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Bounded Isometries and Homogeneous Quotients

Joseph A. Wolf∗

November 25, 2015

Abstract

In this paper we give an explicit description of the bounded displacement isometries of a class of
spaces that includes the Riemannian nilmanifolds. The class of spaces consists of metric spaces (and
thus includes Finsler manifolds) on which an exponential solvable Lie group acts transitively by isome-
tries. The bounded isometries are proved to be of constant displacement. Their characterization gives
further evidence for the author’s 1962 conjecture on homogeneous Riemannian quotient manifolds. That
conjecture suggests that if Γ\M is a Riemannian quotient of a connected simply connected homogeneous
Riemannian manifold M , then Γ\M is homogeneous if and only if each isometry γ ∈ Γ is of constant
displacement. The description of bounded isometries in this paper gives an alternative proof of an old
result of J. Tits on bounded automorphisms of semisimple Lie groups. The topic of constant displace-
ment isometries has an interesting history, starting with Clifford’s use of quaternions in non–euclidean
geometry, and we sketch that in a historical note.

1 Introduction

An isometry ρ of a metric space (M,d) is of constant displacement if it moves each point the same
distance, i.e. if the displacement function δρ(x) := d(x, ρ(x)) is constant. W. K. Clifford [8] described
such isometries for the 3–sphere, using the then–recent discovery of quaternions. Somewhat later G.
Vincent [38] used the term “Clifford translation” for constant displacement isometries of round spheres
in his study of spherical space forms Γ\Sn with Γ metabelian. Later the author ([39], [40], [41]) used the
the term “Clifford translation” in the context of metric spaces, especially Riemannian manifolds, proving

Conjecture. Let M be a connected, simply connected Riemannian homogeneous manifold
and let M → Γ\M be a Riemannian covering. Then Γ\M is homogeneous if and only if every
γ ∈ Γ is an isometry of constant displacement on M .

for the case where M is a Riemannian symmetric space [42]. In part the argument was case by case, but
later V. Ozols ([31], [32], [33]) gave a general argument for the situation where Γ is a cyclic subgroup of
the identity component I0(M) of the isometry group I(M). H. Freudenthal [20] discussed the situation
where Γ ⊂ I0(M), and introduced the term Clifford–Wolf isometry (CW isometry) for isometries of
constant displacement. That seems to be the term in general usage.

Since then there has been a great deal of work on CW isometries and their infinitesimal analogs,
Killing vector fields of constant length, in both the Riemannian and the Finsler manifold settings. See
[3], [4], [5], [17], [10], [11], [12], [13], [14], [15], [18], and [16]. The Conjecture was proved for Finsler
symmetric spaces by S. Deng and the author in [16].

Most of the definitive results on CW isometries are concerned with Riemannian (and later Finsler)
symmetric spaces. There we have a full understanding of CW isometries ([42] and [16]). The Conjecture
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is known for CW isometries on some non–symmetric homogeneous Riemannian manifolds. The homoge-
neous Riemannian manifolds (M,ds2) for which the Conjecture is known are: (i) Riemannian symmetric
spaces [42], (ii) Riemannian manifolds of non–positive sectional curvature [44] and manifolds without
focal points [18], (iii) Riemannian manifolds that admit a transitive semisimple group of isometries that
has no compact factor [17], (iv) Stiefel manifolds and some structurally related compact homogeneous
Riemannian manifolds ([6], [7]), (v) certain classes of Riemannian normal homogeneous spaces ([46],
[45]), and (vi) Riemannian nilmanifolds and Riemannian solvmanifolds (in this paper).

Here we give a complete structure theory for bounded isometries (isometries of bounded displacement)
of metric spaces on which an exponential solvable Lie group acts transitively by isometries. We show that
all bounded isometries are CW and belong to a certain connected abelian group of CW isometries that
is normal in the full isometry group. In the nilmanifold case that normal subgroup is the center of the
nilradical of the isometry group, but in other cases it may be smaller. Since it is reduced to the identity
in the group AN of an Iwasawa decomposition G = KAN , G semisimple, this gives an alternative proof
of J. Tits’ theorem [37] that a semisimple Lie group with no compact factor has no nontrivial bounded
automorphism.

The class of spaces to which this applies includes Riemannian (and even Finsler) exponential solv-
manifolds, in particular Riemannian nilmanifolds. These results prove the Conjecture on homogeneous
quotients for those exponential solvmanifolds, and consequently Riemannian nilmanifolds.

In Section 2 we work out a complete structure theory for individual bounded isometries of metric
spaces (M,d) on which an exponential solvable Lie group S acts transitively by isometries. We first prove
that the isometry group I(M,d) is a Lie group and that I(M,d) = SK where K is an isotropy subgroup.
This is analogous to the Iwasawa decomposition of a real reductive Lie group. Then we show that every
bounded isometry of (M,d) belongs to the center of S. Thus every bounded isometry is CW and that
center is a normal subgroup of I(M,d). These results are in Theorem 2.5 and its corollaries.

In Section 3 we study quotients Γ\(M,d). For locally isometric coverings ψ : (M,d) → Γ\(M,d) we
show that Γ\(M,d) is homogeneous if and only if Γ is a discrete group of CW isometries of (M,d). That
result is part of Theorem 3.1, which lists several other equivalent conditions. It proves the Conjecture
for our class of metric spaces (M,d), in particular for Riemannian (and Finsler) exponential solvmani-
folds. One corollary is the infinitesimal version, for Riemannian (and Finsler) exponential solvmanifolds,
characterizing the Killing vector fields of constant length.

The arguments for Riemannian nilmanifolds are slightly less complicated because some technical
considerations become transparent. The nilmanifold version of our main result is Corollary 3.5.

The author thanks the referee for suggesting a better organization of this paper and for suggesting
that he might include more explanatory background material.

Historical Note

The theory of constant displacement isometries can be traced back to the independent discovery of
quaternions by O. Rodrigues in 1840 [34] and W. R. Hamilton in 1844 ([21], [22]). See [1] for a description.
They used quaternions to describe rotations of spheres, but W. K. Clifford [8] seems to have introduced
their use in differential geometry in his construction1 of a flat torus in the sphere S3. In 1890 a paper
of F. Klein [26] introduced group theory per se into the picture. The next year W. Killing introduced
the term “Clifford–Klein space form” for Riemannian manifolds of constant curvature and formulated
the “Clifford–Klein space form problem” ([27], [28]) in terms of quotients Γ\M where M is a complete
simply connected manifold of constant curvature. The classification of spherical space forms Γ\Sn was
obscured in 1907 by the assertion2 in the influential Enzyklopädie der Mathematischen Wissenschaft

1In modern terms, the group H′ of unit quaternions, viewed as S3, acts on itself by left and right translations, (a, b) : q 7→
aqb−1, and one can view the Clifford torus as the orbit of q as a and b each runs over a one–parameter subgroups of H′. Any two
such one–parameter groups of transformations of S3 commute pointwise, so each such one–parameter group acts by isometries
of constant displacement on S3.

2F. Enriques [19, p. 117]: Endlich läßt sich eine dreidimensionale elliptische Raumform als Ganzes entweder auf den
elliptischen oder auf den sphärischen Raum in der Weise abwickeln, daß jedem ihrer Punkte in diesem Raume eine gewisse
ganze Anzahl p von (homologen) Punkten entspricht, wo zwei homologe Punkte durch eine sogennante Schiebung von der Länge
`π
p

oder 2`π
p

durch Deckung gebracht werden können. Dieses letzte Resultat erstreckt sich auf alle elliptischen Raumformen

von ungerader Dimensionenzahl n.
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that (in modern terms) if Γ\Sn is a spherical space form, n odd, then Γ is a finite group of constant
displacement isometries of Sn. This was corrected by H. Hopf in 1926 [25] and by W. Threlfall and H.
Seifert in 1930 ([35], [36]) with the classification of all spherical space forms Γ\S3; see [23]. This was
extended in 1947 by G. Vincent [38] for Γ\Sn with Γ metabelian. Vincent introduced the term “Clifford
translation” and asked about their relation to binary dihedral and polyhedral groups [38, §10.4].

In 1960 the author formulated and proved the Conjecture for spaces of constant curvature [39], and
in 1961 he used that result to answer Vincent’s questions [40]. In 1961 the author proved the Conjecture
for Riemannian symmetric spaces [42]. Since then, as mentioned earlier in this Introduction, there has
been a lot of progress toward the proof of the Conjecture, and this note is a small step in that direction.

2 Bounded Isometries inside Exponential Solvable Groups

We will follow the convention that Lie groups are denoted by capital Latin letters and their Lie algebras
are denoted by the corresponding lower case German letters. Thus, in the definition

Definition 2.1. A solvable Lie group S is exponential solvable if the exponential map exp : s→ S is a
diffeomorphism. Examples include the simply connected nilpotent Lie groups and the groups AN in the
Iwasawa decomposition G = KAN of a real semisimple Lie group.

it will be understood that s, g, k, a and n are the respective Lie algebras of S,G,K,A and N .

We are looking at bounded isometries of metric spaces (M,d) on which an exponential solvable Lie
group S acts effectively and transitively (and thus, it will turn out, simply transitively) by isometries.
The most interesting case is that of Riemannian exponential solvmanifolds. By Riemannian exponential
solvmanifold (relative to S) we mean a Riemannian manifold M on which an exponential solvable Lie
group S of isometries acts transitively, and the kernel of the action of S is discrete. Then it is easy
to see that the action of S on M lifts to a simply transitive action of the universal covering group of
S on the universal Riemannian covering space of M . Examples include connected simply connected
Riemannian nilmanifolds and (see [44], [2] and [24]) connected simply connected Riemannian manifolds
of non–positive sectional curvature. However, except for the proof that the isometry group I(M,d) is
a Lie group, the arguments are the same for metric spaces as for Riemannian manifolds, so we work in
that more general class.

Lemma 2.2. Let (M,d) be a metric space on which an exponential solvable Lie group S acts effectively
and transitively by isometries. Then the action of S on M is simply transitive.

Proof. Let x0 ∈ M . The isotropy subgroup Sx0 = {s ∈ S | s(x0) = x0} of S preserves all metric balls
Br(x0) = {x ∈ M | d(x, x0) 5 r}. As Sx0 is a closed subgroup of S it is a Lie group, and as the Br(x0)
are compact, it follows from [9] that Sx0 is compact. By definition of exponential solvable group, the
only compact subgroup of S is {1}.

For the rest of the section we fix a metric space (M,d) and an exponential solvable Lie group S
acting effectively and transitively by isometries. We may view (M,d) as the group manifold S with a
left–invariant metric space structure. The most interesting cases are when d is the distance function of
a Riemannian metric ds2 or a Finsler metric F . In any case we will write I(M,d) for the group of all
isometries of (M,d).

We will need an obvious elementary estimate; it is included for completeness.

Lemma 2.3. Let U be a unipotent group of linear transformations of a real vector space V . Suppose that
v ∈ V is not a fixed point of U . Then U(v) is unbounded, in other words is not contained in a compact
subset of V .

Proof. Let ξ ∈ u with ξ(v) 6= 0. Then exp(tξ)v =
∑r

0
1
n!
tnξn(v) where ξrv 6= 0 = ξr+1v. As t → ∞ the

1
r!
trξrv summand dominates the others and is unbounded.

That is sufficient for our needs if S is nilpotent. But in general we need a sightly less obvious version.

Lemma 2.4. Let S be an exponential solvable Lie group and ξ ∈ s a non–central element of the Lie
algebra. Then Ad(S)ξ is unbounded.
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Proof. Let U be the nilradical of S. If U does not centralize ξ then Ad(S)ξ is unbounded by Lemma 2.3.
Thus we may assume Ad(U)ξ = {ξ}. If s ∈ S now Ad(U)Ad(s)ξ = Ad(s)Ad(U)ξ = Ad(s)ξ, so Ad(U)
acts trivially on W := Span Ad(S)ξ.

The restriction Ad(s)|W is a commutative linear Lie algebra in which every nonzero element has an
eigenvalue with nonzero real part. Thus Ad(S)η is unbounded for some η ∈ W , and consequently for
some η ∈ Ad(S)ξ. Now Ad(S)ξ is unbounded.

Theorem 2.5. Let (M,d) be a metric space on which an exponential solvable Lie group S acts effectively
and transitively by isometries. Let G = I(M,d). Then G is a Lie group, any isotropy subgroup K is
compact, and G = SK. If g ∈ G is a bounded isometry then g is a central element in S.

Proof. As noted above, M carries a differentiable manifold structure for which s 7→ s(x0) is a diffeo-
morphism S ∼= M . As usual G = I(M,d) carries the compact–open topology. The famous theorem
of van Danzig and van der Waerden [9] (or see [29, Corollary 4] for an exposition) says that G is lo-
cally compact and that its action on M is proper. In particular, if x0 ∈ M then the isotropy subgroup
K = {k ∈ G | k(x0) = x0} is compact. Further [30, Corollary in §6.3] G is a Lie group. Now S and K
are closed subgroups, G = SK, and M = G/K.

Express g = sk with s ∈ S and k ∈ K. If s = 1 6= k then the differential of k is unbounded on the
tangent space to M at x0 , thus unbounded s, and thus unbounded on (M,d). Thus s 6= 1 unless, of
course, g = 1.

Suppose s 6= 1. As K is compact and the displacement function x 7→ δg(x) is bounded, Ad(G)g is
bounded in G. If g′ = s′k′ ∈ G we compute Ad(g′)g = s′k′skk′−1s′−1. That is bounded as g′ ranges
over G, so Ad(S)s is bounded. Let N be the nilradical of S. Now Ad(N)s is a bounded unipotent
Ad(N)–orbit on s, which is impossible unless s centralizes N . As in the proof of Lemma 2.4 it follows
that s is central in S.

Identify s with the tangent tangent space to M at x0 . Suppose ν ∈ s with Ad(k)ν 6= ν and let C be
a compact neighborhood of 0 in s. As t→∞, Ad(k)(tν) must exit tν +C, so Ad(k) is unbounded on s.
Thus k is unbounded on (M,d). That is a contradiction, so Ad(k)ν = ν for all ν ∈ s, in other words k
is trivial on the tangent space to M at x0 . As M = I(M,d)/K it follows that k = 1.

Summarizing, the bounded isometry g of (M,d) is a central element of S.

Corollary 2.6. Let (M,d) be a metric space on which an exponential solvable Lie group S acts effectively
and transitively by isometries. Then every bounded isometry of (M,d) is CW.

Proof. Each bounded isometry g is centralized by S, which is transitive on (M,d), so g is CW [39].

Corollary 2.7. Let (M,d) be a metric space on which an exponential solvable Lie group S acts effectively
and transitively by isometries. Then the center of S consists of all the CW isometries of (M,d), and it
is an abelian normal subgroup of I(M,d).

Proof. If g ∈ I(M,d) is central in S then it commutes with every element of the transitive groupS of
isometries, so [39] it is a CW isometry. If g ∈ I(M,d) is CW then Theorem 2.5 shows that it is a central
element of S.

A Riemannian nilmanifold is a connected Riemannian manifold (M,ds2) on which a nilpotent group
N of isometries acts transitively. Then [43, Theorem 4.2] N is the nilpotent radical of the isometry group
I(M,ds2), and I(M,ds2) is the semidirect product N oK where K is the isotropy subgroup at a point
of M . We abbreviate this situation by writing G = I(M,ds2) = N oK, so M = G/K = (N oK)/K.

In the case of Riemannian nilmanifolds Lemma 2.2 is obvious, Lemma 2.3 is needed as stated, and
the proof of Lemma 2.4 is reduced to its first two sentences. We can skip the first paragraph of the proof
of Theorem 2.5. Corollaries 2.6 is unchanged, and Corollary 2.7 is obvious, with S = N nilpotent.

The alternative proof of a result of J. Tits, described in the Introduction, follows from Theorem 2.5
and the Iwasawa decomposition G = NAK of a real reductive Lie group G. There M is a Riemannian
symmetric space of noncompact type, AN = NA is exponential solvable, and AN acts transitively by
isometries on M .
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3 Homogeneous Quotients

We apply Theorem 2.5 to the structure of covering spaces ψ : (M,d) → Γ\(M,d) where (M,d) is a
metric space on which an exponential solvable Lie group S acts effectively and transitively by isometries.
Recall here [39] that if Γ\(M,d) is homogeneous, then Γ consists of CW isometries. We then indicate
the simplification for Riemannian nilmanifolds. The following is immediate from Theorem 2.5.

Theorem 3.1. Let (M,d) be a metric space on which an exponential solvable Lie group S acts effectively
and transitively by isometries. Let x0 ∈ M , let G = I(M,d), and let K denote the isotropy subgroup of
G at x0 . Consider a locally isometric covering space ψ : (M,ds2) → Γ\(M,ds2). Then the following
conditions are equivalent.

1. Γ consists of bounded isometries of (M,d).

2. Γ consists of CW isometries of (M,d).

3. The group Γ is a discrete central subgroup S.

4. Γ\(M,ds2) is a homogeneous metric space.

5. Γ\(M,ds2) is a metric space on which a Lie group S/Γ acts transitively, where S is exponential
solvable and Γ is a discrete central subgroup of S.

Remark 3.2. Theorem 3.1 applies in particular to Riemannian coverings ψ : (M,ds2) → Γ\(M,ds2),
to Finsler manifold coverings ψ : (M,F ) → Γ\(M,F ), and to nilmanifolds. Thus it tells us how to
construct all connected Riemannian nilmanifolds. Start with a connected simply connected Lie group
N , say with center Z, and a discrete central subgroup Γ ⊂ Z. Fix a positive definite bilinear form
b on the Lie algebra n, and let K denote the group of all automorphisms of N that normalize Γ and
preserve b. Then b translates around to define an ((N/Γ) o K)–invariant Riemannian metric dt2 on
Γ\M = ((N/Γ)oK)/K, and (Γ\M,dt2) is a connected Riemannian nilmanifold. Theorem 3.1 says that
this construction is exhaustive. ♦

Another consequence is that coverings of our class of homogeneous metric space quotients, in partic-
ular of Riemannian nilmanifolds, always are normal coverings.

Corollary 3.3. Let ϕ : (M1, d1) → (M2, d2) be a locally isometric covering space in which (M2, d2) is
a metric space on which a Lie group S/∆2 , S exponential solvable and ∆2 discrete and central in S,
acts effectively and transitively by isometries. Then (M1, d1) is a metric space on which another quotient
group S/∆1 acts effectively and transitively by isometries. Further, ∆1 ⊂ ∆2 , and the covering is normal
with deck transformation group ∆2/∆1 .

Proof. As described above, the universal covering ψ2 : (M,d)→ (M2, d2) is given by dividing out with a
discrete subgroup Γ2 of the center of S. As ϕ : (M1, d1) → (M2, d2) is a locally isometric covering, the
universal covering ψ1 : (M,d) → (M1, d1) is given by dividing out with a subgroup Γ1 of Γ2 . Since the
center of S is abelian, Γ1 is normal in Γ2, so ϕ is the normal locally isometric covering given by dividing
out with Γ2/Γ1.

In the case where (M,d) is a Riemannian manifold (M,ds2) or a Finsler manifold (M,F ), every ξ ∈ g
defines a Killing vector field ξM on (M,d). If ξM has bounded length on (M,d) then exp(tξ) is a bounded
isometry for all real t. Now Theorem 2.5 implies

Corollary 3.4. Suppose that the metric space (M,d) is Riemannian (or Finsler). Let M = G/K =
SK/K where G = I(M,d), S is an exponential solvable Lie group acting transitively on (M,d), and K is
an isotropy subgroup. Let ξ ∈ g such that ξM is a Killing vector field of bounded length on (M,d). Then
ξ belongs to the center of s and ξM has constant length on (M,d).

In the Riemannian nilmanifold setting, the formulation of Theorem 3.1 is a bit less complicated. It
becomes

Corollary 3.5. Let (M,ds2) be a simply connected Riemannian nilmanifold. Consider a Riemannian
covering ψ : (M,ds2)→ Γ\(M,ds2). Then the following conditions are equivalent.

1. Γ consists of bounded isometries of (M,ds2).

2. Γ consists of CW isometries of (M,ds2).

3. G = I(M,ds2) = N oK semidirect product with N nilpotent, and the group Γ is central in N .
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4. Γ\(M,ds2) is a homogeneous Riemannian manifold.

5. Γ\(M,ds2) is a Riemannian nilmanifold.

Further, every connected Riemannian nilmanifold is isometric to a manifold Γ\(M,ds2) as just described.
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