UCLA UCLA Previously Published Works

Title

Mapping the human genetic architecture of COVID-19

Permalink

https://escholarship.org/uc/item/54g143s1

Journal Nature, 600(7889)

ISSN 0028-0836

Authors

Niemi, Mari EK Karjalainen, Juha Liao, Rachel G <u>et al.</u>

Publication Date 2021-12-16

DOI

10.1038/s41586-021-03767-x

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at <u>https://creativecommons.org/licenses/by/4.0/</u>

Peer reviewed

Article Mapping the human genetic architecture of COVID-19

https://doi.org/10.1038/s41586-021-03767-x

Received: 2 March 2021

Accepted: 23 June 2021

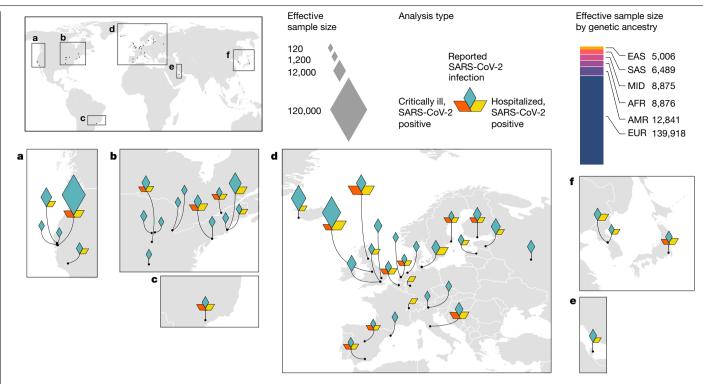
Published online: 8 July 2021

Open access

Check for updates

COVID-19 Host Genetics Initiative*

The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-19^{1,2}, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases³⁻⁷. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease.


The COVID-19 pandemic, caused by infection with SARS-CoV-2, has resulted in an enormous health and economic burden worldwide. One of the most remarkable features of SARS-CoV-2 infection is the variation in consequences, which range from asymptomatic to life-threatening, viral pneumonia and acute respiratory distress syndrome⁸. Although established host factors correlate with disease severity (for example, increasing age, being a man and higher body-mass index¹), these risk factors alone do not explain all of the variability in disease severity observed across individuals.

Genetic factors contributing to COVID-19 susceptibility and severity may provide new biological insights into disease pathogenesis and identify mechanistic targets for therapeutic development or drug repurposing, as treating the disease remains a highly important goal despite the recent development of vaccines. Further supporting this line of inquiry, rare loss-of-function variants in genes involved in the type I interferon response may be involved in severe forms of COVID- 19^{9-11} . At the same time, several genome-wide association studies that investigate the contribution of common genetic variation¹²⁻¹⁵ to COVID-19 have provided robust support for the involvement of several genomic loci associated with COVID-19 severity and susceptibility, with the strongest and most robust finding for severity being at the 3p21.31 locus¹²⁻¹⁶. However, much remains unknown about the genetic basis of susceptibility to SARS-COV-2 and severity of COVID-19. The COVID-19 Host Genetics Initiative (COVID-19 HGI) (https://www. covid19hg.org/)¹⁷ is an international, open-science collaboration to share scientific methods and resources with research groups across the world with the goal to robustly map the host genetic determinants of SARS-CoV-2 infection and the severity of the resulting COVID-19 disease. Here, we report the latest results of meta-analyses of 46 studies from 19 countries (Fig. 1) for COVID-19 host genetic effects.

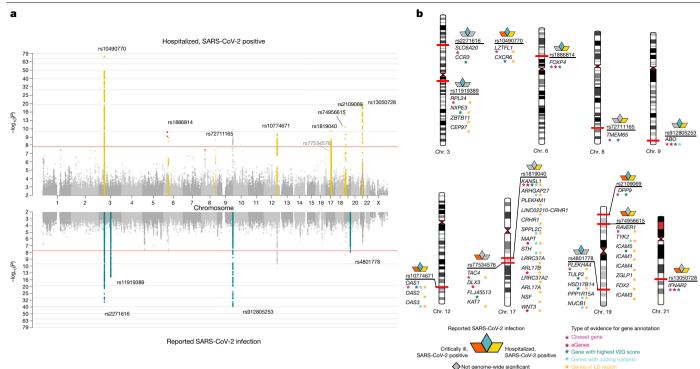
Meta-analyses of COVID-19

Overall, the COVID-19 HGI combined genetic data from 49,562 cases and 2 million controls across 46 distinct studies (Fig. 1). The data included studies from populations of different genetic ancestries, including European, admixed American, African, Middle Eastern, South Asian and East Asian individuals (Supplementary Table 1). An overview of the study design is provided in Extended Data Fig. 1. We performed case-control meta-analyses in three main categories of COVID-19 disease according to predefined and partially overlapping phenotypic criteria. These included (1) critically ill cases of COVID-19 defined as those individuals who required respiratory support in hospital or who died due to the disease; (2) cases of moderate or severe COVID-19 defined as those participants who were hospitalized due to symptoms associated with the infection; and (3) all cases with reported SARS-CoV-2 infection

*Lists of authors and their affiliations appear in the online version of the paper.

Fig. 1 | **Geographical overview of the contributing studies to the COVID-19 HGI and composition by major ancestry groups.** Populations are defined as African (AFR), admixed American (AMR), East Asian (EAS), European (EUR), Middle Eastern (MID) and South Asian (SAS).

regardless of symptoms (Methods). Controls for all three analyses were selected as genetically ancestry-matched samples without known SARS-CoV-2 infection, if that information was available (Methods). The average age of the participants with COVID-19 across studies was 55 years (Supplementary Table 1). We report quantile-quantile plots in Supplementary Fig. 1 and ancestry principal component plots for contributing studies in Extended Data Fig. 2.


Across our three analyses, we reported a total of 13 independent genome-wide significant loci associated with COVID-19 (the threshold of $P < 1.67 \times 10^{-8}$ is adjusted for multiple trait testing) (Supplementary Table 2), most of which were shared between two or more COVID-19 phenotypes. Two of these loci are in very close proximity within the 3p21.31 region, which was previously reported as a single locus associated with COVID-19 severity¹²⁻¹⁶ (Extended Data Fig. 3). Overall, we find six genome-wide significant associations for critical illness due to COVID-19, using data from 6,179 cases and 1,483,780 controls from 16 studies (Extended Data Fig. 4). Nine genome-wide significant loci were detected for moderate to severe hospitalized COVID-19 (including five of the six critical illness loci) from an analysis of 13,641 cases of COVID-19 and 2,070,709 controls across 29 studies (Fig. 2a, top). Finally, seven loci reached genome-wide significance in the analysis using data for all available 49,562 reported cases of SARS-CoV-2 infection and 1,770,206 controls, using data from a total of 44 studies (Fig. 2a, bottom). The proportion of cases with non-European genetic ancestry for each of the three analyses was 23%, 29% and 22%. We report the results for the lead variants at the 13 loci in different ancestry-group meta-analyses in Supplementary Table 3. We note that two loci, tagged by lead variants rs1886814 and rs72711165, had higher allele frequencies in southeast Asian (rs1886814; 15%) and East Asian genetic ancestry (rs72711165; 8%) whereas the minor allele frequencies in European populations were less than 3%. This highlights the value of including data from diverse populations for genetic discovery. We discuss the replication of previous findings and the new discoveries from these three analyses in the Supplementary Note.

Variant effects on severity and susceptibility

We found no genome-wide significant sex-specific effects at the 13 loci. However, we did identify significant heterogeneous effects (P < 0.004) across studies for 3 out of the 13 loci (Methods), which probably reflects the differential ascertainment of cases (Supplementary Table 2). There was a small number of overlapping samples (n = 8,380 European ancestry; n = 745 East Asian ancestry) between controls from the genOMICC and the UK Biobank studies, but leave-one-out sensitivity analyses did not reveal any bias in the corresponding effect sizes or P values (Extended Data Fig. 5 and Supplementary Information).

We next wanted to better understand whether the 13 significant loci were acting through mechanisms that increased the susceptibility to infection or that affected the progression of symptoms towards more severe disease. For all 13 loci, we compared the lead variant (strongest association *P* value) odds ratios (ORs) for the risk-increasing allele across our different COVID-19 phenotype definitions.

Focusing on the two better powered analyses: all cases with a reported SARS-CoV-2 infection and all cases hospitalized due to COVID-19, we find that four of the loci have similar odds ratios between these two analyses (Methods and Supplementary Table 2). Such consistency suggests a stronger link to susceptibility to SARS-CoV-2 infection rather than to the development of severe COVID-19. The strongest susceptibility signal was the previously reported ABO locus (rs912805253)^{12,13,15,16}. Notably, and in agreement with a previously reported study¹⁵, we also report a locus within the 3p21.31 region that was more strongly associated with susceptibility to SARS-CoV-2 than progression to more severe COVID-19 phenotypes. rs2271616 showed a stronger association with a reported SARS-CoV-2 infection ($P = 1.79 \times 10^{-34}$; OR (95% confidence interval (CI)) = 1.15 (1.13–1.18)) than hospitalization ($P = 1.05 \times 10^{-5}$; OR (95% CI) = 1.12 (1.06-1.19)). For this locus-which contains additional independent signals-the linkage-disequilibrium (LD) pattern is discordant with the P-value expectation (Extended Data Fig. 6 and Supplementary Note), pointing to a key missing causal variant or to a potentially undiscovered multi-allelic or structural variant in this locus.

Fig. 2 | **Genome-wide association results for COVID-19. a**, Top, results of a genome-wide association study of hospitalized cases of COVID-19 (n = 13,641 cases and n = 2,070,709 controls). Bottom, the results of reported SARS-CoV-2 infections (n = 49,562 cases and n = 1,770,206 controls). Loci highlighted in yellow (top) represent regions associated with the severity of the COVID-19 manifestation—that is, increased odds of more severe COVID-19 phenotypes. Loci highlighted in green (bottom) are regions associated with susceptibility to a SARS-CoV-2 infection—that is, the effect is the same across mild and severe

COVID-19 phenotypes. We highlight in red genome-wide significant variants that had high heterogeneity across contributing studies and that were therefore excluded from the list of loci found. **b**, Results of gene prioritization using different evidence measures of gene annotation. Genes in the LD region, genes with coding variants and eGenes (fine-mapped *cis*-eQTL variant PIP > 0.1 in GTEx Lung) are annotated if in LD with a COVID-19 lead variant (*r*² > 0.6). V2G, highest gene prioritized by the V2G score of Open Target Genetics.

By contrast, 9 out of the 13 loci were associated with increased risk of severe symptoms with significantly larger odds ratios for hospitalized COVID-19 compared with the mildest phenotype of reported SARS-CoV-2 infection (eight loci were below the threshold of P < 0.004(test for effect size difference) and, in addition, the lead variant rs10774671 had a clear increase in odds ratios despite not passing this threshold) (Supplementary Table 2). We further compared the odds ratios for these nine loci for critical illness due to COVID-19 versus hospitalized due to COVID-19, and found that these loci exhibited a general increase in effect risk for critical illness (Methods, Extended Data Fig. 7a and Supplementary Table 4), but the lower power for association analysis of critically ill COVID-19 means that these results should be considered as suggestive. Overall, these results indicated that these nine loci were more likely to be associated with progression of the disease and worse outcome from SARS-CoV-2 infection compared to being associated with susceptibility to SARS-CoV-2 infection.

For some of these analyses, the controls were simply existing population controls without knowledge of SARS-CoV-2 infection or COVID-19 status, which may bias effect size estimates as some of these individuals may have either become infected with SARS-CoV-2 or developed COVID-19. We perform several sensitivity analyses (Extended Data Fig. 7b, Supplementary Note and Supplementary Table 4) in which we show that using population controls can be a valid and powerful strategy for host genetic discovery of infectious disease, and particularly those that are widespread and with rare severe outcomes.

Gene prioritization and association with other traits

To better understand the potential biological mechanism of each locus, we applied several approaches to prioritize candidate causal genes and

474 | Nature | Vol 600 | 16 December 2021

explore additional associations with other diseases and traits. Of the 13 genome-wide significant loci, we found that nine loci implicated biologically plausible genes (Supplementary Tables 2, 5). Protein-altering variants in LD with lead variants implicated genes at six loci, including TYK2 (chromosome and cytogenetic band (chr.) 19p13.2) and PPP1R15A (chr. 19q13.33). The COVID-19 lead variant rs74956615T>A in TYK2. which confers risk for critical illness (OR (95% CI) = 1.43 (1.29 - 1.59)). $P=9.71\times10^{-12}$) and hospitalization due to COVID-19 (OR (95% CI) = 1.27) (1.18-1.36), $P = 5.05 \times 10^{-10}$) is correlated with the missense variant rs34536443:G>C (p.Pro1104Ala; $r^2 = 0.82$). This is consistent with the primary immunodeficiency described with complete TYK2 loss of function³ as this variant is known to reduce function^{18,19}. By contrast, this missense variant was previously reported to be protective against autoimmune diseases (Extended Data Fig. 8 and Supplementary Table 6), including rheumatoid arthritis (OR = 0.74, $P = 3.0 \times 10^{-8}$; UK Biobank SAIGE) and hypothyroidism (OR = 0.84, $P = 1.8 \times 10^{-10}$; UK Biobank). At the 19q13.33 locus, the lead variant rs4801778, which was significantly associated with a reported SARS-CoV-2 infection (OR (95% CI) = 0.95 (0.93-0.96), $P = 2.1 \times 10^{-8}$), is in LD ($r^2 = 0.93$) with a missense variant rs11541192:G>A (p.Gly312Ser) in PPP1R15A.

A lung-specific *cis*-expression quantitative trait loci (*cis*-eQTLs) from GTEx v.8²⁰ (n = 515) and the Lung eQTL Consortium²¹ (n = 1,103) provided further support for a subset of loci (Supplementary Table 7), including *FOXP4* (chr. 6p21.1) and *ABO* (chr. 9q34.2), *OAS1/OAS3/OAS2* (chr. 12q24.13) and *IFNAR2/IL10RB* (21q22.11), where the COVID-19-associated variants modify gene expression in lung. Furthermore, our phenome-wide association study (PheWAS) analysis (Supplementary Table 6) implicated three additional loci related to lung function, with modest lung eQTL evidence—that is, the lead variant was not fine-mapped but significantly associated. An intronic variant

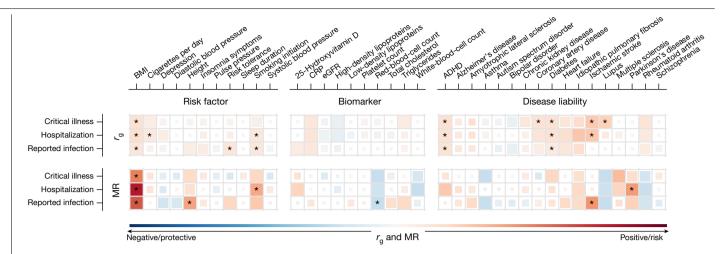


Fig. 3 | Genetic correlations and Mendelian randomization causal estimates between 38 traits and COVID-19 critical illness, hospitalization and reported SARS- CoV-2 infection. Larger squares correspond to *P* values with higher significance, with genetic correlations (r_g) or Mendelian randomization (MR) causal estimates significantly different from zero. The size of each coloured square indicates the magnitude of the *P* value, with P < 0.05 shown as a full-sized square, P = 0.05 - 0.1 as a large square, P = 0.1 - 0.5

rs2109069:G>A in DPP9 (chr. 19p13.3), which is positively associated with critical illness, was previously reported to be risk-increasing for interstitial lung disease (tag lead variant rs12610495:A>G (p.Leu8Pro): OR = 1.29, $P = 2.0 \times 10^{-12})^5$. The COVID-19 lead variant rs1886814:A>C in the FOXP4 locus is correlated ($r^2 = 0.64$) with a lead variant of lung adenocarcinoma (tag variant is rs7741164; OR = 1.2, $P = 6.0 \times 10^{-13}$)^{6,22} and similarly with a lead variant reported for subclinical interstitial lung disease²³. In severe COVID-19, lung cancer and interstitial lung disease, the minor, expression-increasing allele is associated with increased risk. We also found that intronic variants (chr. 1q22) and rs1819040:T>A in KANSL1 (chr. 17q21.31), associated with protection against hospitalization due to COVID-19, were previously reported for reduced lung function (for example, tag lead variant rs141942982:G>T; OR (95% CI) = 0.96 (0.95–0.97), $P = 1.00 \times 10^{-20})^7$. Notably, the 17q21.31 locus is a well-known locus for structural variants containing a megabase inversion polymorphism (H1 and inverted H2 forms) and complex copy-number variations, in which the inverted H2 forms were shown to be positively selected in European individuals^{24,25}.

Lastly, there are two loci in the 3p21.31 region with varying genes prioritized by different methods for different independent signals. For the severity lead variant rs10490770:T>C, we prioritized CXCR6 with the Variant2Gene (V2G) algorithm²⁶, although *LZTFL1* is the closest gene. The CXCR6 has a role in chemokine signalling²⁷ and LZTFL1 has been implicated in lung cancer²⁸. rs2271616:G>T, which is associated with susceptibility, tags a complex region including several independent signals (Supplementary Note) that are all located within the gene body of SLC6A20, which encodes a protein that is known to functionally interact with the SARS-CoV-2 receptor ACE2²⁹. However, none of the lead variants in the 3p21.31 region has been previously associated with other traits or diseases in our PheWAS analysis. Although these results provide supporting in silico evidence for candidate causal gene prioritization, further functional characterization is needed. Detailed locus descriptions and LocusZoom plots are provided in Supplementary Fig. 2.

Polygenic architecture of COVID-19

To further investigate the genetic architecture of COVID-19, we used results from meta-analyses including samples from European ancestries

as a medium square and P>0.5 as a small square. Genetic correlations or causal estimates that are significantly different from zero at an FDR of 5% are marked with an asterisk. Two-sided P values were calculated using LDSC for genetic correlations and inverse-variance-weighted analysis for Mendelian randomization. ADHD, attention-deficit hyperactivity disorder; BMI, body mass index; CRP, C-reactive protein; eGFR, estimated glomerular filtration rate.

(sample sizes are described in the Methods and Supplementary Table 1) to estimate the heritability explained by common single-nucleotide polymorphisms-that is, the proportion of variation in the two phenotypes that was attributable to common genetic variants-and to determine whether heritability of COVID-19 phenotypes was enriched in genes that were specifically expressed in certain tissues³⁰ from the GTEx dataset³¹. We detected low, but significant, heritability across all three analyses (<1% on observed scale, all P values were P < 0.0001) (Supplementary Table 8). The values are low compared to previously published studies¹⁴, but may be explained by differences in the reported estimate scale (observed versus liability), the specific method used, disease-prevalence estimates, phenotypic differences between patient cohorts or ascertainment of controls. Despite the low reported values, we found that heritability of a reported SARS-CoV-2 infection was significantly enriched in genes that were specifically expressed in the lung $(P=5.0\times10^{-4})$ (Supplementary Table 9). These findings, together with the genome-wide significant loci identified in the meta-analyses, suggest that there is a significant polygenic architecture that can be better leveraged with future, larger, sample sizes.

Genetic correlation and Mendelian randomization

Genetic correlations (r_g) between the three COVID-19 phenotypes was high, although lower correlations were observed between hospitalized COVID-19 and reported SARS-CoV-2 infection (critical illness versus hospitalized: r_g (95% CI) = 1.37 (1.08–1.65), $P = 2.9 \times 10^{-21}$; critical illness versus reported SARS-CoV-2 infection, r_g (95% CI) = 0.96 (0.71–1.20), $P = 1.1 \times 10^{-14}$; hospitalized versus reported SARS-CoV-2 infection: r_g (95% CI) = 0.85 (0.68–1.02), $P = 1.1 \times 10^{-22}$). To better understand which traits are genetically correlated and/or potentially causally associated with COVID-19 hospitalization, critical illness and reported SARS-CoV-2 infection, we chose a set of 38 disease, health and neuropsychiatric phenotypes as potential COVID-19 risk factors based on their clinical correlation with disease susceptibility, severity or mortality (Supplementary Table 10).

We found evidence (false-discovery rate (FDR) < 0.05) of significant genetic correlations between nine traits and hospitalized COVID-19 and reported SARS-CoV-2 infection (Fig. 3, Extended Data Fig. 9 and Supplementary Table 11). Notably, genetic liability to ischaemic

stroke was only significantly positively correlated with critical illness or hospitalization due to COVID-19, but not with a higher likelihood of reported SARS-CoV-2 infection (infection $r_g = 0.019$ versus hospitalization $r_g = 0.41$, z = 2.7, P = 0.006; infection $r_g = 0.019$ versus critical illness $r_g = 0.40$, z = 2.49, P = 0.013).

We next used two-sample Mendelian randomization to infer potentially causal relationships between these traits. After correcting for multiple testing (FDR < 0.05), eight exposure-COVID-19 trait pairs showed suggestive evidence of a causal association (Fig. 3, Extended Data Fig. 10, Supplementary Table 12 and Supplementary Fig. 3). Five of these associations were robust to potential violations of the underlying assumptions of Mendelian randomization. Corroborating our genetic correlation results and evidence from epidemiological studies, genetically predicted higher body-mass index (OR (95% CI) = 1.4 (1.3–1.6). $P = 8.5 \times 10^{-11}$) and smoking (OR (95% CI) = 1.9 (1.3–2.8), P = 0.0012) were associated with increased risk of COVID-19 hospitalization, with body-mass index also being associated with increased risk of SARS-CoV-2 infection (OR (95% CI) = 1.1 (1.1-1.2), P = 4.8 × 10⁻⁷). Genetically predicted increased height (OR (95% CI) = 1.1(1-1.1)), $P = 8.9 \times 10^{-4}$) was associated with an increased risk of reported SARS-CoV-2 infection, whereas a genetically predicted higher red-blood-cell count (OR (95% CI) = 0.93(0.89-0.96), $P = 5.7 \times 10^{-5}$) was associated with a reduced risk of reported SARS-CoV-2 infection. Despite evidence of a genetic correlation between type II diabetes and COVID-19 outcomes, there was no evidence of a causal association in the Mendelian randomization analyses, which suggests that the observed genetic correlations are due to pleiotropic effects between body-mass index and type 2 diabetes. Further sensitivity analyses relating to sample overlap are discussed in the Supplementary Information.

Discussion

The COVID-19 HGI has brought together investigators from across the world to advance genetic discovery for SARS-CoV-2 infection and severe COVID-19 disease. We report 13 genome-wide significant loci associated with some aspect of SARS-CoV-2 infection or COVID-19. Many of these loci overlap with previously reported associations with lung-related phenotypes or autoimmune or inflammatory diseases, but some loci have no obvious candidate gene.

Four out of the thirteen genome-wide significant loci showed similar effects in the reported SARS-CoV-2 infection analysis (a proxy for disease susceptibility) and all-hospitalized COVID-19 (a proxy for disease severity). Of these, one locus was in close proximity to, yet independent of, the major genetic signal for COVID-19 severity at the 3p21.31 locus. Notably, this locus was associated with COVID-19 susceptibility rather than severity. The locus overlaps SLC6A20, which encodes an amino acid transporter that interacts with ACE2. Nonetheless, we caution that more data are needed to resolve the nature of the relationship between genetic variation and COVID-19 at this locus, particularly as the physical proximity, LD structure and patterns of association suggest that untagged genetic variation could drive the association signal in the region. Our findings support the notion that some genetic variants, most notably at the ABO and PPP1R15A loci, in addition to SLC6A2O, can indeed affect susceptibility to infection rather than progression to severe COVID-19 once infected.

Several of the loci reported here—as noted in previous publications^{12,14}—intersect with well-known genetic variants that have established genetic associations. Examples of these include variants at *DPP9* and *FOXP4*, which show previous evidence of increasing risk for interstitial lung disease⁵, and missense variants within *TYK2* that show a protective effect on several autoimmune-related diseases^{32–35}. Together with the heritability enrichment observed in genes expressed in lung tissues, these results highlight the involvement of lung-related biological pathways in the development of severe COVID-19. Several other loci show no previously documented genome-wide significant associations, despite the high significance and attractive candidate genes for COVID-19 (for example, *CXCR6*, *LZTFL1*, *IFNAR2* and *OAS1/OAS2/OAS3* loci). The previously reported associations for the strongest association for COVID-19 severity at the 3p21.31 locus and monocytes count are likely to be due to proximity and not a true co-localization.

Increasing the global representation in genetic studies enhances the ability to detect novel associations. Two of the loci that affect disease severity were only discovered by including the four studies of individuals with East Asian ancestry. One of these loci-close to FOXP4-is common particularly in East Asian participants (32%) as well as admixed American participants in the Americas (20%) and Middle Eastern participants (7%), but has a low frequency in most European ancestries (2-3%) in our data. Although we cannot be certain of the mechanism of action, the FOXP4 association is an attractive biological target, as it is expressed in the proximal and distal airway epithelium³⁶ and has been shown to have a role in controlling epithelial cell fate during lung development³⁷. The COVID-19 HGI continues to pursue expansion of the datasets included in the analyses of the consortium to populations from underrepresented populations in upcoming data releases. We plan to release ancestry-specific results in full once the sample sizes allow for a well-powered meta-analysis.

Care should be taken when interpreting the results from a meta-analysis because of challenges with case and control ascertainment and collider bias (see Supplementary Note for a more detailed discussion on study limitations). Drawing a comprehensive and reproducible map of the host genetics factors associated with COVID-19 severity and SARS-CoV-2 requires a sustained international effort to include diverse ancestries and study designs. To accelerate downstream research and therapeutic discovery, the COVID-19 HGI regularly publishes meta-analysis results from periodic data freezes on the website https://www.covid19hg.org/ and provides an interactive explorer through which researchers can browse the results and the genomic loci in more detail. Future work will be required to better understand the biological and clinical value of these findings. Continued efforts to collect more samples and detailed phenotypic data should be endorsed globally, allowing for more thorough investigation of variable, heritable symptoms, particularly in light of the newly emerging strains of SARS-CoV-2, which may provoke different host responses that lead to disease.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-021-03767-x.

- Docherty, A. B. et al. Features of 20133 UK patients in hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study. *Br. Med. J.* 369, m1985 (2020).
- Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. *Lancet* **395**, 1054–1062 (2020).
- Dendrou, C. A. et al. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci. Transl. Med. 8, 363ra149 (2016).
- Astle, W. J. et al. The allelic landscape of human blood cell trait variation and links to common complex disease. *Cell* 167, 1415–1429.e19 (2016).
- Fingerlin, T. E. et al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat. Genet. 45, 613–620 (2013).
- Wang, Z. et al. Meta-analysis of genome-wide association studies identifies multiple lung cancer susceptibility loci in never-smoking Asian women. *Hum. Mol. Genet.* 25, 620–629 (2016).
- Shrine, N. et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. *Nat. Genet.* 51, 481–493 (2019).
- Buitrago-Garcia, D. et al. Occurrence and transmission potential of asymptomatic and presymptomatic SARS-CoV-2 infections: a living systematic review and meta-analysis. *PLoS Med.* 17, e1003346 (2020).
- 9. van der Made, C. I. et al. Presence of genetic variants among young men with severe COVID-19. J. Am. Med. Assoc. **324**, 663–673 (2020).

- Zhang, Q. et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science **370**, eabd4570 (2020).
- Povysil, G. et al. Rare loss-of-function variants in type I IFN immunity genes are not associated with severe COVID-19. J. Clin. Invest. 147834 (2021).
- Severe COVID-19 GWAS Group. Genomewide association study of severe covid-19 with respiratory failure. N. Engl. J. Med. 383, 1522–1534 (2020).
- Shelton, J. F. et al. Trans-ancestry analysis reveals genetic and nongenetic associations with COVID-19 susceptibility and severity. *Nat. Genet.* 53, 801–808 (2021).
- Pairo-Castineira, E. et al. Genetic mechanisms of critical illness in COVID-19. Nature 591, 92–98 (2021).
- Roberts, G. H. L. et al. AncestryDNA COVID-19 host genetic study identifies three novel loci. Preprint at https://doi.org/10.1101/2020.10.06.20205864 (2020).
- Kosmicki, J. A. et al. A catalog of associations between rare coding variants and COVID-19 outcomes. Preprint at https://doi.org/10.1101/2020.10.28.20221804 (2021).
- COVID-19 Host Genetics Initiative. The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. *Eur. J. Hum. Genet.* 28, 715–718 (2020).
- Couturier, N. et al. Tyrosine kinase 2 variant influences T lymphocyte polarization and multiple sclerosis susceptibility. *Brain* 134, 693–703 (2011).
- Li, Z. et al. Two rare disease-associated Tyk2 variants are catalytically impaired but signaling competent. J. Immunol. 190, 2335–2344 (2013).
- GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).
- 21. Hao, K. et al. Lung eQTLs to help reveal the molecular underpinnings of asthma. *PLoS Genet.* **8**, e1003029 (2012).
- Dai, J. et al. Identification of risk loci and a polygenic risk score for lung cancer: a large-scale prospective cohort study in Chinese populations. *Lancet Respir. Med.* 7, 881–891 (2019).
- Manichaikul, A. et al. Genome-wide association study of subclinical interstitial lung disease in MESA. *Respir. Res.* 18, 97 (2017).
- Stefansson, H. et al. A common inversion under selection in Europeans. Nat. Genet. 37, 129–137 (2005).
- Boettger, L. M., Handsaker, R. E., Zody, M. C. & McCarroll, S. A. Structural haplotypes and recent evolution of the human 17q21.31 region. *Nat. Genet.* 44, 881–885 (2012).
- Ghoussaini, M. et al. Open Targets Genetics: systematic identification of trait-associated genes using large-scale genetics and functional genomics. *Nucleic Acids Res.* 49, D1311–D1320 (2021).
- 27. Xiao, G. et al. CXCL16/CXCR6 chemokine signaling mediates breast cancer progression by pERK1/2-dependent mechanisms. *Oncotarget* **6**, 14165–14178 (2015).

- Wei, Q. et al. LZTFL1 suppresses lung tumorigenesis by maintaining differentiation of lung epithelial cells. Oncogene 35, 2655–2663 (2016).
- Vuille-dit-Bille, R. N. et al. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors. *Amino Acids* 47, 693–705 (2015).
- Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. 50, 621–629 (2018).
- GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).
- Eyre, S. et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat. Genet. 44, 1336–1340 (2012).
- Tsoi, L. C. et al. Large scale meta-analysis characterizes genetic architecture for common psoriasis associated variants. *Nat. Commun.* 8, 15382 (2017).
- Langefeld, C. D. et al. Transancestral mapping and genetic load in systemic lupus erythematosus. Nat. Commun. 8, 16021 (2017).
- Kichaev, G. et al. Leveraging polygenic functional enrichment to improve GWAS power. Am. J. Hum. Genet. 104, 65–75 (2019).
- Lu, M. M., Li, S., Yang, H. & Morrisey, E. E. Foxp4: a novel member of the Foxp subfamily of winged-helix genes co-expressed with Foxp1 and Foxp2 in pulmonary and gut tissues. Gene Expr. Patterns 2, 223–228 (2002).
- Li, S. et al. Foxp1/4 control epithelial cell fate during lung development and regeneration through regulation of anterior gradient 2. *Development* 139, 2500–2509 (2012).

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate

credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021

COVID-19 Host Genetics Initiative

Leadership Mari E. K. Niemi¹¹²⁸⁰, Juha Karjalainen¹¹²⁸⁰, Rachel G. Liao², Benjamin M. Neale^{4,1280 전}, Mark Daly^{12,3,1280 전} & Andrea Ganna^{12,3,1280 전}

Writing group Writing group leaders Mari E. K. Niemi¹¹²⁸⁰, Gita A. Pathak⁶, Shea J. Andrews⁷ & Masahiro Kanai²

Writing group members

Kumar Veerapen², Israel Fernandez-Cadenas⁸, Eva C. Schulte⁹¹⁰¹¹, Pasquale Striano¹²¹³, Minttu Marttila⁷⁵, Camelia Minica², Eirini Marouli¹⁴, Mohd Anisul Karim^{15,38}, Frank R. Wendt⁶, Jeanne Savage¹⁶, Laura Sloofman⁷, Guillaume Butler-Laporte¹⁷⁵³, Han-Na Kim¹⁸, Stavroula Kanoni¹⁴, Yukinori Okada¹⁹, Jinyoung Byun²⁰, Younghun Han²⁰, Mohammed Jashim Uddin²¹, George Davey Smith²², Cristen J. Willer^{2224,25} & Joseph D. Buxbaum²⁶

Analysis group

Manuscript analyses team leader Juha Karialainen^{1,1280}

Manuscript analyses team member: meta-analysis Juha Mehtonen¹

Manuscript analyses team member: heritability, methods and supplements Mari E. K. Niemi^{1,1280}

Manuscript analyses team member: PHEWAS Gita A. Pathak⁶

Manuscript analyses team member: Mendelian randomization Shea J. Andrews⁷

Manuscript analyses team member: PC projection and gene prioritization Masahiro Kanai²

Manuscript analyses team member: gene prioritization Hilary Finucane^{3,29}

Manuscript analyses team member: sensitivity analysis Mattia Cordioli¹

Manuscript analyses team members: PC projection Alicia R. Martin^{3,29} & Wei Zhou^{3,29}

In silico analysis team members

Mattia Cordio¹¹, Bogdan Pasaniuc³², Hanna Julienne³³, Hugues Aschard³³, Huwenbo Shi³⁴, Loic Yengo³⁵, Renato Polimanti⁶, Maya Ghoussaini^{15,38}, Jeremy Schwartzentruber^{15,38}, Ian Dunham^{15,40} & Joseph D. Buxbaum²⁶

Project management group

Project management leader Rachel G. Liao²

Project management support

Karolina Chwialkowska⁴², Margherita Francescatto⁴³, Amy Trankiem² & Mary K. Balaconis²

Phenotype steering group

Lea Davis⁴⁴, Andrea Ganna^{1,2,3}, Sulggi Lee⁴⁵, James Priest⁴⁶, Alessandra Renieri^{47,65}, Vijay G. Sankaran⁴⁹, David van Heel⁵⁰, Patrick Deelen^{51,52}, J. Brent Richards^{17,53,55,56}, Tomoko Nakanishi^{17,56,57}, Les Biesecker⁵⁹, V. Eric Kerchberger⁴⁴ & J. Kenneth Baillie^{60,61,62}

Data dictionary

Alessandra Renieri^{47,65}, Francesca Mari^{63,64,65}, Anna Bernasconi⁶⁶, Stefano Ceri⁶⁷ & Arif Canakoglu⁶⁷

Scientific communication group Scientific communication leaders

Kumar Veerapen² & Brooke Wolford⁶⁸

Scientific communication members

Amy Trankiem², Annika Faucon⁵⁹, Atanu Kumar Dutta⁷⁰, Claudia Schurmann⁷¹, Emi Harry⁷², Ewan Birney⁷³, Gita A. Pathak⁶, Huy Nguyen², Jamal Nasir⁷⁴, James Priest⁴⁶, Mari Kaunisto¹, Minttu Marttila⁷⁵, Matthew Solomonson², Nicole Dueker⁷⁶, Nirmal Vadgama⁴⁶, Shea J. Andrews⁷, Sophie Limou⁷⁸, Rachel G. Liao² & Andrea Ganna^{12.3}

Translators

Souad Rahmouni⁷⁹, Hamdi Mbarek⁸⁰, Dima Darwish⁸⁰, Atanu Kumar Dutta⁷⁰, Md Mesbah Uddin^{82,83}, Israel Fernandez-Cadenas⁸, Raquel Albertos⁸⁴, Jordi Pérez-Tur^{85,86,87}, Ruolin Li⁸⁸, Lasse Folkersen⁸⁹, Ida Moltke⁹⁰, Nils Koelling⁹¹, Eva C. Schulte^{310,11}, Claudia Schurmann⁷¹, Alexander Teumer^{33,34}, Athanasios Kousathanas⁹⁵, Eirini Marouli¹⁴, Alicia Utrilla⁹⁶, Ricardo A. Verdugo⁹⁷, Ruth Zárate⁹⁸, Carolina Medina-Gómez⁸⁹, David Gómez-C abrero^{100,101}, Elena Carnero-Montoro¹⁰², Jordi Pérez-Tur^{85,86,87}, Israel Fernandez-Cadenas⁸, Carmen L. Cadilla¹⁰³, Andrés Moreno-Estrada¹⁰⁴, Adriana Garmendia¹⁰⁴, Leire Moya¹⁰⁵, Bahar Sedaghati-Khayat⁸⁸, Mintu Marttila⁷⁵, Palwendé Romuald Boua¹⁰⁶, Guillaume Butler-Laporte^{17,53}, Marie-Julie Favé¹⁰⁷, Laurent Francioli², Audrey Lemaçon¹⁰⁸, Sophie Limou⁷⁸, Isabelle Migeotte¹⁰⁹, Atanu Kumar Dutta⁷⁰, Sanjay Patel⁷⁰, Reka Varnai¹¹², Jozsef L. Szentpeteri¹¹², Csilla Sipeky¹¹³, Francesca Colombo¹¹⁴, Margherita Francescatto⁴³, Kathrin von Hohenstaufen¹¹⁵, Pietro Lio¹¹⁶, Costanza Vallerga⁸⁸, Pasquale Striano⁷²¹³, Qingbo Wang², Masahiro Kanai⁷, Younke Lee¹¹⁷, Sugyeong Kim¹¹⁷, Sangyoon Im¹¹²⁸, Biljana Atanasovska¹¹⁹, Hajar Fauzan Ahmad¹²⁰, Kumar Veerapen², Cindy Boer⁸⁸, Philip Jansen¹²², Lude Franke¹²³, Karolina Chwiałkowska⁴², Elźbieta Kaja¹²⁴, Dorota Pasko⁵⁵, Ingrid Kennis-Szilagyi¹⁸⁸, Serala Perumal¹²⁷, Sahar Esmaeeli¹²⁸, Nathaniel M. Pearson¹²⁹, Ruth Zárate⁹⁸ & Mohd Anisul Karim^{15,38}

Website Development

Website development leaders Huy Nguyen² & Matthew Solomonson²

23andMe Analysis team leader

Adam Auton¹³⁰

Data collection leaders 23andMe COVID-19 Team*, Janie F. Shelton¹³⁰ & Anjali J. Shastri¹³⁰

Analysis team members

Teresa Filshtein-Sonmez¹³⁰, Daniella Coker¹³⁰, Antony Symons¹³⁰, Jorge Esparza-Gordillo¹³¹, Stella Aslibekyan¹³⁰ & Jared O'Connell¹³⁰

Data collection members

Chelsea Ye¹³⁰ & Catherine H. Weldon¹³⁰

23andMe COVID-19 Team Adam Auton¹³⁰

ACCOuNT Analysis team leader

Minoli Perera¹³²

Data collection leaders

Kevin O'Leary¹³³, Matthew Tuck¹³⁴, Travis O'Brien¹³⁵, David Meltzer¹³⁶, Peter O'Donnell¹³⁷ & Edith Nutescu¹³⁸

Analysis team members

Guang Yang¹³²

Data collection members

Cristina Alarcon¹³², Stefanie Herrmann¹³², Sophia Mazurek¹³³, Jeff Banagan¹³⁴, Zacharia Hamidt¹³⁴, April Barbour¹⁴⁴, Noora Raffat¹³⁶ & Diana Moreno¹³⁸

Admin team member

Paula Friedman¹³²

Amsterdam UMC COVID Study Group

Analysis team leader

Bart Ferwerda¹⁴⁸

Data collection leaders Diederik van de Beek¹⁴⁹, Matthijs C. Brouwer¹⁴⁸, Alexander P. J. Vlaar¹⁴⁹ & W. Joost Wiersinga¹⁵⁰

Analysis team members

Danielle Posthuma¹⁶, Elleke Tissink¹⁶, A. H. Koos Zwinderman¹⁵¹ & Emil Uffelmann¹⁶

Data collection members

Michiel van Agtmael¹⁵⁰, Anne Geke Algera¹⁴⁹, Frank van Baarle¹⁴⁹, Diane Bax¹⁵², Martijn Beudel¹⁴⁸, Harm Jan Bogaard¹⁵³, Marije Bomers¹⁵⁰, Peter I. Bonta¹⁵³, Lieuwe Bos¹⁴⁹, Michela Botta¹⁴⁹, Justin de Brabander¹⁵⁰, Godelieve de Bree¹⁵⁰, Sanne de Bruin¹⁴⁹, Marianna Bugian¹⁵⁴, Esther Bulle¹⁴⁹, Osol Chouchane¹⁵⁰, Alex Cloherty¹⁵², Dave Dongelmans¹⁴⁹, Paul Elbers¹⁴⁹, Lucas Fleuren¹⁴⁹, Suzanne Geerling¹⁵⁰, Bart Geerts¹⁵⁵, Theo Geijtenbeek¹⁵², Armand Girbes¹⁴⁹, Jorg Hamann¹⁵⁶, Vanessa Harris¹⁵⁰, Robert Hemke¹⁵⁷, Sabine M. Hermans¹⁵⁰, Leo Heunks¹⁴⁹, Markus Hollmann¹⁵⁵, Janneke Horn¹⁴⁹, Joppe W. Hovius¹⁵⁰, Menno D. de Jong¹⁵⁶, Rutger Koning¹⁴⁸, Niels van Mourik¹⁴⁹, Jeannine Nellen¹⁵⁰, Esther J. Nossent¹⁵³, Frederique Paulus¹⁴⁹, Edgar Peters¹⁵⁰, Tom van der Poll¹⁵⁰, Bennedikt Preckel¹⁵², Jan M. Prins¹⁵⁰, Jorinde Raasveld¹⁴⁹, Tom Reijnders¹⁵⁰, Michiel Schinkel¹⁵⁰, Marcus J. Schultz¹⁴⁹, Alex Schuurman¹⁵⁰, Kim Sigaloff¹⁵⁰, Marry Smit¹⁴⁹, Anissa Tsonas¹⁵⁰, Marc van der Valk¹⁵⁰, Denise Veelo¹⁵⁵, Heder de Vries¹⁴⁹, Michèle van Vugt¹⁵⁰, Dorien Wouters¹⁵⁰, René P. Minnaar¹⁶⁰, Adrie Kromhout¹⁶⁰, Kees W. J. van Uffelen¹⁶⁰ & Ruud A. Wolterman¹⁶¹

AncestryDNA COVID-19 Research Study Analysis team leader Genevieve Roberts¹⁶²

Data collection leader Danny Park¹⁶²

Admin team leader Catherine A. Ball¹⁶²

Analysis team members

Marie Coignet $^{\rm f62}$, Shannon McCurdy $^{\rm 162}$, Spencer Knight $^{\rm 162}$, Raghavendran Partha $^{\rm 162}$ & Brooke Rhead $^{\rm 162}$

Data collection members Miao Zhang¹⁶², Nathan Berkowitz¹⁶², Michael Gaddis¹⁶², Keith Noto¹⁶², Luong Ruiz¹⁶² & Milos Pavlovic¹⁶²

Admin team members Eurie L. Hong¹⁶², Kristin Rand¹⁶², Ahna Girshick¹⁶², Harendra Guturu¹⁶² & Asher Haug Baltzell¹⁶²

BelCovid Analysis team leader Mari E. K. Niemi^{1,2180}

Data collection leaders Isabelle Migeotte¹⁰⁹, Souad Rahmouni¹⁶³ & Julien Guntz¹⁶⁴

Admin team leader Yves Beguin¹⁶⁵

Analysis team members Mattia Cordioli¹, Sara Pigazzini¹ & Lindokuhle Nkambule^{3,29,167}

Data collection members

Youssef Bouysran¹⁶⁸, Adeline Busson¹⁶⁹, Xavier Peyrassol¹⁶⁹, Françoise Wilkin¹⁶⁸, Bruno Pichon¹⁶⁸, Guillaume Smits¹⁶⁹, Isabelle Vandernoot¹⁶⁸, Jean-Christophe Goffard¹⁶⁹, Michel Georges¹⁶³, Michel Moutschen¹⁷⁰, Benoit Misset¹⁷⁰, Gilles Darcis¹⁷⁰, Julien Guiot¹⁷⁰, Laurent Jadot¹⁶⁴, Samira Azarzar¹⁷⁰, Patricia Dellot¹⁷⁰, Stéphanie Gofflot¹⁶⁵, Sabine Claassen¹⁶⁴, Axelle Bertrand¹⁷⁰, Gilles Parzibut¹⁷⁰, Mathilde Clarinval¹⁷⁰, Catherine Moermans¹⁷⁰, Olivier Malaise¹⁷⁰, Kamilia El Kandoussi¹⁶⁵, Raphaël Thonon¹⁶⁵, Pascale Huynen¹⁷⁰, Alysia Mesdagh¹⁷⁰, Sofia Melo¹⁶³, Nicolas Jacques¹⁶³, Emmanuel Di Valentin¹⁶³, Alice Collignon¹⁶³, Alice Collignon¹⁶⁵, Caraline Radermecker¹⁶³, Marielle Lebrun¹⁶³, Alice Collignon¹⁶³, Jeice Collignon¹⁶⁵, Samuel Latour¹⁶³, Olivia Barada¹⁶³, Judit Sanchez¹⁶³, Claire Josse¹⁷⁰, Bouchra Boujemla¹⁷⁰, Margot Meunier¹⁶³, Emeline Mariavelle¹⁶³, Sandy Anania¹⁶³, Hélène Gazon¹⁶³, Danusia Juszczak¹⁷⁰, Marjorie Fadeur¹⁷⁰, Séverine Camby¹⁷⁰, Christelle Meuris¹⁷⁰, Jean-Baptiste Giot¹⁷⁰, Anne-Sophie Sauvage¹⁷⁰, Christian Von Frenckell¹⁷⁰, Myriam Mni¹⁶³, Marie Wéry¹⁶³, Alicia Staderol¹⁷⁰, Yasmine Belhaj¹⁶³ & Bernard Lambermont¹⁷⁰

Biobanque Quebec COVID-19

Analysis team leader Tomoko Nakanishi^{17,56,57}

Data collection leader David R. Morrison¹⁷

Admin team leaders Vincent Mooser^{56,174} & J. Brent Richards^{17,53,55,56}

Analysis team members Guillaume Butler-Laporte¹⁷⁵³, Vincenzo Forgetta¹⁷ & Rui Li^{56,174}

Data collection members

Biswarup Ghosh¹⁷, Laetitia Laurent¹⁷, Alexandre Belisle^{56,174}, Danielle Henry¹⁷, Tala Abdullah¹⁷, Olumide Adeleye¹⁷, Noor Mamlouk¹⁷, Nofar Kimchi¹⁷, Zaman Afrasiabi¹⁷, Nardin Rezk¹⁷, Branka Vulesevic¹⁷, Meriem Bouab¹⁷, Charlotte Guzman¹⁷, Louis Petitjean¹⁷, Chris Tselios¹⁷, Xiaoqing Xue¹⁷, Jonathan Afilalo¹⁷, Marc Afilalo¹⁷³⁷⁸, Maureen Oliveira¹⁷⁸, Bluma Brenner¹⁸⁰, Nathalie Brassard¹⁸¹ & Madeleine Durand^{182,183}

Admin team members

Erwin Schurr¹⁸⁴, Pierre Lepage^{56,174}, Jiannis Ragoussis^{56,174}, Daniel Auld^{56,174}, Michaël Chassé^{183,185}, Daniel E. Kaufmann^{183,186}, G. Mark Lathrop^{56,174} & Darin Adra¹⁷

BioVU

Analysis team leaders Lea K. Davis^{187,188}, Nancy J. Cox^{187,188} & Jennifer E. Below^{187,188}

Analysis team members

Julia M. Sealock^{187,188}, Annika B. Faucon^{187,188}, Megan M. Shuey^{187,188}, Hannah G. Polikowsky^{187,188}, Lauren E. Petty^{187,188}, Douglas M. Shaw^{187,188}, Hung-Hsin Chen^{187,188} & Wanying Zhu^{187,188} Bonn Study of COVID-19 Genetics Data collection leader Kerstin U. Ludwig¹⁸⁹

Analysis team members Julia Schröder¹⁸⁹ & Carlo Maj¹⁹⁰

Data collection members

Selina Rolker¹⁸⁹, Markus M. Nöthen¹⁸⁹, Julia Fazaal¹⁸⁹, Verena Keitel¹⁹¹, Björn-Erik Ole Jensen¹⁹¹, Torsten Feldt¹⁹¹, Ingo Kurth¹⁹², Nikolaus Marx¹⁹³, Michael Dreher¹⁹⁴, Isabell Pink¹⁹⁵, Markus Cornberg¹⁹⁶, Thomas Illig¹⁹⁷, Clara Lehmann^{196,198200}, Philipp Schommers^{198,198,200}, Max Augustin¹⁹⁸, Jan Rybniker¹⁹⁸, Lisa Knopp¹⁹¹, Thomas Eggermann¹⁹², Sonja Volland¹⁹⁷, Janine Altmüller²⁰², Marc M. Berger²⁰³, Thorsten Brenner²⁰³, Anke Hinney²⁰⁴, Oliver Witzke²⁰⁵, Robert Bals²⁰⁶, Christian Herr²⁰⁶, Nicole Ludwig²⁰⁷ & Jörn Walter²⁰⁸

CHRIS

Analysis team leader Christian Fuchsberger²⁰⁹

Data collection leaders

Cristian Pattaro²⁰⁹ & Alessandro De Grandi²⁰⁹

Admin team leader Peter Pramstaller²⁰⁹

Analysis team members

David Emmert²⁰⁹, Roberto Melotti²⁰⁹ & Luisa Foco²⁰⁹

Admin team members

Deborah Mascalzoni²⁰⁹, Martin Gögele²⁰⁹, Francisco Domingues²⁰⁹ & Andrew Hicks²⁰⁹

Colorado Center for Personalized Medicine (CCPM)

Analysis team leader Christopher R. Gignoux²¹⁰

Data collection leaders

Stephen J. Wicks²¹⁰ & Kristy Crooks²¹⁰

Admin team leader Kathleen C. Barnes²¹⁰

Analysis team members

Michelle Daya²¹⁰, Jonathan Shortt²¹⁰, Nicholas Rafaels²¹⁰ & Sameer Chavan²¹⁰

Columbia University COVID-19 Biobank

Analysis team leaders David B. Goldstein²¹¹ & Krzysztof Kiryluk²¹²

Data collection leaders

Soumitra Sengupta²¹³, Wendy Chung²¹⁴ & Muredach P. Reilly²¹⁵

Analysis team members

Atlas Khan²
15, Chen Wang²¹⁵, Gundula Povysil²¹⁶, Nitin Bhardwaj²¹⁶, Ali G. Gharavi²¹⁵ & Iuliana Ionita-Laza²¹⁷

Data collection members

Ning Shang²¹⁵, Sheila M. O'Byrne²¹⁵, Renu Nandakumar²¹⁵, Amritha Menon²¹³, Yat S. So²¹³ & Eldad Hod²¹⁸

Admin team member

Danielle Pendrick²

Corea (Genetics of COVID-19-related Manifestation)

Analysis team leader Han-Na Kim^{219,220}

Data collection leaders

Soo-Kyung Park 221 , Hyung-Lae Kim 222 , Chang Kyung Kang 223 , Hyo-Jung Lee 224 & Kyoung-Ho Song 225

Admin team leaders

Kyung Jae Yoon^{226,227,228} & Nam-Jong Paik^{229,230}

Analysis team members

Woojin Seok²³¹ & Heejun Yoon²³²

Data collection members

Eun-Jeong Joo²³³, Yoosoo Chang^{234,235}, Seungho Ryu^{234,235}, Wan Beom Park²²³, Jeong Su Park²³⁶, Kyoung Un Park²³⁶, Sin Young Ham²²⁵, Jongtak Jung²²⁵, Eu Suk Kim²²⁵ & Hong Bin Kim²²⁵

COVID-19-Hostage Analysis team leaders

David Ellinghaus^{237,238}, Frauke Degenhardt²³⁷, Mario Cáceres^{239,240}, Simonas Juzenas²³⁷ & Tobias L. Lenz^{241,242}

Data collection leaders

Agustín Albillos^{243,244}, Antonio Julià²⁴⁵, Bettina Heidecker²⁴⁶, Eva C. Schulte^{9,10,11}, Federico Garcia^{240,250}, Florian Kurth²⁴⁶, Florian Tran²³⁷, Frank Hanses^{251,252}, Heinz Zoller²⁵³, Jan C. Holter^{254,255}, Javier Fernández^{256,257}, Leif Erik Sander²⁴⁶, Philip Rosenstiel²³⁷, Philipp Koehler^{108,259,260}, Rafael de Cid²⁶¹, Rosanna Asselta^{262,263}, Stefan Schreiber^{237,265}, Ute Hehr²⁶⁶, Daniele Prati²⁸⁵, Guido Baselli²⁸⁵, Luca Valenti^{285,316}, Luis Bujanda^{244,322,329}, Jesus M. Bandes^{244,321,327}, Stefano Duga^{262,263}, Mauro D'Amato^{321,322,344}, Manuel Romero-Góm et^{241,244}, Maria Buti^{244,292,280} & Pietro Invernizz^{2786,287}

Admin team leaders

Andre Franke^{237,267}, Johannes R. Hoy^{254,268,269,270}, Tom H. Karlsen^{254,268,269,270}, Trine Folseraas^{254,268,269,270} & Douglas Maya-Miles^{1244,1245,244}

Analysis team members

Ana Teles^{241,42}, Clinton Azuure²⁴¹, Eike Matthias Wacker²³⁷, Florian Uellendahl-Werth²³⁷, Hesham ElAbd²³⁷, Jatin Arora^{29,272,273,274,275}, Jon Lerga-Jaso²³⁹, Lars Wienbrandt²³⁷, Malte Christoph Rühlemann²³⁷, Mareike Wendorff²³⁷, May Sissel Vadla²⁷⁷, Ole Bernt Lenning²⁷⁶, Onur Özer^{241,242}, Ronny Myhre²⁷⁸, Soumya Raychaudhuri^{29,272,273,274,275,278}, Anja Tanck²³⁷, Christoph Gassner^{251/240}, Georg Hemmrich-Stanisak²³⁷, Jan Kässens²³⁷, Maria E. Figuera Basso²³⁷, Martin Schulzky²³⁷, Michael Wittig²³⁷, Nicole Braun^{237,267}, Tanja Wesse²³⁷, Wolfgang Albrecht²³⁷ & Xiaoli Yi²³⁷

Data collection members

Aaron Blandino Ortiz²⁸⁰, Adolfo Garrido Chercoles²⁸¹, Agustín Ruiz^{282,283}, Alberto Mantovani^{262,263}, Aleksander Rygh Holten^{254,284}, Alena Mayer²⁴⁶, Alessandro Cherubini²⁵⁸, Alessandro Protti^{202,283}, Alessio Aghemo^{262,283}, Alessio Gerussi^{280,287}, Alfredo Ramirez^{288,280,290,291}, Alice Braun²⁴⁶, Ana Barreira²⁹², Ana Lleo^{80,2,263}, Anders Benjamin Kildal²⁹³, Andrea Ganna^{1,2,31280}, Andreas Glück²⁹⁴, Anna Carreras Nolla²⁶¹, Anders berightin Rudat, Andera Saltar, Antoria Ostaria V., Antoria Succetello³⁶⁵, Antonio Voza³²⁵, Antonio Voza³²⁷, Anton Beatriz Mateos^{243,244}, Beatriz Nafria-Jimenez²⁸¹, Benedikt Schaefer²⁵³, Carla Bellinghausen³⁰⁰, Carlos Ferrando²⁵⁶, Carmen Quereda³⁰¹, Carsten Skurk²⁴⁶, Charlotte Thibeault²⁴⁶ Christoph D. Spinner³⁰², Christoph Lange^{303,304,305}, Cinzia Hu²⁸⁵, Claudio Cappadona²¹ Cristiana Bianco²⁸⁵, Cristina Sancho³⁰⁶, Dag Arne Lihaug Hoff^{307,308}, Daniela Galimberti²⁸⁵, David Jiménez^{299,1226}, David Pestaña³⁰⁹, David Toapanta^{310,313}, Elena Azzolini^{262,21} Elio Scarpini²⁸⁵, Elisa T. Helbig²⁴⁶, Eloisa Urrechaga³¹¹, Elvezia Maria Paraboschi^{262,263}, Emanuele Pontali³¹², Enric Reverter^{256,313}, Enrique Navas³⁰¹, Eunate Arans³¹⁴, Félix García Sánchez³¹⁵, Ferruccio Ceriotti²⁸⁵, Francesco Malvestti³¹⁶, Francisco Mesonero^{243,244}, Ganni Pezzol¹³⁷, Giuseppe Lamorte²⁸⁵, Holger Neb³⁸, Ilaria My²⁶², Isabel Hernández^{282,283}, Itziar de Rojas^{282,283}, Iván Galván-Femenia²⁶¹, Jan Heyckendorf^{303,304,305}, Jan Rybnike^{198,200,319}, Itziar de Rojas ¹¹, ivan Galvan-Femenia²⁴, Jan Heyckendorf ¹³, Jan Kyöniker ¹³, Jan Badia²⁵⁶, Jochen Schneider³⁰², Josune Goikoetxea³²³, Julia Kraft²⁴⁶, Karl Erik Müller³²⁴, Karoline I. Gaede^{325,326,327}, Koldo Garcia-Etxebarria^{244,322,329}, Kristian Tonby^{254,330}, Lars Heggelund^{324,331}, Laura Izquierdo-Sanchez^{244,322}, Lauro Sumoy³³³, Lena J. Lippert²⁴⁶, Leonardo Terranova²⁸⁵, Lindokuhle Nkambule^{3,29167}, Lucia Garbarino³¹², Luis Téllez^{43,244}, Luis Roade²⁸⁹, Mahnoosh Ostadrezz⁴³⁵, Maider Intxaust³⁰⁶, Manolis Kogevinas^{335,336,337,338}, Mari E. K. Niemi¹¹²⁸⁰, María A. Gutiérrez-Stampa³³ Manolis Kogevinas ^{330,249,249}, Mari E. K. Niemi^{11,280}, Maria A. Gutiérrez-Stampa³⁴⁹, Maria J. G. T. Vehreschild³⁴⁰, Marta Marquié^{282,283}, Massimo Castoldi³⁴¹, Mattia Corioli¹, Maurizio Cecconi^{282,263}, Mercè Boad^{282,283}, Michael J. Seilmaier³⁴⁵, Michela Mazzocco³¹², Miguel Rodríguez-Gandia^{243,244}, Natale Imaz Ayo³¹⁴, Natalia Blay²⁶¹, Nilda Martínez³⁴⁶, Norwegian SARS-CoV-2 Study Group⁴, Oliver A. Cornely^{108,259,313,49}, Orazio Palmieri²⁹⁵, ^{244,203,204}, Del and Cornely^{108,259,313,49}, Orazio Palmieri²⁹⁵, Paolo Tentorio²⁶², Pedro M. Rodrigues^{244,322,332}, Pedro P. España³¹¹, Per Hoffmann³⁵¹, Petra Bacher^{352,353,354}, Phillip Suwalski²⁴⁶, Raúl de Pablo²⁸⁰, Rosa Nieto^{299,126}, Salvatore Badalamenti²⁶², Sandra Ciesek^{355,356}, Sara Bombace²⁶², Sara Pigazzini¹, Sibylle Wilfling^{252,266,357}, Søren Brunak²³⁸, Stefanie Heilmann-Heimbach³⁵¹, The Humanitas COVID-19 Task Force*, The Humanitas Gavazzeni COVID-19 Task Force*, Stephan Ripke²⁴⁶, Thomas Bahmer²⁹⁴, Ulf Landmesser³⁵⁹, Ultike Protzer^{9,380}, Valeria Rimoldi²⁶³, Vegard Skogen^{361,362}, Victor Andrade^{289,291}, Victor Moreno^{386,383,364,365}, Wolfgang Poller²⁴⁶, Xavier Farre²⁶¹, Xiaomin Wang²⁴⁶, Yascha Khodamoradi³⁴⁰, Zehra Karadeniz²⁴⁶, Adolfo de Salazar^{248,50}, Adriana Palom^{245,292}, Alba-Estela Garcia-Fernandez¹²⁴², Albert Blanco-Grau¹²⁴² Alberto Zanella^{285,316}, Alessandra Bandera^{285,316}, Almut Nebel²³⁷, Andrea Biondi¹²⁶⁴, Andrea Caba llero-Garralda¹²⁴², Andrea Gori^{285,316}, Andreas Lind^{254,255}, Anna Ludovica Fracanzani^{285,3} Anna Peschuck²³⁷, Atonio Pesenti^{265,38}, Carmen de la Horra^{136,124,126,236,1246}, Chiara Milani^{266,287}, Cinzia Paccapelo²⁸⁵, Claudio Angelin¹²⁴⁷, Cristina Cea¹²⁴², Eduardo Muñiz-Diaz¹²⁴⁸, Elena Sandova¹¹²⁴⁹, Enrique J. Calderón^{1243,1244,1245,366,1246}, Erik Solligård^{1265,1266}, Fátima Aziz¹²⁴⁹, Filippo Martinelli-Boneschi^{285,316}, Flora Peyvandi^{285,316}, Francesco Blasi^{285,1250} Filippo Martinelli-Boneschi^{263,46}, Flora Peyvandi^{263,49}, Francesco Blasi^{263,103}, Francisco J. Medrano^{1251/243,1244,386,1246}, Francisco Rodriguez-Frias^{245,298,241,242}, Fredrik Müller^{254,255}, Giacomo Grasselli^{265,316}, Giorgio Costantino^{265,316}, Giulia Cardamone¹²⁵², Giuseppe Fott¹²⁵³, Giuseppe Matullo¹²⁵⁴, Hayato Kurihara¹²⁴⁷, Jan Egil Afset^{307,1255}, Jan Kristian Damås^{1266,1257}, Javier Ampuero^{1243,1244,124,589}, Javier Martín¹²⁵⁹, Jeanette Erdmann^{1260,1261,1262}, Jonas Bergan¹²⁶³, Siegfried Goerg²⁶⁴, Jose Ferrusquía-Acosta¹²⁴⁹, Jose Hernández Quero^{248,2250}, Juan Delgado^{1243,1244,1243,386,1246}, Juan M. Guerrero^{1243,1244,1245}, Kari Risnes^{1257,1258}, Juan McGuerrero , Kan Kisnes , Juan M. Guerrero , Kan Kisnes , Laura Rachele Bettini^{125,1258}, Leticia Moreira¹²⁴⁹, Lise Tuset Gustad^{1265,167}, Luigi Santoro²⁸⁵, Luigia Scudeller²⁸⁵, Mar Riveiro-Barciela^{292,298,244}, Marco Schaefer¹²⁶⁸, Maria Carrabba²⁸⁵, Maria G. Valsecchi¹²⁶⁹, María Hernandez-Tejero²⁵⁶, Marialbert Acosta-Herrera¹²⁵ Mariella D'Angiò¹²⁶⁴, Marina Baldini²⁸⁵, Marina Cazzaniga¹²⁷⁰, Michele Ciccarelli¹²⁴⁷, Monica Bocciolone¹²⁴⁷, Monica Miozzo^{285,316}, Natalia Chueca²⁴⁹, Nicola Montano^{285,316}, Paola Faverio¹²⁷¹, Paoletta Preatoni¹²⁴⁷, Paolo Bonfanti^{1272,1273}, Paolo Omodei¹²⁴⁷, Pedro Castro²⁵⁶, Ricard Ferrer^{84,1274}, Roberta Gualtierotti^{285,316}, Rocío Gallego-Durán^{144,1245,244}, Rubén Morilla^{1243,1244,1245,366,1246}, Sammra Haider³⁰⁸, Sara Marsal²⁴⁵, Serena Aneli¹²⁵⁴ Serena Pelusi^{285,316}, Silvano Bosari^{285,316}, Stefano Aliberti^{285,1250}, Susanne Dudman^{254,255},

Tenghao Zheng³⁴⁴, Tomas Pumarola³⁹⁷, Trinidad Gonzalez Cejudo³⁴⁹, Valter Monzani²⁸⁵, Vicente Friaza^{1243,1244,1245,366,1246}, Wolfgang Peter¹²⁶⁸ & Ximo Dopazo¹²⁷⁵

Norwegian SARS-CoV-2 Study Group

Tom H. Karlsen^{254,268,269,270}

Humanitas COVID-19 Task Force Stefano Duga^{262,263,341}

The Humanitas Gavazzeni COVID-19 Task Force Stefano Duga^{262,263,341}

Admin team members

Sandra May²³⁷ & Marit M. Grimsrud^{254,269,270}

deCODE

Analysis team leader Daniel F. Gudbjartsson³⁶⁶

Data collection leader

Kari Stefansson³⁶⁶

Analysis team members

Patrick Sulem³⁶⁶, Gardar Sveinbjornsson³⁶⁶, Pall Melsted³⁶⁶, Gudmundur Norddahl³⁶⁶ & Kristjan Helgi Swerford Moore³⁶⁶

Data collection members

Unnur Thorsteinsdottir $^{\rm 366}$ & Hilma Holm $^{\rm 366}$

Determining the Molecular Pathways & Genetic Predisposition of the Acute Inflammatory Process Caused by SARS-CoV-2 Analysis team leader Marta E. Alarcón-Riquelme¹⁰²

Data collection leader

David Bernardo^{368,369}

Analysis team member

Manuel Martínez-Bueno¹⁰²

Data collection member

Silvia Rojo Rello³⁷⁰

Estonian Biobank

Analysis team leader Reedik Mägi³⁷¹

Data collection leader

Admin team leader Andres Metspalu³⁷¹

Analysis team members

Triin Laisk³⁷¹, Kristi Läll³⁷¹ & Maarja Lepamets³⁷¹

Data collection members

Tõnu Esko³⁷¹, Ene Reimann³⁷¹, Paul Naaber³⁷², Edward Laane^{373,374}, Jaana Pesukova³⁷⁴, Pärt Peterson³⁷⁵, Kai Kisand³⁷⁵, Jekaterina Tabri³⁷⁷, Raili Allos³⁷⁷, Kati Hensen³⁷⁷, Joel Starkopf³⁷⁸, Inge Ringmets³⁷⁹, Anu Tamm³⁸⁰ & Anne Kallaste³⁸⁰

Admin team members

Helene Alavere³⁷¹, Kristjan Metsalu³⁷¹ & Mairo Puusepp³⁷¹

FinnGen Data collection members

Kati Kristiansson³⁸², Juha Karjalainen¹, Sami Koskelainen³⁸², Markus Perola^{382,383}, Kati Donner¹, Katia Kivinen¹ & Aarno Palotie¹

Admin team member

Mari Kaunisto¹

FinnGen Admin team leader Aarno Palotie³⁸¹

Functional Host Genomics in Infectious Diseases (FHoGID) Analysis team leader

Carlo Rivolta384,385

Data collection leaders

Pierre-Yves Bochud³⁸⁶, Stéphanie Bibert³⁸⁶, Noémie Boillat³⁸⁶, Semira Gonseth Nussle³⁸⁸ & Werner Albrich³⁸

Analysis team members

Mathieu Quinodoz^{384,385} & Dhryata Kamdar^{384,385}

Data collection members

Noémie Suh³⁹⁰, Dionysios Neofytos³⁹¹, Véronique Erard³⁹², Cathy Voide³⁹³, FHoGID*, ReaCOVID*, P-PredictUs*, SeroCOVID* & CRiPSI*

FHoGID

P. Y. Bochud^{394,395,398}, C. Rivolta³⁹⁴, S. Bibert³⁹⁴, M. Quinodoz³⁹⁴, D. Kamdar³⁹⁴, D. Neofytos³⁹⁴, V. Erard³⁹⁴, C. Voide³⁹⁴, R. Friolet³⁹⁴, P. Vollenweider^{394,395}, J. L. Pagani^{394,395}, M. Oddo³⁹⁴,

- V. Efalo²¹¹, O. Volde²¹¹, R. Filolet, J. P. Volteriwerden, J. E. Fogan, J. M. Gudo, J.
 F. Meyer zu Bentrup³⁹⁴, A. Conen³⁹⁴, O. Clerc³⁹⁴, O. Marchetti³⁹⁴, A. Guillet³⁹⁴,
 C. Guyat-Jacques³⁹⁴, S. Foucras³⁹⁴, M. Rime³⁹⁴, J. Chassot³⁹⁴, M. Jaquet³⁹⁴, R. Merlet Viollet³⁹⁴ Y. Lannepoudenx³⁹⁴ & L. Portopena³⁹⁴

ReaCOVID

 P.Y. Bochud^{394,395,399}, P. Vollenweider^{394,395}, J. L. Pagani^{394,395}, F. Desgranges³⁹⁵, P. Filippidis³⁹⁵,
 B. Guéry³⁹⁵, D. Haefliger³⁹⁵, E. E. Kampouri³⁹⁵, O. Manuel³⁹⁵, A. Munting³⁹⁵, M. Papadimitr ..., , ..., , ..., , E. Kampouri³⁹⁹, O. Manuel³⁹⁵, A. Munting³⁹⁵, M. Papadimitr iou-Olivgeris³⁹⁵, J. Regina³⁹⁵, L. Rochat-Stettler³⁹⁵, V. Suttels³⁹⁵, E. Tadini³⁹⁵, J. Tschopp³⁹⁵, M. Van Singer³⁹⁵ & B. Viala³⁹⁵

P-PredictUs

N. Boillat-Blanco³⁹⁶, T. Brahier³⁹⁶, O. Hügli³⁹⁶, J. Y. Meuwly³⁹⁶ & O. Pantet³⁹⁶

SérocoViD

S. Gonseth Nussle³⁹⁷, M. Bochud³⁹⁷, V. D'Acremont³⁹⁷ & S. Estoppey Younes³⁹⁷

CRIPSI

W. C. Albrich³⁹⁸, N. Suh³⁹⁸, A. Cerny³⁹⁸, L. O'Mahony³⁹⁸, C. von Mering, P. Y. Bochud^{394,395,398}, M. Frischercht³⁸⁸, G.-R. Kleger³⁸⁸, M. Filipovic³⁸⁸, C. R. Kahlert³⁸⁸, H. Wozniak³⁸⁸,
 T. Rochat Negro³⁸⁸, J. Pugin³⁸⁸, K. Bouras³⁸⁸, C. Knapp³⁸⁸, T. Egger³⁸⁸, A. Perret³⁹⁸, P. Montillier³⁸⁸, C. di Bartolomeo³⁹⁸ & B. Barda³⁹⁸

GCAT Genomes For Life Analysis team leader

Rafael de Cid³⁹⁹

Data collection leaders Anna Carreras³⁹⁹, Victor Moreno⁴⁰⁰ & Manolis Kogevinas^{335,336,337,338}

Analysis team members

Iván Galván-Femenía³⁹⁹, Natalia Blay³⁹⁹, Xavier Farré³⁹⁹ & Lauro Sumoy³⁹⁹

Data collection members

Beatriz Cortés³⁹⁹, Josep Maria Mercader^{401,1276,1277,1278,1279}, Marta Guindo-Martinez⁴⁰¹, David Torrents⁴⁰¹, Judith Garcia-Aymerich^{335,336,337}, Gemma Castaño-Vinyals^{335,336,337,338} & Carlota Dobaño^{335,336}

GEN-COVID Multicenter Study

Analysis team leaders Marco Gori^{404,405} & Mari E. K. Niemi^{1,1280}

Data collection leaders

Alessandra Renieri^{63,64,65}, Francesca Mari^{63,64,65}, Mario Umberto Mondelli^{408,409}, Francesco Castelli⁴¹⁰, Massimo Vaghi⁴¹¹, Stefano Rusconi^{412,413}, Francesca Montagnani^{65,414}, Elena Bargagli⁴¹⁵, Federico Franchi⁴¹⁶, Maria Antonietta Mazzei⁴¹⁷, Luca Cantarini⁴ Danilo Tacconi⁴¹⁹, Marco Feri⁴²⁰, Raffaele Scala⁴²¹, Genni Spargi⁴²², Cesira Nencioni⁴²³, Maria Bandini⁴²⁴, Gian Piero Caldarelli⁴²⁵, Maurizio Spagnesi⁴²⁴, Anna Canaccini⁴² Agostino Ognibene⁴²⁷, Antonella D'Arminio Monforte⁴²⁸, Massimo Girardis⁴²⁹, Andrea Antinori⁴³⁰, Daniela Francisci^{431,432}, Elisabetta Schiarol^{431,437}, Pier Giorgio Scotton⁴³³, Sandro Panese⁴³⁴, Renzo Scaggiante⁴³⁵, Matteo Della Monica⁴³⁶, Mario Capasso^{437,438,439}, Giuseppe Fiorentino⁴⁴⁰, Marco Castori⁴⁴¹, Filippo Aucella⁴⁴², Antonio Di Biagio⁴⁴³, Luca Masucci^{444,445}, Serafina Valente⁴⁴⁶, Marco Mandalà⁴⁴⁷, Patrizia Zucchi⁴⁴⁸, Ferdinando Giannattasio⁴⁴⁹, Domenico A. Coviello^{12,450}, Cristina Mussini⁴⁵¹, Giancarlo Bosio⁴⁵², Luisa Tavecchia⁴⁵³, Lia Crotti^{454,455,456,457}, Marco Rizzi⁴⁵⁸, Maria Teresa La Rovere⁴⁵ Simona Sarzi-Braga⁴⁶⁰, Maurizio Bussotti⁴⁶¹, Sabrina Ravaglia⁴⁶², Rosangela Artuso⁴⁶³, Antonila Varizio agai , maurizio bussouti , Sabrina Kavagia ⁻⁻, Rosangela Artus Antonio Perrella⁴⁶, Davide Romani⁴⁶⁵, Paola Bergom⁴⁶⁶, Emanuele Catena⁴⁶⁶, Antonella Vincenti¹²³¹, Claudio Ferri¹²³², Davide Grassi¹²³², Gloria Pessina¹²³³, Mario Tumbarello^{65,44}, Massimo Di Pietro¹²³⁴, Ravaglia Sabrina⁴⁶², Sauro Luchi¹²³⁵, Chiara Barbieri¹²³⁵, Donatella Acquilini¹²³⁵, Elena Andreucci¹²³⁵, Francesco Paciosi¹²³⁶, Francesco Vladimiro Segala¹²³⁸, Giusy Tiseo¹²³⁶, Marco Falcone¹²³⁶, Mirjam Lista^{63,65}, Manica Recepto¹²³⁶, Octube Dative Marco Falcone¹²³⁶, Mirjam Lista^{63,65}, Monica Poscente¹²³, Oreste De Vivo⁴⁴⁰, Paola Petrocelli¹²³⁵, Alessandra Guarnaccia^{444,445}, Silvia Baroni¹²³⁹ & Valentina Perticaroli^{83,84,65}

Admin team leaders

Simone Furini⁶⁵ & Simona Dei⁴⁶⁷

Analysis team members

Elisa Benetti⁶⁵, Nicola Picchiotti^{404,468}, Maurizio Sanarico⁴⁶⁹, Stefano Ceri⁶⁶, Pietro Pinoli⁶⁶, Francesco Raimondi⁴⁷⁰, Filippo Biscarini⁴⁷¹, Alessandra Stella⁴⁷¹, Mattia Bergomi⁴⁷³,

Kristina Zguro⁶⁵, Katia Capitani^{65,475}, Mattia Cordioli¹, Sara Pigazzini¹, Lindokuhle Nkambule^{3,29,167} & Marco Tanfoni⁴⁶

Data collection members

Chiara Fallerini^{63,65}, Sergio Daga^{63,65}, Margherita Baldassarri^{63,65}, Francesca Fava^{63,64,65}, Elisa Frullanti^{63,65}, Floriana Valentino^{63,65}, Gabriella Doddato^{63,65}, Annarita Giliberti^{63,65} Rossella Tita⁶⁴, Sara Amitrano⁶⁴, Mirella Bruttini^{63,65,64}, Susanna Croci^{63,65}, Ilaria Meloni^{63,65}, Maria Antonietta Mencarelli⁶⁴, Caterina Lo Rizzo⁶⁴, Anna Maria Pinto⁶⁴, Giada Beligni^{63,65}, Andrea Tommasi^{63,64,65}, Laura Di Sarno^{63,65}, Maria Palmieri^{63,65}, Miriam Lucia Carriero^{63,65}, Diana Alaverdian^{63,65}, Nicola Iuso^{63,65}, Gabriele Inchingolo^{63,65}, Stefano Busani⁴² Raffaele Bruno^{408,409}, Marco Vecchia⁴⁷⁸, Mary Ann Belli⁴⁵³, Stefania Mantovani⁴⁷⁸ Serena Ludovisi^{408,409}, Eugenia Quiros-Roldan⁴¹⁰, Melania Degli Antoni⁴¹⁰, Isabella Zanella^{479,480}, Matteo Siano⁴¹³, Arianna Emiliozzi⁴³⁰, Massimiliano Fabbiani⁴¹⁴, Barbara Rossetti⁴¹⁴ Giacomo Zanelli^{65,414}, Laura Bergantini⁴¹⁵, Miriana D'Alessandro⁴¹⁵, Paolo Cameli⁴¹⁵, David Bennet⁴¹⁵, Federico Anedda⁴¹⁶, Simona Marcantonio⁴¹⁶, Sabino Scolletta⁴¹⁶ Susanna Guerrini⁴¹⁷, Edoardo Conticini⁴¹⁸, Bruno Frediani⁴¹⁸, Chiara Spertilli⁴¹⁹, Alice Donati⁴²⁰, Luca Guidelli⁴²¹, Marta Corridi⁴²², Leonardo Croci⁴²³, Paolo Piacentini⁴²⁴, Elena Desanctis⁴²⁴, Silvia Cappelli⁴²⁴, Agnese Verzuri⁴²⁶, Valentina Anemoli⁴²⁶, Alessandro Pancrazi⁴²⁷ Sitva Cappetti ", Agnese verzun , Vatentina Anemon , Atessandro Fanciazi , Maria Lorubbio⁴²⁷, Esther Merlini⁴²⁸, Federica Gaia Miraglia⁴²⁸, Sophie Venturelli⁴²⁹, Andrea Cossarizza⁴⁸¹, Alessandra Vergori⁴³⁰, Arianna Gabrieli⁴¹³, Agostino Riva^{412,413}, Francesco Pacios¹⁴², Francesca Andretta⁴³³, Francesca Gatti⁴³⁵, Saverio Giuseppe Parisi⁴⁸², Stefano Baratti⁴⁸², Carmelo Piscopo⁴³⁶, Roberta Russo^{437,438}, Immacolata Andolfo^{437,438}, Achille Iolascon^{457,48}, Massimo Carella⁴⁴¹, Giuseppe Merla^{457,483}, Gabriella Maria Squeo⁴⁸³, Pamela Raggi⁴⁸⁴, Carmen Marciano⁴⁸⁴, Rita Perna⁴⁸⁴, Matteo Bassetti^{443,485}, Maurizio Sanguinetti^{444,445}, Alessia Giorli⁴⁴⁷, Lorenzo Salerni⁴⁴⁷, Pierpaolo Parravicini⁴⁴¹ Elisabetta Menatti⁴⁸⁸, Tullio Trotta⁴⁴⁹, Gabriella Coiro⁴⁴⁹, Fabio Lena⁴⁸⁷, Enrico Martinelli⁴⁵², Sandro Mancarella⁴⁵³, Chiara Gabbi⁴⁸⁸, Franco Maggiolo⁴⁵⁸, Diego Ripamonti⁴⁵⁸, Tiziana Bachetti⁴⁸⁹, Claudia Suardi⁴⁹⁰, Gianfranco Parati^{454,455}, Giordano Bottà⁴⁹¹, Paolo Di Domenico⁴⁹¹, Ilaria Rancan⁴¹⁴, Francesco Bianchi^{65,464}, Riccardo Colombo⁴⁶⁶, Chiara Barbieri¹²³⁵, Donatella Acquilini¹²³⁵, Elena Andreucci¹²³⁵, Francesco Paciosi¹²³⁵ Francesco Vladimiro Segala¹²³⁸, Giusy Tiseo¹²³⁶, Marco Falcone¹²³⁶, Mirjam Lista^{63,65}, Monica Poscente¹²³⁶, Oreste De Vivo⁴⁴⁶, Paola Petrocelli¹²³⁵, Alessandra Guarnaccia^{444,445}, Silvia Baroni¹²³⁹ & Valentina Perticaroli^{63,64,65}

Genes & Health

Analysis team leader David A. van Heel⁵⁰

Data collection leader Karen A. Hunt⁵

Admin team leader

Richard C. Trembath⁴⁹³

Analysis team members

Qin Qin Huang⁴⁹⁴ & Hilary C. Martin⁴⁹⁴

Data collection members

Dan Mason⁴⁹⁵, Bhavi Trivedi⁵⁰ & John Wright⁴⁹⁵

Admin team members

Sarah Finer⁴⁹⁷, Genes & Health Research Team* & Christopher J. Griffiths⁴⁹⁹

Genes & Health Research Team

Shaheen Akhtar⁴⁹⁸, Mohammad Anwar⁴⁹⁸, Elena Arciero⁴⁹⁸, Samina Ashraf⁴⁹⁸, Gerome Breen⁴⁹⁸, Raymond Chung⁴⁹⁸, Charles J. Curtis⁴⁹⁸, Maharun Chowdhury⁴⁹⁸, Grainne Colligan⁴⁹⁸, Panos Deloukas⁴⁹⁹, Ceri Durham⁴⁹⁹, Sarah Finer⁴⁹⁹, Chris Griffths⁴⁹⁹, Qin Qin Huang⁴⁹⁸, Matt Hurles⁴⁰⁹, Karen A. Hunt⁴⁰⁸, Shapna Hussain⁴³⁹, Kamrul Islam⁴⁹⁸, Ahsan Khan⁴⁹⁸, Amara Khan⁴⁹⁸, Cath Lavery⁴⁹⁹, Sang Hyuck Lee⁴⁹⁸, Robin Lerner⁴⁹⁸, Daniel MacArthur⁴⁹⁸, Bev MacLaughlin⁴⁹⁸, Hilary Martin³⁹⁸, Dan Mason⁴⁹⁸, Shefa Miah⁴⁹⁸, Bill Newman⁴⁹⁸, Nishat Safa⁴⁹⁸, Farah Tahmasebi⁴⁹⁸, Richard C. Trembath⁴⁹⁸, Bhavi Trivedi⁴⁹⁸, David A. van Heel⁴⁹⁸ & John Wright⁴⁹⁸

Genes for Good

Analysis team leader Albert V. Smith⁵⁰⁰

Data collection members

Andrew P. Boughton⁵⁰⁰, Kevin W. Li⁵⁰⁰, Jonathon LeFaive⁵⁰⁰ & Aubrey Annis⁵⁰⁰

Genetic determinants of COVID-19 complications in the Brazilian population Analysis team leader

Mari E. K. Niemi^{1,128}

Data collection leader

Cinthia E. Jannes⁵⁰¹

Admin team leaders

Jose E. Krieger⁵⁰¹ & Alexandre C. Pereira⁵⁰¹

Analysis team members

Mariliza Velho⁵⁰¹, Emanuelle Marques⁵⁰¹, Mattia Cordioli¹, Sara Pigazzini¹ & Lindokuhle Nkambule^{3,29,167}

Data collection members

Isabella Ramos Lima⁵⁰¹, Mauricio Teruo Tada⁵⁰¹ & Karina Valino⁵⁰¹

Genetic influences on severity of COVID-19 illness in Korea Analysis team leaders Mark McCarthy⁵⁰² & Carrie Rosenberger⁵⁰²

Data collection leader

Analysis team members

Diana Chang⁵⁰², Christian Hammer⁵⁰², Julie Hunkapiller⁵⁰², Anubha Mahajan⁵⁰², Sarah Pendergrass⁵⁰², Lara Sucheston-Campbell⁵⁰² & Brian Yaspan⁵⁰²

Data collection members

Hyun Soo Lee⁵⁰³, Eunsoon Shin⁵⁰³, Hye Yoon Jang⁵⁰³, Sunmie Kim⁵⁰⁴, Sungmin Kym⁵⁰⁵, Yeon-Sook Kim⁵⁰⁵, Hyeongseok Jeong⁵⁰⁵, Ki Tae Kwon⁵⁰⁷, Shin-Woo Kim⁵⁰⁷, Jin Yong Kim⁵⁰⁸, Young Rock Jang⁵⁰⁸, Hyun ah Kim⁵⁰⁹, Ji Yeon Lee⁵⁰⁹, Jeong Eun Lee⁵¹⁰, Shinwon Lee⁵¹⁰, Kang-Won Choe⁵¹¹, Yu Min Kang⁵¹¹, Sun Ha Jee⁵¹² & Keum Ji Jung⁵¹²

Genomic epidemiology of SARS-CoV-2host genetics in coronavirus disease 2019 Data collection leaders

Victoria Parikh⁵¹³, Euan Ashley^{514,515}, Matthew Wheeler⁵¹³, Manuel Rivas⁵¹⁶, Carlos Bustamante^{515,516}, Benjamin Pinksy⁵¹⁸, Phillip Febbo⁵¹⁹, Kyle Farh⁵¹⁹, Gary P. Schroth⁵¹⁹ & Francis deSouza⁵¹⁹

Admin team leaders

Karen Dalton⁵¹³ & Jeff Christle⁵¹³

Analysis team members

Christopher Deboever⁵²⁰, Sándor Szalma⁵²⁰, Yosuke Tanigawa⁵¹⁶, Simone Rubinacci⁵²¹ & Olivier Delaneau⁵²¹

Data collection members

John Gorzynski⁵¹³, Hannah de Jong⁵¹³, Shirley Sutton⁵¹³, Nathan Youlton⁵¹³, Ruchi Joshi⁵¹³, David Jimenez-Morales⁵¹³, Christopher Hughes⁵¹³, David Amar⁵¹³, Alex Ioannidis⁵¹⁶, Steve Hershman⁵¹³, Anna Kirillova⁵¹³, Kinya Seo⁵¹³, Yong Huang⁵¹³, Massa Shoura⁵¹⁸, Nathan Hammond⁵¹⁶, Nathaniel Watson⁵¹⁸, Archana Raja⁵¹³, ChunHong Huang⁵¹⁸, Malaya Sahoo⁵¹⁸ & Hannah Wang⁵¹⁸

Admin team member

Jimmy Zhen⁵¹³

Genotek COVID-19 study

Analysis team leader

Admin team leader

Valery Ilinsky⁹⁷⁴

Analysis team members

Danat Yermakovich⁵⁷⁴, laroslav Popov⁵⁷⁴, Alexander Chernitsov⁵⁷⁴, Elena Kovalenko⁵⁷⁴, Anna Krasnenko⁵⁷⁴, Nikolay Plotnikov⁵⁷⁴, Ivan Stetsenko⁵⁷⁴ & Anna Kim⁵⁷⁴

Helix & Healthy Nevada Project Exome+ COVID-19 Phenotypes

Analysis team leader Elizabeth T. Cirulli⁹⁷⁵

Analysis team members

Kelly M. Schiabor Barrett⁹⁷⁵, Alexandre Bolze⁹⁷⁵, Simon White⁹⁷⁵, Nicole L. Washington⁹⁷⁵ & James T. Lu⁹⁷⁵

Data collection members

Stephen Riffle⁹⁷⁵, Francisco Tanudjaja⁹⁷⁵, Xueqing Wang⁹⁷⁵, Jimmy M. Ramirez III⁹⁷⁵, Nicole Leonetti⁹⁷⁵, Efren Sandoval⁹⁷⁵, Iva Neveux⁹⁷⁶, Shaun Dabe⁹⁷⁷ & Joseph J. Grzymski⁹⁷⁶

 $\label{eq:24} \begin{array}{l} \textbf{24} \textbf{Genetics \& IdiPaz Genomic Variants associated to COVID-19} infection outcome \\ \textbf{Analysis team leader} \end{array}$

Juan Ignacio Esteban Miñano⁹⁷⁸

Data collection leader

Luis A. Aguirre⁹⁷⁹

Admin team leader Eduardo López-Collazo⁹⁷⁹

Analysis team members

Manuel de la Mata Pazos⁹⁷⁸, Luciano Cerrato⁹⁷⁸ & Lasse Folkersen⁹⁷⁸

Data collection members

Roberto Lozano-Rodríguez⁹⁷⁹, José Avendaño-Ortiz⁹⁷⁹, Verónica Terrón Arcos⁹⁷⁹, Karla Marina Montalbán-Hernández⁹⁷⁹, Jaime Valentín Quiroga⁹⁷⁹ & Alejandro Pascual-Iglesias⁹⁷⁹

Admin team members

Charbel Maroun-Eid⁹⁷⁹ & Alejandro Martín-Quirós⁹⁷⁹

Japan Coronavirus Taskforce

Analysis team leaders Ho Namkoong⁹⁸⁰, Yukinori Okada^{981,982,983} & Seiya Imoto⁹⁸⁴

Data collection leaders

Kazuhiko Katayama⁹⁸⁵, Koichi Fukunaga⁹⁸⁰, Yuko Kitagawa⁹⁸⁶, Toshiro Sato⁹⁸⁷, Naoki Hasegawa⁹⁸⁸, Atsushi Kumanogoh^{983,989,990}, Akinori Kimura⁹⁹¹, Masumi Ai⁹⁹² & Katsushi Tokunaga⁹⁹³

Admin team leaders

Takanori Kanai⁹⁹⁴, Satoru Miyano⁹⁹⁵ & Seishi Ogawa^{996,997}

Analysis team members

Ryuya Edahiro^{981,989}, Kyuto Sonehara⁹⁸¹, Yuya Shirai^{981,989} & Masahiro Kanai²⁷⁴

Data collection members

Makoto Ishii⁹⁸⁰, Hiroki Kabata⁹⁸⁰, Katsunori Masaki⁹⁸⁰, Hirofumi Kamata⁹⁸⁰ Shinnosuke Ikemura⁹⁸⁰, Shotaro Chubachi⁹⁸⁰, Satoshi Okamori⁹⁸⁰, Hideki Terai⁹⁸⁰ Hiromu Tanaka⁹⁸⁰, Atsuho Morita⁹⁸⁰, Ho Lee⁹⁸⁰, Takanori Asakura⁹⁸⁰, Junichi Sasaki⁹⁹⁹, Hiroshi Morisaki¹⁰⁰⁰, Yoshifumi Uwamino¹⁰⁰¹, Kosaku Nanki⁹⁹⁴, Yohei Mikami⁹⁹⁴ Kazunori Tomono¹⁰⁰², Kazuto Kato¹⁰⁰³, Fumihiko Matsuda¹⁰⁰⁴, Meiko Takahashi¹⁰⁰⁴ Nobuvuki Hizawa¹⁰⁰⁵, Yoshito Takeda⁹⁸⁹, Haruhiko Hirata⁹⁸⁹, Takavuki Shirovama⁹⁸⁰ Satoru Miyawaki¹⁰⁰⁶, Ken Suzuki³⁶⁸, Yuichi Maeda^{368,1007}, Takuro Nii^{369,1007}, Yoshimi Noda³⁶ Takayuki Niitsu³⁶⁹, Yuichi Adach¹³⁶⁹, Takatoshi Enomoto³⁶⁸, Saori Amiya³⁶⁹, Reina Hara³⁶⁹ Kunihiko Takahashi⁹⁹⁵, Tatsuhiko Anzai⁹⁹⁵, Takanori Hasegawa⁹⁹⁵, Satoshi Ito⁹⁹⁵, Ryuji Koike¹⁰⁰⁹, Kunihiko Takahashi¹⁰⁰, Tatsuhiko Anzai¹⁰⁰, Takanori Hasegawa¹⁰⁰, Satoshi Ito¹⁰⁰, Kyuji Koike¹⁰⁰⁰, Akifumi Endo¹⁰¹⁰, Yuji Uchimura¹⁰¹¹, Yasunari Miyazaki¹⁰¹², Takayuki Honda¹⁰¹², Sonobe¹⁰¹³, Shuji Tohda¹⁰¹³, Naoya Ichimura¹⁰¹³, Kazunari Sonobe¹⁰¹³, Chihiro Sassa¹⁰¹³, Jun Nakajima¹⁰¹³, Yasuhito Nannya¹⁰¹⁴, Yosuke Omae¹⁰⁸³, Kazuhisa Takahashi¹⁰¹⁵, Norihiro Harada¹⁰¹⁵, Makoto Hiki¹⁰¹⁶¹⁰⁷⁷, Haruhi Takagi¹⁰¹⁵, Ai Nakamura¹⁰¹⁵, Etsuko Tagaya¹⁰¹⁸, Masatoshi Kawana¹⁰¹⁹, Ken Arimura¹⁰¹⁹, Takashi Ishiguro¹⁰²⁰, Noboru Takayanagi¹⁰²⁰, Taisuke Isono¹⁰²⁰, Yotaro Takaku¹⁰²⁰, Kenji Takano¹⁰²⁰, Ryusuke Anan¹⁰²¹, Yukiko Nakajima¹⁰²¹, Yasushi Nakano¹⁰²¹, Kazumi Nishio¹⁰²¹, Soichiro Ueda¹⁰²², Reina Hayashi¹⁰²², Hiroki Tateno¹⁰²³, Isano Hase¹⁰²³, Shuichi Yoshida¹⁰²³, Shoji Suzuki¹⁰²³, Keiko Mitamura¹⁰²⁴, Fumitake Saito¹⁰²⁵, Tetsuya Ueda¹⁰²⁶, Masanori Azuma¹⁰²⁶, Tadao Nagasaki¹⁰²⁶, Yoshinori Yasui¹⁰²¹ Yoshinori Hasegawa¹⁰²⁶, Yoshikazu Mutoh¹⁰²⁹, Takashi Yoshiyama¹⁰³⁰, Tomohisa Shoko¹⁰³¹, Mitsuaki Kojima¹⁰³¹, Tomohiro Adachi¹⁰³¹, Motonao Ishikawa¹⁰³², Kenichiro Takahashi¹⁰³³, Kazuyoshi Watanabe¹⁰³⁴, Tadashi Manabe¹⁰³⁵, Fumimaro Ito¹⁰³⁵, Takahiro Fukui¹⁰³⁵, Yohei Funatsu¹⁰³⁵, Hidefumi Koh¹⁰³⁵, Yoshihiro Hirai¹⁰³⁶, Hidetoshi Kawashima¹⁰³⁶, Atsuya Narita¹⁰³⁸, Kazuki Niwa¹⁰³⁷, Yoshiyuki Sekikawa¹⁰³⁷, Fukuki Saito¹⁰³⁸, Kazuhisa Yoshiya¹⁰³⁸, Tomoyuki Yoshihara¹⁰³⁸, Yusuke Suzuki¹⁰³⁹, Sohei Nakayama¹⁰³⁹, Keita Masuzawa¹⁰³ Koichi Nishi¹⁰⁴⁰, Masaru Nishitsuji¹⁰⁴⁰, Maiko Tani¹⁰⁴⁰, Takashi Inoue¹⁰⁴¹, Toshiyuki Hirano¹⁰⁴¹ Keigo Kobayashi¹⁰⁴¹, Naoki Miyazawa¹⁰⁴², Yasuhiro Kimura¹⁰⁴², Reiko Sado¹⁰⁴², Takashi Ogura¹⁰⁴³, Hideya Kitamura¹⁰⁴³, Kota Murohashi¹⁰⁴³, Ichiro Nakachi¹⁰⁴⁴, Rie Baba¹⁰⁴⁴, Daisuke Arai¹⁰⁴⁴, Satoshi Fuke¹⁰⁴⁵, Hiroshi Saito¹⁰⁴⁵, Naota Kuwahara¹⁰⁴⁶, Akiko Fujiwara¹⁰⁴⁶, Takenori Okada¹⁰⁴⁶, Tomoya Baba¹⁰⁴⁷, Junya Noda¹⁰⁴⁷, Shuko Mashimo¹⁰⁴⁷, Kazuma Yagi¹⁰⁴⁸, Tetsuya Shiomi¹⁰⁴⁸, Mizuha Hashiguchi¹⁰⁴⁸, Toshio Odani¹⁰⁴⁹, Takao Mochimaru^{1050,1051}, Yoshitaka Oyamada^{1050,1051}, Nobuaki Mori¹⁰⁵², Namiki Izumi¹⁰⁵³, Kaoru Nagata¹⁰⁵³, Reiko Taki¹⁰⁵³, Koji Murakami¹⁰⁵⁴ Nobuaki Mori¹⁰⁶⁷, Namiki Izumi¹⁰⁶⁷, Kaoru Nagata¹⁰⁶⁷, Keiko Iaki¹⁰⁶⁶⁷, Koji Murakami¹⁰⁶⁸⁷, Mitsuhiro Yamada¹⁰⁵⁴, Hisatoshi Sugiura¹⁰⁵⁴, Kentaro Hayashi¹⁰⁶⁵⁷, Tetsuo Shimizu¹⁰⁶⁵, Yasuhiro Gon¹⁰⁶⁵, Shigeki Fujitani¹⁰⁶⁶, Tomoya Tsuchida¹⁰⁵⁷, Toru Yoshida¹⁰⁵⁶, Takashi Kagaya¹⁰⁵⁸, Toshiyuki Kita¹⁰⁶⁹, Satoru Sakagami¹⁰⁵⁸, Yoshifumi Kimizuka¹⁰⁵⁹, Akihiko Kawana¹⁰⁵⁹, Yoshihiko Nakamura¹⁰⁶⁰, Hiroyasu Ishikura¹⁰⁶⁰, Tohru Takata¹⁰⁶¹, Takahide Kikuchi¹⁰⁶², Daisuke Taniyama¹⁰⁶², Morio Nakamura¹⁰⁶², Nobuhiro Kodama¹⁰⁶³, Yasunari Kaneyama¹⁰⁶³, Shunsuke Maeda¹⁰⁶³, Yoji Nagasaki¹⁰⁶⁴, Masaki Okamoto¹⁰⁶⁵¹⁰²⁷, Sayoko Ishihara¹⁰⁶⁴, Akihiro Ito¹⁰⁶⁷, Yusuke Chihara¹⁰⁶⁸, Mayumi Takeuchi¹⁰⁶⁸, Keisuke Onoi¹⁰⁶⁸, Naozumi Hashimoto¹⁰⁶⁹, Keiko Wakahara¹⁰⁶⁹, Akira Ando¹⁰⁶⁹, Makoto Masuda¹⁰⁷ Aya Wakabayashi¹⁰⁷⁰, Hiroki Watanabe¹⁰⁷⁰, Hisako Sageshima¹⁰⁷¹, Taka-Aki Nakada¹⁰⁷², Ryuzo Abe¹⁰⁷², Tadanaga Shimada¹⁰⁷², Kodai Kawamura¹⁰⁷³, Kazuya Ichikado¹⁰⁷³ Kenta Nishiyama¹⁰⁷³, Masaki Yamasaki¹⁰⁷⁴, Satoru Hashimoto¹⁰⁷⁴, Yu Kusaka¹⁰⁷⁵, Takehiko Nola¹⁰⁷⁵, Susumu Isogai¹⁰⁷⁵, Minoru Takada¹⁰⁷⁶, Hidenori Kanda¹⁰⁷⁶, Yuko Komase¹⁰⁷⁷, Fumiaki Sano¹⁰⁷⁸, Koichiro Asano¹⁰⁷⁹, Isuyoshi Oguma¹⁰⁸⁰, Masahiro Harada¹⁰⁸¹, Takeshi Takahashi¹⁰⁸¹, Takayuki Shibusawa¹⁰⁸¹, Shinji Abe¹⁰⁸², Yuta Kono¹⁰⁸², Yuki Togashi¹⁰⁸², Takehiro Izumo¹⁰⁸³, Minoru Inomata¹⁰⁸³, Nobuyasu Awano¹⁰⁸³, Shinichi Ogawa¹⁰ Tomouki Ogata¹⁰⁸⁴, Shoichiro Ishihara¹⁰⁸⁴, Arihiko Kanehiro¹⁰⁸⁵, Shinji Ozaki¹⁰⁸⁵ Yasuko Fuchimoto¹⁰⁸⁵, Yuichiro Kitagawa¹⁰⁸⁶, Shozo Yoshida¹⁰⁸⁶, Shinji Ogura¹⁰⁸⁶, Kei Nishiyama¹⁰⁸⁷, Kousuke Yoshida¹⁰⁸⁸, Satoru Beppu¹⁰⁸⁸, Satoru Fukuyama¹⁰⁸⁶ Yoshihiro Eriguchi¹⁰⁹⁰, Akiko Yonekawa¹⁰⁹⁰, Yoshiaki Inoue¹⁰⁹¹, Kunihiro Yamagata¹⁰⁹², Shigeru Chiba¹⁰⁹³, Osamu Narumoto¹⁰⁹⁴, Hideaki Nagai¹⁰⁹⁴, Nobuharu Ooshima¹⁰⁹⁴, Mitsuru Motegi¹⁰⁹⁵, Hironori Sagara¹⁰⁹⁶, Akihiko Tanaka¹⁰⁹⁶, Shin Ohta¹⁰⁹⁶, Yoko Shibata¹⁰⁹⁷ Yoshinori Tanino¹⁰⁹⁷, Yuki Sato¹⁰⁹⁷, Yuichiro Yamada¹⁰⁰⁸, Takuya Hashino¹⁰⁸⁸, Masato Shinoki¹⁰⁹⁸ Hajime Iwagoe¹⁰⁹⁹, Tomonori Imamura¹⁰⁰, Akira Umeda¹¹⁰¹, Hisato Shimada¹¹⁰¹, Mayu Endo¹¹⁰², Shinichi Hayashi¹¹⁰³, Mai Takahashi¹¹⁰³, Shigefumi Nakano¹¹⁰³, Masakiyo Yatomi¹¹ Toshitaka Maeno¹¹⁰⁴, Tomoo Ishii¹¹⁰⁵, Mitsuyoshi Utsugi¹¹⁰⁶, Akihiro Ono¹¹⁰⁶, Kensuke Kanaoka¹¹⁰⁷, Shoichi Ihara¹¹⁰⁷ & Kiyoshi Komuta¹¹⁰⁷

Lifelines

Analysis team leader Lude Franke⁵¹

Data collection leader Marike Boezen¹¹⁰⁹

Analysis team members Patrick Deelen^{51,52}, Annique Claringbould⁵¹, Esteban Lopera⁵¹, Robert Warmerdam⁵¹, Judith. M. Vonk¹¹⁰⁹ & Irene van Blokland⁵¹

Data collection members Pauline Lanting⁵¹ & Anil P. S. Ori^{1112,1113}

Lung eQTL Consortium Data collection members Ma'en Obeidat¹¹¹⁴, Ana I. Hernández Cordero¹¹¹⁴, Don D. Sin^{1114,1115}, Yohan Bossé¹¹¹⁶, Philippe Joubert¹¹¹⁶, Ke Hao¹¹¹⁷, David Nickle^{1118,1119}, Wim Timens^{1120,1121} & Maarten van den Bergg^{112,1122}

Mass General Brigham-Host Vulnerability to COVID-19 Analysis team leaders Yen-Chen Anne Feng¹¹²³ & Josep Mercader^{29,1123}

Data collection leaders Scott T. Weiss¹¹²⁶, Elizabeth W. Karlson¹¹²⁷, Jordan W. Smoller¹¹²⁸, Shawn N. Murphy¹¹²⁹, James B. Meigs^{1130,1124,1125} & Ann E. Woolley¹¹²⁷

Admin team leader Robert C. Green^{2,273}

Data collection member Emma F. Perez²⁷³

Michigan Genomics Initiative (MGI) Analysis team leader Brooke Wolford¹¹³²

Admin team leader Sebastian Zöllner⁵⁰⁰

Analysis team members Jiongming Wang⁵⁰⁰ & Andrew Beck⁵⁰⁰

Mount Sinai Health System COVID-19 Genomics Initiative Analysis team leader Laura G. Sloofman²⁶

Data collection leaders Steven Ascolillo¹¹³³, Robert P. Sebra^{1117,1135}, Brett L. Collins²⁶ & Tess Levy²⁶

Admin team leaders Joseph D. Buxbaum²⁶ & Stuart C. Sealfon⁷

Analysis team members Shea J. Andrews⁷, Daniel M. Jordan^{1117,1137}, Ryan C. Thompson^{1133,1140,1141}, Kyle Gettler¹¹¹⁷, Kumardeep Chaudhary^{1117,1143}, Gillian M. Belbin¹¹⁴⁴, Michael Preuss^{1143,1146}, Clive Hoggart^{1147,1148,1142}, Sam Choi^{1147,1148,1142,1149} & Slayton J. Underwood²⁶

Data collection members Irene Salib¹¹¹⁷, Bari Britvan²⁶, Katherine Keller²⁶, Lara Tang²⁶, Michael Peruggia²⁶, Liam L. Hiester²⁶, Kristi Niblo²⁶, Alexandra Aksentijevich²⁶, Alexander Labkowsky²⁶, Avromie Karp²⁶, Menachem Zlatopolsky²⁶ & Marissa Zyndorf¹¹¹⁷

Admin team members Alexander W. Charney^{1141,1150}, Noam D. Beckmann¹¹³³, Eric E. Schadt^{1117,1135}, Noura S. Abul-Husn¹¹⁴⁴, Judy H. Cho^{1117,1143}, Yuval Itan^{1112,1143}, Eimear E. Kenny¹¹⁴⁴, Ruth J. F. Loos^{1142,1144,1151}, Girish N. Nadkarni^{1133,1154,1155}, Ron Do^{1117,1143}, Paul O'Reilly^{1147,1148,1142,1149} & Laura M. Huckins^{1147,1148,1142}

MyCode Health Initiative Analysis team leaders Manuel A. R. Ferreira¹¹⁵⁷ & Goncalo R. Abecasis¹¹⁵⁷

Data collection leaders Joseph B. Leader¹¹⁵⁸ & Michael N. Cantor¹¹⁵⁷

Admin team leaders Anne E. Justice¹¹⁵⁹ & Dave J. Carey¹¹⁶⁰

Analysis team members Geetha Chittoor¹¹⁵⁹, Navya Shilpa Josyula¹¹⁵⁹, Jack A. Kosmicki¹¹⁵⁷, Julie E. Horowitz¹¹⁵⁷ & Aris Baras¹¹⁵⁷ Data collection members Matthew C. Gass¹¹⁵⁸ & Ashish Yadav¹¹⁵⁷

Admin team member Tooraj Mirshahi¹¹⁶⁰

Netherlands Twin Register Analysis team leader Jouke Jan Hottenga¹²²

Data collection leader Meike Bartels¹²²

Admin team leader Eco J. C. de Geus¹²²

Analysis team member Michel G. Nivard¹²²

Penn Medicine Biobank Analysis team leaders Anurag Verma¹¹⁶² & Marylyn D. Ritchie¹¹⁶²

Admin team leader Daniel Rader¹¹⁶²

Analysis team members Binglan Li¹¹⁶³, Shefali S. Verma¹¹⁶², Anastasia Lucas¹¹⁶² & Yuki Bradford¹¹⁶²

Population controls Analysis team leader Federico Zara¹²

Analysis team members Vincenzo Salpietro¹², Marcello Scala¹¹⁷², Michele Iacomino¹², Paolo Scudieri¹² & Renata Bocciardi¹²

Data collection members Carlo Minetti¹², Antonella Riva¹¹⁷², Maria Stella Vari¹², Myriam Mni¹⁶³, Jean-François Rahier¹¹⁷³, Elisa Giorgio¹¹⁷⁴, Federico Zara¹² & Diana Carli¹¹⁷⁵

Data collection leaders Pasquale Striano^{12,13}, Edouad Louis¹⁷⁰, Michel Georges¹⁶³, Souad Rahmouni¹⁶³, Cynthia M. Bulik^{709,1166,1167}, Mikael Landén^{709,1168}, Alfredo Brusco¹¹⁶⁹ & Giovanni Battista Ferrero¹¹⁷⁰

Admin team leaders Francesca Madia¹² & Bengt Fundín⁷⁰⁹

Qatar Genome Program Analysis team leader Hamdi Mbarek⁸⁰

Data collection leader Said I. Ismail⁸⁰

Analysis team members Chadi Saad⁸⁰ & Yaser Al-Sarraj⁸⁰

Data collection members Radja Messai Badji⁸⁰, Wadha Al-Muftah⁸⁰, Asma Al Thani⁸⁰ & Nahla Afifi¹¹⁷⁶

Study of the COVID-19 host genetics in the population of Latvia Analysis team leader Janis Klovins¹¹⁷⁷

Data collection leader Vita Rovite¹¹⁷⁷

Analysis team members Raimonds Rescenko¹¹⁷⁷ & Raitis Peculis¹¹⁷⁷

Data collection member Monta Ustinova¹¹⁷⁷

The genetic predisposition to severe COVID-19 Analysis team leader Mari E. K. Niemi¹¹²⁸⁰

Data collection leader Hugo Zeberg^{1178,1179}

Analysis team members Mattia Cordioli¹, Sara Pigazzini¹ & Lindokuhle Nkambule^{3,29,167}

Data collection members Robert Frithiof¹¹⁸⁰, Michael Hultström^{1180,1181} & Miklos Lipcsey^{1180,1182}

UCLA Precision Health COVID-19 Host Genomics Biobank Analysis team leader Ruth Johnson¹¹

Data collection leader UCLA Health ATLAS & Data Mart Working Group*

UCLA Health ATLAS & Data Mart Working Group Daniel H. Geschwind¹¹⁸

Admin team leaders Nelson Freimer¹¹⁸⁵, Manish J. Butte^{1186,1171,1184}, Daniel H. Geschwind^{1188,1187,1152} & Bogdan Pasaniuc^{1189,1190,1139}

Analysis team members Yi Ding¹¹⁹¹, Alec Chiu¹¹⁹¹, Timothy S. Chang¹¹⁹² & Paul Boutros^{1193,1139}

UK 100,000 Genomes Project (Genomics England) Analysis team leader

Loukas Moutsianas^{14,95}

Data collection leaders Mark J. Caulfield^{95,695} & Richard H. Scott^{95,1195,1196}

Analysis team members

Athanasios Kousathanas⁸⁵, Dorota Pasko⁹⁵, Susan Walker⁹⁵, Alex Stuckey⁹⁵, Christopher A. Odhams⁹⁵ & Daniel Rhodes⁹⁵

Data collection members

Tom Fowler⁹⁵, Augusto Rendon^{95,1197}, Georgia Chan⁹⁵ & Prabhu Arumugam⁹⁵

UK Biobank

Analysis team leaders Tomoko Nakanishi^{17,56,57}, Konrad J. Karczewski^{3,29}, Alicia R. Martin^{3,29}, Daniel J. Wilson¹¹⁹⁹ & Chris A. Spencer⁹¹

Data collection leaders

Derrick W. Crook¹²⁰¹, David H. Wyllie^{1201,1202} & Anne Marie O'Connell¹²⁰³

Admin team leader

J. Brent Richards^{17,53,55,56}

Analysis team members

Guillaume Butler-Laporte¹⁷⁵³, Vincenzo Forgetta¹⁷, Elizabeth G. Atkinson^{3,29}, Masahiro Kanai^{3,29,1204}, Kristin Tsuo^{3,29,1205}, Nikolas Baya^{3,29}, Patrick Turley^{3,29}, Rahul Gupta^{3,29}, Raymond K. Walters^{3,29}, Duncan S. Palmer^{3,29}, Gopal Sarma^{3,29}, Matthew Solomonson^{3,29}, Nathan Cheng^{3,29}, Wenhan Lu^{3,29}, Claire Churchhouse^{3,29}, Jacqueline I. Goldstein^{3,29}, Daniel King^{3,29}, Wei Zhou^{3,29}, Cotton Seed^{3,29}, Mark J. Daly^{1,2,3}, Benjamin M. Neale^{3,29}, Hilary Finucane^{3,29}, Sam Bryant², F. Kyle Satterstrom^{3,29}, Gavin Band⁷⁰⁰, Sarah G. Earle¹¹⁹⁹, Shang-Kuan Lin¹¹⁹⁹, Nicolas Arning¹¹⁹⁹ & Nils Koelling⁹¹

Data collection members Jacob Armstrong¹¹⁹⁹ & Justine K. Rudkin¹¹⁹⁹

Admin team members Shawneequa Callier¹²⁰⁷, Sam Bryant^{3,29} & Caroline Cusick²⁹

UK Blood Donors Cohort

Analysis team leaders Nicole Soranzo^{1208,1209,1210} & Jing Hua Zhao¹²¹¹

Data collection leaders John Danesh^{1211,1212,1213,1214,1215} & Emanuele Di Angelantonio^{1211,1212,1213,1214}

Analysis team member Adam S. Butterworth^{1211,1212,1213,1214}

VA Million Veteran Program (MVP)

Analysis team leaders Yan V. Sun^{1216,1217} & Jennifer E. Huffman¹²¹⁸

Data collection leader

Kelly Cho¹²¹

Admin team leaders Christopher J. O'Donnell¹²¹⁸, Phil Tsao^{1220,1221} & J. Michael Gaziano¹²¹⁹

Analysis team member

Gina Peloso^{1218,122}

Data collection member Yuk-Lam Ho¹²¹⁹

Val Gardena Analysis team leader Christian Fuchsberger²⁰⁹

Data collection leader Michael Mian¹²

Data collection member Federica Scaggiante¹²²

Admin team members

Cristian Pattaro²⁰⁹ & Peter Pramstaller²⁰⁹

CHOP CAG

Xiao Chang¹²²⁷, Joseph R. Glessner^{1227,1228} & Hakon Hakonarson^{1227,1228,1229}

GenOMICC/ISARIC4C

Data collection leaders J. Kenneth Baillie^{60,61,62}, Peter J. McGuigan⁵²³, Luke Stephen Prockter Moore⁵²⁴, Marcela Paola Vizcaychipi⁵²⁴, Kathryn Hall⁵²⁵, Andy Campbell⁵²⁶, Ailstair Nichol⁵²⁷, Geraldine Ward⁵²⁸, Valerie Joan Page⁵²⁹, Malou Campbett, J. Attatin Nichot, J. Daniel Agranoff⁵³², Ken Agwuh⁵³³, Dhiraj Ail⁵³⁴, Erin L. Aldera⁵³⁵, Ana Alegria^{506,506}, Brian Angus⁵³⁷, Abdul Ashish⁵⁸⁸, Dougal Atkinson⁵³⁹, Shahedal Bari⁵⁴⁰, Gavin Barlow⁵⁴¹, Stella Barnass⁵⁴², Nicholas Barrett⁵⁴³, Christopher Bassford⁵⁴⁴, Sneha Basude⁵⁴⁵, David Baxter⁵⁴⁶, Michael Beadsworth⁵⁴⁷, Jolanta Bernatoniene⁵⁴⁸, John Berridge⁵⁴⁹ Nicola Best⁵⁵⁰, Pieter Bothma⁵⁵¹, David Chadwick⁵⁵², Robin Brittain-Long⁵⁵³, Naomi Bulteel⁵⁵⁴, Tom Burden⁵⁵⁵, Andrew Burtenshaw⁵⁵⁶, Vikki Caruth⁵⁵⁷, David Chadwick⁵⁵ Duncan Chambler⁵⁵⁸, Nigel Chee⁵⁵⁹, Jenny Child⁵⁶⁰, Srikanth Chukkambotla⁵⁶¹, Tom Clark⁵⁶², Paul Collin⁵⁶³, Catherine Cosgrove⁵⁶⁴, Jason Cupit⁵⁶⁵, Maria-Teresa Cutino-Moguel⁵⁶⁶, Paul Dark⁵⁶⁷, Chris Dawson⁵⁶⁸, Samir Dervisevic⁵⁶⁹, Phil Donnison⁸³⁷, Sam Douthwaite⁵⁴³, Andrew Drummond^{572,773}, Ingrid DuRand⁵⁷³, Ahilanadan Dushianthan⁵⁷⁴, Tristan Dyer⁵⁷⁵, Cariad Evans⁵⁶³, Chi Eziefula⁵³², Christopher Fegan⁵⁷⁶, Adam Finn⁵⁷⁷, Duncan Fullerton⁵⁷⁸, Sanjeev Garg⁵⁷⁹, Atul Garg⁵⁸⁰, Effrossyni Gkrania-Klotsas⁵⁸¹, Jo Godden⁵⁸², Arthur Goldsmith⁵⁸³, Clive Graham⁵⁸⁴, Elaine Hardy⁵⁸⁵, Stuart Hartshorn⁵⁸⁶, Daniel Harvey⁵⁸⁷, Peter Havalda⁵⁶ Daniel B. Hawcutt⁵⁸⁹, Maria Hobrok⁵⁹⁰, Luke Hodgson⁵⁹¹, Anil Hormis⁵⁹², Michael Jacobs⁵⁹³ Susan Jain⁵⁹⁴, Paul Jennings⁵⁹⁵, Agilan Kaliappan⁵⁹⁶, Vidya Kasipandian⁵⁹⁷, Stephen Kegg⁵⁹⁸, Susani Jami, Frau Jernings⁻⁻⁻, Agitan Kaliappan⁻⁻⁻, Vidya Kasipandian⁻⁻⁻, Stephen Kegg³⁹⁸, Michael Kelsey⁵⁰⁹, Jason Kendall³⁸¹, Caroline Kerrison⁶⁰⁰, Ian Kerslake⁶⁰¹, Oliver Koch⁶⁰², Gouri Koduri⁶⁰³, George Koshy⁶⁰⁴, Shondipon Laha⁶⁰⁵, Steven Laird⁶⁰⁶, Susan Larkin⁶⁰⁷, Tamas Leiner⁶⁰⁴, Patrick Lillie⁶⁰⁸, James Limb⁶⁰⁹, Vanessa Linnett⁶¹⁰, Jeff Little⁶¹¹, Mark Lyttle⁶¹², Michael MacMahon¹²⁸¹, Emily MacNaughton⁶¹³, Ravish Mankregod⁶¹⁴, Huw Masson⁶¹⁵, Elijah Matovu⁵⁷⁸, Katherine McCullough⁶¹⁶, Ruth McEwen⁶¹⁷, Manjula Meda⁶¹⁸, Gary H. Mills⁵⁶³, Jane Minton⁶²⁰, Karl Ward⁶³⁰, Mariyam Mirfenderesky⁶²⁷, Kavya Mohandas⁶²², Quen Mok⁶²³, James Moon⁶²⁴, Elinoor Moore⁵⁸¹, Patrick Morgan⁶²⁵, Craig Morris⁶²⁶, Katherine Mortimore⁶⁰⁴, Samuel Moses⁶²⁷, Mbiye Mpenge⁶²⁸, Rohinton Mulla⁶²⁹, Michael Murphy⁶³⁰, Megan Nagel⁶³¹, Thapas Nagarajan⁶³², Mark Nelson⁶³³, Matthew K. O'Shea⁶³⁴, Igor Otahal⁶³⁵, Marlies Ostermann⁵⁴³, Mark Pais⁶³⁶, Selva Panchatsharam⁶³⁷, Danai Papakonstantinou⁶³⁸ Hassan Paraiso⁶³⁹, Brij Patel⁶⁴⁰, Natalie Pattison⁶⁴¹, Justin Pepperell⁶⁴², Mark Peters¹² Mandeep Phull⁶⁴³, Stefania Pintus⁶⁴⁴, Jagtur Singh Poon⁶⁴⁵, Frank Post⁶⁴⁶, David Price⁶⁴⁷, Rachel Prout⁶⁴⁸, Nikolas Rae⁶⁴⁹, Henrik Reschreiter⁶⁵⁰, Tim Reynolds⁶⁵¹, Neil Richardson⁶⁵² Mark Roberts⁶⁵³, Devender Roberts⁶⁵⁴, Alistair Rose⁶⁵⁵, Guy Rousseau⁶⁵⁶, Brendan Ryan⁶⁵⁷, Taranprit Saluja⁶⁵⁸, Aarti Shah⁶⁵⁹, Prad Shanmuga⁶⁶⁰, Anil Sharma⁶⁶¹, Anna Shawcross⁶⁶² Jeremy Sizer⁶⁶³, Manu Shankar-Hari⁵⁴³, Richard Smith⁶⁶⁴, Catherine Snelson⁶⁶⁵, Nick Spittle⁶⁶⁶, Nick Staines⁶⁶⁷, Tom Stambach⁶⁶⁸, Richard Stewart⁶⁶⁹, Pradeep Subudhi⁶⁷⁰, Tamas Szakmany⁶⁷¹, Kate Tatham⁶⁷², Jo Thomas⁶⁷³, Chris Thompson⁶⁷⁴, Robert Thompson¹²⁸¹, Ascanio Tridente⁶⁷⁵, Darell Tupper-Carey⁵⁵¹, Mary Twagira⁶⁷⁶, Andrew Ustianowski⁵⁷², Nick Vallotton⁶⁷⁷, Lisa Vincent-Smith⁶⁷⁸, Shico Visuvanathan⁶⁶⁷, Alan Vuylsteke⁶⁷⁹, Sam Waddy⁶⁸⁰, Rachel Wake⁶⁸¹, Andrew Walden⁶⁸², Ingeborg Welters⁵⁴⁷, Tony Whitehouse⁶⁶⁵, Paul Whittaker⁶⁸³, Ashley Whittington⁶⁸⁴, Padmasayee Papineni⁶⁸⁵, Meme Wijesinghe⁶⁸⁶ Martin Williams¹²⁸¹, Lawrence Wilson⁶¹⁷, Sarah Cole⁹⁶⁶, Stephen Winchester⁶⁸⁷, Martin Wiselka⁶⁸⁸, Adam Wolverson⁶⁸⁹, Daniel G. Wooton⁶⁹⁰, Andrew Workman⁵⁸⁸, Bryan Yates⁶⁹¹ & Peter Young⁶⁹²

Analysis team members

J. Kenneth Baillie^{60,61,62}, Rupert Beale⁶⁹³, Andrew D. Bretherick⁶², Mark J. Caulfield^{95,695}, J. Kenneth Baltite^{11,10,1}, Kupert Beale^{11,1}, Andrew D. Bretnerick^{11,1}, Mark J. Caulinela^{11,10,1}, Sara Clohisey⁶⁰, Max Head Fourman⁶⁰, James Furniss⁶⁰, Elvina Gountouna⁶⁹⁶, Graeme Grimes⁶², Chris Haley⁶⁰, David Harrison⁶⁹⁷, Caroline Hayward^{62,896}, Sean Keating⁶¹, Lucija Klaric⁶², Paul Klenerman⁷⁰⁰, Athanasios Kousathanas⁶⁵, Andy Law⁶⁰, Alison M. Meynert⁶², Jonathan Millar⁶⁰, Loukas Moutsianas^{14,95}, Erola Pairo-Castineira^{60,62}, Nicholas Parkinson⁶⁰, Dorota Pasko⁵⁵, Chris P. Ponting⁶², David J. Porteous⁶³⁶, Konrad Rawlik⁶⁰, Anne Richmond⁶², Kathy Rowan⁶⁹⁷, Clark D. Russell^{60,705}, Richard H. Scott^{95,706}, Xia Shen^{707,708,709}, Barbara Shih⁶⁰, Albert Tenesa^{60,62,708}, Veronique Vitart⁶², Susan Walker⁹⁵, Bo Wang⁶⁰, James F. Wilson^{62,708} Yang Wu⁷¹⁰, Jian Yang^{711,712}, Zhijian Yang⁷⁰⁷, Marie Zechner⁶⁰, Ranran Zhai⁷⁰⁷, Chenqing Zheng⁷⁰⁷, Lisa Norman⁷¹⁴, Riinu Pius⁷¹⁴, Thomas M. Drake⁷¹⁴, Cameron J. Fairfield⁷¹⁴, Stephen R. Knight⁷¹⁴ Kenneth A. Mclean⁷¹⁴, Derek Murphy⁷¹⁴, Catherine A. Shaw⁷¹⁴, Jo Dalton⁷¹⁵, Michelle Girvan⁷¹⁵, Egle Saviciute⁷¹⁵, Stephanie Roberts⁷¹⁵, Janet Harrison⁷¹⁵, Laura Marsh⁷¹⁵, Marie Connor⁷⁵,

Sophie Halpin⁷¹⁵, Clare Jackson⁷¹⁵, Carrol Gamble⁷¹⁵, Gary Leeming⁷¹⁶, Andrew Law⁶⁰, Murray Wham⁷¹⁷, Sara Clohisey⁶⁰, Ross Hendry⁶⁰ & James Scott-Brown⁷¹⁸

Data collection members

Colin Begg⁷¹⁹, Sara Clohisey⁶⁰, Charles Hinds⁶⁹⁵, Antonia Ying Wai Ho⁷²¹, Peter W. Horby⁷²², Julian Knight⁷⁰⁰, Lowell Ling⁷²⁴, David Maslove⁷²⁵, Danny McAuley^{726,727}, Jonathan Millar⁶⁰, Hugh Montgomery⁷²⁸, Alistair Nichol⁷²⁹, Peter J. M. Openshaw^{730,731}, Chris P. Ponting⁶², Kathy Rowan⁶⁹⁷, Malcolm G. Semple^{732,733}, Manu Shankar-Hari⁷⁷⁴, Charlotte Summers⁷³⁵, Timothy Walsh⁶¹, Lisa Armstrong⁷³⁶, Hayley Bates⁷³⁶, Emma Dooks⁷³⁶, Fiona Farquhar⁷³⁶, Brigid Hairsine⁷³⁶, C. McParland⁷³⁶, Sophie Packham⁷³⁶, Zoe Alldis⁷³⁷, Raine Astin-Chamber lain⁷³⁷, Fatima Bibi⁷³⁷, Jack Biddle⁷³⁷, Sarah Blow⁷³⁷, Matthew Bolton⁷³⁷, Catherine Borra⁷³⁷ Ruth Bowles⁷³⁷, Maudrian Burton⁷³⁷, Yasmin Choudhury⁷³⁷, David Collier⁷³⁷, Amber Cox⁷³ Amy Easthope⁷³⁷, Patrizia Ebano⁷³⁷, Stavros Fotiadis⁷³⁷, Jana Gurasashvili⁷³⁷, Rosslyn Halls⁷³⁷, Pippa Hartridge⁷³⁷, Delordson Kallon⁷³⁷, Jamila Kassam⁷³⁷, Ivone Lancoma-Malcolm⁷³ Maninderpal Matharu⁷³⁷, Peter May⁷³⁷, Oliver Mitchelmore⁷³⁷, Tabitha Newman⁷³⁷, Mital Patel⁷³⁷, Jane Pheby⁷³⁷, Irene Pinzuti⁷³⁷, Zoe Prime⁷³⁷, Oleksandra Prysyazhna⁷³⁷, Julian Shiel⁷³⁷, Melanie Taylor⁷³⁷, Carey Tierney⁷³⁷, Suzanne Wood⁷³⁷, Anne Zak⁷³⁷, Olivier Zongo⁷³ Miranda Forsey⁷³⁸, Agilan Kaliappan⁷³⁸, Anne Nicholson⁷³⁸, Joanne Riches⁷³⁸, Mark Vertue⁷³⁸ Christopher Wasson⁵²³, Stephanie Finn⁵²³, Jackie Green⁵²³, Erin Collins⁵²³, Bernadette King⁵²³ Lina Grauslyte⁷³⁹, Musarat Hussain⁷³⁹, Mandeep Phull⁷³⁹, Tatiana Pogreban⁷³⁹, Lace Rosaroso⁷³⁹, Erika Salciute⁷³⁹, George Franke⁷³⁹, Joanna Wong⁷³⁹, Aparna George⁷³⁹, Louise Akeroyd⁷⁴⁰, Shereen Bano⁷⁴⁰, Matt Bromley⁷⁴⁰, Lucy Gurr⁷⁴⁰, Tom Lawton⁷⁴⁰, James Morgan⁷⁴⁰ Kirsten Sellick⁷⁴⁰, Deborah Warren⁷⁴⁰, Brian Wikinson⁷⁴⁰, Janet McGowan⁷⁴⁰, Camilla Ledgard⁷⁴⁰, Amelia Stacey⁷⁴⁰, Kate Pye⁷⁴⁰, Ruth Bellwood⁷⁴⁰, Michael Bentley⁷⁴⁰, Maria Hobrok⁷⁴¹, Ronda Loosley⁷⁴¹, Heather McGuinness⁷⁴¹, Helen Tench⁷⁴¹ Rebecca Wolf-Roberts⁷⁴¹, Sian Gibson⁷⁴², Amanda Lyle⁷⁴², Fiona McNeela⁷⁴² Jayachandran Radhakrishnan⁷⁴², Alistair Hughes⁷⁴², Asifa Ali⁷⁴³, Megan Brady⁷⁴³, Sam Dale⁷⁴³, Annalisa Dance⁷⁴³, Lisa Gledhill⁷⁴³, Jill Greig⁷⁴³, Kathryn Hanson⁷⁴³, Kelly Holdroyd⁷⁴³, Marie Home⁷⁴³, Diane Kelly⁷⁴³, Ross Kitson⁷⁴³, Lear Matapure⁷⁴³, Deborah Melia⁷⁴³ Samantha Mellor⁷⁴³, Tonicha Nortcliffe⁷⁴³, Jez Pinnell⁷⁴³, Matthew Robinson⁷⁴³, Lisa Shaw⁷⁴³, Ryan Shaw⁷⁴³, Lesley Thomis⁷⁴³, Alison Wilson⁷⁴³, Tracy Wood⁷⁴³, Lee-Ann Bayo⁷⁴³, Ekta Merwaha⁷⁴³, Tahira Ishaq⁷⁴³, Sarah Hanley⁷⁴³, David Antcliffe⁷⁴⁴, Dorota Banach⁷⁴⁴ Stephen Brett⁷⁴⁴, Phoebe Coghlan⁷⁴⁴, Ziortza Fernandez⁷⁴⁴, Anthony Gordon⁷⁴⁴, Roceld Rojo⁷⁴⁴, Sonia Sousa Arias⁷⁴⁴, Maie Templeton⁷⁴⁴, Rajeev Jha⁷⁴⁵, Vinodh Krishnamurthy⁷⁴⁵, Lai Lim⁷ Rehana Bi⁷⁴⁶, Barney Scholefield⁷⁴⁶, Lydia Ashton⁷⁴⁶, Alison Williams⁷⁴⁷, Claire Cheyne⁷⁴⁷, Anne Saunderson⁷⁴⁷, Angela Allan⁷⁴⁸, Felicity Anderson⁷⁴⁸, Callum Kay⁷⁴⁸, Jade Liew⁷⁴⁸, Jasmine Medhora⁷⁴⁸, Teresa Scott⁷⁴⁸, Erin Trumper⁷⁴⁸, Adriana Botello⁷⁴⁸, Petra Polgarova⁷⁴⁹, Katerina Stroud⁷⁴⁹, Eoghan Meaney⁷⁴⁹, Megan Jones⁷⁴⁹, Anthony Ng⁷⁴⁹, Shruti Agrawal⁷⁴ Nazima Pathan⁷⁴⁹, Deborah White⁷⁴⁹, Esther Daubney⁷⁴⁹, Kay Elston⁷⁴⁹, Robert Parker⁷⁵⁰, Amie Reddy⁷⁵⁰, lan Turner-Bone⁷⁵⁰, Laura Wilding⁷⁵⁰, Peter Harding⁷⁵⁰, Reni Jacob⁷²², Cathy Jone⁷⁵², Craig Denmade⁷⁵², Maria Croft⁷⁵³, lan White⁷⁵³, Raje⁵⁰, Rani Jacob⁷²², Vinodh Krishnamurthy⁷⁴⁵, Li Lim⁷⁴⁵, Denise Griffin⁷⁵⁴, Nycola Muchenje⁷⁵⁴ Mcdonald Mupudzi⁷⁵⁴, Richard Partridge⁷⁵⁴, Jo-Anna Conyngham⁷⁵⁴, Rachel Thomas⁷⁵⁴, Mary Wright⁷⁵⁴, Maria Alvarez Corral⁷⁵⁴, Victoria Bastion⁶⁶³, Daphene Clarke⁶⁶³, Beena David⁶⁶³, Harriet Kent⁶⁶³, Rachel Lorusso⁶⁶³, Gamu Lubimbi⁶⁶³, Sophen Murdoch⁶⁶³, Melchizedek Penacerrada⁶⁶³, Alastair Thomas⁶⁶³, Jennifer Valentine⁶⁶³, Ana Vochin⁶⁶³ Retno Wulandari⁶⁶³, Brice Djeugam⁶⁶³, Joy Dawson⁷⁵⁵, Sweyn Garrioch⁷⁵⁵, Melanie Tolson⁷⁵⁵, Jonathan Aldridge⁷⁵⁵, Laura Gomes de Almeida Martins⁵²⁴, Jaime Carungcong⁵²⁴, Sarah Beavis⁷⁵⁶, Katie Dale⁷⁵⁶, Rachel Gascove⁷⁵⁶, Joanne Hawes⁷⁵⁶, Kelly Pritchard⁷⁵⁶, Lesley Stevenson⁷⁵⁶, Amanda Whileman⁷⁵⁶, Anne Cowley⁷⁵⁷, Judith Highgate⁷⁵⁷ Rikki Crawley⁷⁵⁸, Abigail Crew⁷⁵⁸, Mishell Cunningham⁷⁵⁸, Allison Daniels⁷⁵⁸, Laura Harrison⁷⁵⁸, Susan Hope⁷⁵⁸, Ken Inweregbu⁷⁵⁸, Sian Jones⁷⁵⁸, Nicola Lancaster⁷⁵⁸, Jamie Matthews⁷⁵⁸, Alice Nicholson⁷⁵⁸, Gemma Wray⁷⁵⁸, Leonie Benham⁷⁵⁹, Zena Bradshaw⁷⁵⁹, Joanna Brown⁷⁵⁹, Melanie Caswell⁷⁵⁹, Jason Cupitt⁷⁵⁹, Sarah Melling⁷⁵⁹, Stephen Preston⁷⁵⁹, Nicola Slawson⁷⁵⁹ Emma Stoddard⁷⁵⁹, Scott Warden⁷⁵⁹, Edward Combes⁷⁶⁰, Teishel Joefield⁷⁶⁰, Sonja Monnery⁷⁶⁰, Valerie Beech⁷⁸⁰, Sallyane Trotman⁷⁶⁰, Bridget Hopkins⁷⁶¹, James Scriven⁷⁸¹, Laura Thrasyvoulou⁷⁶¹, Heather Willis⁷⁸¹, Susan Anderson⁷⁸², Janine Birch⁷⁸², Emma Collins⁷⁸² Kate Hammerton⁷⁶², Ryan O'Leary⁷⁶², Caroline Abernathy⁷⁶³, Louise Foster⁷⁶³, Andrew Gratrix⁷⁶³, Vicky Martinson⁷⁶³, Priyai Parkinson⁷⁶³, Elizabeth Stones⁷⁶³, Llucia Carbral-Ortega⁷⁶ Ritoo Kapoor⁷⁶⁵, David Loader⁷⁶⁵, Karen Castle⁷⁶⁵, Craig Brandwood⁷⁶⁶, Lara Smith⁷⁶⁶ Richard Clark⁷⁶⁶, Katie Birchall⁷⁶⁶, Laurel Kolakaluri⁷⁶⁶, Deborah Baines⁷⁶⁶, Anila Sukumaran⁷⁶⁶, Isheunesu Mapfunde⁵²⁵, Megan Meredith⁷⁶⁷, Lucy Morris⁷⁶⁷, Lucy Ryan⁷⁶⁷, Amy Clark⁷⁶⁷ Julia Sampson⁷⁶⁷, Cecilia Peters⁷⁶⁷, Martin Dent⁷⁶⁷, Margaret Langley⁷⁶⁷, Saima Ashraf⁷⁶⁷, Shuying Wei⁷⁶⁷, Angela Andrew⁷⁶⁷, Manish Chablani⁷⁶⁸, Amy Kirkby⁷⁶⁸, Kimberley Netherton⁷⁶⁸, Michelle Bates⁷⁶⁹, Jo Dasgin⁷⁶⁹, Jaspret Gill⁷⁶⁹, Annette Nilsson⁷⁶⁹, James Scriven⁷⁶ Elena Apetri⁷⁷⁰, Cathrine Basikolo⁷⁷⁰, Bethan Blackledge⁷⁷⁰, Laura Catlow⁷⁷⁰, Bethan Charles⁷⁷⁰, Paul Dark⁷⁷⁰, Reece Doonan⁷⁷⁰, Jade Harris⁷⁷⁰, Alice Harvey⁷⁷⁰, Daniel Horner⁷⁷⁰ Karen Knowles⁷⁷⁰, Stephanie Lee⁷⁷⁰, Diane Lomas⁷⁷⁰, Chloe Lyons⁷⁷⁰, Tracy Marsden⁷⁷⁰ Danielle McLaughlan⁷⁷⁰, Liam McMorrow⁷⁷⁰, Jessica Pendlebury⁷⁷⁰, Jane Perez⁷⁷⁰ Maria Poulaka⁷⁷⁰, Nicola Proudfoot⁷⁷⁰, Melanie Slaughter⁷⁷⁰, Kathryn Slevin⁷⁷⁰, Melanie Taylor⁷⁷⁰, Vicky Thomas⁷⁷⁰, Danielle Walker⁷⁷⁰, Angiy Michael⁷⁷⁰, Matthew Collis⁷⁷⁰, Martyn Clark⁷ Martina Coulding⁷⁷¹, Edward Jude⁷⁷¹, Jacqueline McCormick⁷⁷¹, Oliver Mercer⁷⁷¹, Darsh Potla⁷⁷¹ Hafiz Rehman⁷⁷¹, Heather Savill⁷⁷¹, Victoria Turner⁷⁷¹, Miriam Davey⁷⁷², David Golden⁷⁷², Rebecca Seaman⁷⁷², Jodie Hunt⁷⁷³, Joy Dearden⁷⁷³, Emma Dobson⁷⁷³, Andrew Drummond^{572,773}, Michelle Mulcahy⁷⁷³, Sheila Munt⁷⁷³, Grainne O'Connor⁷⁷³, Jennifer Philbin⁷⁷³, Chloe Rishton⁷⁷³, Redmond Tully⁷⁷³, Sarah Winnard⁷⁷³, Lenka Cagova⁷⁷⁴, Adama Fofano⁷⁷⁴, Lucie Garner⁷⁷⁴, Helen Holcombe⁷⁷⁴, Sue Mepham⁷⁷⁴, Alice Michael Mitchell⁷⁷⁴, Lucy Mwaura⁷⁷⁴, K. Praman⁷⁷⁴, Alain Vuylsteke⁷⁷⁴, Julie Zamikula⁷⁷⁴, Miriam Davey⁷⁷², David Golden⁷⁷², Rebecca Seaman⁷⁷², Georgia Bercades⁷⁷⁵, David Brealey⁷⁷⁵, Ingrid Hass⁷⁷⁵, Naill MacCallum⁷⁷⁵, Gladys Martir⁷⁷⁵, Earnon Raith⁷⁷⁵, Anna Reyes⁷⁷⁵, Deborah Smyth⁷⁷⁵, Abigail Taylor⁷⁷⁶, Rachel Anne Hughes⁷⁷⁶, Helen Thomas⁷⁷⁶, Alun Rees⁷⁷⁶, Michaela Duskova⁷⁷⁶, Janet Phipps⁷⁷⁶, Suzanne Brooks⁷⁷⁶, Michelle Edwards⁷⁷⁶, Peter Alexander⁷⁷⁷, Schvearn Allen⁷⁷⁷, Joanne Bradley-Potts⁷⁷⁷ Craig Brantwood⁷⁷⁷, Jasmine Egan⁷⁷⁷, Timothy Felton⁷⁷⁷, Grace Padden⁷⁷⁷, Luke Ward⁷⁷⁷, Stuart Moss⁷⁷⁷, Susannah Glasgow⁷⁷⁷, Kate Beesley⁷⁷⁸, Sarah Board⁷⁷⁸, Agnieszka Kubisz-Pudelko⁷⁷⁸, Alison Lewis⁷⁷⁸, Jess Perry⁷⁷⁸, Lucy Pippard⁷⁷⁸, Di Wood⁷⁷⁸, Clare Buckley⁷⁷⁸, Alison Brown⁷⁷⁹, Jane Gregory⁷⁷⁹, Susan O'Connell⁷⁷⁹, Tim Smith⁷⁷⁹, Zakaula Belagodu⁷⁸⁰, Bridget Fuller⁷⁸⁰, Anca Gherman⁷⁸⁰, Olumide Olufuwa⁷⁸⁰,

Remi Paramsothy⁷⁸⁰, Carmel Stuart⁷⁸⁰, Naomi Oakley⁷⁸⁰, Charlotte Kamundi⁷⁸⁰, David Tyl⁷⁸⁰, Katy Collins⁷⁸⁰, Pedro Silva⁷⁸⁰, June Taylor⁷⁸⁰, Laura King⁷⁸⁰, Charlotte Coates⁷⁸⁰, Maria Crowley⁷⁸⁰, Phillipa Wakefield⁷⁸⁰, Jane Beadle⁷⁸⁰, Laura Johnson⁷⁸⁰, Janet Sargeant⁷⁸⁰, Madeleine Anderson⁷⁸⁰, Catherine Jardine⁷⁸¹, Dewi Williams⁷⁸¹, Victoria Parris⁷⁸² Sheena Quaid⁷⁸², Ekaterina Watson⁷⁸², Julie Melville⁷⁸³, Jay Naisbitt⁷⁸³, Rosane Joseph⁷⁸³, Maria Lazo⁷⁸³, Olivia Walton⁷⁸³, Alan Neal⁷⁸³, Michaela Hill⁷⁸⁴, Thogulava Kannan⁷⁸⁴, Laura Wild⁷⁸⁴, Elizabeth Allan⁷⁸⁵, Kate Darlington⁷⁸⁵, Ffyon Davies⁷⁸⁵, Jack Easton⁷⁸⁵, Sumit Kumar⁷⁸⁵, Richard Lean⁷⁸⁵, Daniel Menzies⁷⁸⁵, Richard Pugh⁷⁸⁵, Xinyi Qiu⁷⁸⁵, Llinos Davies⁷⁸⁵, Hannah Williams⁷⁸⁵, Jeremy Scanlon⁷⁸⁵, Gwyneth Davies⁷⁸⁵, Callum Mackay⁷⁸⁵, Joannne Lewis⁷⁸⁵, Stephanie Rees⁷⁸⁵, Samantha Coetzee⁷⁸⁶, Alistair Gales⁷⁸⁶, Igor Otahal⁷⁸⁶, Meena Raj⁷⁸⁶, Craig Sell⁷⁸⁶, Helen Langton⁷⁸⁷, Rachel Prout⁷⁸⁷, Malcolm Watters Catherine Novis⁷⁸⁷, Gill Arbane⁷⁸⁸, Aneta Bociek⁷⁸⁸, Sara Campos⁷⁸⁸, Neus Grau⁷⁸⁸, Tim Owen Jones⁷⁸⁸, Rosario Lim⁷⁸⁸, Martina Marotti⁷⁸⁸, Marlies Ostermann Manu Shankar-Hari⁷⁸⁸, Christopher Whitton⁷⁸⁸, Anthony Barron⁷⁸⁹, Ciara Collins⁷⁸⁹ Sundeep Kaul⁷⁸⁹, Heather Passmore⁷⁸⁹, Claire Prendergast⁷⁸⁹, Anna Reed⁷⁸⁹, Paula Rogers⁷⁸⁹, Rajvinder Shokkar⁷⁸⁹, Meriel Woodruff⁷⁸⁹, Hayley Middleton⁷⁸⁹, Oliver Polgar⁷⁸⁹, Claire Nolan⁷⁸⁹, Vicky Thwaites⁷⁸⁹, Kanta Mahay⁷⁸⁹, Chunda Sri-Chandana⁷⁹⁰, Joslan Scherewode⁷⁹⁰, Lorraine Stephenson⁷⁹⁰, Sarah Marsh⁷⁹⁰, Hollie Bancroft⁶³⁸, Mary Bellamy⁶³ Margaret Carmody⁶³⁸, Jacqueline Daglish⁶³⁸, Faye Moore⁶³⁸, Joanne Rhodes⁶³⁸ Mirriam Sangombe⁶³⁸, Salma Kadiri⁶³⁸, James Scriven⁶³⁸, Amanda Ayers⁷⁹², Wendy Harrison⁷⁹², Julie North⁷²⁵, Anna Cavazza⁶⁴⁶, Maeve Cockrell⁶⁴⁶, Eleanor Corcora⁶⁴⁶, Maria Depante⁶⁴⁶, Clare Finney⁶⁴⁶, Ellen Jerome⁶⁴⁶, Mark McPhail⁶⁴⁶, Monalisa Nayak⁶⁴⁶, Harriet Noble⁶⁴⁶, Kevin O'Reilly⁶⁴⁶, Evita Pappa⁶⁴⁶, Rohit Saha⁶⁴⁶, Sian Saha⁶⁴⁶, John Smith⁶⁴⁶, Abigail Knighton⁶⁴⁶, Mandy Gill⁷⁹⁴, Paul Paul⁷⁹⁴, Valli Ratnam⁷⁹⁴, Sarah Shelton⁷⁹⁴, Inez Wynter⁷⁹⁴, David Baptista⁷⁹⁵, Rebecca Crowe⁷⁹⁵, Rita Fernandes⁷⁹⁵, Rosaleen Herdman-Grant⁷⁹⁵, Anna Joseph⁷⁹⁵, Adam Loveridge⁷⁹⁵, India McKenley⁷⁹⁵, Eriko Morino⁷⁹⁵, Andres Naranjo⁷⁹⁵, Richard Simms⁷⁹⁵, Kathryn Sollesta⁷⁹⁵, Andrew Swain⁷⁹⁵, Harish Venkatesh⁷⁹⁵, Jacyntha Khera⁷⁹⁵, Jonathan Fox⁷⁹⁵, Russell Barber⁷⁹⁶, Claire Hewitt⁷⁹⁶, Annette Hilldrith⁷⁹⁶, Karen Jackson-Lawrence⁷⁹⁶ Sarah Shepardson⁷⁹⁶, Maryanne Wills⁷⁹⁶, Susan Butler⁷⁹⁶, Silvia Tavares⁷⁹⁶, Amy Cunningham⁷⁹⁶, Julia Hindale⁷⁹⁶, Sarwat Arif⁷⁹⁶, Linsha George⁷⁹⁷, Sophie Twiss⁷⁹⁷, David Wright⁷⁹⁷ Maureen Holland⁷⁹⁸, Natalie Keenan⁷⁹⁸, Marc Lyons⁷⁹⁸, Helen Wassall⁷⁹⁸, Chris Marsh⁷⁹⁸, Mervin Mahenthran⁷⁹⁸, Emma Carter⁷⁹⁸, Thomas Kong⁷⁹⁸, Oluronke Adanini⁷⁹⁹, Nikhil Bhatia⁷⁹⁹, Maines Msiska⁷⁹⁹, Miranda Forsey⁷³⁸, Agilan Kaliappan⁷³⁸, Anne Nicholson⁷³⁸, Joanne Riches⁷³⁸, Mark Vertue⁷³⁸, Louise Mew⁸⁰⁰, Esther Mwaura⁸⁰⁰, Richard Stewart⁸⁰⁰, Felicity Williams⁸ Lynn Wren⁸⁰⁰, Sara-Beth Sutherland⁸⁰⁰, Ceri Battle⁸⁰¹, Elaine Brinkworth⁸⁰¹, Rachel Harford⁸⁰¹, Carl Murphy⁸⁰, Luke News⁸⁰, Tabitha Rees⁸⁰, Marie Williams⁸⁰, Sophie Arnold⁸⁰, David Brealey⁸⁰², John Hardy⁸⁰², Henry Houlden⁸⁰², Eleanor Moncur⁸⁰², Eamon Raith⁸⁰² Ambreen Tariq⁸⁰², Arianna Tucci⁸⁰², Karen Convery⁸⁰³, Deirdre Fottrell-Gould⁸⁰³, Lisa Hudig⁸⁰³ Jocelyn Keshet-Price⁸⁰³, Georgina Randell⁸⁰³, Katie Stammers⁸⁰³, Marwa Abdelrazik⁸⁰⁴, Dhanalakshmi Bakthavatsalam⁸⁰⁴, Munzir Elhassan⁸⁰⁴, Arunkumar Ganesan⁸⁰ Anne Haldeos⁸⁰⁴, Jeronimo Moreno-Cuesta⁸⁰⁴, Dharam Purohit⁸⁰⁴, Rachel Vincent⁸⁰⁴ Kugan Xavier⁸⁰⁴, Kumar Rohit⁸⁰⁴, Frater Alasdair⁸⁰⁴, Malik Saleem⁸⁰⁴, Carter David⁸ Samuel Jenkins⁸⁰⁴, Zoe Lamond⁸⁰⁴, Alanna Wall⁸⁰⁴, Bryan Yates⁸⁰⁶, Jessica Reynolds⁸⁰⁶, Helen Campbell⁸⁰⁶, Maria Thompsom⁸⁰⁶, Steve Dodds⁸⁰⁶, Stacey Duffy⁸⁰⁶, Deborah Butcher⁸⁰⁷, Susie O'Sullivan⁸⁰⁷, Nicola Butterworth-Cowin⁸⁰⁷, Bethan Deacon⁸⁰⁸, Meg Hibbert⁸⁰⁸, Carla Pothecary⁸⁰⁸, Dariusz Tetla⁸⁰⁸, Christopher Woodford⁸⁰⁸, Latha Durga⁸⁰ Gareth Kennard-Holden⁸⁰⁸, Laura Ortiz-Ruiz de Gordoa⁸⁰⁹, Emily Peasgood⁸⁰⁹, Claire Phillips⁸⁰⁹ Denise Skinner⁸¹⁰, Jane Gaylard⁸¹⁰, Dee Mullan⁸¹⁰, Julie Newman⁸¹⁰, Ellie Davies⁸¹¹, Lisa Roche⁸¹¹, Sonia Sathe⁸¹¹, Lutece Brimfield⁸¹², Zoe Daly⁸¹², David Pogson⁸¹², Steve Rose⁸¹², Amy Collins⁸¹³, Waqas Khaliq^{813,853}, Estefania Treus Gude⁸¹³, Louise Allen⁵³⁶, Eva Beranova⁵³⁶, Nikki Crisp⁵³⁶, Joanne Deery⁵³⁶, Tracy Hazelton⁵³⁶, Alicia Knight⁵³⁶, Carly Price⁵³⁶, Sorrell Tilbey⁵³ Salah Turki⁵³⁶, Sharon Turney⁵³⁶, Julian Giles⁸¹⁵, Simon Booth⁸¹⁵, Gillian Bell⁸¹⁶, Katy English⁸¹⁶, Amro Katary⁸¹⁶, Louise Wilcox⁸¹⁶, Rachael Campbell⁸¹⁷, Noreen Clarke⁸¹⁷, Jonathan Whiteside⁸¹⁷, Mairi Mascarenhas⁸¹⁷, Avril Donaldson⁸¹⁷, Joanna Matheson⁸¹⁷, Fiona Barrett⁸¹⁷, Marianne O'Hara⁸¹⁷, Laura O'Keefe⁸¹⁷, Clare Bradley⁸¹⁷, Dawn Collier⁸¹⁸, Anil Hormis⁸¹⁸ Rachel Walker⁸¹⁸, Victoria Maynard⁸¹⁸, Tahera Patel⁸¹⁹, Matthew Smith⁸¹⁹, Srikanth Chukkambotla⁸¹⁹, Aayesha Kazi⁸¹⁹, Janice Hartley⁸¹⁹, Joseph Dykes⁸¹⁹ Muhammad Hijazi⁸¹⁹, Sarah Keith⁸¹⁹, Meherunnisa Khan⁸¹⁹, Janet Ryan-Smith⁸¹⁹, Philippa Springle⁸¹⁹, Jacqueline Thomas⁸¹⁹, Nick Truman⁸¹⁹, Samuel Saad⁸¹⁹ Dabheoc Coleman⁸¹⁹, Christopher Fine⁸¹⁹, Roseanna Matt⁸¹⁹, Bethan Gay⁸¹⁹, Jack Dalziel⁸¹⁹, Syamlan Ali⁸¹⁹, Drew Goodchild⁸¹⁹, Rhiannan Harling⁸¹⁹, Ravi Bhatterjee⁸¹⁹, Wendy Goddard⁸¹⁹, Chloe Davison⁸¹⁹, Stephen Duberly⁸¹⁹, Jeanette Hargreaves⁸¹⁹, Rachel Bolton⁸¹⁹ Shondipon Laha⁸²⁰, Mark Verlander⁸²⁰, Alexandra Williams⁸²⁰, Helen Blackman⁸²¹ Ben Creagh-Brown⁸²¹, Sinead Donlon⁸²¹, Natalia Michalak-Glinska⁸²¹, Sheila Mtuwa⁸²¹ Veronika Pristopan⁸²¹, Armorel Salberg⁸²¹, Eleanor Smith⁸²¹, Sarah Stone⁸²¹, Charles Piercy⁸²¹, Jerik Verula⁸²¹, Dorota Burda⁸²¹, Rugia Montaser⁸²¹, Lesley Harden⁸²¹, Irving Mayangao⁸² Cheryl Marriott⁸²¹, Paul Bradley⁸²¹, Celia Harris⁸²¹, Joshua Cooper⁸²², Cheryl Finch⁸² Sarah Liderth⁸²², Alison Quinn⁸²², Natalia Waddington⁸²², Katy Fidler⁸²³, Emma Tagliavini⁸²³ Kevin Donnelly⁸²³, Lynn Abel⁸²⁴, Michael Brett⁸²⁴, Brian Digby⁸²⁴, Lisa Gemmell⁸² James Hornsby⁸²⁴, Patrick MacGoey⁸²⁴, Pauline O'Neil⁸²⁴, Richard Price⁸²⁴, Natalie Rodden⁸²⁴, Kevin Rooney⁸²⁴, Radha Sundaram⁸²⁴, Nicola Thomson⁸²⁴, Rebecca Flanagan⁸² Gareth Hughes⁸²⁵, Scott Latham⁸²⁵, Emma McKenna⁸²⁵, Jennifer Anderson⁸²⁵, Robert Hull⁸²⁵, Kat Rhead⁸²⁵, Debbie Branney⁸²⁶, Jordan Frankham⁸²⁶, Sally Pitts⁸²⁶, Nigel White⁸²⁶ Daniele Cristiano⁸²⁷, Natalie Dormand⁸²⁷, Zohreh Farzad⁸²⁷, Mahitha Gummadi⁸²⁷, Kamal Liyanage⁸²⁷, Brijesh V. Patel⁸²⁸, Sara Salmi⁸²⁷, Geraldine Sloane⁸²⁷, Vicky Thwaites⁸²⁷, Mathew Varghese⁸²⁷, Anelise C. Zborowski⁸²⁷, Sarah Bean⁸²⁹, Karen Burt⁸²⁹, Michael Spivey⁸²⁹, Christine Eastgate-Jackson⁸³⁰, Helder Filipe⁸³⁰, Daniel Martin⁸³⁰, Amitaa Maharajh⁸³⁰, Sara Mingo Garcia⁸³⁰, Mark De Neef⁸³⁰, Bethan Deacon⁸³¹, Ceri Lynch⁸³¹, Carla Pothecary⁸³¹, Lisa Roche⁸³¹, Gwenllian Sera Howe⁸³¹, Jayaprakash Singh⁸³¹, Keri Turner⁸³¹, Hannah Ellis⁸³¹, Natalie Stroud⁸³¹, Shiney Cherian⁸³², Sean Cutler⁸³², Anne Emma Heron⁸³², Anna Roynon-Reed⁸³², Tamas Szakmany⁸³², Gemma Williams⁸³², Owen Richards⁸³² Yusuf Cheema⁸³², Norfaizan Ahmad^{563,833}, Joann Barker^{563,833}, Kris Bauchmuller^{563,833}, Sarah Bird^{563,833}, Kay Cawthron^{563,833}, Kate Harrington^{563,833}, Yvonne Jackson^{563,833}, Faith Kibutu^{563,833}, Becky Lenagh^{563,833}, Shamiso Masuko^{563,833}, Gary H. Mills^{563,833}, Ajay Raithatha^{563,833}, Matthew Wiles^{563,833}, Jayne Willson^{563,833}, Helen Newell^{563,833}, Alison Lye^{563,833}, Lorenza Nwafor^{563,833}, Claire Jarman^{563,833}, Sarah Rowland-Jones^{563,833}, David Foote^{563,833}, Joby Cole^{563,833}, Roger Thompson^{563,833}, James Watson^{563,833}

Lisa Hesseldon^{563,833}, Irene Macharia^{563,833}, Luke Chetam^{563,833}, Jacqui Smith^{563,833}, Lisä Hesseidon⁻⁻⁻⁻⁻⁻, irene Machana⁻⁻, Luke Unetani⁻, Juke Unetani⁻ Patrick Phillips^{563,833}, Simon Oxspring^{563,833}, Ben Donne^{563,833}, Emily Bevan⁸³⁴, Jane Martin⁸³⁴, Dawn Trodd⁸³⁴, Geoff Watson⁸³⁴, Caroline Wrey Brown⁸³⁴, Lara Bunni⁸³⁵, Claire Jennings⁸³⁵, Monica Latif⁸³⁵, Rebecca Marshall⁸³⁵, Gayathri Subramanian⁸³⁵, Nageswar Bandla⁸³⁶ Minnie Gellamucho⁸³⁶, Michelle Davies⁸³⁶, Christopher Thompson⁸³⁶, Laura Ortiz-Ruiz de Gordoa⁸⁰⁹, Emily Peasgood⁸⁰⁹, Claire Phillips⁸⁰⁹, Denise Skinner⁸¹⁰, Jane Gaylard⁸¹⁰, Dee Mullan⁸¹⁰, Julie Newman⁸¹⁰, Phil Donnison⁸³⁷, Fiona Trim⁸³⁷, Beena Eapen⁸³⁷ Cecilia Ahmed⁸³⁸, Balvinder Baines⁸³⁸, Sarah Clamp⁸³⁹, Julie Colley⁸³⁸, Risna Haq⁸³⁹, Anne Hayes⁸³³, Jonathan Hulme⁸³⁸, Samia Hussain⁸³⁸, Sibet Joseph⁸³⁸, Rita Kumar⁸³⁸ Zahira Maqsood⁸³⁸, Manjit Purewal⁸³⁸, Ben Chandler⁸³⁹, Kerry Elliott⁸³⁹, Janine Mallinson⁸³⁹, Alison Turnbull⁸³⁹, Kathy Dent⁸⁴⁰, Elizabeth Horsley⁸⁴⁰, Muhmmad Nauman Akhtar⁸⁴¹ Sandra Pearson⁸⁴⁰, Dorota Potoczna⁸⁴⁰, Sue Spencer⁸⁴⁰, Hayley Blakemore⁸⁴¹, Borislava Borislavova⁸⁴¹, Beverley Faulkner⁸⁴¹, Emma Gendall⁸⁴¹, Elizabeth Goff⁸⁴¹, Kati Hayes⁸⁴¹ Matt Thomas⁸⁴¹, Ruth Worner⁸⁴¹, Kerry Smith⁸⁴¹, Deanna Stephens⁸⁴¹, Carlos Castro Delgado⁸⁴², Deborah Dawson⁸⁴², Lijun Ding⁸⁴², Georgia Durrant⁸⁴², Obiageri Ezeobu⁸⁴², Sarah Farnell-Ward⁸⁴², Abiola Harrison⁸⁴², Rebecca Kanu⁸⁴², Susannah Leaver⁸⁴² Elena Maccacari⁸⁴², Soumendu Manna⁸⁴², Romina Pepermans Saluzzio⁸⁴², Joana Queiroz⁸⁴², Tinashe Samakomva⁸⁴², Christine Sicat⁸⁴², Joana Texeira⁸⁴², Edna Fernandes Da Gloria⁸⁴² Ana Lisboa⁸⁴², John Rawlins⁸⁴², Jisha Mathew⁸⁴², Ashley Kinch⁸⁴², Victoria Clark⁸⁴², Miray Shah⁸⁴², Victoria Clark⁸⁴², Maria Thanasi⁸⁴², Nikki Yun⁸⁴², Kamal Patel⁸⁴², Alison Brown⁸⁴³, Vikki Crickmore⁸⁴³, Gabor Debreceni⁸⁴³, Joy Wilkins⁸⁴³, Liz Nicol⁸⁴³, Iona Burn⁸⁴⁴ Geraldine Hambrook⁸⁴⁴, Katarina Manso⁸⁴⁴, Ruth Penn⁸⁴⁴, Pradeep Shanmugasundaram⁸⁴⁴ Julie Tebbutt⁸⁴⁴, Danielle Thornton⁸⁴⁴, Anthony Rostron⁸⁴⁵, Alistair Roy⁸⁴⁵, Lindsey Woods⁸⁴⁵, Sarah Cornell⁸⁴⁵, Fiona Wakinshaw⁸⁴⁵, Kimberley Rogerson⁸⁴⁵, Jordan Jarmain⁸⁴⁵, Salah Cornett, Floha Wakinshaw, Kimbertey Kogerson, Johdan Jamman, Peter Anderson⁸⁴⁶, Katie Archer⁸⁴⁶, Karen Austin⁸⁴⁶, Caroline Davis⁸⁴⁶, Alison Durie⁸⁴⁶, Olivia Kelsall⁸⁴⁶, Jessica Thrush⁸⁴⁶, Charlie Vigurs⁸⁴⁶, Laura Wild⁸⁴⁶, Hanah-Louise Wood⁸⁴⁶, Helen Tranter⁸⁴⁶, Alison Harrison⁸⁴⁶, Nicholas Cowley⁸⁴⁶, Michael McAlindon⁸⁴⁶, Andrew Burtenshaw⁸⁴⁶, Stephen Digby⁸⁴⁶, Emma Low⁸⁴⁶, Ale Morgan⁸⁴⁶, Naiara Cother⁸⁴⁶, Andrew Burtenshaw⁸⁴⁶, Stephen Digby⁸⁴⁶, Emma Low⁸⁴⁶, Ale Morgan⁸⁴⁶, Naiara Cother⁸⁴⁶, Andrew Burtenshaw⁸⁴⁶, Stephen Digby⁸⁴⁶, Emma Low⁸⁴⁶, Ale Morgan⁸⁴⁶, Naiara Cother⁸⁴⁶, Andrew Burtenshaw⁸⁴⁶, Stephen Digby⁸⁴⁶, Emma Low⁸⁴⁶, Ale Morgan⁸⁴⁷, Naiara Cother⁸⁴⁶, Ale Morgan⁸⁴⁷, Ale Morgan⁸ Tobias Rankin⁸⁴⁶, Sarah Clayton⁸⁴⁶, Alex McCurdy⁸⁴⁶, Suzanne Allibone⁸⁴⁷ Roman Mary-Genetu⁸⁴⁷, Vidya Kasipandian⁸⁴⁷, Amit Patel⁸⁴⁷, Ainhi Mac⁸⁴⁷, Anthony Murphy⁸⁴⁷, Parisa Mahjoob⁸⁴⁷, Roonak Nazari⁸⁴⁷, Lucy Worsley⁸⁴⁷, Andrew Fagan⁸⁴⁷, Inthakab Ali Mohamed Ali⁸⁴⁸, Karen Beaumont⁸⁴⁸, Mark Blunt⁸⁴⁸, Zoe Coton⁸⁴⁸, Hollie Curgenven⁸⁴ Mohamed Elsaadany⁸⁴⁸, Kay Fernandes⁸⁴⁸, Sameena Mohamed Ally⁸⁴⁸, Harini Rangarajan⁸⁴⁸, Varun Sarathy⁸⁴⁸, Sivarupan Selvanayagam⁸⁴⁸, Dave Vedage⁸⁴⁸, Matthew White⁸ Jaime Fernandez-Roman⁸⁴⁹, David O. Hamilton⁸⁴⁹, Emily Johnson⁸⁴⁹, Brian Johnston⁸⁴⁹, Maria Lopez Martinez⁸⁴⁹, Suleman Mulla⁸⁴⁹, David Shaw⁸⁴⁹, Alicia A. C. Waite⁸⁴⁹, Victoria Waugh⁸⁴⁹, Ingeborg D. Welters⁸⁴⁹, Karen Williams⁸⁴⁹, Thomas Bernand⁸⁵⁰, Ethel Black⁸⁵⁰, Arnold Dela Rosa⁸⁵⁰, Ryan Howle⁸⁵⁰, Shaman Jhanji⁸⁵⁰ Ravishankar Rao Baikady⁸⁵⁰, Kate Colette Tatham⁸⁵⁰, Benjamin Thomas⁸⁵⁰, Matthew Halkes⁸⁵¹, Pauline Mercer⁸⁵¹, Lorraine Thornton⁸⁵¹, Joe West⁸⁵², Tracy Baird⁸⁵², Jim Ruddy⁸ Rosie Reece-Anthony⁸⁵³, Mark Birt⁸⁵⁴, Amanda Cowton⁸⁵⁴, Andrea Kay⁸⁵⁴, Melanie Kent⁸⁵⁴ Kathryn Potts⁸⁵⁴, Ami Wilkinson⁸⁵⁴, Suzanne Naylor⁸⁵⁴, Ellen Brown⁸⁵⁴, Michele Clark⁸⁵ Sarah Purvis⁸⁵⁵, Jade Cole⁸⁵⁶, Michelle Davies⁸⁵⁶, Rhys Davies⁸⁵⁶, Donna Duffin⁸⁵⁶, Helen Hill⁸⁵⁶, Ben Player⁸⁵⁶, Emma Thomas⁸⁵⁶, Angharad Williams⁸⁵⁶, Claire Marie Beith⁸⁵⁷, Karen Black⁸⁵⁷ Suzanne Clements⁸⁵⁷, Alan Morrison⁸⁵⁷, Dominic Strachan⁸⁵⁷, Margaret Taylor⁸⁵ Michelle Clarkson⁸⁵⁵, Kuart D'Sylva⁸⁵⁷, Kathryn Norman⁸⁵⁷, Tina Coventry⁸⁶⁸, Susan Fowler⁸⁵⁸ Michael MacMahon⁸⁵⁸, Amanda McGregor⁸⁵⁸, Ailbhe Brady⁸⁵⁹, Rebekah Chan⁸⁵⁹, Jeff Little⁸⁵⁹ Shane McIvor⁸⁵⁰, Helena Prady⁸⁵⁰, Helen Whittle⁸⁵⁰, Bijoy Mathew⁸⁵⁰, Melanie Clapham⁸⁶⁰, Rosemary Harper⁸⁵⁰, Una Poultney⁸⁵⁰, Polly Rice⁸⁶⁰, Tim Smith⁸⁵⁰, Rachel Mutch⁸⁶⁰, Yolanda Baird⁸⁶¹, Aaron Butler⁸⁶¹, Indra Chadbourn⁸⁶¹, Linda Folkes⁸⁶¹, Heather Fox⁸⁶¹, Amy Gardner⁸⁶¹, Raquel Gomez⁸⁶¹, Gillian Hobden⁸⁶¹, Luke Hodgson⁸⁶¹, Kirsten King⁸⁶¹, Michael Margarson⁸⁶¹, Tim Martindale⁸⁶¹, Emma Meadows⁸⁶¹, Dana Raynard⁸⁶¹ Yvette Thirlwall⁸⁶¹, David Helm⁸⁶¹, Jordi Margalef⁸⁶¹, Sandra Greer⁸⁶², Karen Shuker⁸⁶² Ascanio Tridente⁸⁶², Sara Smuts⁵²⁶, Joseph Duffield⁵²⁶, Oliver Smith⁵²⁶, Lewis Mallon⁵²⁶, Watkins Claire⁵²⁶, Isobel Birkinshaw⁸⁶³, Joseph Carter⁸⁶³, Kate Howard⁸⁶³, Joanne Ingham⁸⁶³, Rosie Joy⁸⁶³, Harriet Pearson⁸⁶³, Samantha Roche⁸⁶³, Zoe Scott⁸⁶³, Ellen Knights⁸⁶⁴ Alicia Price⁸⁶⁴, Alice Thomas⁸⁶⁴, Chris Thorpe⁸⁶⁴, Azmerelda Abraheem⁸⁶⁵, Peter Bamford⁸⁶⁵ Kathryn Cawley⁸⁶⁵, Charlie Dunmore⁸⁶⁵, Maria Faulkner⁸⁶⁵, Rumanah Girach⁸⁶⁵, Helen Jeffrey⁸⁶⁵, Rhianna Jones⁸⁶⁵, Emily London⁸⁶⁵, Imrun Nagra⁸⁶⁵, Farah Nasir⁸⁶⁵, Hannah Sainsbury⁸⁶⁵, Clare Smedley⁸⁶⁵, Reena Khade⁸⁶⁶, Ashok Sundar⁸⁶⁶, George Tsinaslanidis⁸⁶⁶, Teresa Behan⁸⁶⁷, Caroline Burnett⁸⁶⁷, Jonathan Hatton⁸⁶⁷, Elaine Heeney⁸⁶⁷, Atideb Mitra⁸⁶⁷, Maria Newton⁸⁶⁷ Rachel Pollard⁸⁶⁷, Rachael Stead⁸⁶⁷, Jenny Birch⁸⁶⁸, Laura Bough⁸⁶⁸, Josie Goodsell⁸⁶ Rebecca Tutton⁸⁶⁸, Patricia Williams⁸⁶⁸, Sarah Williams⁸⁶⁸, Barbara Winter-Goodwin⁸⁶⁸ Anne Cowley⁷⁵⁷, Judith Highgate⁷⁵⁷, Fiona Auld⁸⁶⁹, Joanne Donnachie⁸⁶⁹, Ian Edmond⁸⁶⁹ Lynn Prentice⁸⁶⁹, Nikole Runciman⁸⁶⁹, Dario Salutous⁸⁶⁹, Lesley Symon⁸⁶⁹, Anne Todd⁸⁶⁹, Patricia Turner⁸⁶⁹, Abigail Short⁸⁶⁹, Laura Sweeney⁸⁶⁹, Euan Murdoch⁸⁶⁹ Dhaneesha Senaratne⁸⁶⁹, Karen Burns⁸⁷⁰, Andrew Higham^{870,905}, Taya Anderson⁸⁷¹, Dan Hawcutt⁸⁷¹, Laura O'Malley⁸⁷¹, Laura Rad⁸⁷¹, Naomi Rogers⁸⁷¹, Paula Saunderson⁸⁷¹, Kathryn Sian Allison⁸⁷¹, Deborah Afolabi⁸⁷¹, Jennifer Whitbread⁸⁷¹, Dawn Jones⁸⁷¹ Rachael Dore⁸⁷¹, Liana Lankester⁸⁷², Nikitas Nikitas⁸⁷², Colin Wells⁸⁷², Bethan Stowe⁸⁷² Kayleigh Spencer⁸⁷², Susanne Cathcart⁸⁷³, Katharine Duffy⁸⁷³, Alex Puxty⁸⁷³, Kathryn Puxty⁸⁷³, Lynne Turner⁸⁷³, Jane Ireland⁸⁷³, Gary Semple⁸⁷³, Peter Barry⁸⁷⁴, Paula Hilltout⁸⁷⁵, Jayne Evitts⁸⁷⁵, Amanda Tyler⁸⁷⁵, Joanne Waldron⁸⁷⁵, Val Irvine⁸⁷⁶, Benjamin Shelley⁸⁷⁶, Olugbenga Akinkugbe⁸⁷⁷, Alasdair Bamford⁸⁷⁷, Emily Beech⁸⁷⁷, Holly Belfield⁸⁷⁷, Michael Bell⁸⁷⁷ Charlene Davies⁸⁷⁷, Gareth A. L. Jones⁸⁷⁷, Tara McHugh⁸⁷⁷, Hamza Meghari⁸⁷⁷, Lauran O'Neill⁸⁷⁷, Mark J. Peters⁸⁷⁷, Samiran Ray⁸⁷⁷, Ana Luisa Tomas⁸⁷⁷, Amy Easthope⁸⁷⁸, Claire Gorman⁸⁷ Abhinav Gupta⁸⁷⁸, Elizabeth Timlick⁸⁷⁸, Rebecca Brady⁸⁷⁸, Stephen Bonner⁸⁷⁹, Keith Hugill⁸⁷⁹, Jessica Jones⁸⁷⁹, Steven Liggett⁸⁷⁹, Archana Bashyal⁸⁸⁰, Neil Davidson⁸⁸⁰, Paula Hutton⁸ Stuart McKechnie⁸⁸⁰, Jean Wilson⁸⁸⁰, Neil Flint⁸⁸¹, Patel Rekha⁸⁸¹, Dawn Hales⁸⁸¹, Carina Cruz⁸⁸², Natalie Pattison⁸⁸², Shameer Gopal⁸⁸³, Nichola Harris⁸⁸³, Victoria Lake⁸⁸³, Stella Metherell⁸⁸³ Elizabeth Radford⁸⁸³, Ian Clement⁸⁸⁴, Bijal Patel⁸⁸⁴, A. Gulati⁸⁸⁴, Carole Hays⁸⁸⁴, K. Webster⁸⁸⁴, Anne Hudson⁸⁸⁴, Andrea Webster⁸⁸⁴, Elaine Stephenson⁸⁸⁴, Louise McCormack⁸⁸⁴ Victoria Slater⁸⁸⁴, Rachel Nixon⁸⁸⁴, Helen Hanson⁸⁸⁴, Maggie Fearby⁸⁸⁴, Sinead Kelly⁸⁸⁴ Victoria Bridgett⁸⁸⁴, Philip Robinson⁸⁸⁴, Christine Almaden-Boyle⁸⁸⁵, Pauline Austin⁸ Louise Cabrelli⁸⁸⁵, Stephen Cole⁸⁸⁵, Matt Casey⁸⁸⁵, Susan Chapman⁸⁸⁵, Stephen Cole⁸⁸⁵,

Clare Whyte⁸⁸⁵, Adam Brayne⁸⁸⁶, Emma Fisher⁸⁸⁶, Jane Hunt⁸⁸⁶, Peter Jackson⁸⁸⁶, Duncan Kaye⁸⁸⁶, Nicholas Love⁸⁸⁶, Juliet Parkin⁸⁸⁶, Victoria Tuckey⁸⁸⁶, Lynne van Koutrik⁸⁸⁶ Sasha Carter⁸⁸⁶, Benedict Andrew⁸⁸⁶, Louise Findlay⁸⁸⁶, Katie Adams⁸⁸⁶, Michelle Bruce⁸⁸⁷, Karen Connolly⁸⁸⁷, Tracy Duncan⁸⁸⁷, Helen T.-Michael⁸⁸⁷, Gabriella Lindergard⁸⁸⁷ Samuel Hey⁸⁸⁷, Claire Fox⁸⁸⁷, Jordan Alfonso⁸⁸⁷, Laura Jayne Durrans⁸⁸⁷, Jacinta Guerin⁸⁶ Bethan Blackledge⁸⁸⁷, Jade Harris⁸⁸⁷, Martin Hrusk⁸⁸⁷, Ava Eltayeb⁸⁸⁷, Thomas Lamb⁸⁸⁷, Tracey Hodgkiss⁸⁸⁷, Lisa Cooper⁸⁸⁷, Joanne Rothwell⁸⁸⁷, Catherine Denis⁸⁸⁸, Alastair McGregor⁸⁸⁸, Victoria Parris⁸⁸⁸, Sinduya Srikaran⁸⁸⁸, Anisha Sukha⁸⁸⁸, Kim Davies⁸⁸⁹, Linda O'Brien⁸⁸⁹, Zohra Omar⁸⁸⁹, Igor Otahal⁸⁸⁹, Emma Perkins⁸⁸⁹, Tracy Lewis⁸ Isobel Sutherland⁹⁸⁹, Hollie Brooke⁹⁹⁰, Sarah Buckley⁸⁹⁰, Jose Cebrian Suarez⁹⁹⁰, Ruth Charlesworth⁸⁹⁰, Karen Hansson⁸⁹⁰, John Norris⁸⁹⁰, Alice Poole⁸⁹⁰, Alastair Rose⁸⁹⁰ Rajdeep Sandhu⁸⁹⁰, Brendan Sloan⁸⁹⁰, Elizabeth Smithson⁸⁹⁰, Muthu Thirumaran⁸⁹⁰ Veronica Wagstaff⁸⁹⁰, Alexandra Metcalfe⁸⁹⁰, Julie Camsooksai⁸⁹¹, Charlotte Humphrey⁸⁹¹ Sarah Jenkins⁸⁹¹, Henrik Reschreiter⁸⁹¹, Beverley Wadams⁸⁹¹, Yasmin DeAth⁸⁹¹, Colene Adams⁸⁹², Anita Agasou⁸⁹², Tracie Arden⁸⁹³, Amy Bowes⁸⁹², Pauline Boyle⁸⁹², Mandy Beekes⁸¹ Heather Button⁸⁹³, Nigel Capps^{624,893}, Mandy Carnahan⁸⁹², Anne Carter⁸⁹², Danielle Childs⁸⁹², Denise Donaldson⁸⁹³, Kelly Hard⁸⁹², Fran Hurford⁸⁹³, Yasmin Hussain⁸⁹², Ayesha Javaid⁸³ James Jones⁸⁹³, Sanal Jose^{624,893}, Michael Leigh⁸⁹², Terry Martin⁸⁹³, Helen Millward⁸⁹³, Nichola Motherwell⁸⁹³, Rachel Rikunenko⁸⁹², Jo Stickley⁸⁹², Julie Summers⁸⁹³, Louise Ting⁸⁹³, Helen Tivenan⁸⁹², Louise Tonks⁸⁹³, Rebecca Wilcox⁸⁹², Maria Bokhari⁸⁹⁹, Vanessa Linnett⁸⁹⁹, Rachael Lucas⁸⁹⁹, Wendy McCormick⁸⁹⁹, Jenny Ritzema⁸⁹⁹, Amanda Sanderson⁸⁹⁹ Helen Wild⁸⁹⁹, Nicola Baxter⁹⁰⁰, Steven Henderson⁹⁰⁰, Sophie Kennedy-Hay⁹⁰ Christopher McParland⁹⁰⁰, Laura Rooney⁹⁰⁰, Malcolm Sim⁹⁰⁰, Gordan McCreath⁹⁰⁰, Mark Brunton⁹⁰¹, Jess Caterson⁹⁰¹, Holly Coles⁹⁰¹, Matthew Frise⁹⁰¹, Sabi Gurung Rai⁹⁰¹ Nicola Jacques⁶⁰, Liza Keating⁶⁰, Emma Tilney⁶⁰, Shauna Bartley⁸⁰, Parminder Bhuie⁶⁰, Charlotte Downes⁶⁰², Kathleen Holding⁶⁰², Katie Riches⁶⁰², Mary Hilton⁶⁰², Mel Hayman⁶⁰², Deepak Subramanian⁹⁰², Priya Daniel⁹⁰², Letizia Zitter⁹⁰³, Sarah Benyon⁹⁰³, Suzie Marriott⁹⁰³, Linda Park⁹⁰³, Samantha Keenan⁹⁰³, Elizabeth Gordon⁹⁰³, Helen Quinn⁹⁰³, Kizzy Baines⁹⁰³, Gillian Andrew⁹⁰⁴, J. Kenneth Baillie⁹⁰⁴, Lucy Barclay⁹⁰⁴, Marie Callaghan⁹⁰⁴, Rachael Campbell⁹⁰⁴, Sarah Clark⁹⁰⁴, Dave Hope⁹⁰⁴, Lucy Marshall⁹⁰⁴, Corrienne McCulloch⁹⁰⁴, Kate Briton⁹⁰⁴, Jo Singleton⁹⁰⁴, Sophie Birch⁹⁰⁴, Andrew Higham⁹⁰⁵, Kerry Simpson⁹⁰⁵ Jayne Craig⁹⁰⁵, Carrie Demetriou⁹⁰⁶, Charlotte Eckbad⁹⁰⁶, Sarah Hierons⁹⁰⁶, Lucy Howie⁹⁰⁶, Sarah Mitchard⁹⁰⁶, Lidia Ramos⁹⁰⁶, Alfredo Serrano-Ruiz⁹⁰⁶, Katie White⁹⁰⁶, Fiona Kelly⁹⁰⁶, Vishal Amin⁹⁰⁷, Elena Anastasescu⁹⁰⁷, Vikram Anumakonda⁹⁰⁷, Komala Karthik⁹⁰ Rizwana Kausar⁹⁰⁷, Karen Reid⁹⁰⁷, Jacqueline Smith⁹⁰⁷, Janet Imeson-Wood⁹⁰⁷, Arianna Bellini⁹⁰⁸, Jade Bryant⁹⁰⁸, Anton Mayer⁹⁰⁸, Amy Pickard⁹⁰⁸, Nicholas Roe⁹⁰⁸, Jason Sowter⁸ Alex Howlett⁹⁰⁸, Kristine Criste⁹⁰⁹, Rebecca Cusack⁹⁰⁹, Kim Golder⁹⁰⁹, Hannah Golding⁹⁰⁹ Oliver Jones⁹⁰⁹, Samantha Leggett⁹⁰⁹, Michelle Male⁹⁰⁹, Martyna Marani⁹⁰⁹, Kirsty Prager⁹⁰⁹ Toran Williams⁹⁰⁹, Belinda Roberts⁹⁰⁹, Karen Salmon⁹⁰⁹, Prisca Gondo⁹¹⁰, B. Hadebe⁹¹⁰, Abdul Kayani⁹¹⁰, Bridgett Masunda⁹¹⁰, Ashar Ahmed⁹¹¹, Anna Morris⁹¹¹, Srinivas Jakkula⁹¹¹ Kate Long⁹¹², Simon Whiteley⁹¹², Elizabeth Wilby⁹¹², Bethan Ogg⁹¹², Sam Moultrie⁷⁴⁷, M. Odam⁷⁴⁷, Jeremy Bewley⁹¹³, Zoe Garland⁹¹³, Lisa Grimmer⁹¹³, Bethany Gumbrill⁹¹³, Rebekah Johnson⁹ Katie Sweet⁹¹³, Denise Webster⁹¹³, Georgia Efford⁹¹³, Sara Bennett⁹¹⁴, Emma Goodwin⁹¹⁴, Matthew Jackson⁹⁴, Alissa Kent⁹⁴, Clare Tibke⁹⁴, Wiesia Woodyatt⁹⁴, Ahmed Zakl⁹⁴ Amelia Daniel⁹⁵, Joanne Finn⁹¹⁵, Rajnish Saha⁹¹⁵, Nikki Staines⁹¹⁵, Amy Easthope⁹¹⁵, Pamela Bremmer⁵²⁸, J. Allan⁹¹⁶, T. Geary⁹¹⁶, Gordon Houston⁹¹⁶, A. Meikle⁹¹⁶, P. O'Brien⁹¹ Dina Bell⁹¹⁷, Rosalind Boyle⁹¹⁷, Katie Douglas⁹¹⁷, Lynn Glass⁹¹⁷, Emma Lee⁹¹⁷, Liz Lennon⁹¹⁷ Austin Rattray⁹¹⁷, Rob Charnock⁹¹⁸, Denise McFarland⁹¹⁸, Denise Cosgrove⁹¹⁸, Ben Attwood⁹¹⁹, Penny Parsons⁹¹⁹, Siobhain Carmody⁵²⁹, Metod Oblak⁹²⁰, Monica Popescu⁹²⁰, Mini Thankachen⁹²⁰, Rosie Baruah⁶⁰², Sheila Morris⁶⁰², Susie Ferguson⁶⁰², Amy Shepherd⁶⁰², Abdelhakim Altabaibeh⁹²², Ana Alvaro⁹²², Kayleigh Gilbert⁹²², Louise Ma⁹²², Loreta Mostoles⁹²², Chetan Parmar⁹²², Kathryn Simpson⁹²², Champa Jetha⁹²², Lauren Booker⁹²², Anezka Pratley⁹²², Tracey Cosier⁹²³, Gemma Millen⁹²³, Neil Richardson⁹²³, Natasha Schumacher⁹² Heather Weston⁹²³, Jones Rand⁹²³, Beatrice Alex⁷⁸, Benjamin Bach⁷⁸, Wendy S. Barclay⁹³², Debby Bogaert⁷⁰⁵, Meera Chand⁹³³, Graham S. Cooke⁹³⁴, Annemarie B. Docherty⁷¹⁴, Jake Dunning⁹³⁵, Ana da Silva Filipe⁹³⁶, Tom Fletcher⁹³⁷, Christoper A. Green⁶³⁴, Ewen M. Harrison⁷¹⁴, Julian A. Hiscox⁹³⁸, Samreen Ijaz⁹⁴⁰, Saye Khoo⁹⁴¹, Paul Klenerman⁹⁴², Andrew Law⁸⁰, Wei Shen Lim⁹⁴⁴, Alexander J. Mentzer⁹⁴⁵, Laura Merson⁹⁴⁶, Alison M. Meynert⁶², Mahdad Noursadeghi⁹⁴⁷, Shona C. Moore⁹⁴⁸, Massimo Palmarini⁹³⁶, William A. Paxton⁹⁴⁸ Georgios Pollakis⁹⁴⁸, Nicholas Price⁹⁴⁹, Andrew Rambaut⁹⁵⁰, David L. Robertson⁹³⁶ Clark D. Russell⁷⁰⁵, Vanessa Sancho-Shimizu⁹⁵¹, Janet T. Scott⁹³⁶, Thushan de Silva⁹⁵² Louise Sigfrid⁹⁴⁶, Tom Solomon⁵³⁰, Shiranee Sriskandan⁹³⁴, David Stuart⁹⁵³, Richard S. Tedder⁹⁵⁵, Emma C. Thomson⁹³⁶, A. A. Roger Thompson⁹⁵⁶, Ryan S. Thwaites⁷³⁰, Lance C. W. Turtle^{530,732}, Rishi K. Gupta⁹⁵⁷, Carlo Palmieri⁹⁵⁸, Olivia V. Swann⁹⁵⁹, Maria Zambon⁹³⁵, Marc-Emmanuel Dumas⁹⁶⁰, Julian L. Griffin⁹⁶⁰, Zoltan Takats⁹⁶⁰, Kanta Chechi⁹⁶¹, Petros Andrikopoulos⁹⁶⁰, Anthonia Osagie⁹⁶⁰, Michael Olanipekun⁹⁶⁰, Sonia Liggi⁹⁶⁰, Matthew R. Lewis⁹⁶², Goncalo dos Santos Correia⁹⁶², Caroline J. Sands⁹⁶², Panteleimon Takis⁹⁶² Lynn Maslen⁹⁶², William Greenhalf⁹⁶³, Victoria Shaw⁹⁶⁴, Sarah E. McDonald⁹³⁶, Seán Keating⁹⁶⁵, Katie A. Ahmed⁹⁶⁶, Jane A. Armstrong⁹⁶⁶, Milton Ashworth⁹⁶⁶, Innocent G. Asiimwe⁹⁶⁶ Siddharth Bakshi⁹⁶⁶, Samantha L. Barlow⁹⁶⁶, Laura Booth⁹⁶⁶, Benjamin Brennan⁹⁶⁷ Katie Bullock⁹⁶⁶, Benjamin W. A. Catterall⁹⁶⁶, Jordan J. Clark⁹⁶⁶, Emily A. Clarke⁹⁶⁶ Louise Cooper⁹⁶⁶, Helen Cox⁹⁶⁶, Christopher Davis⁹⁶⁶, Oslem Dincarslan⁹⁶⁶, Chris Dunn⁹⁶⁶, Philip Dyer⁹⁶⁶, Angela Elliott⁹⁶⁶, Anthony Evans⁹⁶⁶, Lorna Finch⁹⁶⁶, Lewis W. S. Fisher⁹⁶⁶, Terry Foster⁹⁶⁶, Isabel Garcia-Dorival⁹⁶⁶, William Greenhalf⁹⁶⁶, Philip Gunning⁹⁶⁶, Catherine Hartley⁹⁶⁶, Rebecca L. Jensen⁹⁶⁶, Christopher B. Jones⁹⁶⁶, Trevor R. Jones⁹⁶⁶, Shadia Khandaker⁹⁶⁶, Katharine King⁹⁶⁶, Robyn T. Kiy⁹⁶⁶, Chrysa Koukorava⁹⁶⁶, Annette Lake⁹⁶⁷ Suzannah Lant⁹⁶⁶, Diane Latawiec⁹⁶⁶, Lara Lavelle-Langham⁹⁶⁶, Daniella Lefteri⁹⁶⁷, Lauren Lett⁹⁶⁶, Lucia A. Livoti⁹⁶⁶, Maria Mancini⁹⁶⁶, Sarah McDonald⁹⁶⁶, Laurence McEvoy⁹ John McLauchlan⁹⁶⁷, Soeren Metelmann⁹⁶⁶, Nahida S. Miah⁹⁶⁶, Joanna Middleton⁹⁶⁶ Joyce Mitchell⁹⁶⁶, Shona C. Moore⁹⁶⁶, Ellen G. Murphy⁹⁶⁶, Rebekah Penrice-Randal⁹⁶⁶ Jack Pilgrim⁹⁶⁶, Tessa Prince⁹⁶⁶, Will Reynolds⁹⁶⁶, P. Matthew Ridley⁹⁶⁶, Debby Sales⁹⁶⁶ Victoria E. Shaw⁹⁶⁶, Rebecca K. Shears⁹⁶⁶, Benjamin Small⁹⁶⁶, Krishanthi S. Subramaniam⁹⁶⁶, Agnieska Szemiel⁹⁶⁶, Aislynn Taggart⁹⁶⁷, Jolanta Tanianis-Hughes⁹⁶⁶, Jordan Thomas⁹¹ Erwan Trochu⁹⁶⁶, Libby van Tonder⁹⁶⁶, Eve Wilcock⁹⁶⁶, J. Eunice Zhang⁹⁶⁶, Lisa Flaherty⁹⁶⁶ Nicole Maziere⁹⁶⁶, Emily Cass⁹⁶⁶, Alejandra Doce Carracedo⁹⁶⁶, Nicola Carlucci⁹⁶⁶ Anthony Holmes⁹⁶⁶, Hannah Massey⁹⁶⁶, Lee Murphy⁵⁵⁴, Nicola Wrobel⁵⁵⁴, Sarah McCafferty⁵⁵⁴, Kirstie Morrice⁵⁵⁴ & Alan MacLean⁵⁵⁴

Admin team members

Ruth Armstrong⁶⁰, J. Kenneth Baillie^{60,61,62}, Ceilia Boz⁶⁰, Adam Brown⁶⁰, Richard Clark⁹⁶⁸, Sara Clohisey⁶⁰, Audrey Coutts⁹⁶⁸, Louise Cullum⁶⁰, Nicky Day⁶⁰, Lorna Donnelly⁹⁶⁸ Esther Duncan⁶⁰, Angie Fawkes⁹⁶⁸, Paul Finernan⁶⁰, Max Head Fourman⁶⁰, James Furniss⁶⁰, Tammy Gilchrist⁹⁶⁸, Ailsa Golightly⁶⁰, Katarzyna Hafezi⁹⁶⁸, Ross Hendry⁶⁰, Andy Law⁶⁰ Dawn Law⁶⁰, Rachel Law⁶⁰, Sarah Law⁶⁰, Louise Macgillivray⁹⁶⁸, Alan Maclean⁹⁶ Hanning Mal⁶⁰, Sarah McCafferty⁹⁶⁸, Ellie Mcmaster⁶⁰, Jen Meikle⁶⁰, Shona C. Moore⁷³², Kirstie Morrice⁹⁶⁸, Lee Murphy⁹⁶⁸, Wilna Oosthuyzen⁶⁰, Nicholas Parkinson⁶⁰, Trevor Paterson⁶⁰, Andrew Stenhouse⁶⁰, Maaike Swets^{60,970}, Helen Szoor-McElhinney⁶⁰, Filip Taneski⁶⁰, Lance C. W. Turtle^{530,732}, Tony Wackett⁶⁰, Mairi Ward⁶⁰, Jane Weaver⁶⁰, Nicola Wrobel⁹⁶⁸, Marie Zechner⁶⁰, Judy Coyle⁶⁰, Bernadette Gallagher⁶⁰, Rebecca Lidstone-Scott⁶⁰ Debbie Hamilton⁶⁰, Katherine Schon⁹⁷¹, Anita Furlong⁹⁷¹, Heather Biggs⁹⁷¹, Fiona Griffiths⁶⁰, Eleanor Andrews⁷⁶², Kathy Brickell⁵²⁷, Michelle Smyth⁵²⁷, Lorna Murphy⁵²⁷, Gail Carson⁶ Hayley Hardwick⁵³⁰ & Chloe Donohue⁷¹⁵

COVID-19 HGI corresponding authors Benjamin M. Neale^{41280 M}, Mark Daly^{12,3,1280 M} & Andrea Ganna^{12,3,1280 M}

¹Institute for Molecular Medicine Finland (FIMM) University of Helsinki, Helsinki Finland ²Broad Institute of MIT and Harvard, Cambridge, MA, USA. ³Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA. ⁴Massachusetts General Hospital, Broad Institute of MIT and Harvard, Cambridge, MA, USA. ⁶Yale University, New Haven, CT, USA. ⁷Icahn School of Medicine at Mount Sinai, New York, NY, USA. ⁸Stroke Pharmacogenomics and Genetics, Biomedical Research Institute Sant Pau (IIB Sant Pau), Sant Pau Hospital, Inmungen-CoV2, Barcelona, Spain. 9Institute of Virology, Technical University Munich and Helmholtz Zentrum München, Munich, Germany. 10 Institute of Psychiatric Phenomics and Genomics, Medical Center of the University of Munich, Munich, Germany. ¹¹Department of Psychiatry, Medical Center of the University of Munich, Munich, Germany. ¹²IRCCS, Istituto Giannina Gaslini, Genova, Italy. ¹³Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy. ¹⁴Queen Mary University of London, London, UK. ¹⁵Open Targets, Wellcome Genome Campus, Hinxton, UK. ¹⁶Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.¹⁷Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada.¹⁸Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea. ¹⁹Osaka University Graduate School of Medicine, Osaka, Japan. ²⁰Baylor College of Medicine, Houston, TX, USA.²¹Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates. ²²MRC Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK, ²³Department of Internal Medicine, Division of Cardiovascular Medicine, Michigan Medicine, Ann Arbor, MI, USA.²⁴Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA, ²⁵Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA.²⁶Seaver Autism Center for Research and Treatment, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ²⁹Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA. ³²David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. ³³Institut Pasteur, Paris, France. ³⁴Harvard School of Public Health, Boston, MA, USA. ³⁵Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia. ³⁸Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK. ⁴⁰European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK. ⁴²Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland. 43 Trieste University, Trieste, Italy. ⁴⁴Vanderbilt University Medical Center, Nashville, TN, USA. ⁴⁵University of California San Francisco, San Francisco, CA, USA. 46Stanford University, Stanford, CA, USA. 47University of Siena, Siena, Italy. ⁴⁹Boston Children's Hospital, Broad Institute of MIT and Harvard, Cambridge, MA, USA. ⁵⁰Blizard Institute, Queen Mary University of London, London, UK. ⁵¹Department of Genetics, University Medical Centre Groningen, Groningen, The Netherlands. ⁵²Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands. ⁵³Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada. 55 Department of Twin Research, King's College London, London, UK. 56 Department of Human Genetics, McGill University, Montreal, Quebec, Canada. ⁵⁷Kyoto-McGill International Collaborative School in Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan. ⁵⁹National Institutes of Health, Bethesda, MD, USA. ⁶⁰The Roslin Institute, University of Edinburgh, Edinburgh, UK. ⁶¹Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, UK. 62 MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK. ⁶³Medical Genetics, University of Siena, Siena, Italy. ⁶⁴Genetica Medica, Azienda Ospedaliero-Universitaria Senese, Siena, Italy. ⁶⁵Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy. 66 Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milano, Italy. ⁶⁷Politecnico di Milano, Milan, Italy. ⁶⁸University of Michigan, Ann Arbor, MI, USA. ⁶⁹Vanderbilt School of Medicine, Nashville, TN, USA. 70 All India Institute of Medical Sciences Kalyani, Kalyani, India. ⁷¹Hasso Plattner Institute, New York, NY, USA. ⁷²Naina Tech, Hyderabad, India. ⁷³EMBL-European Bioinformatics Institute, Hinxton, UK. ⁷⁴University of Northampton. Northampton, UK.⁷⁵University of Helsinki, Helsinki, Finland.⁷⁶University of Miami, Miami, FL, USA.⁷⁸Ecole Centrale de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, Nantes University, UMR1064, ITUN, Nantes, France.⁷⁹University of Liège, Liège, Belgium.⁸⁰Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar. 82 Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Cambridge, MA, USA. 83 Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA. 84 Intensive Care Unit, Vall d'Hebron Hospital, Barcelona, Spain. 85 Institut de Biomedicina de València - CSIC, València, Spain.⁸⁶Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), València, Spain. 87 Unidad Mixta de Neurología y Genética, Instituto de Investigación Sanitaria La Fe, València, Spain.⁸⁸Erasmus Medical Center, Rotterdam, The Netherlands. 89National Genome Center, Copenhagen,

Denmark.⁹⁰University of Copenhagen, Copenhagen, Denmark.⁹¹Genomics PLC, Oxford, UK. ⁹³Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany. ⁹⁴Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland. ⁹⁵Genomics England, London, UK. ⁹⁶Junta de Andalucía, Seville, Spain. ⁹⁷Human Genetics Program of ICBM and Department of Basic-Clinical Oncology, University of Chile, Santiago, Chile. ⁹⁸Center for the Development of Scientific Research (CEDIC), Asunción, Paraguay. 100 Translational Bioinformatics Unit, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain. ¹⁰¹Mucosal & Salivary Biology Division, King's College London Dental Institute, London, UK. ¹⁰²GENYO, Center for Genomics and Oncological Research Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain. ¹⁰³University of Puerto Rico, San Juan, Puerto Rico. ¹⁰⁴National Laboratory of Genomics for Biodiversity (LANGEBIO), Advanced Genomics Unit, CINVESTAV, Irapuato, Mexico.¹⁰⁵Queensland University of Technology, Brisbane, Queensland, Australia.¹⁰⁶Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, CNRST, Ouagadougou, Burkina Faso.¹⁰⁷McGill University, Montreal, Quebec, Canada. ¹⁰⁸Université de Montréal, Montreal, Quebec, Canada. ¹⁰⁹Fonds de la Recherche Scientifique (ENRS) & Centre de Génétique Humaine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium, ¹¹²University of Pecs Medical School, Pécs, Hungary, ¹³Institute of Biomedicine and Cancer Research Laboratories, Western Cancer Centre FICAN West, University of Turku, Turku, Finland.¹¹⁴Institute of Biomedical Technologies, National Research Council, Segrate, Italy, ¹¹⁵Immediate, Milan, Italy, ¹¹⁶University of Cambridge, Cambridge, UK. ¹¹⁷Genome Opinion, Seoul, Republic of Korea. ¹¹⁹University of Groningen, Groningen, The Netherlands. ¹²⁰Universiti Malaysia Pahang, Gambang, Malaysia. ¹²²Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.¹²³University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands. ¹²⁴MNM DIAGNOSTICS, Pozna?, Poland. ¹²⁵Institute for Systems Biology, Seattle, WA, USA. ¹²⁶Sultan Idris Education University, Tanjung Malim, Malaysia. ¹²⁷Hospital Kulim, Kedah, Malaysia. ¹²⁸AbbVie, Lake Buff, IL, USA.¹²⁹Root Deep Insight, Boston MA, USA.¹³⁰23andMe, Sunnyvale, CA, USA.¹³¹GSK, Stevenage, UK. ¹³²Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA. ¹³³Department of Medicine, Northwestern University, Chicago, IL, USA. ¹³⁴Washington DC Veterans Affairs Medical Center, Hospital Medicine, Washington, DC, USA. 135 Department of Medicine, George Washington University, Washington, DC, USA. ¹³⁶Section of Hospital Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA. ¹³⁷Section of Hematology and Oncology, Department of Medicine, University of Chicago, Chicago, IL, USA. ¹³⁸College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA. ⁴Department of Pharmacology, George Washington University, Washington, DC, USA ¹⁴⁸Department of Neurology, Amsterdam UMC, Amsterdam Neuroscience, Amsterdam, The Netherlands. ¹⁴⁹Department of Intensive Care, Amsterdam UMC, Amsterdam, The Netherlands. ¹⁵⁰Department of Infectious Diseases, Amsterdam UMC, Amsterdam, The Netherlands. ¹⁵¹Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Amsterdam, The Netherlands. ¹⁵²Experimental Immunology, Amsterdam UMC, Amsterdam, The Netherlands.¹⁵³Department of Pulmonology, Amsterdam UMC Amsterdam, The Netherlands. ¹⁵⁴Department of Pathology, Amsterdam UMC, Amsterdam, The Netherlands. ¹⁵⁵Department of Anesthesiology, Amsterdam UMC, Amsterdam, The Netherlands. ¹⁵⁶Amsterdam UMC Biobank Core Facility, Amsterdam UMC, Amsterdam, The Netherlands. ¹⁵⁷Department of Radiology, Amsterdam UMC, Amsterdam, The Netherlands. ¹⁵⁸Department of Medical Microbiology, Amsterdam UMC, Amsterdam, The Netherlands. ¹⁵⁹Department of Clinical Chemistry, Amsterdam UMC, Amsterdam, The Netherlands. ¹⁶⁰Amsterdam UMC Biobank, Amsterdam UMC, Amsterdam, The Netherlands. ¹⁶¹Core Facility Genomics, Amsterdam UMC, Amsterdam, The Netherlands. ¹⁶²Ancestry, Lehi, UT, USA. ¹⁶³GIGA-Institute, University of Liège, Liège, Belgium. ¹⁶⁴CHC Mont-Légia, Liège, Belgium. ¹⁶⁵BHUL (Liège Biobank), CHU of Liège, Liège, Belgium. ¹⁶⁷Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA. ¹⁶⁸Centre de Génétique Humaine, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium. 169 Service de Médecine Interne, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium. ¹⁷⁰CHU of Liège, University of Liège, Liège, Belgium. ¹⁷⁴McGill Genome Centre, McGill University, Montréal, Québec, Canada.¹⁷⁷Department of Emergency Medicine, McGill University, Montreal, Quebec, Canada.¹⁷⁸Emergency Department, Jewish General Hospital, McGill University, Montreal, Quebec, Canada. ¹⁷⁹McGill AIDS Centre, Department of Microbiology and Immunology, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada. ¹⁸⁰McGill Centre for Viral Diseases, Department of Infectious Disease, Lady Davis Institute, Jewish General Hospital, Montreal, Quebec, Canada. ⁿResearch Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada. ¹⁸²Department of Medicine, Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada.¹⁸³Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.¹⁸⁴Department of Medicine and Human Genetics, McGill University, Montreal, Quebec, Canada, ¹⁸⁵Department of Intensive Care, Research Centre of the Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada. ¹⁸⁶Division of Infectious Diseases, Research Centre of the Centre Hospitalier de l'Université de Montréal. Montréal, Quebec, Canada.¹⁸⁷Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. ¹⁸⁸Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA. ¹⁸⁹Institute of Human Genetics, University Hospital Bonn, Medical Faculty University of Bonn, Bonn, Germany. 190 Institute of Genomic Statistics and Bioinformatics, University Hospital Bonn, Medical Faculty University of Bonn, Bonn, Germany.¹⁹¹Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty Heinrich Heine University, Düsseldorf, Germany. ¹⁹²Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany.¹⁹³Clinic for Cardiology, Angiology and Internal Intensive Medicine, Medical Clinic I, RWTH Aachen University, Aachen, Germany. 194 Department of Pneumology and Intensive Care Medicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany. 195 Department of Pneumology, Hannover Medical School, Hannover, Germany. 196 Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany. 197 Hannover Unified Biobank, Hannover Medical School, Hannover, Germany.¹⁹⁸Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany.¹⁹⁹Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany. 200 German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany. 202 Cologne Center

for Genomics (CCG), University of Cologne, Cologne, Germany. 203 Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany. ²⁰⁴Department of Child and Adolescent Psychiatry, University Hospital Essen, University of Duisburg-Essen, Essen, Germany. 205 Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany. ²⁰⁶Department of Pneumology, Allergology and Respiratory Medicine, University Hospital Saarland, Homburg/Saar, Germany.²⁰⁷Center of Human and Molecular Biology, Department of Human Genetics, University Hospital Saarland, Homburg/Saar, Germany. 208 Department of Genetics & Epigenetics, Saarland University, Saarbrücken, Germany. 209 Eurac Research, Institute for Biomedicine (affiliated to the University of Lübeck), Bolzano, Italy. 210 University of Colorado Anschutz Medical Campus, Aurora, CO, USA. 211 Department of Genetics and Development, Institute for Genomic Medicine, Columbia University, New York, NY, USA. ²¹²Department of Medicine, Institute for Genomic Medicine, Columbia University, New York, NY, USA. ²¹³Department of Biomedical Informatics, Columbia University, New York, NY, USA. ²¹⁴Department of Pediatrics, Columbia University, New York, NY, USA. ²¹⁵Department of Medicine, Columbia University, New York, NY, USA. ²¹⁶Institute for Genomic Medicine, Columbia University, New York, NY, USA. 217 Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA, ²¹⁸Department of Pathology and Cell Biology, Columbia University, New York, NY, USA. ²¹⁹Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. ²²⁰Department of Clinical Research Design and Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.²²¹Division of Gastroenterology, Department of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, Seoul, Republic of Korea. 222 Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, Republic of Korea.²²³Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.²²⁴Department of Periodontology, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam, Republic of Korea. 225 Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea. ²²⁶Department of Physical & Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. 227 Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea. 228 Biomedical Institute for Convergence at SKKU, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea.²²⁹Department of Public Health Service, Seoul National University Bundang Hospital, Seongnam, Republic of Korea. 230 Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea. 231 Korea Research Environment Open NETwork, Korea Institute of Science and Technology Information, Daejeon, Republic of Korea. 232 Global Science Experimental Data Hub Center, Korea Institute of Science and Technology Information, Daejeon, Republic of Korea. ²³³Division of Infectious Diseases, Department of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. 234 Center for Cohort Studies, Kanabuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.²³⁵Department of Occupational and Environmental Medicine, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea, 236 Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.²³⁷Institute of Clinical Molecular Biology, Christian-Albrechts-University, Kiel, Germany.²³⁸Novo Nordisk Foundation Center for Protein Research, Disease Systems Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.²³⁹Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain. 240 ICREA, Barcelona, Spain. 241 Research Group for Evolutionary Immunogenomics, Max Planck Institute for Evolutionary Biology, Plön, Germany. 242 Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany. 243Department of Gastroenterology, Hospital Universitario Ramón y Cajal, University of Álcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.²⁴⁴Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.²⁴⁵Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain. ²⁴⁶Charite Universitätsmedizin Berlin, Berlin, Germany. ²⁴⁹Hospital Universitario Clinico San Cecilio, Granada, Spain.²⁵⁰Instituto de Investigación Ibs.Granada, Granada, Spain.²⁵¹Emergency Department, University Hospital Regensburg, Regensburg, Germany. ²⁵²Department for Infectious Diseases and Infection Control, University Hospital Regensburg, Regensburg, Germany.²⁵³Medical University of Innsbruck, Department of Medicine and Christian Doppler Laboratory on Iron and Phosphate Biology, Innsbruck, Austria. ²⁵⁴Institute of Clinical Medicine, University of Oslo, Oslo, Norway. ²⁵⁵Department of Microbiology, Oslo University Hospital, Oslo, Norway. 256 Hospital Clinic, University of Barcelona and IDIBAPS, Barcelona, Spain.²⁵⁷European Foundation for the Study of Chronic Liver Failure (EF-CLIF), Barcelona, Spain. ²⁵⁹Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. ²⁶⁰Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne. Germany. ²⁶¹Genomes for Life-GCAT labGermans Trias i Pujol Research Institute (IGTP), Badalona, Spain. 262 IRCCS Humanitas Research Hospital, Milan, Italy. 263 Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.²⁶⁴Institute of Transfusionsmedicine, University Hospital Schleswig-Holstein (UKSH), Kiel, Germany. 265 Klinik für Innere Medizin I, Universitätsklinikum Schleswig-Holstein, Kiel Campus, Kiel, Germany ²⁶⁶Zentrum für Humangenetik Regensburg, Regensburg, Germany. ²⁶⁷University Hospital Schleswig-Holstein (UKSH), Kiel Campus, Kiel, Germany. 268 Section for Gastroenterology, Department of Transplantation Medicine, Division for Cancer Medicine, Surgery and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway. 269 Research Institute for Internal Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway. 270 Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, Oslo, Norway, ²⁷²Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA. 273 Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. 274 Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA. 275 Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA. 276 Randaberg Municipality, Randaberg, Norway. 277 Department of

Quality and Health Technology, Faculty of Health Sciences, University of Stavanger, Stavanger, Norway. 278 Department of Genetics and Bioinformatics (HDGB), Division of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway. 279 Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK. ²⁸⁰Department of Intensive Care, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain.²⁸¹Osakidetza Basque Health Service, Donostialdea Integrated Health Organisation, Clinical Biochemistry Department, San Sebastian, Spain. 282 Research Center and Memory Clinic, Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain. 283 Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.²⁸⁴Department of Acute Medicine, Oslo University Hospital, Oslo, Norway. 285 Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy. ²⁸⁶European Reference Network on Hepatological Diseases (ERN RARE LIVER), San Gerardo Hospital, Monza, Italy. 287 Division of Gastroenterology, Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy. 288German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany.²⁸⁹Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Cologne, Cologne, Germany.²⁹⁰Department of Psychiatry, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA. ¹⁹¹Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany.²⁹²Liver Unit, Department of Internal Medicine, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.²⁹³Department of Anesthesiology and Intensive Care, University Hospital of North Norway, Tromsø, Norway ²⁹⁴Klinik für Innere Medizin I, Universitätsklinikum Schleswig-Holstein, Kiel Campus, Kiel, Germany. ²⁹⁵Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy. 296 Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway. 297 Microbiology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain. ²⁹⁸Universitat Autònoma de Barcelona, Bellaterra, Spain. ²⁹⁹Department of Respiratory Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain. 300 Department of Respiratory Medicine and Allergology, University Hospital, Goethe University, Frankfurt am Main, Germany. ³⁰¹Department of Infectious Diseases, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain. 302 Department of Internal Medicine II, Technical University of Munich, School of Medicine, University Hospital rechts der Isar, Munich, Germany. ³⁰³Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany. ³⁰⁴German Center for Infection Research (DZIF) Clinical Tuberculosis Unit, Borstel, Germany. ³⁰⁵Respiratory Medicine & International Health, University of Lübeck, Lübeck, Germany. ³⁰⁶Osakidetza Basque Health Service, Basurto University Hospital, Respiratory Service, Bilbao, Spain. 307 Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Science, Norwegian University of Science and Technology, Trondheim, Norway. 308 Clinic Ålesund Hospital, Department of Medicine, Møre & Romsdal Hospital Trust, Ålesund, Norway. ³⁰⁹Department of Anesthesiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), University of Alcalá, Madrid, Spain. ³¹⁰Spain Hospital Clinic, University of Barcelona and IDIBAPS, Barcelona. Spain. ³¹¹Osakidetza Basque Health Service, Galdakao Hospital, Respiratory Service, Galdakao, Spain. ³¹²IBMDR - E.OOspedali Galliera, Genova, Italy. ³¹³Liver ICU, Hospital Clinic Barcelona, Barcelona, Spain. ³¹⁴Biocruces Bizkaia Health Research Institute, Barakaldo, Spain. ³¹⁵Histocompatibilidad y Biologia Molecular, Centro de Transfusion de Madrid, Madrid, Spain. ³¹⁶University of Milan, Milan, Italy. ³¹⁷Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy. ³¹⁸Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany. ³¹⁹German Center for Infection Research (DZIF), Medical Faculty and University Hospital Cologne, University of Cologne, Partner Site Bonn-Cologne, Cologne, Germany. 321 Ikerbasque, Basque Foundation for Science, Bilbao, Spain. 322 Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain. ³²³Infectious Diseases Service, Osakidetza, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain. ³²⁴Medical Department, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway. 325 Research Center Borstel, BioMaterialBank Nord, Borstel, Germany. ³²⁶German Center for Lung Research (DZL), Airway Research Center North (ARCN), Giessen, Germany. 327 Popgen 2.0 Network (P2N), Kiel, Germany.³²⁹Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, San Sebastian, Spain. ³³⁰Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway. 331 Department of Clinical Science, University of Bergen, Bergen, Norway. ³³²Biodonostia Health Research Institute, Donostia University Hospital, San Sebastian, Spain, ³³³Germans Trias i Puiol Research Institute (IGTP), Badalona, Spain, ³³⁵ISGlobal, Barcelona, Spain. ³³⁶CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. ³³⁷Universitat Pompeu Fabra (UPF), Barcelona, Spain. ³³⁸Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain. ³³⁹Osakidetza Basque Health Service, Donostialdea Integrated Health Organization, San Sebastian, Spain. ³⁴⁰Department of Internal Medicine, Infectious Diseases, University H.ospital Frankfurt and Goethe University Frankfurt, Frankfurt am Main, Germany.³⁴¹Humanitas Gavazzeni-Castelli, Bergamo, Italy.³⁴⁴School of Biological Sciences, Monash University, Clayton, Victoria, Australia.³⁴⁵Munich Clinic Schwabing, Academic Teaching Hospital, Ludwig-Maximilians-University (LMU), Munich, Germany. ³⁴⁶Department of Anesthesiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain. 349 Clinical Trials Centre Cologne, ZKS Köln, Cologne, Germany. ³⁵¹Institute of Human Genetics, University of Bonn School of Medicine, University Hospital Bonn, Bonn, Germany. 352 Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany. 353 UKSH Schleswig-Holstein, Kiel, Germany. ³⁵⁴Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany. ³⁵⁵Institute of Medical Virology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany. ³⁵⁶German Centre for Infection Research (DZIF), External Partner Site Frankfurt, Frankfurt am Main, Germany. ³⁵⁷Department of Neurology, Bezirksklinikum Regensburg, University of Regensburg, Regensburg, Germany. ³⁵⁹Charite Universitätsmedizin Berlin, Berlin Institute of Health, Berlin, Germany. 360 German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany. ³⁶¹Department of Infectious Diseases,

University Hospital of North Norway, Tromsø, Norway. ³⁶²Faculty of Health Sciences, UIT The Arctic University of Norway, Tromsø, Norway. 363Catalan Institute of Oncology (ICO), Barcelona, Spain. 364 Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain. ³⁶⁵Universitat de Barcelona (UB), Barcelona, Spain. ³⁶⁶deCODE genetics, Reykjavik, Iceland. ³⁶⁸Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain. 369 Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain. 370 Valladolid University Hospital, Valladolid, Spain. 371 Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia. ³⁷²SYNLAB Estonia, University of Tartu, Tartu, Estonia. ³⁷³University of Tartu, Tartu, Estonia. ³⁷⁴Kuressaare Hospital, Kuressaare, Estonia. 375 Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia. ³⁷⁷West Tallinn Central Hospital, Tallinn, Estonia. ³⁷⁸University of Tartu, Tartu University Hospital, Tartu, Estonia. ³⁷⁹Estonian Health Insurance Fund, Tallinn, Estonia. ³⁸⁰Tartu University Hospital, Tartu, Estonia. ³⁸¹FinnGen, Helsinki, Finland. ³⁸²Finnish Institute for Health and Welfare (THL), Helsinki, Finland. ³⁸³University of Helsinki, Faculty of Medicine, Clinical and Molecular Metabolism Research Program, Helsinki, Finland. ³⁸⁴Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland. 385 Department of Ophthalmology, University of Basel, Basel, Switzerland, ³⁸⁶Infectious Diseases Service, Department of Medicine, University Hospital and University of Lausanne, Lausanne, Switzerland. ³⁸⁸Centre for Primary Care and Public Health, University of Lausanne, Lausanne, Switzerland. ³⁸⁹Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland. 390 Division of Intensive Care, Geneva University Hospitals and the University of Geneva Faculty of Medicine, Geneva, Switzerland. ³⁹¹Infectious Disease Service, Department of Internal Medicine, Geneva University Hospital, Geneva, Switzerland. 392Clinique de Médecine et spécialités, Infectiologie, HFR-Fribourg, Fribourg, Switzerland. 393 Infectious Diseases Division, University Hospital Centre of the Canton of Vaud, Hospital of Valais, Sion, Switzerland. ³⁹⁴Functional Host Genomics of Infectious Diseases, University Hospital and University of Lausanne, Lausanne, Switzerland. ³⁹⁵Registry COVID, University Hospital and University of Lausanne, Lausanne, Switzerland. ³⁹⁶Pneumonia Prediction using Lung Ultrasound, University Hospital and University of Lausanne, Lausanne, Switzerland. ³⁹⁷Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland. ³⁹⁸COVID-19 Risk Prediction in Swiss ICUs-Trial, Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland. 399 GCAT-Genomes for Life, Germans Trias i Pujol Health Sciences Research Institute (IGTP), Badalona, Spain. 400 Catalan Institute of Oncology, Bellvitge Biomedical Research Institute, Consortium for Biomedical Research in Epidemiology and Public Health, University of Barcelona, Barcelona, Spain. ⁴⁰¹Barcelona Supercomputing Center, Centro Nacional de Supercomputación (BSC-CNS), Life & Medical Sciences, Barcelona, Spain. ⁴⁰⁴University of Siena, DIISM-SAILAB, Siena, Italy. ⁴⁰⁵Université Côte d'Azur, Inria, CNRS, I3S, Maasai, Nice, France. ⁴⁰⁸Division of Infectious Diseases and Immunology, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy. 409 Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy. 410 Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili Hospital, Brescia, Italy, 411 Chirurgia Vascolare, Ospedale Maggiore di Crema, Crema, Italy. 412 III Infectious Diseases Unit, ASST-FBF-Sacco, Milan, Italy. ⁴¹³Department of Biomedical and Clinical Sciences Luigi Sacco, University of Milan, Milan, Italy. 414 Department of Specialized and Internal Medicine, Tropical and Infectious Diseases Unit, Azienda Ospedaliera Universitaria Senese, Siena, Italy. 415 Unit of Respiratory Diseases and Lung Transplantation, Department of Internal and Specialist Medicine, University of Siena, Siena, Italy. ⁴¹⁶Department of Emergency and Urgency, Medicine, Surgery and Neurosciences, Unit of Intensive Care Medicine, Siena University Hospital, Siena, Italy. 417 Department of Medical, Surgical and Neurosciences and Radiological Sciences, Unit of Diagnostic Imaging, University of Siena, Siena, Italy. 418 Rheumatology Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico Le Scotte, Siena, Italy. 419 Department of Specialized and Internal Medicine, Infectious Diseases Unit, San Donato Hospital Arezzo, Arezzo, Italy. 420 Department of Emergency, Anesthesia Unit, San Donato Hospital, Arezzo, Italy. 421 Department of Specialized and Internal Medicine, Pneumology Unit and UTIP, San Donato Hospital, Arezzo, Italy. 422 Department of Emergency, Anesthesia Unit, Misericordia Hospital, Grosseto, Italy. 423 Department of Specialized and Internal Medicine, Infectious Diseases Unit, Misericordia Hospital, Grosseto, Italy. ⁴²⁴Department of Preventive Medicine, Azienda USL Toscana Sud Est, Arezzo, Italy. ⁴²⁵Clinical Chemical Analysis Laboratory, Misericordia Hospital, Grosseto, Italy. 426 Territorial Scientific Technician Department, Azienda USL Toscana Sud Est, Arezzo, Italy.⁴²⁷Clinical Chemical Analysis Laboratory, San Donato Hospital, Arezzo, Italy. 428 Department of Health Sciences, Clinic of Infectious Diseases, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy, ⁹Department of Anesthesia and Intensive Care, University of Modena and Reggio Emilia. Modena, Italy. 430 HIV/AIDS Department, National Institute for Infectious Diseases, IRCCS, Lazzaro Spallanzani, Rome, Italy, 431 Infectious Diseases Clinic, Department of Medicine, Azienda Ospedaliera di Perugia, Perugia, Italy. ⁴³²Infectious Diseases Clinic, Santa Maria Hospital, University of Perugia, Perugia, Italy. ⁴³³Department of Infectious Diseases, Treviso Hospital, Treviso, Italy. 434 Clinical Infectious Diseases, Mestre Hospital, Venezia, Italy. ¹³⁵Infectious Diseases Clinic, ULSS1, Belluno, Italy. ⁴³⁶Medical Genetics and Laboratory of Medical Genetics Unit, A.O.R.N "Antonio Cardarelli", Naples, Italy. 437 Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy. 438 CEINGE Biotecnologie Avanzate, Naples, Italy. 439 IRCCS SDN, Naples, Italy. 440 Unit of Respiratory Physiopathology, AORN dei Colli, Monaldi Hospital, Naples, Italy. 441Division of Medical Genetics, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy. 442Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy. 443 Infectious Diseases Clinic, Policlinico San Martino Hospital, IRCCS for Cancer Research, Genova, Italy. 444 Microbiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University of Medicine, Rome, Italy. ⁴⁴⁵Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario AGemelli IRCCS, Rome, Italy. 446 Department of Cardiovascular Diseases, University of Siena, Siena, Italy. 447Otolaryngology Unit, University of Siena, Siena, Italy. ⁴⁴⁸Department of Internal Medicine, ASST Valtellina e Alto Lario, Sondrio, Italy. ⁴⁴⁹First Aid Department, Luigi Curto Hospital, Polla, Italy. 450U.O.C. Laboratorio di Genetica Umana, Genova, Italy. 451 Infectious Diseases Clinics, University of Modena and Reggio Emilia, Modena, Italy.⁴⁵²Department of Respiratory Diseases, Azienda Ospedaliera di Cremona, Cremona,

Italy. ⁴⁵³U.O.C. Medicina, ASST Nord Milano, Ospedale Bassini, Milan, Italy. ⁴⁵⁴Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano, IRCCS, San Luca Hospital, Milan, Italy. 455 Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy. ⁴⁵⁶Center for Cardiac Arrhythmias of Genetic Origin, Istituto Auxologico Italiano, IRCCS, Milan, Italy.⁴⁵⁷Laboratory of Cardiovascular Genetics, Istituto Auxologico Italiano, IRCCS, Milan, Italy.⁴⁵⁸Unit of Infectious Diseases, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy. 459 Department of Cardiology, Institute of Montescano, Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy. 460 Department of Cardiac Rehabilitation, Institute of Tradate (VA), Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy. 461 Cardiac Rehabilitation Unit, Fondazione Salvatore Maugeri, IRCCS, Scientific Institute of Milan, Milan, Italy. 462 IRCCS CMondino Foundation, Pavia, Italy. 463 Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy. ⁴⁶⁴Department of Medicine, Pneumology Unit, Misericordia Hospital, Grosseto, Italy. 465 Department of Preventive Medicine, Azienda USL Toscana Sud Est, Arezzo, Italy. 466 Department of Anesthesia and Intensive Care Unit, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, Polo Universitario, University of Milan, Milan, Italy. 467 Health Management, Azienda USL Toscana Sudest, Arezzo, Italy. 468 Department of Mathematics, University of Pavia, Pavia, Italy. ⁴⁶⁹Independent researcher, Milan, Italy. ⁴⁷⁰Scuola Normale Superiore, Pisa, Italy. ⁴⁷¹CNR-Consiglio Nazionale delle Ricerche, Istituto di Biologia e Biotecnologia Agraria (IBBA), Milano, Italy. 473 Veos Digital, Milan, Italy. 475 Core Research Laboratory, ISPRO, Florence, Italy. ⁴⁷⁸Division of Infectious Diseases and Immunology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy, 479 Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. ⁴⁸⁰Clinical Chemistry Laboratory, Cytogenetics and Molecular Genetics Section, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy.⁴⁸¹Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy. ⁴⁸²Department of Molecular Medicine, University of Padova, Padua, Italy. 483 Laboratory of Regulatory and Functional Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy. ⁴⁸⁴Clinical Trial Office, Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy. ⁴⁸⁵Department of Health Sciences, University of Genova, Genova, Italy. ⁴⁸⁶Oncologia Medica e Ufficio Flussi Sondrio, Sondrio, Italy. 487Local Health Unit, Pharmaceutical Department of Grosseto, Toscana Sud Est Local Health Unit, Grosseto, Italy. 488 Independent researcher, Milan, Italy. 489 Direzione Scientifica, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy. 490 Fondazione per la ricerca Ospedale di Bergamo, Bergamo, Italy.⁴⁹¹Allelica, New York, NY, USA.⁴⁹³School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK. ⁴⁹⁴Medical and Population Genomics, Wellcome Sanger Institute, Hinxton, UK. ⁴⁹⁵Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service (NHS) Foundation Trust, Bradford, UK. 497 Institute of Population Health Sciences, Queen Mary University of London, London, UK. ⁴⁹⁸Genes & Health, Blizard Institute, Queen Mary University of London, London, UK. ⁴⁹⁹Institute of Population Health Sciences, Queen Mary University of London, London, UK. ⁵⁰⁰Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA, ⁵⁰¹Heart Institute (InCor), University of Sao Paulo Med School, São Paulo, Brazil, ²Genentech, San Francisco, CA, USA. ⁵⁰³DNA Link Inc., Seoul, Republic of Korea. ⁵⁰⁴Seoul National University Hospital Gangnam Center, Seoul, Republic of Korea. ⁵⁰⁵Division of Infectious Diseases, Department of Internal Medicine, Chungham National University School of Medicine, Daejeon, Republic of Korea. ⁵⁰⁶East Kent Hospitals NHS Foundation Trust, Canterbury, UK, ⁵⁰⁷Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea. ⁵⁰⁸Division of Infectious Diseases, Department of Internal Medicine, Incheon Medical Center, Incheon, Republic of Korea. 509 Department of Infectious Diseases, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea. ⁵¹⁰Department of Internal Medicine, Pusan National University School of Medicine and Medical Research Institute, Pusan National University Hospital, Busan, Republic of Korea. ⁵¹¹Division of Infectious Diseases, Department of Internal Medicine, Myongji Hospital, Goyang, Republic of Korea. ⁵¹²Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Republic of Korea. ⁵¹³Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA. ⁵¹⁴Department of Medicine, Stanford University, Stanford, CA, USA. ⁵¹⁵Department of Genetics, Stanford University, Stanford, CA, USA. ⁵¹⁶Department of Biomedical Data Science, Stanford University, Stanford, CA, USA. ⁵¹⁸Department of Pathology, Stanford University, Stanford, CA, USA. ⁵¹⁹Illumina, San Diego, CA, USA. 520 Computational Biology, Drug Discovery Sciences, Takeda Pharmaceuticals, Boston, MA, USA. 521 Department of Computational Biology, Swiss Institute of Bioinformatics (SIB), University of Lausanne, Lausanne, Switzerland. 523 Royal Victoria Hospital, Belfast, UK. ⁵²⁴Chelsea & Westminster NHS Foundation Trust, London, UK. ⁵²⁵Northampton General Hospital NHS Trust, Northampton, UK. ⁵²⁶Wrexham Maelor Hospital, Wrexham, UK. 527 University College Dublin, St Vincent's University Hospital, Dublin, Ireland. ⁵²⁸University Hospitals Coventry & Warwickshire NHS Trust, Coventry, UK. ⁵²⁹Watford General Hospital, Watford, UK. ⁵³⁰NIHR Health Protection Research Unit, Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK. ⁵³¹Queen Alexandra Hospital (Hampshire), Portsmouth Hospital Trust, Portsmouth, UK. ⁵³²Princess Royal Hospital, Brighton & Sussex Universities Hospitals NHS Trust, Brighton, UK. 533 Bassettlaw Hospital, Doncaster and Bassetlaw, Worksop, UK. ⁵³⁴Darent Valley Hospital, Dartford & Gravesham NHS Trust, Dartford, UK. ⁵³⁵High Containment Laboratories, University of Birmingham, Birmingham, UK. ⁵³⁶Queen Elizabeth the Queen Mother Hospital, Margate, UK.⁵³⁷John Radcliffe Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.⁵³⁸Royal Albert Edward Infirmary (Wigan), Wrightington, Wigan and Leigh, Wigan, UK. ⁵³⁹Manchester Royal Infirmary, Manchester University Hospitals NHS Foundation Trust, Manchester, UK. ⁵⁴⁰Furness General Hospital, Morecambe Bay NHS Foundation Trust, Barrow-in-Furness, UK. ⁵⁴⁷Castle Hill Hospital, Hull University Teaching Hospital Trust, Hull, UK. ⁵⁴²Hillingdon Hospital, Hillingdon Hospital, London, UK. ⁵⁴³St Thomas Hospital, Guys and St Thomas Foundation Trust, London, UK. ⁵⁴⁴University Hospitals Coventry and Warwickshire, Coventry, UK. 545St Michaels Hospital (Bristol), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK. ⁵⁴⁶Stepping Hill Hospital, Stockport NHS Foundation Trust, Manchester, UK. ⁵⁴⁷Royal Liverpool Hospital, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK. 548Bristol Royal Hospital (Children's), University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK. 549 Scarborough Hospital, York Teaching Hospitals NHS Foundation Trust, York, UK. 550Liverpool Heart & Chest Hospital, Liverpool Heart & Chest NHS Foundation Trust, Liverpool, UK. 551 James Paget University Hospital, James Paget University Hospitals NHS Foundation Trust, Great Yarmouth, UK. 552The

James Cook University Hospital, South Tees NHS Foundation Trust, Middlesbrough, UK, ⁵³Aberdeen Royal Infirmary, Grampian, Aberdeen, UK. ⁵⁵⁴University of Edinburgh, Edinburgh, UK. 555 Royal Devon and Exeter Hospital, Royal Devon and Exeter NHS Foudation Trust, Exeter, UK. 556 Worcestershire Royal Hospital, Worcestershire Acute Hospitals NHS Trust, Worcester, UK. 557Conquest Hospital, Hastings, East Sussex Healthcare NHS Trust, Seaford, UK. 558Dorset County Hospital, Dorset County Hospital NHS Foundation Trust, Dorchester, UK. 559 Royal Bournemouth General Hospital, University Hospitals Dorset NHS Foundation Trust, Bournemouth, UK. 560 Harrogate Hospital, Harrogate and District NHS Foundation Trust, Harrogate, UK. 561 Burnley General Teaching Hospital, East Lancashire Hospitals NHS Hospitals, Burnley, UK. 562 Torbay Hospital, Torbay & South Devon NHS Foundation Trust, Torquay, UK. 563 Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK. 564St Georges Hospital (Tooting), St Georges University Hospitals NHS Foundation Trust, London, UK. 565 Blackpool Victoria Hospital, Blackpool Teaching Hospitals NHS Foundation Trust, Blackpool, UK. 566The Royal London Hospital, Barts Health NHS Trust, London, UK. 567Salford Royal NHS Foundation Trust, Salford Royal NHS Foundation Trust, Manchester, UK. 568University Hospital of North Durham, County Durham and Darlington Foundation Trust, Durham, UK. 569 Norfolk and Norwich University Hospital, Norfolk and Norwich University Hospital NHS Foundation Trust. Norwich, UK, 572 Fairfield General Hospital. Pennine Acute Hospitals NHS Trust, Manchester, UK. 573 Hereford County Hospital, Wye Valley NHS Trust, Hereford, UK. ⁵⁷⁴Southampton General Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK. 575 Northampton General Hospital, Northampton NHS Foundation in the commission of the international content response in the call and the commission of the content response in the call of the ca Hospital, Mid Cheshire Hospitals NHS Foundation Trust, Crewe, UK. ⁵⁷⁹Diana Princess of Wales Hospital (Grimsby), North Lincolnshire & Goole, Grimsby, UK. ⁵⁸⁰Manor Hospital, Walsall Healthcare NHS Trust, Walsall, UK. ⁵⁸¹Addenbrookes Hospital, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK. 582West Suffolk Hospital, West Suffolk Hospital NHS Foundation Trust, Bury St Edmunds, UK. ⁵⁸³Basingstoke and North Hampshire Hospital, Hampshire Hospitals NHS Foundation Trust, Basingstoke, UK. 584North Cumbria Integrated Care NHS Foundation Trust, Carlisle, UK. 585 Warwick Hospital, South Warwickshire NHS Foundation Trust, Warwick, UK. 586 Birmingham Women's and Children's Hospital, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK. 587Nottingham City Hospital, Nottingham University Hospitals NHS Trust, Nottingham, UK. 588 Glangwili Hospital Child Health Section, Hywel Dda University Health Board, Carmarthen, UK. 589 Alder Hey Children's Hospital, Alder Hey Children's NHS Foundation Trust, Liverpool, UK. 590 Bronglais General Hospital, Hywel Dda University Health Board, Aberystwyth, UK. ⁵⁹¹Worthing Hospital, Western Sussex Hospitals NHS Foundation Trust, Worthing, UK. ⁵⁹²Rotheram District General Hospital, The Rotheram NHS Foundation Trust, Rotherham, UK. ⁵⁹³Royal Free Hospital, Royal Free London NHS Foundation Trust, London, UK. ⁵⁹⁴Homerton Hospital, Homerton University Hospital NHS Foundation Trust, London, UK. 595 Airedale Hospital, Airedale NHS Foundation Trust, Keighley, UK. 596 Basildon Hospital, Basildon and Thurrock University Hospitals NHS Foundation Trust, Basildon, UK. 597 The Christie NHS Foundation Trust, Manchester, UK. ⁵⁹⁸Queen Elizabeth Hospital (Greenwich), Lewisham and Greenwich NHS Trust, London, UK. ⁵⁹⁹The Whittington Hospital, Whittington Health NHS Trust, London, UK. ⁶⁰⁰Sheffield Children's Hospital, Sheffield Children's NHS Foundation Trust, Sheffield, UK. 601 Royal United Hospital, Bath, Royal United Hospitals Bath NHS Foundation Trust, Bath, UK. 602 Western General Hospital, Edinburgh, UK. ⁶⁰³Mid and South Essex NHS Foundation Trust, Basildon, UK. ⁶⁰⁴Hinchingbrooke Hospital, North West Anglia NHS Foundation Trust, Peterborough, UK. ⁶⁰⁵Royal Preston Hospital, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK. 606 University Hospital (Coventry), University Hospitals Coventry and Warwickshire, Coventry, UK. 607The Walton Centre, The Walton Centre, Liverpool, UK. 608Hull Royal Infirmary, Hull University Teaching Hospital Trust, Hull, UK. ⁶⁰⁹Darlington Memorial Hospital, County Durham and Darlington Foundation Trust, Darlington, UK. ⁶¹⁰Queen Elizabeth Hospital (Gateshead), Gateshead NHS Foundation Trust, Newcastle, UK. 611 Warrington Hospital, Warrington & Halton Hospitals NHS Foundation Trust, Warrington, UK. 612 University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK. 613St Mary's Hospital (Isle of Wight), Isle of Wight NHS Trust, Isle of Wight, UK. 614The Maidstone Hospital, Maidstone & Tunbridge Wells NHS Trust, Maidstone, UK. 615 Huddersfield Royal, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield, UK. 616 Royal Surrey County Hospital, Guildford, UK. 617 Countess of Chester Hospital, Countess of Chester Hospital NHS Foundation Trust, Chester, UK. 618 Frimley Park Hospital, Frimley Health Foundation Trust, Frimley, UK. 620 Leeds General Infirmary, Leeds Teaching Hospitals, Leeds, UK. 621 North Middlesex Hospital, North Middlesex University Hospital NHS Trust, London, UK. 622 Arrowe Park Hospital, Wirral University Teaching Hospital NHS Foundation Trust, Wirral, UK. 623 Great Ormond Street Hospital, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK. 624 Royal Shrewsbury Hospital, Shrewsbury and Telford Hospital NHS Trust, Shrewsbury, UK.⁶²⁵East Surrey Hospital (Redhill), Surrey & Sussex Healthcare, Redhill, UK, 626 Burton Hospital, University Hospitals of Derby & Burton NHS Foundation Trust, Burton-on-Trent, UK.⁶²⁷Kent and Canterbury Hospital, East Kent Hospitals NHS Foundation Trust, Canterbury, UK. ⁶²⁸Weston Area General Trust, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK. 629 Luton and Dunstable University Hospital, Luton, UK. 630 Glasgow Royal Infirmary, Greater Glasgow and Clyde, Glasgow, UK. 631 Derbyshire Healthcare, Derbyshire Healthcare NHS Foundation Trust, Derby, UK. 632 Macclesfield General Hospital, East Cheshire NHS Foundation Trust, Macclesfield, UK. 633 Chelsea and Westminster Hospital, Chelsea and Westminster NHS Trust, London, UK. ⁶³⁴Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK.⁶³⁵Prince Philip Hospital, Hwyel Dda University Health Board, Llanelli, UK. ⁶³⁶George Eliot Hospital - Acute Services, George Eliot Hospital, Nuneaton, UK. 637 Kettering General Hospital, Kettering General Hospital NHS Foundation Trust, Kettering, UK. 638 Birmingham Heartlands Hospital, Birmingham, UK. 639 Russells Hall Hospital, The Dudley Group NHS Foundation Trust, Dudley, UK. 640 Harefield Hospital, Royal Brompton & Harefield Trust, London, UK. 641 Lister Hospital, East and North Hertfordshire NHS Trust, Stevenage, UK. 642 Musgrove Park Hospital (Taunton & Somerset), Somerset NHS Foundation Trust, Taunton, UK. 643Queen's Hospital, Havering (Romford), Barking, Havering and Redbridge University Hospitals NHS Trust, London, UK. 644Southport & Formby District General Hospital, Southport and Ormskirk Hospital NHS Trust, Southport, UK. 645New Cross Hospital, The Royal Wolverhampton NHS Trust, Wolverhampton, UK. 646King's College Hospital, London, UK. 647The Royal Victoria Infirmary, Newcastle Hospitals NHS Trust, Newcastle, UK. 648 The Great Western Hospital,

Great Western Hospitals NHS Foundation Trust, Swindon, UK. ⁶⁴⁹Ninewells Hospital, Tayside, Dundee, UK. ⁶⁵⁰Poole Hospital NHS Trust, Poole, UK. ⁶⁵¹Burton Hospital, University Hospitals of Derby & Burton NHS Foundation Trust, Derby, UK. ⁶⁵²William Harvey Hospital, Ashford, East Kent Hospitals NHS Foundation Trust, Willesborough, UK.⁶⁵³King's Mill Hospital, Sherwood Forest Hospitals NHS Foundation Trust, Sutton-in-Ashfield, UK.⁶⁵⁴Liverpool Women's NHS Foundation Trust, Liverpool, UK. 655 Dewsbury Hospital, Mid Yorkshire Hospitals NHS Trust, Dewsbury, UK. 656 Northern Devon District Hospital, Northern Devon Healthcare NHS Trust, Barnstaple, UK. 657 Tameside General Hospital, Tameside and Glossop Integrated Care NHS Foundation Trust, Manchester, UK. 658 Sandwell General Hospital, Sandwell and West Birmingham Hospitals NHS Trust, Birmingham, UK.⁶⁵⁹Broomfield Hospital, Mid and South Essex University Hospitals Group, Broomfield, UK. 660 Wycombe Hospital, Buckingham Healthcare NHS Trust, Wycombe, UK. 661 University Hospital of North Tees, North Tees and Hartlepool NHS Trust, Stockton-on-Tees, UK. 662 Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK. 663 Bedford Hospital, Bedford, UK. 664Colchester General Hospital, East Suffolk and North Essex Foundation Trust, Colchester, UK. 665Queen Elizabeth Hospital (Birmingham) and Heartlands, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK. 666 Chesterfield Royal Hospital, Chesterfield Royal Hospital NHS Foundation Trust, Chesterfield, UK, 667 Princess Alexandra Hospital, The Princess Alexandra Hospital NHS Trust, Harlow, UK. 668 Watford General Hospital, West Hertfordshire Hospitals NHS Trust, Watford, UK. 669 Milton Keynes Hospital, Milton Keynes University Hospital NHS Foundation Trust, Milton Keynes, UK. ⁶⁷⁰Royal Bolton General Hospital, Bolton Foundation Trust, Bolton, UK. ⁶⁷¹Royal Gwent (Newport), Aneurin Bevan University Health Board, Newport, UK. ⁶⁷²The Royal Marsden Hospital (London), The Royal Marsden NHS Foundation Trust, London, UK. ⁶⁷³Queen Victoria Hospital (East Grinstead), Queen Victoria Hospital NHS Foundation Trust, East Grinstead, UK. ⁶⁷⁴County Hospital (Stafford), University Hospitals of North Midlands NHS Trust, Stafford, UK. ⁶⁷⁵Whiston Hospital, St Helen's & Knowlsey Hospitals NHS Trust, Prescot, UK. 676Croydon University Hospital, London, UK. 677 Gloucester Royal, Gloucestershire Hospitals NHS Foundation Trust, Gloucester, UK. 678 Medway Maritime Hospital, Medway Maritime NHS Trust, Gillingham, UK. ⁶⁷⁹Royal Papworth Hospital Everard, Royal Papworth Hospital NHS Foundation Trust, Cambridge, UK. 680 Derriford (Plymouth), University Hospital Plymouth NHS Trust, Plymouth, UK. 681St Helier Hospital, Epsom and St Helier University Hospital NHS Trust, London, UK. 682 Royal Berkshire Hospital, Royal Berkshire Foundation Trust, London, UK. 683 Bradford Royal Infirmary, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK. 684 Northwick Park, London North West University Hospital Trust, London, UK. 685 Ealing Hospital, London North West University Hospital Trust, London, UK. 686 Royal Cornwall Hospital (Tresliske), Royal Cornwall NHS Trust, Truro, UK. 687 Ashford Hospital, Ashford & St Peter's Hospital, Stanwell, UK. 688 Leicester Royal Infirmary (includes Glenfield Site), University Hospitals of Leicester, Leicester, UK. 689 Grantham and District Hospital, United Lincolnshire Hospitals NHS Trust, Grantham, UK. 690 University Hospital Aintree, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK. 691 North Tyneside General Hospital, Northumbria Healthcare NHS Trust, North Shields, UK. 692 Queen Elizabeth Hospital (King's Lynn), Queen Elizabeth Hospital King's Lynn NHS Foundation Trust, King's Lynn, UK. 693 The Crick Institute, London, UK. 695 William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK. 696Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, UK. ⁶⁹⁷Intensive Care National Audit & Research Centre, London, UK. ⁷⁰⁰Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK. ⁷⁰⁵Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh Edinburgh, UK. ⁷⁰⁶Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK. 707 Biostatistics Group, School of Life Sciences, Sun Yat-sen University, Guangzhou, China. ⁷⁰⁸Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, Edinburgh, UK. 709Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. 710 Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia. ⁷¹¹School of Life Sciences, Westlake University, Hangzhou, China. 712 Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, Hangzhou, China. 714Centre for Medical Informatics, The Usher Institute, University of Edinburgh, Edinburgh, UK. 715 Liverpool Clinical Trials Centre, University of Liverpool, Liverpool, UK. ⁷¹⁶Centre for Health Informatics, Division of Informatics, Imaging and Data Science, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK. 717 MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK. 718School of Informatics, University of Edinburgh, Edinburgh, UK. 719Royal Hospital for Children, Glasgow, UK. 721 MRC-University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK. 722 Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK, 724 Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China. 725Department of Critical Care Medicine, Queen's University and Kingston Health Sciences Centre, Kingston, Ontario, Canada. 726 Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK. 727 Department of Intensive Care Medicine, Royal Victoria Hospital, Belfast, UK. ⁷²⁸UCL Centre for Human Health and Performance, London, UK. ²⁹Clinical Research Centre at St Vincent's University Hospital, University College Dublin, Dublin, Ireland. ⁷³⁰National Heart and Lung Institute, Imperial College London, London, UK. 731 Imperial College Healthcare NHS Trust London, London, UK. ⁷³²NIHR Health Protection Research Unit for Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences University of Liverpool, Liverpool, UK ⁷³³Respiratory Medicine, Alder Hey Children's Hospital, Institute in The Park, University of Liverpool, Alder Hey Children's Hospital, Liverpool, UK. 734 Department of Intensive Care Medicine, Guy's and St Thomas NHS Foundation Trust, London, UK. 735Department of Medicine, University of Cambridge, Cambridge, UK. 736 Airedale General Hospital, Keighley, UK. 737 Barts Health NHS Trust, London, UK. 738 Basildon Hospital, Basildon, UK. 739 BHRUT (Barking Havering) - Queens Hospital and King George Hospital, Romford, UK. ⁷⁴⁰Bradford Royal Infirmary, Bradford, UK. 741 Bronglais General Hospital, Aberystwyth, UK. 742 Broomfield Hospital, Chelmsford, UK. 743Calderdale Royal Hospital, Halifax, UK. 744Charing Cross Hospital, St Mary's Hospital and Hammersmith Hospital, London, UK. ⁷⁴⁵Barnet Hospital, London, UK. ⁷⁴⁶Birmingham Children's Hospital, Birmingham, UK. ⁷⁴⁷St John's Hospital Livingston,

Livingston, UK. ⁷⁴⁸Aberdeen Royal Infirmary, Aberdeen, UK. ⁷⁴⁹Addenbrooke's Hospital, Cambridge, UK. ⁷⁵⁰Aintree University Hospital, Liverpool, UK. ⁷⁵²Arrowe Park Hospital, Wirral, UK. ⁷⁵³Ashford and St Peter's Hospital, Lyne, UK. ⁷⁵⁴Basingstoke and North Hampshire Hospital, Basingstoke, UK. ⁷⁵⁵Borders General Hospital, Melrose, UK. ⁷⁵⁶Chesterfield Royal Hospital Foundation Trust, Chesterfield, UK. 757 Eastbourne District General Hospital, East Sussex, UK and Conquest Hospital, Eastbourne, UK. 758 Barnsley Hospital, Barnsley, UK. 759 Blackpool Victoria Hospital, Blackpool, UK. 760 East Surrey Hospital, Redhill, UK. 761 Good Hope Hospital, Birmingham, UK. ⁷⁶²Hereford County Hospital, Hereford, UK. ⁷⁶³Hull Royal Infirmary, Hull, UK. ⁷⁶⁵Kent & Canterbury Hospital, Canterbury, UK. ⁷⁶⁶Manchester Royal Infirmary, Manchester, UK. 767Nottingham University Hospital, Nottingham, UK. 768Pilgrim Hospital, Lincoln, UK. ⁷⁶⁹Queen Elizabeth Hospital, Birmingham, UK. ⁷⁷⁰Salford Royal Hospital, Manchester, UK. ⁷⁷¹Tameside General Hospital, Ashton-under-Lyne, UK. ⁷⁷²The Tunbridge Wells Hospital and Maidstone Hospital, Maidstone, UK. ⁷⁷³The Royal Oldham Hospital, Manchester, UK. ⁷⁷⁴The Royal Papworth Hospital, Cambridge, UK. 775 University College Hospital, London, UK. ⁷⁷⁶Withybush General Hospital, Haverfordwest, UK. ⁷⁷⁷Wythenshawe Hospital, Manchester, UK. ⁷⁷⁸Yeovil Hospital, Yeovil, UK. ⁷⁷⁹Cumberland Infirmary, Carlisle, UK. ⁷⁸⁰Darent Valley Hospital, Dartford, UK. 781 Dumfries and Galloway Royal Infirmary, Dumfries, UK. 782 Ealing Hospital, London, UK. ⁷⁸³Fairfield General Hospital, Bury, UK. ⁷⁸⁴George Eliot Hospital NHS Trust, Nuneaton, UK. 785Glan Clwyd Hospital, Bodelwyddan, UK. 786Glangwili General Hospital, Camarthen, UK. 787The Great Western Hospital, Swindon, UK. 788Guys and St Thomas' Hospital, London, UK. ⁷⁸⁹Harefield Hospital, London, UK. ⁷⁹⁰Harrogate and District NHS Foundation Trust, Harrogate, UK. ⁷⁹² James Paget University Hospital NHS Trust, Great Yarmouth, UK. ⁷⁹⁴King's Mill Hospital, Nottingham, UK. ⁷⁹⁵Kingston Hospital, Kingston, UK. ⁷⁹⁶Lincoln County Hospital, Lincoln, UK. 797 Liverpool Heart and Chest Hospital, Liverpool, UK. 798 Macclesfield ¹⁰⁰ District General Hospital, Macclesfield, UK. ²⁸⁰Medway Maritime Hospital, Gillingham, UK.
 ⁸⁰⁰ Milton Keynes University Hospital, Milton Keynes, UK. ⁸⁰¹Morriston Hospital, Swansea, UK. ⁸⁰²National Hospital for Neurology and Neurosurgery, London, UK. ⁸⁰³Norfolk and Norwich University hospital (NNUH), Norwich, UK. ⁸⁰⁴North Middlesex University Hospital NHS Trust, London, UK. ⁸⁰⁶Northumbria Healthcare NHS Foundation Trust, North Shields, UK. ⁸⁰⁷Peterborough City Hospital, Peterborough, UK. ⁸⁰⁸Prince Charles Hospital, Merthyr Tydfil, UK.⁸⁰⁹Royal Sussex County Hospital, Brighton, UK.⁸¹⁰Princess Royal Hospital, Haywards Heath, UK. 811 Princess of Wales Hospital, Llantrisant, UK. 812 Queen Alexandra Hospital, Portsmouth, UK.⁸¹³Queen Elizabeth Hospital, London, UK.⁸¹⁵Queen Victoria Hospital, East Grinstead, UK. ⁸¹⁶Queen's Hospital Burton, Burton-On-Trent, UK. ⁸¹⁷Raigmore Hospital, Inverness, UK.⁸¹⁸Rotherham General Hospital, Rotherham, UK.⁸¹⁹Royal Blackburn Teaching Hospital, Blackburn, UK. 820 Royal Preston Hospital, Preston, UK. 821 Royal Surrey County Hospital, Guildford, UK. ⁸²²Royal Albert Edward Infirmary, Wigan, UK. ⁸²³The Royal Alexandra Children's Hospital, Brighton, UK. 824 Royal Alexandra Hospital, Paisley, UK. 825 Royal Bolton Hospital, Bolton, UK. 826 University Hospitals Dorset NHS Foundation Trust, Dorchester, UK. ⁸²⁷Royal Brompton Hospital, London, UK. ⁸²⁸Imperial College London, London, UK. ⁸²⁹Royal Cornwall Hospital, Truro, UK. 830 Royal Free Hospital, London, UK. 831 Royal Glamorgan Hospital, Pontyclun, UK. 832 Royal Gwent Hospital, Newport, UK. 833 Northern General Hospital, Sheffield, UK. 834 Royal Hampshire County Hospital, Winchester, UK. 835 Royal Manchester Children's Hospital, Manchester, UK. ⁸³⁶Royal Stoke University Hospital, Stoke-on-Trent, UK. ⁸³⁷Salisbury District Hospital, Salisbury, UK. ⁸³⁸Sandwell General Hospital, Birmingham, UK. ⁸³⁹Scarborough General Hospital, Scarborough, UK. ⁸⁴⁰Scunthorpe General Hospital. Scunthorpe, UK. ⁸⁴¹Southmead Hospital, Bristol, UK. ⁸⁴²St George's Hospital, London, UK. ⁸⁴³St Mary's Hospital, Newport, UK. 844Stoke Mandeville Hospital, Aylesbury, UK. 845Sunderland Royal Hospital, Sunderland, UK. ⁸⁴⁶Alexandra Hospital, Redditch and Worcester Royal Hospital, Worcester, UK. ⁸⁴⁷The Christie NHS Foundation Trust, Manchester, UK. ⁸⁴⁷The Queen Elizabeth Hospital, King's Lynn, UK. ⁸⁴⁹The Royal Liverpool University Hospital, Liverpool, UK. ⁸⁵⁰The Royal Marsden NHS Foundation Trust, London, UK. ⁸⁵¹Torbay Hospital, Torquay, UK. ⁸⁵²University Hospital Monklands, Airdrie, UK. ⁸⁵³University Hospital Lewisham, London, UK. ⁸⁵⁴University Hospital North Durham, Darlington, UK. ⁸⁵⁵University Hospital of North Tees, Stockton-on-Tees, UK. ⁸⁵⁶University Hospital of Wales, Cardiff, UK. ⁸⁵⁷University Hospital Wishaw, Wishaw, UK. 858 Victoria Hospital, Kirkcaldy, UK. 859 Warrington General Hospital, Warrington, UK. 860 West Cumberland Hospital, Whitehaven, UK. 861 Western Sussex Hospitals, Chichester, UK. ⁸⁶²Whiston Hospital, Prescot, UK. ⁸⁶³York Hospital, York, UK. ⁸⁶⁴Ysbyty Gwynedd, Bangor, UK. 865 Countess of Chester Hospital, Chester, UK. 866 Croydon University Hospital, Croydon, UK. ⁸⁶⁷Diana Princess of Wales Hospital, Grimsby, UK. ⁸⁶⁸Dorset County Hospital, Dorchester, UK. ⁸⁶⁹Forth Valley Royal Hospital, Falkirk, UK. ⁸⁷⁰Furness General Hospital, Barrow-in-Furness, UK.⁸⁷¹Alder Hey Children's Hospital, Liverpool, UK.⁸⁷²Derriford Hospital, Plymouth, UK. 873Glasgow Royal Infirmary, Glasgow, UK. 874Glenfield Hospital, Leicester, UK. ⁸⁷⁵Gloucestershire Royal Hospital, Gloucester, UK. ⁸⁷⁶Golden Jubilee National Hospital, Clydebank, UK. 877 Great Ormond St Hospital and UCL Great Ormond St Institute of Child Health NIHR Biomedical Research Centre, London, UK. ⁸⁷⁸Homerton University Hospital Foundation NHS Trust, London, UK, 879 James Cook University Hospital, Middlesbrough, UK. ⁸⁸⁰ John Radcliffe Hospital, Oxford, UK. ⁸⁸¹Leicester Royal Infirmary, Leicester, UK. ⁸⁸²Lister Hospital, Stevenage, UK. 883New Cross Hospital, Wolverhampton, UK. 884Royal Victoria Infirmary, Newcastle Upon Tyne, UK. ⁸⁸⁵Ninewells Hospital, Dundee, UK. ⁸⁸⁶North Devon District Hospital, Barnstaple, UK.⁸⁸⁷North Manchester General Hospital, Manchester, UK. ⁸⁸⁸Northwick Park Hospital, London, UK. ⁸⁹⁹Prince Philip Hospital, Lianelli, UK. ⁸⁹⁰Pinderfields General Hospital, Wakefield, UK. ⁸⁹¹Poole Hospital, Poole, UK. ⁸⁹²Royal Shrewsbury Hospital, Shrewsbury, UK. ⁸⁹³Princess Royal Hospital, Telford, UK. ⁸⁹⁹Queen Elizabeth Hospital Gateshead, Gateshead, UK. ⁹⁰⁰Queen Elizabeth University Hospital, Glasgow, UK. ⁹⁰¹Royal Berkshire NHS Foundation Trust, Reading, UK. ⁹⁰²Royal Derby Hospital, Derby, UK. ⁹⁰³Royal Devon and Exeter Hospital, Exeter, UK. ⁹⁰⁶Royal Infirmary of Edinburgh, Edinburgh, UK. ⁹⁰⁵Royal Lancaster Infirmary, Lancaster, UK. ⁹⁰⁶Royal United Hospital, Bath, UK. ⁹⁰⁷Russells Hall Hospital, Dudley, UK. 908Sheffield Children's Hospital, Sheffield, UK. 909Southampton General Hospital, Southampton, UK. 910 Southend University Hospital, Westcliff-on-Sea, UK. ⁹¹¹Southport and Formby District General Hospital, Ormskirk, UK. ⁹¹²St James's University Hospital and Leeds General Infirmary, Leeds, UK. ⁹¹³Bristol Royal Infirmary, Bristol, UK. ⁹¹⁴Stepping Hill Hospital, Stockport, UK. ⁹¹⁵The Princess Alexandra Hospital, Harlow, UK. ⁹¹⁶University Hospital Crosshouse, Kilmarnock, UK. ⁹¹⁷University Hospital Hairmyres, East Kilbride, UK. 918 Craigavon Area Hospital, Craigavon, UK. 919 Warwick Hospital, Warwick, UK. West Middlesex Hospital, Isleworth, UK. ⁹²²Whittington Hospital, London, UK. ⁹²³William Harvey Hospital, Ashford, UK. 932 Section of Molecular Virology, Imperial College London,

London, UK, 933 Antimicrobial Resistance and Hospital Acquired Infection Department, Public Health England, London, UK. 934 Department of Infectious Disease, Imperial College London, London, UK. 935National Infection Service, Public Health England, London, UK. ³³⁶MRC-University of Glasgow Centre for Virus Research, Glasgow, UK. ³³⁷Liverpool School of Tropical Medicine, Liverpool, UK. ³³⁸Institute of Infection and Global Health, University of Liverpool, Liverpool, UK. 940 Virology Reference Department, National Infection Service, Public Health England, London, UK. ⁹⁴¹Department of Pharmacology, University of Liverpool, Liverpool, UK. 942Nuffield Department of Medicine, University of Oxford, Oxford, UK. ⁹⁴⁴Nottingham University Hospitals NHS Trust, Nottingham, UK. ⁹⁴⁵Nuffield Department of Medicine, John Radcliffe Hospital, Oxford, UK. 946ISARIC Global Support Centre, Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK. 947 Division of Infection and Immunity, University College London, London, UK. ⁸Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK. 949Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, UK. ⁹⁵⁰Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK. ⁹⁵¹Department of Pediatrics and Virology, Imperial College London, London, UK.⁹⁵²The Florey Institute for Host-Pathogen Interactions, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK. 953Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK. ⁹⁵⁵Blood Borne Virus Unit, Virus Reference Department, National Infection Service, Public Health England, London, UK. ⁹⁵⁶Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK. 957 Institute for Global Health, University College London, London, UK. ⁹⁵⁸Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK. ⁹⁵⁹Department of Child Life and Health, University of Edinburgh, Edinburgh, UK. ⁹⁶⁰Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK. ⁹⁶¹Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK. 962 National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK. 963 Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK. 964Institute of Translational Medicine, University of Liverpool Liverpool, UK. 965 Intensive Care Unit, Royal Infirmary Edinburgh, Edinburgh, UK. 966 University of Liverpool, Liverpool, UK. 967University of Glasgow, Glasgow, UK. 968Edinburgh Clinical Research Facility, Western General Hospital, University of Edinburgh, Edinburgh, UK. ⁹⁷⁰Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands. 971 Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK. ⁹⁷⁴Genotek, Moscow, Russia. ⁹⁷⁵Helix, San Mateo, CA, USA. ⁹⁷⁶Center for Genomic Medicine, Desert Research Institute, Reno, NV, USA. 977 Renown Health, Reno, NV, USA. 97824Genetics, Boston, MA, USA. 979 Hospital La Paz Institute for Health Research, Madrid, Spain. 980 Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan, ⁹⁸¹Department of Statistical Genetics, Osaka University Graduate School of Medicine. Suita, Japan. 982 Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan. 983 Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives. Osaka University, Suita, Japan. ⁹⁸⁴Division of Health Medical Intelligence, Human Genome Center, the Institute of Medical Science, The University of Tokyo, Tokyo, Japan. 985 Laboratory of Viral Infection I, Department of Infection Control and Immunology, Ömura Satoshi Memorial Institute & Graduate School of Infection Control Sciences, Kitasato University, Tokyo, Japan. ⁶Department of Surgery, Keio University School of Medicine, Tokyo, Japan. ⁹⁸⁷Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan. 988 Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan. 999Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan. 990 Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan. 991 Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan. 992 Department of Insured Medical Care Management, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan. 993 Genome Medical Science Project (Toyama), National Center for Global Health and Medicine, Chiba, Japan. ⁹⁹⁴Division of Gastroenterology and Hepatology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan. 995 M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan. 996 Department of Pathology and Tumor Biology Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan. ⁷Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden. 999 Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Tokyo, Japan.¹⁰⁰⁰Department of Anesthesiology, Keio University School of Medicine, Tokyo, Japan.¹⁰⁰¹Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan. ¹⁰⁰²Division of Infection Control and Prevention, Osaka University Hospital, Suita, Japan.¹⁰⁰³Department of Biomedical Ethics and Public Policy, Osaka University Graduate School of Medicine, Suita, Japan, 1004Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan. 1005 Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan. ⁰⁰⁶Department of Neurosurgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan. ¹⁰⁰⁷Laboratory of Immune Regulation, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Suita, Japan. 1009Medical Innovation Promotion Center, Tokyo Medical and Dental University, Tokyo, Japan. ¹⁰¹⁰Clinical Research Center, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan. ¹⁰¹¹Department of Medical Informatics, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan ¹⁰¹²Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan. ¹⁰¹³Clinical Laboratory, Tokyo Medical and Dental University Hospital of Medicine, Tokyo, Japan. ¹⁰¹⁴Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan. ¹⁰¹⁵Department of Respiratory Medicine, Graduate School of Medicine, Faculty of Medicine, Juntendo University, Tokyo, Japan. ¹⁰¹⁶Department of Emergency and Disaster Medicine, Graduate School of Medicine, Faculty of Medicine, Juntendo University, Tokyo, Japan. ¹⁰¹⁷Department of Cardiovascular Biology and Medicine, Graduate School of Medicine, Faculty of Medicine, Juntendo University, Tokyo, Japan.¹⁰¹⁸Department of Respiratory Medicine, Tokyo Women's Medical University, Tokyo, Japan. ¹⁰¹⁹Department of General Medicine, Tokyo Women's Medical University, Tokyo, Japan. ¹⁰²⁰Department of Respiratory

Medicine, Saitama Cardiovascular and Respiratory Center, Saitama, Japan. 1021 Kawasaki Municipal Ida Hospital, Kanagawa, Japan. ¹⁰²²Saitama Medical Center, Internal Medicine, Japan Community Healthcare Organization (JCHO), Saitama, Japan. ¹⁰²³Saitama City Hospital, Saitama, Japan. ¹⁰²⁴Division of Infection Control, Eiju General Hospital, Tokyo, Japan. ¹⁰²⁵Department of Pulmonary Medicine, Eiju General Hospital, Tokyo, Japan. ¹⁰²⁶Department of Respiratory Medicine, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan. 1027 Division of Respirology, Rheumatology, and Neurology, Department of Internal Medicine Kurume University School of Medicine, Fukuoka, Japan. 1028 Department of Infection Control, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan. 1029 Department of Infectious Diseases, Tosei General Hospital, Aichi, Japan.¹⁰³⁰Fukujuji Hospital, Kiyose, Japan.¹⁰³¹Department of Emergency and Critical Care Medicine, Tokyo Women's Medical University Medical Center East, Tokyo, Japan. ³²Department of Medicine, Tokyo Women's Medical University Medical Center East, Tokyo, Japan. ¹⁰³³Department of Pediatrics, Tokyo Women's Medical University Medical Center East, Tokyo, Japan.¹⁰³⁴ Japan Community Healthcare Organization Kanazawa Hospital, Kanazawa, Japan.¹⁰³⁵Division of Pulmonary Medicine, Department of Internal Medicine, Federation of National Public Service Personnel Mutual Aid Associations, Tachikawa Hospital, Tachikawa, Japan.¹⁰³⁶Department of Respiratory Medicine, Japan Organization of Occupational Health and Safety, Kanto Rosai Hospital, Kawasaki, Japan, ¹⁰³⁷Department of General Internal Medicine, Japan Organization of Occupational Health and Safety, Kanto Rosai Hospital, Kawasaki, Japan.¹⁰³⁸Department of Emergency and Critical Care Medicine, Kansai Medical University General Medical Center, Kirakata, Japan.¹⁰³⁹Department of Respiratory Medicine, Kitasato University, Kitasato Institute Hospital, Tokyo, Japan.¹⁰⁴⁰Ishikawa Prefectural Central Hospital, Kanazawa, Japan.¹⁰⁴¹Internal Medicine, Sano Kosei General Hospital, Sano, Japan. ¹⁰⁴²Saiseikai Yokohamashi Nanbu Hospital, Yokohama, Japan. ¹⁰⁴³Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan. ¹⁰⁴⁴Saiseikai Utsunomiya Hospital, Utsunomiya, Japan. ¹⁰⁴⁵Department of Respiratory Medicine, KKR Sapporo Medical Center, Sapporo, Japan. ¹⁰⁴⁶Internal Medicine, Internal Medicine Center, Showa University Koto Toyosu Hospital, Tokyo, Japan. ¹⁰⁴⁷Department of Respiratory Medicine, Toyohashi Municipal Hospital, Toyohashi, Japan.¹⁰⁴⁸Keiyu Hospital, Yokohama, Japan.¹⁰⁴⁹Department of Rheumatology, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan. 1050 Department of Respiratory Medicine, National Hospital Organization Tokyo Medical Center, Tokyo, Japan. ¹⁰⁵¹Department of Allergy, National Hospital Organization Tokyo Medical Center, Tokyo, Japan. ¹⁰⁵²Department of General Internal Medicine and Infectious Diseases, National Hospital Organization Tokyo Medical Center, Tokyo, Japan.¹⁰⁵³ Japanese Red Cross Musashino Hospital, Musashino, Japan.¹⁰⁵⁴Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan. ¹⁰⁵⁵Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan. 1056 Department of Emergency and Critical Care Medicine, St Marianna University School of Medicine, Kawasaki, Japan.¹⁰⁵⁷Division of General Internal Medicine, Department of Internal Medicine, St Marianna University School of Medicine, Kawasaki, Japan.¹⁰⁵⁸National Hospital Organization Kanazawa Medical Center, Kanazawa, Japan. ¹⁰⁵⁹Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, Tokorozawa, Japan. ¹⁰⁰⁰Department of Emergency and Critical Care Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan. ¹⁰⁰¹Department of Infection Control, Fukuoka University Hospital, Fukuoka, Japan. ¹⁰⁶²Tokyo Saiseikai Central Hospital, Tokyo, Japan. ¹⁰⁶³Department of Internal Medicine, Fukuoka Tokushukai Hospital, Kasuga, Japan. ¹⁰⁶⁴Department of Infectious Disease and Clinical Research Institute, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan. ¹⁰⁶⁵Department of Respirology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan. ¹⁰⁶⁷Matsumoto City Hospital, Matsumoto, Japan. Vulsiful Medical Center, Pukuka, Japan. 1069 Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan. 1070 Department of Respiratory Versity Graduate School of Medicine, Nagoya, Japan. 1070 Department of Respiratory Medicine, Fujisawa City Hospital, Fujisawa, Japan. 1071 Sapporo City General Hospital, Sapporo, Japan. ¹⁰⁷²Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, Chiba, Japan. ¹⁰⁷³Division of Respiratory Medicine, Social Welfare Organization Saiseikai Imperial Gift Foundation, Saiseikai Kumamoto Hospital, Kumamoto, Japan. ¹⁰⁷⁴Department of Anesthesiology and Intensive Care Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan.¹⁰⁷⁵Ome Municipal General Hospital, Ome, Japan. ⁶Hanwa Daini Hospital, Osaka, Japan. ¹⁰⁷⁷Department of Respiratory Internal Medicine, St Marianna University School of Medicine, Yokohama-City Seibu Hospital, Yokohama, Japan. ⁸Division of Hematology, Department of Internal Medicine, St Marianna University Yokohama-City Seibu Hospital, Yokohama, Japan. 1079 Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Tokai University School of Medicine, Tokyo, Japan.¹⁰⁸⁰Division of Pulmonary Medicine, Department of Medicine, Tokai University School of Medicine, Tokyo, Japan. ¹⁰⁸¹National Hospital Organization Kumamoto ¹⁰⁸²Department of Respiratory Medicine, Tokyo Medical Medical Center, Kumamoto, Japan.¹⁰⁸²Department of Respiratory Medicine, Tokyo Medic University Hospital, Tokyo, Japan.¹⁰⁸³Department of Respiratory Medicine, Japanese Red Cross Medical Center, Tokyo, Japan, 1084 JA Toride Medical Hospital, Toride, Japan, 1085 Japan Organization of Occupational Health and Safety Okayama Rosai Hospital, Okayama, Japan ³⁸⁶Emergency and Disaster Medicine, Graduate School of Medicine, Gifu University School of Medicine, Gifu, Japan.¹⁰⁸⁷Niigata University, Niigata, Japan.¹⁰⁸⁸National Hospital Organization Kyoto Medical Center, Kyoto, Japan. ¹⁰⁸⁹Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. ¹⁰⁹⁰Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan. 1091 Department of Emergency and Critical Care Medicine, Tsukuba University, Tsukuba, Japan.¹⁰⁹²Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan. ¹⁰⁹³Department of Hematology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan. ¹⁰⁹⁴National Hospital Organization Tokyo Hospital, Tokyo, Japan. ¹⁰⁹⁵Fujioka General Hospital, Fujioka, Japan.¹⁰⁹⁶Division of Respiratory Medicine and Allergology, Department of Medicine, School of Medicine, Showa University, Tokyo, Japan. 1097 Department of Pulmonary Medicine, Fukushima Medical University, Fukushima, Japan. 1098 Kansai Electric Power Hospital, Osaka, Japan. 1099 Kumamoto City Hospital, Kumamoto, Japan. 1100 Department of Emergency and Critical Care Medicine, Tokyo Metropolitan Police Hospital, Tokyo, Japan. 1101 Department of Respiratory Medicine, International University of Health and Welfare, Shioya Hospital, Narita, Japan. 1102 Department of Clinical Laboratory, International University of Health and Welfare, Shioya Hospital, Narita, Japan. ¹¹⁰³National Hospital Organization Saitama Hospital, Saitama, Japan.¹¹⁰⁴Department of Respiratory Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.¹¹⁰⁵Department of Orthopedic Surgery, Tokyo Medical

University, Ibaraki Medical Center, Tokyo, Japan. 1106 Department of Internal Medicine, Kiryu Kosei General Hospital, Kiryu, Japan. ¹¹⁰⁷Daini Osaka Police Hospital, Osaka, Japan. ¹¹⁰⁹Department of Epidemiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands. ¹¹¹²Department of Psychiatry, University Medical Center Groningen, Groningen, The Netherlands. ¹¹¹³Department of Genetics, University Medical Center Groningen, Groningen, The Netherlands.¹¹¹⁴Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada. ¹¹¹⁵Division of Respiratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada. ¹¹¹⁶Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Quebec, Canada.¹¹¹⁷Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹¹¹⁸University of Washington, Global Health, Seattle, WA, USA.¹¹¹⁹Gossamer Bio, San Diego, CA, USA.¹¹²⁰Department of Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands. ¹¹²¹GRIAC Research Institute, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands.¹¹²²Department of Pulmonary Diseases, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands. ¹¹²³Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA, ¹¹²⁴Harvard Medical School, Cambridge, MA, USA, ¹¹²⁵Program in Medical and Population Genetics, Broad Institute, Boston, MA, USA. ¹¹²⁶Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.¹¹²⁷Brigham and Women's Hospital, Boston, MA, USA.¹¹²⁸Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.¹¹²⁹Department of Neurology, Massachusetts General Hospital, Boston, MA, USA. ¹¹³⁰Division of General Internal Medicine, Massachusetts General Hospital and Department of Medicine, Boston, MA, USA. ¹¹³²Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA. ¹¹³³Mount Sinai Clinical Intelligence Center, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹¹³⁵Sema4, a Mount Sinai venture, Stamford, CT, USA. ¹¹³⁷Mount Sinai Clinical Intelligence Center, Charles Bronfman Institute for Personalized Medicine, New York, NY, USA. ¹¹³⁹Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. ¹¹⁴⁰Icahn Institute of Data Science and Genomics Technology, Icahn School of Medicine, New York, NY, USA. 1141 Mount Sinai Clinical Intelligence Center, Icahn School of Medicine, New York, NY, USA. ¹¹⁴²Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹¹⁴³Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹¹⁴⁴Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹¹⁴⁶The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹¹⁴⁷Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 1148 Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹¹⁴⁹Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹¹⁵⁰Department of Psychiatry, Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.¹¹⁵¹Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹¹⁵²Department of Human Genetics, Center for Autism Research and Treatment, Institute for Precision Health University of California Los Angeles, Los Angeles, CA, USA. ¹¹⁵³The Hasso Plattner Institute of Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai. New York. NY. USA ⁵⁴BioMe Phenomics Center, >Icahn School of Medicine at Mount Sinai, New York, NY, USA. ¹⁵⁵Department of Medicine, Icann School of Medicine at Mount Sinai, New York, NY, USA.
 ¹⁵⁵Regeneron Genetics Center, Tarrytown, NY, USA.
 ¹⁵⁹Department of Population Health Sciences, Geisinger Health System, Danville, PA, USA.
 ¹⁵⁹Department of Population Health Sciences, Geisinger Health System, Danville, PA, USA. Functional Genomics, Geisinger Health System, Danville, PA, USA. ¹¹⁶²Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA ¹¹⁶³Department of Biomedical Data Science, Stanford University, Stanford, CA, USA. ¹¹⁶⁶Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, USA. ¹¹⁶⁷Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, USA. ¹¹⁶⁸Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden. ¹¹⁶⁹Department of Medical Sciences, University of Turin, Turin, Italy. ¹¹⁷⁰Department of Clinical and Biological Sciences, University of Turin, Orbassano, Italy. 1171 Department of Pediatrics, Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA. ¹¹⁷²University of Genova, Genova, Italy. ¹¹⁷³Hopital Mont-Godinne, Yvoir, Belgium. ¹¹⁷⁴Department of Molecular Medicine, University of Pavia, Pavia, Italy. ¹¹⁷⁵Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy. ¹¹⁷⁶Qatar Biobank for Medical Research, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar. ¹¹⁷⁷Latvian Biomedical Research and Study Centre, Riga, Latvia. ¹¹⁷⁸Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden. ⁷⁹Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany. ¹¹⁸⁰Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala Sweden. ¹¹⁸¹Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.¹¹⁸²Hedenstierna Laboratory, CIRRUS, Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ¹¹⁸³Department of Computer Science, School of Engineering, University of California Los Angeles, Los Angeles, CA, USA. ¹¹⁸⁴University of California Los Angeles, Los Angeles, CA, USA. ¹¹⁸⁵Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA. ¹¹⁸⁶Division of Immunology, Allergy, and Rheumatology, University of California Los Angeles, Los Angeles, CA, USA. ¹¹⁸⁷Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, USA ¹¹⁸⁸Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA. ¹¹⁸⁹Department of Computational Medicine, University of California Los Angeles, Los Angeles, CA, USA. ¹¹⁹⁰Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, USA. 1191 Bioinformatics IDP, UCLA, Los Angeles, CA, USA. ¹¹⁹²Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. ¹¹⁹³Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA. ¹¹⁹⁵Queen Mary University, London, UK. ¹¹⁹⁶UCL Great Ormond Street Institute of Child Health, London, UK. ¹¹⁹⁷University of Cambridge, Cambridge, UK. ¹¹⁹⁹Big Data Institute, Nuffield Department of Population Health, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK. ¹²⁰¹Experimental Medicine Division, Nuffield Department of

Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK. 1202 Public Health England, Field Service, Addenbrooke's Hospital, Cambridge, UK. ¹²⁰³Public Health England, Data and Analytical Services, National Infection Service, London, UK. ¹²⁰⁴Program in Bioinformatics and Integrative Genomics, Harvard Medical School, Boston, MA, USA. ¹²⁰⁵Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, USA. 1207 Department of Clinical Research and Leadership, George Washington University, Washington, DC, USA ¹²⁰⁸Department of Human Genetics, The Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK. 1209Strangeways Research Laboratory, The National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK. ¹²¹⁰Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK. 1211 British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. ¹²¹²British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK. ¹²¹³The National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK. ¹²¹⁴Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK. ¹²¹⁵Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK. ¹²¹⁶Department of Epidemiology, Emory University Rollins School of Public Health, North Druid Hills, GA, USA. 1217 Atlanta CA Health Care System, North Druid Hills, GA, USA. ¹²¹⁸Center for Population Genomics, MAVERIC, VA Boston Healthcare System Boston MA USA ¹²¹⁹MAVERIC VA Boston Healthcare System Boston MA USA ²⁰Stanford University, Stanford, CA, USA. ¹²²¹Palo Alto VA Healthcare System, Stanford, CA, USA. 1222 Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA. 1223 Department of Haematology, Central Hospital of Bolzano (SABES-ASDAA), Bolzano, Italy. ¹²²⁴Laboratory of Clinical Pathology, Hospital of Bressanone (SABES-ASDAA), Bressanone, Italy. ¹²²⁶University of Alcalá, Centro de Investigación Biomédica en Red en Enfermedades Respiratorias (CIBERES), Madrid, Spain.¹²²⁷Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.¹²²⁸Division of Human Genetics, Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. 1229 Faculty of Medicine, University of Iceland, Reykjavik, Iceland. ¹²³¹Infectious Disease Unit, Hospital of Massa, Massa, Italy. ¹²³²Department of Clinical Medicine, Public Health, Life and Environment Sciences, University of L'Aquila, L'Aquila, Italy. 1233 UOSD Laboratorio di Genetica Medica - ASL Viterbo, San Lorenzo, Italy. ¹²³⁴Unit of Infectious Diseases, S. M. Annunziata Hospital, Florence, Italy. 1235 Infectious Disease Unit, Hospital of Lucca, Lucca, Italy. 1236 Department of Clinical and Experimental Medicine, Infectious Diseases Unit, University of Pisa, Pisa, Italy. ¹²³⁸Clinic of Infectious Diseases, Catholic University of the Sacred Heart, Rome, Italy. 1239 Department of Diagnostic and Laboratory Medicine, Institute of Biochemistry and Clinical Biochemistry, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy. 1240 Private University in the Principality of Liechtenstein, Triesen, Liechtenstein. ¹²⁴¹Digestive Diseases Unit, Virgen del Rocio University Hospital, Institute of Biomedicine of Seville, University of Seville, Seville, Spain, ¹²⁴²Department of Biochemistry, University Hospital Vall d'Hebron, Barcelona, Spain,

¹²⁴³University of Sevilla, Sevilla, Spain. ¹²⁴⁴Instituto de Biomedicina de Sevilla, Sevilla, Spain. 1945 Hospital Universitatio Virgen del Rocio de Sevilla, Sevilla, Sevilla, San .¹²⁴⁶ Consejo Superior de Investigaciones científicas, Madrid, Spain. ¹²⁴⁷ Humanitas Clinical and Research Center, IRCCS, Milan, Italy. 1248 Immunohematology Department, Banc de Sang i Teixits, Autonomous University of Barcelona, Barcelona, Spain. 1249 August Pi i Sunyer Biomedical Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain. ¹²⁵⁰Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy. ¹²⁵¹Internal Medicine Department, Virgen del Rocio University Hospital, Sevilla, Spain. ¹²⁵²Department of Biomedical Sciences, Humanitas University, Milan, Italy. ¹²⁵³Department Emergency, Anesthesia and Intensive Care, University Milano-Bicocca Monza, Italy. 1254 Department of Medical Sciences, Università degli Studi di Torino, Turin, Italy. 1255 Department of Medical Microbiology, Clinic of Laboratory Medicine, St Olav's Hospital, Trondheim, Norway. ¹²⁵⁶Department of Infectious Diseases, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway. 1257 Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway.¹²⁵⁸Department of Research, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway. 1259 Institute of Parasitology and Biomedicine Lopez-Neyra, Granada, Spain. 1260 Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany, ¹²⁶¹German Research Center for Cardiovascular Research, partner site Hamburg-Lübeck-Kiel, Lübeck, Germany. 1262 University Heart Center Lübeck, Lübeck, Germany.¹²⁶³Department of Research, Ostfold Hospital Trust, Gralum, Norway. ³⁴Pediatric Departement, Centro Tettamanti- European Reference Network (ERN) PaedCan, EuroBloodNet, MetabERN-University of Milano-Bicocca-Fondazione MBBM/Ospedale San Gerardo, Milan, Italy. ¹²⁶⁵Geminicenter for Sepsis Research, Institute of Circulation and Medical Imaging (ISB), NTNU, Trondheim, Norway. 1266 Clinic of Anesthesia and Intensive Care, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway. ¹²⁶⁷Clinic of Medicine and Rehabilitation, Levanger Hospital, Nord-Trondelag Hospital Trust, Levanger, Norway. ¹²⁶⁸Stefan-Morsch-Stiftung, Birkenfeld, Germany. ¹²⁶⁹Center of Bioinformatics, Biostatistics, and Bioimaging, School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy. 1270 Phase 1 Research Centre, ASST Monza, School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy. 1271 Pneumologia ASST-Monza, University of Milano-Bicocca, Milano, Italy. 1272 School of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy. 1273 Infectious Diseases Unit, San Gerardo Hospital, Monza, Italy. ¹²⁷⁴SODIR-VHIR research group, Barcelona, Spain. ¹²⁷⁵Bioinformatics area, Fiundación progreso y Salud, Andalucia, Spain. ¹²⁷⁶Present address: Program in Metabolism, Broad Institute of MIT and Harvard, Cambridge, MA, USA. 1277 Present address: Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA. ¹²⁷⁸Present address: Diabetes Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA. ¹²⁷⁹Present address: Harvard Medical School, Boston, MA, USA. ¹²⁸⁰These authors contributed equally: Mari E. K. Niemi, Juha Karjalainen, Benjamin M. Neale, Mark Daly, Andrea Ganna. ¹²⁸¹Unaffiliated: Sangyoon Im, Jason Kendall, Michael MacMahon, Mark Peters, Robert Thompson, Martin Williams. [™]e-mail: bneale@broadinstitute.org; mark.daly@helsinki.fi; andrea.ganna@helsinki.fi

Methods

Contributing studies

All of the participants were recruited following protocols approved by local Institutional Review Boards; this information is collected in Supplementary Table 1 for all 46 studies. All protocols followed local ethics recommendations and informed consent was obtained when required. Information about sample numbers, sex and age from for each contributing study is given in Supplementary Table 1. In total, 16 studies contributed data to the analysis of critical illness due to COVID-19, 29 studies contributed data to hospitalized COVID-19 analysis and 44 studies contributed to the analysis of all cases of COVID-19. Each individual study that contributed data to a particular analysis met a minimum threshold of 50 cases, as defined by the phenotypic criteria, for statistical robustness. The effective sample sizes for each ancestry group shown in Fig. 1 were calculated for display using the formula: $((4 \times N_{case} \times N_{control}))/(N_{case} + N_{control}))$. Details of contributing research groups are provided in Supplementary Table 1.

Phenotype definitions

COVID-19 disease status (critical illness and hospitalization status) was assessed following the Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia³⁸. The critically ill COVID-19 group included patients who were hospitalized owing to symptoms associated with laboratory-confirmed SARS-CoV-2 infection and who required respiratory support or whose cause of death was associated with COVID-19. The hospitalized COVID-19 group included patients who were hospitalized owing to symptoms associated with laboratory-confirmed SARS-CoV-2 infection.

The reported SARS-CoV-2 infection group included individuals with laboratory-confirmed SARS-CoV-2 infection or electronic health record, ICD coding or clinically confirmed COVID-19, or self-reported COVID-19 (for example, by questionnaire), with or without symptoms of any severity. Genetic-ancestry-matched control individuals for the three case definitions were sourced from population-based cohorts, including individuals whose exposure status to SARS-CoV-2 was either unknown or infection-negative for questionnaire/electronic-health-record-based cohorts. Additional information regarding individual studies contributing to the consortium are described in Supplementary Table 1.

Genome-wide association studies and meta-analyses

Each contributing study genotyped the samples and performed quality controls, data imputation and analysis independently, but following the consortium recommendations (information is available at https:// www.covid19hg.org/). We recommended that genome-wide association study (GWAS) analyses were run using Scalable and Accurate Implementation of GEneralized mixed model (SAIGE)³⁹ on chromosomes 1–22 and X. The recommended analysis tool was SAIGE, but studies also used other software such as PLINK⁴⁰. The suggested covariates were age, age², sex, age × sex and the 20 first principal components. Any other study-specific covariates to account for known technical artefacts could be added. SAIGE automatically accounts for sample relatedness and case–control imbalances. Quality-control and analysis approaches for individual studies are reported in Supplementary Table 1.

Study-specific summary statistics were then processed for meta-analysis. Potential false positives, inflation and deflation were examined for each submitted GWAS. Allele frequency plots against gnomAD 3.0 genomes were manually inspected for each study. Standard error values as a function of the effective sample size were used to find studies that deviated from the expected trend. Summary statistics passing this manual quality control were included in the meta-analysis. Variants with an allele frequency of >0.1% and an imputation INFO score of >0.6 were carried forward from each study. Variants and alleles were lifted over to genome build GRCh38, if needed, and harmonized to gnomAD 3.0 genomes⁴¹ by finding matching variants by strand flipping or switching the ordering of alleles. If multiple matching variants were included, the best match was chosen according to the minimum fold change in absolute allele frequency. Meta-analysis was performed using the inverse-variance-weighted (IVW) method on variants that were present in at least two-thirds of the studies contributing to the phenotype analysis. The method summarizes effect sizes across the multiple studies by computing the mean of the effect sizes weighted by the inverse variance in each individual study.

We report 13 meta-analysis variants that pass the genome-wide significance threshold after adjusting the threshold for multiple traits tested ($P < 5 \times 10^{-8}/3$). We report the unadjusted P values for each variant. We tested for heterogeneity between estimates from contributing studies using Cochran's O-test^{42,43}. This is calculated for each variant as the weighted sum of squared differences between the effects sizes and their meta-analysis effect, the weights being the inverse variance of the effect size. Q is distributed as a χ^2 statistic with k (number of studies) minus one degrees of freedom. Two loci reached genome-wide significance but were excluded from the significant results in Supplementary Table 2 due to heterogeneity between estimates from contributing studies and missingness between studies at chr. 6: 31057940-31380334 and chr. 7: 54671568-54759789; however, these regions are not excluded from the corresponding summary statistics in data release 5 (COVID-19 HGI (https://www.covid19hg. org/results/r5/) and GWAS Catalog (study code GCST011074)). For each of the lead variants reported in Supplementary Table 2, we aimed to find loci specific to susceptibility or severity by testing whether there was heterogeneity between the effect sizes associated with hospitalized COVID-19 (progression to severe disease) and reported SARS-CoV-2 infection. We used the Cochran's Q measure^{42,43}, calculated for each variant as the weighted sum of squared differences between the two analysis effect sizes and their meta-analysis effect with the weights being the inverse variance of the effect size. A significant P value of P < 0.004 ((0.05/13 loci) for multiple tests) indicates that the effect sizes for a particular variant are significantly different in the two analyses (Supplementary Table 2). For the nine loci, in which the lead variant effect size was significantly higher for hospitalized COVID-19, we carried out the same test again but comparing effect sizes from hospitalized COVID-19 with critically ill COVID-19 (Supplementary Table 4). Furthermore, we carried out the same test comparing meta-analysed hospitalized COVID-19 (population as controls) and hospitalized COVID-19 (SARS-CoV-2-positive but non-hospitalized as controls) (Supplementary Table 4). For these pairs of phenotype comparisons, we generated new meta-analysis summary statistics to use; including only those studies that could contribute data to both phenotypes that were under comparison.

Principal component projection

To project every GWAS participant into the same principal component (PC) space, we used pre-computed PC loadings and reference allele frequencies. For reference, we used unrelated samples from the 1000 Genomes Project and the Human Genome Diversity Project and computed PC loadings and allele frequencies for the 117,221 single-nucleotide polymorphisms (SNPs) that (1) are available in every cohort; (2) have a minor allele frequency of >0.1% in the reference; and (3) are LD-pruned ($r^2 < 0.8$; 500-kb window). We then asked each cohort to project their samples using our automated script provided at https:// github.com/covid19-hg/. It internally uses the PLINK244 --score function with the variance-standardize option and reference allele frequencies (--read-freq); so that each cohort-specific genotype/dosage matrix is mean-centred and variance-standardized with respect to reference allele frequencies, but not cohort-specific allele frequencies. We further normalized the projected PC scores by dividing the values by a square root of the number of variants used for projection to account for a subtle difference due to missing variants.

Gene prioritization

To prioritize candidate causal genes reported in full in Supplementary Table 2, we used various gene prioritization approaches using both locus-based and similarity-based methods. Because we only describe the insilico gene prioritization results without characterizing the actual functional activity in vitro or in vivo, we aimed to provide a systematic approach to nominate potential causal genes in a locus using the following criteria.

(1) The closest gene: a gene that is closest to a lead variant by distance to the gene body.

(2) Genes in the LD region: genes that overlap with a genomic range containing any variants in LD ($r^2 > 0.6$) with a lead variant. For LD computation, we retrieved LD matrices provided by gnomAD v.2.1.1⁴¹ for each population analysed in this study (except for admixed American, Middle Eastern and South Asian genetic ancestry populations, for whom data are not available). We then constructed a weighted-average LD matrix by per-population sample sizes in each meta-analysis, which we used as a LD reference.

(3) Genes with coding variants: genes with at least one loss-of-function or missense variant (annotated by VEP⁴⁵ v.95 with GENCODE v.29) that is in LD with a lead variant ($r^2 > 0.6$).

(4) eGenes: genes with at least one fine-mapped *cis*-eQTL variant (PIP > 0.1) that is in LD with a lead variant ($r^2 > 0.6$) (Supplementary Table 5). We retrieved fine-mapped variants from the GTEx v.8²⁰ (https:// www.finucanelab.org/) and eQTL catalogue⁴⁶. In addition, we looked up significant associations in the Lung eQTL Consortium²¹ (n = 1,103) to further support our findings in lung with a larger sample size (Supplementary Table 7). We note that, in contrast to the GTEx or eQTL catalogue, we only looked at associations and did not fine-map our data to the Lung eQTL Consortium data.

(5) V2G: a gene with the highest overall V2G score based on Open Targets Genetics (OTG)²⁶. For each variant, the overall V2G score aggregates differentially weighted evidence of variant–gene associations from several data sources, including molecular *cis*-QTL data (for example, *cis*-protein QTLs from ref. ⁴⁷, *cis*-eQTLs from GTEx v.7 and so on), interaction-based datasets (for example, promoter capture Hi-C), genomic distance and variant effect predictions (VEP) from Ensembl. A detailed description of the evidence sources and weights used is provided in the OTG documentation (https://genetics-docs.opentargets. org/our-approach/data-pipeline)²⁶.

Phenome-wide association study

To investigate the evidence of shared effects of 15 index variants for COVID-19 and previously reported phenotypes, we performed a phenome-wide association study. We considered phenotypes in OTG obtained from the GWAS catalogue (this included studies with and without full summary statistics, n = 300 and 14,013, respectively)⁴⁸ and from the UK Biobank. Summary statistics for UK Biobank traits were extracted from SAIGE³⁹ for binary outcomes (n = 1,283 traits) and Neale v.2 (n = 2,139 traits) for both binary and quantitative traits (http://www.nealelab.is/uk-biobank/) and FinnGen Freeze 4 cohort (https://www.finngen.fi/en/access_results). We report PheWAS results for phenotypes for which the lead variants were in high LD ($r^2 > 0.8$) with the 13 genome-wide significant lead variants from our main COVID-19 meta-analysis (Supplementary Table 6). This conservative approach allowed spurious signals primarily driven by proximity rather than actual colocalization to be removed (see Methods).

To remove plausible spurious associations, we retrieved phenotypes for GWAS lead variants that were in LD ($r^2 > 0.8$) with COVID-19 index variants.

Heritability

LD score regression v.1.0.1 49 was used to estimate the SNP heritability of the phenotypes from the meta-analysis summary statistic files. As this

method depends on matching the LD structure of the analysis sample to a reference panel, the summary statistics of European ancestry only were used. Sample sizes were n = 5,101 critically ill cases of COVID-19 and n = 1,383,241 control participants, n = 9,986 hospitalized cases of COVID-19 and n = 1,877,672 control participants, and n = 38,984 cases and n = 1,644,784 control participants for the analysis of all cases– all including the 23andMe cohort. Pre-calculated LD scores from the 1000 Genomes European reference population were obtained online (https://data.broadinstitute.org/alkesgroup/LDSCORE/). Analyses were conducted using the standard program settings for variant filtering (removal of non-HapMap3 SNPs, the HLA region on chromosome 6, non-autosomal, $\chi^2 > 30$, minor allele frequency of <1%, or allele mismatch with reference). We additionally report SNP heritability estimates for the all-ancestries meta-analyses, calculated using European panel LD scores, in Supplementary Table 8.

Partitioned heritability

We used partitioned LD score regression⁵⁰ to partition COVID-19 SNP heritability in cell types in our summary statistics for European ancestry only. We ran the analysis using the baseline model LD scores calculated for European populations and regression weights that are available online (https://github.com/bulik/ldsc). We used the COVID-19 summary statistics for European ancestry only for the analysis.

Genome-wide association summary statistics

We obtained genome-wide association summary statistics for 43 complex-disease, neuropsychiatric, behavioural or biomarker phenotypes (Supplementary Table 10). These phenotypes were selected based on their putative relevance to COVID-19 susceptibility, severity or mortality, with 19 selected based on the Centers for Disease Control list of underlying medical conditions associated with COVID-19 severity⁵¹ or traits reported to be associated with increased risk of COVID-19 mortality by OpenSafely⁵². Summary statistics generated from GWAS using individuals of European ancestry were preferentially selected if available. These summary statistics were used in subsequent genetic correlation and Mendelian randomization analyses.

Genetic correlation

LD score regression⁵⁰ was also used to estimate the genetic correlations between our COVID-19 meta-analysis phenotypes reported using samples of only European ancestry, and between these and the curated set of 38 summary statistics. Genetic correlations were estimated using the same LD score regression settings as for heritability calculations. Differences between the observed genetic correlations of SARS-CoV-2 infection and COVID-19 severity were compared using a *z*-score method⁵³.

Mendelian randomization

Two-sample Mendelian randomization was used to evaluate the potential for causal association of the 38 traits on COVID-19 hospitalization, on COVID-19 severity and reported SARS-CoV-2 infection using samples of only European ancestry. Independent genome-wide significant SNPs robustly associated with the exposures of interest ($P < 5 \times 10^{-8}$) were selected as genetic instruments by performing LD clumping using PLINK⁴⁰. We used a strict r² threshold of 0.001, a 10-Mb clumping window, and the European reference panel from the 1000 Genomes Project54 to discard SNPs in LD with another variant with a smaller P-value association. For genetic variants that were not present in the hospitalized COVID-19 analysis, PLINK was used to identify proxy variants that were in LD ($r^2 > 0.8$). Next, the exposure and outcome datasets were harmonized using the R package TwoSampleMR⁵⁵. Namely, we ensured that the effect of a variant on the exposure and outcome corresponded to the same allele, we inferred positive-strand alleles and dropped palindromes with ambiguous allele frequencies, as well as incompatible alleles. Supplementary Table 10 includes the harmonized datasets used in the analyses.

The global test from Mendelian randomization pleiotropy residual sum and outlier (MR-PRESSO)⁵⁶ software was used to investigate overall horizontal pleiotropy. In brief, the standard IVW meta-analytic framework was used to calculate the average causal effect by excluding each genetic variant used to instrument the analysis. A global statistic was calculated by summing the observed residual sum of squares, that is, the difference between the effect predicted by the IVW slope excluding the SNP, and the observed effect of the SNP on the outcome. Overall horizontal pleiotropy was subsequently analysed by comparing the observed residual sum of squares, with the residual sum of squares expected under the null hypothesis of no pleiotropy. The MR-PRESSO global test was shown to perform well when the outcome and exposure GWASs are not disjoint (although the power to detect horizontal pleiotropy is slightly reduced by complete sample overlap). We also used the regression intercept in MR-Egger⁵⁷ to evaluate potential bias due to directional pleiotropic effects. This additional check was used in Mendelian randomization analyses with an I_{GX}^2 index surpassing the recommended threshold $(I_{GX}^2 > 90\%)^{58}$. Contingent on the MR-PRESSO global test results we analysed the causal effect of each exposure on COVID-19 hospitalization by using a fixed-effect IVW meta-analysis as the primary analysis, or, if pleiotropy was present, the MR-PRESSO outlier-corrected test. The IVW approach estimates the causal effect by aggregating the single-SNP causal effects (obtained using the ratio of coefficients method-that is, the ratio of the effect of the SNP on the outcome over the effect of the SNP on the exposure) in a fixed-effects meta-analysis. The SNPs were assigned weights based on their inverse variance. The IVW method confers the greatest statistical power for estimating causal associations⁵⁹, but assumes that all variants are valid instruments and can produce biased estimates if the average pleiotropic effect differs from zero. Alternatively, when horizontal pleiotropy was present, we used the MR-PRESSO outlier-corrected method to correct the IVW test by removing outlier SNPs. We conducted further sensitivity analyses using alternative Mendelian randomization methods that provide consistent estimates of the causal effect even when some instrumental variables are invalid, at the cost of reduced statistical power including: (1) Weighted median estimator (WME); (2) weighted mode-based estimator (WMBE); and (3) MR-Egger regression. Robust causal estimates were defined as those that were significant at an FDR of 5% and either (1) showed no evidence of heterogeneity (MR-PRESSO global test P>0.05) or horizontal pleiotropy (Egger intercept P > 0.05); or (2) in the presence of heterogeneity or horizontal pleiotropy, the WME-, WMBE-, MR-Egger- or MR-PRESSO-corrected estimates were significant (P < 0.05). All statistical analyses were conducted using R v.4.0.3. Mendelian randomization analysis was performed using the 'TwoSampleMR' v.0.5.5 package55.

Website and data distribution

In anticipation of the need to coordinate many international partners around a single meta-analysis effort, we created the COVID-19 HGI website (https://covid19hg.org). We were able to centralize information, recruit partner studies, rapidly distribute summary statistics and present preliminary interpretations of the results to the public. Open meetings are held on a monthly basis to discuss future plans and new results; video recordings and supporting documents are shared (https://covid19hg.org/meeting-archive). This centralized resource provides a conceptual and technological framework for organizing global academic and industry groups around a shared goal. The website source code and additional technical details are available at https:// github.com/covid19-hg/covid19hg.

To recruit new international partner studies, we developed a workflow in which new studies are registered and verified by a curation team (https://covid19hg.org/register). Users can explore the registered studies using a customized interface to find and contact studies with similar goals or approaches (https://covid19hg.org/partners). This helps to promote organic assembly around focused projects that are adjacent to the centralized effort (https://covid19hg.org/projects). Visitors can query study information, including study design and research questions. Registered studies are visualized on a world map and are searchable by institutional affiliation, city and country.

To encourage data sharing and other forms of participation, we created a rolling acknowledgements page (https://covid19hg.org/ acknowledgements) and directions on how to contribute data to the central meta-analysis effort (https://covid19hg.org/data-sharing). Upon the completion of each data freeze, we post summary statistics, plots and sample size breakdowns for each phenotype and contributing cohort (https://covid19hg.org/results). The results can be explored using an interactive web browser (https://app.covid19hg.org). Several computational research groups carry out follow-up analyses, which are made available for download (https://covid19hg.org/in-silico). To enhance scientific communication to the public, preliminary results are described in blog posts by the scientific communications team and shared on Twitter. The first post was translated to 30 languages with the help of 85 volunteer translators. We compile publications and preprints submitted by participating groups and summarize genome-wide significant findings from these publications (https://covid19hg.org/ publications).

Reporting summary

Further information on research design is available in the Nature Research Reporting Summary linked to this paper.

Data availability

Summary statistics generated by the COVID-19 HGI are available at https://www.covid19hg.org/results/r5/ and are available in the GWAS Catalog (study code GCST011074). The analyses described here include the freeze-5 data. COVID-19 HGI continues to regularly release new data freezes. Summary statistics for non-European ancestry samples are not currently available due to the small individual sample sizes of these groups, but results for lead variants of 13 loci are reported in Supplementary Table 3. Individual level data can be requested directly from contributing studies, listed in Supplementary Table 1. We used publicly available data from GTEx (https://gtexportal.org/home/), the Neale lab (http://www.nealelab.is/uk-biobank/), Finucane lab (https:// www.finucanelab.org), the FinnGen Freeze 4 cohort (https://www.finngen.fi/en/access_results) and the eQTL catalogue release 3 (http:// www.ebi.ac.uk/eqtl/).

Code availability

The code for summary statistics lift-over, the projection PCA pipeline including precomputed loadings and meta-analyses are available on GitHub (https://github.com/covid19-hg/) and the code for the Mendelian randomization and genetic correlation pipeline is available on GitHub at https://github.com/marcoralab/MRcovid.

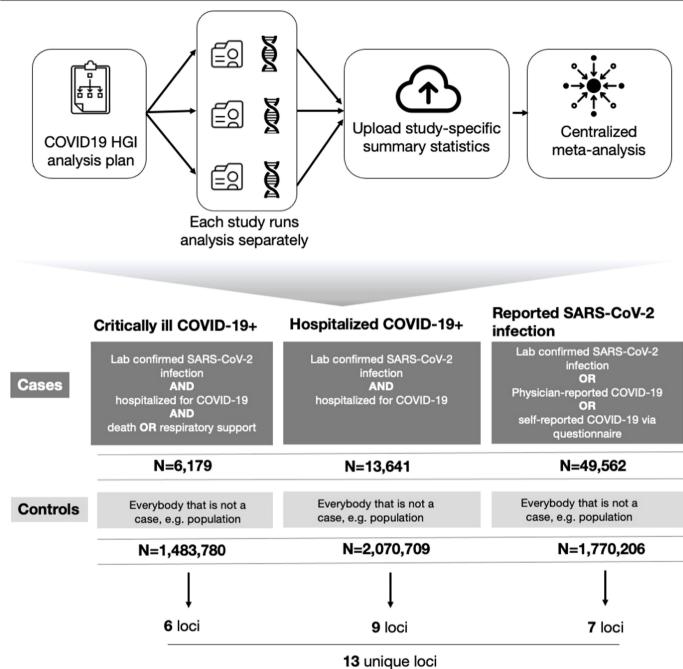
- Wei, P.-F. Diagnosis and treatment protocol for novel coronavirus pneumonia (trial version 7). Chin. Med. J. (Engl.) 133, 1087–1095 (2020).
- Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. Nat. Genet. 50, 1335–1341 (2018).
- Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
- Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
- Evangelou, E. & Ioannidis, J. P. A. Meta-analysis methods for genome-wide association studies and beyond. Nat. Rev. Genet. 14, 379–389 (2013).
- Cochran, W. G. The combination of estimates from different experiments. *Biometrics* 10, 101–129 (1954).
- 44. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. *Gigascience* **4**, 7 (2015).
- 45. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).
- Kerimov, N. et al. eQTL Catalogue: a compendium of uniformly processed human gene expression and splicing QTLs. Preprint at https://doi.org/10.1101/2020.01.29.924266 (2021).
- 47. Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).

- Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).
- 49. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from
- polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).
 50. Finucane, H. K. et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 47, 1228–1235 (2015).
- CDC. People with certain medical conditions. https://www.cdc.gov/coronavirus/2019-ncov/ need-extra-precautions/people-with-medical-conditions.https://www.cdc.gov/coronavirus/2019-ncov/
- Williamson, E. J. et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 584, 430–436 (2020).
- Zhou, T. et al. Educational attainment and drinking behaviors: Mendelian randomization study in UK Biobank. *Mol. Psychiatry* https://doi.org/10.1038/s41380-019-0596-9 (2019).
- 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. *Nature* 467, 1061–1073 (2010).
- Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).
- Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. *Nat. Genet.* **50**, 693–698 (2018).
- Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. *Int. J. Epidemiol.* 44, 512–525 (2015).

- Bowden, J. et al. Assessing the suitability of summary data for two-sample Mendelian randomization analyses using MR-Egger regression: the role of the l² statistic. Int. J. Epidemiol. 45, 1961–1974 (2016).
- Slob, E. A. W. & Burgess, S. A comparison of robust Mendelian randomization methods using summary data. *Genet. Epidemiol.* 44, 313–329 (2020).

Acknowledgements We thank the entire COVID-19 HGI community for their contributions and continued collaboration. The work of the contributing studies was supported by numerous grants from governmental and charitable bodies. Acknowledgements specific to contributing studies are provided in Supplementary Table 13. We thank G. Butler-Laporte, G. Wojcik, M.-G. Hollm-Delgado, C. Willer and G. Davey Smith for their extensive feedback and discussion.

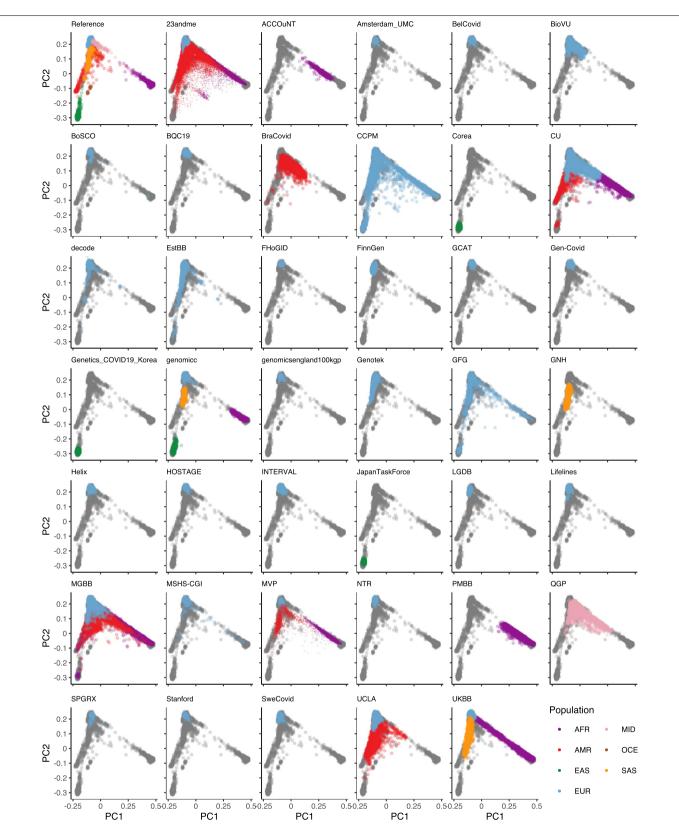
Author contributions Author contributions are provided within the author list.


Competing interests A full list of competing interests is supplied as Supplementary Table 13.

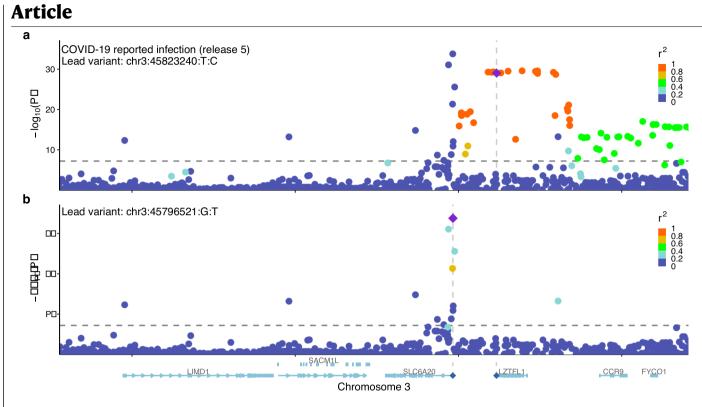
Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41586-021-03767-x.

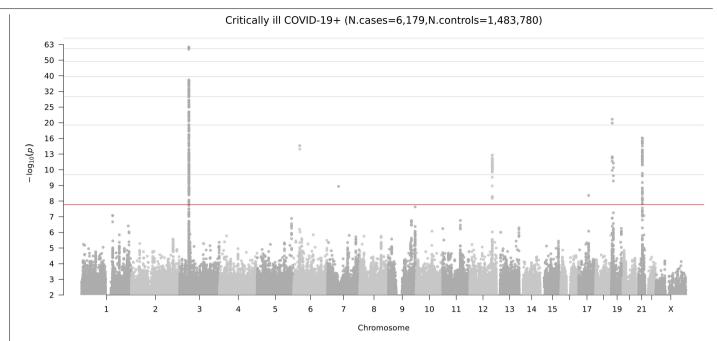
Correspondence and requests for materials should be addressed to Benjamin M. Neale, Mark Daly, Andrea Ganna, Benjamin M. Neale or Mark Daly.


Peer review information Nature thanks Samira Asgari, Paul McLaren and Neneh Sallah for their contribution to the peer review of this work. Peer reviewer reports are available. Reprints and permissions information is available at http://www.nature.com/reprints.

Extended Data Fig. 1 | Analytical summary of the COVID-19 HGI

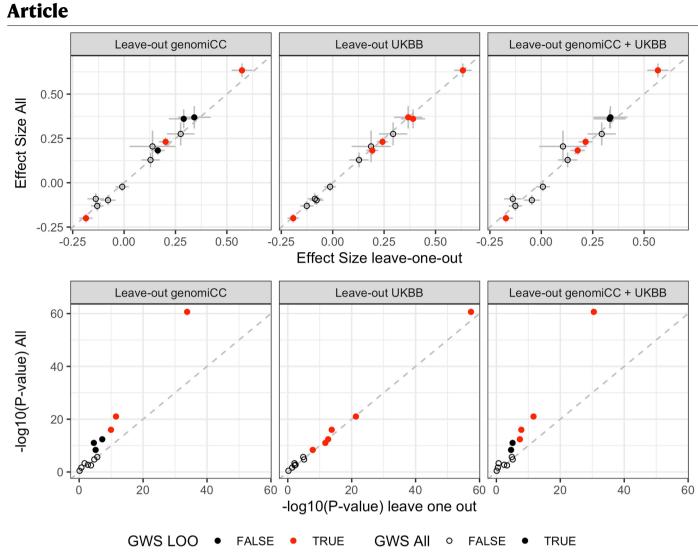

meta-analysis. Using the analytical plan set by the COVID-19 HGI, each individual study runs their analyses and uploads the results to the Initiative, who then runs the meta-analysis. There are three main analyses that each study can contribute summary statistics to: critically ill COVID-19, hospitalized COVID-19 and reported SARS-CoV-2 infection. The phenotypic criteria used to define cases are listed in the dark grey boxes, along with the numbers of cases

(N) included in the final all-ancestries meta-analysis. Controls were defined in the same way across all three analyses as everybody that is not a case-for example, population controls (light grey box). Sensitivity analyses-not reported in this extended data figure-also included mild and/or asymptomatic cases of COVID-19 as control individuals. Sample number (N) of control individuals differed between the analyses due to the difference in the number of studies contributing data to these.

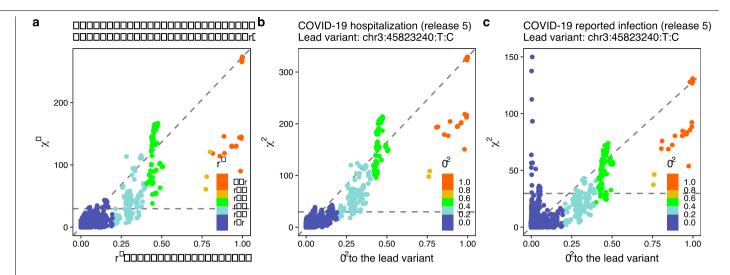


Extended Data Fig. 2 | Projection of contributing studies samples into the same PC space. We asked participating studies to perform a PC projection using the 1000 Genomes Project and Human Genome Diversity Project as a reference, with a common set of variants. For each panel (except for the reference), coloured points correspond to contributed samples from each cohort, whereas grey points correspond to the reference samples from the 1000 Genomes Project. Colour represents a genetic population that each

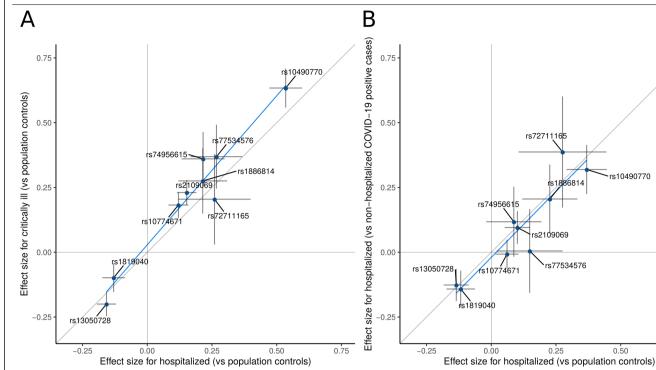
cohort specified. As 23andMe, Genomics England 100,000 Genomes Project (GenomicsEngland100kgp), and Million Veterans Program (MVP) only submitted PCA images, we overlaid their submitted transparent images using the same coordinates, instead of directly plotting them. Populations are defined as African (AFR), admixed American (AMR), East Asian (EAS), European (EUR), Middle Eastern (MID) and South Asian (SAS), Oceanian (OCE).



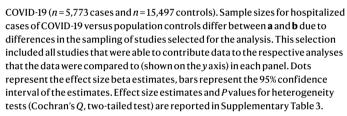
Extended Data Fig. 3 Locus-zoom plots of the 3p21.31 region for reported SARS-CoV-2 infection. a, A standard plot without exclusion. Here, the severity lead variant rs10490770 (chr. 3: 45823240T:C) is shown as a lead variant. **b**, Additional independent susceptibility signal(s) after excluding variants with $r^2 > 0.05$ with rs10490770. The susceptibility lead variant rs2271616 (chr. 3: 45796521G:T) is highlighted.


Extended Data Fig. 4 | Genome-wide meta-analysis association results for critical illness due to COVID-19. The locus on chromosome 6 is the HLA locus, which was removed from the list of reported loci in Supplementary Table 2 due to the high heterogeneity in effect size estimated between studies included in

the analysis. The locus on chromosome 7 was also not reported in Supplementary Table 2 due to missingness across studies—that is, the high number of studies in the meta-analysis that did not report summary statistics for this region. There are two association peaks on chromosome 19.


Extended Data Fig. 5 | **Sensitivity analyses for overlapping controls in genomiCC and UK Biobank.** Comparison of the beta effect sizes (top) and unadjusted *P* values (bottom) of the 13 lead variants, using data from the COVID-19 critical illness meta-analysis in all the cohorts to leaving out genomiCC (cases, n = 4,354; controls, n = 1,474,655; total, n = 1,479,009), leaving out the UK Biobank (UKBB; cases, n = 5,870; controls, n = 1,155,203; total, n = 1,161,073) and leaving out both genomiCC and UK Biobank (cases, n = 4,045; controls, n = 1,146,078; total, n = 1,150,123) (from left to right, respectively). Top, dots and grey bars represent the beta effect size estimates \pm standard

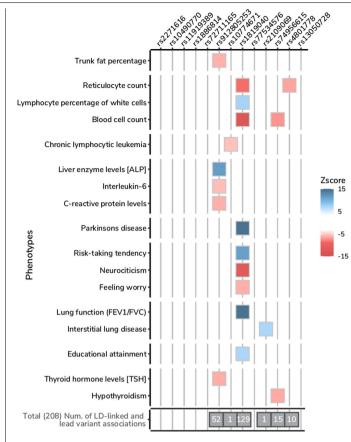
error from the corresponding GWAS meta-analysis. Bottom, dots represent two-sided *P* values from the corresponding GWAS meta-analysis. Filled dots indicate variants that showed genome-wide significance in the full meta-analysis of critical illness due to COVID-19, and empty dots represent variants that were not significant for critical illness but were significant for either hospitalization due to COVID-19 or reported SARS-CoV-2 infection. Red dots represent variants that showed genome-wide significance in the leave-one-out analysis for genomiCC, UK Biobank or genomiCC and UK Biobank.



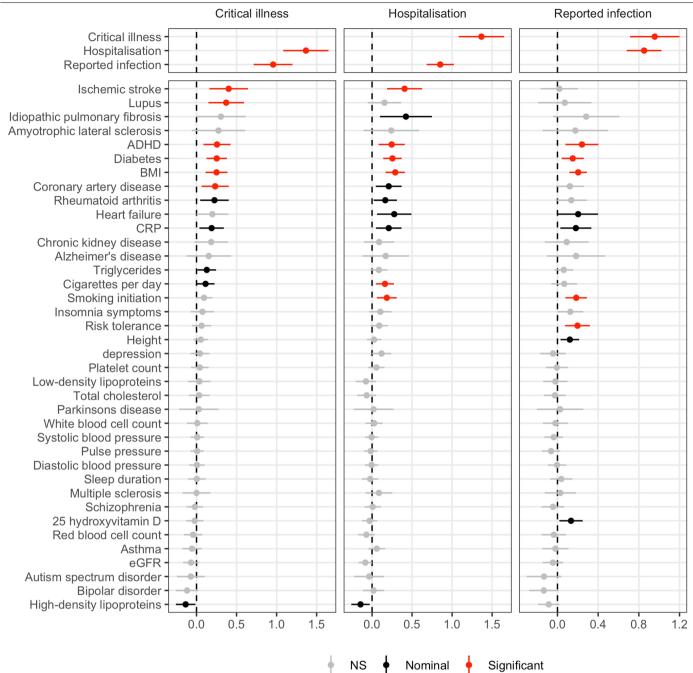
Extended Data Fig. 6 | **Comparison of** χ^2 **statistics and** r^2 **values to the lead variant in the 3p21.31 region. a**-c, Data are shown for critical illness (a), hospitalization (b) and reported SARS-CoV-2 infection (c). The left blue peak in

c, which is uncorrelated with the lead variants in the region, indicates that there are independent signals.

Extended Data Fig. 7 | Comparison of the effect sizes of lead variants between pairs of COVID-19 meta-analyses. Comparison of effect sizes for the nine variants associated with severity of COVID-19 disease. a, Comparing hospitalized cases of COVID-19 versus population controls (n = 10,428 cases and n=1,483,270 controls) and critically ill cases of COVID-19 versus population controls (n = 6,179 cases and n = 1,483,780 controls). **b**, Hospitalized cases of COVID-19 versus population controls (n = 5,806 cases and n = 1,144,263controls) and hospitalized cases of COVID-19 versus non-hospitalized cases of

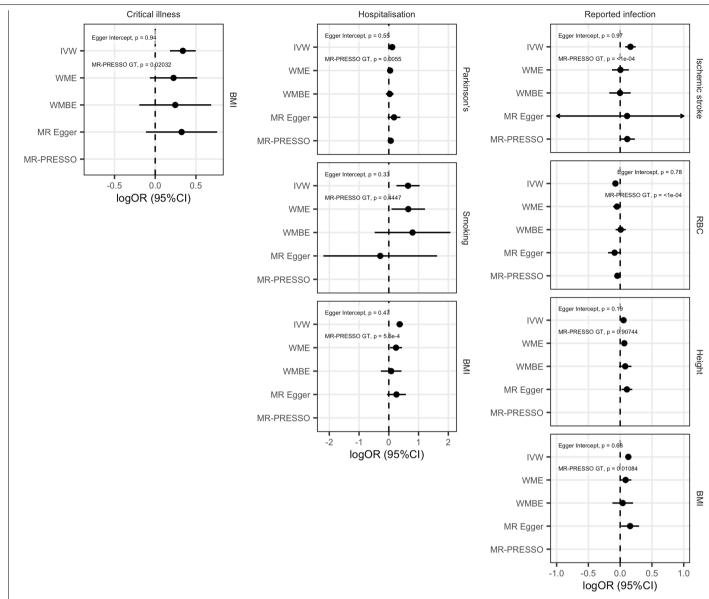

1165

6814


rs10490770

0.50

0.75



Extended Data Fig. 8 | **PheWAS for genome-wide significant lead variants.** Selected phenotypes associated with genome-wide significant COVID-19 variants (see Supplementary Table 6 for a complete list). We report those associations for which a lead variant from a previous GWAS result was in high LD ($r^2 > 0.8$) with the index COVID-19 variants. The colour represents the *z*-scores of correlated risk increasing alleles for the trait. The total number of associations for each COVID-19 variant is highlighted in the grey box.

Extended Data Fig. 9 Genetic correlation with COVID-19 phenotypes. Each column shows the genetic correlation results for the three COVID-19 phenotypes (European-ancestry analyses only): critical illness, hospitalization and reported SARS-CoV-2 infection. The traits that the genetic correlation is run against are listed on the left. Significant correlations (FDR < 0.05) are

shown with their 95% confidence intervals in red, nominally significant correlations (*P* < 0.05) are in black and non-significant correlations are in grey. Two-sided *P* values were calculated using LDSC for genetic correlations and exact estimates, unadjusted standard errors and two-sided *P* values are available in Supplementary Table 11.

Extended Data Fig. 10 | **Mendelian randomization sensitivity analyses.** Genetic correlations and Forest plots displaying the causal estimates for each of the sensitivity analyses used in the Mendelian randomization analysis for trait pairs that were significant at an FDR of 5%. Two-sided *P* values were estimated using IVW, WME, WMBE and MR-PRESSO analyses. RBC, red blood cell count.

nature research

Corresponding author(s): Andrea Ganna

Last updated by author(s): Jun 1, 2021

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see our <u>Editorial Policies</u> and the <u>Editorial Policy Checklist</u>.

Statistics

For	all st	atistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.			
n/a	Confirmed				
	\square	The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement			
	\square	A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly			
	\boxtimes	The statistical test(s) used AND whether they are one- or two-sided Only common tests should be described solely by name; describe more complex techniques in the Methods section.			
	\square	A description of all covariates tested			
	\square	A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons			
	\boxtimes	A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)			
	\boxtimes	For null hypothesis testing, the test statistic (e.g. <i>F</i> , <i>t</i> , <i>r</i>) with confidence intervals, effect sizes, degrees of freedom and <i>P</i> value noted Give <i>P</i> values as exact values whenever suitable.			
\boxtimes		For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings			
\boxtimes		For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes			
	\square	Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated			
		Our web collection on <u>statistics for biologists</u> contains articles on many of the points above.			

Software and code

Policy information about availability of computer code No code was used to collect data in the study. Data collection Each individual study that contributed genetic-phenotype association summary statistics to the consortium carried out their association Data analysis analyses independently of the consortium (study-specific information outlined in Supplementary Table 1). However, the consortium did release phenotyping and analysis guidelines as a recommendation (https://www.covid19hg.org/). For quality control of genotype data we recommended using the Ricopili pipeline (PMID: 31393554). For genotype phasing and imputation we recommended the TopMed Imputation Server (PMID: 27571263) or Michigan Imputation Server (PMID: 27571263). For genome-wide association study (GWAS), we recommended SAIGE (PMID: 30104761), but some studies used PLINK (PMID: 17701901). Each study then submitted their GWAS summary statistics to the consortium for meta-analysis. LD score regression v 1.0.1 [PMID: 25642630] was used for heritability and partitioned heritability analyses. Variants for Mendelian randomization instruments were selected using PLINK version 1.90b6.18 (PMID: 17701901). Exposure and outcome datasets were harmonized, and MR statistical analysis conducted using R version 4.0.3. with the R-package TwoSampleMR version 0.5.5 (PMID: 29846171) (which included Fixed-effects IVW analysis (PMID: 24114802), weighted median estimator (WME) (PMID: 27061298), weighted mode based estimator (WMBE) and MR Egger regression (PMID: 26050253)) and additionally MR-PRESSO version 1.0 (PMID: 29686387). Code availability statement: The code for summary statistics liftover, projection PCA pipeline including precomputed loadings and metaanalysis are available at https://github.com/covid19-hg/ and the code for Mendelian randomization and genetic correlation pipeline at https://github.com/marcoralab/MRcovid.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Data availability statement:

Summary statistics generated by COVID-19 HGI are available at https://www.covid19hg.org/results/r5/ and are available on GWAS Catalog (study code GCST011074). The analyses described here utilize the freeze 5 data. COVID-19 HGI continues to regularly release new data freezes. Summary statistics for non-European ancestry samples are not currently available due to the small individual sample sizes of these groups, but results for 13 loci lead variants are reported in Supplementary Table 3. Individual level data can be requested directly from contributing studies, listed in Supplementary Table 1. We used publicly available data from GTEx (https://gtexportal.org/home/), the Neale lab (http://www.nealelab.is/uk-biobank/), Finucane lab (https://www.finucanelab.org), FinnGen Freeze 4 cohort (https://www.finngen.fi/en/access_results), and eQTL catalogue release 3 (http://www.ebi.ac.uk/eqtl/).

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

\square	Life	sciences
IXI	Lite	science

Ecological, evolutionary & environmental sciences Behavioural & social sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size	The consortium meta-analysed genome-wide association study (GWAS) summary statistics from any individual study that had included a minimum of n=50 cases and n=50 controls in their analysis. The cutoff at n=50 cases and n=50 controls was aimed at reducing noise to the meta-analysis, but also to be inclusive of studies that had not yet accumulated large numbers of COVID-19 patient data. No statistical calculation for adequate sample size was performed, but the results identifying multiple genomic regions at genome-wide significance threshold indicates adequate power for genetic discovery.
Data exclusions	Individual level phenotype and genotype data exclusions were performed by each individual study, following the consortium analysis plan recommendations (www.covid19hg.org). Possible reasons for sample exclusion included removing genetic ancestry outliers within a study (using principal components analysis), poor quality of genetic data or lack of phenotypic data for a sample.
	The consortium manually examined GWAS summary statistics data submitted by each study (for each submitted analysis separately), including sample size used for analysis, allele frequency check against gnomad reference panel, and distribution of test statistics. After meta- analysis, the results were checked for heterogeneity variant effects between contributing studies, and Table 1 excludes two genome-wide significant loci that were deemed to have extremely heterogeneous effects, but these variants are reported in the released consortium summary statistics (with heterogeneity test values).
Replication	No replication was performed. The consortium meta-analysed GWAS summary statistics, bringing together as many studies as possible to achieve the largest possible sample size and statistical power for association. this meant that the consortium included most large studies of COVID-19 host genetics that have been performed to date, so it was not possible to perform replication analyses in external cohorts. Therefore we performed manual checks on each study contributing summary statistics before entering them into the meta-analysis. In addition, after meta-analysis, we performed a check for heterogeneity between variant association estimates across studies contributing data. This allowed us to better understand whether the variant effects differed much between individual studies.
Randomization	No randomization was performed because there was no allocation of samples to experimental groups.
Blinding	Blinding was not relevant to the study. The case status and severity of symptoms was evaluated for each sample by investigators from each study respectively. The consortium recommended using covariates to control for confounding: age + age2 + sex + age*sex + 20 principal components (obtained using genetic data) + study specific covariates (if any). The consortium meta-analysed summary statistics from these case/control studies, not individual level data. Details of which variables each study used and how the calculated PCs for their analysis are available in Supplementary Table 1.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

Methods

n/a | Involved in the study n/a Involved in the study Antibodies ChIP-seq \boxtimes \boxtimes Eukaryotic cell lines Flow cytometry Palaeontology and archaeology \boxtimes MRI-based neuroimaging Animals and other organisms Human research participants \boxtimes Clinical data \square Dual use research of concern

Human research participants

Policy information about studie	es involving human research participants
Population characteristics	Summary statistics from 46 independent studies were included in consortium meta-analyses. Mean age of cases across studies was 55.3 years. The effective sample size for genetic ancestry populations was: n=11,598 Middle Eastern; n=28,918 South Asian; 43,332 East Asian; 48,714 African; 70,902 Ad-mixed American; 738,538 European. Population characteristics regarding age, sex and exact case and control sample numbers for each contributing study are given in Supplementary Table 1.
Recruitment	The consortium pre-defined phenotype criteria for cases and controls, but the specific recruitment was carried out independently by each contributing study. COVID-19 disease status (critical illness, hospitalization status) was assessed following the Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (PMID: 32358325). The critically ill COVID-19 group included patients who were hospitalized due to symptoms associated with laboratory-confirmed SARS-CoV-2 infection and who required respiratory support or whose cause of death was associated with COVID-19. The hospitalized COVID-19 group included patients who were hospitalized due to symptoms associated with laboratory-confirmed SARS-CoV-2 infection. The reported infection cases group included individuals with laboratory-confirmed SARS-CoV-2 infection or electronic health record, ICD coding or clinically confirmed COVID-19, or self-reported COVID-19 (e.g. by questionnaire), with or without symptoms of any severity. Genetic ancestry-matched controls for the three case definitions were sourced from population-based cohorts, including individuals whose exposure status to SARS-CoV-2 was either unknown or infection- negative for questionnaire/electronic health record based cohorts.
Ethics oversight	Ethical statements for each contributing study are given in Supplementary Table 1.

Note that full information on the approval of the study protocol must also be provided in the manuscript.