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Pontryagin–Optimal Control of a non-Hermitian Qubit

Philippe Lewalle∗ and K. Birgitta Whaley
Department of Chemistry, University of California, Berkeley, CA 94720, USA and

Berkeley Center for Quantum Information and Computation, Berkeley, CA 94720, USA
(Dated: February 17, 2023)

Open–system quantum dynamics described by non-Hermitian effective Hamiltonians have become
a subject of considerable interest. Studies of non-Hermitian physics have revealed general principles,
including relationships between the topology of the complex eigenvalue space and the breakdown of
adiabatic control strategies. We study here the control of a single non-Hermitian qubit, similar to re-
cently realized experimental systems in which the non-Hermiticity arises from an open spontaneous
emission channel. We review the topological features of the resulting non-Hermitian Hamiltonian
and then present two distinct results. First, we illustrate how to realize any continuous and dif-
ferentiable pure–state trajectory in the dynamics of a qubit that are conditioned on no emission.
This result implicitly provides a workaround for the breakdown of standard adiabatic following in
such non-Hermitian systems. Second, we use Pontryagin’s maximum principle to derive optimal
trajectories connecting boundary states on the Bloch sphere, using a cost function which balances
the desired dynamics against the controller energy used to realize them. We demonstrate that the
latter approach can effectively find trajectories which maintain high state purity even in the case of
inefficient detection.

I. INTRODUCTION

The dynamics of non-Hermitian (NH) systems have
been an area of growing theoretical and experimental
interest over the past two decades [1–8]. NH Hamil-
tonians arise naturally in the context of many open
(non-conservative) systems. In contrast with Hermi-
tian Hamiltonians, NH Hamiltonians may generically
have complex eigenvalues and bi-orthogonal left and right
eigenvectors. A number of unique effects can be under-
stood in terms of the Riemann sheet topology of complex
eigenvalues in parameter space; this topology is defined
foremost by the presence of exceptional points (EPs),
where there is a convergence of both the complex eigen-
values and eigenvectors of the NH Hamiltonian [9, 10]. In
particular, parameter loops that encircle EPs in NH sys-
tems may lead to dynamics exhibiting gain/loss effects
that can break principles of adiabatic following [11–17]
and manifest chiral behavior [10, 18–24]. There is now
considerable literature about non-Hermitian systems in
general, emphasizing both topological aspects of complex
non-Hermitian spectra that may be understood statically
[10, 23], and investigations of the corresponding dynam-
ics [25–29].

One particular realization of NH physics arises in the
conditional dynamics of open quantum systems [30–36].
Explorations of such systems have illustrated the appli-
cability of many of the concepts from the classical con-
text, and raised fundamentally new issues and potential
applications. In this quantum context, two approaches
to studying NH systems are apparent: topological prop-
erties of the NH Hamiltonian or Liouvillian [32, 33, 37]
have been the subject of considerable interest, while the
open and conditional quantum state dynamics underly-
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ing those NH properties may be directly understood via
quantum trajectory theory [38–42]. In the limit of slowly
varying control parameters, the adiabatic principle sug-
gests a clear connection between the system dynamics
and NH topology. However, since the adiabatic principle
is of limited applicability in NH systems [12], this slow
limit does not offer a complete correspondence between
the two, and connection of an NH system’s dynamics to
the underlying topology is not straightforward. For this
fundamental reason and for practical considerations as
well, the development of NH quantum control protocols
that act effectively on shorter timescales is an important
challenge for the field. To this end, we note there have
been recent proposals employing perturbative approaches
[43], NH shortcuts to adiabaticity [44–46], as well as in-
vestigation of experimentally–realizable periodic controls
[36].

We propose here an alternative approach, based on use
of the Pontryagin maximum principle, which is ubiqui-
tous both in the classical and quantum control theory
literatures [47–50]. We show that this can be usefully
applied to the control of NH quantum systems, investi-
gating in particular the behavior of Pontryagin control
for a relatively simple example of a single qubit with an
effective NH Hamiltonian arising from its spontaneous
emission channel (see Fig. 1). This NH qubit system is
similar to that studied in recent experiments [31, 34–36],
and as we show in this work, it proves to be a good test-
ing ground for coherent control in the context of a NH
quantum system with EPs.

The rest of the paper is organized as follows. We review
the system dynamics, define the non-Hermitian Hamilto-
nian, and review its topological properties in Sec. II. In
Sec. III, we take advantage of the relative simplicity of
our chosen system, and demonstrate that it is straight-
forward to derive the controller paths needed to force
the system along any continuous and differentiable pure
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FIG. 1. We sketch a possible realization of the scheme we
consider. Unitary operations characterized by the Rabi rates
Ω are applied to a qubit. An effective non-Hermitian Hamil-
tonian arises due to the qubit’s spontaneous emission. The
dynamics conditioned on emission or non-emission of a photon
are accessible if that emission is captured by a cavity or trans-
mission line whose output is monitored by a photo–counter.
Detection with efficiency η can be modeled by imagining that
a beamsplitter between the system and detector causes some
photons to be lost.

state trajectory. In Sec. IV we formulate a cost func-
tion, and then apply Pontryagin’s principle to derive the
corresponding optimal trajectories the NH qubit can fol-
low to connect boundary states over a desired evolution
time. In particular, we illustrate that by using Rabi ro-
tations as a control knob, arbitrary qubit state manip-
ulations can be implemented under the NH dynamics,
under both ideal (unit efficiency) detection of, or post–
selection on, photon emission. Furthermore, decoherence
under partially–conditional dynamics (i.e., those arising
from inefficient detection of emitted photons) can be sub-
stantially mitigated. In Sec. V we provide a discussion
of our results and potential future research based on the
ideas we develop in this work.

II. NON-HERMITIAN JUMPLESS QUBIT
DYNAMICS

We now consider the dynamics of a qubit that can
spontaneously emit a photon into its environment with
some probability, but does not actually emit. These dy-
namics are accessible, e.g., if the qubit emits into a read-
out cavity and transmission line that route any photons
to a photodetector. The dynamics of interest are then
those which occur between any detector clicks, i.e. we
focus on those dynamics which are inferred with knowl-
edge that no photon was emitted through the open decay
channel. These dynamics are thus conditioned on the
outcomes of the photon counting measurements. This
can also be realized in practice through post–selection
using a third level [31]. The required continuous mon-
itoring of the decay channel by photon counting [42] is
illustrated in Fig. 1, and described in greater detail in
Appendix A. We include the measurement efficiency η,
which allows us to consider imperfect photon counters, as
well as to interpolate between the case where the detector
is present and when it is absent.

The conditional evolution of the qubit density matrix

ρ is given by a modified Lindblad master equation

ρ̇ = i ρ Ĥ† − i Ĥ ρ+ (1− η)L̂ ρ L̂† + η ρ tr
(
L̂ ρ L̂†

)
, (1)

where L̂ =
√
γ σ̂− represents decay of the qubit into its

environment at rate γ (or, equivalently, with character-
istic time T1 = γ−1), η ∈ [0, 1] is the photon detection
efficiency, and

Ĥ = 1
2 (Ωx σ̂x + Ωy σ̂y + Ωz σ̂z)− i

2 γ σ̂
+σ̂−

=
1

2

(
Ωz − i γ Ωx − iΩy

Ωx + iΩy −Ωz

)
(2)

is a non-Hermitian effective Hamiltonian that includes
both unitary controls Ĥ = 1

2 Ω · σ̂q and NH decay dy-
namics. Eq. (1) gives the standard Lindblad master equa-
tion for η = 0 (no detection). We shall be most focused
on the no–click decay dynamics accessible with ideal de-
tection (η = 1), since the NH effective Hamiltonian Ĥ
is most closely associated with this ideal case. The dy-
namics (1) can equivalently be written as a dynamical
system in the Bloch coordinates q = (x, y, z)> according
to q̇ = tr (σ̂q ρ̇), where σ̂q are Pauli matrices. We will
often refer to these dynamics using the shorthand nota-
tion q̇ = F(q,Ω), noting that we may decompose the
total dynamics into a sum of the jumpless NH dynamics
(Ω = 0), plus the unitary part (Ω 6= 0), according to

q̇ = F(q,Ω = 0)︸ ︷︷ ︸
F0

+Ω× q = F(q,Ω). (3)

The right eigenvalues of Ĥ read

λ± = − i
4γ±

1
4

√
4Ω2 − γ2 − 4i γ Ωz = − i

4γ±
1
4

√
J , (4)

with corresponding right eigenvectors

|λ±〉 = N
{(

2Ωz − iγ ±
√
J
)
|e〉+ 2(Ωx + iΩy) |g〉

}
(5)

(where N is a normalization factor). The left eigenval-
ues are the complex conjugates of the right eigenvalues.
While |λ+〉 and |λ−〉 are no longer necessarily orthog-
onal to one another, the left and right eigenvectors do
obey a bi-orthogonality relation [8]. A pair of Excep-
tional Points (EPs) appear as the solutions with J = 0,
satisfying Ωz = 0 and 4(Ω2

x + Ω2
y) = γ2. The EPs are

located on the equator of the Bloch sphere, and manifest
as fixed points there when the Rabi drive Ω tries to excite
the qubit at a rate that exactly balances the conditional
decay dynamics γ (e.g. at z = 0 and x = 1, ż = 0 is
achieved by Ωy = −γ/2, which lies on the ring of EPs
defined by Ω2

x + Ω2
y = γ2/4). In the typical quantum–

optical or circuit QED situations that are well–suited to
realizing our physical situation, it is much more straight-
forward to modify Ω precisely and quickly than to change
γ. We will consequently proceed by assuming γ to be
fixed, while treating Ω as a dynamic control knob. No-
tice that the eigenvalues λ± have a rotational symmetry



3

in Ωx and Ωy; we may consequently define Ω̃ to be a
drive vector in the equatorial xy Bloch–plane, and then
understand the complex eigenspectrum by visualizing it
as a function of Ω̃ and Ωz. Fig. 2 shows the real and
imaginary parts of λ± in this parameter space.

Dynamics with a complex eigenspectrum differ quali-
tatively from those of Hermitian systems with real eigen-
values. Even a näıve writing of the (un-normalized and

non-trace–preserving) evolution e−i Ĥ t ∼ exp [−i λ± t] =
exp [−Γ± t− i∆± t] reveals that while the real parts
of λ± lead to effective eigenenergies ∆± ≡ =[i λ±],
the imaginary parts Γ± ≡ <[i λ±] behave as effective
gain/loss parameters. Their significance becomes clear
when considering the possibility of adiabatic control
(e.g., by fixing γ and then modifying the NH eigenstates
by varying Ω(t) slowly compared to γ). One finds that
quasi-adiabatic following is possible, but only of the sta-
ble right eigenstate (where the more stable one at any
given time is defined by having the smaller loss parame-
ter) [12]. In our current example we generically will have
one right eigenstate closer to |e〉 and the other closer
to |g〉 (this is true except at the EP); the right eigen-
state closer to |g〉 will be the stable one, at the expense
of the other. Adiabatic following will be broken along
any control trajectory that exchanges the stability of the
two eigenstates. Such a stability exchange is topologi-
cally guaranteed when performing closed–loop encircling
of an EP [10]. As such, the difference between the rel-
ative losses Γ± along a parameter trajectory concisely
explain many of the NH phenomena reported in the lit-
erature, including breaking adiabaticity [12], and chiral
state exchange [10, 18–21, 23]. In our present example
this means that adiabatic following works only in the
lower half of the Bloch sphere (closer to |g〉), and will fail
on a timescale T1 if we try to switch hemispheres.

The system (1) we have introduced is one of the sim-
plest possible NH quantum systems one could devise. It
is nevertheless surprisingly rich, containing spectral and
dynamical features unique to NH systems, as well as be-
ing experimentally feasible [31]. This system is conse-
quently an ideal sandbox for investigating NH physics
and quantum control strategies [11, 46].

III. BASIC CONTROL: FORCING THE QUBIT
STATE ALONG A PRESET TRAJECTORY

Above we describe two distinct pictures of the same
system: On the one hand, we have a qubit with a complex
eigenvalue spectrum containing exception points, and ex-
hibiting a variety of behaviors that can be explained us-
ing the bi-orthogonal NH eigenstates. On the other hand,
quantum trajectory theory tells us that the system dy-
namics may be straightforwardly expressed by the dy-
namical system (1) or (3) across timescales; this picture
implicitly contains features of the NH topology, but can
be applied without careful analysis of that complemen-
tary topological NH structure [42].

To illustrate the power of the latter viewpoint, we show
that we may straightforwardly force our qubit to follow
any pure state trajectory we wish, assuming perfect con-
ditional evolution (obtained with the measurement effi-
ciency η = 1). In this case, our state q will be a unit
vector pointing from the origin towards a point on the
surface of the Bloch sphere, and Ω will necessarily be
an orthogonal vector generating rotations on the sur-
face via the cross product in (3). We have dynamics
q̇ = F(q,Ω = 0) + Ω × q; suppose we now solve for
the drive Ω that forces the qubit to follow a desired pure
state target trajectory Q(t) on the surface. We assume

that Q(t) is continuous and differentiable, such that Q̇
exists over the entire time domain of interest. For such
a pure state trajectory, q will point to the surface of the
Bloch sphere, while Q̇ will be a tangent vector along the
surface of the sphere; it follows that Ω = Ω Ω̄ must be a
mutually–orthogonal vector pointing along the direction

Ω̄ =
q× (Q̇−F0)

|q× (Q̇−F0)|

∣∣∣∣
q→Q

, (6)

where we use the overbar to denote a unit vector, Ω = |Ω|
is the magnitude, and F0 is a shorthand for the condi-
tional dynamics due to decay only. This expression sug-
gests that we may implement a controlled unitary char-
acterized by Ω that “makes up the difference” between
the conditional decay dynamics and the target trajec-
tory. The magnitude can be obtained by rearranging
q̇ = F0 +Ω×q = Q̇, and using the fact that q, Q̇−F0,
and Ω are all mutually orthogonal by construction. In
summary then, we may drive the system along an arbi-
trary pure–state trajectory Q(t) by applying the drive

Ω = Q× (Q̇−F0(Q)) (7)

for the ideal η = 1 case. An example of these dynamics
is shown in Fig. 3. Note that for the more general case of
mixed states or η < 1, a generalization of Eq. (7) as per

Ω = q×(Q̇−F⊥0 )/|q|2 may be used. Here F⊥0 is the com-

ponent of F0 = F⊥0 +F (R)
0 that is tangent to the sphere

of radius |q|; the remaining radial component F (R)
0 can-

not be directly cancelled by a unitary operation, with
the result that q(t) is no longer constrained to follow the
target trajectory Q(t) perfectly at all times. Note also
that pinning the qubit to a desired pure state emerges
naturally from this analysis as a simple sub-case of the
dynamics under perfect measurement efficiency η = 1.

Even though the example in Fig. 3 includes a switch
between hemispheres of the Bloch sphere, this trajectory
does not necessarily imply a parameter loop that encloses
an EP. We illustrate this in Fig. 3(d), with a set of tra-
jectories corresponding to dynamics at differing speeds
along the specific spatial trajectory shown in Fig. 3(a). It
is evident that EP enclosure depends here on the speed at
which we follow the path, with encircling occurring only
for the slower loops. Nevertheless, these different param-
eter trajectories all result in identical dynamics on the
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FIG. 2. We plot the real parts of the right eigenvalues λ± of Ĥ (i.e. ∆±, top row), and the imaginary parts of λ± (i.e. Γ±,
bottom row). We fix γ, and all other rates (Ω, ∆, and Γ) are here expressed in units of γ. The resulting pair of Riemann sheets
appear together on the left, and then the real and imaginary parts of each individual sheet are shown on the right. We mark
the pairs of EPs with markers •, and choose to place our branch cut between the two EPs along the Ωz = 0 line. Notice that
a closed parameter loop enclosing one or both EPs (n = 1, 2) will force n exchange(s) between whether Γ+ or Γ− is greater;
this is a topological property of the complex spectrum, that is associated with the failure of adiabatic control protocols when
encircling EPs. This system differs from that of Ref. [31] only in minor details.

Bloch sphere over their respective time intervals (i.e., the
path shown in panel (a) of Fig. 3). While the EP and its
attendant topology characterize the dynamics in the adi-
abatic limit (variations in Ω much slower than T1), other
dynamical effects obscure those topological features when
there is not an adiabatic–like separation of timescales.

Finally, we remark that the solutions (7) include the
capability to realize something like a “shortcut to adi-
abaticity”, even in the case where the actual adiabatic
following fails, in this sense: First, we may define any pa-
rameter trajectory Ω0 and then find the Bloch trajectory
Q0(t) which corresponds to the motion of a NH eigen-
state under Ω0. We can then use (7) to compute a new
parameter trajectory Ω1 which drives the qubit along
Q0(t) over any timescale.1 Similarly, one could also use
(7) to accelerate the NH dynamics that the system ex-
hibits in response to a slowly–varying Ω (slow enough to
have adiabatic motion plus modifications primarily due
to the NH topology described in the previous section).

1 Since the NH eigenstate depends on Ω, we will not necessarily
be following the real–time NH eigenstate of Ω1; we will just
be following the NH eigenstate path that was defined by the
other parameter path Ω0. This will be the case for any control
additions which modify the eigenstates of the Hamiltonian.

IV. PONTRYAGIN OPTIMAL CONTROL:
COST FUNCTIONS AND EXTREMIZATION

We have demonstrated above that we can easily force
our system to follow particular dynamics. We now change
emphasis, and consider controls that follow optimal dy-
namics between arbitrary boundary states with respect
to some cost function, which we derive via the Pontrya-
gin action extremization method. In other words, instead
of specifying a target trajectory Q(t), we will now only
specify an initial qi and a final target state Qf , and de-
rive optimal dynamics which connect them.

Pontryagin optimal control [49, 50] assumes that one
has 1) some dynamical equations q̇ = F(q,Ω) encoding
the system dynamics and their relationship to any avail-
able control knobs (here the Rabi drive Ω takes on the
latter role), and 2) some cost function S resembling an
action functional. The aim is then to derive controller
trajectories that extremize the cost S while also satisfy-
ing the dynamical constraint F . As we have a dynamical
equation (3), we need only specify the cost against which
we want to optimize. Generically, we wish to find con-
troller trajectories Ω(t) that take us rapidly from some
initial state qi to a chosen final state Qf , while using our
drive power Ω2 efficiently. We may consequently write a
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FIG. 3. We illustrate a sample target trajectory Q =
(X,Y, Z)> = 1√

2
(sin(2π t/T ), 1, cos(2π t/T ))> on the surface

of the Bloch sphere in (a). We are able to exactly follow this
contrived target trajectory (b) via a smooth controller tra-
jectory (c), both of which are evaluated here for final time
T = 1 [T1]. In (d) we plot the contours of Γ (gray), with
the branch cut in black and EPs in red. The Ω(t) trajec-
tories for T = 2 [T1] (green), T = 3 [T1] (cyan), T = 4 [T1]
(blue), T = 5 [T1] (purple), and T = 6 [T1] (magenta), are su-
perposed over the contour plot. Note that to keep the figure
two–dimensional, we summarize azimuthal unitary motion by
the magnitude |Ω̃| =

√
Ω2
x + Ω2

y. We may understand the os-
cillation of Ωy in (c) as correctly compensating for the changes
in the gain loss ratio required to maintain the desired trajec-
tory.

cost function of the form

S =

∫ T

0

dt (Λ · q̇−H ) , (8a)

where the Hamiltonian

H = Λ ·F(q,Ω)− α
2 (q−Qf )2 − β

2 Ω2 (8b)

includes the Lagrange multipliers (co-states) Λ that con-

strain solutions to the dynamics of interest, as well as
penalties for being far away from the target final state
and for using high drive power. The co-states are not
physical; they enter only as a computational tool to de-
rive the Pontryagin–optimized dynamics. We remark
that under no circumstances should the object H used
for optimization be confused with the quantum operators
Ĥ = Ĥ† or Ĥ 6= Ĥ†. The coefficients α and β are intro-
duced in (8b) so that we may tune the relative weights
of the different cost terms that we choose to include.

Pontryagin’s principle then manifests as action extrem-
ization, i.e., taking δS = 0 leads to

∂ΛH = q̇ = F , (9a)

∂qH = −Λ̇, (9b)

∂ΩH |Ω=Ω? = 0, (9c)

which are necessary conditions for optimality. We have
Hamilton’s equations of motion, plus a condition for
deriving optimal controller trajectories Ω?(t). Details
of the optimal dynamics appear in Appendix B. It is
straightforward to solve this last equation and find that
optimal controller trajectories obey Ω? = 1

β q×Λ. Plug-

ging in this optimal Rabi drive Ω then yields the Hamil-
tonian

H ? = 1
2β

{
q2 Λ2 − (q ·Λ)2

}
+Λ·F0−α

2 (q−Qf )2. (10)

The solutions of Hamilton’s dynamical equations gen-
erated by H ?, initialized for a particular initial qi and
all possible Λi, form a Lagrangian Manifold (LM) of can-
didate solutions [51]; if a globally optimal solution for a
given final boundary conditions exists, it can be found
in this solution manifold. Note that for constant α, β,
and γ, an optimal solution necessarily conserves its Pon-
tryagin energy E = H . The main challenge in solving
the optimal dynamics eq. (9) is in finding solutions that
match the particular boundary conditions qi and q(T ).
That boundary value problem in the coordinate space
can equivalently be formulated as an initial value prob-
lem in terms of the initial values of the states qi and the
co-states Λi. We shall describe solutions to (9) on a La-
grangian Manifold (LM) that is defined from a subset of
initial co-states Λi for given initial qi. Specifically, the
LM containing all Λi contains all possible optimal solu-
tions originating at the given qi. This LM can be under-
stood as a tool to translate between the initial value for-
mulation of the control problem and the boundary value
formulation, because there will always be at least one ini-
tial co-state Λi that generates a path on the LM leading
to any attainable q(T ). The LM thus provides a way of
understanding the mapping between the initial co-states
and attainable final states at later times. This tool has
previously been used in a similar way to describe quan-
tum trajectories following an optimal readout [52–54],
and is discussed further in Appendix B.
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The values of the coefficients α and β do impact the
types of solutions that we can get. In Appendix B we
show that α effectively determines how fast the co-states
Λ change as a function of the distance from the target
state. The form of the optimal Rabi drive clearly indi-
cates that β effectively scales how the co-states Λ trans-
late to a controller trajectory, i.e., β just re-scales the
strength of the controlled unitary dynamics relative to
the decay dynamics of F0. In less precise but more sug-
gestive terms, a larger value of α allows the controlled
state trajectory to accelerate faster, while a large β tem-
pers the impact of erratic co-state dynamics on the actual
controller dynamics. We shall consequently occasionally
refer to α and β as the controller’s “agility” and “tem-
perance”, respectively, with an understanding that these
parameters can partially counterbalance each other in
practice. For simplicity we will typically set the temper-
ance β = 1 in the examples below. This is because a
constraint on the maximum available E plays a similar
role and we necessarily already have to limit that energy
in numerical simulations by choosing a finite volume of
initial co-states Λ.

IV.1. Pure State Control

We demonstrate here that it is possible to solve the
control problem framed above numerically in the case
η = 1, and thereby obtain controller and dynamical so-
lutions which map arbitrary initial qubit states qi to
arbitrary final qubit states Qf on a desired timeframe,
(i.e., in a time T ) within the context of the NH dynam-
ics (1). Fig. 4 illustrates two pertinent examples. Panel
(a) shows that we can drive a transition from |g〉 to |e〉
against decay, and panel (b) shows that we can drive a
transition between two orthogonal states on the equator
of the Bloch sphere. Both transitions can be driven on
timescales faster than the average spontaneous emission
time γ−1 with modest drive power. We furthermore find
that for both initial conditions the associated LM cov-
ers the entire Bloch sphere “on its way” to the target
state, indicating that for sufficiently large Ω2 or |Ω|, i.e.,
for sufficiently fast Rabi driving, there are no forbidden
pure states that our control scheme cannot access.

Assessing the examples of Figs. 3 and 4, and the un-
derlying methods, we arrive at the following conclusions.
Despite the apparent complexity of the present system
when viewed through the lens of a non-Hermitian Hamil-
tonian, there are actually no substantial barriers imped-
ing pure–state control of the ideal (η = 1) system state if
we approach it instead as a dynamical system. Particu-
larly, we have in this case been able to solve for the drive
that forces the system along an exact desired pure state
trajectory, and further shown that we may formulate rea-
sonable cost functions against which to derive optimized
state dynamics and the controls that generate them. We
have done this with a relatively simple cost function, but
nothing prevents us from investigating other cost func-

FIG. 4. We plot samplings of the Lagrangian Manifold (LM)
in two different situations. Each point in a sampled LM rep-
resents the state at time T that is generated by a different
initial co-state Λi, such that the resulting plot of the sam-
pled LM shows the extent of the possible optimal solutions
on their way to the target state Qf . The surface of the Bloch
sphere is represented via Mollweide projection in both plots.
(a) Plot of the LM after time T = 2/3 [γ], initialized at |g〉,
with η = 1, α = 2, β = 1, and target state |e〉. Panel (a)
implies that if an unwanted jump to |g〉 were detected, there
exist optimal solutions to reset the state in the next interval
of no-jump evolution over a relatively short time and using
modest control drive parameters. (b) Plot of the LM after
T = 1/2 [γ], from a state initialized at y = −1, with dynam-
ics targeting the orthogonal state y = +1. In both cases we
are able to drive the transition of interest in reasonable times
and find complete coverage of the Bloch sphere soon after the
time shown, indicating that there is a controller path reaching
every pure final state under the conditions shown (even on the
way to a different target state). Smaller values of E (bluer
regions) generically correspond to control trajectories with
smaller |Λ|, i.e., trajectories with low E tend to be the slower
ones that will reach a target state over longer time intervals.
Conversely, larger E values (redder regions) correspond to
the fastest control paths that we allow, sitting on the leading
edge of the manifold. The LM is bounded by a range of initial
conjugate momenta (co-states) expressed in spherical coordi-
nates, specifically Λθ(0) ∈ [−5, 5] and Λφ(0) ∈ [−5, 5] for both
panels above. Expansion of this initial Λ–volume would re-
veal faster coverage of the Bloch sphere and solutions over
shorter time intervals (at the expense of higher Rabi power).
Animations of the evolving LMs appear in the supplemental
materials, and are described in Appendix C. The context of
the snapshots above is best understood via such animations.
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FIG. 5. Panels (a) and (d) repeat the manifold integrations
of Fig. 4(a,b), respectively, using all the same parameters ex-
cept that we now have inefficient conditioning, η = 0.5. Mix-
ing due to the now partially–monitored decay is evident pri-
marily close to |e〉, making pure states in the vicinity of |e〉 the
most difficult to reach with modest values of |Ω|. Panels (b)
and (c) show the optimally–controlled trajectory which comes
closest to the target state |e〉 at T = 1 [T1], and the controller
trajectory Ω(t) generating it. It is evident that this trajectory
struggles to terminate at z & 0.5, highlighting the difficulty in
reaching the excited state when inefficient photodetection is
used. We will show in Fig. 6 below that this effect can be mit-
igated by allowing for higher Pontryagin energy and greater
controller agility α. Panels (e) and (f) show the state trajec-
tory and controller trajectory moving from |−y〉 to |y〉 over
a duration T = T1. Panel (e) shows a relatively high–fidelity
operation, in stark contrast with panel (b). This is because
we select here boundary conditions which can be reached by
a trajectory which spends much of its time near |g〉, where
the purity loss due to decay is relatively small. Further de-
tails appear in Appendix B. Animations of the evolving LMs
appear in the supplemental materials, and are described in
Appendix C.

tions that are motivated by more specific tasks.

FIG. 6. We repeat Fig. 5(b,c), this time with an expanded LM
Λθ ∈ [−10, 10] and Λφ ∈ [−10, 10], completely unconditional
dynamics η = 0, and a longer duration t = 3T1. Panels (a,b)
use α = 2 in (a,b), and panels (c,d) increase the agility to
α = 10. (The temperance is β = 1 in all cases). It is evident
that despite the significantly worsened (now non-existent) de-
tection, and longer evolution time compared with Fig. 5, we
can actually get closer to |e〉. By allowing the controller use
of greater power and the latitude to make more rapid adjust-
ments, the optimization scheme is then able to keep a pure
state near |g〉 until accelerating rapidly towards |e〉 at the
end. Thus, the larger initial manifold and α values allow our
controller to find trajectories in which decoherence is mean-
ingfully mitigated. Further details appear in Appendix B,
and in Fig. 7.

IV.2. Mixed State Control and Inefficient
Conditioning

We continue by considering the less straightforward
case with inefficient photon detection, η < 1. Inef-
ficient detection or post–selection implies a loss of in-
formation that dissipates into environmental degrees of
freedom without being detected and generically leads to
mixed quantum states [42]. This presents a clear chal-
lenge for control [55, 56]. In particular, many high–
purity qubit states may not be accessible to moderate–
time control trajectories, because unitary controls cannot
directly “undo” decoherence caused by inefficient detec-
tion (i.e., an observer’s control abilities are limited if they
possess only incomplete knowledge about the system of
interest). This is apparent in Fig. 5, where we repeat the
examples of Fig. 4 but with an imperfect detector effi-
ciency η = 0.5. A decay channel in particular will tend
to mix the qubit state over short times if we are near |e〉,
but will then re-purify the qubit over timescales much
longer than T1 without a drive (i.e., |g〉 is a pure state,
and the system will either jump there or asymptotically
approach it if left alone). We can consequently begin
to qualitatively understand the route towards reaching
high–purity target states with poor detection efficiency.
Here, in addition to elements of the ideal analysis above,
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there ought to be an implicit benefit to control trajecto-
ries which go through the ground state (or near it), so as
to minimize decoherence over the course of the evolution.

To that end, an ideal trajectory to reach |e〉, which is
the most difficult state to reach, is one that stays near
|g〉 to retain purity for a relatively long time during its
evolution, and then rapidly accelerates towards |e〉 at the
last possible moment. We elaborate on this point in Ap-
pendix B. It is natural to ask whether our optimization
scheme can actually come up with a solution for the tra-
jectory just described. The answer is that it can, and
such a solution is explicitly shown in Fig. 6. The co-
efficient α turns out to play a meaningful role at this
point: Increasing the “agility” allows the controller to
change direction faster (see Appendix B), which is help-
ful in minimizing decoherence. In particular, Fig. 6 shows
that the difficulties in performing the operation |g〉 → |e〉
illustrated in Fig. 5(a,b,c) can largely be overcome by in-
creasing α.

V. DISCUSSION AND OUTLOOK

We have demonstrated here an instance where opti-
mal control theory may be successfully applied to a non-
Hermitian quantum system. We have focused on a rela-
tively simple system (a decaying qubit) whose dynamics
can be completely understood via quantum trajectory
theory (see [42] and references therein), and whose pure–
state dynamics are straightforwardly controllable. This
has allowed us to analyze the conceptual aspects of non-
Hermitian physics relative to our control schemes from a
strong foundation. We have used this system to review a
number of phenomena that are generic to non-Hermitian
Hamiltonians in quantum mechanics (exceptional points,
bi-orthogonal eigenstates, and so on), and then demon-
strated that complementary and powerful control meth-
ods arise straightforwardly when the same system is ap-
proached from a quantum trajectory perspective instead.

Our results here constitute a particular type of feed-
back control [57]. The construction of a non-Hermitian
Hamiltonian is conditioned on the readout (i.e., on the
absence of photon emission events), but retains many of
the desirable features of open–loop control between emis-
sion events. In particular, controls for extended times
between jumps may be pre-computed. We might con-
sequently characterize our work above as an exploration
of “open–loop conditional quantum control”. Despite the
importance of the measurement record, we do not require
feedback to be computed instantaneously, as occurs in
many feedback problems requiring non-differentiable con-
troller trajectories that respond to diffusive conditional
dynamics at each time interval [40, 41, 56–58].

We further note that conditional evolution of an open
quantum system often admits a description in terms of
a NH Hamiltonian, such that general features of our ap-
proach may apply to a wide class of related problems.
In particular we have developed a pathway towards mit-

igating the impacts of inefficient detection in this con-
text, with demonstrated efficacy in a simple example.
Our present work further suggests novel research avenues
to consider for control of more complex non-Hermitian
quantum systems, by probing the intersection between
dynamical and topological pictures of the system.

Much of the present interest in NH physics revolves
around topological aspects of the spectrum [23, 25, 59].
Such properties may be evaluated with respect to NH
eigenvalue Riemann sheets as parameters are varied (as
in, for example, Fig. 2), but connecting these ideas to
the actual dynamical response of the system across ar-
bitrary timescales and in general remains a challenge for
the field. We view our application of Pontryagin’s prin-
ciple to a NH quantum system as one of many emerging
strategies for the control of NH physics, which seek to
avoid the limitations of adiabatic following in this con-
text. The approach presented here is complementary to
other efforts addressing non-Hermitian quantum control,
including experimental work [36], and theoretical stud-
ies based on perturbation theories [43] or shortcuts to
adiabaticity [44–46, 60, 61]. Further development of a
Pontryagin control approach for NH systems, and unifica-
tion of topological NH concepts with a dynamical picture
due to quantum trajectory theory, are promising avenues
for continued research. Ultimately, we see this work as
one element of a toolbox which may, together with other
methods, lead to comprehensive control of non-Hermitian
quantum systems that takes advantage of their unique
physics for tasks of interest to quantum information sci-
ence.
Acknowledgements — This work has been supported

by AFOSR MURI Grant No. FA9550-21-1-0202. We are
grateful to Rob Cook, Zengzhao Li, and the groups of
Kater Murch and Jack Harris for insightful discussions
about non-Hermitian physics related to the present work.

Appendix A: No–Jump Qubit Dynamics with a
Decay Channel

We derive here our non-Hermitian Hamiltonian and
the associated conditional dynamics, using a Bayesian de-
scription of continuously–monitored sponataneous emis-
sion (see Refs. [42, 62] and references therein). Physically,
we assume that a qubit emits into a readout cavity (i.e., a
fast decaying cavity) and/or transmission line, where the
values of the qubit transition frequency and the density
of environmental states result in emission at a rate γ (or
timescale T1 = 1/γ), with the characteristic exponential
decay of the excited state population (i.e., we assume that
the types of approximations first made by Weisskopf and
Wigner [63] apply). In this setting, emitted photons can
be captured with high efficiency and then be routed to
a detection device, such that the conditional evolution is
accessible. See Fig. 1.
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It is then phenomenologically appropriate to consider
a separable initial state of a qubit and output line leading
to a detector, namely (ζ |e〉+ υ |g〉)⊗ |0〉, evolving to

ζ
(√

e−γ∆t |e, 0〉+
√

1− e−γ∆t |g, 1〉
)

+ υ |g, 0〉 (A1a)

after a time ∆t. This can equivalently be written as

( √
e−γ∆t 0√

1− e−γ∆t â† 1

)(
ζ
υ

)
⊗ |0〉 , (A1b)

where â† |0〉 = |1〉 represents the emission of a photon,
and the matrix form highlights the action on the qubit
state. Kraus operators can be obtained by selecting a fi-
nal state of the line, which we will associate with a mea-
surement outcome, leaving behind an operation on the
qubit state only. We introduce a notion of loss between
qubit and detector via insertion of a beamsplitter rela-

tion â† → √η â†s +
√

1− η â†`, which states that an emit-

ted photon may go to a monitored signal port â†s with
probability η, or may be lost in transit with probability
1− η. We will henceforth refer to η as the measurement
efficiency. This process generalizes (A1b) to

( √
e−γ∆t 0√

1− e−γ∆t (
√
η â†s +

√
1− η â†`) 1

)
︸ ︷︷ ︸

M

(
ζ
υ

)
⊗ |00〉 .

(A2)
Note that the existing similar experiments emphasizing
NH dynamics use a third qudit level and post–selection
[31, 34–36] instead of continuous photo–counting, for
practical reasons. This is however conceptually the same
as the picture laid out here, since post–selection on no
jumps having occurred to a third level at some time is
equivalent to conditioning on an emission event not hav-
ing occurred in any of the timesteps leading up to that
moment.

We now adapt these expressions to describe the con-
ditional evolution of the qubit. Three distinct outcomes
are possible for a measurement over a finite timestep ∆t,
each represented by a Kraus operator: The detector may
click due to photon emission, as represented by the op-
erator

M̂10 = 〈1s 0`|M |0 0〉 =

(
0 0√

η(1− e−γ∆t) 0

)
≈
√

∆t
√
η γ σ̂− +O

(
∆t

3
2

)
,

(A3a)

or the detector may not click, which is due to either no

photon being emitted

M̂00 = 〈0s 0`|M |0 0〉 =

( √
e−γ∆t 0

0 1

)
≈ Î + ∆t

(
−γ/2 0

0 0

)
︸ ︷︷ ︸

Ẑ

+O
(
∆t2

)
,

(A3b)

or to a photon being emitted but going unobserved due
to imperfect detection

M̂01 = 〈0s 1`|M |0 0〉 =

(
0 0√

(1− η)(1− e−γ∆t) 0

)
,

≈
√

∆t
√

(1− η) γ σ̂− +O
(

∆t
3
2

)
.

(A3c)

We define L̂ ≡ √γ σ−, such that M̂10 ≈
√

∆t
√
η L̂ and

M̂01 ≈
√

∆t
√

1− η L̂. The operators above represent a
complete set of outcomes, in that together they complete
a positive operator valued measure (POVM), satisfying

M̂†00M̂00 + M̂†01M̂01 + M̂†10M̂10 = Î. (A4)

Notice that (A4) holds both for the general forms of these
matrices and for the operators approximated to O(∆t).

Equation (A4) further implies that Ẑ = − 1
2 L̂
†L̂, which is

an expected and general property of such jump operators.
We are now in a position to describe the conditional

qubit dynamics (i.e., the dynamics of the qubit that can
be inferred from the “click” or “no–click” outcome of
the photodetector monitoring the spontaneous emission
channel with efficiency η). In the event of a click, we infer
a jump of the qubit density matrix ρ to |g〉 〈g|, according
to

ρ(t+ ∆t) =
M̂10 ρ(t)M̂†10

tr
(
M̂10 ρ(t)M̂†10

) = |g〉 〈g| . (A5)

Note that after detecting a jump the final state |g〉 is
obtained irrespective of our estimate of the state prior to
the detector click. However, we are much more interested
in the dynamics that arise when the detector does not
click; these dynamics come from the state update

ρ(t+ ∆t) =
M̂00 ρ(t)M̂†00 + M̂01 ρ(t)M̂†01

tr
(
M̂00 ρ(t)M̂†00 + M̂01 ρ(t)M̂†01

) , (A6)

which includes a weighted average over the the two sub-
processes that lead to the no-click outcome. We may take
this expression, and re-write it as a dynamical equation
for the density matrix by making expansions to O(∆t).
In the notation above, we find
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ρ̇ = Ẑ ρ+ ρ Ẑ† + (1− η)L̂ ρ L̂† − ρ tr
(
Ẑ ρ+ ρ Ẑ† + (1− η)L̂ ρ L̂†

)
= (1− η)L̂ ρ L̂† − 1

2 L̂
†L̂ ρ− 1

2ρ L̂
†L̂︸ ︷︷ ︸

Linear (may be written as a Liouvillian)

+ η ρ tr
(
L̂ ρ L̂†

)
︸ ︷︷ ︸

Non-Linear

, (A7)

which is appropriate between any detector clicks. We
have written a trace–preserving equation of motion,
which consequently explicitly includes a non-linear term
that enforces conservation of probability (i.e. a normal-
ization). In the absence of the non-linear term, the equa-
tion can be written in a linear (Liouvillian) form [32, 33].
The non-linear trace–preserving term arises when η > 0
because the probability of the associated event of no
detector click is not equal to one. We have identified
Ẑ = − 1

2 L̂
†L̂ for L̂ =

√
γ σ̂−, and see that the Lind-

blad master equation is recovered for the unmonitored
case (i.e., for the unconditional dynamics that arise from
η = 0).

We then arrive at the expressions used in the main text
by adding unitary qubit rotations defined by a Rabi drive
Ω to the dynamics above (these unitaries function as a
control Hamiltonian throughout the main text), resulting
in ρ̇ =

i[ρ, Ĥ]+(1−η)L̂ ρ L̂†− 1
2 L̂
†L̂ ρ− 1

2ρ L̂
†L̂+η ρ tr

(
L̂ ρ L̂†

)
(A8a)

with Ĥ = 1
2 (Ωx σ̂x + Ωy σ̂y + Ωz σ̂z) . (A8b)

Note that such an expression is intrinsically conceived in
the limit of small timesteps. The lack of commutation

between the control unitary Û = e−i Ĥ ∆t with any of the
Kraus operators M̂ may be neglected to O(∆t), but will

typically contribute non-trivially to O(∆t
3
2 ) and beyond.

With these assumptions in place, the equation of mo-
tion can be recast as a dynamical system in the qubit’s
Bloch coordinates (q̇ = tr (σ̂q ρ)), specifically as

ẋ = Fx(q,Ω) = 1
2γ x (η(z + 1)− 1)+zΩy−yΩz, (A9a)

ẏ = Fy(q,Ω) = 1
2γ y (η(z + 1)− 1)+xΩz−zΩx, (A9b)

ż = Fz(q,Ω) = 1
2γ (1 + z) (η(z + 1)− 2) + yΩx − xΩy,

(A9c)
for q ≡ (x, y, z)> and Ω ≡ (Ωx,Ωy,Ωz)

>. We may equiv-
alently separate out the parts of the dynamics due to the
measurement (leading terms) and the Rabi drive, accord-
ing to

q̇ = F(q,Ω) = γ F̃(q)− q×Ω, (A9d)

where F̃(q) = 1
γ F0, i.e., F̃ are the un-controlled condi-

tional dynamics, with the decay timescale factored out.
We may then regroup some terms in (A8a) to iden-

tify the non–Hermitian Hamiltonian of primary interest.

Specifically, the dynamics of (A8a) may equivalently be
expressed as

ρ̇ = i ρ Ĥ†−i Ĥ ρ+(1−η)L̂ ρ L̂†+η ρ tr
(
L̂ ρ L̂†

)
, (A10a)

where we have defined

Ĥ = Ĥ − i
2 L̂
†L̂ =

1

2

(
Ωz − i γ Ωx − iΩy

Ωx + iΩy −Ωz

)
, (A10b)

with L̂ =
√
γ σ̂−. Eq. (A10a) is simply a re-writing of

(A8a) in terms of the NH Hamiltonian.

Appendix B: Pontryagin Optimal Control: Details
and Extended Discussion

1. The Pontryagin Maximum Principle

Our use of Pontryagin’s principle for optimal control
revolves around an action that is generically of the form

S = f(qT ) +

∫ T

0

dt (p · q̇−H (q,p,u)) , (B1)

where q are state coordinates as in the main text, p are
the co-states (i.e., conjugate “momenta”, or Lagrange
multipliers, directly analogous to Λ), and u are some con-
troller variables. Optimization involves solving δS = 0,
where δS

= δf(qT ) +

∫ T

0

(δ[p · q̇]− δH (q,p,u)) ,

= p · δq|T0 +
∂f

∂qT
δqT +

∫ T

0

dt {δp · q̇− ṗ · δq− δH } ,

(B2)

with

δH =
∂H

∂q
δq +

∂H

∂p
δp +

∂H

∂u
δu. (B3)

The equations

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
,

∂H

∂u
= 0 (B4)

arise straightforwardly from requiring that the integral
contribution goes to zero, independent of the variations
δq, δp, and δu.

This mathematical approach to control, where opti-
mal controls are derived via action extremization, varia-
tional calculus or geodesics, has a long history in both
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classical [47, 48] and quantum [49, 50] control. This
includes work on related physical systems, where an
action–extremization principle has similarly been used
to find extremal–probability measurement records and
paths (instead of unitary controllers) for continuously–
monitored quantum systems [42, 52–54, 62, 64–68]. An
application of a similar method towards simultaneous op-
timization of a diffusive measurement record and unitary

controls has recently been carried out [69].

2. Optimal Equations of Motion

In the main text, we introduce a Hamiltonian for Pon-
tryagin control of our qubit, which reads

H = Λ ·F(q,Ω)−
(
α
2

{
(x− xf )2 + (y − yf )2 + (z − zf )2

}
+ β

2

{
Ω2
x + Ω2

y + Ω2
z

})
︸ ︷︷ ︸

L (q,Ω)

. (B5)

Note that the actual cost function (i.e. the part of the Hamiltonian that is not directly implementing the constraint
to the dynamical equations q̇ = F) may be recognized as the corresponding Lagrangian L . We have chosen a simple
form of the cost function in this work; it is possible to follow the same procedure with a modified cost function that
may lead to solutions better optimized for a particular task.

We now go through the optimization calculations based on H in some detail. We consider the drive optimization
condition first, finding

∂H

∂Ω
= 0 → Ω?x = 1

β (yΛz − z Λy) , Ω?y = 1
β (z Λx − xΛz) , Ω?z = 1

β (xΛy − yΛx) . (B6)

This may remind the reader of expressions for the angular momentum, if the Lagrange multipliers Λ are understood
as conceptually analogous to linear momenta (i.e., the choice of L above leads to Ω? = 1

β q × Λ). We emphasize

again our remark in the main text that this form of the optimal drive indicates that the choice of β is somewhat
redundant with the choice we must make in practice about where to bound the Lagranian Manifold, and hence also the
Pontryagin energy E = H . For this reason we pay relatively little attention below to this “temperance” parameter.

Substituting in Ω → Ω? = 1
β q×Λ leads to

H ? = Λ ·
(
F(q,Ω = 0)− 1

β q× (q×Λ)
)
− α

2 |q−Qf |2 − 1
2β |q×Λ|2

= Λ ·F(q,Ω = 0) + 1
2β q2 Λ2 − 1

2β (q ·Λ)2 − α
2 |q−Qf |2,

(B7)

which is the Hamiltonian generating optimally–controlled dynamics. Note that after substituting in Ω = Ω? ev-
erywhere, some terms from the uncontrolled part of the dynamical equations F(q,Ω = 0) = F0 will remain. The
Hamiltonian above may equivalently be expanded to read

H ? =γ
2 {[η(z + 1)− 1] [xΛx + yΛy] + (1 + z)Λz[η(z + 1)− 2]}
+ 1

2β

{
Λ2
x(y2 + z2) + Λ2

y(x2 + z2) + Λ2
z(x

2 + y2)
}
− 1

β {xyΛxΛy + xz ΛxΛz + yz ΛyΛz}

− α
2

{
(x−Xf )2 + (y − Yf )2 + (z − Zf )2

}
.

(B8)

The subsequent equations of motion (Hamilton’s dynamical equations) now read

ẋ? = 1
2γ x{η(z + 1)− 1} − 1

β x(Λyy + Λzz) + 1
β Λx

(
y2 + z2

)
, (B9a)

ẏ? = 1
2γ y{η(z + 1)− 1} − 1

β y(Λxx+ Λzz) + 1
β Λy

(
x2 + z2

)
, (B9b)

ż? = 1
2γ(z + 1){η(z + 1)− 2} − 1

β z (Λxx+ Λyy) + 1
β Λz

(
x2 + y2

)
, (B9c)

Λ̇?x = α(x−Xf )− 1
2γ Λx{η(z + 1)− 1}+ 1

β Λx(Λyy + Λzz)− 1
β x
(
Λ2
y + Λ2

z

)
, (B9d)

Λ̇?y = α(y − Yf )− 1
2γ Λy{η(z + 1)− 1}+ 1

β Λy(Λxx+ Λzz)− 1
β y
(
Λ2
x + Λ2

z

)
, (B9e)

Λ̇?z = α(z − Zf )− γ Λz{η(z + 1)− 1} − 1
2γ η(Λyy + Λxx) + 1

β Λz(Λxx+ Λyy)− 1
β z
(
Λ2
x + Λ2

y

)
. (B9f)

It is these equations which are explicitly integrated in the course of finding dynamical solutions. Some fea-
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tures of the dynamics are more apparent in this form:
For instance, the leading terms on each Λ̇ equation
(i.e., α(q−Qf )− ...) clearly illustrate how the magnitude
and direction of the control drive is adjusted if we find
ourselves far from the target state. More specifically, α
essentially determines how rapidly the control drive can
change, such that paths derived with a larger α are ca-
pable of greater acceleration. As shown in Fig. 6, this
property is highly useful to reach pure target states un-
der inefficient detection.

In the main text we have worked with a Lagrangian
Manifold (LM) of control parameter solutions defined
by choosing a volume of initial Λi, corresponding to a
volume of initial conditions for optimal control trajec-
tories. Solutions in this LM are unique within the full
(six–dimensional) phase space of H , but are not neces-
sarily unique when projected into the smaller, physical,
q–space. Regions of the Bloch sphere where multiple so-
lutions meet the given boundary conditions are directly
analogous to the caustics that appear in optics and di-
verse other physical settings, that are described mathe-
matically by catastrophe theory [51–53, 70–73].

3. On the Existence of Control Solutions Meeting
Particular Boundary Conditions

We comment here on the simplest case (of pure states
with η = 1), and then on the general mixed–state case
with η ≤ 1.

a. Pure State Solutions

It is easy to see from (A9d) that trivial purity–
preserving solutions exist for η = 1 and in the limit |Ω| �
γ. If the unitary control dynamics are fast, i.e., they oc-
cur on timescales where the decay is negligible, we may
factor out the drive magnitude q̇ = |Ω|

(
Ω̄× q

)
+ γ F̃

(where Ω̄ is the unit vector setting the rotation axis),
and immediately see that

q̇

|Ω|
= Ω̄× q +

γ

|Ω|
F̃ ≈ Ω̄× q. (B10)

In other words, in the limit of fast drive (γ � |Ω|), the
decay dynamics can be treated as a perturbation, and

the trivial linear control problem arising from Rabi drive
alone is recovered in the limit where the controls are ap-
plied very strongly. We consequently conclude that our
ability to map arbitrary pure states to other arbitrary
pure states in the ideal (η = 1) case is limited only by
the controller power.

The mixed state case is less straightforward. We will
find that it is useful to supplement the Cartesian repre-
sentation of our dynamics above with a spherical coor-
dinate representation before considering the mixed state
solutions in detail.

b. Dynamics and Control in Spherical Coordinates

Let us convert (A9) to spherical coordinates x =
R cosφ sin θ, y = R sinφ sin θ, and z = R cos θ, thereby
representing the dynamics by

Ṙ = γ
{

1
2 cos θ

(
η(1 +R2)− 2

)
+ 1

4R(η − 1)(cos(2θ) + 3)
}
,

(B11a)

θ̇ =− γ(η + (η − 1)R cos θ − 2) sin θ

2R
− Ωx sinφ+ Ωy cosφ,

(B11b)

φ̇ = Ωz − (Ωx cosφ+ Ωy sinφ) cot θ. (B11c)

A large part of our interest in the spherical form of the
problem stems from the dynamics of state purity P =
tr
(
ρ2
)
. This expression is closely related to the radial

equation of motion, i.e., Ṗ = 2 tr (ρ ρ̇) = R Ṙ. This can

equivalently be written as Ṗ =

1
2γ
[
(x2 + y2){η(1 + z)− 1}+ z(z + 1){η(1 + z)− 2}

]
.

(B12)
Since these dynamics related to changes in state purity
are independent of φ, they can be completely represented
within a cross-sectional plane of the Bloch sphere; graph-
ical representations appear in Fig. 7.

The control problem as a whole can also be recast
in spherical coordinates, where the change from Carte-
sian q = (x, y, z) and Λ = (Λx,Λy,Λz) to spherical
q = (R, θ, φ) and Λ = (ΛR,Λθ,Λφ) is performed via
canonical transformation:

x → R cosφ sin θ,
y → R sinφ sin θ,
z → R cos θ,

Λx → ΛR sin θ cosφ+ (Λθ/R) cos θ cosφ− (Λφ/R) csc θ sinφ,
Λy → ΛR sin θ sinφ+ (Λθ/R) cos θ sinφ+ (Λφ/R) csc θ cosφ,
Λz → ΛR cos θ − (Λθ/R) sin θ.

(B13)

Applying the above transformation to the Cartesian form of H preserves the Poisson bracket between all dynam-
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ical variables, and is equivalent to re-assembling the
Hamiltonian in spherical coordinates as follows

H = ΛR Ṙ+ Λθ θ̇ + Λφ φ̇−L (q,Ω). (B14)

Note that the equations for the optimal control (i.e., from
solving ∂ΩH = 0) now read

Ω?x = −Λθ sinφ− Λφ cot θ cosφ, (B15a)

Ω?y = Λθ cosφ− Λφ cot θ sinφ, (B15b)

Ω?z = Λφ. (B15c)

These are quite helpful in constructing simulations, in
that they formalize an intuition that the co-state variable
ΛR plays no role in the controller trajectory (because
ΛR corresponds to changes in purity, which the unitary
controller cannot implement directly). Consequently, we
may work with a two–dimensional Lagrangian Manifold
(LM), completely defined by an initial mesh of Λθ and Λφ,
rather than a three–dimensional one in Λx, Λy, and Λz.
This reduction in the dimensionality of the integrated
manifold considerably simplifies the numerics.

c. Mixed State Solutions

The rate of change of the state purity Ṗ is especially
important to us in the cases of inefficient detection, η < 1,
as well as an initially impure qubit state, because the
amount of evolution time spent in regions of Ṗ > 0 will
upper-bound the final state purity (and thereby constrain
which final states are attainable). Recall that unitary
dynamics (i.e., Ω) cannot directly change the state pu-
rity. Purity is here increased (decreased) purely through
the acquisition (loss) of information the qubit has shared
with its optical environment via spontaneous emission.
What we can do, however, is to devise controller trajec-
tories that drive the system to a state where the no-click
(no-jump) measurement information leads to purity in-
crease, i.e., a measurement induced change in purity that
depends on the qubit state. In this manner we can use
our controls to indirectly affect P.

Qualitative aspects of the relevant dynamics may be
immediately inferred from Fig. 7. For instance, the line
Ṗ = 0 necessarily goes through |g〉 irrespective of η, and

this point is the only state where Ṗ = 0 and P = 1 for
η < 1. It follows that the jumpless dynamics (including
the Lindbladian dynamics without detection) can only
asymptotically approach P = 1. More specifically, the
dynamics without drive (Ω = 0) decay as

z(t) =
2u0

η u0 − eγ t(η u0 − 2)
− 1 (B16)

for u0 = 1 + z0 ∈ [0, 2]. These solutions asymptotically
approach z = −1 in the long–time limit for all parameters

except for z0 = 1 (initial |e〉) and η = 1 [42, 74]. There-
fore, if one needs to significantly increase state purity,
there are two options to accomplish this (which are not
mutually incompatible). The first is to drive the trajec-
tory close to |g〉 to the greatest extent possible, then wait
long enough for the jumpless dynamics to purify the state
to the desired degree, and then quickly drive the qubit
from near |g〉 to the target state. The second is to alter-
natively actually measure a click, which resets the qubit
directly to |g〉, at which point the attainable state purity
is limited solely by the speed of the controls. Note that a
slower trajectory from |g〉 → Qf will have more time to
lose purity, and therefore have a more constrained range
of accessible final states (recall Fig. 5).

We have demonstrated in Fig. 6 that our optimal equa-
tions of motion are, especially for sufficiently large α, ca-
pable of generating the type of solutions we have just de-
scribed. A larger value of the “agility” parameter α helps
with this, because it allows our controller to “accelerate”
towards the target state a short time before we intend
to reach it, and to stay near |g〉 to retain purity prior
to that. Additional figures and animations illustrating
this effect can be found in the Supplementary Materials,
described in Appendix C.

Appendix C: Supplementary Plots and Animations

We provide supplementary animations in the accom-
panying slide deck [75]. These animations are designed
to offer clear visual illustrations of the following points:

1. (Slide 3) We illustrate bi–orthogonal states on the
Bloch sphere (see Ashida et al., 2020), in prepara-
tion for subsequent animations.

2. (Slides 5–6) We demonstrate how adiabatic follow-
ing can succeed or fail, using closed loop parameter
trajectories of duration T = 100T1. Adiabatic fol-
lowing works just as in the Hermitian case if our en-
tire trajectory stays on the stable eigensheet (slide
5), but fails when we encircle an EP and thereby
force a stability exchange (slide 6) (see [12]).

3. (Slides 8–9) Stability exchange when encircling an
EP can also be understood as resulting in chiral
state exchange. We illustrate a situation where
we perform a clockwise encircling that stays on
the stable eigensheet (slide 8), in contrast with a
counter–clockwise encircling that attempts to fol-
low the lossy eigensheet [10].

4. (Slides 11–12) Pure state optimal manifold dynam-
ics from Pontryagin control cover the entire surface
of the Bloch sphere over moderate time intervals for
moderate manifold energy boundaries (which limit
the maximum Rabi rotation rates |Ω| available to
the controller). These are animated versions of each
panel in Fig. 4.
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FIG. 7. Graphical representation of the change in purity for mixed state no–jump dynamics (A9). We plot the rate of change

of the Bloch vector length, Ṙ (B11a), on the top (panels a,c,e) and the rate of change of the purity Ṗ on the bottom (panels
b, d, f). Results are shown for detection efficiencies η = 1 (panels a, b), η = 0.75 (panels c, d), and η = 0 (panels e, f).

Contour plots show lines of constant Ṙ(x, z) or Ṗ(x, z), such that the dynamical flow will run perpendicular to the contour

lines, i.e. along the gradient. Both Ṙ and Ṗ values are given in units of γ. The Ṙ = 0 and Ṗ = 0 lines are shown in magenta;
purity increases within the magenta boundary, and decreases outside of it. We can understand that purity decreases in the
upper half of the Bloch sphere (i.e., closer to |e〉) in the inefficient conditional dynamics, and does so faster for worse efficiencies.
On the other hand, the dynamical attraction towards |g〉 can be used to increase purity for states in a large region between
the equator and |g〉, across a wide range of measurement efficiencies. These results generically imply that control protocols can

reach states with Pf > Pi if the target trajectory spends sufficient time traversing the region where Ṗ > 0.

5. (Slides 14–18) Pontryagin control under inefficient
measurement (η < 1) leads to difficulties in the
exact targeting of pure final states. We show addi-
tional plots and animations detailing this decoher-
ence. We then develop further examples illustrating
here that the issue can be mitigated, demonstrat-

ing attainment of increasingly pure final states us-
ing increasing controller agility. Larger values of α
can significantly improve the purity of final states
reached by trajectories t & T1; our animations here
supplement Figs. 5 and 6.
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