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Machine learning for multidimensional response and
survival after cardiac resynchronization therapy using
features from cardiac magnetic resonance
Derek J. Bivona, PhD,*† Srikar Tallavajhala, BA,* Mohamad Abdi, MS,†

Pim J.A. Oomen, PhD,‡ Xu Gao, MD,x Rohit Malhotra, MD,* Andrew E. Darby, MD,*
Oliver J. Monfredi, MD, PhD, FHRS,* J. Michael Mangrum, MD,*
Pamela K. Mason, MD, FHRS,* Sula Mazimba, MD,* Michael Salerno, MD, PhD,k

Christopher M. Kramer, MD,*{ Frederick H. Epstein, PhD,†{

Jeffrey W. Holmes, MD, PhD,** Kenneth C. Bilchick, MD, MS, FHRS*
From the *Department of Medicine, University of Virginia Health System, Charlottesville, Virginia,

†Department of Biomedical Engineering, University of Virginia Health System, Charlottesville,
Virginia, ‡Department of Biomedical Engineering, University of California, Irvine, California,
xDepartment of Medicine, Northwestern University, Chicago, Illinois, kDepartments of Medicine and
Radiology, Stanford University, Palo Alto, California, {Department of Radiology andMedical Imaging,
University of Virginia Health System, Charlottesville, Virginia, and **Departments of Medicine,
Surgery, and Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama.
BACKGROUND Cardiac resynchronization therapy (CRT) response is
complex, and better approaches are required to predict survival and
need for advanced therapies.

OBJECTIVE The objective was to use machine learning to charac-
terize multidimensional CRT response and its relationship with
long-term survival.

METHODS Associations of 39 baseline features (including cardiac
magnetic resonance [CMR] findings and clinical parameters such
as glomerular filtration rate [GFR]) with a multidimensional CRT
response vector (consisting of post-CRT left ventricular end-
systolic volume index [LVESVI] fractional change, post-CRT B-type
natriuretic peptide, and change in peak VO2) were evaluated. Ma-
chine learning generated response clusters, and cross-validation as-
sessed associations of clusters with 4-year survival.

RESULTS Among 200 patients (median age 67.4 years, 27.0%
women) with CRT and CMR, associations with more than 1 response
parameter were noted for the CMR CURE-SVD dyssynchrony param-
eter (associated with post-CRT brain natriuretic peptide [BNP]
and LVESVI fractional change) and GFR (associated with peak VO2
Address reprint requests and correspondence: Dr Kenneth Bilchick,
UVA Health System, Cardiovascular Division, P.O. Box 800158, Charlot-
tesville, VA 22908. E-mail address: bilchick@virginia.edu.
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and post-CRT BNP). Machine learning defined 3 response clusters:
cluster 1 (n 5 123, 90.2% survival [best]), cluster 2 (n 5 45,
60.0% survival [intermediate]), and cluster 3 (n 5 32, 34.4% sur-
vival [worst]). Adding the 6-month response cluster to baseline fea-
tures improved the area under the receiver operating characteristic
curve for 4-year survival from 0.78 to 0.86 (P 5 .02). A web-based
application was developed for cluster determination in future pa-
tients.

CONCLUSION Machine learning characterizes distinct CRT
response clusters influenced by CMR features, kidney function,
and other factors. These clusters have a strong and additive influ-
ence on long-term survival relative to baseline features.

KEYWORDS Machine learning; Magnetic resonance imaging; Heart
failure; Cardiac resynchronization therapy; Implantable cardi-
overter-defibrillator

(Heart Rhythm O2 2022;3:542–552) © 2022 Heart Rhythm Society.
Published by Elsevier Inc. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).
Introduction
Although there have been many informative clinical trials of
cardiac resynchronization therapy (CRT) for chronic systolic
heart failure over the past 2 decades1–5 and development of
alternative approaches based on conduction system
pacing,6,7 a major gap in our understanding of the clinical
course post CRT in its different forms is how to weight and
integrate different short-term post-CRT response parameters
for the purpose of predicting long-term survival. In this re-
gard, clinicians need to know how much diagnostic testing
obtained 6–12 months after CRT adds to baseline character-
istics and immediate procedural parameters of success, such
as the timing of the QRS to the left ventricular (LV) electro-
gram at the LV pacing site (QLV). This is an issue of critical
n access article
/).
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KEY FINDINGS

- Evaluation of a multidimensional cardiac resynchroni-
zation therapy (CRT) response outcome based on left
ventricular function, peak VO2, and the neurohormonal
axis is feasible using multivariate multiple linear
regression and provides a more complete measure of
short-term CRT response 6 months after device im-
plantation than any individual single parameter.

- The baseline features (including cardiac magnetic
resonance findings) predictive of each of the 3 com-
ponents of this CRT response assessment have limited
overlap, which helps explain the uncoupling frequently
observed among response parameters in these 3 do-
mains.

- Machine learning methods including the Gaussian
mixture model applied to the multidimensional
response assessment can be used to group patients into
3 clusters that identify patients with excellent, inter-
mediate, and very poor long-term survival, respec-
tively.

- The response clusters have additive predictive value
relative to baseline features and offer excellent pre-
diction of long-term survival (area under the curve 5
0.86), demonstrating that combining response clusters
and baseline features provides the most complete
prognostic assessment.

- A web-based calculator to identify the expected
response cluster and long-term survival of future pa-
tients is provided.
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importance, as an algorithm to integrate pre-CRT data, proce-
dural data, and short-term responsemeasures could help heart
failure specialists determine the appropriate timing for im-
plantation of ventricular assist devices and/or listing for heart
transplantation.8 Short-term response measures of particular
interest include the reduction in left ventricular end-systolic
volume index (LVESVI),9,10 improvement in peak
VO2,

11,12 and the serum B-type natriuretic peptide (BNP)
level.13

Advanced mathematical methods based on machine
learning and multivariate statistics are well suited to address
this clinical issue. Instead of an analysis based on just 1 scalar
(single-value) CRT response parameter as outcome or predic-
tor in a linear regression model, a CRT response vector (con-
sisting of multiple traditional scalar parameter values) from
each patient can be used to determine the relative contribu-
tions of a multivariate short-term response measure and a pa-
tient’s baseline features to long-term survival, as well as how
much of the short-term response can be explained by baseline
features.

High-quality inputs are important for such an analysis, and
the dataset used in this study includes cardiac magnetic reso-
nance (CMR) data for LV and right ventricular (RV)
volumetric function14 and strain from Displacement Encod-
ing with Stimulated Echoes (DENSE).10,15 The focus of
this analysis is a cohort undergoing traditional CRT with
LV pacing leads, although this machine learning approach
can be easily applied to future analyses of cohorts undergoing
conduction system pacing. Ultimately the goal is to apply
these advanced analytic methods in implementing a patient-
centered approach to device therapy in heart failure.
Methods
Study design, cohort selection, informed consent
All patients had LV ejection fraction (EF) 35% or less, New
York Heart Association (NYHA) functional class II–IV, and
QRS .120 ms, and had a class I or II indication for CRT
based on AHA/ACC/HRS guidelines.16 All patients had
CRT defibrillators, with the exception of 1 patient who
received a CRT pacemaker. Before receiving CRT implants
at the University of Virginia Health System, patients
completed intake forms for demographic characteristics, co-
morbid conditions, and medications, and these data were
verified in the electronic health record. They underwent lab-
oratory studies and vital sign measurements along with exer-
cise testing, and received CMR imaging, echocardiography,
and electrocardiograms. Optimization of pacing parameters
for CRT was left to the operator’s discretion; however, the
following approach was recommended for all patients. Selec-
tion of the quadripolar LV pacing vector for CRT should be
based on evaluation of the QLV, the capture threshold, and
the presence of phrenic nerve stimulation with candidate pac-
ing vectors. In patients with devices offering synchronized
LV pacing (adaptive CRT),17 this option was recommended
if it resulted in an equivalent or shorter QRS duration
compared with biventricular pacing. Use of device-based
atrioventricular optimization algorithms was encouraged;
alternatively, the A-V interval resulting in the shortest paced
QRS duration could be selected. Using an offset between left
and right ventricular pacing was encouraged if it shortened
the paced QRS duration.

At 6 months after CRT implantation, the patients once
again underwent echocardiography, laboratory studies, and
exercise testing while also being followed for survival with
routine interrogations. The main objectives of the study
were (1) to identify pre-CRT clinical variables that were
strongly associated with post-CRT response measures using
multivariate statistical models and (2) to predict long-term
survival of CRT patients with short-term response parameters
using cluster analysis and logistic regression. All patients
provided informed consent for this study, which was
approved by the Institutional Review Board for Human Sub-
jects Research at the University of Virginia.
Patient characteristics, laboratory measurements,
exercise testing, and imaging
Demographic characteristics (age, sex, and race), comorbid
conditions in addition to heart failure (hypertension, atrial
fibrillation, chronic kidney disease, diabetes mellitus, prior
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coronary artery bypass grafting surgery, and ischemic cardio-
myopathy, which was defined as cardiomyopathy associated
with prior myocardial infarction [assessed also with late gad-
olinium enhancement on CMR] and a significant contribu-
tion of ischemic heart disease to LV dysfunction), and
medications (beta-blockers, angiotensin-converting enzyme
inhibitor / angiotensin receptor blockers, loop diuretic usage
and dosage, digoxin, and statins) at the time of CRT implan-
tation were documented from intake data during enrollment
in the study and information accessible in the electronic med-
ical record. Patients had laboratory studies (including BNP,
creatinine, sodium, and hemoglobin), blood pressure assess-
ments, and exercise testing before the CRT procedure.
Twelve-lead electrocardiograms were used to calculate the
baseline QRS duration and type of conduction delay. Stan-
dard 2-dimensional echocardiographic images with Doppler
were obtained for all patients at baseline and 6 months after
CRT. Volumetric measurements indexed for body surface
area were determined using standard methodology based
on Simpson’s rule. CMR examinations were performed for
all patients before CRT and for 38% of patients after CRT.
The CMR protocol included steady-state free precession
cine imaging, cine DENSE, and late gadolinium enhance-
ment. Cine DENSE was performed in 4 short-axis planes at
basal, 2 midventricular, and midapical levels.18,19 Circumfer-
ential strain from 2-dimensional cine DENSE was calculated
semiautomatically to determine the CURE-SVD (range, 0–1,
1 5 greatest synchrony).20 In patients with CMR performed
6months after CRT, CMR cine imaging was used to calculate
the change in LV function, while echocardiographic mea-
surements before and after CRT was used for this purpose
in other patients.

Post-CRT response measures
The 3 6-month response measures were as follows: (1) frac-
tional change (FC) in the LVESVI (LVESVI-FC 5 [post-
CRT LVESVI – baseline LVESVI] / baseline LVESVI;
negative number 5 favorable response); (2) BNP post-
CRT; and (3) the change in peak oxygen output (D peak
VO2 5 VO2 post-CRT 2 VO2 pre-CRT). The fractional
change was used for the LVESVI and the net change was
used for the peak VO2 because these are the standard param-
eters in the literature. Pre-CRT and post-CRT magnetic reso-
nance images (MRIs) were used to determine the LVESV
response in the 38% of patients with post-CRT MRIs, while
pre-CRT and post-CRT echocardiograms were used to deter-
mine the LVESV response in the remaining 62% of patients.
The post-CRT BNP rather than the change in BNP was used
because it was considered to be a more meaningful parameter
than the change in BNP. These 3 measures were chosen
because they reflect distinct aspects of heart failure response
to CRT that can be measured objectively, as opposed to more
subjective measures of heart failure response such as heart
failure questionnaires or symptom scores. In addition, these
measures were found to have stronger associations with sur-
vival than the Minnesota Living with Heart Failure Score,
which was also acquired in these patients but was not
included in this analysis for that reason.

Statistical analysis

Missing data
Only 2% of imaging-based parameters (CURE-SVD and
ventricular volumes) before CRT implantation were missing
and were imputed using the respective median values. The
change in peak VO2 was missing in 20% of patients because
some patients had difficulty exercising both before and after
CRT. These missing response measures were imputed by
iteratively optimizing the covariance matrix and mean vector
to get the conditional expected values using the expectation-
maximization algorithm21 for matrix completion.

Multivariate multiple linear regression
Thirty-nine features (including categorical and continuous
variables) were identified and used as input for the multivar-
iate linear regression models for the 3 response parameters.
Stepwise linear regression models for the 3 response mea-
sures were implemented using the statsmodels package in
Python (Python Software Foundation). The parameters
associated with at least 1 of the 3 response measures (based
on P , .1) were then included in a multivariate multiple
linear regression in which the dependent variable was the
CRT response vector (post-CRT LVESVI fractional
change, post-CRT BNP, and change in peak VO2). Pillai
trace values and F-statistics were determined for each of
the input variables. The Supplemental Material (Statistical
Methods) describes these statistical methods and others in
more detail.

Machine learning

Clustering algorithm, Gaussian mixture model, and survival
analysis
Two types of machine learning algorithms for clustering, the
k-means method and Gaussian mixture model (GMM), were
considered for stratifying patients based on CRT response
measures. Ultimately, the GMM was implemented as it
yielded superior predictive prognostic information as dis-
cussed in the Results. The GMMwas optimized to cluster pa-
tients based on only the 3 post-CRT response parameters as
inputs using the sklearn package in Python. The Bayesian in-
formation criterion (BIC), a measure that calculates the likeli-
hood of fit with a penalty for model complexity, was used to
identify the optimal number of clusters (2–6) and covariance
structure (tied, diagonal, or full). c2 tests were used for com-
parisons of categorical variables, and analysis of variance
was used for comparisons of continuous variables between
the cluster groups. Kaplan-Meier analysis was used to
construct the survival curves based on clusters identified
with the GMM, while the log-rank test was used to determine
the P values for the differences in survival among the clus-
ters.



Table 1 Baseline characteristics and cardiac resynchronization therapy response measures of patient cohort and cluster groups

Cohort (N 5 200) Group 1 (N 5 123) Group 2 (N 5 45) Group 3 (N 5 32) P value

Demographics
Age, years 67.4 (58.0-74.0) 66.6 (57.0-72.7) 68.0 (62.0-75.0) 68.5 (60.4-75.2) .8
BMI 28.9 (25.4-33.7) 30.4 (26.6-34.9) 27.6 (23.8-32.4) 25.9 (22.6-30.6) .007
Weight (kg) 89.4 (75.1-103.0) 92.5 (79.4-104.8) 84.6 (73.0-99.8) 80.3 (69.1-93.1) .02
Female 54 (27.0) 36 (29.3) 12 (26.7) 6 (18.8) .5
NYHA heart failure class .0003
II 73 (36.5) 57 (46.3) 13 (28.9) 3 (9.4)
III 126 (63.0) 66 (53.7) 32 (71.1) 28 (87.5)
IV 1 (0.50) 0 (0.0) 0 (0.0) 1 (3.1)

Race .1
Black 27 (13.5) 15 (12.2) 4 (8.9) 8 (25.0)
White/other 173(86.5) 108 (87.8) 41 (91.1) 24 (75.0)

Comorbid conditions
Ischemic cardiomyopathy 87 (43.5) 47 (38.2) 27 (60.0) 13 (40.6) .04
Hypertension 115 (57.5) 79 (64.2) 19 (42.2) 17 (53.1) .03
Atrial fibrillation 52 (26.0) 36 (29.2) 7 (15.6) 9 (28.1) .5
Chronic kidney disease 62 (31.0) 35 (28.5) 12 (26.7) 15 (46.9) .1
Diabetes mellitus 73 (36.5) 44 (35.8) 15 (33.3) 14 (43.8) .6
Prior CABG 35 (17.5) 21 (17.0) 10 (22.2) 4 (12.5) .5

Medications
Beta-blocker 191 (95.5) 117 (95.1) 43 (95.6) 31 (96.9) .9
ACE inhibitor or ARB 175 (87.5) 111 (90.2) 39 (86.7) 25 (78.1) .2
Loop diuretic dose, mg .07
0 58 (29.0) 41 (33.3) 10 (22.2) 7 (21.9)
20–40 90 (45.0) 57 (46.3) 23 (51.1) 10 (31.2)
60–80 34 (17.0) 16 (13.0) 7 (15.6) 11(34.4)
.100 18 (9.0) 9 (7.3) 5 (11.1) 4 (12.5)

Digoxin 17 (8.5) 7 (5.7) 6 (13.3) 4 (12.5) .2
Statin 120 (60.0) 76 (61.8) 26 (57.8) 18 (56.3) .8

Laboratory studies, vital signs, &
exercise testing
Systolic BP, mm Hg 118.0 (104.0-130.0) 119.0 (104.0-128.5) 122.0 (108.0-134.0) 110.0 (103.5-130.0) .6
Sodium, mEq/L 138.0 (137.0 -140.0) 139.0 (137.0-140.0) 138.0 (137.0-141.0) 137.5 (136.0-140.0) .2
Creatinine, mg/dL 1.1 (0.9-1.3) 1.0 (0.9-1.2) 1.2 (1.0-1.4) 1.3 (1.1-1.5) .0003
Hemoglobin, g/dL 13.3 (12.3-14.7) 13.6 (12.5-14.8) 13.5 (12.3-14.9) 12.8 (12.1-14.1) .2
GFR, mL/min/1.72 m2 67.2 (54.1-84.1) 74.0 (60.1-88.1) 62.0 (51.0-70.7) 59.2 (45.5-74.4) .0003
BNP, pg/mL 272.0 (130.0-632.3) 190.0 (92.5-298.5) 351.0 (220.0-654.0) 1147.5 (820.8-2550.0) ,.0001
Peak VO2, mL/kg/min 14.4 (12.5-15.7) 14.4 (12.9-16.5) 14.3 (11.2-15.5) 14.0 (12.0-14.4) .02

CMR & echocardiography assessment
parameters
LVEF, % 24.0 (17.7-30.5) 25.9 (19.0-31.0) 22.9 (17.2-28.6) 19.7 (14.4-24.8) .01
LVEDVI, mL/m2 126.3 (102.5-157.0) 117.0 (98.7-137.0) 134.7 (115.3-158.0) 167.9 (122.9-195.5) ,.0001
LVESVI, mL/m2 93.7 (73.7-123.6) 88.4 (68.7-108.9) 100.7 (85.6-127.0) 134.2 (91.4-167.0) ,.0001
RVEF, % 37.5 (25.8-45.6) 37.9 (31.3-47.4) 38.3 (20.7-45.2) 27.3 (18.7-39.7) .02
RVEDVI, mL/m2 65.8 (52.9-83.1) 60.0 (48.8-77.0) 67.2 (59.6-81.0) 99.6 (76.7-121.5) ,.0001
RVESVI, mL/m2 38.8 (29.9-55.5) 36.3 (26.5-46.5) 38.8 (33.3-56.0) 70.7 (48.8-91.2) ,.0001
LGE presence 95 (47.5) 52 (42.2) 25 (55.6) 18 (56.3) .2
CURE-SVD 0.59 (0.45-0.76) 0.55 (0.41-0.74) 0.62 (0.45-0.72) 0.76 (0.58-0.85) .001

ECG parameters
QRS, ms 158 (142-175) 160.0 (147.0-175.5) 152.0 (138.0-160.0) 158.0 (139.0-180.0) .3
QLV, ms 120.0 (87.0-149.3) 125.0 (92.5-150.0) 105.0 (80.0-130.0) 102.5 (73.8-150.0) .04
LBBB 151 (75.5) 92 (74.8) 38 (84.4) 21 (65.6) .2
RBBB 22 (11.0) 12 (9.8) 2 (4.4) 8 (25.0) .01
Paced rhythm 28 (14.0) 19 (15.4) 4 (8.9) 5 (15.6) .5
Upgrade or new device .4
De novo device 153 (76.5) 90 (73.2) 37 (82.2) 26 (81.2)
Upgrade device 47 (23.5) 33 (26.8) 8 (17.8) 6 (18.8)

Response measures at 6 months post CRT
Fractional change in LVESVI -0.18 (-0.33 - -0.01) -0.24 (-0.42 - -0.1) -0.1 (-0.21-0.05) 0.025 (-0.13-0.13) ,.0001
BNP, pg/mL 177.0 (59.5-592.0) 77.0 (30.0-145.0) 524.0 (367.0-741.0) 2088.0 (1550.0-2845.8) ,.0001

(Continued )
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Table 1 (Continued )

Cohort (N 5 200) Group 1 (N 5 123) Group 2 (N 5 45) Group 3 (N 5 32) P value

Change in peak VO2, mL/kg/min 0.0 (-1.0-1.2) 0.30 (-0.8-1.7) -0.20 (-1.5-0.5) -0.37 (-2.5 - -0.12) .005
Survival status at 4 years ,.0001
Alive 149 (74.5) 111 (90.2) 27 (60.0) 11 (34.4)
Dead 51 (25.5) 12 (9.8) 18 (40.0) 21 (65.6)

Values are median (interquartile range) or n (%).
ACE5 angiotensin-converting enzyme; ARB5 angiotensin receptor blocker; BMI5 bodymass index; BNP5 B-type natriuretic peptide; BP5 blood pressure;

CABG5 coronary artery bypass graft; CURE-SVD5 circumferential uniformity ratio estimate with singular value decomposition; GFR5 glomerular filtration rate;
LBBB 5 left bundle branch block; LGE 5 late gadolinium enhancement; LVEDVI 5 left ventricular end-diastolic volume index; LVEF 5 left ventricular ejection
fraction; LVESVI5 left ventricular end-systolic volume index; NYHA5 New York Heart Association; QLV5 QRS-LV electrogram time; RBBB5 right bundle branch
block; RVEDVI5 right ventricular end-diastolic volume index; RVEF5 right ventricular ejection fraction; RVESVI5 right ventricular end-systolic volume index.
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Cross-validation methodology
Using a 5-fold cross-validation framework, multivariable lo-
gistic regression models were used to predict survival at 4
years after CRT. In the first model, the input data consisted
of the pre-CRT parameters with the strongest associations
with survival (pre-CRT CURE-SVD from CMR, pre-CRT
BNP levels, and pre-CRT peak VO2) based on a separate
regression model. In the second model, the response cluster
was added to these 3 baseline variables. Receiver operating
characteristic (ROC) curves for each fold within the cross-
validation for both models were generated, and areas under
the ROC curves (AUC) were calculated to evaluate and
compare model performances.
Results
Baseline characteristics
Demographic characteristics, comorbid conditions, medica-
tions, laboratory findings, vital signs, exercise testing results,
and imaging findings for the cohort of 200 patients (aged 66.1
6 11.4 years; 27.0% female; 13.5% Black) are shown in
Table 1. The median change in the LVESVI-FC following
CRT was -0.18 (interquartile range [IQR] -0.33 to -0.01).
Of note, the median and IQR for the LVESVI-FC were nearly
identical for the 38% of patients with calculation based on
MRI before and after CRT (-0.18; -0.34 to -0.03) and the
62% with the calculation based on echocardiography before
and after CRT (-0.18; -0.33 to 0.02; P5 .5). A total of 56.0%
of patients had 15% or greater reduction in the LVESVI post
CRT (LVESVI-FC �-0.15). The median BNP level was
177.0 pg/mL (IQR 59.5–592.0 pg/mL), and the median
change in the peak VO2 was 0.0 mL/kg/min (IQR -1.0 to
1.2). During a median follow-up of 4 years, 51 (25.5%) pa-
tients died. The distribution of LV pacing site was typical
of other CRT studies and is shown in Supplemental Figure 1.

Identification of baseline features associated with
short-term response vector
The stepwise linear regression analyses showed that different
pre-CRT parameters were associated with each of the 3
response variables of interest, which describe cardiac func-
tion (LVESV-FC), neurohormonal activity (post-CRT
BNP), and oxygen utilization (D peak VO2). The pre-CRT
parameters most associated with each response feature are
shown in Table 2.
The pre-CRT variables most significantly associated with
the LVESVI-FC (Table 2, section A) were the CURE-SVD
(P, .0001), QLV (P5 .0003), RVEF (P5 .0008), ischemic
cardiomyopathy (P 5 .02), and diabetes mellitus (P 5 .05).
A lower CURE-SVD value (more dyssynchrony) was associ-
ated with greater response based on the positive coefficient.
The CURE-SVD was also confirmed to be uncorrelated
with the RVEF (r 5 -0.014, P 5 .85).

The pre-CRT parameters most associated with post-CRT
BNP levels (Table 2, section B) were the baseline BNP (P
, .0001), CURE-SVD (P , .0001), LVEDVI (P ,
.0001), glomerular filtration rate (GFR) (P 5 .0005),
NYHA classification (P 5 .02), and diabetes mellitus (P 5
.03). As in the model for LVESVI-FC, the lower CURE-
SVD score was associated with a lower post-CRT BNP.

The pre-CRT variables most associated with the change in
peak VO2 (Table 2, section C) were peak VO2 at baseline (P
, .0001), GFR (P5 .0002), and systolic blood pressure (P5
.03). Based on the positive coefficient, better kidney function
at baseline had a strong association with favorable change in
peak VO2. As a sensitivity analysis, we also show that this
model based on the matrix completion algorithm for missing
peak VO2 data points chooses the same covariates, gives
nearly identical P values, and has standardized regression co-
efficients agreeing within a margin of 10%–15%, compared
with the model in Table 2, section D, which is based on
only patients with measured VO2 before and after CRT.

The baseline features most associated with the overall
response vector were the pre-CRT BNP (P , .0001), the
pre-CRT CURE-SVD (P , .0001), GFR (P , .0001), the
pre-CRT peak VO2 (P 5 .0001), LVEDVI (P 5 .0007),
NYHA classification (P 5 .003), QLV (P 5 .006), RVEF
(P 5 .03), the presence of ischemic cardiomyopathy (P 5
.04), systolic blood pressure (P 5 .09), and the presence of
diabetes mellitus (P 5 .1) (Table 3).
Response clusters and associations with survival
The GMM that resulted in the lowest BIC score included 3
clusters with a diagonal covariance structure as demonstrated
in Figure 1. Table 4 shows the mean vector and variance vec-
tor (composed of diagonal values of the covariance matrix)
for the mixture clusters, and the 3 clusters of patients are dis-
played in Figure 2. The summary of the response measures
(along with the baseline characteristics not used for



Table 2 Stepwise linear regression models for the 3 response measures

(A)
Model variable

Multivariable linear regression model for D LVESVI

Model coefficient Standard error P value Standardized coefficient

Intercept -0.0920 0.0827 .3 0
CURE-SVD 0.354 0.0749 ,.0001 0.301
QLV -0.00149 0.000402 .0003 -0.238
RVEF -0.00346 0.00102 .0008 -0.210
Ischemic cardiomyopathy 0.0700 0.0308 .02 0.141
Diabetes mellitus -0.0628 0.0315 .05 -0.123

R2 5 0.29; adjusted R2 5 0.27

(B)
Model variable

Multivariable linear regression model for BNP

Model coefficient Standard error P value Standardized coefficient

Intercept -792 292 .007 0
BNP at baseline 0.659 0.0545 ,.0001 0.600
CURE-SVD 864 183 ,.0001 0.211
LVEDVI 3.68 0.854 ,.0001 0.205
GFR -7.09 1.99 .0005 -0.166
NYHA classification 195 79.7 .02 0.111
Diabetes mellitus -186 82.9 .03 -0.105
R2 5 0.62; adjusted R2 5 0.61

(C)
Model variable

Multivariable linear regression model for D peak VO2

Model coefficient Standard error P value Standardized coefficient

Intercept 2.82 1.31 .03 0
Peak VO2 at baseline -0.176 0.0419 ,.0001 -0.287
GFR 0.0298 0.00796 .0002 0.254
SBP -0.0187 0.00859 .03 -0.146
R2 5 0.13; adjusted R2 5 0.12

(D)
Model variable

Multivariable linear regression model for D peak VO2: complete case analysis (153/200) vs original analysis
(imputed data, 200/200)

Standardized coefficient
(complete case analysis)

Standardized coefficient
(original analysis)

P value (complete
case analysis)

P value
(original analysis)

Peak VO2 at baseline -0.337 -0.287 ,.0001 ,.0001
GFR 0.300 0.254 .0001 .0002
SBP -0.163 -0.146 .03 .03

BNP 5 B-type natriuretic peptide; GFR 5 glomerular filtration rate; LVEDVI 5 left ventricular end-diastolic volume index; LVESVI 5 left ventricular end-
systolic volume index; NYHA 5 New York Heart Association; QLV 5 QRS-LV electrogram time; RVEF 5 right ventricular ejection fraction; SBP 5 systolic blood
pressure.
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clustering) for the patients within each cluster is shown in
Table 1.

The GMM clustered 123 patients into group 1, and this
group had a median LVESVI-FC of -0.24 (IQR -0.42 to
-0.1). A total of 83 patients (67.5%) within this group met
echocardiographic criteria for favorable CRT response. The
median post-CRT BNP was 77.0 pg/mL (IQR 30.0–145.0
pg/mL), and the median change in peak VO2 was 0.30 mL/
kg/min (IQR -0.8 to 1.7 mL/kg/min) in this group.

The GMM assigned 45 patients into group 2, which had a
median LVESVI-FC of -0.1 (IQR -0.21 to 0.05). Twenty-one
patients (46.7%) within this group had at least a 15% reduc-
tion in the LVESVI, the median BNP level was 524.0 pg/mL
(IQR 367.0–741.0 pg/mL), and the median change in peak
VO2 was -0.2 mL/kg/min (IQR -1.5 to 0.5 mL/kg/min) in
this group.
The GMM assigned 32 patients into group 3, and this
group had a median percent reduction in the LVESVI of
0.025 (IQR -0.13 to 0.13). Only 8 patients (25.0%) within
this group had a 15% or greater reduction in the LVESVI,
the median post-CRT BNP level was 2088.0 pg/mL (IQR
1550.0–2845.8 pg/mL), and the median change in peak
VO2 was -0.37 mL/kg/min (IQR -2.5 to -0.12 mL/kg/min).

While the baseline characteristics of the cohort were not
used to generate the response clusters, we did note significant
differences among groups (P , .05) for the following base-
line variables: BMI, NYHA classification, ischemic cardio-
myopathy, hypertension, GFR, BNP at baseline, peak VO2

at baseline, LV and RV volumetric parameters, CURE-
SVD, and ECG parameters.

The Kaplan-Meier survival analysis is displayed in
Figure 3 and demonstrates that patients in group 1 had



Table 4 Mean vector and variance vector for Gaussian mixture
model clusters

Mean vector Variance vector

LVESVI-
FC

BNP
(pg/
mL)

D Peak VO2
(mL/kg/min)

LVESVI-
FC BNP

D
Peak
VO2

Group 1 -0.265 94.8 0.47 0.0516 5333.0 5.24
Group 2 -0.0844 499.6 0.0354 0.0316 7.32E104 5.15
Group 3 -0.00181 2101.6 -0.914 0.0618 9.78E105 5.60

BNP 5 B-type natriuretic peptide; LVESVI-FC 5 left ventricular end-
systolic volume index fractional change.

Table 3 Multivariate multiple linear regression for response
vector

Model variable Pillai trace value F statistic P value

BNP at baseline 0.451 50.7 ,.0001
CURE-SVD 0.148 10.7 ,.0001
GFR 0.109 7.51 ,.0001
Peak VO2 at baseline 0.107 7.37 .0001
NYHA classification 0.102 3.35 .003
LVEDVI 0.087 5.98 .0007
QLV 0.064 4.23 .006
RVEF 0.046 3.03 .03
Ischemic cardiomyopathy 0.045 2.89 .04
SBP 0.034 2.18 .09
Diabetes mellitus 0.033 2.10 .1

BNP 5 B-type natriuretic peptide; GFR 5 glomerular filtration rate;
LVEDVI 5 left ventricular end-diastolic volume index; NYHA 5 New York
Heart Association; QLV5 QRS-LV electrogram time; RVEF5 right ventricular
ejection fraction; SBP 5 systolic blood pressure.
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excellent survival, patients in group 2 had intermediate sur-
vival, and patients in group 3 had the markedly poor survival.
The hazard ratio (HR) for cluster 2 (intermediate survival) vs
cluster 1 (best survival) was 1.84 [95% confidence interval
(CI): 1.35–2.50; P , .001]; the HR for cluster 3 (worst sur-
vival) vs cluster 1 (best survival) was 2.23 [95% CI: 1.71–
2.90; P , .001]; and the HR for cluster 3 (worst survival)
vs cluster 2 (intermediate survival) was 1.31 [95% CI:
1.04–1.65; P , .05]. Of note, the survival curves based on
the clusters generated with the GMM showed more separa-
tion than those associated with the k-means clusters,
providing justification for use of the GMM over k-means to
generate the response clusters.
Effect of adding 6-month response cluster to
baseline features for prediction of long-term
survival
The ROC curves of the logistic regression model with the
CURE-SVD score, pre-CRT BNP levels, and pre-CRT
peak VO2 levels as inputs (baseline features most strongly
Figure 1 Gaussian mixture model (GMM) selection. A GMM with each
covariance type and number of clusters ranging from 2 to 6 was generated.
The Bayesian information criterion (BIC) score of eachmodel was calculated
and is shown above. For any number of clusters, the GMM with a diagonal
covariance structure exhibited favorable BIC scores. The model with 3 clus-
ters and a diagonal covariance structure had the lowest (most favorable) BIC
score.
associated with the short-term response vector) are shown
in Figure 4A. The AUC for each fold within the cross-
validation is displayed along with the area under the average
ROC curve (0.78 6 0.04). The effect of adding the 6-month
response cluster to baseline features is shown in Figure 4B.
For each fold within the cross-validation, the AUC increased,
and the area under the average ROC curve for this model
(0.86 6 0.021) was also higher compared with the model
based on baseline features alone (P 5 .02).
Discussion
A major finding of this study was that machine learning
could be used to discern 3 short-term response clusters
based on 3 6-month parameters of CRT response
(LVESVI-FC, post-CRT BNP, D peak VO2), and these
response clusters, in turn, were highly associated with sur-
vival times after CRT. Furthermore, the 61.5% of patients
within this cohort that made up response cluster 1 had excel-
lent 4-year survival (.90%), while the 22.5% in cluster 2
had intermediate survival, and the 16% in cluster 3 had
very poor 4-year survival (,35%). In the future, this type
of analysis could be incorporated into clinical management
by increasing follow-up frequency and lowering the
threshold for referral of cluster 3 patients for LV assist de-
vice or transplant consideration. An interesting observation
with respect to the designation of the response clusters was
that the logistic regression model with the response clusters
performed at least as well as or better than the model with
each of the 3 short-term response parameters used as sepa-
rate covariates, highlighting the utility of using machine
learning to identify response clusters.

We show in this study that not only are the short-term
response measures predictive of long-term survival, but
also the response cluster covariate provides substantial
improvement in performance when added to baseline and
procedural findings. Although the response vector had addi-
tional predictive value for survival apart from baseline find-
ings, the specific baseline findings that influenced the
overall response vector are also of particular interest. In
particular, the following 9 baseline/procedural findings
were associated with the overall multivariate response
vector, here listed in the order of strength of association:



Figure 2 Gaussian mixture model (GMM) cluster analysis. The GMM stratified the patients (based on their cardiac resynchronization therapy [CRT] response
measures) into 3 distinct groups. The clusters are plotted as 2-dimensional sets of the 3 response measures. Each point represents 1 patient with the respective left
ventricular end-systolic volume index fractional change (LVESVI-FC), post-CRT B-type natriuretic peptide (BNP), and D peak VO2 values and is colored based
on the assigned cluster.
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BNP at baseline, CURE-SVD, peak VO2 at baseline,
GFR, LVEDVI, QLV, NYHA classification, ischemic car-
diomyopathy, and RVEF. Of particular interest, no baseline
characteristic or procedural finding was a statistically signif-
icant covariate in the 3 separate linear regression models for
the 3 scalar CRT response parameters, which highlights the
complexity of CRT response and the potential value of ma-
chine learning clustering methods and multiple multivariate
regression in this area. Of these 9 baseline/procedural param-
eters, 2 were found to have associations with 2 of the 3
response measures: renal function and the CMR CURE-
SVD parameter.

The GFR was associated with both the post-CRT BNP
response measure and the peak VO2, as patients with a
lower GFR tended to have higher post-CRT BNPs even
after adjustment for the baseline BNP and a lower
improvement in the peak VO2. The former finding can
be explained by the effect of chronic kidney disease on
the neurohormonal axis in heart failure (that involves
both secretion and clearance of BNP).22 Although chronic
Figure 3 Kaplan-Meier analysis for each cluster. Kaplan-Meier curves
demonstrating the probability of survival following cardiac resynchroniza-
tion therapy implantation are presented for each of the 3 cluster groups. Pa-
tients in group 1 have a greater survival probability than patients in group 2
(P, .001) and in group 3 (P, .001). Patients in group 2 have a greater sur-
vival probability than patients in group 3 (P , .05).
kidney disease affects N-terminal proBNP more than
BNP, BNP has still been shown to be influenced by
chronic kidney disease.23 With respect to the association
of GFR and the change in VO2, increasing stages of
chronic kidney disease have been associated with lower
peak VO2,

24 likely related to systemic oxygen delivery
factors. Right ventricular dysfunction, which often coex-
ists with chronic kidney disease, has also been implicated
as a mechanism to explain the association of chronic kid-
ney disease with lower peak VO2.

25 In this sense, it is
interesting that RV function by CMR had an independent
association with the reduction in LV end-systolic volume
in the present study. The association of GFR with the peak
VO2 and RVEF with LVESVI-FC may be explained by a
stronger association of GFR vs RVEF with peak VO2 and
the association of RV dysfunction with a lower GFR.

The CMRCURE-SVD dyssynchrony parameter was also
associated with 2 of the 3 response measures, but not the
same ones as the GFR. A lower CURE-SVD was associated
with both the favorable LV functional response (LVESVI-
FC) and the post-CRT BNP, but not the peak VO2. The
CURE-SVD measures the extent of simultaneous contrac-
tion (negative circumferential strain) and stretch (positive
circumferential strain) in opposing LV segments with
CMR using a parameter with range 0–1, such that values
trending toward 0 indicate greater dyssynchrony. Our group
has demonstrated the robustness of the CURE-SVD for pre-
dicting LV functional improvement in CRT in prior co-
horts10,14,15,26; however, the association with the
neurohormonal axis is a new finding. This association
with the neurohormonal axis provides an important mecha-
nistic insight for how baseline CMR-based mechanical dys-
synchrony and strain findings influence the neurohormonal
axis in heart failure and long-term survival. As noted, the
CURE-SVD is a pre-CRT patient characteristic, while the
QLV is a procedural parameter indicating late activation
of LV pacing site, which is a desired result in traditional
CRT. In this regard, it is interesting that the CURE-SVD
at baseline modified both the LV functional and neurohor-
monal response, while the QLV was primarily associated
with the LV functional response in multivariate analysis.



Figure 4 Receiver operating characteristic (ROC) curves for 4-year survival prediction. ROC curves from the logistic regression models are shown. A: Three
best pre–cardiac resynchronization therapy (CRT) predictors. The CURE-SVD, pre-CRTB-type natriuretic peptide, and pre-CRT peak VO2 are used as inputs.B:
Three best pre-CRT predictors plus response cluster. The response clusters were added to the model in panel A. The addition of the short-term response clusters to
these baseline features improved prediction of long-term response (area under the curve [AUC] 0.86 vs 0.78, P 5 .02).
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Our study presents novel findings relative to 2 other recent
papers on applications of machine learning for CRT27,28 and is
substantially different from these other studies in the following
ways. First, the analysis based on the SMART-AV study uses
a single binary response parameter based on a composite
outcome,27 and the other analysis uses a single binary response
parameter based on whether LVEF improved by 10%.28 In
contrast, we used a multidimensional response outcome with
3 continuous variables representing different aspects of CRT
response, which is then incorporated into a prediction model
for long-term survival after CRT. Second, our study includes
baseline CMR volumetric, strain, and scar data for all patients,
whereas the other studies do not incorporate CMR data. Third,
both of the other studies use baseline characteristics only,
while our study demonstrates that addition of short-term
response clusters to the baseline predictors resulted in an
increased AUC of 0.86. Fourth, we provide an online calcu-
lator based on our model for estimation in future patients of
long-term survival after CRT without an LV assist device or
heart transplantation.

The results of this study could be applied in clinical prac-
tice by determining the statistical likelihood that a patient
with a given short-term response vector belongs to each of
the 3 clusters defined in this study, and then assigning the
patient to the cluster for which the response vector had the
highest likelihood. This can be done by using the trained/
optimized GMM with a given response vector as input. We
developed a web-based application that allows the user to
input patient metrics, calculates the response vector, and
predicts the cluster to which a new patient belongs using
the trained GMM. This program can be accessed at http://
gmmxcrt.pythonanywhere.com with username tester and
password BilchickCRT (the Supplemental Material walks
through the web-based app). This information is expected
to be important for both patients and their physicians, as it
provides approximately 62% of patients with reassurance
that their 4-year survival should be quite good and identifies
16% of patients who are much more likely to merit evaluation
for advanced heart failure therapies after CRT. In addition, as
the pre-CRT parameters were also associated with long-term
survival, these baseline features could also be used in the
shared decision-making process for patients being evaluated
for CRT.
Limitations
We did consider additional short-term response parameters
such as a heart failure symptom score for inclusion in the
response vector; however, having 3 components in the
response vector worked well from a machine learning and
statistical standpoint, and the symptom score was not as
robust as the others. With respect to missing data, approxi-
mately 20% of patients could not exercise both before and
after the study to facilitate determination of the change in
peak VO2. This was addressed in the analysis by using a ma-
trix completion algorithm based on the expectation-
maximization algorithm using a multivariate normal
distribution. We also note that medical therapy for heart

http://gmmxcrt.pythonanywhere.com
http://gmmxcrt.pythonanywhere.com
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failure has evolved in recent years, and more patients are be-
ing prescribed sodium-glucose cotransporter-2 inhibitors and
angiotensin-neprilysin inhibitors. Longitudinal studies of
outcomes for devices in heart failure with long-term
follow-up by necessity to some extent lag behind recent
trends in medical therapy, and certainly there will be interest
in using these methods in future cohorts of patients to
examine if the use of these heart failure therapies modifies
the model. For example, angiotensin-neprilysin inhibitors
have been shown to increase BNP expression.29 As device-
detected arrhythmias would occur mostly after the assess-
ment of the 6-month response endpoint, which was used in
the models along with baseline characteristics to predict sub-
sequent clinical outcomes, incorporation of arrhythmia
events was not possible with this study design. While not
including arrhythmic death vs all-cause mortality as an
outcome is a limitation, we do note a degree of uniformity
with respect to protection from arrhythmic death, as nearly
all patients had CRT defibrillators. Lastly, as this cohort
with long-term follow-up had traditional CRT, we did not
include patients with conduction system pacing in the present
analysis; however, future analyses of a cohort of patients with
conduction system pacing using these methods is planned.

Conclusion
Machine learning methods provide an effective way to under-
stand the complex nature of CRT response, and the classifi-
cations generated by the methods promise to be useful for
patients and providers with respect to clinical management
strategies.
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