chlorite, muscovite, clinozoisite, albite, with inclusions of
apatite and titanite. The same zone could continue towards Casaccia but may be covered by moraines,
Quaternary debris, soils and forests.

Small amounts of pentlandite were observed in the Mota Farun slags (e.g., Figures 4f and 8d).
Nickel is mainly observed in ultramafic rocks such as serpentinites in the western Alps [57] and
serpentinized ultramafics in Western Australia [58]. In a serpentinite from the Platta nappe at Blaunca
near Grevasalvas, pentlandite has been documented (Figure 18d) and it is likely that minerals from
serpentinites were added to ore processing, with slag compositions rich in magnesium and iron.
This does not imply that pentlandite was significant for the ore production.
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Figure 19. Microstructures in ore samples from Val Perossa (Brg1822). SEM-BSE images. (a) Pyrite (Py,
grey), chalcopyrite (Ccp), titanite (bright spots on lower left, Ttn) and albite (Ab, black) in a matrix of
chlorite (Chl); (b) Pyrite (Py) with sphalerite (Sp). (c,d) Pyrite (Py) altered to goethite (Gt) with regions
of chalcopyrite (Ccp, bright spots on right side).

4.3. Prehistoric Copper Mining in the Eastern Alps

Significant prehistoric copper mining occurred in the Oberhalbstein, north of the Casaccia
locality [12,26,59–61], in the Inn valley and Silvretta region [14–16,18,62], and around Luserna in
Trentino-Italy [19–21]. The Bronze Ages are based on radiocarbon dating of wood inclusions in slags
and go back to ~3000–2000 BC [22]. The microstructures and composition of slags from Luserna [20]
show many similarities with the two Casaccia copper slags described here. It is likely that they are
also Prehistoric, though no age determinations have been performed and there is no proof of that
assumption. Contrary to the Oberhalbstein or Luserna the copper production at Casaccia was also
on a much smaller scale. The bulk chemical composition of the Casaccia slags, rich in Fe, Si, with
significant Mg, but poor in Ca and alkalies corresponds to other Alpine slags resulting from copper
production [22]. The main phases in the two Casaccia slags are olivine-fayalite, wüstite, pyrrhotite,
bornite, magnetite and copper. No quartz or feldspars were identified, which are major phases in the
surrounding rocks of the Lizun nappe.

4.4. A Discussion of Analystical Methods

Scanning electron microscopy, particularly with backscatter imaging revealed complex
microstructures in these Alpine slags. With EDS spectra it was possible to identify crystallites
which are often at the submicron scale. Particularly important has been synchrotron microfocus
synchrotron X-ray diffraction for unambiguous identifications of crystallites in extremely fine-grained
materials. Similar methods have been applied to characterize other archeological materials such as
Roman concrete [63] and Anthropocene products such as debris from nuclear explosions [64].
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5. Conclusions

The Mota Farun slags are the first evidence for copper production in the Bergell Alps. In this
study we explore compositions and microstructures of phases with modern methods used in materials
science and mineralogy. Microstructures observed with scanning electron microscopy reveal complex
conditions of formation such as olivine transforming from a euhedral to a dendritic morphology and
intergrowth of pyrrhotite and bornite in globules. Magnetic slags display intricate intergrowths of
wüstite and magnetite in a matrix largely composed of fayalite. Interestingly several slag samples
from the same locality display very similar microstructures. The investigation may inspire others to
apply similar methods to characterize different types of ancient slags to establish a data base to explore
variations due to different ore compositions and production details.
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all experiments and data analysis. N.T. conducted synchrotron experiments at the Advanced Light Source. D.B.
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