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ABSTRACT OF THE DISSERTATION

On the Societal Impact of

Human-Technology Interaction

by

Jian Gao

Doctor of Philosophy in Management

University of California, Los Angeles, 2024

Professor Francisco Castro Altamirano, Chair

As technology continues to advance rapidly, understanding its broader societal implica-

tions becomes increasingly important. This thesis explores the intersection between human

and emerging technologies—specifically generative artificial intelligence (AI), autonomous

vehicles (AVs), and hybrid marketplaces—and their potential impacts on society. Through

three interconnected studies, we investigate how these technologies influence user behavior,

market dynamics, and service quality, providing valuable insights for policymakers.

In Chapter 2, we delve into the interaction between humans and generative AI. While

generative AI can boost productivity, the content it produces may not always align with user

preferences. To study this effect, we introduce a Bayesian framework where heterogeneous

users decide how much information to share with the AI, balancing a trade-off between output

fidelity and communication cost. We reveal that these interactions can lead to societal

challenges such as homogenization and bias. Our findings highlight the risk of reduced

diversity in outputs, especially when AI-generated content is used to train the next generation

of AI systems, potentially resulting in a “homogenization death spiral.” We also assess the
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impact of AI bias, demonstrating how AI biases can lead to societal bias. Importantly, we

suggest that facilitating human-AI interactions can mitigate these risks.

Chapter 3 investigates the societal effects of introducing AVs into a ride-hailing market

which is currently served by human drivers (HVs). We develop a game-theoretical queueing

model in which a platform aims to maximize its profit while HVs make strategic joining

decisions. Our analysis indicates that incorporating AVs may degrade service levels, as the

platform may prioritize AVs, negatively impacting HVs’ earnings and driving them out of

the market. We then reveal that this reduction in service level is not uniform in a city:

high-demand areas, such as downtown areas, may maintain reasonable service levels, while

remote areas may experience a large decline in service level. Then, using New York City data,

we build a highly detailed simulation of the operations of a ride-hailing platform to further

validate our theoretical model in a more realistic setting and demonstrate the additional

effects on service levels. This study underscores the importance of balancing profitability

with service quality when introducing AVs in the transportation sector.

In Chapter 4, we extend the analysis of Chapter 3 and focus on the strategic decisions

of profit-maximizing firms operating in “hybrid marketplaces” consisting of both private

and flexible supply agents. The firm can decide the number of private agents to employ,

paying them regardless of their work, while flexible agents make their own revenue and pay a

commission to the firm. We develop a general framework for supply prioritization, applicable

to any firm using a mix of employees (private agents) and contractors (flexible agents), and

capable of handling complex supply management policies. Our findings show that without

prioritization, using hybrid supply is not optimal. However, effective prioritization strategies

can enhance profitability by increasing the productivity of private agents, albeit at the cost of

reducing flexible supply participation. Therefore, the firm tends to prioritize private supply

in “over-supplied” markets, but may prioritize flexible supply in “under-supplied” markets,

where a slight increase of supply increases can significantly impact outcomes. These insights

highlight the critical role of prioritization in managing hybrid supply in markets.
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(b) Achievable revenue set of (ÑF , R̃F ). . . . . . . . . . . . . . . . . . . . . . . 280

xii



LIST OF TABLES

3.1 The service levels in the robustness tests with different parameters . . . . . . . . 78

4.1 Summary of the key results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xiii



ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude to my advisors, Professors
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CHAPTER 1

Introduction

In recent years, machine learning and artificial intelligence (AI) have propelled advancements

in autonomous technologies that present new opportunities that enhance productivity by

assisting or even replacing human labor. However, they also present a lot of challenges for

society. For example, generative AIs can aid in tasks like writing, coding, and designing; and

autonomous vehicles (AV) are expected to improve the efficiency of our transportation system

with reduced costs. However, the individual and societal implications of these technologies

may be more intricate, encompassing potential risks and raising critical questions that involve

social welfare and fairness. In this context, this thesis aims to comprehend the multifaceted

impacts that emerge from the interaction between humans and these new technologies.

Specifically, our goal is to provide valuable insights into autonomous technologies for

policymakers and other stakeholders by integrating principles from operations research, eco-

nomics, statistics, information theory, and computer science. Thus far, this thesis has focused

on (1) modeling complex real-world systems and the strategic behavior of relevant stakehold-

ers in the context of employing autonomous technologies; (2) and better understanding how

strategic decisions impact all stakeholders and society at large. We also constructed simu-

lations that more closely mirror the realistic system to support and extend the theoretical

results from the model.

This thesis is organized as follows. Chapter 2 discusses a timely topic regarding generative

AIs: the potential societal consequences when users interact with AI systems. To this end,

we develop a parsimonious Bayesian model in which users with heterogeneous preference
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rationally decide how much information to share with the AI, balancing output fidelity and

communication costs. In Chapter 3, we present a game-theoretical queueing model and

a numerical simulation to understand the optimal strategy for a ride-hailing platform to

manage a hybrid fleet composed of human-driven vehicles (HV) and AVs. This chapter aims

to assess the aggregate-level consequences of introducing AVs in a city in terms of service

levels. Chapter 4 generalizes the previous analysis by examining how a profit-maximizing firm

prioritizes its supply in a “hybrid marketplace” comprising both private and flexible supply

agents. We conclude this thesis in Chapter 5. Detailed proofs and additional numerical

results are provided in the appendices for further reference.

In the following sections, we will outline the main ideas explored in each chapter.

1.1 Human-AI Interactions and Societal Pitfalls

As people start using generative AI to become more productive, this new work paradigm

may also lead to undesirable side effects. In particular, the boost in productivity may come

at the expense of users’ idiosyncrasies, such as personal style, tastes, and preferences that

we would naturally express without AI. To let users express their preferences, many AI

systems (e.g., ChatGPT) allow users to interact with AIs, and users can review and edit the

AI-generated output themselves. However, aligning a user’s intentions with an AI’s output

can take time. For example, when generating a picture with an AI, it could be difficult to

describe everything about colors, shapes, and styles by articulating more detailed prompts

to better align the AI output with our preferences. Thus, there exists a trade-off between

AI output fidelity and communication cost.

To study the societal effect of this interaction, we introduce a Bayesian framework in

which each rational user can exchange information with the AI to align its output with their

heterogeneous preferences. The AI has a knowledge of the distribution of preferences in the

population and uses a Bayesian update to create an output with maximal expected fidelity
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given the information shared by the user. Users choose the amount of information they share

to maximize their utility, balancing the communication cost with the output fidelity.

We show that the interplay between these individual-level decisions and AI training may

lead to societal challenges: homogenization and bias. First, we prove that the AI-generated

output distribution has a lower variance than the users’ preference distribution. This phe-

nomenon is exacerbated when AI-generated content is used to train the next generation of

AI: we show numerically that the users’ rational decisions and the AI’s training process can

mutually reinforce each other, leading to a homogenization “death spiral”. Additionally, we

also study the effects of AI bias, identifying who benefits or loses when using an AI model

that does not accurately reflect the population preference distribution. We show that the

censoring type of bias (e.g., biasing against the more unique preferences) only slightly im-

proves the utility of common-preference users but significantly reduces the utility of unique

users. Directional biases (e.g., a slightly left-leaning AI) are detrimental to users whose

preferences are opposite to the AI bias, leading to a societal bias.

Nonetheless, our research also demonstrates that creating models that improve human-AI

interactions can significantly limit these risks and preserve population diversity. For example,

a clearer interface and guidance about how to articulate a good prompt can incentivize users

to provide more information, thereby better matching their original preferences.

1.2 Autonomous Vehicles in Ride-Hailing and the Threat of Spa-

tial Inequalities

When ride-hailing platforms start to adopt self-driving cars, they will likely have to manage a

mixed fleet of HVs and AVs. The purpose of this work is to describe some potential challenges

that could arise for a ride-hailing platform operating a mixed fleet of HVs and AVs. Because

the two types of vehicles have very different costs for the platform, the platform will need

to design cost-effective dispatch strategies to maximize its profit. We want to understand
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these strategies and their impact on key performance metrics such as the service level and

the spatial equality of access to transportation.

To this end, we develop a game-theoretical queueing model in which a revenue maximizer

platform and vehicles interact in two stages. In the first stage, given a certain number of

AVs, humans drivers decide to join the platform by gauging their earning rates against an

outside option. The number of HVs is therefore decided by a wage equilibrium. In the second

stage, the platform organizes two queues—one for each vehicle type—and decides how to

distribute new requests between the vehicles in the queues in order to maximize its profit

rate. This two-stage setting captures that in practice, drivers make joining decisions on a

longer time scale than platform’s matching decisions, which are made much more frequently.

Our results demonstrate that the introduction of AVs may deteriorate the service level.

As the platform incorporates AVs, it may prioritize them to maximize profit, which affects

the earnings of HVs and drives them out of the market. More precisely, we find that when

the platform uses the optimal allocation policy, the presence of AVs decreases the earning

of HVs and therefore expels them from the market. This substitution is disproportionate in

that one additional unit of AVs leads to more than one unit of HVs leaving the platform,

which, in turn, causes an overall service level decline.

We then reveal that the reduction of service level is not homogeneous across areas in a

city: while the more profitable high-demand areas, such as downtown areas, may see a high

concentration of vehicles and reasonable service levels, remote locations may suffer from a

drop in service level. The reason behind it is that a revenue-maximizing platform will try to

distribute AVs in the areas with higher demand, which will in turn push the HVs to lower-

demand areas. As a result, the earning rate of HVs is reduced not only due to the additional

number of AVs in the market, but also because they end up in less profitable areas.

Using New York City data, we build a simulation that more closely resembles the oper-

ations of a ride-hailing platform. For instance, each vehicle is simulated individually within

the city network. The simulation also assumes that customers have a utility model to choose
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between requesting an AV or an HV, while the platform can influence their choices through

a differentiated pricing strategy. We confirm that our theoretical results from the queueing

model still hold. Urban areas and airports reap most of the benefits of the introduction of

AVs, while suburban areas experience low service levels. We also demonstrate additional

effects on service levels that also lead to spatial inequality, such as distance between areas

and demand imbalance.

1.3 Supply Prioritization in Hybrid Marketplaces

In this paper, we develop a general framework to study how a profit-maximizing firm pri-

oritizes its supply in a “hybrid marketplace” composed of both private and flexible supply

agents. The firm can choose how many private agents to operate and pay them regardless of

their work. Flexible agents, on the other hand, make their own revenue, pay a commission

rate to the firm, and enter or exit the marketplace in equilibrium. For example, private

agents can be AVs or employees, and flexible agents can be HVs or contractors. Instead of

focusing on any complex pricing/matching/supply management policies, we try to discern

general principles and effects through the revenue change that supply prioritization implies

for all stakeholders. For instance, prioritizing private agents would yield more revenue from

private agents than when agents are treated equally.

Our main results show that prioritization strategies can make it optimal for the firm

to operate a hybrid marketplace, even if the private supply is costly. Prioritizing private

supply makes private agents particularly productive—justifying the firm’s investment—but

comes at the expense of flexible supply that may flee the market. Hence, the firm prioritizes

private supply when the market is “over-supplied,” but it may also prioritize flexible supply in

“under-supplied” markets in which a slight increase in supply can have a significant impact.

Our results provide a general understanding of the advantages of hybrid marketplaces and

the key role of supply prioritization.
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CHAPTER 2

Human-AI Interactions and Societal Pitfalls

2.1 Introduction

Generative artificial intelligence (AI) systems, particularly large language models (LLMs),

have improved at a rapid pace. For example, ChatGPT recently showcased its advanced

capacity to perform complex tasks and human-like behaviors (OpenAI, 2023b), reaching 100

million users within two months of its 2022 launch (Hu, 2023). This progress is not limited to

text generation, as demonstrated by other recent generative AI systems such as Midjourney

(Midjourney, 2023) (a text-to-image generative AI) and GitHub Copilot (Github, 2023)

(an AI pair programmer that can autocomplete code). Eloundou et al. (2023) estimated

that about 80% of the U.S. workforce could be affected by the introduction of LLMs, and

19% of the workers may have at least 50% of their tasks impacted. In particular, AI can

make users more productive by generating complex content in seconds, while users can

simply communicate their preferences. For example, Noy and Zhang (2023) highlighted that

ChatGPT can substantially improve productivity in writing tasks, and GitHub claims that

Copilot increases developer productivity by up to 55% (Kalliamvakou, 2023).

However, content generated with the help of AI is not exactly the same as content gener-

ated without AI. The boost in productivity may come at the expense of users’ idiosyncrasies,

such as personal style and tastes, preferences we would naturally express without AI. To let

users express their preferences, many AI systems let users edit their prompt (e.g., Midjour-

ney) or allow more natural interactions (e.g., ChatGPT), and users can always review and
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edit the AI-generated output themselves (Vaithilingam et al., 2022). However, aligning a

user’s intentions with an AI’s output can take time and may not always be worth it if the

AI’s first or default output “does the job.” Consider a simple example where we use Copilot

to code a Python function that calculates the sum of numbers in a nested list. Figure 2.1

shows that Copilot’s default output (the first to the left) was correct and functional. How-

ever, it did not correspond to our own way of writing the same function given enough time (at

the bottom of the figure). To push Copilot to better match our style, we could provide more

information by articulating a more detailed prompt. However, the figure shows this may re-

quire many steps, which goes against the goal of being more productive. Similarly, Lingard

(2023) described guiding ChatGPT through incremental prompting. In essence, users’ time

and effort to convey information about their desired outcome to an AI can enhance the out-

put’s alignment with their preferences, albeit at the expense of an increased communication

cost. In short, users face a trade-off between AI output fidelity1 and communication cost.2

Different users may respond to this trade-off differently, but those who value productivity

more than fidelity will rely on AI more and willingly let go of their own preferences. We

are interested in the potential societal consequences of these choices. First, working with AI

may be more beneficial for some users than others: in the Copilot example, users who prefer

the default output would not even need to communicate with the AI to have high fidelity

to their preferences. Second, as users do not share complete preferences with the AI and let

it “choose” for them, the produced content may be, on average, homogenized towards the

AI’s default choices. For example, ChatGPT has been trained with reinforcement learning

from human feedback (RLHF) (Kinsella, 2023) to have a specific tone and language. If

1Notice that output fidelity does not measure the “quality” of the output; instead, it measures how much
the output deviates from a user’s personal preference. In particular, we focus on scenarios where users already
know how to complete the task without AI, and the output is always correct (e.g., a software engineer’s code
does the job). However, there are many ways to achieve the same outcome (e.g., the engineer’s coding style).

2In fact, the importance and the associated costs of communicating with AIs have given rise to a new pro-
fession called prompt engineering (Mok, 2023), and spurred the creation of novel marketplaces like Prompt-
Base (URL: https://promptbase.com/).
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Successive

Prompts

Function to return

the sum of numbers

in a nested list

Make it shorter by

using a generator

expression

Make sure you check

if the element is

a list by using

isinstance()

Copilot’s
Output

Our solution
without AI:

Figure 2.1: The incremental information provided to align GitHub Copilot’s Python code

output with our preference. While the initial output in Attempt 1 is functional, it signifi-

cantly differs from our solution without AI. Bridging the gap requires several iterations.

students use ChatGPT’s help for their homework, their writing style may be influenced by

ChatGPT’s. More generally, AIs are built by a few but used by many, and there is a risk

any AI bias could turn into a societal bias. The AI training process may involve censoring

(e.g., the choice of the dataset) and human input (e.g., RLHF), which could intentionally

or unintentionally lead to bias. For example, some studies discuss ChatGPT’s inclination

towards left-leaning political stances (Hartmann et al., 2023; Motoki et al., 2023; Rozado,

2023). All in all, because of the benefits of increased productivity and the balance between

output fidelity and communication costs, users could willingly produce less diverse content

that is vulnerable to potential AI biases.

We propose a Bayesian model to study the societal consequences of human-AI interac-

tions. For a given task, rational users can exchange information with the AI to align its

output with their heterogeneous preferences. The AI has a knowledge of the distribution

of preferences in the population and uses a Bayesian update to create the optimal output

with maximal expected fidelity given the information shared by the user. Users choose the

amount of information they share to maximize their utility, balancing the cost of communi-

cation with the fidelity of the output. In this setting, we aim to formalize and evaluate the
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societal risks of homogenization and AI bias and how they could be mitigated.

When solving for each user’s optimal decision, we find that their use of AI depends on how

“unique” they are. Users with more common preferences simply accept the default output,

avoiding any communication costs at the expense of a small fidelity mismatch. In contrast,

users with more unique preferences share information with the AI to reduce fidelity errors,

albeit with higher communication costs. And the most unique users do not benefit from

the AI and simply perform the task themselves. Interestingly, we find that for less common

users, their fidelity improves with the uniqueness of their preferences. In other words, when

we compare two users with relatively unique preferences (neither the most common nor the

most unique), the user with the most unique preferences between the two will experience

better fidelity.

To establish the homogenization effect, we prove that any output resulting from human-

AI interactions is less unique than what a user would have done without AI. This is confirmed

at the population level, where the AI-generated output distribution has a lower variance than

the users’ preference distribution. This phenomenon is exacerbated when AI-generated con-

tent is used to train the next generation of AI: we show that the users’ rational decisions

and the AI’s training process can mutually reinforce each other, leading to a homogeniza-

tion “death spiral.” However, we also demonstrate that facilitating human-AI interaction

by offering improved means for users to express their preferences can serve as a valuable

tool in mitigating this effect and preserving population diversity. For example, Open AI

has experimented with custom instructions (OpenAI, 2023a) and voiced-based interactions

(OpenAI, 2023c), while Jina AI offers tools that optimize prompts.3

We also study the effects of AI bias, identifying who benefits or loses when using an AI

model that does not accurately reflect the population preference distribution. At the pop-

ulation level, the censoring type of bias (e.g., biasing against the more unique preferences)

3E.g., automatic prompt optimization such as Prompt Perfect (URL: https://promptperfect.jina.ai/).
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negatively impacts the population utility as whole, especially users with uncommon prefer-

ences who rely on AI interactivity the most. This may seem counter-intuitive as we might

assume that the majority with common preferences would benefit from censorship. Yet, our

findings reveal that the benefits for this majority are marginal, while the harm to the minor-

ity with unique preferences is substantial, leading to an overall loss in the population utility.

On the other hand, directional biases (e.g., a slightly left-leaning AI) are not as harmful in

terms of utility, but any directional bias will influence the users’ chosen output, leading to

a societal bias. On the positive side, the user interactions with the AI partially counter the

effects of AI bias, highlighting the need to consider human decisions to fully understand the

impact of generative AI.

We show that tasks that are either hard to do without AI (e.g., image generation) or

for which speed is particularly important (e.g., grammar correction) are especially sensitive

to the risks of homogenization and bias. However, our research demonstrates that creating

models that facilitate human-AI interactions can significantly limit these risks and preserve

the population preference diversity.

2.2 Literature review

Related studies on the issues of homogenization and bias. A few studies have a

focus related to the homogenization issue (e.g., Anderson et al. (2024); Bommasani et al.

(2022); Chaney et al. (2018); Doshi and Hauser (2024); Padmakumar and He (2024); Saatci

and Wilson (2017); Shumailov et al. (2023)). Recent empirical research indicates that gener-

ative AI may reduce the diversity of outputs, which aligns with our findings (Anderson et al.,

2024; Doshi and Hauser, 2024; Padmakumar and He, 2024). For example, Doshi and Hauser

(2024) found that while generative AI can improve the quality and enjoyment of written

articles, it also makes the stories more similar to each other than those written solely by

humans. Some other studies have examined how the training process of an AI may reduce
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the diversity of AI-generated content (Bommasani et al., 2022; Shumailov et al., 2023). Shu-

mailov et al. (2023) observed that the tails of the original content distribution disappear

when AIs are successively trained from AI-generated content (they call it model collapse).

Also, Bommasani et al. (2022) demonstrate that algorithmic systems built on the same data

or models tend to homogenize outcomes. Moreover, before the launch of ChatGPT, a similar

homogenization issue has also been discussed in the literature of recommendation systems

(Chaney et al., 2018). By using a simulation, Chaney et al. (2018) show that a feedback

loop, where a recommendation system is trained on data from users already exposed to AI

recommendations, may homogenize user behavior.

On the other hand, the issue of bias in generative AI has also been shown (Hartmann

et al., 2023; Motoki et al., 2023; Rozado, 2023), with empirical evidence of its impact on

cognitive processes (Bhat et al., 2023; Jakesch et al., 2023). For example, Rozado (2023)

implemented 15 different political orientation tests to ChatGPT. The author found that

ChatGPT’s answers manifested a preference for left-leaning opinions in 14 of the 15 tests.

Bhat et al. (2023) discovered that people may incorporate AI suggestions into their writing,

even when they disagree with the suggestions overall. Similarly, Jakesch et al. (2023) showed

that biased language models could influence the opinions expressed in people’s writing and

shift their viewpoints.

In contrast to these studies, our research examines the causes of homogenization and bias

from a human-centric perspective by using a modeling approach. Specifically, we employ a

Bayesian model to explore how users’ rational decision-making when interacting with AIs

affects these issues. Our findings underscore the importance of enhancing AI usability and

encouraging users to share more information to address these societal challenges. To the best

of our knowledge, our paper is the first modeling study that employs such a human-centric

perspective to understand the societal consequences of generative AIs.
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Related studies on human-AI interactions. Our paper is also related to some recent

modeling studies about human-AI interaction in operations management (e.g., Agrawal et al.

(2018); Bastani et al. (2022); Boyacı et al. (2023); Chen et al. (2022); Dai and Singh (2023);

de Véricourt and Gurkan (2023); Ibrahim et al. (2021); Mclaughlin and Spiess (2023)).

Essentially, their primary focus lies in examining the potential impact of the coexistence

of humans and an AI on performance, such as accuracy, and exploring how the predictive

performance can be enhanced or hindered compared to decisions made solely by humans

or AI. For example, de Véricourt and Gurkan (2023) consider the human-AI interactions

in which a human agent supervises an AI to make some high-stakes decisions. They show

that the agent may be subject to a verification bias and hesitates forever whether the AI

performs better than the agent because the agent can overrule the AI before observing

the correctness of the AI’s predictions. Ibrahim et al. (2021) build a stylized model to

analyze how human judgments can improve AI predictions. In the paper of Boyacı et al.

(2023), the authors consider a situation in which a human agent has to spend a cognitive

cost collecting information in a decision process, whereas an AI can provide him with some

additional information without cognitive cost. They show that the AI input can improve

the overall accuracy of human decisions but may incur a higher propensity for certain types

of errors. These papers primarily focus on decision-making when human and AI options

exist separately. In contrast, our paper considers a more interactive setting, where users

can provide a generative AI with more information to improve the AI’s outputs but have to

spend a communication cost.

Related studies on generative AIs. With the popularity of ChatGPT, many scholars

have engaged in research on its impact on people’s lives and in their respective fields, such

as labor markets (Eloundou et al., 2023), marketing (Brand et al., 2023), healthcare (Sal-

lam, 2023), and so on. Most of the research uses empirical analysis to investigate whether

generative AI, represented by ChatGPT, can truly bring us more benefits and conveniences.
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For instance, Noy and Zhang (2023) show that ChatGPT can substantially improve produc-

tivity in mid-level professional writing tasks. Binz and Schulz (2023) tested GPT-3 with

some experiments from the cognitive psychology literature. They find that GPT-3 can solve

many of those tasks well and even sometimes outperform humans’ performance. Our study

approaches this question from a different angle. Through a modeling method, we attempt

to foreshadow how our lives may change under the widespread application of generative AIs

due to people’s rational decision-making when interacting with AIs.

We assume that the output of AIs depends on the information provided by users. In

fact, many empirical studies have observed that AIs are quite sensitive to users’ inputs (Binz

and Schulz, 2023; Brand et al., 2023; Liu et al., 2023). For example, Brand et al. (2023),

who adopted ChatGPT to conduct marketing research, found that GPT is sensitive to the

phrasing of queries in their empirical work. When querying GPT with a list of options, they

found that GPT is more likely to choose the first option. Denny et al. (2023) also indicated

that sending proper prompts is critical for the performance of Copilot.

Related studies on the modeling approach. The way we model the human-AI interac-

tion shares similarities with the frameworks of information design (Kamenica and Gentzkow,

2011), costly persuasion (Gentzkow and Kamenica, 2014), the theory of rational inattention

(Sims, 2003), as well as the interpretation of LLMs with Bayesian inference (Wei et al.,

2021; Xie et al., 2022). The user’s decision is modeled similarly to an information design

process (Alizamir et al., 2020; de Véricourt et al., 2021). The sender (i.e., the user) sends

a signal to the receiver (i.e., the AI) to inform the receiver about a true state (i.e., the

user’s preference). The utility of the sender is determined by the receiver’s decision (i.e.,

the AI’s output). Additionally, we employ the framework of costly persuasion (Gentzkow

and Kamenica, 2014) and the theory of rational inattention (Sims, 2003) to model the user’s

communication cost when sending the signal. In particular, we follow the standard way in

the literature to model the cost of information as the expected reduction in entropy. This
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assumption can also be found in other modeling papers, such as the cognitive cost defined

in Boyacı et al. (2023). Note that we assume the reduction in entropy is relative to the

population distribution of users’ preferences (see Section 2.3) instead of AI’s prior (defined

in Section 2.3). As Gentzkow and Kamenica (2014) suggested, the reduction in entropy can

be defined relative to any proper fixed reference belief. So we use the population distribution

of users’ preferences as the fixed reference belief to indicate that the communication cost is

independent of AI’s prior but relevant to the difficulty of distinguishing a user’s preference

from the others. Furthermore, we model the AI’s behavior as a Bayesian inference (Wei

et al., 2021; Xie et al., 2022). For instance, Xie et al. (2022) interpret that the in-context

learning of an LLM can be viewed as an implicit Bayesian inference. The prior of the LLM

is formulated during training. Conditional on a prompt, the LLM characterizes a posterior

distribution to make an output.

2.3 Model Setup

We develop a Bayesian model to represent the process of working with generative AI on

a given task. Users have preferences on how to complete the task, and the AI knows the

population’s distribution of these preferences (through its training). Each user can also

interact with the AI to share information about her specific preferences. This interaction will

help the AI produce an output closer to what a user would have done without AI, leading

to a better output fidelity. However, sharing information requires effort, which entails a

communication cost. Users must choose how much information they share to balance the

benefits of fidelity and the cost of communication.

User preferences and Fidelity We use θ ∈ R to denote a user’s specific preference,

and we assume that θ is normally distributed in the population: θ ∼ N(µθ, σ
2
θ). Here

µθ represents the average population preference and σθ the diversity of the population’s
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preferences. In practice, the users’ preferences should be represented by a high-dimensional

space, but we will interpret θ as a specific feature of a user’s preferences, as illustrated in

the following example.

Example 1 (News Article). A journalist would like to write an article about a piece of

breaking news and wants to use ChatGPT to write faster. θ measures the political orientation

of the article this journalist would have written without AI. If θ > µθ, the journalist is more

right-leaning than the average journalist. When using AI, the journalist may be able to write

faster but may not meet her exact political orientation θ (low fidelity).

We will refer to a “user θ” to describe a user with preference θ, and to an “output θA”

to refer to an AI’s output matching some preference θA. We define the output’s fidelity loss

as (θ− θA)
2, and we interpret it as a loss in utility for a user θ receiving an output θA (users

prefer an output matching their preference). For example, if θA = θ−1, the AI of Example 1

outputs a more left-leaning article than the journalist’s preferred political orientation, and

the fidelity loss is 1.

AI Bayesian Inference We model the interaction between a user and AI as an exchange

of information about θ. The AI has a prior belief of the population distribution of θ. This

belief corresponds to a normal distribution N(µA, σ
2
A) with density πA(·). To capture that

the AI has been trained on a representative dataset, we assume that the AI’s prior is exactly

the population distribution, µA = µθ and σA = σθ (this assumption is relaxed in Section 2.6

to study the effects of a biased AI). We model the exchange of information between a user

θ and the AI as with normal distributions: the user shares a noisy signal q = θ + ϵq where

ϵq ∼ N(0, σ2
q ), and the AI refines its belief using Bayes’ rule: θ|q ∼ πA(·|q). It then returns

the optimal output with the maximum expected fidelity:

θA ≜ argmin
θ̂

E[(θ̂ − θ)2|q] = E[θ|q] = σ2
A

σ2
A + σ2

q

· q + σ2
q

σ2
A + σ2

q

· µA. (2.1)
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Note that θA is a weighted average between q and the prior mean (Berger, 1985), which is

a random variable since q is noisy. Additionally, a lower value of σq corresponds to more

information shared with the AI: if σq = 0, then the user θ shares her exact preference, and

the AI returns θA = θ. In the limit σq → +∞, the signal is uninformative, and the AI

outputs the mean of its prior, θA = µA.

The fidelity error of a user θ given σq is the expected output fidelity, denoted by:

e(θ, σq) ≜ E[(θA − θ)2|θ]. (2.2)

We can decompose it into two terms,

e(θ, σq) = V ar(θA|θ) + [E(θA|θ)− θ]2.

For a user θ, the first term corresponds to the variability in the AI’s output that stems

from the information exchange, while the second term is the impact of the bias in the AI

response, which will be a focus of the paper. In the context of Example 1, the bias is high

if the AI-written article consistently leans more to the left than the journalist orientation.

Information and Communication Cost Given an exchange of information parametrized

by σq, we measure the “communication cost” of the user to share this information with the

AI. Following standard assumptions in the rational inattention (Sims, 2003) and costly per-

suasion (Gentzkow and Kamenica, 2014) literature, we assume the communication cost to be

proportional to the expected reduction in the AI uncertainty of θ relative to the population

distribution of θ given σq:

λI(σq) ≜ λ[H(θ)−E[H(θ|q)]] = λ

[
ln(σθ

√
2πe)− ln

(√
σ2
θσ

2
q

σ2
θ + σ2

q

√
2πe

)]
= −λ

2
ln

(
σ2
q

σ2
θ + σ2

q

)
,

where λ > 0 is the marginal cost of communication, I(σq) is the mutual information, and

H(·) denotes the differential entropy. Intuitively, I(σq) corresponds to the “amount of in-

formation” the user shares about her preference θ. Note that sharing the exact value of
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θ (σq = 0) requires an infinite amount of information I = +∞. Conversely, providing an

uninformative signal about θ (σq → +∞) requires no information I = 0. To interpret this

situation, remember that our model assumes that the AI knows the task description and that

the human-AI interaction is about sharing user preferences. Without preference information,

the AI uses its knowledge of the preference distribution to return a “default” output for the

task, µA = µθ (e.g., the first answer of ChatGPT) . In Example 1, ChatGPT would write

an article that expresses an “average” political orientation that does not necessarily reflect

the journalist’s views. And, in the GitHub Copilot coding example of Figure 2.1, the initial

Copilot’s output is a default function that does not consider the user’s specific preference.

In both cases, the AI requires more information to deliver better fidelity.

User’s decision Each user θ chooses the information I they share with the AI (parametrized

by σq) to minimize their utility loss l given by the sum of the fidelity error and the commu-

nication cost

l(θ, σq) ≜ e(θ, σq) + λI(σq). (2.3)

That is, a user θ chooses an optimal σ⋆
q (θ) that minimizes her utility loss,

σ⋆
q (θ) ≜ argmin

σq≥0
l(θ, σq). (2.4)

Importantly, λ controls the tradeoff between fidelity error and communication cost, and we

will refer to it as the cost of human-AI interactions. A task has a low λ if it is particularly

easy to interact with the AI and share preferences (e.g., a chat interface like ChatGPT or

voice-based interactions (OpenAI, 2023c)) and/or if users care a lot about fidelity. λ will

be high if users care more about minimizing effort than matching their specific preferences.

Because the task of Example 1 is about breaking news, the journalist may be in a hurry and

have a high λ.

Choosing to work with AI If the cost of human-AI interaction is high and fidelity is

important, a user might be better off not using the AI and doing the work herself. In this
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case, the output would have no fidelity error by definition. However, manual work takes

time, which we model as a fixed utility cost Γ > 0 that depends on the task but is the same

for everyone.

If Γ is smaller than the expected utility loss l(θ, σ⋆
q ), then a user θ will not use the AI.

We define the output θ⋆ chosen by a user θ and the corresponding expected utility loss l∗ as:

θ⋆ ≜




θA|(θ, σ⋆

q ) if l(θ, σ⋆
q ) ≤ Γ

θ otherwise

, l∗ ≜ min(l(θ, σ⋆
q ),Γ). (2.5)

2.4 Human-AI Interactions and Homogenization

A consequence of our model is that different users may interact with the AI differently,

sharing varying amounts of information about their preferences or even choosing not to use

the AI. We first describe these individual-level choices and then study their implied societal

consequences and how to mitigate them.

2.4.1 Individual Level: Heterogeneous Use of AI

Analyzing the optimal decision of each user θ requires solving Problem (2.4), and the results

are presented in Proposition 1. Users’ choices depend on their uniqueness, the distance of

their preference θ to the population mean µθ, d(θ) ≜ |θ − µθ|. We note that the derivation

of σ⋆
q (θ), presented in Appendix A.1, is non-trivial as Equation (2.3) is neither concave nor

convex.4

Proposition 1. Optimal user strategies solving Equation (2.5) have the following charac-

teristics:

4We present the proofs for all the statements in Appendix A.2.
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1. More unique users have a higher utility loss: l⋆ increases5 in d(θ).

2. More unique users interact more with the AI (if they choose to use it): λI⋆ increases

in d(θ).

3. Users use the AI if they are below a uniqueness threshold τa > 0: d(θ) ≤ τa ⇐⇒
l(θ, σq) ≤ Γ.

4. Users that use AI are characterized by another uniqueness threshold τd such that:

(a) If d(θ) ≤ τd, users choose the default AI output (I⋆ = 0) and their fidelity error

e(θ, σ⋆
q ) increases with their uniqueness d(θ).

(b) If d(θ) > τd, users interact with AI (I⋆ > 0) and their fidelity error decreases with

their uniqueness.

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

0.5

1

1.5

user preference θ

(a)

fidelity error e⋆

communication cost λI⋆

utility loss l⋆

(a)

−5 −4 −3 −2 −1 0 1 2 3 4 5

−4

−2

0

2

4

user preference θ

(b)

user preference θ
AI’s default output µθ

expected output E[θ⋆|θ]

(b)

Figure 2.2: The black dashed vertical lines are at d(θ) = τd, and the black dotted vertical

lines are at d(θ) = τa. The white region indicates the users who choose the default output;

the yellow region indicates those who send information to the AI; the red region indicates

those not using AI. We use µθ = 0, σθ = 1, λ = 1,Γ = 1.4.

5All references to “increasing” or “decreasing” functions are meant in a weak sense (i.e., “non-decreasing”).

19



The main takeaway from Proposition 1 is that users with more “common” preferences

have a utility advantage (Item 1) and choose to interact less with the AI (Item 2). The

fundamental driver of this, crucial throughout the paper, is that more common users can

have a small fidelity error with limited shared information. There are three types of users:

users who use AI but do not share information, those who share information, and users who

do not use AI. The most common users, with d(θ) ≤ τd as described in Item 4a, accept

the default output of the AI, zero communication cost but rapidly increasing fidelity error

as these users become more unique, and the default output θA = µθ becomes worse (see

the region in the center of Figure 2.2. Users with θ > τd then choose to interact with

the AI (Item 4b), which will reduce their fidelity error at the expense of communication

cost (Item 2). Indeed, as illustrated in Figure 2.2 (a), while the fidelity error (green curve)

dominates the utility loss of users with common preferences, more unique users prefer to

pay an increasing communication cost (red curve) that dominates a decreasing fidelity error.

Interacting with the AI eventually reaches such high communication costs for the most unique

users (d(θ) > τa) that the no-AI option becomes preferable (Item 3) as shown in the red area

of Figure 2.2 (a).

Many users have a positive fidelity error, so the AI’s output may not always align perfectly

with a user’s preference. The next proposition shows that this output is misaligned in a

specific way: on average, a user’s chosen output θ⋆ tends to revert toward the population’s

mean preference.

Proposition 2. The expected chosen output E[θ⋆|θ] of any user θ is closer to the popula-

tion’s mean than their actual preference: |E[θ⋆|θ]− µθ| ≤ |θ − µθ|. Moreover, the inequality

is strict for almost all users that use the AI: when d(θ) < τa and θ ̸= µθ.

We illustrate this result in Figure 2.2 (b). The most common users (with d(θ) ≤ τd)

provide an uninformative signal to the AI (I⋆ = 0) and accept the AI’s default output

θA = µθ, which is a direct revert to the mean. As users become more unique, they interact

with the AI (I⋆ > 0), which mitigates the mean reversion in the AI’s output. However,
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it doesn’t completely vanish due to the high communication cost. The mean reversion

disappears only for those very unique users who choose to work themselves and not to use

the AI. In Example 1, a journalist with θ > µθ would write a (slightly) more left-leaning

article than her preference. As discussed in the next section, this can be an issue at the

population level.

2.4.2 Societal Level: Homogenization

In a world without AI, the distribution of people’s output would exactly match the distri-

bution of their preference θ ∼ N(µθ, σ
2
θ). However, with AI, the output is θ⋆, which does

not have the same distribution, as we saw that users of AI tend to choose an output closer

to the mean µθ. At the population level, this leads to homogenization, where the output

distribution has a lower variance than the distribution of preferences.

Theorem 1. When everyone uses AI (Γ → +∞), the variance of the population output is

lower than the variance of the population preferences, V ar(θ⋆) < V ar(θ), and strictly de-

creases in the cost of human-AI interactions λ. In the general case (Γ < +∞), limλ→0 V ar(θ
⋆) =

V ar(θ) and limλ→+∞ V ar(θ⋆) < V ar(θ).
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Figure 2.3: We use µθ = 0, σθ = 1.

Theorem 1 formalizes the risk of homogenization and points to its solution. When ev-

eryone uses AI (Γ → +∞), reducing the cost of human-AI interactions λ encourages users
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to interact more with the AI and share their specific preferences more accurately, limiting

homogenization and helping to preserve the population’s diversity. When λ→ 0, there is no

more homogenization as users can share their precise preference for free. The case Γ < +∞
is more involved, as some users renounce the AI when the cost of human-AI interactions

is high, partially improving the chosen output’s diversity. We illustrate it in Figure 2.3

and present a more in-depth analysis in Appendix A.5. An interesting special case is when

Γ < +∞ and λ → +∞. Only two types of users remain: those who complete the task

themselves and those who accept the default AI output, leading to homogenization on aver-

age. In all cases, Theorem 1 underscores that enhancing the interactivity of AI tools (e.g.,

through better interfaces, multi-modal inputs, or real-time feedback mechanisms) to achieve

a sufficiently low λ is an effective strategy to encourage users toward higher fidelity, reduce

homogenization, and ultimately, preserve population preference diversity.

2.5 AI-generated content and the “Death Spiral” of Homogeniza-

tion

While homogenization can easily be perceived as a negative societal outcome, we argue it

may also have long-term consequences. As more and more content becomes AI-generated,

this content could be used to train the next generation of AI. Because of the homogenization

issue, this would lead to an incorrect AI distribution of human preference (the AI’s prior).

The next AI generation would be even more likely to return homogenized outputs, resulting

in a “death spiral” of homogenization, a dreadful outcome for human preference diversity,

where the diversity of outputs is diminishing over time. We study this phenomenon within

our model, considering a self-training loop where the population’s output distribution at

time t becomes the AI prior at time t+ 1 (as illustrated in Figure 2.4).

This model is not tractable, as our analysis does not apply when the AI has a non-

normal prior, which happens after the first iteration of the self-training loop. Therefore, we
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User θ AI Model Output θ⋆

AI updates its prior πA

decides new optimal σ⋆
q (step 1)

user learns
AI behavior (step 4)

generates (step 2)

becomes training data
(step 3)

Figure 2.4: Steps in each iteration of the self-training loop.

further simplify our model to understand the effects within a self-training loop. We then use

simulations to verify the theoretical results from the simplified model and conduct robustness

tests in more complex scenarios.

2.5.1 A simplified model

Since the difficulty arises from non-normal priors after the first iteration, we assume that

the user preference θ follows a three-point distribution with support Θ ≜ {−v, 0, v} and a

probability mass at zero p0:

πθ(θ) =





(1− p0)/2 if θ = −v
p0 if θ = 0

(1− p0)/2 if θ = v

Let πt
A(θ) denote the AI prior at time t and πt

A(θ|q, σq) denote the posterior after receiving
a signal q ∼ θ+ ϵq where ϵq ∼ N(0, σq). In line with the original model setup, the AI output

given q at time t maximizes the expected fidelity:

θtA ≜ argmin
θ̂∈Θ

E[(θ̂ − θ)2|q] = argmin
θ̂∈Θ

∑

θ∈Θ
(θ̂ − θ)2πt(θ|q, σq)

The user’s decision is also as defined in Section 2.3. That is, a user θ needs to find σ⋆t
q that

solves

min
σq

lt(θ, σq) = et(θ, σq) + λI(θ, σq)

where et(θ, σq) = E[(θtA − θ)2|θ] is the fidelity error and λI(θ, σq) = λ[H(θ) − E[H(θ|q)]] is
the communication cost. And a user θ can still choose to work without the AI if the utility
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loss of using AI is too high. As defined in Section 2.3, the output θ⋆t is:

θ⋆t =




θtA|(θ, σ⋆

q ) if lt(θ, σ⋆
q ) ≤ Γ

θ otherwise

Importantly, in a self-training loop, the AI outputs are reused to train the next generation

of AI, so this means that the AI prior at time t+ 1 becomes the unconditional distribution

of θ⋆t:

πt+1
A (θ) ≜





P (θ⋆t = −v) if θ = −v
P (θ⋆t = 0) if θ = 0

P (θ⋆t = v) if θ = v

Note that the initial AI prior is still assumed to be the same with the population distribution

of θ (i.e., π0
A(θ) = πθ(θ)). We then define the phenomenon of the homogenization death spiral

as follows.

Definition 1 (Homogenization Death Spiral). The homogenization death spiral is a phe-

nomenon where the variance of outputs, V ar(θ⋆t), is monotonically decreasing in time t.

This model simplifies the original model in a self-training loop but is still able to maintain

the key properties. Users are still facing a trade-off between fidelity error and communication

cost, defined as before. Users’ preferences remain heterogenous: some preferences are more

unique (i.e., θ = −v and θ = v), while the others are more common (θ = 0). We refer to θ = 0

as the common users and to θ = −v or θ = v as the unique users. The only difference is that

the population distribution of θ and the AI prior are constrained to a discrete support with

three points. This simplification enables us to further analyze the effects of a self-training

loop and how a homogenization death spiral emerges.

2.5.2 Factors affecting the homogenization death spiral

With the simplified model, we are able to comprehend the driving forces behind a homoge-

nization death spiral. As a preliminary result, the following lemma illustrates the behavior
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of the common users and the symmetry of the AI prior.

Lemma 1. It is optimal for the common users to accept the default output, and the AI

prior remains symmetric. That is, ∀t, σ⋆t
q (0) = ∞ and πt

A(−v) = πt
A(v).

Lemma 1 is intuitive because the common users can achieve zero utility loss by accepting

the default output without making any effort. Given σq, the unique user’s utility loss is the

same, whether θ = −v or θ = v, as long as the AI prior at time t is symmetric, leading to a

symmetric AI prior in the next iteration. Building on Lemma 1, we can prove the following

corollary.

Corollary 1. ∀t, V ar(θ⋆t) ≤ V ar(θ), and V ar(θ⋆t) = V ar(θ) if and only if σ⋆t
q (−v) =

σ⋆t
q (v) = 0.

We can view Corollary 1 as an analogy to Theorem 1 in the simplified model. It demon-

strates that the diversity of outputs is reduced because users cannot fully exert effort to

share information about their preferences.

With the above foundations, let us now focus on a single iteration with any symmetric

AI prior πt
A(θ). This analysis will help us understand how the AI prior at time t+1 depends

on the previous iteration at time t. The following proposition illustrates how the variables

at time t may affect the variance of outputs at time t+ 1. Note that Proposition 3 assumes

Γ = ∞ and does not consider the user’s optimization problem to isolate the effect of variables.

Proposition 3. Suppose Γ = ∞ and πt
A(−v) = πt

A(v). Holding σt
q(−v) = σt

q(v) = σq for

some σq, we have:

1. V ar(θt+1
A ) monotonically increases in V ar(θtA).

2. V ar(θt+1
A ) monotonically decreases in σq.

The first result in Proposition 3 indicates that an increase or decrease in the variance

of outputs has a lasting impact, influencing the variances of outputs in subsequent periods

25



in the same direction. Intuitively, if the AI focuses predominantly on the majority and its

prior becomes more concentrated around the average, it becomes more difficult for unique

users to reduce fidelity error. Consequently, the AI is more likely to generate outputs close

to the average, further concentrating the distribution of outputs around the average. On the

other hand, the second result in Proposition 3 suggests that making efforts to share more

information acts as a counterforce against homogenization, increasing the variance of outputs.

As previously illustrated in Section 2.4.2, sharing more information effectively preserves

the diversity of outputs and mitigates homogenization in the first period. Proposition 3

demonstrates that this effect of information sharing is consistent across all periods in a self-

training loop. Essentially, this proposition highlights the long-term impact of users’ efforts

in maintaining output diversity. If users keep σq constant and do not react to homogenized

outputs in the current iteration, this homogenization issue will propagate through all future

iterations, reducing output diversity within each period.

Nonetheless, Proposition 3 does not explain how the variance of outputs may change

period by period. The following theorem illustrates the major forces that lead to or prevent

the homogenization death spiral.

Theorem 2. When everyone uses AI, the homogenization death spiral exists if users cannot

share more information than the last iteration. That is, when Γ = ∞, ∀t, V ar(θ⋆(t+1)) ≤
V ar(θ⋆t) if σt+1

q (θ) ≥ σt
q(θ) for any θ. In contrast, there exists a case where the homogeniza-

tion death spiral does not exist if one of the following conditions is true:

1. Γ is small enough.

2. Γ = ∞ but the users with θ ̸= 0 share sufficiently more information than the previous

iteration.

The first part of Theorem 2 highlights the importance of sharing sufficient information

to maintain output diversity in a self-training loop. If users cannot share more information

than in the last iteration, the diversity of outputs will be lower than in the last iteration.
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As demonstrated in Proposition 3, since the AI always tends to cater to the majority, the

distribution of generated outputs will be more concentrated on the average than the AI

prior if users cannot share extra information. This further makes it more difficult for users

to reduce their fidelity errors in subsequent iterations, creating a snowball effect that mono-

tonically reduces output diversity. However, the second part of Theorem 2 identifies factors

that counteract this reduction in diversity. First, when Γ is finite, there are scenarios where

users choose to use the AI at time t but opt to work without the AI at time t + 1. Manual

work can restore output diversity, leading to a higher variance than the previous iteration

and breaking the homogenization death spiral. Additionally, even if all the users continue

to use the AI, there are cases where users are willing to exert sufficient effort and share

enough information if the cost of human-AI interaction is low enough. Sharing sufficient

information can also preserve output diversity and disrupt the homogenization death spiral.

Overall, these counterforces interact to each other, potentially resulting in varying levels of

output variance across iterations.

Theorem 2 demonstrates that manual work and sharing sufficient information are two

effective strategies for breaking the homogenization death spiral. Otherwise, the homoge-

nization death spiral persists, and the diversity of outputs will continue to diminish over

time. From a social planner’s perspective, this implies the importance of encouraging indi-

vidual contributions without AI and facilitating efficient human-AI interactions to prevent

the homogenization death spiral.

The limitation of Theorem 2 is that it does not precisely indicate how the diversity of

outputs changes over time due to the complexity of solving the users’ optimization problems,

even in the simplified model. Nonetheless, we further investigate the existence of the homog-

enization death spiral in more complex settings by using numerical methods as robustness

tests, which are presented in the following section.
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2.5.3 Robustness tests

In the numerical experiments, we first discretize the continuous population distribution of

θ and the continuous distribution of q by the Lloyd-Max algorithm (Gallager et al., 2008)

to achieve computational tractability. Starting with the initial prior π0
A(θ) = πθ(θ), we nu-

merically compute the posterior πt
Aθ|q, σq for given q and σq. This enables us to determine

θtA|q, σq. We then derive the fidelity error and the communication cost, as defined in Sec-

tion 2.3 for any σq. Subsequently, we numerically find the optimal σ⋆
q for each θ at time t

and calculate P(θ⋆t = θ). At the beginning of the next iteration, the AI prior is updated

to πt+1
A (θ) = P(θ⋆t = θ). These steps are repeated until a specified number of iterations is

reached. A detailed description can be found in Appendix A.3.

The original model Let us first revisit our original model where the population distribu-

tion of θ and the AI prior are normally distributed. As shown in Figure 2.5, if everyone uses

the AI (i.e., Γ = +∞), the variance of outputs the variance of outputs decreases over time.

This decrease is most pronounced during the first iteration when users initially begin utiliz-

ing the AI. Then, there is a slight recovery in variance as users share more information than

they did in the first iteration. However, this is short-lived, and the ”death spiral” persists,

leading to a continuous and monotonic decrease in output variance. This occurs because

users’ efforts are insufficient to enhance the diversity of outputs, causing the distribution

of generated outputs to converge increasingly toward the mean. This means that as the

AI’s prior becomes increasingly erroneous, the communication cost necessary to reduce the

fidelity error becomes unmanageable, and more and more users start to accept the default

output until we converge to a more and more homogenized world.

Nonetheless, we can also observe that the homogenization death spiral can be mitigated

when the cost of human-AI interaction, λ, is small or the manual cost, Γ, is low. As illus-

trated in Figure 2.5 (a), when everyone uses the AI, a lower λ results in a higher curve,

28



0 20 40 60 80 100
Iteration t

0.0

0.2

0.4

0.6

0.8

1.0

Va
ria

nc
e 

of
 

=0.5
=1.0
=1.5
=2.0
=2.5

(a)

0 20 40 60 80 100
Iteration t

0.2

0.4

0.6

0.8

1.0

Va
ria

nc
e 

of
 

=0.5
=1.0
=1.5
=2.0
=2.5

(b)

0 20 40 60 80 100
Iteration t

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Va
ria

nc
e 

of
 

=0.5
=1.0
=1.5
=2.0
=2.5

(c)

Figure 2.5: The iterative change of the variance of θ⋆A. We use µθ = 0, σθ = 1. (a) Γ = ∞;

(b) Γ = 10; (c) Γ = 2 . A full simulation description is provided in Appendix A.3.
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indicating that facilitating human-AI interaction can slow down the homogenization death

spiral. A small λ acts as a counterforce against the death spiral, encouraging users to share

more information with the AI, thereby increasing the diversity of outputs, as discussed in

Theorem 2. When Γ is finite (see Figure 2.5 (b)), the death spiral phenomenon still appears

initially, making it increasingly difficult for users to reduce the fidelity error. As the fidelity

error accumulates, the users with very unique preferences experience significant utility loss

and eventually choose to do the work themselves, partially recovering the output diversity.

This recovery in diversity subsequently changes the AI prior and reduces the fidelity error

for the other users, further enhancing output diversity in subsequent iterations. However,

once the diversity of outputs is sufficiently restored, the users tend to rely on the AI again,

causing the homogenization death spiral to reoccur. These cyclic patterns repeat over time.

Moreover, when Γ is extremely low (see Figure 2.5 (c)), a lot of users opt to do the work

manually, maintaining a constant level of output diversity. Nonetheless, the diversity of

outputs is still less than the original because some users continue to accept the default out-

put. Additionally, notice that in this case, increasing λ initially exacerbates the death spiral

and reduces the output variance at each iteration. However, once λ becomes sufficiently

large, further increases lead to more users abandoning the AI and doing the work manually,

partially restoring the output diversity. This observation aligns with our findings in Sec-

tion 2.4.2. Figure 2.5 confirms that the theoretical results from Section 2.5.2 remain valid in

our original setting with a normal distribution of θ. The death spiral exists and the output

diversity decreases over time, but promoting efficient human-AI interactions and lowering

the cost of manual work can effectively mitigate the death spiral.

In what follows, we further test the robustness of our results in more complex scenarios.

Specifically, we examine two additional cases. First, we explore the situation where the

decision to use the AI is made retrospectively rather than prospectively. Second, we inves-

tigate scenarios where the distribution of users’ preferences is more complex than a normal

distribution.
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Ex-post decision of accepting the AI output In the original model presented in Sec-

tion 2.3, we focus on the situation where the users make an ex-ante decision about whether

to use the AI to assist their work. These decisions are prospective and based on the expec-

tation of utility loss. However, in other scenarios, users might make more myopic decisions,

choosing whether to use the AI after seeing its output, which is an ex-post decision. That

is, after observing the AI output θA and the realized fidelity error, (θ − θA)
2, the user will

decide to accept the AI output if the realized fidelity error is less than the fixed utility cost

Γ. Otherwise, the user will ignore the AI output and do the work manually. Hence, the

output θ̃ chosen by a user θ is:

θ̃ ≜




θA|(θ, σq) if (θ − θA)

2 ≤ Γ

θ otherwise

.

In addition, since the user decides σq prior to deciding whether to accept the AI output, she

must evaluate the expected fidelity error by considering the potential future acceptance of

the AI output:

ẽ(θ, σq) ≜ E[(θ̃ − θ)2|θ].

So the utility loss of interacting with an AI becomes

l̃(θ, σq) ≜ ẽ(θ, σq) + λI(σq).

A user θ chooses an optimal σ̃⋆
q (θ) to minimizes her utility loss,

σ̃⋆
q (θ) ≜ argmin

σq≥0
l̃(θ, σq).

This different sequence of decisions further complicates the theoretical analysis due to the

increased difficulty of solving the optimization problem. However, we demonstrate that our

results remain valid through a numerical study, as illustrated in Figure 2.6.

Figure 2.6 confirms our theoretical results in this specific setting. It demonstrates that

the diversity of outputs continues to decrease over time when everyone relies on the AI.
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Figure 2.6: The iterative change of the variance of θ⋆A with an ex-post decision of accepting

the AI output. We use µθ = 0, σθ = 1. (a) Γ = ∞; (b) Γ = 10; (c) Γ = 2.
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However, facilitating human-AI interaction and encouraging users to perform more manual

work effectively counteract the homogenization death spiral. Notably, when Γ = 10, the

variance change in Figure 2.6 is less pronounced than in Figure 2.5. This is because, with

ex-post decisions, the users tend to abandon the AI output earlier, rather than continuously

accepting it until the expected fidelity error has significantly accumulated. As a result, the

changes in the variance of outputs are less dramatic over time.

Other population distribution of users’ preferences To further test the robustness

of our results, we implement numerical studies using different population distributions of

users’ preferences. Specifically, we consider three additional types of distributions: uniform,

a distribution with two symmetric peaks, and a distribution with two asymmetric peaks.

The uniform distribution represents an extreme case where every preference has the same

density in the population, meaning that there is no majority preference. A distribution with

two symmetric peaks features two large groups of people whose preferences are on opposite

sides and have the same density, potentially causing mutual reactions that alter the overall

distribution of generated outputs. In contrast, a distribution with two asymmetric peaks

also has two large groups of people with preferences on opposite sides, but the preferences

in one of the groups are more concentrated while the other group’s preferences are more

diverse. This implies that one group has more homogeneous preferences, whereas the other

group’s preferences are more varied. The instances of the last two distribution types are

illustrated in Figure 2.7.

We present the numerical results in Figure 2.8 and Figure 2.9. Regardless of the assumed

distribution of θ, our insights remain consistent. The diversity of outputs continues to

diminish over time when everyone uses the AI. However, a low λ or a low Γ can effectively

mitigate the homogenization death spiral.

Our findings about the homogenization death spiral offer a different perspective than

the technical explanation for the homogenization problem in Shumailov et al. (2023) (they
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Figure 2.7: The last two extra distributions in the robustness test. (a) a mixed distribu-

tion between N(−2, 0.5) and N(2, 0.5); (b) a mixed distribution between N(−2, 0.5) and

N(2, 0.3).

call it model collapse), where the authors suggest the problem is caused by sampling and

approximation errors. Our model also indicates that human and technical factors may mu-

tually reinforce each other, potentially leading to an exacerbated homogenization problem.

In our model, the homogenization loop is due to technical factors, the misspecified AI prior,

and human behavior, who maximize their utility and are willing to let go of their specificity

to limit the communication costs. We also offer a solution: creating models facilitating

human-AI interactions (i.e., low λ) can significantly slow down the homogenization process.

2.6 Human-AI Interactions and AI Bias

The homogenization phenomenon shows that the use of AI “influences” the user outputs, in

the sense that θ⋆ ̸= θ for many users θ. This is potentially concerning, as any choices made

in the AI training, any bias it might have, would then influence the users’ choice of output.

Indeed, generative AIs are not necessarily trained to reflect the population’s preferences
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Figure 2.8: The iterative convergence of the variance of θ⋆A in the three cases with a more

complex distribution of θ when Γ = ∞. (a) uniform; (b) a mixed distribution between

N(−2, 0.5) and N(2, 0.5); (c) a mixed distribution between N(−2, 0.5) and N(2, 0.3).
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Figure 2.9: The iterative change of the variance of θ⋆A in the three cases with a more complex

distribution of θ when Γ = 10. (a) uniform; (b) a mixed distribution between N(−2, 0.5)

and N(2, 0.5); (c) a mixed distribution between N(−2, 0.5) and N(2, 0.3).
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exactly. For example, the AI’s training data may be censored to avoid illegal or dangerous

behavior (Thompson, 2023). Moreover, the training of LLMs uses Reinforcement Learning

from Human Feedback (Ziegler et al., 2020), in which a small group of humans “teach”

the model what output is preferable. These training choices of a few can then influence

the output of the entire population interacting with AI. We model this potential AI “bias”

via an AI prior that does not exactly reflect the population’s preference distribution (i.e.,

µA ̸= µθ or σA ̸= σθ), leaving the true user preference distribution and the rest of the

Bayesian inference unchanged. We refer to µA ̸= µθ as a directional bias and to σA < σθ

as a censoring bias. In Example 1, the AI may have a slight bias towards a political side

(directional bias), or it may avoid extreme political views (censoring bias). We first discuss

how the two types of AI bias affect users and the effectiveness of human-AI interactions. We

then evaluate how much influence a biased AI can have on society and ways to mitigate this

influence.

2.6.1 AI Bias and User Utility

A biased AI may be less useful for some users but may also help others, as summarized

below.

Proposition 4. The utility loss l⋆ of a user θ changes when with a biased AI as follows:

1. the directional bias favors users the AI is biased towards: l⋆ strictly increases with

|µA − θ|;

2. the censoring bias benefits users with common preferences: l⋆ strictly increases in σA

when σA ≥ |µA − θ|, and strictly decreases in σA when σA < |µA − θ|.

Item 1 of the proposition states that directional bias is detrimental to users of the “oppo-

site” direction. In Example 1, if the AI is slightly right-leaning, a left-leaning journalist may

need more communication cost to obtain an article they will be satisfied with. However, a
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right-leaning journalist could be directly satisfied with the default output. The ideal case for

user θ is µA = θ, as the default AI output would correspond to a perfect utility l⋆ = 0. Item 2

states a similar result for the censoring bias. To clarify it, suppose µA = µθ, and consider

a user with “common” preferences less than a standard deviation away from the mean, i.e.,

|µθ − θ| < σθ. Then she would be better off if a slight censoring is used, with σA such that

|µθ − θ| < σA < σθ. When reducing σA, the AI is more likely to return outputs closer to the

mean, benefiting this user. However, this hurts users with more unique preferences, who will

need more communication costs to maintain a reasonable fidelity or will stop using the AI.

Therefore, both types of bias can increase some users’ utility loss and decrease others’. The

next results consider the aggregate-level consequences of bias and its effect on the population

utility, defined as the expected utility loss E[l⋆] taken across the users θ.

Proposition 5. Directional and censoring bias have contrasting effects on the population

utility:

1. A small directional bias has a limited negative effect on the population utility:

∂E[l⋆]

∂µA

∣∣∣
µA=µθ,σA=σθ

= 0 and E[l⋆] is minimized at µA = µθ.

2. A small censoring bias can have a stronger negative impact: for example,

∂E[l⋆]

∂σA

∣∣∣
µA=µθ,σA=σθ

< 0 when λ ≥ 2σ2
θ and Γ → ∞.

The proposition first shows that, while any directional bias hurts the population utility,

a small directional bias has a negligible effect. Intuitively, if µA = µθ + ε for ε > 0 small,

slightly less than half of the users (above µA + ϵ/2) benefit from the bias because they have

a lower communication cost for the same fidelity, while the other half (below µθ) is hurt

because of an increased communication cost for the same fidelity. These two populations

balance each other, which limits the total loss of utility.

The case of censoring bias (Item 2 of Proposition 5) is maybe more surprising. Unlike

the effect directional bias, setting σA = σθ (an unbiased prior) does not generally minimize

38



0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

AI’s prior variance σ2
A

(a)

p
o
p
u
la
ti
o
n
u
ti
li
ty

lo
ss
,
E
[l
⋆
]

λ= 0.1
λ= 0.3
λ= 0.5
λ= 1.0
λ= 1.5

(a)

−10 −7.5 −5 −2.5 0 2.5 5 7.5 10
−0.6

−0.4

−0.2

0

0.2

user preference θ
(b)

d
iff
er
en

ce
in

u
ti
li
ty

lo
ss

l⋆

w
it
h
in
cr
ea
se
d
σ
A

better off users
worse off users
indifferent users

(b)

Figure 2.10: (a) the black circles indicate the AI prior variance σ2
A that would minimize the

population utility loss. (b) the utility loss l⋆ with σ2
A = 2 minus those with σ2

A = 1, when

λ = 1. In both panels, we use µA = µθ = 0, σ2
θ = 1,Γ = +∞.

the population utility loss E[l⋆]. Both the proposition and Figure 2.10 (a) show that when

Γ → +∞, it is preferable to have σA > σθ (the opposite of censoring). Remember from

Section 2.4.1 that there are two types of user behavior when Γ → +∞: using the default

AI output or interacting with the AI, and the choice of σA only influences the utility of the

interacting users. Therefore, the AI Bayesian update is more accurate when the choice of

σA better represents the interacting users, who are the ones with more unique preferences

(Proposition 1). This is why choosing σA > σθ improves the population utility. This effect

is illustrated in Figure 2.10 (b): when increasing σA, common-preference users do not lose

utility, but more unique users see a large improvement in utility loss. While this result may

have implications for the design of interactive AI, it also warns against the potential negative

effects of censoring bias. Decreasing σA is particularly hurtful to the most unique users,

who rely on human-AI interactions the most. While censoring can be useful in preventing

dangerous or illegal uses of AI, our results also highlight the importance of training AI on

datasets that reflect a wide range of preferences.
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2.6.2 AI Bias Becomes Societal Bias

Another interpretation of Item 1 of Proposition 5 is that a small directional bias |µA−µθ| > 0

(referred to as AI bias in this section) may be hard to detect in practice, as it does not

strongly affect the population’s utility. However, it may still significantly influence the user

output θ⋆. For example, users who accept the default output (I⋆ = 0) have θ⋆ = µA, directly

inheriting the AI bias. On the other hand, users may choose to share more information to

correct this bias and maintain a high-fidelity output. To study which effect dominates, we

analyze the consequences of the AI bias on the societal bias, defined as the bias of the output

distribution: |E[θ⋆]− µθ|.

Theorem 3. Given the AI bias |µA − µθ| and the societal bias |E[θ⋆]− µθ|,

1. the societal bias is lower than the AI bias,

2. the societal bias is minimized when λ→ 0 or Γ → 0: |E[θ⋆]− µθ| = 0,

3. the societal bias is maximized when λ→ +∞ and Γ → +∞: |E[θ⋆]− µθ| = |µA − µθ|,

4. if everyone uses AI (Γ → +∞), the societal bias increases with the cost of human-AI

interactions λ.
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Figure 2.11: We use µθ = 0, µA = 1, σθ = σA = 1 (e.g., the AI bias is |µA − µθ| = 1).

This theorem is illustrated in Figure 2.11 and shows an encouraging result: human-AI

interactions can partially prevent AI bias from becoming societal bias. For example, a left-
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wing journalist in Example 1 may increase their interactions with the AI to correct the

output if the AI is biased to the right. This is particularly true when either the cost of

human-AI interactions, λ, or the cost of not using AI, Γ, is low. It is much easier for users

to correct bias if they can easily interact or simply stop using AI. However, Theorem 3 also

comes with a warning. For larger tasks that are painful to do without AI (high Γ), and if the

human-AI interactions are not efficient (high λ), rational users will simply accept the AI bias,

which will be fully converted into a societal bias. For example, generative AI systems that

favor speed over interactivity (e.g., the AI writing assistant Grammarly) or tackle complex

tasks with limited interactivity (e.g., the image generator Midjourney) may fall into this

category. Any bias they introduce may have a stronger influence on societal output than

systems designed for interactivity (e.g., ChatGPT).

2.7 Conclusions

The widespread introduction of generative AI enables significant productivity gains. How-

ever, we show that the power of these tools may lead users to accept homogenized or biased

outputs and abandon their idiosyncrasies, even when given the possibility to communicate

their preferences. At the societal level, this can lead to homogenization (reinforced by train-

ing loop effects) and the potential influence of AI training choices on the societal output.

These risks are particularly strong for labor-intensive tasks (e.g., image/sound generation) or

with AI tools that favor speed over preference-sharing (e.g., grammar correction). Nonethe-

less, we also show that enabling easier human-AI communication and training the AI on

diverse data can significantly limit these negative effects, allowing the best of both worlds:

high productivity and human diversity.

The topic studied in this work combines technical and behavioral complexity, as we need

to capture how the AI tool works and how users interact with it. Our Bayesian framework

is a simplified representation of this interaction that still enables nontrivial insights, but
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there are effects we do not capture. For example, it is a simplification to assume that

a one-dimensional normal distribution can represent the vast space of human preferences

and outputs and that the complexity of human-AI communication can be represented as a

simple normal signal and Bayesian inference. We also assume all users have the same no-AI

utility loss Γ, and the same human-AI interaction cost λ for a given task. Nonetheless, we

believe our framework is versatile enough to study deeper variants and is a first step towards

understanding the societal consequences of human-AI interactions.

Recent empirical studies examine the multifaceted implications of generative AIs across

various domains, such as education (Baidoo-Anu and Owusu Ansah, 2023), labor markets

(Eloundou et al., 2023), and marketing (Brand et al., 2023). Understanding the general

effects of user behaviors while interfacing with an AI remains an open question that is

difficult to study empirically. We hope our analytical approach highlights the importance of

adopting a human-centric perspective rather than solely focusing on AI technology. Indeed,

while AIs could surpass human abilities in various aspects (Binz and Schulz, 2023; Chen

et al., 2023; Webb et al., 2023), their impact may largely depend on how we employ them.

The interaction with AIs could offer a novel medium for production and creation but also

introduce an extra risk: AIs may filter and even replace our original preferences, styles, and

tastes, thereby leading to a world dictated by the AI creators’ perspective — a potentially

homogenized and biased world. Improving human-AI interactions and encouraging users to

authentically voice their unique views is crucial to avoid these societal pitfalls.
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CHAPTER 3

Autonomous Vehicles in Ride-Hailing and the Threat

of Spatial Inequalities

3.1 Introduction

Ride-hailing platforms such as Lyft, DiDi, and Uber have become an integral part of urban

transportation systems. In New York City, for example, these platforms average an impres-

sive 700K daily trips and 80K unique drivers per month.1 This is not a surprise: commuters

can now go seamlessly from point A to point B using their smartphones. Drivers have control

over their schedules, and, more importantly, anyone can be a driver. This has brought an

unprecedented but well-grounded sense of reliability among users, who almost certainly will

get a ride upon request no matter where they are.

Meanwhile, advances in the development of autonomous vehicles (AVs) are gathering

interest, foreshadowing a fundamental change in the ride-hailing industry. AVs may lead to

a substantial decrease in operating cost per mile (Fagnant and Kockelman, 2018; Hazan et al.,

2016; Litman, 2023) and can be controlled centrally, which improves reliability. This has

led several platforms, such as DiDi and Lyft, but also others, such as Google and Amazon,

to invest in self-driving car technology (DiDi, 2023; Lyft, 2024; Uber, 2024). Uber signed a

10-year deal with Motional (Davalos, 2022) to pair Motional’s AV technology with Uber’s

delivery and ride-hailing platform. Amazon’s Zoox started testing its ride-hailing service

1Source: NYC TLC data. https://www1.nyc.gov/assets/tlc/downloads/pdf/2020-tlc-factbook.
pdf
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on the streets of Las Vegas in June 2023 (Ludlow, 2023). Furthermore, Waymo is already

operating a ride-hailing service with fully autonomous rides in Phoenix, AZ, San Francisco,

CA, and Los Angeles, CA (Waymo, 2024).

As platforms introduce AVs more broadly in cities, they will likely face limitations that

can prevent them from switching to a fully autonomous service. For example, AVs can

only operate in areas with highly detailed mapping; they can also be subject to weather

limitations. The significant investment this new technology requires may also limit the

number of vehicles available (Litman, 2023). Furthermore, some riders may also simply

prefer HVs to AVs. Therefore, as we transition to a fully autonomous world, the ride-hailing

industry will likely change to an operational mode characterized by an augmented fleet

composed of a mix of HVs and AVs. Indeed, Lyft anticipates that their first generation of

self-driving service will be deployed on a hybrid AV network that includes human drivers

(Hur, 2022). Uber and Waymo have created a partnership that makes it possible for Uber

riders to hail a fully autonomous Waymo ride within the Uber App in Phoenix, AZ.2

The different economic structures of these two types of supply, coupled with the trade-off

between a platform’s profitability and service reliability (e.g., having a low wait time and a

high match rate), raise the question of how operating a mixed fleet can impact riders and

drivers. First, the participation of human drivers must be secured through sufficiently high

incentives and pay. Second, while autonomous vehicles do not need to be incentivized, the

platform must incur the cost of buying and maintaining them. In principle, as a platform

introduces AVs, it may prefer to lean more on them because they are a sunk cost, and

using them is potentially more profitable than paying for HVs. However, AV deployment

can impact human participation, which, in turn, risks negatively affecting reliability. This

potential impact on reliability may affect different regions in a city differently, creating spatial

inequality of access to transportation. If the AVs primarily focus on high-demand areas like

2link accessed on May 18th 2024: https://waymo.com/blog/2023/10/the-waymo-driver-now-available-on-
uber-in-phoenix/
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downtowns and airports, the reduction in human participation could particularly negatively

affect low-demand regions such as the outskirts of a city.

In this study, we aim to shed light on the impact of the introduction of self-driving cars

in the fleet of a ride-hailing platform. We are interested in how the coexistence of AVs and

HVs, as well as the gradual adoption of AVs by the platform, may affect the platform’s

supply management and key operational metrics. In particular, we seek to elucidate the

impact of HVs participation decisions and the subsequent consequences on service levels and

spatial equality in access to transportation across different regions.

3.1.1 Main Contributions

We first develop a game-theoretical queueing model that parsimoniously captures key aspects

of the mixed-fleet management problem faced by a platform. This model enables us to

illustrate the potential consequences of introducing AVs. While we limit the complexity

of the model to enable formal analysis, we then validate and extend our findings using a

highly detailed and more realistic simulation using New York City data. In the model, the

platform acts as a leader that determines the distribution of its fleet across locations and, at

each location, decides how to match new requests with either AVs or HVs to maximize its

profit rate. Human drivers are the followers who, given the platform’s policy, decide whether

to join the platform by gauging their potential earning rates against an outside option. A

wage equilibrium, therefore, determines the number of HVs participating. We focus on the

effects of operational controls by assuming that market prices are fixed, the per-trip and

vehicle-type profits are exogenously given, and AVs are more profitable than HVs. However,

we relax these assumptions later in the simulation study.

We uncover a paradoxical effect: the introduction of autonomous vehicles may deteriorate

the platforms’ reliability. Because the marginal cost of operating HVs is higher (drivers need

to be paid), a profit-maximizing platform should prioritize AVs, i.e., prefer to assign new

requests to AVs rather than HVs. However, this decreases the earnings of HVs, which
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Figure 3.1: Estimates of service level degradation if 8,000 AVs were introduced in New York

City, based on a detailed vehicle-level simulation. Darker shaded areas experience a higher

service degradation. Service level degradation is measured as the relative decrease in the

number of successfully served trips. Note that suburban areas are much more affected than

central areas.

incentivizes more human drivers to leave the platform than otherwise would have without

prioritization which causes an overall service level decline. As the platform introduces more

AVs, the service level continues to decrease until it is no longer profitable for the platform to

prioritize its AV fleet. The newly added AVs are then treated equally to human drivers, and

the service level remains unchanged until the supply of AVs drives all the HVs out of the

market. Then, the service level begins to recover as the platform increases its AV fleet. We

also uncover some cases where the platform should not prioritize AVs and should prioritize

HVs instead. This happens when the driver-pay ratio is small (i.e., the platform’s commission

rate is high), although our simulations show this is not likely to happen in practice.

We also demonstrate that the service level degradation described above is not homoge-
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neous across locations in a city. In particular, high-demand locations are less affected than

low-demand locations, and this discrepancy increases when the platform introduces (and

prioritizes) more AVs. The reason behind these findings is that an AV prioritizing policy

not only prioritizes AVs in dispatch but also tries to maintain them in areas with higher

demand, pushing de-prioritized vehicles to lower-demand areas. Indeed, it is more profitable

to operate AVs with high utilization, which is achievable in high-demand areas. For example,

if a request goes to the outskirts of a city, it would not be efficient to assign it to an AV

as it would likely have to come back empty: the platform would, therefore, choose dispatch

and relocation policies that try to maintain the AVs in high-demand areas. Consequently,

the earnings of HVs are reduced not only because of the additional number of AVs in the

market but also because they are deprioritized and relegated to less profitable areas.

To show that the learnings from this theoretically tractable model are robust to more

realistic settings, we designed a simulation study in New York City. Using publicly available

historical ride-hailing data in NYC, we simulate the fleet management problem of a ride-

hailing company introducing AVs in NYC. The simulation retains the critical driving features

of the queueing model, such as a profit-maximizing platform and HVs joining decisions.

However, to approximate a real-world scenario, it also adds many features that are absent in

the model. For example, vehicles are simulated individually inside the city network, and we

use a state-of-the-art relocation policy when they are idle. Customers’ preferences are also

modeled in detail with a random utility model, and can choose whether to request an AV or

an HVs. However, the platform can still influence the customer’s choice between AVs and

HVs by using a differentiated pricing policy. Despite the modeling differences, we find results

that are consistent with our main results. Urban areas with higher demand benefit the most

from the introduction of AVs, experiencing improved service levels. In contrast, suburban

areas with lower demand experience a degradation in service levels (see Figure 3.1).

Furthermore, the simulation delivers additional insights that are only available in a more

granular spatial setting. First, as the platform introduces AVs, the average ETA (passenger
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wait time) increases significantly and disproportionately in more remote areas, which is

consistent with service level changes. Also, we observe that the service level may be affected

by other spatial factors, such as distance between areas and demand imbalance. The service

level of a low-demand area can be positively influenced if this area is closer to high-demand

areas or has more incoming than outgoing trips. As a result, the most seriously affected areas

are those that have low demand, receive fewer incoming trips, and are far from high-demand

regions.

Our work shows that pure profit maximization when introducing AVs could lead to

undesirable and maybe unexpected social outcomes, suggesting that careful regulation should

be considered.

3.1.2 Related literature

Related studies on autonomous vehicles. Numerous studies consider various challenges in

technology, safety, travel behavior, public transportation, environment, and governance,

among others, that could arise in society due to the presence of autonomous vehicles. We refer

the reader to the surveys by Hussain and Zeadally (2019), Ma et al. (2020), and Narayanan

et al. (2020) for excellent discussions of these aspects. The common denominator in these

works is their focus on autonomous vehicles rather than a mixed-fleet system with both au-

tonomous vehicles and strategic human drivers. Some of these works describe the potential

benefits that AVs can bring to society. For example, Fernandes and Nunes (2010) suggest

that the platooning of AVs could cause a significant increase in capacity for both urban

roads and highways. Similarly, Mirzaeian et al. (2021) use a queueing model to demonstrate

the potential congestion reduction on multi-lane highways. Additionally, Baron et al. (2022)

investigate the impact of AVs on social welfare in terms of connectivity, comfort, and collab-

orative consumption in a system in which some households free their driving time by using

AVs while others spend time driving. And Reed et al. (2022) demonstrate that autonomous

vehicles can improve package delivery services. With the help of an autonomous-assisted
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system, a delivery person may spend less time searching for parking or walking back to a

parking spot.

In this study, we depart from the studies mentioned above by considering a mixed-fleet

ride-hailing platform that owns an AV fleet and has to set proper incentives for HVs to

join the market. We show that introducing AVs may hurt accessibility to transportation as

measured by a city-wide service level reduction that affects suburban areas more negatively.

A primary distinguishing factor of our work is a wage equilibrium constraint that ensures

driver earnings are high enough.

Only a few attempts have been made to analyze the impact of AVs in the ride-hailing

market. Siddiq and Taylor (2022) study the influence of AVs on the competition between

two ride-hailing companies, where only one of the companies has access to AVs. The authors

analyze how access to AVs affects platform profit, agent welfare, and social welfare. Lian

and van Ryzin (2022) consider a market with different dispatch platform designs (common

vs. independent) and different AV competition levels (monopoly vs. competitive). They

investigate how various market designs affect the equilibrium price and social welfare. The

authors establish that a common market with both AVs and HVs is plausible because AVs

with high fixed costs are less flexible and may not serve all demands cost-effectively. They

also show that the lower operating cost of AVs may not necessarily lead to a lower-price

ride-hailing market. Ostrovsky and Schwarz (2019) discuss the interdependence between

AVs, road pricing, and carpooling. They demonstrate that due to the overall progress in

information technology, AVs can make road pricing and carpooling more convenient and

attractive. Lanzetti et al. (2023) analyze the equilibrium outcome in terms of market share

in a system with multiple competing transportation modes, including AVs. They show that

depending on policy constraints and market conditions, a ride-hailing system with AVs may

benefit or harm public transportation in terms of market share. Mirzaeian et al. (2021)

studies the impact of AVs on highway congestion through a queueing model and compares

two policies: a designated-lane policy for AVs and an integrated policy with mixed traffic.
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In contrast to these studies, our work focuses on the change of operational decisions (e.g.,

matching) of the platform when introducing AVs and their consequences on service levels at

a system-wide level and a more granular, location-wise level.

In the context of operational decisions, Benjaafar et al. (2023) use a fluid model to

characterize the optimal re-routing decision of the platform with a mixed fleet of AVs and

HVs and show that the introduction of AVs may not necessarily harm drivers. In their model,

the prioritization policies always match one of two types of vehicles without considering

the destination of trips or allowing partial prioritization. In contrast, our model optimizes

both the matching and the allocation of vehicles by using independent queues, and our

prioritization policies may be partial, meaning that we allow for a continuum of prioritization

levels. And we also show that HVs may not be harmed if the pay ratio is low enough. Finally,

Freund et al. (2022) adopt a sequential game model and show that AVs may be under-utilized

to ensure HVs remain engaged in the market when platforms outsource AVs. To avoid an

unbounded profit loss, they propose a prioritization contract that increases the utilization

of AVs. Our study assumes that the platform owns AVs and also shows that if the number

of AVs is large enough, it may be optimal for the platform to partially prioritize AVs to

maximize profit rather than fully prioritize them all the time. Nonetheless, we optimize

matching and allocation strategies and focus on the impact of such a prioritization policy

on service levels in terms of system-wide and spatial variation.

Related studies on ride-hailing systems. Several papers in the ride-hailing literature have

studied the problem of matching riders to drivers. Closest to our work are the papers that

use a queueing modeling approach to capture the operational controls of the platform to

determine matching between riders and drivers (see, e.g., Banerjee et al. (2018), Kanoria

and Qian (2020), Özkan and Ward (2020), Hu and Zhou (2022)). Typically, this space

focuses on determining an optimal matching policy with human drivers only. In our work,

however, we assume there are multiple sources of supply with different economic structures

in the system we study. In this setting, matching requires careful balancing of the earnings
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of human drivers and the profit of the platform, which, all else being equal, may improve

when one type of supply is prioritized over the other.

In addition, our work is broadly related to the study of how the performance of a ride-

hailing market is affected by other platform controls, such as repositioning and admission

control (see, e.g., Braverman et al. (2019), Afèche et al. (2023) and Wang et al. (2022)).

In our queueing model, we assume the platform can directly determine the allocation of

vehicles to different locations, which can be seen as an outcome implied by these levers.

This allows us to focus on how the prioritization and allocation of vehicles may affect service

levels. In particular, Afèche et al. (2023) show that it may be optimal for the platform to

strategically reject demand at a low-demand location and induce drivers to reposition to a

high-demand area. We show that the platform prefers to serve ride requests with AVs in

high-demand locations. At the same time, HVs are relegated to low-demand areas, leading

to the spatial inequality of service level degradation. Moreover, while our primary focus in

the queueing model is on the matching and allocation policy, we also incorporate a pricing

policy within our simulation. Consequently, our work is also related to studies on pricing in

ride-hailing platforms (e.g., Castillo et al. (2017), Bimpikis et al. (2019), Besbes et al. (2021),

Hu et al. (2022), Cachon et al. (2022)). For example, Cachon et al. (2022) examine the key

trade-offs between a centralized pricing strategy managed by the ride-hailing platform and

a decentralized pricing strategy determined by the drivers. Bimpikis et al. (2019) focus on

spatial price discrimination on a ride-sharing platform and show that location-based pricing

can significantly benefit the platform when demand is unbalanced.

Several other studies also consider the inclusion of multiple types of vehicles on ride-

hailing platforms. For instance, Lu et al. (2024) explores the optimal regulatory strategy for

maximizing total welfare by considering the coexistence of traditional taxi services, which

operate through both street-hailing and platform-based modes, and private car drivers, who

serve consumers exclusively via the platform. Additionally, Fatehi (2024) investigates the

optimal policy of a profit-maximizing platform that manages a mixed fleet of electric vehicles
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and traditional internal combustion engine vehicles.

Related studies on blended workforces. AVs and HVs can be seen as two labor forces

with different incentive structures: AVs are owned by the platform, while HVs must be

incentivized to participate in the market. In this sense, our work is also related to the

emerging literature on blended workforces in the gig economy (see, e.g., Dong and Ibrahim

(2020), Lobel et al. (2024), He and Goh (2022), Chakravarty (2021), Castro et al. (2022) and

Hu et al. (2023)). For instance, Hu et al. (2023) addresses the classification of workers in the

on-demand economy with two types of workers: full-timers and part-timers. Their analysis

reveals that classifying all gig workers as employees can reduce the welfare of full-timers

due to undercut by profit-maximizing companies Notably, our work shares some similarities

to Krishnan et al. (2022), which studies an actual implementation of a blended workforce

using prioritization. The authors explain how a ride-hailing platform should classify the

drivers into “priority drivers,” prioritized by the matching system to have higher earnings

and regular “flexible drivers.” This study also considers a blended workforce and optimal

prioritization strategies. Still, our focus is on the service level impact of introducing AVs in

a ride-hailing market where the platform has to determine how to treat different types of

vehicles and their corresponding spatial distribution.

Methodology. In terms of methodology, we solve our multi-location queueing model using

the achievable region approach. In the context of stochastic optimization, this approach

seeks the solution to a stochastic optimization problem by identifying a feasible performance

space and solving the problem within this space. For example, Bertsimas (1995) use this

method to describe the achievable region of a multi-class queueing control problem as a

convex polyhedron and yield a mathematical program for which efficient algorithms are

available. We refer the reader to Bertsimas and Niño-Mora (1996), and Dacre et al. (1999)

for additional results related to this approach. In our work, we adopt the achievable region

approach to determine the feasible supply arrival rates at each location that can emerge from

different dispatch policies. Once we obtain the optimal arrival rates, we can reverse-engineer
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the corresponding dispatch policy (c.f., Section 3.3).

The remainder of this chapter is organized as follows. In Section 3.2, we present a game-

theoretic queueing model for a hybrid system with AVs and HVs. In Section 3.3, we interpret

how to solve the problem using the achievable region approach. In Section 3.4, we derive

macro-level insights from the queueing model. And Section 3.5 reveals the spatial disparity

of service level. In Section 3.6, we present a simulation study of New York City to illustrate

that our main results still hold in a more realistic setting and further discuss some additional

spatial effects observed in the simulation. We conclude in Section 3.7.

3.2 Model Setup

In this section, we formulate the problem faced by a ride-hailing platform that operates a

mixed fleet of human and autonomous vehicles using a game-theoretical queueing model.

This model is simple enough to obtain precise results yet rich enough to capture the funda-

mental trade-offs that emerge in this mixed fleet setting. We note that our goal here is to

introduce a parsimonious model that enables us to reveal insights rather than capture all

the nuances of a ride-hailing system. Later in Section 3.6, we demonstrate the robustness of

our findings in the queueing model in a large-scale simulation using NYC data.

Trip requests. Requests for trips arrive to a city with locations j ∈ {1, . . . , L} according

to a Poisson process with rate µ = {µj}Lj=1, where L is the number of locations in the city.

The average duration of trips departing from location j is τj. We consider impatient riders

who will leave the system immediately if, upon arrival, they are not assigned a ride. For

example, a rider may be able to find a ride on a different platform.

AV and HV fleets. We let NA and NH be the steady-state average numbers of AVs and

HVs that operate in the city, including both idle vehicles and those serving requests. NA

is considered as an exogenous quantity, and our goal is to study how changes in NA will

affect the platform’s service levels across locations. (In Section 3.4 we discuss the choice
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of the optimal NA when it is a tactical decision the firm must make.) On the other hand,

NH is set endogenously as drivers decide whether to join or exit the platform, following a

wage equilibrium that we formally introduce below (c.f., Equation (3.4)). We model vehicles

becoming available at each location j as independent Poisson processes with arrival rates

λA ≜ {λA,j}Lj=1 for AVs and λH ≜ {λH,j}Lj=1 for HVs. They queue at the location and are

dispatched to incoming requests following dispatch policies set by the firm. We next discuss

how these arrival rates are set. Figure 3.2 illustrates this queueing setup.

λA,1, λH,1 1

µ1

λA,2, λH,2 2

µ2

λA,L, λH,L L

µL

AV

HV

Figure 3.2: Queueing Model Structure

Dispatch policy and vehicle balancing. Let Π denote a set of dispatch policies π ∈ Π

the platform can use. Π is general, and we allow any dispatch policy: they may be idling,

they may vary by location, they may prioritize one vehicle type over the other, and they

may be randomized. A dispatch policy π then induces an expected steady-state waiting

time function W π
i,j(λA,j, λH,j) for vehicle type i at location j (Section 3.3 derives an explicit

expression). We will assume that the platform can perfectly control vehicle distribution

over locations. While this control is more limited in practice, the combination of pricing,

dispatch, and relocation policies are levers platforms can use to influence the vehicle’s spatial

distribution significantly — as shown in our realistic simulations. Formally, we assume the

platform can balance the vehicles across locations without limitation as long as the total
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number of vehicles is maintained. That is, for given NA and NH , the platform can choose

vehicle arrival rates λA,j and λH,j for each location j that are consistent with their respective

average number of vehicles (via Little’s Law). Let Ni,j denote the steady-state average

number of vehicles of type i in location j. Ni,j depends on the vehicle arrival rates and the

dispatch policy and can be obtained from Little’s Law as:

(τj +W π
i,j(λA,j, λH,j)) · λi,j = Ni,j, i ∈ {A,H}, j ∈ {1, . . . , L}, (3.1)

where τj +W π
i,j(λA,j, λH,j) is the expected time that vehicles of type i in location j spend

waiting and then serving a customer. The platform can choose any λA, λH , and π as long

as the total number of vehicles of each type across locations is maintained:

L∑

j=1

Ni,j = Ni, i ∈ {A,H}, (3.2)

Note that Equation (3.2) is the only constraint that affects the locations jointly, as it repre-

sents the need for the platform to balance its fleet across the locations. Note that our model

can be interpreted as a fixed-population-mean model, which approximates the dynamics of

a closed network of queues. In a closed network, given the number of vehicles, the routing

probabilities, and a matching and relocation policy, the arrival rates of vehicles to each lo-

cation are determined. A fixed-population-mean model approximates such a network by an

open network of queues with Poisson arrivals in which the arrival rates are such that they

make the average number of vehicles (overall and at each location) consistent with the exact

number of vehicles in the closed queueing network. We refer the reader to Whitt (1984) for

more detail about this approach and approximation guarantees. In Section 3.6, we build a

simulation that explicitly captures vehicles’ dynamics and does not assume perfect vehicle

balancing.

Service level. The service level at location j, ρj, is given by

ρj =
λA,j + λH,j

µj

, j ∈ {1, . . . , L}. (3.3)
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This corresponds to the fraction of requests that the platform can serve at location j.

Revenue and profit. We assume that the revenue from each human driver trip is shared

between the platform and the driver. Human drivers keep a fraction γ ∈ (0, 1) of the revenue

of the trip,3 whereas the platform keeps all the revenue from each AV trip. Nonetheless, the

platform has to pay a capital cost of AVs, CA, per hour, and an additional hourly operational

cost of AVs, cA, for each AV trip. Let PA > 0 and PH > 0 denote the hourly price rate

from each AV and HV trip, respectively.4 Then, the platform’s hourly profit at location j

stemming from AVs is given by (PA − cA) · τj · λA,j, while its hourly profit at location j from

HVs is (1− γ)PH · τj · λH,j. The platform’s total profit is given by

RA + (1− γ)RH − CANA ≜
L∑

j=1

(PA − cA) · τj · λA,j + (1− γ)
L∑

j=1

PH · τj · λH,j − CANA,

where we define RA ≜
∑L

j=1(PA − cA) · τj · λA,j and RH ≜
∑L

j=1 PH · τj · λH,j. We also

assume that using AVs is marginally more profitable for the platform than using HVs (i.e.,

PA − cA > (1− γ)PH).

Human wage equilibrium. The number of HVs, NH , is decided by a wage equilibrium

(see e.g., Hall et al. (2021)). In particular, the expected total earnings of HVs must be equal

to their total opportunity cost at equilibrium:

γ ·RH = γ ·
L∑

j=1

PH · τj · λH,j = r ·NH , (3.4)

where r ∈ (0, PH) denotes the corresponding reserve earnings of drivers, i.e., what they

could make outside the system. If γRH < rNH , some drivers would leave the system, and

NH would decrease until γRH ⩾ rNH , or NH = 0. Conversely, if γRH > rNH , more human

3In practice, Uber takes a 25% commission (γ = 0.75): https://www.uber.com/gh/en/drive/basics/
tracking-your-earnings/, last accessed: 2022-12-02

4In the queueing model, we focus on operational controls and assume that the prices are exogenously
chosen such that riders are indifferent between AVs and HVs. However, we will relax this assumption in
Section 3.6 and show that the main results hold when the platform controls the pricing policy to affect riders’
preferences.
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drivers would be willing to join the platform, and NH would increase until γRH ⩽ rNH .

Therefore, at equilibrium, NH must verify γRH = rNH .

Platform’s problem. The platform chooses a dispatch policy π and balances the vehicles

to maximize its hourly profit given the average number NA of AVs available and anticipating

the human driver equilibrium. Because we focus on how the service level is impacted as more

AVs are introduced to the market, the number of AVs, NA, is assumed to be exogenously

given and CA is omitted in most of our results except for Proposition 9 where we discuss the

optimal NA. The platform’s main problem is

sup
π∈Π,Ni,j ,λi,j ,

∀i∈{A,H},j∈{1,...,L},NH

L∑

j=1

(PA − cA)τj · λA,j + (1− γ)
L∑

j=1

PHτj · λH,j

s.t.
L∑

j=1

Ni,j = Ni, i ∈ {A,H},

(τj +W π
i,j(λA,j, λH,j)) · λi,j = Ni,j, i ∈ {A,H}, j ∈ {1, . . . , L},

γ ·
L∑

j=1

PH · τj · λH,j = r ·NH ,

λA,j + λH,j ∈ [0, µj), j ∈ {1, . . . , L}.
(M)

One of the main challenges in analyzing Problem (M) and deriving insights from its solution

is that the space of policies is general, and, therefore, we do not have available closed-

form expressions for the waiting times. To tackle this challenge, in Section 3.3, we use the

achievable region approach (Bertsimas (1995), Dacre et al. (1999)) to obtain a reformulation

of Problem (M). This allows us to establish a sharp characterization of the per-location and

city-wide service levels.
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3.3 Solution to the Queueing Model

In this section, we develop a tractable approach to solve (M). The first step is to reduce

the space of feasible policies to the space of non-idling policies.

Lemma 2 (Optimality of non-idling policies). The optimal dispatch policy in (M) is non-

idling.

All the proofs of the study are available in the appendix. Intuitively, rejecting requests

leads to delays in the form of longer idle times for vehicles and, consequently, to lower

platform profit.

Lemma 2 is an intuitive but necessary result: as vehicles are always dispatched when a

request arrives, our model coincides with that of a matching queue setting in which, at each

location j, drivers wait to be matched to requests that arrive at rate µj. In turn, the total

waiting time of drivers at location j, W π
j (λA,j, λH,j), satisfies

W π
j (λA,j, λH,j) =

1

µj − λA,j − λH,j

. (3.5)

This expression holds for any non-idling policy and is what makes our model tractable. It

can be obtained from the traditional M/M/1 average wait time, as we can interpret the next

vehicle to be dispatched as ”being served” and ignore the vehicle type.

We now demonstrate how to transform Problem (M) into a simplified form that can

enable theoretical analysis. We use the “achievable region approach” from the stochastic

optimization literature (see, e.g., Bertsimas (1995) and Dacre et al. (1999)). In this approach,

instead of directly solving over the space of policies Π, we optimize over an alternative space

of a judiciously chosen metric that varies with the policy choice. More precisely, we choose

the total throughput rate of each location j, λj = λA,j + λH,j as the metric and provide a

reformulation of (M) that uses {λj}Lj=1 as variables instead of λA and λH .

First, we note that the objective in Problem (M) can be cast purely in terms of {λj}Lj=1.

In fact, from Equation (3.5), we have that the average waiting time at each location j across
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types isWj = 1/(µj−λj). In turn, Little’s law and the wage equilibrium constraint translate

into

L∑

j=1

(
τj +

1

µj − λj

)
· λj = NA +NH and rNH = γPH ·

L∑

j=1

τj · (λj − λA,j).

These identities allow us to reformulate the objective of (M) in terms of {λj}Lj=1:

L∑

j=1

(p− r̂) · τj · λj + r̂ ·NA − r̂ ·
L∑

j=1

λj
µj − λj

.

where p ≜ PA − cA and r̂ ≜ r[PA − cA − (1− γ)PH ]/(γPH).

Second, note that given the above, if we can fully characterize the achievable values of

{λj}Lj=1, we would be able to solve problem (M) in the space of rates rather than in the

space of policies (contingent on being able to find a policy that implements the optimal

rates). We can accomplish this by exploiting Little’s law and the wage equilibrium. Indeed,

we establish that the achievable values of {λj}Lj=1 lie in a bounded polyhedron of RL that has

extreme points that come from two natural policies in Π: one that always matches requests

to AVs first—it fully prioritizes AVs—and another that always matches requests to HVs

first—it fully prioritizes HVs. Among non-idling policies, full prioritization of AVs leads to

the lowest total number of vehicles because it creates fewer incentives for HVs to join the

platform by giving an advantage to AVs. In contrast, by fully prioritizing HVs, we provide

maximal incentives for this type of vehicle to join, and hence, the total number of vehicles

in the system is maximized. Hence, the total number of vehicles in service,
∑L

j=1 τj · λj,
from fully prioritizing AVs is lower than the total number of vehicles in service from fully

prioritizing HVs, and these are the lowest and largest possible total number of vehicles in

service. Letting λ†j and λ‡j be the throughput rate at location j from fully prioritizing AVs

and HVs respectively,5 the following proposition summarizes this discussion.

5See Appendix B.1.2 for the precise definition of λ†
j and λ‡

j .
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Proposition 6 (Achievable Region). Let λ be an optimal solution to (M) then

λ ∈ A ≜
{
{λj}Lj=1 ∈ RL

+ :
L∑

j=1

τjλ
†
j ≤

L∑

j=1

τj · λj ≤
L∑

j=1

τjλ
‡
j

}
.

Proposition 6 leads to the following reformulation of Problem (M) in which we now

optimize over the rates {λj}Lj=1, given by

max
{λj}Lj=1

L∑

j=1

(p− r̂)τjλj + r̂NA − r̂

L∑

j=1

λj
µj − λj

s.t. {λj}Lj=1 ∈ A,

λj ∈ [0, µj), j ∈ {1, . . . , L}.

(M′)

Problem (M′) represents an upper bound of Problem (M). However, in principle, the

feasible region may contain rates that do not correspond to a dispatch policy. We show that

the latter is not true. When the rates are such that total revenue hits one of the boundaries in

A, the corresponding dispatch policy will be to prioritize either AVs or HVs fully. When the

rates are in the interior of A, then the corresponding dispatch policy will partially prioritize

vehicles; for example, each request will be prioritized towards AVs with a certain probability.

Hence, the optimal solution to Problem (M′) can be implemented in the original Problem

(M). The following proposition formalizes this.

Proposition 7 (Reformulation). Problem (M) is equivalent to Problem (M′).

3.4 One Location: Impact of AVs on Service Level

We now use the tractable formulation of the previous section to derive insights. At this point,

we focus on a model with L = 1 location to build intuition and understand the impact of

the AV supply NA and the pay ratio γ on the service level. We will switch to L > 1 in the

following section to study the spatial effects. Therefore, we omit the location subscript in

this section.
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Figure 3.3: Service level and number of HVs for the optimal policy. We use L = 1, µ = 30,

PH = 9, PA = 8 and cA = 0.5, r = 2, τ = 1.

We start with a study of a numerical solution to an instance of Problem (M′), shown in

Figure 3.3. We then present formal results that support our observations. The left panel of

the figure shows the service level change as we vary NA and γ. When γ is high enough (here,

γ ≥ 0.4), we identify three phases as the number of AVs increases: the service level first

decreases, then stabilizes, and then increases again. For smaller values of NA, the platform

uses a dispatch policy that fully prioritizes AVs, which reduces the service level. Indeed,

as shown in the right panel of Figure 3.3, prioritizing AVs lowers the earnings of human

drivers and drives them out of the market at a higher rate than AVs enter the market:

fewer cars are available, which lowers the service level. However, reducing the number of

HVs reaches a breakeven point, where the hit on revenue due to the lack of HVs is higher

than the cost advantage of prioritizing AVs. At this point, the platform reduces the AV

prioritization, leading to the flat part of the curves in the left panel of Figure 3.3. Note

that the platform “partially prioritizes” the AVs less and less as NA increases in a way that

maintains a constant service level (the flat part of each curve in the figure), which decreases

in γ. Interestingly this optimal partial prioritization is set so that each added AV substitutes

exactly one HV in equilibrium. However, when the number of AVs is sufficiently high, the

HVs are entirely driven out of the market. In this third phase, the service level increases
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with NA because all HVs are gone, and the total number of vehicles grows. We summarize

these observations in the following theorem.

Theorem 4 (AVs can reduce the service level). If γ is large enough and there are HVs in

the market at equilibrium, then as NA increases, the service level decays until the number of

AVs is sufficiently high. After that, the service level stays constant and then increases when

the number of AVs reaches a threshold. At that point, HVs are completely driven out of the

market.

To better understand this result, we can use Little’s law to relate the service level to the

total number of vehicles:

NA +NH = W π(λA, λH) · (λA + λH) =
λA + λH

µ− λA − λH
=

ρ

1− ρ
,

where ρ = (λA + λH)/µ is the service level in the system. Therefore, the service level is

simply an increasing function of the total number of vehicles. In turn, the total number of

vehicles is a function of the platform’s prioritization policy. If the platform prioritizes AVs,

it will “starve” the HVs. Any additional AV supply will quickly reduce the number of HVs,

potentially far more than one HV for each AV, reducing the total supply and, therefore, the

service level. This happens up to the point where this supply loss is too costly, and the

platform will then reduce the AV prioritization to maintain the number of vehicles. The

figure shows the driving force behind the reduction in service levels. Fully prioritizing AVs

expels HVs quickly. The higher γ is (costly HVs), the faster the optimal policy expels HVs.

Such an AV prioritization policy is only helpful if γ is not too low. When γ is low (γ < 0.4

in Figure 3.3), an entirely different strategy is optimal. Indeed, when γ is low (HVs are not

paid much), the trips served with HVs are more profitable for the platform than when γ takes

a higher value. Even a slight deprioritization of HVs may lead to a massive loss due to HVs

leaving the market in equilibrium. Hence, even if HV trips are more costly than AV trips, it

is still preferable to avoid reducing the requests sent to HVs. Accordingly, fully prioritizing

HVs guarantees that we are not losing HVs when adding AVs (they are not affected by the
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extra supply), which increases the total number of vehicles available and, hence, the service

level. We formalize this insight in the following proposition:

Proposition 8 (Prioritizing HVs can increase the service level). When γ and NA are suffi-

ciently small, it is optimal to prioritize HVs, and the service level increases in NA.

Prioritizing HVs may seem counter-intuitive because if the platform were myopic and

considered that NH was constant, it would prioritize AVs as they are cheaper. As a conse-

quence, Proposition 8 is the result of the platform anticipating the equilibrium behavior of

the drivers. However, we expect this situation to be rare in practice. Indeed, a low pay ratio

γ is not the norm, as it would mean that the platform does not have enough drivers and has

a much lower service level (see the left panel of Figure 3.3 when NA = 0), which would not

be practical in a competitive setting.

Finally, suppose the platform can decide the supply of NA when the capital cost of AVs is

CA per vehicle-hour. That is, we modify problem (M) so that NA is now a decision variable

of the platform, and we add a cost −CA ·NA to the objective function. The following result

describes the optimal solution to this optimization problem:

Proposition 9 (Optimality of operating AVs only). Under the optimal choice of NA, HVs

are entirely replaced with AVs (e.g., NH = 0) if and only if CA ≤ r̂. If CA > r̂, the platform

may operate both AVs and HVs (i.e., it is possible to have NA, NH > 0).

As mentioned in Section 3.1, the initial launch of commercial AVs may be limited, ex-

pensive, and risky, so the cost of AVs might be high (e.g., CA > r̂) in the early days of AV

deployment (Litman, 2023). Even in that case, Proposition 9 states that it could be optimal

to operate a mixed fleet with NA > 0, motivating the research question of this work. If AVs

become cheaper than HVs, however, using human drivers is not profitable. In Figure 3.4,

we illustrate Proposition 9 and show the profits that the platform can earn for each value

of NA and γ, where N⋆
A(γ) is the optimal number of AVs given γ. Compared with the right

panel in Figure 3.3, we can see that in this example, N⋆
A(γ) is always less than the threshold
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Figure 3.4: Profit for the optimal policies with respect to NA. We use L = 1, µ = 30,

PH = 9, PA = 8 and cA = 0.5, CA = 1.5, r = 2, τ = 1. N⋆
A(γ) is the optimal number of AVs

given the value of γ.

of NA such that all the HVs leave the market, confirming that a hybrid solution using both

AVs and HVs can be optimal when CA > r̂.

Intuitively, although the cost of AVs is higher than r̂, the platform is still able to use

the AVs more efficiently than the HVs thanks to the use of prioritization. There are two

cases here: for high values of γ, it can be profitable to introduce AVs and prioritize them,

whereas, for low values of γ, it can be profitable to introduce AVs while still prioritizing

HVs. Remember from the human driver equilibrium (Equation (3.4)) that, for fixed r and

HV revenue, the HV supply NH is an increasing function of γ — drivers are paid more,

so there are more drivers. If γ is high, NH may be “too high” compared to what is really

needed. Therefore, we can invest in expensive AVs and prioritize them so that they serve as

many rides as possible: even if CA > r̂, each AV-hour can be much more productive than

HV-hours, justifying the investment. This is possible because NH is too high, and we can

withstand the loss of human drivers due to AV prioritization. However, as γ decreases, this

is not the case anymore, and N∗
A decreases correspondingly. When γ is particularly small,

the platform will start to prioritize HVs: in that case, NH is too small in equilibrium (we
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are not paying them enough), so we want to prioritize the HVs to preserve the few cheap

HVs. However, it is still worth introducing the more expensive AVs because there are still a

lot of profitable rides left to serve, as we can see N⋆
A(0.27) > N⋆

A(0.3).

3.5 Multiple Locations: Spatial Inequality

In the previous section, we established that introducing AVs can adversely impact the system-

wide service level (despite increasing the platform’s profit). In this subsection, we explore

the spatial dimension of this effect. In particular, we are interested in understanding how

the service levels in different regions in a city are affected by the introduction of AVs.

Consider our initial setting with multiple locations and, without loss of generality, suppose

that µjτj ⩾ µj+1τj+1 for j ∈ {1, . . . , L− 1}. Our model can illustrate a region with a range

of demand density, from urban areas with high demand (j = 1) to rural areas with low

demand (j = L).6 Let ρ⋆j(NA) be the service level of the optimal solution to Problem (M)

at location j for a given NA. The following result establishes a form of spatial inequality

across locations.

Theorem 5 (Spatial inequality of the service level). In any optimal solution of Problem

(M), higher-demand locations have a higher service level: ∀j < L, ρ⋆j(NA) ⩾ ρ⋆j+1(NA)).

Additionally, out of all locations j that have positive supply in the optimal solution (NA,j+

NH,j > 0), the change of service level with respect to NA is larger in low-demand locations

(i.e., | ∂ρ⋆j
∂NA

| ⩽ |∂ρ
⋆
j+1

∂NA
|).

Theorem 5 establishes that different locations in a city are affected differently by the

introduction of AVs. The first part of the theorem is not the most surprising: no matter

whether HVs are present in the optimal solution, locations with high demand have better

6In 2019, 45% of the urban residents in the US have used a ride-hailing app while only 19% of Americans
living in rural zones have done so (Jiang, 2019).
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service levels than locations with low demand. Intuitively, high-demand areas are more

profitable than low-demand areas because of economies of scale: we can achieve the same

service level with a higher vehicle utilization in a high-demand area. Hence, the platform

is better off serving more trips there regardless of the number of AVs. But the second

part of Theorem 4 introduces a worse and more novel effect. Adding AVs to a given city

will worsen the spatial inequalities, affecting the low-demand locations more than the high-

demand locations. Essentially, the platform will choose to concentrate the AVs into the more

profitable areas to maximize profit. But introducing AVs will make HVs leave, mainly at

the expense of the less profitable areas, which will lose more drivers and end up experiencing

the most significant reduction of service level. The following result sheds light on the driving

force behind this.

Proposition 10 (Imbalance of driver concentration). When γ is high enough, and NA is

low enough, the platform fully prioritizes AVs across locations. When this happens, as

we add AVs, they will concentrate on high-demand locations, and HVs will leave higher-

demand locations more than the low-demand ones. That is,
∂NA,j

∂NA
⩾ ∂NA,j+1

∂NA
⩾ 0 and

∂NH,j

∂NA
⩽ ∂NH,j+1

∂NA
⩽ 0.

This is the multi-location extension to Theorem 4. Because γ is high, the platform ben-

efits from prioritizing AVs when introducing them. But in the case of spatial heterogeneity,

the platform will concentrate them in high-demand locations where they can get the highest

utilization:
∂NA,j

∂NA
⩾ ∂NA,j+1

∂NA
. Therefore, there is not a lot of demand left for humans to

serve in high-demand locations, and they are relocated to low-demand ones,
∂NH,j

∂NA
⩽ ∂NH,j+1

∂NA
.

Overall, the total number of vehicles decreases, and so does the service level. However, the

increase of AVs in high-demand areas is enough to lead to a lower service level reduction

compared to low-demand areas. Therefore, Proposition 10 reveals another form of spatial

inequality. The introduction of AVs affects not only the service quality but also the distri-

bution of the types of vehicles. To increase the utilization of AVs and maximize profit, the

platform prefers to deploy AVs in busier downtown areas. At the same time, human drivers
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have to concentrate on the outskirts or other less dense areas.
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Figure 3.5: An example with two locations M and S, where location M has a more demand

than location S. We use PA = 1.9, PH = 2, cA = 0.1, r = 0.7, τM = τS = 1, and µM =

30, µS = 10, γ = 0.5.

In Figure 3.5, we consider an example with two locationsM and S, where locationM has

more demand than location S (i.e., µMτM > µSτS). Figure 3.5a is the multi-location version

of Figure 3.3: it illustrates Theorem 5 and shows that the low-demand location has a lower

service level and is more negatively affected by the introduction of AVs. Figure 3.5b depicts

the maximum loss of service level for various values of µM , which is the difference between

the service level when there are only HVs in the market (i.e., NA = 0) and when the service

level reaches the minimum point for some value of NA. We can see that the maximum losses

of the service level at the two locations M and S increase in µM , even if we do not change
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the demand at this location. This is another form of unfairness and coupling between the

two locations. The decrease in service level at the low-demand location is more substantial

if the demand at the high-demand location becomes larger. As the difference in hourly trips

between M and S increases, the platform finds it profitable to dedicate even more of the M

demand to AVs at the expense of the service level of location S. The following proposition

confirms this result.

Proposition 11 (Maximum loss of service level). Suppose that i, j are two locations such

that NA,j + NH,j > 0 (e.g., positive supply) for any NA, and that i < j (i has higher

demand). Then, the maximum loss of service level is larger at j. Additionally, as µiτi → ∞,

the maximum loss at j converges to
√

r̂
µjτj(p−r̂)

, while the maximum loss at i converges to

zero.

All in all, the service level in low-demand locations can be severely affected compared to

high-demand locations.

Finally, Figure 3.5c shows the number of different vehicles across locations. As AVs enter

the market, they are allocated to the high-demand location, which forces some HVs to leave

both the high and low-demand locations. When NA exceeds some threshold, AVs start to

enter S, and the decline rate of NH reduces at M but rises at S. The growth rate of NA

and the exit rate of NH are always larger in location M than in location S, when AVs are

fully prioritized. This further showcases the spatial inequality effect: the platform prefers to

operate high-demand locations with AVs, which, in turn, relegates HVs to the low-demand,

less profitable, locations.

3.6 Simulation Study

While our queueing model is chosen to be tractable and illustrate important effects, it does

not account for some realistic factors in a ride-sharing market, such as pricing, pick-up times,

and vehicle relocation. In particular, our model assumed that the platform could “assign”
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any vehicle type to any customer, and we did not consider the customer preferences and

sensitivity to prices, waiting time, and vehicle type. To confirm our queueing model findings

in settings that do account for these factors, we develop a ride-hailing simulator using New

York City (NYC) data. The simulation study not only serves as a robustness check for

our theoretical results of the queueing model, but it also reveals additional, more granular,

spatial effects of introducing AVs on service levels.

3.6.1 Simulation Description

We now describe the dataset and the simulation design, emphasizing the extra features that

are missing in the queueing model. Some details are omitted for the sake of brevity, a

complete description is available in Appendix B.3 in the appendix.

3.6.1.1 Data Processing

To estimate the parameters in our model, we use the New York City Open Data platform to

access the historical record of High-Volume For-Hire Vehicle (HVFHV) data.7 For each trip

in NYC, this data contains the origin, destination, and request time stamp for Lyft, Uber,

and Via (the three leading ride-hailing platforms in NYC in 2020). For a more balanced

demand distribution across the city (inflow and outflow are similar within zones), we consider

the trip data between 11 AM and 1 PM during workdays in January 2020 (the month

before the coronavirus led to a significant drop in demand), which corresponds to a total

of 1,093,431 recorded trips.8 For privacy reasons, the exact origin and destination of each

trip are unavailable, but we have access to their “taxi zones.” NYC is divided into 257

such zones, as illustrated in Figure 3.6. To generate exact locations and travel time, we use

7https://data.cityofnewyork.us/Transportation/2020-High-Volume-FHV-Trip-Records/yrt9-5

8g8, last accessed: 2022-12-08.

8In Section 3.6.1.2, we will discuss how demand imbalance may influence our results.
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OpenStreetMap9 to obtain the road network of NYC, which can be visualized in Figure 3.6c.

We assume that each trip starts and ends in a uniformly random intersection from the origin

and destination zone, respectively (c.f. Appendix B.3.1). Figure 3.6a illustrates the demand

density, which is obtained by dividing the hourly trips of a zone by its area,10. We assume

that the driver pay ratio is γ = 75% and we set their reserve earnings to be r = $33 per

hour, which is derived from NYC data as discussed in Appendix B.3 in the appendix.

(a) Demand density (hourly

trips per km2)

(b) Demand imbalance (hourly

trips per km2)

(c) NYC street network

Figure 3.6: Inputs to the fleet balancing problem in NYC, for each zone.

3.6.1.2 Simulation

Our simulation shares many features with the queuing model, such as driver earning equi-

librium, commission rate, and a profit-maximizing firm. However, a key distinctive feature

is the incorporation of the dynamic vehicle evolution within a realistic spatial environment.

For each customer taking a ride, we assign a vehicle to pick them up and transport them

along the network to their destination. Subsequently, the vehicle may either remain idle,

9https://osmnx.readthedocs.io/en/stable/, last accessed: 2022-12-08.

10For the airports, we used an estimate of the “driving area” of 1km2 rather than counting the full airport
area, because the driving area in an airport is usually much smaller than its actual area
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serve another customer, or reposition. In addition to integrating the spatial dynamics of a

ride-hailing company’s operations, we enrich our model by considering customer sensitivity

to pricing, pickup times and vehicle type, pricing strategies, and vehicle relocation. Next,

we discuss how we incorporate these aspects in the simulator and then its limitations.

Customer’s decision. Mirroring the typical interface of ridesharing platforms providing

multiple transportation options, we assume that a customer facing a decision to travel has

three options: selecting the nearest available HV, selecting the nearest available AV, or

canceling the trip altogether. This choice is determined by a utility model that takes into

account the vehicle type, hourly pricing, travel time from the origin to the destination, and

the estimated time of arrival (ETA). Specifically, for a customer i requesting a trip, the

customer’s utility Ui,j when assigned a vehicle j is given by:

Ui,j ≜ [a0 + θ1j is an AV − (PA,i1j is an AV + PH,i1j is an HV)]× travel timei + a1ETAi,j

where a0 > 0 represents the utility of being transported by an HV (per unit of time), θ

is a correction term if the vehicle is an AV. For example, a positive θ represents the fact

that passengers prefer AVs to HVs, everything else being equal., PA,i and PH,i are the price

rates (to be chosen by the platform) shown for customer i for AVs and HVs, respectively.

Therefore, if AVs are more cost-efficient for the platform, it can choose PA,i < PH,i to

incentivize the passengers to choose this option — the AV prioritization can be achieved

through pricing rather than the direct operational prioritization of the queueing model.

Finally, a1 < 0 models the customer’s sensitivity to waiting time before pickup: for example,

even if customers prefer AVs and the AV price is advantageous, they could still prefer to

request an HV if the closest one is much closer than the AV counterpart.

The utility Ui,j measures a consumer’s surplus from riding vehicle j in dollars. If the

utility for any available vehicle j is negative, the consumer will cancel the request. If at

least one available vehicle j yields a positive Ui,j, the customer will choose the option that

maximizes her utility, which is equivalent to choosing the nearest available AV or HV after

considering pricing and vehicle preferences. The selected vehicle then proceeds to the pickup
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location and transports the customer to her destination. Upon completing the trip, the

vehicle will wait at the destination for the next request or follow a relocation mechanism

that we will describe later.

In our baseline simulation setting, we assume that the customers are indifferent between

AVs and HVs (i.e., θ = $0/hour), and that the operational cost of AVs is negligible (i.e.,

cA = $0/hour). In addition, we set a0 = $80/hour, a1 = −$20/hour. These numbers are

chosen such that, in an HV-only market at equilibrium, a firm choosing a uniform price rate

would choose PH,i = $75/hour to maximize profit, resulting in an overall service level (the

fraction of fulfilled requests in NYC) of about ρ = 90%. We will explore the robustness of

our results by varying these parameters in Section 3.6.3.

Pricing and Prioritization. In contrast to the queuing model, in the simulation, cus-

tomers can choose the type of vehicle they want to take, and the platform can only influence

customers’ choices through a pricing policy. Due to the complexity of the system (mixed

fleet and extremely large state space), we limit ourselves to a manageable set of pricing

policies that nonetheless enable the platform to prioritize AVs or HVs and to affect the re-

spective distributions of AVs and HVs in the city. For example, our set of policies allows the

platform to potentially keep the AVs in the high-demand areas (downtown) by preventing

the use of AVs for rides that lead to low-demand areas. Our main limitation is that we

need to run thousands of highly detailed simulations to evaluate HV equilibria, and we chose

the ”richest” set of policies that we could still optimize over within less than one month of

computation on a university cluster.

We let the price rate PA,i (or PH,i) offered to customer i to be equal to a base price that

is identical for all the trips, plus an adjustment depending on whether the destination of a

trip is Manhattan (i.e., the area with the highest demand). That is, for any customer i, the

price rates are

Ptype,i = Ptype,base + δtype(2× 1destination of i is in Manhattan − 1) type ∈ {A,H}
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where Ptype,base is the base price of vehicle-type “type”, δtype is the destination-based adjust-

ment, and 1destination of i is in Manhattan is an indicator function.

This four-parameter (PA,base, PH,base, δA, δH) class of pricing policies is rich enough to give

the platform the flexibility to both prioritize and allocate (to a particular region) any specific

type of vehicle. For example, choosing PA,base < PH,base allows the platform to increase the

utilization of AVs by offering a discount. Additionally, choosing δA < 0 means that the

AV price is increased if the request destination is outside Manhattan and decreased if it is

inside Manhattan. This means that the platform is trying to concentrate the AVs in the

higher-demand areas, incentivizing customers towards AVs if they want to go to or stay

within Manhattan. We solve for a pricing policy through a two-stage grid search: we first

find the best (profit-wise) PA,base and PH,base assuming δA = δH = 0 then fix these base price

rates and optimize δA and δH in the second search. This is computationally intensive: for

example, given a value of PA,base, PH,base, we run a grid of full platform simulations for various

values of NH (the number of human drivers). We find the NH that satisfies the human driver

earning equilibrium (with an average hourly earning r) and evaluate the platform profit for

this one particular simulation. We then repeat this process on a grid of values PA,base, PH,base

to find the pricing policy that maximizes the equilibrium platform profit. We then repeat

this entire process to learn the destination pricing corrections δA, δH .

Relocation. Without relocation, most drivers would end up in the same area given enough

simulation time, potentially leading to large driver imbalances in the city. To prevent this, we

consider a simple relocation policy that periodically relocates vehicles to maintain a balanced

distribution. Each vehicle has an exponential clock (with a mean of 2 hours). Once the

clock’s time is up, and the vehicle is idle, the vehicle is (instantaneously) relocated to a zone

that is sampled according to the demand distribution. That is, the probability of choosing

the zone is its hourly trips divided by the total hourly trips in the city, and, therefore,

vehicles are more likely to reposition to high-demand locations (Afèche et al., 2023). Then

the vehicle will be relocated to one of the nodes within the zone, which is uniformly selected
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at random. After relocation, a new clock is generated, and the vehicle will restart its work.

This can also be interpreted as drivers leaving the platform after driving for a while and new

drivers becoming available in the city. While we used this simplified relocation policy for

tractability, we checked the robustness of this approach by implementing a state-of-the-art

relocation algorithm in Section 3.6.3.

Limitations. In this simulation study, we account for pricing, customer preferences and

demand patterns, and spatial aspects such as pick-up times, travel times, and relocation.

Most of our choices were meant to implement a model that is as realistic as possible, given

our computation limitations. In each run, the simulation must process approximately one

million requests and track the status of about ten thousand vehicles in the NYC traffic

network with about forty thousand nodes. In addition, we need many runs to find the

equilibrium number of HVs for any choice of pricing policy and to repeat this hundreds of

times to obtain the optimal price rates. While these computational limitations restricted

the set of pricing and relocation policies we could consider, our approach was to provide

the platform with enough differentiated control on the hybrid fleet to be able to observe the

potential spatial inequalities profit maximization would lead to. We provide a more detailed

description of the simulator iterations and the equilibrium and price rate computation in

Appendix B.3.2.

3.6.2 Confirmation of the Queueing Model Insight

The theoretical results and insights from the queueing theoretical model continue to hold in

the more realistic simulated setting. Indeed, when AVs are added to the fleet, the platform

chooses to prioritize AVs (through attractive pricing) and maintain them in high-demand

areas (with destination-based price discounts). As a consequence, HVs leave faster, and

the service level decreases in a way that is not homogeneous across the city. We focus on

showing the consequence of these policies on the service levels, human drivers, and spatial

inequalities.
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(a) Service level (b) Average ETA

(c) Equilibrium Number of HVs (d) Average profit (without considering

the capital cost CA).

Figure 3.7: Introducing AVs increases profit, but decreases service level and increases ETA,

especially in the more remote areas. The number of HVs is decreasing when introducing

more AVs. The shaded area around the curves shows the 95% confidence interval (it may

be invisible when the interval is quite small).
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Figure 3.7a shows the service level in NYC as a function of the number of autonomous

vehicles, where the service level is defined as the number of served requests divided by the

total number of requests. With 0 AVs, there are 14,000 HVs at equilibrium,11 and the overall

service level is 90.2%, but this number diminishes quickly as more AVs are introduced, forcing

human vehicles out of the market (see Figure 3.7c). At 8,000 AVs, almost all the HVs leave,

and the overall service level reduces to 68.7%. The decrease in service level disproportionately

affects the more remote locations. Times Square loses 8.4% in service level, whereas a more

remote zone like Central Harlem loses 31.1% in service level.12 Figure 3.8a shows a more

detailed view of the service level for each zone of New York City. The spatial inequality of

service level degradation is striking. As confirmed in Figure 3.1, the service level is degraded

by up to 39% in the suburban areas, while the airports and Manhattan maintain a good

service level. Notice that some remote zones in Staten Island have a smaller service level

degradation because their service levels when NA = 0 are already very low. Their service

levels hardly reduce further since they can often find vehicle supply from other zones.

All numbers correspond to the platform’s profit-maximizing policy given NA. In partic-

ular, as shown in Figure 3.7d, the platform profit is increasing in NA despite the negative

consequences of the service level. Indeed, more AVs are always preferable (when considering

NA exogenous and therefore not including the AV capital cost CA), and the degradation in

service levels indicates that the platform is simply willing to serve fewer customers in order

to use higher-margin AVs more.

Another service quality metric that the simulator enables us to measure is the average

time it takes for a vehicle to pick up a customer (i.e., ETA), which we show across NYC

in Figure 3.7b. With 0 AVs, the typical wait time is 1.3 minutes,13 but the average ETA

11We explain how an equilibrium NH is found in Appendix B.3.1 in the appendix.

12Note that we selected Times Square and Central Harlem to represent high-demand and low-demand
zones, respectively. Historically, Times Square is at the heart of the busiest area in Manhattan, while
Central Harlem is an under-served area located at the northern boundary of Manhattan.

13These wait times are lower than practice because our travel time estimates are optimistic (see the
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(a) The service levels when

NA = 8000.

(b) Increase in average ETA

from NA = 0 to NA = 8000.

Figure 3.8: Detailed view of the results for each zone in NYC when introducing AVs.

increases quickly as more AVs are introduced. At 8,000 AVs, customers will have to wait

about 3.2 minutes on average before a vehicle arrives. Similar to the spatial inequality of

the service level, the increase in the average ETA is also disproportionately higher in remote

zones, as shown in Figure 3.7b and Figure 3.8b. The average ETA in Times Square only

rises by 0.6 minutes, whereas the average ETA can increase by up to 3 minutes in suburban

areas.

3.6.3 Robustness Check

We now simulate various scenarios with different parameters, including changes in customer

preferences for vehicle types (i.e., θ), the operational cost of AVs (i.e., cA), and the pay ratio

(i.e., γ). Our objective is to assess the impact of these adjustments on our main insights.

For each robustness test, we alter only the specific parameter under examination (refer to

the first column in Table 3.1) and maintain the other parameters the same as the baseline

simulation setting. In Table 3.1, we report the service level with NA = 0 and the service

level change of increasing NA from 0 to 8, 000 in NYC and some specific areas such as Times

appendix).
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Square (TS) and Central Harlem (CH). For a more granular view of these results, we have

included detailed plots in Appendix B.4.1, offering a visual representation of the robustness

checks.

Service level with NA = 0 Service level change with NA = 8, 000

NYC TS CH NYC TS CH

Customer
preferences: θ

60

90.2% 99.0% 88.6%

−24.0% −12.4% −33.5%

10 −19.9% −7.7% −30.2%

0 −21.6% −8.4% −31.2%

−20 −15.0% −4.3% −23.7%

−40 −13.1% −3.5% −19.8%

−60 +4.4% +1.1% +8.5%

AV operational
cost: cA

0 −21.6% −8.4% −31.2%

10 −16.5% −5.3% −25.2%

40 −15.8% −5.4% −21.7%

60 +4.0% +1.0% +7.4%

Pay ratio:γ

75% 90.2% 99.0% 88.6% −21.6% −8.4% −31.2%

60% 81.2% 96.7% 72.5% −10.2% −5.4% −13.8%

50% 46.6% 69.4% 43.7% +18.3% +17.2% +10.2%

Table 3.1: The service levels in the robustness tests with different parameters. The first

column indicates the parameter that we change in each robustness test. “NYC” represents

the overall New York city, “TS” represents “Time Square”, and ”CH” represents “Central

Harlem”.

As we can see, our main insights hold in most of the cases: the introduction of AVs

leads to a decline in service levels, with a pronounced disparity in the impact between high-

demand (TS) and low-demand areas (CH). This decline is more significant when AVs are

more “profitable” (i.e., high γ and low cA) or more “attractive” to customers (i.e., high θ).
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Profitability allows the platform to lower AV prices (PA), thereby attracting more customers

to choose AVs. Similarly, a higher customer preference for AVs results in increased AV

usage, even at higher prices. The utilization of AVs is higher in both scenarios, leading to

the exit of HVs and the reduction in service levels. However, we also observed some scenarios

where the introduction of AVs leads to an increase, rather than a decrease, in service levels.

This occurs particularly when AVs are considerably less profitable or attractive compared

to HVs. If γ is quite low or cA is high, HVs are comparatively so cheap that the platform

is willing to increase the utilization of HVs instead of AVs. This is consistent with what

we found in Figure 3.3 and Proposition 8. Similarly, if customers have a strong aversion to

AVs (low θ), reducing PA cannot effectively increase the utilization of AVs. In both of the

cases, the utilization of HVs is higher and the service levels are increased. Nonetheless, as

shown in Appendix B.4.2, the spatial inequality proved in Theorem 5 holds in all the cases,

as we can see that the service levels change more significantly in low-demand areas than in

high-demand areas in general.

We also implement an alternative HV relocation strategy in which we solve a linear

program that finds the relocation of vehicles that optimizes the total revenue of HVs as in-

troduced in Braverman et al. (2019).14 While the alternative relocation method can increase

the total revenue of HVs, the service level still declines and the spatial inequality of the

degradation still exists. Specifically, the overall service level in NYC drops from 89.8% to

70.3%, with Times Square experiencing a decrease from 94.3% to 90.7%, and Central Harlem

from 90.2% to 60.3%.

3.6.4 Other Spatial Effects on Service Level

The simulation validates our analysis in Section 3.4 and Section 3.5, but it also uncovers

more granular effects on service levels. In this subsection, we discuss two additional effects

14A comprehensive explanation is available in Appendix B.3.
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and complement our understanding of how and why the introduction of AVs may affect

service levels.

Distance between zones. When a high-demand zone and a low-demand zone are close,

their service quality will interact. The low-demand zone can benefit from the supply in the

high-demand zone, while the high-demand zone will be harmed due to the loss of supply for

serving requests in the low-demand zone. For instance, as shown in Figure 3.6a, the Upper

East Side (north) in Upper Manhattan is a high-demand zone with a demand of 278 trips

per km2, while Alphabet City in Midtown Manhattan has a relatively lower demand with

a density of only about 113 hourly trips per km2. However, the service level is reduced by

18.9% in Alphabet City, whereas the service level degradation is 24.4% in the Upper East

Side (north), as shown in Figure 3.1. Because Alphabet City is close to more high-demand

zones in Midtown Manhattan, the requests originating from Alphabet City can be timely

fulfilled by the supply in its nearby zones. In contrast, the Upper East Side (north) is far

from the most high-demand zones in Midtown and Downtown Manhattan and closer to the

low-demand zones in the north. Vehicles in the Upper East Side (north) may be dispatched

to serve the requests in the nearby low-demand zones, reducing its service level.

Demand imbalance. Demand imbalance, defined as the density of demand arriving in

a zone (i.e., incoming trips) minus the density of demand leaving that zone (i.e., outgoing

trips), can also influence the spatial inequality of service level. When the incoming trips are

more than the outgoing trips in a zone (e.g., business areas during the morning rush hour),

this zone is oversupplied and has a higher service level because more vehicles with riders

are arriving there, but fewer riders want to leave there. Similarly, when the outgoing trips

are more than the incoming trips in a zone (e.g., residential areas during the morning rush

hour), the zone is undersupplied, and riders can hardly find an available vehicle. To see

this, we repeated the experiment with another dataset for the morning rush hour (7 AM -

9 AM) during the workdays in January 2020. The results are shown in Figure 3.9. We can

see that the demand distribution during the morning is similar to that during the middle

80



(a) The demand density. (b) The demand imbalance. (c) The service levels when

NA = 8000.

Figure 3.9: To show the effect of demand imbalance on service levels, we repeated the

experiment by using the dataset for the morning rush hour (7 AM - 9 AM) during the

workdays in January 2020.

of the day, where Manhattan and the airports have the highest demand density. However,

compared with Figure 3.6b, Figure 3.9b shows the demand is much more imbalanced during

the morning because many requests are from residential to business areas. For example, as

shown in Figure 3.9b, the business areas such as the financial district, the Midtown, and the

north of Queens borough have more incoming than outgoing trips. As a result, for these

areas, the service levels shown in Figure 3.9c are higher than the service levels shown in

Figure 3.8a.

3.7 Conclusion

We model a ride-hailing mixed fleet management problem in the presence of AVs using a

queueing model. Specifically, a profit-maximizing platform chooses how to serve requests

and maximize its profit through its fleet of AVs and HVs, while human drivers decide to join

the platform based on their equilibrium earnings. This model is simple enough to derive the

platform’s optimal dispatch policy yet still rich enough to illustrate the critical interaction
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of dispatch policies, driver wage equilibrium, and geospatial service levels.

We derive two main insights from this model. First, we reveal that introducing AVs may

lead to decreased service levels (which can be interpreted as a measure of service reliability in

the ride-hailing market). We explain that when the pay ratio is not too small, the platform

chooses a profit-maximizing policy that prioritizes AVs, decreasing HV revenue and driving

them out of the market. More HVs leave than AVs are added, which lowers the total supply

and the service level. Prioritizing AVs is optimal because serving a ride with an AV has a

higher profit margin, and the corresponding added profit because of prioritization is worth

the loss of demand and revenue due to the decreased total supply. Second, we show that

the service level deterioration may be particularly severe at remote or low-demand locations.

Indeed, it is also profit-maximizing for the platform to concentrate its AVs on high-demand

areas. This leaves HVs in charge of the low-demand areas, but HVs are also leaving the

market, which particularly negatively affects the low-demand area service level.

These findings are confirmed in a highly detailed large-scale simulation in New York City,

which corresponds to a much more realistic setting. We also show that our results are robust

to a variety of settings and passenger preferences. Intuitively, the loss of service level and its

spatial imbalance are a first-order consequence of three factors: (a) the platform maximizes

profit, (c) AVs have a higher profit margin per ride than HVs, and (c) the platform is able

to prioritize the use of AVs (through direct control or incentives). This is why we expect

our findings to be robust to a variety of settings that we have not necessarily explored and

could potentially even occur if the AVs and HVs are operated by different platforms, as the

AV platform should still concentrate their vehicles in higher demand areas and use its profit

advantage to cannibalize demand from the HV platform and push human drivers to lower

demand areas.

We hope this work sheds on the perhaps counter-intuitive effects of the rise of AV fleets

and helps foreshadow and prevent its potentially mixed impact on on-demand transportation.
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CHAPTER 4

Supply Prioritization in Hybrid Marketplaces

4.1 Introduction

The growth of the gig economy and the rise of labor marketplaces have enabled many in-

dustries to use independent contractors instead of traditional employee workforces. The

question of worker categorization is particularly relevant for ridesharing platforms. Recent

debates demonstrate that some drivers prefer the flexibility of contractor models, whereas

others would prefer to become employees (Solis, 2021). Interestingly, the two models can be

combined, and companies can use hybrid workforces, a mix of employees and contractors.

For instance, e-commerce companies such as Amazon use a combination of traditionally em-

ployed delivery drivers with crowdsourced alternatives, allowing them to expand their logis-

tics network and lower costs (Dolan, 2022). A survey conducted by Harvard Business School

and Boston Consulting Group reports that almost 90% of business leaders consider digital

technology platforms and using a hybrid workforce as imperative tools for their competitive

advantage (Fuller et al., 2020). The use of contractors to supplement existing employees has

also become particularly attractive during the COVID-19 pandemic: workers value flexible

schedules, and firms face increasingly erratic demand patterns (Fuller et al. (2020), Ogg

(2021)).

The use of hybrid workforces is not limited to employee/contractor models, however. For

example, consider the case of the deployment of autonomous vehicles (AVs). Advantages of

AVs include a substantial decrease in operating cost per mile (Hazan et al. (2016), Fagnant
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and Kockelman (2018), Litman (2023)) and improved reliability stemming from complete

control of the vehicle. The latent potential of this new technology has led several ride-hailing

platforms such as Lyft and Uber (Uber (2016), Lyft (2024)), but also others such as Google

and Amazon, to invest in self-driving cars (Dave and Jin (2021), Hawkins (2021)). Some

ride-hailing platforms, such as Lyft (Lyft, 2021), anticipate that they will need to operate a

mixed fleet, combining autonomous vehicles with a human driver contractor marketplace.

Regardless of the specific context, there are commonalities that are fundamental to hybrid

marketplaces. The acquisition and operation of autonomous vehicles is not unlike hiring

employees. A firm commits and economically sustains a staffing level of private agents (e.g.,

the number of autonomous vehicles or employees) regardless of the actual revenue generated

by these workers. A firm can also source its supply from flexible agents or contractors who

are self-scheduled, can freely join the platform, and are paid based on the amount of work

or service they deliver. In the case of platforms, typically, the firm takes a commission

and must ensure that these workers are incentivized to join the market. While flexible and

private supply agents have intrinsic differences, their presence is a general feature of hybrid

marketplaces. This is true for a wide range of applications, including ride-hailing, freelance

labor marketplaces, food delivery services, or short-term home rental services like AirBnB.

While these two types of supply have different economic structures that may make the

operations of a hybrid workforce advantageous (Lobel et al., 2024), a hybrid workforce is

not without its challenges. A firm can set its level of private supply precisely, but this

represents a significant commitment as hiring or purchasing decisions have high fixed costs

and lead time. The firm does not directly set the flexible supply, but it must incentivize

flexible supply agents to join the marketplace through proper incentives. The hourly cost

is another source of distinction. In some settings, the hourly costs of private supply can

be higher than the typical hourly flexible supply earnings. For example, Uber estimates

that classifying its workers as employees would increase costs significantly (Khosrowshahi,

2020). In other situations, private supply can be less expensive. For example, the capital

84



and variable hourly costs of autonomous vehicles are expected to be less expensive than the

typical hourly earnings of human drivers (Fagnant and Kockelman (2018), Litman (2023)).

The firm thus faces a complex management problem characterized by the interplay between

different economic incentives and cost structures: Giving priority to the flexible supply can

incentivize a desired staffing level, but this might be too costly. Prioritizing the private

supply might lower the firm’s costs, but it can reduce the overall supply. Not acknowledging

this interplay and ignoring the fundamental differences between the different kinds of supply

agents can lead to marketplaces that are chronically over- or under-supplied, thus hurting

the firm’s profitability.

In this work, we consider a profit-maximizing firm that has access to both private and

flexible supply. The firm considers the advantages and limitations of its supply alternatives

to make two crucial decisions: staffing and supply management. The firm must decide the

supply mix (staffing): should it operate both types of supply, or only one? How many private

supply agents should the firm hire? Given the presence of both private and flexible supply,

the firm must make decisions (e.g., pricing and matching) that affect the revenue generated

by each supply type (supply management): should the firm treat them differently or equally?

In the context of ride-hailing, should the firm use pricing and dynamic matching policies that

treat employees and contractors differently? For example, given that employees are a “sunk

cost,” the firm may want to prioritize them when possible instead of paying for contractor

work. However, this choice is not evident as prioritization typically introduces inefficiencies

in the marketplace. In ride-hailing, it may lead to higher wait times for the customers, as a

policy that prioritizes employees could favor dispatching an employee even if they are not the

closest available driver. Additionally, de-prioritizing contractors may lower the number of

contractors willing to join the marketplace. Therefore, the management of hybrid workforces

may necessitate a change in the traditional management of marketplaces and companies.

We aim to answer these questions and elucidate the complex interactions between mar-

ketplace staffing and supply management policies. While hybrid marketplaces present unique
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challenges, we will show that there is a general, tractable structure to this problem. Based

on the characteristics of the firm, we will be able to quantify the advantage of managing a

hybrid workforce, and in particular to show the key role of supply prioritization in hybrid

marketplaces.

In our model, the firm first makes its staffing decision, i.e., determines the amount of

private supply it needs and whether it should also use flexible supply. It also sets its policies:

all the rules, processes, and algorithms that link available supply to expected revenue, such

as pricing and online matching policies in a ride-hailing application. These policies may

consider the type of supply available and even prioritize one supply type in some way, such

as giving private agents more work. The firm also sets its commission rate—the fraction of

revenue it will take from its flexible agents. Based on these first-stage decisions, the flexible

agents join the marketplace by gauging their earnings from joining (based on the pay ratio)

against an outside option. Therefore the firm can optimize the level of private supply, but

flexible supply is set in equilibrium.

4.1.1 Main Contributions

A general axiomatic approach. We develop a general modeling framework that captures

a wide range of applications and firms’ decisions. A main challenge is that every market

has its own set of unique characteristics and policies available to firms. This can render

the study of supply prioritization policies highly dependent on a given application. For

example, such policies would correspond to the choice of pricing and dispatch algorithms in

ridesharing or the way properties are listed and presented to customers in AirBnB. Modeling

a firm’s operations explicitly (for example, with a queueing model) is typical in the literature

but it makes results and insights application-dependent. Instead, we focus on macro-level

quantities implied by the firm’s operations and implemented policies. We study how the firm

staffs and prioritizes its supply agents, not by analyzing specific policies but by assessing

the revenue achieved by the different supply types. We introduce various realistic axioms on
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the behavior of the achievable revenues, and prove general results that lead to managerial

implications that seem to be fundamental for hybrid marketplaces. A critical insight is that

complex supply management policies can be modeled generally by focusing on the outcome

they induce on the macro-level quantities rather than the details of their implementation.

Optimal staffing decisions. One of our main contributions is to characterize the optimal

staffing decisions of the firm. The firm needs to choose its most profitable option: being

a traditional flexible-only marketplace, investing in private supply and operating a hybrid

marketplace, or using private supply only. The most simple case is when private supply is

cheap, specifically when the hourly cost of private supply is lower than the flexible supply

reserve wage (their best outside option). In that case, it is optimal for the firm to operate

private supply only. If private supply is expensive, the optimal staffing policy depends on

how precisely the firm can control its flexible supply marketplace. The firm should stay

flexible-only if it can precisely set its commission rate so that the flexible supply level is

optimal for the market—neither over-supplied nor under-supplied. These two first cases are

reassuring as they correspond to the most common staffing models (hybrid staffing is still

rare in practice). However, most marketplaces rarely adapt their commission rate to current

supply conditions. Uber and Lyft are chronically over-supplied or under-supplied as the

flexible supply best outside option can change over time. The platforms cannot adapt their

commission fast enough to compensate. In that case, we show that hybrid marketplaces may

be optimal, even if private supply is expensive. We show that three factors contribute to mak-

ing hybrid marketplaces particularly advantageous: (a) a moderate cost of private supply,

(b) the imbalance of the flexible supply market (e.g., significantly over-supplied or under-

supplied), and (c) the access to complex supply management policies that can significantly

prioritize supply. As discussed below, our central insight is that this last condition—access

to supply prioritization—is crucial for the viability of a hybrid marketplace.

The key role of prioritization policies. Being able to prioritize one supply type is es-

sential for hybrid supply to be optimal. We present a complete characterization of “equal-
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treatment” policies, e.g., policies that do not prioritize one type of supply over the other.

These results show that a hybrid supply staffing strategy cannot be optimal without prior-

itization. Nonetheless, a firm using prioritization strategies has to balance complex effects.

Suppose that a firm chooses to invest in expensive private agents. It can then try to pri-

oritize them to increase their productivity and make this investment worthwhile. However,

this would come at the expense of flexible supply, reducing their earnings. Flexible supply

would then exit the market, impacting the potential revenue that the firm can achieve and

potentially erasing the positive effect of prioritizing private supply. A surprising reverse

strategy can also work: the firm could decide to de-prioritize the expensive private supply

to increase the revenue of flexible supply. This approach may seem questionable as private

supply would have low productivity, but the added flexible supply revenue could grow the

amount of flexible supply available in equilibrium. Actually, if demand is elastic enough to

the availability of supply, this may trigger a positive “snowball effect”. The extra flexible

supply revenue from prioritization leads to an increased flexible supply, leading to a further

increase in demand/revenue, leading to a further increase in flexible supply. Therefore, at

equilibrium, a small amount of flexible supply prioritization can potentially add a lot of flex-

ible supply and revenue to the market. This effect can be strong enough to compensate for

the low productivity of the private supply and therefore increase profit overall. We confirm

this intuition with a sharp result. In a hybrid marketplace, if the flexible supply market

is “over-supplied” (even slightly), then it is always optimal to use strategies that prioritize

private supply. Conversely, if the flexible supply market is “under-supplied”, it is optimal to

prioritize flexible supply.

The limitations of prioritization. Even if prioritization strategies are optimal when both

private and flexible supply is present, it is not clear whether it is worth it for the firm to

pay for the expensive private supply. For hybrid staffing to be optimal, the increase in profit

from prioritization needs to be high enough to compensate for the private supply costs.

Two limitations of prioritization strategies can prevent this from being the case. First, we
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show that the only way prioritization policies can increase profit significantly is if the flexible

supply market is not too close to being perfectly balanced. That is, the flexible market needs

to be over-supplied or under-supplied enough for hybrid supply to be optimal. Second, using

prioritization policies also introduces inefficiencies in the marketplace. Consider the example

of the prioritization of autonomous vehicles in ride sharing. A ride request may have a human

driver nearby (flexible supply). However, the platform may instead choose to assign a further

away autonomous vehicle if it is trying to prioritize these vehicles. This increase in wait time

would increase the probability of customer cancellation and, therefore, reduce the expected

revenue that the firm would obtain from this match. We confirm this intuition by showing

that prioritization policies may introduce inefficiencies that can reduce the expected revenue

of the firm. Our final theorem quantifies these effects and establishes the conditions for the

optimality of a hybrid marketplace: the firm needs to be able to prioritize supply enough,

with a low enough level of prioritization inefficiency, and a flexible supply market that is

imbalanced enough.

The remainder of this chapter is organized as follows. In Section 4.1.2, we review the

related literature. In Section 4.2, we present our axiomatic framework with minimal assump-

tions for a hybrid marketplace. In Section 4.3, the equal treatment policies are characterized

and utilized as a foundation to analyze the more complex prioritization policies. We dis-

cuss the optimality of prioritization given constant private supply in Section 4.4. And in

Section 4.5, we show that a hybrid marketplace may be optimal only with a prioritization

policy. We conclude in Section 4.6.

4.1.2 Related Literature

Blended workforce literature. Our work is related to the emerging literature on blended

workforce in the gig economy. Dong and Ibrahim (2020) study a cost-minimizing staffing

problem where the manager has to decide how many full-time employees and flexible con-

tractors to staff in order to balance operating costs, varying demand patterns, and supply
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uncertainty. They derive staffing policies based on fluid and stochastic formulations within

a queueing framework. Lobel et al. (2024) investigate how the firm should staff its oper-

ations with employees and contractors with unknown demand distribution. The authors

consider two scenarios where the company may or may not adjust the contractor wage after

observing the state of the world. They show that contractors’ flexibility can help the firm

choose the optimal contractor utilization despite demand uncertainty. In this sense, using

employees can perform arbitrarily worse than using contractors. He and Goh (2022) use a

model of last-mile parcel delivery to elucidate how the demand should be allocated between

employees and freelancers. They illustrate that the influence of acquiring freelancers on the

system’s profit depends on the mean and variance of the cross-network effect, which depicts

how demand increases with the size of the freelancers pool. Chakravarty (2021) studies a

ride-hailing platform with blended driver capacity and compares two particular forms of

demand rationing: preferential rationing and driver-agnostic rationing. In addition, some

other studies also examine how to minimize production costs with mixed labor force available

(e.g., Kesavan et al. (2014) and Bhandari et al. (2008)).

Additionally, Hu et al. (2023) develop a queueing model to investigate the question

of whether long-term workers in a gig economy can benefit from being reclassified. The

authors point out that undercutting and overjoining are two fundamental issues when all

the workers have the same classification. To offset these issues, they propose a hybrid

mode with a discriminatory scheme where long term workers are prioritized over ad hoc

workers. In contrast, we focus on supply prioritization itself and study optimal prioritization

strategies. Krishnan et al. (2022) is the only paper that, to our knowledge, studies an

actual implementation of a blended workforce using prioritization. This work describes

how the ridesharing firm Lyft separates the drivers into “priority drivers,” prioritized by

the matching system to have higher earnings, and regular “flexible drivers.” While the

priority drivers are not precisely “private” agents, this paper shares similarities with our

work. It gives a compelling practical example of the tradeoffs of prioritization, with its
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revenue inefficiencies and interaction with flexible supply equilibrium. Our work generally

contributes to this burgeoning literature by proposing a more general model which allows for

any form of prioritization and unspecified operational decisions. We are the first to describe

the joint optimal staffing and operational policy decisions in this broad context. Our general

setting enables us to achieve a broad understanding of the interactions between the firm’s

supply management policies and the state of its flexible supply market.

Self-scheduling capacity literature. More broadly, our work relates to the literature on

self-scheduling capacity, as our flexible supply agents are self-scheduled and join the firm

based on their equilibrium earnings. Gurvich et al. (2019) study the capacity management

of a ride-hailing market with self-scheduling drivers. They illustrate that the firm may

incur extra costs and the customers may receive less service as a result of self-scheduling.

Cachon et al. (2017) discuss different pricing schemes with self-scheduling providers and

uncertain demand. They show that surge pricing can benefit all the stakeholders with self-

scheduling capacity. Cachon et al. (2021) investigates how online service platforms should

choose between the centralized and decentralized control of price. The authors find that

under a simple commission structure, this decision relies on the competition among the

servers and how much servers value setting prices independently. Ibrahim (2018) considers

a staffing queueing problem with a random number of servers and impatient customers.

It proposes making delay announcements to control customer abandonment behavior and

mitigate the cost due to the uncertainty of servers. In the paper of Afèche et al. (2023), the

authors study a ride-sharing problem of matching riders with self-scheduling drivers by using

a game-theoretic fluid model. They point out that despite excess supply, it may be optimal

for the company to reject requests at a low-demand location to induce repositioning to a

high-demand location. Taylor (2018) adopts a queueing system to analyze how the delay

sensitivity and agent independence affect the optimal price and wage of the firm. The paper

of Benjaafar et al. (2022) examines how the labor welfare is influenced when firms expand

the labor pool and impose a wage floor. And Hu and Zhou (2020) discusses the performance
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of a fixed commission contract with respect to demand and supply elasticity. Our study uses

the concept of self-scheduling capacity through the notion of flexible supply equilibrium.

However, we also incorporate private agents, and focus on the interaction between them and

the resulting prioritization implications. a

4.2 Model

We consider a firm that uses two types of supply to generate revenue. Private supply is fully

controlled by the firm, while flexible supply must be secured through proper incentives. Our

goal is to understand how a profit-maximizing firm should choose its supply mix and how it

should use these two types of supply to generate revenue. For example, the firm could use

supply management policies that prioritize the use of its private or flexible supply. In order

to capture a wide variety of realistic settings, we study these questions in the context of an

axiomatic framework with minimal assumptions.

We consider the firm’s operations over a relatively long time-frame (e.g., a year). Nonethe-

less, this duration is short enough for the labor market conditions to be considered stationary.

Specifically, the cost of private supply and the equilibrium earnings of flexible supply will

be assumed stationary, as discussed later. At the beginning of the time-frame, the firm

chooses how to operate its supply. The firm can choose any feasible operational policy that

it can implement and influence how its supply generates revenue. For example, a ride-hailing

platform can choose the ride pricing policy, the dynamic matching algorithm that matches

drivers with requests, or even its routing suggestions to the available drivers. Additionally,

the firm decides how much to invest in its private supply (e.g., how many employees to

hire or autonomous vehicles to invest in). The firm wants to find the decisions that will

maximize its expected earnings for the time-frame, considering that the customers and the

flexible supply will react to its decisions. To model this choice, we will focus on macro-level

quantities such as the expected profit/revenue of the firm or the number of supply-hours
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over the time-frame.

Supply. Let NF and NP be the total expected number of available hours of flexible and

private supply over the time horizon, including both the idle hours and the hours when they

serve customers. In particular, NF represents the available hours during which flexible supply

agents are willing to work for the firm — as we explain below, NF is endogenous and decided

by flexible agents in equilibrium. The firm can control NF indirectly via incentives such as

its compensation policy. NP represents the available hours of the private supply. NP is either

optimally selected by the firm at the beginning of the time period, or may be exogenously

given (for example, a ride-hailing company may already own a fleet of autonomous vehicles).

In particular, the expected supply-hours NP and NF may be arbitrarily distributed over the

time horizon based on the scheduling decisions of the firm, and the self-scheduling choices

of flexible supply.

Policies and revenue. The firm manages revenue and supply using various operational

decisions and algorithms, such as matching, pricing, and routing in the context of ride-

hailing. We will refer to these choices as the policy of the firm. Let π ∈ Π be the policy

chosen by the firm, where Π is the set of all policies that the firm can choose from to use

over the time horizon. We note that Π is general, and may contain any complex policy

that this specific firm can use within its technological limits. Over the time horizon, the

firm will generate an expected revenue, which we assume can be attributed to its two types

of supply: RP , RF are the expected revenue earned because of private and flexible supply,

respectively, and RP + RF is the total revenue of the firm. For example, in ride-hailing,

these revenues would correspond to the expected sum of the prices customers are paying for

being served by either supply source. This revenue varies with the choice of policy π and

the available supply; we use the notation Rπ
P (NP , NF ) and Rπ

F (NP , NF ) to highlight this

dependence. Intuitively, given fixed (NP , NF ), a pricing strategy may increase or decrease

both RP , RF depending on the demand response. We do not explicitly model the variety of

specific operational policies or the demand response to these policies. Instead, we encode
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their implied outcomes in the revenue functions, Rπ
P (NP , NF ) and R

π
F (NP , NF ). Note that

RP and RF are typically not “independent”: for example, if a ride-hailing firm chooses a

matching strategy that prioritizes private agents at the expense of flexible agents, this would

increase RP and decrease RF .

These functions must satisfy some natural properties. First, if one supply type is un-

available, there should be no corresponding revenue. Second, the total revenue the firm can

garner is upper bounded. Indeed, the maximum willingness to pay for service in a given

time horizon is trivially upper-bounded, no matter how perfect the service is or how large

is the available supply. Formally, there exists M > 0 such that for any policy π ∈ Π and

NP , NF ⩾ 0 the firm’s revenue functions verify:

Rπ
P (0, NF ) = 0 and Rπ

F (NP , 0) = 0; and Rπ
P (NP , NF ) +Rπ

F (NP , NF ) ⩽M.

Flexible supply equilibrium. As with many service firms (e.g., ride-hailing or food de-

livery), we assume that the revenue from the service provided by a flexible agent is shared

between the firm and the agent, with a pay ratio γ ⩾ 0 (e.g., 1 − γ is the commission rate

of the firm). The flexible supply agents’ total expected earnings over the time horizon are

γRF , and the firm’s share is (1− γ)RF . Note that we allow γ > 1, which would correspond

to subsidizing this supply source. We can now define the average hourly earnings of flexible

supply as: 


γ · Rπ

F (NP ,NF )

NF
if NF > 0;

0 if NF = 0.

Following the empirical work of Hall et al. (2021), we assume that the flexible supply market

is very elastic, that flexible supply decides to enter and exit the market based on its average

earnings. Formally, let r > 0 be the reserve earnings of flexible agents for the time horizon,

i.e., what they could make per hour not working for the firm. Suppose that NF > 0 then

flexible supply average hourly earning within the system is γRF/NF (where RF is a notation

shortcut for Rπ
F (NP , NF )) If γRF/NF < r, some flexible agents working for the firm are
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not making enough. These agents would spend less time working for the firm or even not

work at all and, therefore, NF would decrease until r ⩽ γRF/NF , or NF = 0. Conversely,

if r < γRF/NF , more flexible agents would be willing to work for the firm, and γRF/NF

would decrease until r ⩾ γRF/NF . Therefore, in equilibrium, NF must be verify:

γRπ
F (NP , NF ) = rNF . (4.1)

Any NF satisfying the equation above is an equilibrium.1 Given NP , γ and π, we use

Eπ(NP , γ) to denote the set of possible equilibria i.e., solutions to eq. (4.1). Note that

Hall et al. (2021) finds that flexible supply takes several weeks to reach an equilibrium in

ride-hailing. As we are assuming that flexible supply is in equilibrium, we need our time

horizon to be large enough for flexible supply to react to the firm’s decisions, yet small

enough for r to be considered constant.

Profit Maximization. The firm wants to maximize its profit over the time horizon. As

mentioned above, the firm keeps (1− γ)RF from the total revenue generated by the flexible

supply. In the meantime, the firm keeps the totality of its private supply revenue; however,

we assume that each private supply hour costs CP > 0 to the firm. This cost may represent

fixed or amortized capital costs (e.g., if private supply represents autonomous vehicles in

ride-hailing) and variable costs associated with this source of supply (e.g., employees’ hourly

pay if private supply represents employee hours).

Given the above, the firm first chooses NP , γ and π, and then flexible supply reacts in

equilibrium by setting NF ∈ Eπ(NP , γ). The firm anticipates the flexible supply equilibrium

and chooses a policy that maximizes its profit:

max
π∈Π,γ⩾0,NP⩾0

Rπ
P (NP , NF ) + (1− γ)Rπ

F (NP , NF )− CPNP , s.t NF ∈ Eπ(NP , γ). (4.2)

In Problem (4.2) the firm can completely control all the levers at its disposal, i.e., the policy,

the flexible supply hours, and the pay ratio. However, it is not evident that the firm can

1Formally, an equilibrium satisfies: NF > 0 =⇒ γRπ
F (NP , NF ) = rNF . In our setting, this is equivalent

to eq. (4.1).
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perfectly set NP and γ, depending on the setting of interest. This work will study (4.2) when

NP and γ are either optimized or exogenous, for the reasons described below.

Choice of NP Recall that NP is the available hours of private supply agents. Assuming

that the firm can optimize NP is a good model if the time horizon is long enough for the firm

to change its staffing strategy entirely. As discussed previously, the horizon is typically long

if Cp and r are relatively stationary compared to the time for the firm to adapt its private

supply staffing. Nonetheless, there are settings where it is slow to change private supply or

when Cp and r change quickly. For example, hiring and firing employees can be slow, and in

our example of autonomous vehicles in ride-hailing, firms may build an autonomous vehicle

fleet slowly over time (Litman (2023)). Additionally, Cp and r have also changed quickly

during the Covid-19 pandemic, and ride-hailing platforms suddenly experienced a severe lack

of supply. In these settings with a shorter time horizon or fixed private supply, considering

that Np is fixed and exogenous is a preferable model: the firm enters the time period with

a certain number of private supply hours available. The question is how to use it best to

maximize profit. Consequently, we will study both the fixed and optimal NP cases, as we

believe they offer complementary insights.

Choice of γ We have a similar modeling issue with the choice of the flexible supply pay

ratio γ, or equivalently the firm’s commission rate 1− γ. Indeed, it can often be challenging

for a marketplace to update its pay ratio, especially in a competitive landscape. For example,

in the ride-hailing industry, the pay ratio is usually set between 75% and 85%2. This pay ratio

did not change during the Covid-19 pandemic despite essential changes in the supply market.

Therefore, it may be preferable to consider that γ is fixed and exogenous. Additionally, we

will show in the study that the ability to set an optimal γ is equivalent to the ability to set

the optimal flexible supply amount in the market. However, marketplaces often go through

long-term over-supplied or under-supplied conditions, suggesting that modeling γ as optimal

may not be a realistic model. Nonetheless, the case where γ is set optimally by the firm is

2https://ride.guru/content/resources/driver-payout-take-home.
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also crucial to understanding longer-term horizons. We will, therefore, study both the fixed

and optimal γ cases, as we believe they also offer complementary insights.

4.2.1 Problem Reformulation Via the Achievable Revenues Set

The profit maximization Problem (4.2) is not particularly easy to manipulate as the set

of policies Π is a rather abstract object. Instead, we will prove that a more manageable

formulation that only involves interpretable quantities is equivalent. This reformulation

optimizes over the space achievable revenue outcomes of the policies rather than the space

of policies themselves.

For all supply hours pairs NP , NF , we define the achievable revenues set :

AR(NP , NF ) ≜ {(RP , RF ) ∈ R2 : ∃π ∈ Π, RP = Rπ
P (NP , NF ), RF = Rπ

F (NP , NF )}.

That is, AR(NP , NF ) is the set of all the revenue pairs that are achievable by policies in

Π, given that the available supply hours are NP and NF . With some abuse of terminology,

we will refer to the elements of the achievable revenues set as policies. For fixed γ ⩾ 0, and

NP ⩾ 0, remember that the firm profit maximization problem (4.2) is:

max
π∈Π

Rπ
P (NP , NF ) + (1− γ)Rπ

F (NP , NF )− CPNP , s.t NF ∈ Eπ(NP , γ). (2’)

We can now recast Problem (4.2) in terms of RP , RF and NF .

Lemma 3 (Problem Reformulation). Problem (2’) is equivalent to the following optimization

problem:

max
RP ,RF ,NF

RP + (1− γ)RF − CPNP

s.t. rNF = γRF ,

(RP , RF ) ∈ AR(NP , NF ).

(4.3)

All the proofs of the study are available in the appendix. The lemma establishes that any

optimal policy in Problem (2’) corresponds to an optimal set of supply hours and revenues
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RP , RF , NF in Problem (4.3). Conversely, given any optimal solution of Problem (4.3), we

can reconstruct another solution that is feasible and optimal in Problem (2’). An immediate

corollary of Lemma 3 is that the reformulation also works if the firm optimizes over γ and NP .

This reformulation will be the focus of the rest of the study, as it dramatically simplifies the

optimization problem. It reduces the dimensionality of the problem, from the more abstract

space of policies Π to R3 ; and the objective function is a simple linear combination of the

three variables. However, note that the achievable revenues sets AR(NP , NF ) now hide most

of the complexity of the problem as they are equivalent to a general constraint on the feasible

space. Nevertheless, we will impose natural structural properties on AR(NP , NF ), allowing

us to characterize the solutions of Problem (4.3).

A first structural property that we will impose on the achievable revenues set, and perhaps

the most crucial assumption of this study, is its symmetry. We first present the assumption

in formal terms and then describe its justification. We will assume that the two supply types

are symmetric in how the firm can use them to generate revenue. Any total revenue RP +RF

that is feasible for a firm when it has some supply NP , NF available can also be achieved

with only one type of supply or any other supply mix, but the same total number of supply

hours. To formalize this, we first define AR(N) to be the set of achievable revenues of a

“single-type” policy only using flexible supply for any N ⩾ 0:

∀N ≥ 0, AR(N) ≜ {RF | (0, RF ) ∈ AR(0, N)}.

Then the symmetry condition can be stated as follows.

Assumption 1 (Symmetry of supply types). The feasible total revenues that the firm can

achieve is a function of the total supply hours available. It is independent of supply mix.

∀NP , NF ⩾ 0, {RP +RF | (RP , RF ) ∈ AR(NP , NF )} = AR(NP +NF ).

This leads to a much more intuitive definition of AR(N)3: it is the set of achievable total

revenue with N total supply hours, regardless of the supply mix.

3Note that AR(N) and AR(NP , NF ) are different.
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This assumption is particularly strong; we discuss next that it holds when there is no

fundamental operational difference between the two types of supply, except for their staffing

mechanism: they are “symmetric”. A simple way of understanding what we mean by sym-

metry is to compare two situations. (i) One in which the firm has access to NP and NF

supply hours from each type, and (ii) another with the same total supply hours but only

flexible agents, that is, N ′
P = 0 and N ′

F = NP + NF . Consider a given policy in situation

(i) with corresponding average revenues RP and RF , and total revenue given by RP + RF .

If the two types of supply are operationally equivalent (e.g., customers are indifferent to

the supply type, the supply agents work with the same efficiency, etc.), then the firm can

actually replicate this policy in situation (ii) with only flexible supply. Indeed, even if

only flexible supply is available, the firm can randomly pretend that some flexible agents are

instead private and use the previous policy. Because the agents are operationally equivalent,

this new policy will achieve the same total revenue R′
F = RP +RF . Similarly, given a policy

in situation (ii), the firm can replicate it in the mixed-supply world by simply ignoring

the type of supply and applying the same policy. Therefore, if we suppose that the supply

types are “symmetric”, Assumption 1 must be true, and this is the intuition behind the

assumption.

This symmetry assumption is often not exactly true in practice. In ride-hailing, riders

may be reluctant to use autonomous vehicles, and autonomous vehicles may only be able to

operate in some areas of a city. In that case, the two types of supply are not symmetric,

and the firm would not be able to achieve the same revenue with autonomous vehicles as

it achieves with human drivers. Or on the contrary, a firm using employees may have more

control over their work hours than a firm using self-scheduled contractors. This increased

control could make employees more efficient and generate more revenues than contractors.

However, all of these asymmetric effects are application specific. Using the strong Assump-

tion 1, we can isolate the effect of the staffing and control policies of the supply type from

the inherent application-dependent superiority of one type of supply. Assuming that agents
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are interchangeable, we exclude such external factors to focus on the main intuition behind

the optimal staffing and control of private and flexible supply. Nonetheless, it is easy to

model specific situations with supply asymmetry using the tools of this study, as we show

in Appendix C.6 of the Appendix where we study a special case and show that most of the

results and insights of the study still hold in that case.

4.2.2 Definition of Equal Treatment and Prioritization Policies

Now that our model and main assumption are defined, we are going to partition the firm

policies into three categories: private supply prioritization, flexible supply prioritization

and equal treatment. Because our reformulation focuses on achievable outcomes, we will not

directly describe what it means for a policy to prioritize a supply type. Instead, we will define

prioritization based on a policy’s impact on the two supply-type expected hourly revenue.

The firm prioritizes private supply if the chosen policy leads to a higher expected revenue per

supply hour RP/NP than flexible supply, and flexible supply prioritization happens if RF/NF

is higher. There are many realistic settings where a firm can easily prioritize one type of

supply: for example, a ride-sharing matching policy can easily match to private agents first,

and Krishnan et al. (2022) describe a practical implementation. Naturally, prioritization

has a counterpart: equal treatment. A policy that satisfies equal treatment leads to the

same average hourly revenue for both types of supply (when the flexible supply is in the

market). This definition works well when the two types of supply are present (NF , NP > 0),

but the special case NF = 0 needs a little more care, as described in our formal definition of

prioritization:

Definition 2 (Prioritization and Equal treatment). For NP > 0 we say that (RP , RF ) ∈
AR(NP , NF )

1. (Prioritizing Flexible Supply.) prioritizes flexible supply if and only if

NF > 0 and
RP

NP

<
RF

NF

,
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2. (Prioritizing Private Supply.) and that it prioritizes private supply if and only if

NF > 0 and
RP

NP

>
RF

NF

, or NF = 0 and
RP

NP

>
r

γ
.

In any other case, we say that (RP , RF ) satisfies equal treatment and we use ET (NP , NF ) ⊆
AR(NP , NF ) to denote the set of equal treatment revenue pairs.

The only potentially surprising aspect of this definition is the case NF = 0. One may

think that when only private supply is available, talking about prioritization is not well

defined and the policy can only be equal-treatment. Nonetheless, our definition characterizes

situations with NF = 0 and and RP

NP
> r

γ
as private supply prioritization. In this situation,

the average revenue of the market is strictly above r
γ
, which happens to be our flexible

supply equilibrium hourly revenue (see the wage equilibrium equation (4.1)). Therefore, in

an open flexible supply marketplace, the flexible supply would like to join the marketplace.

The only way the platform can prevent this flexible supply from entering is to actively block

it, by prioritizing private supply and dropping the potential flexible supply revenue under

the wage equilibrium or just shutting down the flexible marketplace entirely. These types

of “blocking” policies are evidently not equal-treatment, so we classify this case as private

supply prioritization. This choice will also significantly simplify our main results.

Equal treatment will play a key role in our study of prioritization. These policies are

a natural benchmark; all policies that do not consider the supply type are equal treatment

policies. Section 4.3 study these policies in detail and describe what is achievable by the firm

without prioritization. For example, in a ride-hailing market, equal treatment can emerge

when pricing, matching and routing decisions do not depend on the agent type. And while

Sections 4.4 and 4.5 focus on prioritization policies, equal treatment policies are still used as

a benchmark.

The introduction of equal treatment policies leads to a natural extension of Assump-

tion 1. Remember that we said that this assumption holds if the two types of supply are

“symmetric”, and the assumption states that the achievable total revenues only depend on
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the total supply, regardless of the type. Suppose that we have the supply NP , NF , and let

R ∈ AR(NP +NF ) be an achievable revenue given the available supply. From Assumption 1,

we know that this revenue R could also be achieved if all our supply was flexible, that is, with

N ′
F = NP +NF and N ′

P = 0. As a thought experiment, we consider the policy used in that

case when we only have flexible supply, and we use it in the original two types setting with

NP , NF . Because the policy does not distinguish between supply types, we expect that the

expected revenue from each type is proportional to its availability, that is, RP = R · NP

NP+NF

and RP = R · NF

NP+NF
. This is equivalent to RPNF = RFNP , that is, we have equal treatment

as introduced in Definition 2. Therefore, we just presented evidence that any achievable

revenue is also achievable in a two-type setting with an equal treatment policy, as we can

use one-type policies and they become equal-treatment when used in a two-types setting.

We formalize this intuition as a last structural assumption.

Assumption 2 (Equal-treatment policies can achieve any feasible revenue). Given any

supply NP ⩾ 0, NF ⩾ 0, any achievable revenue R ∈ AR(NP + NF ) is achievable by an

equal treatment policy.

∃ (RP , RF ) ∈ ET (NP , NF ), RP +RF = R.

4.3 Hybrid Marketplaces without Prioritization

Now that our model is defined, we will first restrict the firm to the use of equal treatment

policies. Equal-treatment policies are the most intuitive, and we will be able to derive the

optimal staffing and policy decisions in this case. This analysis will serve as a foundation

to study the more complex prioritization policies. For any γ and NP , an optimal equal

treatment solution must therefore solve the following optimization problem, which is the

equivalent of (4.3) replacing AR with the more restricted ET :

Definition 3 (Optimal equal treatment policy). Given fixed NP , γ ⩾ 0, an optimal equal
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treatment policy, denoted by (NE
F , R

E
F , R

E
P ), is defined as the optimal solution to the problem:

max
NF⩾0,RP ,RF

RP + (1− γ)RF − CPNP

s.t. (RP , RF ) ∈ ET (NP , NF ),

γRF = rNF .

(4.4)

4.3.1 Full Characterization of Optimal Equal Treatment Policies

A full characterization of an optimal solution to Problem (4.4) includes a complete description

of the optimal mixed of supply types NP and NF , their revenues RP , RF , and the optimal

firm’s profit. A central quantity that we will need to this end is the maximum revenue that

the firm can achieve for a given number of total supply hours N . We define the maximum

revenue function R(·) : R+ → R as:

R(N) ≜ max
N

AR(N).4

Recall that AR(N) is the set of achievable revenues when there are N supply hours

available (under Assumption 1, this is independent of the supply mix). Achieving R(N)

means that the firm must use a policy that gets the most revenue from the available supply.

In the context of ride-hailing, this would mean the use of an optimal pricing and matching

strategy. Note that Assumption 2 implies that R(N) is always achievable with an equal

treatment policy. For simplicity, we will assume that R(·) is continuous.5

It is possible that there is no feasible solution of Problem (4.4) that is able to maintain

a flexible supply market (e.g., when NF > 0). This can happen if NP is too high, or if there

is generally not enough revenue in the market for the flexible supply. Our first intermediate

result characterizes the situations where solutions with hybrid supply exist.

4The definition of R(·) implicitly assumes that the maximum in AR(N) always exists for any N .

5Many results do not require this assumption, see the proofs for more details.
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Lemma 4 (Existence of equal treatment solutions with hybrid supply). Suppose Assump-

tion 1 and Assumption 2 hold. Then, Problem (4.4) has a feasible solution with NF > 0 if

and only if there exists N > NP such that rN ⩽ γR(N).

Intuitively, under equal treatment with hybrid supply, the average hourly revenue of each

supply type equals the total average hourly revenue: RF/NF = RP/NP = (RP +RF )/(NP +

NF ). For any total supply hours N , the latter quantity is bounded above by R(N)/N .

In turn, if R(N)/N < r/γ then flexible supply will not enter the market in equilibrium.

Conversely, when R(N)/N ⩾ r/γ for some N > NP , Assumption 2 implies the existence

of an equal treatment policy with N − NP > 0 flexible supply hours and r/γ total average

earnings.

We now define another extremely important and intuitive quantity:

Ñ ≜ max{N | γR(N) = rN}.

Ñ is the maximum total supply hours that can lead to a revenue that is consistent with

the flexible agent’s wage equilibrium. An interpretation of Ñ is that it is highest possible

amount of flexible supply in a flexible supply equilibrium: in most practical case Ñ would

be the expected amount of flexible supply in a flexible supply marketplace under an optimal

revenue policy. Note that the “only if” part in the lemma can be equivalently stated as

NP < Ñ , using the continuity of R. Intuitively, if Ñ > NP then it is possible that flexible

agents enter the market under an equal treatment policy, as their average hourly revenue

would be the same as the total average hourly revenue. However, when Ñ ⩽ NP the market

is saturated by private supply agents and any equal treatment policy will lead to zero flexible

agents in equilibrium. With this notation, we are now able to fully characterize the solutions

to Problem (4.4):

Proposition 12 (Full characterization of equal treatment policies). Suppose Assumption 1

and Assumption 2 hold. For any 0 ⩽ γ < 1 and NP > 0 the optimal solution of Problem

(4.4) can be fully described as:
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1. (Supply) NE
F = (Ñ −NP )

+ and

2. (Profit) 


(1− γ)R(Ñ) + (r − CP )NP , NP < Ñ ;

R(NP )− CPNP , NP ⩾ Ñ .

3. (Supply revenue)




RE

P = rNP/γ, R
E
F = R(Ñ)−RE

P NP < Ñ ;

RE
P = R(NP ), R

E
F = 0, NP ⩾ Ñ .

Proposition 12 completely solves Problem (4.4), but is also an natural result. Suppose

that we start with NP = 0, we only have flexible supply, so as we have seen before, we

can achieve the best possible equilibrium revenue RF = R(Ñ), with a total equilibrium

supply NF = Ñ . Suppose now that we add some private supply but less than the previous

equilibrium flexible supply: NP < Ñ . Consider the solution where we keep the same total

supply, and the private supply replaces the flexible supply, e.g., NF = Ñ −NP . We still use

this total supply the same way, therefore the total revenue is unchanged: RP +RF = R(Ñ).

As a consequence, the average revenue of supply in the market is still R(Ñ)/Ñ = r/γ. The

policy is equal treatment, so the flexible supply’s average revenue is also RF/NF = r/γ:

this is still a feasible equilibrium, and therefore this solution is feasible! Proposition 12 also

proves that this is the optimal solution for NP < Ñ . Consider now the case NP ⩾ Ñ .

There is too much total supply, and no equal treatment policy can generate enough revenue

to satisfy the equilibrium flexible supply earnings: we must have NF = 0. Consequently,

the firm only tries to use the private supply in the best possible way, and the revenue is

RP = R(NP ).

Note that the only hybrid optimal solutions with NP > 0 and NF > 0 happen when

0 < NP < Ñ . And we just discussed that the firm’s total revenue and total supply are

independent of NP for these solutions: we always have NP +NF = Ñ and RP +RF = R(Ñ).
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So the revenue is unchanged when we add or remove private supply, and for each unit

of private supply added, we remove precisely one unit of flexible supply in equilibrium.

However, the profit may change as the supply cost is not constant. The firm pays CP for

each hour of private supply and r for each hour of flexible supply in equilibrium. Combining

these facts, for each added hour of private supply in hybrid solutions, the profit changes

by r − CP , as can be seen in the profit closed form of Problem (4.4) for NP < Ñ . It is

always optimal to increase NP if CP ⩽ r and decrease NP otherwise, but this would lead to

NP ⩾ Ñ or NP = 0 and the solution would not be hybrid anymore. In summary, we just

proved a crucial negative result. If we can optimize over NP , hybrid marketplaces cannot

be better than flexible-only and private-only marketplaces if we only use equal treatment

policies. Formally, if we modify Problem (4.4) to allow the firm to choose the optimal NP :

max
NP ,NF⩾0,RP ,RF

RP + (1− γ)RF − CPNP

s.t. (RP , RF ) ∈ ET (NP , NF ),

γRF = rNF .

(4.5)

Theorem 6 (Optimality of single-type supply under equal treatment). Suppose Assump-

tion 1 and Assumption 2 hold. Given any γ ⩾ 0, there exists an optimal solution to Prob-

lem (4.5) with either NP = 0 or NF = 0.

A direct consequence is that single-type policies are also optimal if the firm can choose

γ.

4.3.2 Optimality of Equal Treatment Policies

We now assume that the firm can choose an optimal pay ratio γ6, and is not restricted

anymore to equal treatment policies. In this setting, for any NP , the optimal profit of the

6We discussed the relevance of this setting in Section 4.2.
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firm is:

max
γ,NF ,RP ,RF

RP + (1− γ)RF − CPNP

s.t. (RP , RF ) ∈ AR(NP , NF ),

γRF = rNF .

(4.6)

We will show that it is possible to achieve the optimal profit of Problem 4.6 using equal

treatment policies. Therefore, despite the fundamental incentive differences that distinguish

the supply types, the firm should not use any form of prioritization. First, to build intuition

and simplify Problem 4.6, we show that choosing the pay ratio γ is equivalent to choosing

the equilibrium flexible supply NF :

Lemma 5 (Flexible γ problem reformulation). Suppose Assumption 1 and Assumption 2

hold. For any NP , Problem (4.6) is equivalent to:

max
NF ,RP ,RF

RP +RF − rNF − CPNP

s.t. (RP , RF ) ∈ AR(NP , NF ).

(4.7)

With the optimal choice γ = rNF/RF if RF > 0, γ = 0 otherwise.

The ability of the firm to set any NF makes flexible supply very similar to private supply.

Notice the symmetry in (4.7): the only difference between private and flexible supply is that

private supply costs CP whereas flexible supply has an (indirect) cost r. Now, consider the

case where we fixNP andNF . The objective function of Problem (4.7) then simply maximizes

the total revenue RP + RF , e.g., max {RP +RF | (RP , RF ) ∈ AR(NP , NF )}. Furthermore,

Assumptions 1 and 2 state that equal treatment can achieve any feasible total revenue given

NP , NF :

{RP +RF | (RP , RF ) ∈ AR(NP , NF )} = {RP +RF | (RP , RF ) ∈ ET (NP , NF )} .

Therefore, we can replace AR with ET in Problem (4.7): the firm does not need to use

prioritization policies.e
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Theorem 7 (Optimality of equal treatment). Under Assumptions 1 and 2, for any NP ≥ 0,

if the firm can choose γ, then an equal treatment policy can achieve the optimal profit. That

is, there exists an optimal solution of Problem (4.6) verifying (RP , RF ) ∈ ET (NP , NF ).

While we derived this result, it can be counter-intuitive. The two types of supply are

fundamentally different, and NP is “fixed”, so the cost of private supply is a “sunk” cost.

Therefore, it costs nothing for the firm to use private supply, while it needs to pay the flexible

supply for the same work. Therefore one might expect that the firm would want to prioritize

private supply as it is “cheaper” to use it. Our result proves that this is not true, as long as

the firm can choose the ideal γ, which is equivalent to complete control of the flexible supply,

as shown in Lemma 5. The firm should, in particular, achieve the highest possible revenue

with its available supply, regardless of the contractor costs; and equal treatment policies can

always maximize the revenue.

Under an optimal γ, we proved that the firm can limit itself to equal treatment policies.

Suppose that the firm can also choose its private staffing NP . We can combine the previous

result with Theorem 6 to immediately show that the firm does not need to operate the two

types of supply. In fact, we can show a more precise result:

Corollary 2 (Hybrid is not optimal). Suppose that the firm chooses the pay ratio γ, the

private supply NP and can choose any policy. The optimal profit is:

max
γ,RP ,RF ,NP ,NF

RP + (1− γ)RF − CPNP

s.t. rNF = γRF ,

(RP , RF ) ∈ AR(NP , NF ).

(4.8)

If Assumption 1 holds, then any optimal solutions verify NF = 0 if CP < r and NP = 0 if

CP > r.

The result establishes that the firm uses the “cheapest” type of supply. The reformulation

(4.7) conveys this intuition, as the two supply types only differ in their hourly cost CP and
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r; this is essentially why the firm should only use the cheapest type. This section suggests

that using hybrid supply and complex prioritization strategies is unnecessary. Nevertheless,

as discussed in Section 4.2, it is often a more realistic model to consider that γ is fixed and

exogenous rather than optimized. As we will show in the following sections, prioritization

and hybrid supply will then be essential.

4.4 Optimality of Supply Prioritization

We now consider the case where the pay-out ratio γ is fixed in (0, 1) and not necessarily

optimal. We will establish that equal treatment policies may no longer be optimal for

profit, and we will characterize how supply should be prioritized. Specifically, this section

characterizes the firm’s optimal policies given any private supply NP ; we will discuss the

optimal choice of NP in the following section. Prioritization policies are significantly more

challenging to study because they are application-dependent. To obtain general results with

minimal assumptions, we will use a sensitivity analysis to see if the firm should deviate from

the best equal-treatment policy and slightly prioritize private or flexible supply to increase

profit. We will then recover a general result and fully characterize when the firm should

prioritize private or flexible supply. But first, we will reformulate the optimization problem

(4.3) (recall that (4.3) has fixed NP and γ) to simplify the subsequent analysis.

4.4.1 Reformulation to a one-dimensional optimization problem

To reformulate Problem (4.3) into a one-dimensional problem, we decompose it into several

stages. Recall that (4.3) is a three-dimensional optimization problem over RP , RF , NF . We

first fix NF and RF and derive the optimal private supply revenue RP , and we then obtain

the optimal NF given RF . This approach allows us to characterize the optimal profit as

a function of RF . For the first step, given fixed and feasible NF and RF , notice that it

is optimal for the firm to choose a policy that maximizes the private supply revenue RP .
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Specifically, we define the maximal private supply revenue function, RP (NF , RF ), and its

domain, D, by

RP (NF , RF ) ≜ max{RP | (RP , RF ) ∈ AR(NP , NF )}, (NF , RF ) ∈ D (4.9)

where

D ≜ {(NF , RF ) | ∃RP , (RP , RF ) ∈ AR(NP , NF )} .

The domain D captures that the revenue RF should be feasible with the supply NF for some

policy and some NP , but note that it does not impose the flexible supply equilibrium. Given

(NF , RF ), the firm will always chooses a policy that guarantees RP = RP (NF , RF ). We can

then optimize over the feasible pairs of (NF , RF ) in D that satisfy the equilibrium condition.

Given RF , NF is uniquely determined by the equilibrium equation rNF = γRF . Therefore,

the optimal RP in equilibrium is RP (γRF/r,RF ), and we can use this to obtain the optimal

profit as a function of RF :

Proposition 13 (Reformulation to a one-dimensional problem). Given NP ⩾ 0 and γ ∈
(0, 1), optimal solutions of Problem (4.3) verify RP = RP (NF , RF ) and the problem is

equivalent to:

max
RF s.t. (γRF /r,RF )∈D

Profit(RF ), (4.10)

where Profit(RF ) ≜ RP (γRF/r,RF ) + (1 − γ)RF − CPNP is the optimal profit given fixed

RF .

We now only need to find the feasible RF that maximizes profit. We next show that this

choice is particularly interpretable. For example, recall that the optimal equal treatment

policy verifies RF = RE
F (see Definition 3 ). Actually, we can derive that there is no better

choice of policy verifyingRF = RE
F and Profit(RE

F ) is the profit of the optimal equal treatment

policy. Generally, we are able to characterize the type of the optimal policy as a function of

RF :

Proposition 14. Suppose Assumption 1 and Assumption 2 hold. Then, given an optimal

solution RF of Problem (4.10), any policy achieving the optimal profit Profit(RF ) is:
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1. a private supply prioritization policy if RF < RE
F ,

2. a flexible supply prioritization policy if RF > RE
F ,

3. an equal treatment policy if RF = RE
F .

To see why the proposition holds, consider an optimal solution to Problem (4.10) with

strictly less flexible revenue than the optimal equal treatment solution, RF < RE
F , but with

higher profit, Profit(RF ) > Profit(RE
F ). Under Proposition 14, we must have RP > RE

P ,

otherwise both RP ⩽ RE
P and RF ⩽ RE

F would imply Profit(RF ) ⩽ Profit(RE
F ). Therefore,

RP/NP > RE
P /NP (NP is fixed). Under equal treatment, the private and flexible supply

average hourly revenues equal r/γ. However, in equilibrium, any policy preserves the same

flexible supply average hourly revenue, r/γ. Hence we have RP/NP > RF/NF , which means

that the firm prioritizes its private supply.

Proposition 14 provides a simple way of assessing whether an optimal solution is a prior-

itization or equal treatment policy: compare the flexible supply revenue of any policy with

that of the optimal equal treatment policy. Nonetheless, deriving optimal RF means solving

(4.10), which is problem-specific and arbitrarily complex. Instead, the next subsection uses

the gradient of Profit(·) at RE
F to present an intuitive and simpler characterization of the

optimality of prioritization.

4.4.2 Optimality of Prioritization

Suppose that the firm implements the optimal equal treatment solution and contemplates

whether it should deviate in order to increase profit. For example, the firm could start to

slightly prioritize its private supply. Any small change in the policy would result in a small

change, dRF , in the corresponding flexible supply revenue, RE
F , at equilibrium. The flexible

supply revenue would move from RE
F to RE

F +dRF . From Proposition 14, we know that if this

deviation leads to a higher profit, profit(RE
F + dRF ) > Profit(RE

F ), then an equal treatment

policy is not optimal. In general, if Profit(·) is differentiable and its gradient is not 0 at RE
F
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then a prioritization policy is optimal. To this end, we make the following minimal regularity

assumptions which will enable us to perform sensitivity analysis around the optimal equal

treatment solution.

Assumption 3. NE
F , R

E
F , RP (·, ·) and R(·) satisfy the following properties:

(1) NE
F > 0.

(2) (NE
F , R

E
F ) is an interior point of D.

(3) RP (·, ·) is differentiable at (NE
F , R

E
F ).

(4) R(N) is differentiable at Ñ .

In Assumption 3, (1) means that flexible supply agents are willing to work for the firm

under an equal treatment policy. As discussed in Lemma 4, this is equivalent to NP < Ñ

(see also Proposition 12). Condition (2) means that it is feasible to slightly reduce or

increase the number of flexible agent hours and their revenue (e.g., by prioritizing flexible

supply slightly). Finally, the differentiability of RP (·, ·) and R(·) in (3) and (4) is a

natural technical assumption that is only required locally around the optimal equal treatment

solution. Surprisingly, these conditions are enough to obtain an intuitive characterization of

the optimality of prioritization.

Theorem 8 (Optimality of Prioritization). Suppose Assumption 1, Assumption 2 and As-

sumption 3 hold. Then Profit(·) is differentiable in RF = RE
F and its gradient is given by:

dProfit

dRF

(RE
F ) = γ

(
1

r
R

′
(Ñ)− 1

)
(4.11)

and, therefore,

(a) if R
′
(Ñ) < r, there exists a policy that prioritizes private supply and has higher profit

than any equal treatment policies.
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(b) If R
′
(Ñ) > r, there exists a policy that prioritizes flexible supply and has higher profit

than any equal treatment policies.

Theorem 8 proves that if R
′
(Ñ) ̸= r, then the platform should deviate from equal treat-

ment policies and use prioritization. Remember that Ñ is the total supply of the optimal

equal treatment policy, and R(Ñ) is the total revenue. Therefore, R
′
(Ñ) is the marginal

revenue of supply for the platform in the optimal equal treatment policy: how much extra

revenue we can generate if we had one more unit of supply available. Remember that flexi-

ble supply costs r per hour in equilibrium, i.e., it is the marginal cost of increasing flexible

supply. Since the private supply hours are fixed, a change in total supply hours can only

come from flexible hours. The theorem then states that if the marginal revenue of adding a

flexible supply hour is dominated by their marginal cost, then it is better for the firm to deter

flexible supply entry by prioritizing its private supply, and vice-versa. In sum, Theorem 8

provides an intuitive and crisp characterization of the optimality of prioritization, and en-

tails thinking about the marginal benefits and costs of incentivizing/deterring flexible supply

agents by means of prioritization alone. The next subsection will formalize this intuition.

Notice that Theorem 8 establishes conditions under which prioritization is always better

than equal treatment. However, our description of which supply type should be prioritized is

only valid for small deviations around the optimal equal treatment policy. It is for example

possible in some settings that the optimal policy prioritizes private supply even if R
′
(Ñ) > r.

Nonetheless, if R(·) is concave, we can extend our result and prove our strongest result: the

relationship between R
′
(Ñ) and r uniquely determines the type of prioritization. Note that a

concave maximum revenue function is a natural model for many applications, where supply

has diminishing returns to scale.

Theorem 9 (Complete Characterization of Prioritization). Under the assumptions of The-

orem 8, if R(N) is also strictly concave, then any optimal policies are:

• equal treatment policies if R
′
(Ñ) = r,
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• private supply prioritization policies if R
′
(Ñ) < r,

• flexible supply prioritization policies if R
′
(Ñ) > r.

4.4.3 Characteristics of Supply Prioritization

We want to build on Theorem 9 better understand the use of prioritization policies. First, if

the firm could choose the optimal pay ratio γ, it would solve Problem 4.6, with an optimal

solution (γ⋆, N⋆
F , R

⋆
P , R

⋆
F ) (which is equal-treatment, using Theorem 7). Let Ñ⋆ ≜ NP +N⋆

F

be the associated optimal total supply hours. Then Theorem 8 implies that we haveR
′
(Ñ⋆) =

r. Intuitively, Ñ⋆ is the “optimal” level of supply, in that the marginal revenue of supply

R
′
(Ñ) is equal to the marginal cost of supply r (this is the cost of flexible supply as NP

is fixed). However, if γ ̸= γ⋆ is fixed and not optimal, the firm does not have enough

control over the flexible supply. Under equal-treatment policies, it may be over-supplied

when Ñ > Ñ⋆ or under-supplied when Ñ < Ñ⋆. The following result shows that we can

adapt Theorem 9 and characterize the use of prioritization policies in terms of the supply

levels of the market.

Proposition 15 (Prioritization corrects supply imbalance.). Under the assumptions of The-

orem 9, we have:

R
′
(Ñ) = r if and only if Ñ = Ñ⋆. (perfectly-supplied market, equal treatment is optimal)

R
′
(Ñ) < r if and only if Ñ > Ñ⋆. (over-supplied market, private-prioritization is optimal)

R
′
(Ñ) > r if and only if Ñ < Ñ⋆. (under-supplied market, flexible-prioritization is optimal)

Moreover, compared to the optimal equal treatment policy, optimal private supply priori-

tization policies always reduce the total supply, and optimal flexible supply prioritization

policies always increase the total supply.

When the market is over-supplied (Ñ > Ñ⋆), the firm should prioritize its private supply.

This will lower the flexible supply revenue, which will decrease the total supply available in
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equilibrium. In other words, we increase profit by increasing the productivity of private

supply, and the associated loss of flexible supply is not important because we have too much

supply. Conversely, when the market is under-supplied, we can prioritize flexible supply to

increase the total supply and revenue significantly in equilibrium. As the market is under-

supplied, the substantial revenue increase due to added flexible supply in equilibrium more

than compensates for the loss of private supply revenue. Overall, our result states that

prioritization can increase profit by trying to restore the supply balance in the market.

It is worth noticing that there are potential downsides related to implementing prioriti-

zation policies. First, firms may forget to anticipate equilibrium effects and always prioritize

private supply. Indeed, it can be tempting for a firm that just hired employees to keep

them as busy as possible instead of using contractors. This strategy would work in the

short term before contractors choose to leave the market. Formally, given fixed NP , NF and

under Assumptions 1,2,4, the firm can always increase profit by prioritizing private sup-

ply and will always decrease profit by prioritizing flexible supply. However, once the new

equilibrium is reached, private supply prioritization will actually reduce profit if Ñ < Ñ⋆,

while flexible supply prioritization will increase profit. Another potential negative impact

of profit-maximizing prioritization strategies is their consequences on supply and revenue.

For instance, prioritizing private agents may improve the firm’s profit, but it also reduces its

available supply and total revenue (affecting its service levels), which may not be desirable.

We formalize this intuition in Proposition 19 in the Appendix.

So far, we have proved that, given existing private supply NP , the firm could increase

profit with prioritization policies. Nevertheless, it is not clear that this increase in profit is

enough to justify operating a hybrid marketplace, as we will explore in the following section.
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4.5 Optimality of Hybrid Marketplaces

This section investigates whether it is optimal for the firm to use both private and flexible

supply. We already showed in Corollary 2 that using hybrid supply is not optimal if the

firm can choose the optimal γ. Furthermore, even if γ is fixed, Theorem 6 shows that hybrid

supply is not optimal if we limit ourselves to equal treatment policies. We will show that,

with fixed γ, hybrid marketplaces can actually be optimal if we use prioritization policies.

We will study the following problem, with fixed γ ∈ (0, 1) and optimal NP :

max
RP ,RF ,NF ,NP

RP + (1− γ)RF − CPNP

s.t. rNF = γRF ,

(RP , RF ) ∈ AR(NP , NF ).

(4.12)

Our goal is to understand if NP > 0, NF > 0 can be optimal in (4.12), and we will see that

this question is complex and needs careful modeling of prioritization policies.

4.5.1 Flexible supply is not needed if private supply is cheap.

When Cp < r, the solution to Problem (4.12) is simple:

Proposition 16 (Cheap private supply is optimal). Suppose Assumption 1 holds. If CP < r,

all optimal solutions to Problem (4.12) verify NF = 0.

The intuition behind this result is also simple. Remember that if the platform can choose

γ, Lemma 5 shows that the two types of supply are “symmetric”, as the firm can fully control

NP and NF . Therefore, fixing γ imposes an additional constraint on flexible supply, making

it less useful and creating potential over-supply or under-supply situations. Therefore, if

CP < r, private supply is cheaper and easier to control: the firm should only use it.

In the case of ride-hailing, it is because autonomous vehicles are expected to have a lower

operating cost (i.e., CP < r) ((Hazan et al., 2016), (Fagnant and Kockelman, 2018), (Litman,
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2023)) that the industry is working on introducing this new supply source. Our proposition

then shows that this has the potential of making human drivers disappear from the market.

4.5.2 The inefficiency of prioritization

In the case CP > r, we will prove that it is not necessarily optimal to have NP = 0. Nonethe-

less, the firm will need to deviate significantly from equal treatment strategies to increase

profit enough to justify the higher cost of private supply. This strong prioritization may,

in turn, introduce certain inefficiencies. In ride-hailing, prioritizing a given driver means

that we may have to match them to arriving riders even if other de-prioritized drivers are

closer. Therefore, implementing prioritization would increase the riders’ average wait time

compared to optimal equal treatment strategies. In turn, riders with an extended pickup

time are more likely to cancel or switch to another app, and therefore prioritization would

lead to revenue losses. (Krishnan et al., 2022) describes this phenomenon empirically for the

ride-sharing platform Lyft. This phenomenon is also true in our model; prioritization may

prevent the firm from achieving the maximum revenue attainable with its supply. Formally

defining this ‘prioritization inefficiency” effect is a necessary first step toward understand-

ing the optimality of hybrid marketplaces. Let α ⩾ 0 denote the level of private supply

prioritization:

α ≜ RP/NP

r/γ
.

The level of private supply prioritization measures how different the average revenue of

private supply is from the average revenue of flexible supply in equilibrium. Recall that by

Equation (4.1), the average revenue of flexible supply (i.e. RF/NF ) equals r/γ. Therefore,

given a feasible solution of (4.12) with NF > 0, if α = 1, the two types of supply are equally

treated; if α > 1, the private supply is prioritized; and if α < 1, the flexible supply is

prioritized. However, not all prioritization levels α are feasible given an available supply.

We say the prioritization level α is achievable given the supply (NP , NF ) if and only if there

exists RF ⩾ 0 such that (αrNP/γ,RF ) ∈ AR(NP , NF ).
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Given a supply (NP , NF ) and a chosen feasible level of prioritization α, we now define

the corresponding efficiency loss ∆Rα(NP , NF ) ⩾ 0. It is the gap between the maximum

revenue achievable without fixing α, e.g., R(NP +NF ), and the maximum revenue achievable

with α:

∆Rα(NP , NF ) ≜ min
RF⩾0

R(NP +NF )− αrNP/γ −RF

s.t. (αrNP/γ,RF ) ∈ AR(NP , NF ).

(4.13)

Note that the private supply revenue under prioritization α is RP = αrNP/γ, and (4.13)

finds the maximum flexible revenue RF compatible with this prioritization. ∆Rα(NP , NF ) is

the firm’s revenue loss induced by a given private supply prioritization level. As we expect

the inefficiency loss to scale with the amount of (de-)prioritized private supply, a quantity

of interest is the ratio between the efficiency loss and the available private supply hours.

We normalize this ratio with the equilibrium flexible earnings r, and define the coefficient of

prioritization inefficiency βα(NP , NF ) ⩾ 0:

βα(NP , NF ) ≜
∆Rα(NP , NF )

rNP

To better understand the meaning of α and βα, consider an optimal equal treatment

solution with supply NP , NF > 0 (e.g., an optimal solution to Problem 4.4) As we have

RP/NP = RF/NF = r/γ, this corresponds to α = 1. And because of Proposition 12, we know

that the total revenue RP + RF = R(NP + NF ) is maximal and therefore β1(NP , NF ) = 0.

In summary, there is no prioritization and no efficiency loss. Suppose now that, fixing the

same available supply (NP , NF ), the firm decides to prioritize private supply and double their

revenue, e.g., RP/NP = 2(r/γ) and α = 2. If we are in a situation where β2(NP , NF ) = 0,

then there is no inefficiency and the total revenue stays equal to r/γ(NF + NP ): we have

RF = r/γ(NF −NP ). Suppose now that there is an inefficiency β2(NP , NF ) = 1. Then, the

total revenue is now reduced by rNP , which means that we have RF = r/γ(NF −NP )−rNP .

In other words, to double the revenue of each private supply hour, we pay the equivalent of the

flexible hourly earnings r in prioritization inefficiencies. In short, the notation α, βα captures

118



the fact that the firms can choose various levels of prioritization, each choice corresponding

to a particular inefficiency that is application-dependent.

4.5.3 Introducing expensive private supply to increase profit

We now have the tools to introduce our main result. We define Profit(NP ) to be the optimal

firm profit with private supply NP given a fixed γ, that is, the optimal objective of Prob-

lem (4.3). In the case of “expensive” private supply, CP > r, we want to know when a firm

should still invest in private supply and choose NP > 0. This question is particularly rele-

vant: marketplaces may wonder if they should hire employees, despite their higher costs. We

again use a sensitivity analysis approach and find when Profit(dNP ) > Profit(0) for a small

amount of private supply dNP . Formally, we want to evaluate the derivative dProfit
dNP

(NP = 0)

and understand when it is positive. We will need a few technical assumptions to make sure

that dProfit
dNP

(NP = 0) is well defined. In particular, our prioritization parameters α and βα

must be well-defined in the limit where NP is very small:

Definition 4. We say that α and βα are well-defined at NP = 0 if:

(1) There exists a neighborhood of point (NP = 0, NF = Ñ) such that α is achievable at

any point in the neighborhood.

(2) βα(·, ·) is continuous in a neighborhood of (0, Ñ), and βα
0 is the limit of βα(·, ·) at

(0, Ñ).

(3) The continuous extension of βα(·, ·) is differentiable at point (0, Ñ) .

These conditions are purely technical and should hold in most settings. For example,

without Condition (1), the statement “the firm can prioritize an infinitesimal amount of

private supply at level α” would not have any mathematical meaning. Condition (2) and (3)

are two technical assumptions to make sure that the inefficiency coefficient is well defined

for infinitely small NP , and to ensure that dProfit
dNP

(NP = 0) is well defined. When α and
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βα(NP , NF ) are well-defined at NP = 0, it is mathematically meaningful to say that the

firm will be able to prioritize an infinitesimal amount of supply dNP at level α and with

inefficiency coefficient βα
0 . Formally, the revenue of private supply will be RP = αrdNP/γ

and the corresponding efficiency loss will be ∆Rα(NP , NF ) = rβα
0 dNP + o(dNP ).

In addition, we also assume that Assumption 1 hold and that R
′
(Ñ) < r/γ. It can be

easily proven that we always haveR
′
(Ñ) ⩽ r/γ, so we just need to avoid the “pathological”

case R
′
(Ñ) = r/γ. We can finally derive the closed-form of dProfit

dNP
(NP = 0) and characterize

when marketplaces should invest in private supply:

Theorem 10 (Profit impact of introducing private supply). Given a well-defined α and βα

at NP = 0, the gradient of the optimal profit in equilibrium at NP = 0 can be expressed as:

dProfit

dNP

(NP = 0) =

(
α
r

γ
− CP

)
− (1− γ)

r

γ
·
(
1 +

(α− 1) + γβα
0

1− γR
′
(Ñ)/r

)
. (4.14)

It is optimal to introduce private supply into the market with the level of prioritization α if:

dProfit

dNP

(NP = 0) ⩾ 0 ⇐⇒ (α− 1)
1−R

′
(Ñ)/r

1− γR
′
(Ñ)/r

⩾ (1− γ)βα
0

1− γR
′
(Ñ)/r

+
CP

r
− 1.

(4.15)

Theorem 10 describes precisely how the firm’s profit will change if it introduces private

supply and chooses a prioritization level α with corresponding inefficiency βα
0 . While the

expressions seem complicated, we will show that they are quite intuitive.

Consider Equation (4.14). The first term α r
γ
−CP is the marginal profit change due to the

added private supply. Indeed, αr/γ is the revenue of private supply (note that ∂RP

∂NP
= αr/γ),

and CP is the marginal cost of private supply. Correspondingly, the second term is the

marginal profit change of the flexible supply. The first factor (1 − γ)r/γ is the average

profit the firm gets from one hour of flexible supply: 1 − γ is the commission rate of the

platform, and r/γ is the equilibrium revenue of flexible supply). Therefore, the last term

is the marginal change in flexible supply due to the introduction of private supply and the
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effect of prioritization:
dNF

dNP

(NP = 0) = −1− (α− 1) + γβα
0

1− γR
′
(Ñ)/r

The first term,‘−1”, is the replacement effect: under an equal treatment policy, each added

unit of private supply replaces exactly one unit of flexible supply (as shown in Proposition 12).

The second term is the effect of prioritization. The denominator is always positive, so it is

a decreasing function of α and βα
0 : the more private supply prioritization and the more

inefficient it is, the more we reduce the flexible supply.

If the firm uses an equal treatment policy, we have α = 1 and βα
0 = 0. Therefore,

Equation (4.14) becomes dProfit
dNP

(NP = 0) = r − CP , and we obtain the same result as in

Proposition 12.

By re-arranging the derivative of profit, expression (4.15) in the theorem establishes a

condition on α, βα
0 and the parameters of the problem so that it is optimal to introduce

private supply in the marketplace. The following subsection will analyze this expression to

show why platforms can increase profit using hybrid supply and prioritization strategies.

4.5.4 Discussion: why is hybrid optimal?

Let us start with the special case βα
0 = 0, where the firm is able to prioritize supply without

any efficiency loss. Equation (4.15) becomes:

(α− 1)
1−R

′
(Ñ)/r

1− γR
′
(Ñ)/r

⩾ CP

r
− 1. (4.16)

The above inequality compares the benefits of a prioritization policy with level α (left-hand

side) to the costs of paying for the new private supply (right-hand side). The right-hand side

of Equation (4.16) is positive and represents how expensive private supply is. For example,

if CP/r − 1 = 0.1, then private supply is 10% more expensive than flexible supply. The

left-hand side is the benefit that the firm can gain from the prioritization policy, and it must

be high enough to be above the right-hand term if we want to increase profit. Specifically,

(α − 1) describes the strength of prioritization: a high positive number is a strong private
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supply prioritization, while a negative number close to -1 represents a strong flexible supply

prioritization. The other term (1 − R
′
(Ñ)/r)/(1 − γR

′
(Ñ)/r) is a marketplace correction

term. It is a function of the ratio R
′
(Ñ)/r, As we will see, it will modulate the effects of

prioritization based on supply level.
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Figure 4.1: Geometrical example of the marketplace correction term with γ = 0.5.

Over-supplied market Recall from Section 4.4 that when the market is over-supplied,

R
′
(Ñ) < r, it is optimal to prioritize private supply. This is consistent with Equation (4.16).

When the market is over-supplied, the correction term is positive (red curve in Figure 4.1).

Therefore, the only way for Equation (4.16) to hold is to have α > 1:we need to prioritize

private supply. The correction term reaches one when R
′
(Ñ)/r goes to zero: the more over-

supplied a market is, the lesser the magnitude of prioritization needed to make hybrid supply

worth it. In the best case, when R
′
(Ñ) = 0, Equation (4.16) becomes α ⩾ CP/r. This is

very intuitive: if private supply is twice as expensive as flexible supply (CP/r = 2), we need

to be able to at least double the productivity of private supply for it to be worth it: α ⩾ 2.

However, suppose the market is not too over-supplied, and R
′
(Ñ)/r gets close to 1. In that

case, the correction term goes to 0, and prioritization is much less efficient. We need a much
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stronger prioritization to justify introducing private supply.

Under-supplied market If R
′
(Ñ) > r, the market is under-supplied. The correction

term (blue curve in Figure 4.1) is negative, and the only way for the left-hand side of

Equation (4.16) to be positive is to have α < 1 and prioritize flexible supply (confirming our

previous results). Similarly, the more under-supplied the market is (large values of R
′
(Ñ)),

the stronger the correction term is. Then, we only need to slightly prioritize flexible supply

for Equation (4.16) to hold. Intuitively, when R
′
(Ñ) is high, giving just a little extra revenue

to flexible supply with prioritization can push the equilibrium significantly and add a lot of

flexible supply and revenue to the market. Conversely, if we are only slightly under-supplied

and R
′
(Ñ) is close to 1, it may not be profitable to add private supply.

Perfectly supplied market The market is perfectly supplied when R
′
(Ñ) = r, in which

case the left-hand side of Equation (4.16) is zero. As CP > r, it is never optimal to introduce

private supply. We already had this result, as Section 4.4.2 shows that equal treatment is

optimal when R
′
(Ñ) = r, and Theorem 6 proves that hybrid is not optimal in that case.

Inefficiency loss Now that we have a complete understanding of what drives the optimal-

ity of hybrid marketplaces in the absence of inefficiencies (e.g., βα
0 = 0), let us return to the

general case in Equation (4.15). The inefficiency term affects the profitability of introducing

private supply in two aspects. First, since βα
0 is always non-negative, the above discussion

becomes necessary conditions such that it is optimal to introduce private supply. If Equa-

tion (4.16) does not hold, there is no way to make Equation (4.15) hold. After all, any loss

in efficiency will reduce the revenue hurting the firm’s profitability. Second, βα
0 should be

an increasing function of α in practice, as a stronger prioritization (α much lower or higher

than 1) should lead to a higher inefficiency. This makes it harder for the firm to use the

necessary high levels of prioritization to increase profit.

In summary, Theorem 10 states that the following factors are needed for it to be profitable

to introduce expensive private supply:

123



• The private supply cost CP must not be too high compared to r.

• The market needs to be either significantly under-supplied or over-supplied.

• The firm needs to be able to prioritize the correct supply-type strongly enough.

• This prioritization must not be too inefficient.

Optimality of hybrid marketplaces. This section focused on showing when hybrid supply

was more profitable than flexible supply only as we thought that was the most relevant

question in practice. However, we did not show that hybrid supply is also better than private

supply-only, and therefore we did not show that hybrid supply was optimal. Nevertheless, it

turns out that it is easy to construct examples where the use of prioritization makes hybrid

supply more profitable than the private-only and flexible-only alternatives:

Theorem 11 (Hybrid Marketplaces and Supply Prioritization). There exist firms for which

all optimal solutions of (4.12) have hybrid supply. All such optimal solutions use prioritiza-

tion.

4.6 Conclusion

In this work, we study the staffing and supply management problems faced by a profit-

maximizing firm that operates in a hybrid marketplace composed of private and flexible

agents. We take a general approach by introducing an axiomatic framework that captures

a broad range of applications. For example, private agents can be employees, rental units

owned by a company (in the case of AirBnB), or autonomous vehicles. In contrast, flexible

agents can be contractors, homeowners, or gig-economy workers. A critical insight is that,

instead of capturing all the potential complexities associated with the firm’s policies, we

model the policies via the achievable revenues that supply agents can garner and then study

supply prioritization in the space of achievable revenues.
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Optimal prioritization policy Optimal Staffing

Supply of the

optimal equal

treatment policy

Balanced-supply

(optimal

commission

rate)

Equal Treatment Cheapest supply only

Under-supplied Flexible prioritization
Hybrid may be optimal

Over-supplied Private prioritization

Table 4.1: Summary of the key results

Table 4.1 summarizes our main findings for the optimality of prioritization and staffing

policies. When both types of supply are available, we find that the major benefit of a

prioritization policy is to restore the supply balance. Indeed, the optimal prioritization

strategy is a function of the supply imbalance induced by the optimal equal treatment policy.

In particular, if the supply is perfectly balanced, there is no need to prioritize. If the market

is under-supplied, it is optimal to prioritize flexible supply and increase the total supply. In

contrast, if the market is over-supplied, it is optimal to prioritize private supply and reduce

the size of the total supply. Based on this result, we establish that the firm should only

use the cheapest supply type if the total supply is perfectly balanced. However, a hybrid

marketplace may be optimal when the supply is not balanced.

We believe our model can be used as a foundation for studies that aim to explicitly

uncover the role prioritization plays in hybrid marketplaces for specific settings. For instance,

prioritization may take an explicit and rich form when prices, service level, and associated

demand response are incorporated into a model. Finally, it would be interesting to relax

our central symmetry assumption (Assumption 1) based on specific settings. For example,

autonomous vehicles may be more limited and slower than human drivers, and the firm may

have more control over the work of employees than independent contractors, which could

lead to richer results and is another exciting direction for future work.
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CHAPTER 5

Conclusion

In this thesis, we explore the aggregate-level effects of new technologies on society by ex-

amining how individual-level changes translate into broader societal impacts. Our approach

combines the theories from statistics, economics, and operations research to address timely

issues alongside technological advancements. Below, we summarize each chapter’s findings

and propose potential future research directions.

Chapter 2 presents a Bayesian model to study the societal consequences of human-AI in-

teractions where users rationally interact with a generative AI, facing the trade-off between

output fidelity and communication cost. We demonstrate that individual interactions with

generative AI can lead to societal challenges. The outputs are homogenized, meaning that

the AI-generated content has a lower variance than the users’ original preference distribu-

tion. And this effect is amplified when AI-generated content is re-used to train the next

generation of AI, potentially leading to a “homogenization death spiral.” Furthermore, we

also investigate the effects of AI bias, identifying who benefits or loses when using a biased

AI model. Our findings show that censoring bias, which marginalizes unique preferences,

negatively impacts population utility, especially for users with uncommon preferences. Di-

rectional biases, such as a slight political leaning, can influence the users’ chosen output,

leading to a societal bias. However, our research suggests that designing models to facilitate

human-AI interactions can mitigate these risks and preserve output diversity.

In Chapter 3, we analyze the impact of introducing AVs into a fleet of HVs on ride-

hailing platforms. We develop a game-theoretical queueing model where a platform aims to
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maximize profit, while HVs make strategic decisions based on potential earnings compared

to an outside option. Our findings indicate that incorporating AVs can degrade service

levels by driving HVs out of the market. This reduction in service levels is not evenly

distributed. High-demand areas are able to maintain a reasonable service level, while remote

areas experience a larger decline in service level. By using a detailed simulation, we further

confirm these theoretical results still hold in a more realistic setting.

Chapter 4 extends the analysis of Chapter 3 to a “hybrid marketplace” consisting of both

private and flexible supply agents. We develop a general framework for supply prioritization

that applies to various settings, including any firm with a mix of employees and contractors.

Our main results show that, without prioritization, operating with a hybrid supply is never

optimal for maximizing profit. A prioritization strategy can make it optimal for the firm

to have a hybrid supply, even if the private supply is costly. In particular, prioritizing

private supply can makes private agents profitable but also reduce flexible supply. Therefore,

the choice of prioritization depends on market conditions. Prioritizing the private supply

is favored in an “over-supplied” market, while flexible supply should be prioritized in an

“under-supplied” market.

For future research, we propose several directions. First, as discussed in Chapter 2,

we have demonstrated that individual rational decisions in AI interactions may lead to the

societal issues of homogenization and bias. It means that the implication of utilizing AIs

is not a simple cost reduction or productivity enhancement. There are a lot of potential

side effects awaiting exploration and understanding. At the individual level, it is crucial

to comprehend people’s perceptions and attitudes towards AI, as well as how these may

shift with increasing AI integration into everyday life. Empirical experiments and data

analyses can shed light on these nuances. Furthermore, as suppliers increasingly incorporate

AI into their services and products, it becomes important to understand how customer

demand may change when products are AI-produced rather than crafted by humans. The

ultimate outcome likely reflects an equilibrium between supply-side goals and demand-side
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preferences. In addition, another question is how to design a better system or mechanism that

fosters human-AI collaborations and avoids potential pitfalls. For a market with conflicting

interests among stakeholders, it will be valuable to explore any partnership or contract that

is incentive-compatible and balance the interests of all parties involved. For example, a

profit-maximizing firm may actually prefer an AI that primarily focuses on frequent internet

users and marginalize others to generate a higher profit. This raises the question of how

a social planner can mitigate such inequalities while ensuring the firm’s profitability. We

believe the research presented in this thesis provides a solid foundation for addressing these

complex questions and exploring these avenues further.
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APPENDIX A

Human-AI Interactions and Societal Pitfalls

A.1 Characterization of Optimal Decision

In this section, we characterize the user’s optimal decision. We first show the closed form of

the fidelity error e(θ, σq) and illustrate how the user’s decision may impact the error. Then,

the optimal solution to Problem (2.4) is derived. As in Section 2.4, we assume µA = µθ and

σA = σθ.

Let’s first explore how the fidelity error e(θ, σq) varies with respect to 1/σq.

Proposition 17. For any θ, σq, the fidelity error is

e(θ, σq) =
σ2
q (σ

4
θ + σ2

q (µθ − θ)2)

(σ2
θ + σ2

q )
2

(A.1)

Furthermore,

• e(θ, σq) increase in d(θ).

• limσ2
q→0 e(θ, σq) = 0, limσ2

q→∞ e(θ, σq) = d(θ)2

• If d(θ) ≥ σθ/
√
2, e(θ, σq) is monotonically increasing in σq; if d(θ) < σθ/

√
2, there

exists a threshold t > 0 such that e(θ, σq) increases in 1/σq ∈ (0, t) and decreases in

1/σq ∈ (t,∞).

Proposition 17 reveals that for any given σq, the uniqueness of a user’s preference results

in a larger error. And if the user provides no information and simply accepts the default

129



output, the fidelity error increases the uniqueness metric, d(θ). Conversely, if the user offers

substantial information, the fidelity error approaches zero. More intriguingly, the third part

of Proposition 17 suggests that the fidelity error is monotonically decreasing in 1/σq only

when the uniqueness d(θ) is sufficiently large (as demonstrated in the left panel of Figure A.1).

In other words, if a user’s preference significantly deviates from the average, any additional

information to articulate their preference can yield a reduction in the AI’s fidelity error.

However, when a user’s preference aligns closely with the majority (i.e., d(θ) < σθ/
√
2),

there exists a threshold, t such that if the user is reluctant to provide sufficient information

such that 1/σq > t, sending little information may backfire, causing the user to be worse off

than if they provided no information.
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Figure A.1: Left panel: the fidelity error with respect to 1/σ2
q . Right panel: the decomposi-

tion of fidelity error for θ = 1. In both panels, We use µθ = 0 and σ2
θ = 9.

To further investigate the cause of the non-monotonic fidelity error, as introduced in

Section 2.3, we can decompose the fidelity error into a bias and a variance term,

e(θ, σq) = V ar(θA|θ) + [E(θA|θ)− θ]2,

We call V ar(θA|θ) the fidelity uncertainty error denoted by eu(θ, σq), and [E(θA|θ)− θ]2 the

fidelity bias error denoted by eb(θ, σq). This decomposition is depicted in the right panel

of Figure A.1, highlighting that the non-monotonic fidelity error is primarily driven by the
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variance component. Intuitively, when a user knows that the AI’s default output µθ is closely

aligned with their preference without the need for further information, any vague information

could introduce ambiguity and cause the AI to deviate from the user’s true preference. For

example, in Example 1, users with a neutral opinion may find it advantageous to accept the

AI’s default output (suppose µθ = 0). If they were to loosely explain their reasoning without

detailing specifics, they risk introducing noisy information and receiving a less desirable

result. Hence, if you’re not inclined to invest enough effort in providing precise information

and you’re aware your preference aligns closely with the AI’s default output, it may be

beneficial to exert less effort or allow the AI to make decisions on your behalf. In other

words, offering nothing may be preferable to providing ambiguous information.

By Proposition 17, we can solve Problem (2.4) and derive the following Lemma 6.

Lemma 6. The optimal solution to Problem (2.4) is

σ⋆
q =





√
w⋆σ2

θ

1− w⋆
d(θ) ≥ τd

∞ otherwise

(A.2)

where w⋆ =
−σ2

θ +
√
σ4
θ + 4λ((θ − µθ)2 − σ2

θ)

4((θ − µθ)2 − σ2
θ)

, and τd > 0 is a threshold that strictly in-

creases in λ and is not less than

√
max{0, σ2

θ −
σ4
θ

4λ
}. In particular, τd =

1

2
σ2
θ +

1

4
λ when

λ > σ2
θ .

It is not trivial to solve Problem (2.4), since the objective function is neither concave nor

convex when d(θ) is small. This non-convexity emerges from the non-monotonicity of the

fidelity error, as outlined in Proposition 17. Lemma 6 implies that the users with common

preferences are best suited to send no information. As discussed previously, these users may

find it advantageous to rely on the AI’s default output instead of introducing ambiguity.

A.1.1 Proof of the Results in Appendix A.1.

Proof. Proof of Proposition 17.
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By the definition of e(θ, σq),

e(θ, σq) = E[(θA(σ
2
q )− θ)2|θ]

=E

[(
σ2
θ

σ2
θ + σ2

q

(θ + ϵq) +
σ2
q

σ2
θ + σ2

q

· µθ − θ

)2 ∣∣∣θ
]
=
σ2
q (σ

4
θ + σ2

q (µθ − θ)2)

(σ2
θ + σ2

q )
2

• limσ2
q→0 e(θ, σq) = limσ2

q→0

σ2
q (σ

4
θ + σ2

q (µθ − θ)2)

(σ2
θ + σ2

q )
2

= 0. And by L’Hôpital’s rule:

lim
σ2
q→∞

e(θ, σq) = lim
σ2
q→∞

σ2
q (σ

4
θ + σ2

q (µθ − θ)2)

(σ2
θ + σ2

q )
2

= lim
σ2
q→∞

σ4
θ + 2σ2

q (µθ − θ)2

2(σ2
θ + σ2

q )

= lim
σ2
q→∞

2(µθ − θ)2

2
= (µθ − θ)2

• Take the derivative of e(θ, σq) with respect to σ2
q :
∂e(θ, σq)

∂σ2
q

=

∂
σ2
q (σ

4
θ + σ2

q (µθ − θ)2)

(σ2
θ + σ2

q )
2

∂σ2
q

=

σ2
θ(σ

4
θ + σ2

q (2(µθ − θ)2 − σ2
θ))

(σ2
θ + σ2

q )
3

which is non-negative for all σq ≥ 0 if and only if (µθ −

θ) ≥ σθ/
√
2. And when (µθ − θ) < σθ/

√
2, e(θ, σq) increases for

σq ∈
(
0,

√
σ4
θ

σ2
θ − 2(µθ − θ)2

)

and decreases for

σq ∈
(√

σ4
θ

σ2
θ − 2(µθ − θ)2

,∞
)

so t =

√
σ2
θ − 2(µθ − θ)2

σ4
θ

.

Proof. Proof of Lemma 6. Let w ≜
σ2
q

σ2
q + σ2

θ

, and by Proposition 17, we can rewrite Problem

(2.4) as:

w⋆(θ) ≜ argmin
w∈[0,1]

w(1− w)σ2
θ + w2(µθ − θ)2 − λ

2
lnw (A.3)

132



Let l(w) ≜ w(1 − w)σ2
θ + w2(µθ − θ)2 − λ

2
lnw. On the boundary, we have l(0) = ∞ and

l(1) = (µθ − θ)2.

Take the first-order condition: l′(w) =
∂l

∂w
(w) = 2((µθ − θ)2 − σ2

θ)w + σ2
θ −

λ

2w
= 0 we

can get the roots of the above equation are

w1 =
−σ2

θ +
√
σ4
θ + 4λ((µθ − θ)2 − σ2

θ)

4((µθ − θ)2 − σ2
θ)

, w2 =
−σ2

θ −
√
σ4
θ + 4λ((µθ − θ)2 − σ2

θ)

4((µθ − θ)2 − σ2
θ)

Moreover, we have to make sure w⋆(θ) ∈ [0, 1] and l(w⋆(θ)) ≤ (µθ − θ)2 because Problem

(2.4) is non-convex.

1. (µθ − θ)2 ≥ σ2
θ

Because w⋆(θ) ≥ 0 but w2 < 0, it is only possible to have w⋆(θ) = w1. Also, w1 ≤
1 ⇐⇒ −σ2

θ+
√
σ4
θ + 4λ((µθ − θ)2 − σ2

θ) ≤ 4((µθ−θ)2−σ2
θ) ⇐⇒ (µθ−θ)2 ≥

1

2
σ2
θ+

1

4
λ

Additionally, when (µθ − θ)2 ≥ σ2
θ ,

∂l

∂w
is negative for w < w1 and positive for w > w1,

so l(w⋆(θ)) < l(1) = (µθ − θ)2. Therefore, when (µθ − θ)2 ≥ σ2
θ , w

⋆(θ) = w1 is optimal

if (µθ − θ)2 ≥ σ2
θ/2 + λ/4; otherwise, w⋆(θ) = 1 is optimal.

2. (µθ − θ)2 < σ2
θ

In what follows, let us discuss when we have the optimal solution w⋆(θ) < 1. First,

to make sure l′(w) = 0 has a real root (otherwise, w⋆(θ) = 1 is optimal), we need

σ4
θ + 4λ((µθ − θ)2 − σ2

θ) ≥ 0. That is, (µθ − θ)2 ≥ σ2
θ − σ4

θ/(4λ). In addition, we can

see that l′(w) is negative for w < w1 or w > w2. And l
′(w) is positive for w ∈ (w1, w2)

Thus, the local minimum is at w = w1, and the local maximum is at w = w2. This

means w = w2 is never optimal.

Feasibility of w = w1:

First, because (µθ − θ)2 < σ2
θ , we must have w1 > 0. Second, we want to find the
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conditions such that w1 ≤ 1

w1 =
−σ2

θ +
√
σ4
θ + 4λ((µθ − θ)2 − σ2

θ)

4((µθ − θ)2 − σ2
θ)

≤ 1

⇐⇒
√
σ4
θ + 4λ((µθ − θ)2 − σ2

θ) ≥ 4(µθ − θ)2 − 3σ2
θ

The above inequality always holds if (µθ − θ)2 ≤ 3σ2
θ/4, otherwise

⇐⇒ σ4
θ + 4λ((µθ − θ)2 − σ2

θ) ≥ (4(µθ − θ)2 − 3σ2
θ)

2 ⇐⇒ (µθ − θ)2 ≥ 1

2
σ2
θ +

1

4
λ

This implies that if λ ≤ σ2
θ , we always have w1 ≤ 1. Thus, if λ ≤ σ2

θ , we only need

(µθ − θ)2 ≥ σ2
θ − σ4

θ/(4λ) such that w = w1 ∈ [0, 1]. Otherwise, w⋆(θ) = 1 is optimal.

If λ > σ2
θ , we need (µθ − θ)2 ≥ max{σ2

θ/2 + λ/4, σ2
θ − σ4

θ/(4λ)}. However, notice that

σ2
θ/2+ λ/4 ≥ σ2

θ − σ4
θ/(4λ) because σ

2
θ/2+ λ/4− [σ2

θ − σ4
θ/(4λ)] = (λ− σ2

θ)
2/(4λ) ≥ 0.

So we need (µθ − θ)2 ≥ σ2
θ/2 + λ/4 such that w = w1 ∈ [0, 1]. Otherwise, w⋆(θ) = 1 is

optimal.

Optimality of w = w1,

Now we need to show the conditions when w⋆(θ) = w1 is optimal. Notice that w⋆(θ) =

w1 is the global minimum if w2 ≥ 1, since l′(w) is negative for w < w1 and positive for

w ∈ (w1, w2). And,

w2 =
−σ2

θ −
√
σ4
θ + 4λ((µθ − θ)2 − σ2

θ)

4((µθ − θ)2 − σ2
θ)

≥ 1

⇐⇒ −
√
σ4
θ + 4λ((µθ − θ)2 − σ2

θ) ≤ 4((µθ − θ)2 − σ2
θ) + σ2

θ

The above inequality always holds if (µθ − θ)2 ≥ 3σ2
θ/4, otherwise

⇐⇒ σ4
θ + 4λ((µθ − θ)2 − σ2

θ) ≥ (4((µθ − θ)2 − σ2
θ) + σ2

θ)
2 ⇐⇒ (µθ − θ)2 ≥ 1

2
σ2
θ +

1

4
λ

Thus, if σ2
θ/2 + min{σ2

θ , λ}/4 ≤ (µθ − θ)2 ≤ σ2
θ , w

⋆(θ) = w1 is optimal.

3. Let’s see what we have shown now. We have shown that if (µθ − θ)2 ≥ σ2
θ/2 + λ/4,

w⋆(θ) = w1 is feasible and optimal; if (µθ − θ)2 < σ2
θ/2 + λ/4 and λ > σ2

θ , w = w1 is
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not feasible and w⋆(θ) = 1 is optimal; if λ ≤ σ2
θ and (µθ − θ)2 ≤ σ2

θ − σ4
θ/(4λ), w = w1

is not feasible and w⋆(θ) = 1 is optimal. In addition, we have shown that if λ ≤ σ2
θ

and (µθ − θ)2 ∈ [σ2
θ − σ4

θ/(4λ), σ
2
θ/2 + λ/4], w = w1 ∈ [0, 1] is feasible, but we need to

show whether it is optimal since w = 1 is another local minimum. We want to show

that if λ ≤ σ2
θ , there exists a threshold η ≥ σ2

θ −σ4
θ/(4λ) such that when (µθ − θ)2 > η,

w⋆(θ) = w1 is optimal; otherwise, w⋆(θ) = 1 is optimal. Because we have seen that

w⋆(θ) = w1 is optimal whenever (µθ − θ)2 ≥ σ2
θ/2 + λ/4, we only need to consider the

case when (µθ − θ)2 ∈ [σ2
θ − σ4

θ/(4λ), σ
2
θ/2 + λ/4]. That is, we want to show if λ ≤ σ2

θ

and (µθ − θ)2 ∈ [σ2
θ − σ4

θ/(4λ), σ
2
θ/2 + λ/4],

g((µθ − θ)2) ≜ l(1)− l(w1) = (µθ − θ)2 − l

(
−σ2

θ +
√
σ4
θ + 4λ((µθ − θ)2 − σ2

θ)

4((µθ − θ)2 − σ2
θ)

)

has at most one zero point. In particular, we want to show that g((µθ − θ)2) is

monotonically increasing for any (µθ−θ)2 ∈ [σ2
θ −σ4

θ/(4λ), σ
2
θ/2+λ/4]. By Lemma 10,

∂g

∂(µθ − θ)2
=

8((µθ − θ)2 − σθ)
2 − σ2

θ

√
∆+ σ4

θ + 2λ((µθ − θ)2 − σθ)

8((µθ − θ)2 − σθ)2

Let h(λ) = 8((µθ−θ)2−σθ)2−σ2
θ

√
∆+σ4

θ+2λ((µθ−θ)2−σθ) represents the numerator

of
∂g

∂(µθ − θ)2
. We have h(0) = 8((µθ − θ)2 − σθ)

2 ≥ 0 and h(λ = σ2
θ) = 8((µθ − θ)2 −

σθ)
2+σ2

θ

√
∆−σ4

θ − 2σ2
θ((µθ − θ)2−σθ). Since λ ≤ σ2

θ and (µθ − θ)2 ≤ σ2
θ/2+λ/4 =⇒

8((µθ − θ)2 − σθ)
2 ≥ 2(λ− 2σ2

θ)((µθ − θ)2 − σθ), h(λ = σ2
θ) ≥ 2(σ2

θ − 2σ2
θ)((µθ − θ)2 −

σθ) + σ2
θ

√
∆ − σ4

θ − 2σ2
θ((µθ − θ)2 − σθ) =

√
∆(σ2

θ −
√
∆) ≥ 0 (Since λ ≤ σ2

θ and

(µθ − θ)2 ≤ 1

2
σ2
θ +

1

4
λ =⇒ (µθ − θ)2 ≤ σ2

θ). In addition,
∂h

∂λ
=

σ2
θ

2
√
∆
4((µθ − θ)2 −

σθ) − 2((µθ − θ)2 − σθ) = 2((µθ − θ)2 − σθ)(
σ2
θ√
∆

− 1) ≤ 0 , because λ ≤ σ2
θ and

(µθ − θ)2 ≤ 1

2
σ2
θ +

1

4
λ =⇒ (µθ − θ)2 ≤ σ2

θ . This implies h(λ) ≥ h(λ = σ2
θ) ≥ 0 for any

λ ≤ σ2
θ , which further implies that

∂g

∂(µθ − θ)2
≥ 0. Therefore, if λ ≤ σ2

θ , g((µθ−θ)2) is
monotonically increasing for any (µθ − θ)2 ∈ (σ2

θ − σ4
θ/(4λ), σ

2
θ/2+ λ/4). This implies

that if λ ≤ σ2
θ , there exists a threshold η ≥ σ2

θ −σ4
θ/(4λ) such that when (µθ − θ)2 > η,

w⋆(θ) = w1 is optimal.
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In summary, when λ > σ2
θ , then τd(λ) ≜

√
σ2
θ/2 + λ/4 is a threshold such that w⋆(θ) = w1

is optimal if and only if |µθ − θ| ≥ τd(λ); and when λ ≤ σ2
θ , then τd(λ) ≜

√
η is a threshold

such that w⋆(θ) = w1 is optimal if and only if |µθ − θ| ≥ τd(λ). Additionally, it is clear that

σ2
θ/2+λ/4 strictly increases in λ; and by Lemma 10,

∂l(w1)

∂λ
=

3λ((µθ − θ)2 − σ2
θ)

2
√
∆(−σ2

θ +
√
∆)

−1

2
lnw1 =

3λ

8
√
∆w1

− 1

2
lnw1 > 0 which implies g((µθ − θ)2) strictly decreases in λ. Because we have

shown
∂g

∂(µθ − θ)2
≥ 0, then must have η strictly increases in λ. These imply that τd(λ)

strictly increases in λ.

Hence, the optimal solution to Problem (2.4) is

σ⋆
q =





√
w⋆(θ)σ2

θ

1− w⋆(θ)
|µθ − θ| ≥ τd(λ)

∞ otherwise

(A.2)

where w⋆(θ) =
−σ2

θ +
√
σ4
θ + 4λ((µθ − θ)2 − σ2

θ)

4((µθ − θ)2 − σ2
θ)

, and τd(λ) > 0 is a threshold that increases

in λ and is not less than

√
max{0, σ2

θ −
σ4
θ

4λ
}.

A.2 Proof of the Main Results

A.2.1 Proof of the Results in Section 2.4.

A.2.1.1 Auxiliary lemmas

Lemma 7. Let w⋆(θ) =
−σ2

θ +
√
σ4
θ + 4λ((µθ − θ)2 − σ2

θ)

4((µθ − θ)2 − σ2
θ)

, then

1.
∂w⋆(θ)

∂(µθ − θ)2
=
σ2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ)

4
√
∆((µθ − θ)2 − σ2

θ)
2

(A.4)
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2.
∂w⋆(θ)

∂λ
=

1

2
√
∆

(A.5)

3.
∂w⋆(θ)

∂σ2
θ

=
(σ2

θ −
√
∆)(µθ − θ)2 + 2λ((µθ − θ)2 − σ2

θ)

4
√
∆((µθ − θ)2 − σ2

θ)
2

(A.6)

where ∆ = σ4
θ + 4λ((µθ − θ)2 − σ2

θ).

Proof. Proof of Lemma 7. Let ∆ = σ4
θ + 4λ((µθ − θ)2 − σ2

θ).

Since w⋆(θ) =
−σ2

θ +
√
σ4
θ + 4λ((µθ − θ)2 − σ2

θ)

4((µθ − θ)2 − σ2
θ)

=
−σ2

θ +
√
∆

4((µθ − θ)2 − σ2
θ)
,

1.

∂w⋆(θ)

∂(µθ − θ)2
=

1

2
√
∆
4λ · 4((µθ − θ)2 − σ2

θ)− 4(−σ2
θ +

√
∆)

16((µθ − θ)2 − σ2
θ)

2

=
2λ · ((µθ − θ)2 − σ2

θ) + σ2
θ

√
∆−∆

4
√
∆((µθ − θ)2 − σ2

θ)
2

=
σ2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ)

4
√
∆((µθ − θ)2 − σ2

θ)
2

2.

∂w⋆(θ)

∂λ
=

1

2
√
∆

· 4((µθ − θ)2 − σ2
θ)

4((µθ − θ)2 − σ2
θ)

=
1

2
√
∆
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3.

∂w⋆(θ)

∂σ2
θ

=

(
−1 +

2σ2
θ − 4λ

2
√
∆

)
4((µθ − θ)2 − σ2

θ) + 4(−σ2
θ +

√
∆)

16((µθ − θ)2 − σ2
θ)

2

=
(−

√
∆+ σ2

θ − 2λ)((µθ − θ)2 − σ2
θ)− σ2

θ

√
∆+∆

4
√
∆((µθ − θ)2 − σ2

θ)
2

=
(σ2

θ −
√
∆)((µθ − θ)2 − σ2

θ)− 2λ((µθ − θ)2 − σ2
θ)

4
√
∆((µθ − θ)2 − σ2

θ)
2

+
−σ2

θ

√
∆+ σ4

θ + 4λ((µθ − θ)2 − σ2
θ)

4
√
∆((µθ − θ)2 − σ2

θ)
2

=
(σ2

θ −
√
∆)((µθ − θ)2 − σ2

θ) + σ2
θ(σ

2
θ −

√
∆) + 2λ((µθ − θ)2 − σ2

θ)

4
√
∆((µθ − θ)2 − σ2

θ)
2

=
(σ2

θ −
√
∆)(µθ − θ)2 + 2λ((µθ − θ)2 − σ2

θ)

4
√
∆((µθ − θ)2 − σ2

θ)
2
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Lemma 8. Let w =
σ2
q

σ2
θ + σ2

q

, then we can rewrite e(θ, σq) as

e(θ, w) = w(1− w)σ2
θ + w2(µθ − θ)2 (A.7)

In addition, if w⋆(θ) =
−σ2

θ +
√
σ4
θ + 4λ((µθ − θ)2 − σ2

θ)

4((µθ − θ)2 − σ2
θ)

,

1.
∂e(θ, w⋆(θ))

∂(µθ − θ)2
=
σ2
θ(σ

2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ))

8
√
∆((µθ − θ)2 − σθ)2

(A.8)

2.
∂e(θ, w⋆(θ))

∂λ
=
σ2
θ +

√
∆

4
√
∆

(A.9)

3.
∂e(θ, w⋆(θ))

∂σ2
θ

=
[2(µθ − θ)2 − σ2

θ ](−σ2
θ

√
∆+ σ4

θ + 2λ((µθ − θ)2 − σ2
θ))

8
√
∆((µθ − θ)2 − σ2

θ)
2

(A.10)

where ∆ = σ4
θ + 4λ((µθ − θ)2 − σ2

θ).

Proof. Proof of Lemma 8. Let w =
σ2
q

σ2
θ + σ2

q

, then σ2
q =

wσ2
θ

1− w
. Substitute σ2⋆

q =
wσ2

θ

1− w
into

Equation (A.1), then we have Equation (A.7).

Let ∆ = σ4
θ + 4λ((µθ − θ)2 − σ2

θ),
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1.

∂e(θ, w⋆(θ))

∂(µθ − θ)2

= σ2
θ(1− 2w⋆(θ))

∂w⋆(θ)

∂(µθ − θ)2
+ 2(µθ − θ)2w⋆(θ)

∂w⋆(θ)

∂(µθ − θ)2
+ w⋆2

Substitute Equation (A.4) into the above equation

= σ2
θ ·
σ2
θ + 2((µθ − θ)2 − σ2

θ)−
√
∆

2((µθ − θ)2 − σ2
θ)

· σ
2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ)

4
√
∆((µθ − θ)2 − σθ)2

+ 2(µθ − θ)2 · −σ2
θ +

√
∆

4((µθ − θ)2 − σ2
θ)

· σ
2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ)

4
√
∆((µθ − θ)2 − σθ)2

+
σ4
θ − σ2

θ

√
∆+ 2λ((µθ − θ)2 − σ2

θ)

8((µθ − θ)2 − σ2
θ)

2

=
σ4
θ + 2σ2

θ((µθ − θ)2 − σ2
θ)− σ2

θ

√
∆− (µθ − θ)2σ2

θ + (µθ − θ)2
√
∆

2((µθ − θ)2 − σ2
θ)

· σ
2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ)

4
√
∆((µθ − θ)2 − σθ)2

+
σ4
θ − σ2

θ

√
∆+ 2λ((µθ − θ)2 − σ2

θ)

8((µθ − θ)2 − σ2
θ)

2

=
σ2
θ +

√
∆

2
· σ

2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ)

4
√
∆((µθ − θ)2 − σθ)2

+
σ4
θ − σ2

θ

√
∆+ 2λ((µθ − θ)2 − σ2

θ)

8((µθ − θ)2 − σ2
θ)

2

=
σ2
θ(∆− σ4

θ)− 2λ((µθ − θ)2 − σ2
θ)(σ

2
θ +

√
∆)

8
√
∆((µθ − θ)2 − σθ)2

+
σ4
θ

√
∆− σ2

θ∆+ 2λ
√
∆((µθ − θ)2 − σ2

θ)

8
√
∆((µθ − θ)2 − σ2

θ)
2

=
σ2
θ(σ

2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ))

8
√
∆((µθ − θ)2 − σθ)2
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2.
∂e(θ, w⋆(θ))

∂λ

= σ2
θ(1− 2w⋆(θ))

∂w⋆(θ)

∂λ
+ 2(µθ − θ)2w⋆(θ)

∂w⋆(θ)

∂λ

Substitute Equation (A.5) into the above equation

= σ2
θ ·
σ2
θ + 2((µθ − θ)2 − σ2

θ)−
√
∆

2((µθ − θ)2 − σ2
θ)

· 1

2
√
∆

+ 2(µθ − θ)2 · −σ2
θ +

√
∆

4((µθ − θ)2 − σ2
θ)

· 1

2
√
∆

=
σ4
θ + 2σ2

θ((µθ − θ)2 − σ2
θ)− σ2

θ

√
∆− (µθ − θ)2σ2

θ + (µθ − θ)2
√
∆

2((µθ − θ)2 − σ2
θ)

· 1

2
√
∆

=
σ2
θ +

√
∆

4
√
∆
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3.

∂e(θ, w⋆(θ))

∂σ2
θ

= w⋆(θ)(1− w⋆(θ)) + σ2
θ(1− 2w⋆(θ))

∂w⋆(θ)

∂σ2
θ

+ 2(µθ − θ)2w⋆(θ)
∂w⋆(θ)

∂σ2
θ

Substitute Equation (A.6) into the above equation

=
−σ2

θ +
√
∆

4((µθ − θ)2 − σ2
θ)

· 4((µθ − θ)2 − σ2
θ) + σ2

θ −
√
∆

4((µθ − θ)2 − σ2
θ)

+
σ2
θ +

√
∆

2

· (σ
2
θ −

√
∆)(µθ − θ)2 + 2λ((µθ − θ)2 − σ2

θ)

4
√
∆((µθ − θ)2 − σ2

θ)
2

=
4((µθ − θ)2 − σ2

θ)(−σ2
θ +

√
∆)− (σ2

θ −
√
∆)2

16((µθ − θ)2 − σ2
θ)

2

+
−4λ((µθ − θ)2 − σ2

θ)(µθ − θ)2 + 2λ((µθ − θ)2 − σ2
θ)(σ

2
θ +

√
∆)

8
√
∆((µθ − θ)2 − σ2

θ)
2

=
2((µθ − θ)2 − σ2

θ)(−σ2
θ +

√
∆)

√
∆−

√
∆(σ4

θ + 2λ((µθ − θ)2 − σ2
θ)− σ2

θ

√
∆)

8
√
∆((µθ − θ)2 − σ2

θ)
2

+
−4λ((µθ − θ)2 − σ2

θ)(µθ − θ)2 + 2λ((µθ − θ)2 − σ2
θ)(σ

2
θ +

√
∆)

8
√
∆((µθ − θ)2 − σ2

θ)
2

=
2((µθ − θ)2 − σ2

θ)[(−σ2
θ +

√
∆)

√
∆− λ

√
∆− 2λ(µθ − θ)2 + λ(σ2

θ +
√
∆)]

8
√
∆((µθ − θ)2 − σ2

θ)
2

+
−
√
∆σ2

θ(σ
2
θ −

√
∆)

8
√
∆((µθ − θ)2 − σ2

θ)
2

=
2((µθ − θ)2 − σ2

θ)
√
∆(−σ2

θ +
√
∆)− 2((µθ − θ)2 − σ2

θ)λ[2(µθ − θ)2 − σ2
θ ]

8
√
∆((µθ − θ)2 − σ2

θ)
2

+

√
∆σ2

θ(−σ2
θ +

√
∆)

8
√
∆((µθ − θ)2 − σ2

θ)
2

=
[2(µθ − θ)2 − σ2

θ ]
√
∆(−σ2

θ +
√
∆)− 2((µθ − θ)2 − σ2

θ)λ[2(µθ − θ)2 − σ2
θ ]

8
√
∆((µθ − θ)2 − σ2

θ)
2

=
[2(µθ − θ)2 − σ2

θ ](−σ2
θ

√
∆+ σ4

θ + 2λ((µθ − θ)2 − σ2
θ))

8
√
∆((µθ − θ)2 − σ2

θ)
2
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Lemma 9. Let w =
σ2
q

σ2
θ + σ2

q

, then we can rewrite I(σq) as

I(w) = −1

2
lnw (A.11)

In addition, if w⋆(θ) =
−σ2

θ +
√
σ4
θ + 4λ((µθ − θ)2 − σ2

θ)

4((µθ − θ)2 − σ2
θ)

,

1.
∂I(w⋆(θ))

∂(µθ − θ)2
= −1

2
· σ

2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ)√

∆((µθ − θ)2 − σθ)(−σ2
θ +

√
∆)

(A.12)

2.
∂I(w⋆(θ))

∂λ
= − (µθ − θ)2 − σ2

θ√
∆(−σ2

θ +
√
∆)

(A.13)

where ∆ = σ4
θ + 4λ((µθ − θ)2 − σ2

θ).

Proof. Proof of Lemma 9. Let ∆ = σ4
θ + 4λ((µθ − θ)2 − σ2

θ),

1.
∂I(w⋆(θ))

∂(µθ − θ)2
= −1

2
· 1

w⋆(θ)
· ∂w⋆(θ)

∂(µθ − θ)2

Substitute Equation (A.4) into the above equation

= −1

2
· 4((µθ − θ)2 − σ2

θ)

−σ2
θ +

√
∆

· σ
2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ)

4
√
∆((µθ − θ)2 − σθ)2

= −1

2
· σ

2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ)√

∆((µθ − θ)2 − σθ)(−σ2
θ +

√
∆)

2.
∂I(w⋆(θ))

∂λ
= −1

2
· 1

w⋆(θ)
· ∂w

⋆(θ)

∂λ

Substitute Equation (A.5) into the above equation

= −1

2
· 1

w⋆(θ)
· 1

2
√
∆

= − (µθ − θ)2 − σ2
θ√

∆(−σ2
θ +

√
∆)
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Lemma 10. Let w =
σ2
q

σ2
θ + σ2

q

, then we can rewrite Equation (2.3) as

l(θ, w) = w(1− w)σ2
θ + w2(µθ − θ)2 − λ

2
lnw (A.14)

In addition, if w⋆(θ) =
−σ2

θ +
√
σ4
θ + 4λ((µθ − θ)2 − σ2

θ)

4((µθ − θ)2 − σ2
θ)

,

1.
∂l(θ, w⋆(θ))

∂(µθ − θ)2
= −σ

2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ)

8((µθ − θ)2 − σθ)2
(A.15)

2.
∂l(θ, w⋆(θ))

∂λ
=

3λ((µθ − θ)2 − σ2
θ)

2
√
∆(−σ2

θ +
√
∆)

− 1

2
lnw⋆(θ) (A.16)

where ∆ = σ4
θ + 4λ((µθ − θ)2 − σ2

θ).

Proof. Proof of Lemma 10. By Lemma 8 and Lemma 9, it is clear that l(θ, w⋆(θ)) =

e(θ, w⋆(θ)) + λI(w⋆(θ)) = w⋆(θ)(1− w⋆(θ))σ2
θ + w⋆(θ)2(µθ − θ)2 − λ

2
lnw⋆(θ). In addition,

1.

∂l(θ, w⋆(θ))

∂(µθ − θ)2

=
∂e(θ, w⋆(θ))

∂(µθ − θ)2
+ λ · ∂I(w

⋆(θ))

∂(µθ − θ)2

=
σ2
θ(σ

2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ))

8
√
∆((µθ − θ)2 − σθ)2

− λ

2
· σ

2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ)√

∆((µθ − θ)2 − σθ)(−σ2
θ +

√
∆)

=
σ2
θ(σ

2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ))(−σ2

θ +
√
∆)− 4λ((µθ − θ)2 − σθ)

8
√
∆((µθ − θ)2 − σθ)2(−σ2

θ +
√
∆)

· (σ2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ))

=
(−σ4

θ + σ2
θ

√
∆− 4λ((µθ − θ)2 − σθ))(σ

2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ))

8
√
∆((µθ − θ)2 − σθ)2(−σ2

θ +
√
∆)

=

√
∆(−

√
∆+ σ2

θ)(σ
2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ))

8
√
∆((µθ − θ)2 − σθ)2(−σ2

θ +
√
∆)

= − σ2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ)

8((µθ − θ)2 − σθ)2
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2.
∂l(θ, w⋆(θ))

∂λ
=
∂e(θ, w⋆(θ))

∂λ
+ λ · ∂I(w

⋆(θ))

∂λ
− 1

2
lnw⋆(θ)

=
σ2
θ +

√
∆

4
√
∆

+
λ((µθ − θ)2 − σ2

θ)√
∆(−σ2

θ +
√
∆)

− 1

2
lnw⋆(θ)

=
∆− σ4

θ + 4λ((µθ − θ)2 − σ2
θ)

4
√
∆(−σ2

θ +
√
∆)

− 1

2
lnw⋆(θ)

=
3λ((µθ − θ)2 − σ2

θ)

2
√
∆(−σ2

θ +
√
∆)

− 1

2
lnw⋆(θ)

A.2.1.2 Proof of the results.

Proof. Proof of Proposition 1. Because d(θ) = |µθ − θ| by definition and |µθ − θ| increases
with (µθ − θ)2, we only have to show the change of l(θ, σ⋆

q (θ)), I(σ
⋆
q (θ)) and e(θ, σ

⋆
q (θ)) with

respect to (µθ − θ)2. By Lemma 6,

l(θ, σ⋆
q (θ)) =





l

(
θ,

√
w⋆(θ)σ2

θ

1− w⋆(θ)

)
|µθ − θ| ≥ τd(λ)

(µθ − θ)2 otherwise

I(σ⋆
q (θ)) =





I

(√
w⋆(θ)σ2

θ

1− w⋆(θ)

)
|µθ − θ| ≥ τd(λ)

0 otherwise

e(θ, σ⋆
q (θ)) =





e

(
θ,

√
w⋆(θ)σ2

θ

1− w⋆(θ)

)
|µθ − θ| ≥ τd(λ)

(µθ − θ)2 otherwise

where w⋆(θ) =
−σ2

θ +
√
σ4
θ + 4λ((µθ − θ)2 − σ2

θ)

4((µθ − θ)2 − σ2
θ)

, and τd(λ) > 0 is a threshold that increases

in λ and is not less than σ2
θ −

σ4
θ

4λ
. Now, let’s apply the results of Lemma 8, Lemma 9, and

Lemma 10.
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1. When |µθ − θ| ≥ τd(λ), by Lemma 10,

∂l(θ, σ⋆
q (θ))

∂(µθ − θ)2
= −σ

2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ)

8((µθ − θ)2 − σθ)2

where ∆ = σ4
θ + 4λ((µθ − θ)2 − σ2

θ).

We only need to show σ2
θ

√
∆ − σ4

θ − 2λ((µθ − θ)2 − σ2
θ) ≤ 0. When |µθ − θ| ≥ τd(λ),

by the proof of Lemma 6, we know ∆ ≥ 0, so σ4
θ + 2λ((µθ − θ)2 − σθ) ≥ 0. Thus,

σ2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ) ≤ 0 (A.17)

⇐⇒ σ4
θ∆ ≤ [σ4

θ + 2λ((µθ − θ)2 − σθ)]
2

⇐⇒ σ4
θ(σ

4
θ + 4λ((µθ − θ)2 − σ2

θ)) ≤ σ8
θ + 4λσ4

θ((µθ − θ)2 − σθ) + 4λ2((µθ − θ)2 − σθ)
2

⇐⇒ 4λ2((µθ − θ)2 − σθ)
2 ≥ 0

When |µθ − θ| < τd(λ), l(θ, σ
⋆
q (θ)) = (µθ − θ)2 =⇒ ∂l(θ, σ⋆

q (θ))

∂(µθ − θ)2
= 1. And l(θ, σ⋆

q (θ))

is continuous at |µθ − θ| = τd(λ). Thus, l(θ, σ
⋆
q (θ)) increases in |µθ − θ|. By definition,

l⋆ = min(Γ, l(θ, σ⋆
q (θ)), so l

⋆ increases in |µθ − θ|.

2. When |µθ − θ| ≥ τd(λ), by Lemma 9,

∂I(σ⋆
q (θ))

∂(µθ − θ)2
= −1

2
· σ

2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ)√

∆((µθ − θ)2 − σθ)(−σ2
θ +

√
∆)

By the proof of Lemma 6, we know w⋆(θ) ≥ 0 when |µθ − θ| ≥ τd(λ), so the denomi-

nator ((µθ − θ)2 − σθ)(−σ2
θ +

√
∆) ≥ 0. Because of the above Inequality (A.17), then

∂I(σ⋆
q (θ))

∂(µθ − θ)2
≥ 0.

When |µθ − θ| < τd(λ), I(σ
⋆
q (θ)) = 0 =⇒ ∂I(σ⋆

q (θ))

∂(µθ − θ)2
= 0.

We conclude that I(σ⋆
q (θ)) increases in |µθ − θ|.

3. Firstly, notice that l(θ, σ⋆
q ) = 0 for d(θ) = 0 and we have shown that l(θ, σ⋆

q (θ))

monotonically increases in d(θ) in part 1. In addition, we can see that w⋆(θ) → 0 as

d(θ) → ∞, which leads to I(σ⋆
q (θ)) → ∞ and l(θ, σ⋆

q ) → ∞ as d(θ) → ∞. These imply

146



that for any Γ > 0, there must exist a threshold τa > 0 such that d(θ) ≤ τa ⇐⇒
l(θ, σ⋆

q ) ≤ Γ.

4. When |µθ − θ| < τd(λ), by Lemma 6, σ⋆
q (θ) = ∞, thereby e(θ, σ⋆

q (θ)) = (µθ − θ)2 and
∂e(θ, σ⋆

q (θ))

∂(µθ − θ)2
= 1 > 0.

When |µθ − θ| ≥ τd(λ), by Lemma 8,

∂e(θ, σ⋆
q (θ))

∂(µθ − θ)2
=
σ2
θ(σ

2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ))

8
√
∆((µθ − θ)2 − σθ)2

Because of Inequality (A.17), we have
∂e(θ, σ⋆

q (θ))

∂(µθ − θ)2
≤ 0.

We conclude that if |µθ−θ| < τd(λ), e(θ, σ
⋆
q (θ)) increases in (µθ−θ)2; if |µθ−θ| ≥ τd(λ),

e(θ, σ⋆
q (θ)) decreases in |µθ − θ|.

Proof. Proof of Proposition 2. By definition, if d(θ) ≥ τa, users will work on their own and

θ⋆ = θ, so |E[θ⋆|θ]− µθ| = |θ − µθ|.

If d(θ) < τa, θ
⋆ = θ⋆A. By Equation (2.1), we know E[θA|θ] =

σ2
θ

σ2
θ + σ2

q

· θ + σ2
q

σ2
θ + σ2

q

· µθ,

so

|E[θ⋆A|θ]− µθ| =
σ2
θ

σ2
θ + σ⋆2

q (θ)
|θ − µθ|

which is 0 if θ = µθ.

Additionally, since l(θ, σq) → ∞ as σq → 0 and σq = ∞ is feasible, we must have

σ⋆
q (θ) > 0. Thus, |E[θ⋆A|θ]− µθ| < |θ − µθ| whenever θ ̸= µθ.

Proof. Proof of Theorem 1. By Lemma 6, the AI’s output θA(σ
⋆
q (σθ)) is

θA(σ
⋆
q (θ)) =




(1− w⋆(θ))q + w⋆(θ)µθ |µθ − θ| ≥ τd(λ)

µθ otherwise
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where w⋆(θ) =
−σ2

θ +
√
σ4
θ + 4λ((µθ − θ)2 − σ2

θ)

4((µθ − θ)2 − σ2
θ)

, and τd(λ) > 0 is a threshold that increases

in λ and is not less than σ2
θ −

σ4
θ

4λ
.

By definition, the unconditional variance of θ⋆ is

V ar(θ⋆) = E[(θ⋆ − E[θ⋆])2]

Let ϕ(·) and Φ(·) denote the probability density function and the cumulative density function

of N(0, 1), respectively. We know

E[θ⋆] =

∫ ∞

−∞

∫ ∞

−∞
θ⋆ϕ

(
ϵq

σ⋆
q (θ)

)
dϵqϕ

(
θ − µθ

σθ

)
dθ

First, when τd > τa, we know that for any θ < τa < τd, w
⋆(θ) = 1 and θ⋆ = µθ; for any

θ > τa, θ
⋆ = θ, so

E[θ⋆]

=

∫

d(θ)<τa

∫ ∞

−∞
µθϕ

(
ϵq

σ⋆
q (θ)

)
dϵqϕ

(
θ − µθ

σθ

)
dθ

+

∫

d(θ)>τa

∫ ∞

−∞
θϕ

(
ϵq

σ⋆
q (θ)

)
dϵqϕ

(
θ − µθ

σθ

)
dθ

=

∫

d(θ)<τa

µθϕ

(
θ − µθ

σθ

)
dθ +

∫

d(θ)>τa

θϕ

(
θ − µθ

σθ

)
dθ

=µθ

Because

∫

d(θ)>τa

θϕ

(
θ − µθ

σθ

)
dθ

=

∫

d(θ)>τa

(θ − µθ)ϕ

(
θ − µθ

σθ

)
dθ +

∫

d(θ)>τa

µθϕ

(
θ − µθ

σθ

)
dθ

and

∫

d(θ)>τa

(θ − µθ)ϕ

(
θ − µθ

σθ

)
dθ = 0 due to the symmetry

148



When τd ≤ τa,

E[θ⋆]

=

∫

d(θ)∈(τd,τa)

∫ ∞

−∞
[(1− w⋆(θ))q + w⋆(θ)µθ]ϕ

(
ϵq

σ⋆
q (θ)

)
dϵqϕ

(
θ − µθ

σθ

)
dθ

+

∫

d(θ)<τd

∫ ∞

−∞
µθϕ

(
ϵq

σ⋆
q (θ)

)
dϵqϕ

(
θ − µθ

σθ

)
dθ

+

∫

d(θ)>τa

∫ ∞

−∞
θϕ

(
ϵq

σ⋆
q (θ)

)
dϵqϕ

(
θ − µθ

σθ

)
dθ

=

∫

d(θ)∈(τd,τa)
[(1− w⋆(θ))θ + w⋆(θ)µθ]ϕ

(
θ − µθ

σθ

)
dθ +

∫

d(θ)<τd

µθϕ

(
θ − µθ

σθ

)
dθ

+

∫

d(θ)>τa

θϕ

(
θ − µθ

σθ

)
dθ

Because

∫

d(θ)>τa

θϕ

(
θ − µθ

σθ

)
dθ =

∫

d(θ)>τa

(θ − µθ)ϕ

(
θ − µθ

σθ

)
dθ +

∫

d(θ)>τa

µθϕ

(
θ − µθ

σθ

)
dθ,

=

∫

d(θ)∈(τd,τa)
[(1− w⋆(θ))(θ − µθ) + µθ]ϕ

(
θ − µθ

σθ

)
dθ +

∫

d(θ)<τd

µθϕ

(
θ − µθ

σθ

)
dθ

+

∫

d(θ)>τa

µθϕ

(
θ − µθ

σθ

)
dθ

=

∫

d(θ)∈(τd,τa)
(1− w⋆(θ))(θ − µθ)ϕ

(
θ − µθ

σθ

)
dθ +

∫ ∞

−∞
µθϕ

(
θ − µθ

σθ

)
dθ

Notice that

∫

d(θ)∈(τd,τa)
(1− w⋆(θ))(θ − µθ)ϕ

(
θ − µθ

σθ

)
dθ = 0,

because (1− w⋆(θ))(θ − µθ)ϕ

(
θ − µθ

σθ

)
is symmetric with respect to θ = µθ.

=

∫ ∞

−∞
µθϕ

(
θ − µθ

σθ

)
dθ

= µθ

Thus, when τd > τa,

V ar(θ⋆) =

∫

d(θ)>τa

∫ ∞

−∞
(µθ − θ)2ϕ

(
ϵq

σ⋆
q (θ)

)
dϵqϕ

(
θ − µθ

σθ

)
dθ

=

∫

d(θ)>τa

(µθ − θ)2ϕ

(
θ − µθ

σθ

)
dθ

(A.18)
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When τd ≤ τa

V ar(θ⋆)

=

∫

d(θ)∈(τd,τa)

∫ ∞

−∞
[θA(σ

⋆
q (θ))− µθ]

2ϕ

(
ϵq

σ⋆
q (θ)

)
dϵqϕ

(
θ − µθ

σθ

)
dθ

+

∫

d(θ)>τa

∫ ∞

−∞
(µθ − θ)2ϕ

(
ϵq

σ⋆
q (θ)

)
dϵqϕ

(
θ − µθ

σθ

)
dθ

=

∫

d(θ)∈(τd,τa)

∫ ∞

−∞
[(1− w⋆(θ))q + w⋆(θ)µθ − µθ]

2ϕ

(
ϵq

σ⋆
q (θ)

)
dϵqϕ

(
θ − µθ

σθ

)
dθ

+

∫

d(θ)>τa

(µθ − θ)2ϕ

(
θ − µθ

σθ

)
dθ

=

∫

d(θ)∈(τd,τa)

∫ ∞

−∞
(1− w⋆(θ))2(q − µθ)

2ϕ

(
ϵq

σ⋆
q (θ)

)
dϵqϕ

(
θ − µθ

σθ

)
dθ

+

∫

d(θ)>τa

(µθ − θ)2ϕ

(
θ − µθ

σθ

)
dθ

=

∫

d(θ)∈(τd,τa)

∫ ∞

−∞
(1− w⋆(θ))2(θ + ϵq − µθ)

2ϕ

(
ϵq

σ⋆
q (θ)

)
dϵqϕ

(
θ − µθ

σθ

)
dθ

+

∫

d(θ)>τa

(µθ − θ)2ϕ

(
θ − µθ

σθ

)
dθ

=

∫

d(θ)∈(τd,τa)

∫ ∞

−∞
(1− w⋆(θ))2[ϵ2q − 2ϵq(µθ − θ) + (µθ − θ)2]ϕ

(
ϵq

σ⋆
q (θ)

)
dϵqϕ

(
θ − µθ

σθ

)
dθ

+

∫

d(θ)>τa

(µθ − θ)2ϕ

(
θ − µθ

σθ

)
dθ

=

∫

d(θ)∈(τd,τa)
(1− w⋆(θ))2[σ⋆

q (θ)
2 + (µθ − θ)2]ϕ

(
θ − µθ

σθ

)
dθ

+

∫

d(θ)>τa

(µθ − θ)2ϕ

(
θ − µθ

σθ

)
dθ

=

∫

d(θ)∈(τd,τa)
[(1− w⋆(θ))w⋆(θ)σ2

θ + (1− w⋆(θ))2(µθ − θ)2]ϕ

(
θ − µθ

σθ

)
dθ

+

∫

d(θ)>τa

(µθ − θ)2ϕ

(
θ − µθ

σθ

)
dθ

Thus,

V ar(θ⋆) = 2
[ ∫ τa

µθ+τd

[(1− w⋆(θ))w⋆(θ)σ2
θ

+ (1− w⋆(θ))2(µθ − θ)2]ϕ

(
θ − µθ

σθ

)
dθ +

∫ ∞

µθ+τa

(µθ − θ)2ϕ

(
θ − µθ

σθ

)
dθ
] (A.19)
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1. Now, let us first show that when Γ → ∞, V ar(θ⋆) is strictly decreasing in λ. In this case,

V ar(θ⋆) = 2

∫ ∞

µθ+τd

[(1− w⋆(θ))w⋆(θ)σ2
θ + (1− w⋆(θ))2(µθ − θ)2]ϕ

(
θ − µθ

σθ

)
dθ

Let h(θ) ≜ [(1− w⋆(θ))w⋆(θ)σ2
θ + (1− w⋆(θ))2(µθ − θ)2], then

V ar(θA(σ
⋆
q (θ))) = 2

∫ ∞

µθ+τd(λ)

h(θ)ϕ

(
θ − µθ

σθ

)
dθ

By the Leibniz integral rule,

∂V ar(θA(σ
⋆
q (θ)))

∂λ
= −2h(θ)ϕ

(
θ − µθ

σθ

)
|θ=µθ+τd(λ) ·

∂
√
τd(λ)

∂λ

+ 2

∫ ∞

µθ+τd(λ)

∂h(θ)

∂λ
ϕ

(
θ − µθ

σθ

)
dθ

Since
∂
√
τd(λ)

∂λ
> 0 by Lemma 6, we only need to show:

2

∫ ∞

µθ+τd(λ)

∂h(θ)

∂λ
ϕ

(
θ − µθ

σθ

)
dθ < 0

Notice that

2

∫ ∞

µθ+τd(λ)

∂h(θ)

∂λ
ϕ

(
θ − µθ

σθ

)
dθ

= 2

∫ ∞

µθ+τd(λ)

∂h(θ)

∂w⋆(θ)
· ∂w

⋆(θ)

∂λ
ϕ

(
θ − µθ

σθ

)
dθ

=

∫ ∞

µθ+τd(λ)

[(1− 2w⋆(θ))σ2
θ + 2(w⋆(θ)− 1)(µθ − θ)2]

1√
∆
ϕ

(
θ − µθ

σθ

)
dθ

where ∆ = σ4
θ + 4λ((µθ − θ)2 − σ2

θ)

=

∫ ∞

µθ+τd(λ)

[2w⋆(θ)((µθ − θ)2 − σ2
θ) + σ2

θ − 2(µθ − θ)2]
1√
∆
ϕ

(
θ − µθ

σθ

)
dθ

Let g(θ) ≜ [2w⋆(θ)((µθ − θ)2 − σ2
θ) + σ2

θ − 2(µθ − θ)2]/
√
∆, we want to show

∫ ∞

µθ+τd(λ)

g(θ)ϕ

(
θ − µθ

σθ

)
dθ < 0
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(a) First, when λ > σ2
θ/2, we want to show g(θ) ≤ 0 for any θ ≥ µθ + τd(λ).

By Lemma 6, τd(λ) >
√
σ2
θ − σ4

θ/(4λ), so τd(λ) > σθ/
√
2. This implies that for any

θ ≥ µθ + τd(λ), (µθ − θ)2 > σ2
θ/2.

If (µθ − θ)2 > σ2
θ , 2w

⋆(θ)((µθ − θ)2 − σ2
θ) + σ2

θ − 2(µθ − θ)2 ≤ −σ2
θ < 0, because

w⋆(θ) ≤ 1. And if
σ2
θ

2
< (µθ − θ)2 ≤ σ2

θ , 2w
⋆(θ)((µθ − θ)2 − σ2

θ) + σ2
θ − 2(µθ −

θ)2 ≤ σ2
θ − 2(µθ − θ)2 < 0, because w⋆(θ) > 0. Thus, (µθ − θ)2 >

σ2
θ

2
implies

2w⋆(θ)((µθ − θ)2 − σ2
θ) + σ2

θ − 2(µθ − θ)2 < 0, which further implies g(θ) < 0.

Therefore, when λ > σ2
θ/2,

∫ ∞

µθ+τd(λ)

g(θ)ϕ

(
θ − µθ

σθ

)
dθ < 0

(b) When λ ≤ σ2
θ/2:

Let α = λ/σ2
θ (so λ ≤ σ2

θ/2 implies α ≤ 1/2).

∆ =σ4
θ + 4λ((µθ − θ)2 − σ2

θ) = σ4
θ

[
1 +

4λ

σ2
θ

(
(µθ − θ)2

σ2
θ

− 1

)]

=σ4
θ

[
1 + 4α

((
µθ − θ

σθ

)2

− 1

)]

Similarly, we can get

w⋆(θ) =
−σ2

θ +
√
σ4
θ + 4λ((µθ − θ)2 − σ2

θ)

4((µθ − θ)2 − σ2
θ)

=

−1 +

√√√√1 + 4α

((
µθ − θ

σθ

)2

− 1

)

4

[(
µθ − θ

σθ

)2

− 1

]
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The substitution x ≜ θ − µθ

σθ
yields

∫ ∞

µθ+τd(λ)

g(θ)ϕ

(
θ − µθ

σθ

)
dθ

=

∫ ∞

τd(λ)

σθ

[(1− 2ŵ(x, α))σ2
θ + 2(ŵ(x, α)− 1)σ2

θx
2]

1

σ2
θ

√
∆̂(x, α)

ϕ(x)σθdx

=

∫ ∞

τd(λ)

σθ

[(1− 2ŵ(x, α)) + 2(ŵ(x, α)− 1)x2]
1√

∆̂(x, α)
ϕ(x)σθdx

=
1√
2π

∫ ∞

τ̂d(α)

[(1− 2ŵ(x, α)) + 2(ŵ(x, α)− 1)x2]
1√

∆̂(x, α)
exp

(
−x

2

2

)
dx

where τ̂d(α) =
τd(λ)

σθ
, ŵ(x, α) =

−1 +
√

1 + 4α(x2 − 1)

4(x2 − 1)
and ∆̂(x, α) = 1+4α(x2−1).

Note that

(1− 2ŵ(x, α)) + 2(ŵ(x, α)− 1)x2]
1√

∆̂(x, α)
=

1

2

[
1 +

1− 4x2√
1 + 4α(x2 − 1)

]

Define

G(α) ≜
∫ ∞

τ̂d(α)

[
1 +

1− 4x2√
1 + 4α(x2 − 1)

]
exp

(
−x

2

2

)
dx

We want to show ∀α ∈ [0, 1/2], G(α) < 0.

Let’s do another change of variables: y ≜ x2 − 1, which implies dy = 2xdx and

x =
√
y + 1. This yields

G(α) =

∫ ∞

τ̂d
2(α)−1

[
1− 3 + 4y√

1 + 4αy

]
exp

(
−y + 1

2

)
1

2
√
y + 1

dy

Let ω(y, α) ≜ 1− (3 + 4y)/
√
1 + 4αy. Note that

i. If y ≥ 0, ω(y, α) is increasing α.

ii. If y ∈ [−3/4, 0), ω(y, α) is decreasing α.

iii. If y ∈ [−1,−3/4), ω(y, α) is increasing α.

Correspondingly,
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i. Let

G0(α) ≜
∫ ∞

0

ω(y, α) exp

(
−y + 1

2

)
1

2
√
y + 1

dy

we have G0(α) ≤ G0(1/2) ≤ G0(1) < −0.96.

ii. τ̂d
2(α)− 1 ≥ −3/4 ⇐⇒ τ̂d

2(α) ≥ 1/4

Note that τ̂d
2(α) = τd(λ)/σθ, and by the definition of τd(λ) in the proof of

Lemma 6, τd(λ) solves

(τ 2d (λ, σθ)− σ2
θ)m

2 + σ2
θm− λ

2
ln(m) = τ 2d (λ, σθ)− σ2

θ)

where m =
−σ2

θ +
√
σ4
θ + 4λ(τ 2d (λ, σθ)− σ2

θ)

4(τ 2d (λ, σθ)− σ2
θ)

. This is equivalent to that τ̂d(α)

solves

(τ̂d
2(α)− 1)m2 +m− α

2
ln(m) = τ̂d

2(α)

where m =
−1 +

√
1 + 4α(τ̂d

2(α)− 1)

4(τ̂d
2(α)− 1)

.

Thus, we can get there exists α⋆ such that τ̂d
2(α) ≥ 1/4 ⇐⇒ α ≥ α⋆. And we

can numerically compute α⋆ ≈ 0.13845.

Let

G1(α) ≜
∫ 0

τ̂d
2(α)−1

ω(y, α) exp

(
−y + 1

2

)
1

2
√
y + 1

dy

Since ω(y, α) is decreasing in α, we have

G1(α) ≤
∫ 0

τ̂d
2(α)−1

ω(y, α⋆) exp

(
−y + 1

2

)
1

2
√
y + 1

dy

≤
∫ 0

−3/4

ω(y, α⋆) exp

(
−y + 1

2

)
1

2
√
y + 1

dy

We can numerically find

∫ 0

−3/4

ω(y, α⋆) exp

(
−y + 1

2

)
1

2
√
y + 1

dy < 0

Thus, G(α) = G0(α) +G1(α) < 0.
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iii. τ̂d
2(α)− 1 < −3/4 ⇐⇒ α < α⋆

G1(α) =

∫ τ̂d
2(α⋆)−1

τ̂d
2(α)−1

ω(y, α) exp

(
−y + 1

2

)
1

2
√
y + 1

dy

+

∫ 0

τ̂d
2(α⋆)−1

ω(y, α) exp

(
−y + 1

2

)
1

2
√
y + 1

dy

≤
∫ τ̂d

2(α⋆)−1

τ̂d
2(α)−1

ω(y, α⋆) exp

(
−y + 1

2

)
1

2
√
y + 1

dy

+

∫ 0

τ̂d
2(α⋆)−1

ω(y, α⋆) exp

(
−y + 1

2

)
1

2
√
y + 1

dy

=

∫ 0

τ̂d
2(α)−1

ω(y, α⋆) exp

(
−y + 1

2

)
1

2
√
y + 1

dy

≤
∫ 0

−1

ω(y, α⋆) exp

(
−y + 1

2

)
1

2
√
y + 1

dy

We can numerically find
∫ 0

−1

ω(y, α⋆) exp

(
−y + 1

2

)
1

2
√
y + 1

dy < 0.817

Thus, G(α) = G0(α) +G1(α) < −0.96 + 0.817 < 0.

We conclude that ∀α ∈ [0, 1/2], G(α) < 0.

Hence, V ar(θA(σ
2⋆
q )) strictly decreases in λ.

2. When λ = 0, we know ∀θ, w⋆(θ) = 0, θ⋆A = θ. Thus,

lim
λ→0

V ar(θ⋆) =

∫ ∞

−∞
(µθ − θ)2ϕ

(
θ − µθ

σθ

)
dθ = V ar(θ) = σ2

θ

When λ → ∞, by definition, for any θ, l → ∞ if σq is finite, so the optimal decision is

σ⋆
q = +∞ with l⋆ = (θ − µθ)

2. Thus, by Equation (A.18),

lim
λ→∞

V ar(θ⋆) = 2

∫ ∞

µθ+τa

(µθ − θ)2ϕ

(
θ − µθ

σθ

)
dθ

And by Proposition 1, for any Γ > 0, we must have τa > 0, so

lim
λ→∞

V ar(θ⋆) = 2

∫ ∞

µθ+τa

(µθ−θ)2ϕ
(
θ − µθ

σθ

)
dθ < 2

∫ ∞

µθ

(µθ−θ)2ϕ
(
θ − µθ

σθ

)
dθ = V ar(θ)

Hence, V ar(θ⋆) < V ar(θ).
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3. (see Appendix A.5) Next, we want to show V ar(θ⋆) < V ar(θ) if λ ≥ σ2
q/2 or Γ ≤ Γ̂ or

Γ ≥ Γ̃ for some Γ̂ > 0, Γ̃ > 0. Let D ≜ V ar(θ)− V ar(θ⋆)

First, when τd > τa, Equation (A.18) yields

D =

∫

d(θ)>0

(µθ − θ)2ϕ

(
θ − µθ

σθ

)
dθ −

∫

d(θ)>τa

(µθ − θ)2ϕ

(
θ − µθ

σθ

)
dθ

which is positive since τa is positive.

Second, when τd ≤ τa, Equation (A.19) yields

D =

∫ µθ+τa

µθ

(µθ − θ)2ϕ

(
θ − µθ

σθ

)
dθ

−
∫ µθ+τa

µθ+τd

[(1− w⋆(θ))w⋆(θ)σ2
θ + (1− w⋆(θ))2(µθ − θ)2]ϕ

(
θ − µθ

σθ

)
dθ

We can do the same change of variables as the above steps. In particular, let y =

((θ − µθ)/σθ)
2 − 1, then we have

D =
σθ√
2π

[ ∫ τ̂a
2−1

−1

(1 + y)
exp(−(y + 1)/2)√

y + 1
dθ

−
∫ τ̂a

2−1

τ̂d
2−1

(1− ŵ)(1 + (1− ŵ)y)
exp(−(y + 1)/2)√

y + 1
dθ
]

where τ̂a = τa/σθ, τ̂d = τd/σθ, ŵ = (−1 +
√
1 + 4αy)/(4y) and α = λ/σ2

θ .

(a) When λ ≥ σ2
θ/2, by Lemma 6, τd ≥

√
σ2
θ − σ4

θ/(4λ), so τ̂d ≥ 1/
√
2.

Let

f(w) ≜
∫ τ̂a

2−1

τ̂d
2−1

ω(w, y) exp

(
−y + 1

2

)
1√
y + 1

dθ

where ω(w, y) ≜ (1− w)(1 + (1− w)y).

Notice that
∂ω

∂w
= −1−2(1−w)y, which is non-positive if and only if (1−w)y ≥ −1/2.

Because y ≥ τ̂d − 1 > −1/2 and ŵ ∈ [0, 1], this implies that (1 − ŵ)y ≥ −1/2 and
∂ω

∂ŵ
≤ 0.

Thus,

max
w∈[0,1]

f(w) =

∫ τ̂a
2−1

τ̂d
2−1

(1 + y) exp

(
−y + 1

2

)
1√
y + 1

dθ

156



So we get a lower bound of D:

D ≥ σθ√
2π

∫ τ̂d
2−1

−1

(y + 1)
exp(−(y + 1)/2)√

y + 1
dθ

And by Lemma 6, we know ∀λ > 0, we must have τd > 0. Thus, D > 0.

(b) Let Γ̂ ≜ l⋆(θ)
∣∣
θ=µθ+τd

> 0

When Γ ≤ Γ̂, this means τa ≤ τd, by Equation (A.18), V ar(θ⋆) =
∫
d(θ)>τa

(µθ −

θ)2ϕ

(
θ − µθ

σθ

)
dθ, which is less than V ar(θ), since τa > 0 whenever Γ > 0.

(c) Let Γ́ ≜ l⋆(θ)
∣∣
θ=µθ+σθ/

√
2
> 0

When Γ ≥ Γ́, then τa ≥ σθ/
√
2 =⇒ τ̂a ≥ 1/

√
2 =⇒ τ̂d

2 − 1 ≥ −1/2.

Also, in part 3 (a), we have seen that if y ≥ −1/2,
∂ω

∂w
(ŵ, y) ≤ 0 (since ŵ ∈ [0, 1]).

This implies that if y ≥ −1/2, ω(ŵ, y) ≤ ω(0, y) = (1 + y).

And if τ̂a
2 − 1 increases to τ̂a

2 − 1 + ξ for any ξ > 0, then the change of D is

δD =
σθ√
2π

[∫ τ̂a
2−1+ξ

τ̂a
2−1

[(1 + y)− (1− ŵ)(1 + (1− ŵ)y)]
exp(−(y + 1)/2)√

y + 1
dθ

]
≥ 0

This means D monotonically increases in τa for any τa ≥ Γ́.

In part 1, we have proved that D > 0 when Γ → ∞, meaning that D > 0 when

τa → ∞. Because D is continuous in τa, we either have D > 0 whenever Γ ≥ Γ́ (so

Γ̃ = Γ́) or there exists another threshold Γ̃ > Γ́ such that D > 0 whenever Γ ≥ Γ̃.

157



A.2.2 Proof of the Results in Section 2.5.

A.2.2.1 Auxiliary lemmas

Lemma 11. Let pt ≜ πt
A(0) and assume πt

A(−v) = πt
A(v) = (1 − pt)/2. Then, there exist

U t(σq, p
t) and Lt(σq, p

t) such that

pt+1 =
(1− p0)

2

[
Φ

(
U t(σt

q(−v), pt) + v

σt
q(−v)

)
− Φ

(
Lt(σt

q(−v), pt) + v

σt
q(−v)

)]

+ p0

[
Φ

(
U t(σt

q(0), p
t)

σt
q(0)

)
− Φ

(
Lt(σt

q(0), p
t)

σt
q(0)

)]

+
(1− p0)

2

[
Φ

(
U t(σt

q(v), p
t)− v

σt
q(v)

)
− Φ

(
Lt(σt

q(v), p
t)− v

σt
q(v)

)]

where U t(σq, p
t) = −Lt(σq, p

t) and

U t(σq, p
t) ≜ v

2
+
σ2
q

v
· log


 pt

(1− pt)
+

√(
pt

(1− pt)

)2

+ 3e−v2/σ2
q




Proof. Proof of Lemma 11. By definition,

E[(θ̂ − θ)2|q] =
∑

θ∈Θ
(θ̂ − θ)2πt

A(θ|q, σq)

= (θ̂ + v)2πt
A(−v|q, σq) + θ̂2πt

A(0|q, σq) + (θ̂ − v)2πt
A(v|q, σq)

= (θ̂2 + 2vθ̂ + v2)πt
A(−v|q, σq) + θ̂2πt

A(0|q, σq) + (θ̂2 − 2vθ̂ + v2)πt
A(v|q, σq)

= θ̂2 + (2vθ̂ + v2)πt
A(−v|q, σq) + (−2vθ̂ + v2)πt

A(v|q, σq)

= θ̂2 + 2vθ̂(πt
A(−v|q, σq)− πt

A(v|q, σq)) + v2πt
A(−v|q, σq) + v2πt

A(v|q, σq)

So θtA solves:

min
θ̂∈{−v,0,v}

{θ̂2 + 2vθ̂(πt
A(−v|q, σq)− πt

A(v|q, σq))}

Hence,

θtA(q, σq) = v
[
1{πt

A(−v|q, σq)− πt
A(v|q, σq) < −1/2} − 1{πt

A(−v|q, σq)− πt
A(v|q, σq) > 1/2}

]
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where

πt
A(θ|q, σq) =

ϕ
(

q−θ
σq

)
πt
A(θ)

ϕ
(

q+v
σq

)
(1−pt)

2
+ ϕ

(
q
σq

)
pt + ϕ

(
q−v
σq

)
(1−pt)

2

and

πt
A(−v|q, σq)− πt

A(v|q, σq) = −
exp

(
2vq
σ2
q

)
− 1

1 + exp
(

2vq
σ2
q

)
+ 2 exp

(
v2+2vq
2σ2

q

)(
pt

1−pt

) ≜ dt(q, σq).

We can use this to identify the values that θtA(q, σq) takes. First, θ
t
A(q, σq) = v if and only is

dt(q, σq) < −1/2. Let x = evq/σ
2
q , then

dt(q, σq) < −1/2 ⇔ x2 − 1

1 + x2 + 2ev
2/(2σ2

q )x pt

(1−pt)

> 1/2

⇔ 2x2 − 2 > 1 + x2 + 2ev
2/(2σ2

q )x
pt

(1− pt)

⇔ x2 − 2ev
2/(2σ2

q )
pt

(1− pt)
x− 3 > 0

The zeros for the equation above are:

2ev
2/(2σ2

q ) pt

(1−pt)
±
√(

2ev
2/(2σ2

q ) pt

(1−pt)

)2
+ 4 · 3

2
= ev

2/(2σ2
q )

pt

(1− pt)
±
√
ev

2/σ2
q

(
pt

(1− pt)

)2

+ 3.

We have to keep the positive zero. So then we have that

θtA(q, σq) = 1 ⇔ q >
σ2
q

v
· log


ev2/(2σ2

q )
pt

(1− pt)
+

√
ev

2/σ2
q

(
pt

(1− pt)

)2

+ 3




⇔ q >
v

2
+
σ2
q

v
· log


 pt

(1− pt)
+

√(
pt

(1− pt)

)2

+ 3e−v2/σ2
q


 ≜ U t(σq, p

t).

Now let’s consider the case πt
A(q, σq) = −v which happens if and only is dt(q, σq) > 1/2. Let
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x = evq/σ
2
q , then

dt(q, σq) > 1/2 ⇔ − x2 − 1

1 + x2 + 2ev
2/(2σ2

q )x pt

(1−pt)

> 1/2

⇔ x2 − 1

1 + x2 + 2ev
2/(2σ2

q )x pt

(1−pt)

< −1/2

⇔ 2x2 − 2 < −1− x2 − 2ev
2/(2σ2

q )x
pt

(1− pt)

⇔ 3x2 + 2ev
2/(2σ2

q )
pt

(1− pt)
x− 1 < 0

⇔ x2 + 2ev
2/(2σ2

q )
pt

3(1− pt)
x− 1/3 < 0

The zeros for the equation above are:

−2ev
2/(2σ2

q ) pt

3(1−pt)
±
√(

2ev
2/(2σ2

q ) pt

3(1−pt)

)2
+ 4/3

2

=− ev
2/(2σ2

q )
pt

3(1− pt)
±
√
ev

2/σ2
q

(
pt

3(1− pt)

)2

+ 1/3

We have to keep the positive zero. So then we have that

πt
A(q, σq) = −1 ⇔ q <

σ2
q

v
· log


−ev2/(2σ2

q )
pt

3(1− pt)
+

√
ev

2/σ2
q

(
pt

3(1− pt)

)2

+ 1/3




⇔ q <
v

2
+
σ2
q

v
· log


− pt

3(1− pt)
+

√(
pt

3(1− pt)

)2

+
e−v2/σ2

q

3


 ≜ Lt(σq, p

t)
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In addition, notice that

U t(σq, p
t) + Lt(σq, p

t)

=
σ2
q

v
·
[
log


ev2/(2σ2

q )
pt

(1− pt)
+

√
ev

2/σ2
q

(
pt

(1− pt)

)2

+ 3




+ log


−ev2/(2σ2

q )
pt

3(1− pt)
+

√
ev

2/σ2
q

(
pt

3(1− pt)

)2

+ 1/3



]

=
σ2
q

v
log

[
ev2/(2σ2

q )
pt

(1− pt)
+

√
ev

2/σ2
q

(
pt

(1− pt)

)2

+ 3




·


−ev2/(2σ2

q )
pt

3(1− pt)
+

√
ev

2/σ2
q

(
pt

3(1− pt)

)2

+ 1/3



]

=
σ2
q

v
log

[
ev

2/(2σ2
q )pt +

√
ev

2/σ2
q (pt)2 + 3(1− pt)2

1− pt
·
−ev2/(2σ2

q )pt +
√
ev

2/σ2
q (pt)2 + 3(1− pt)2

3(1− pt)

]

=
σ2
q

v
log

[
−ev2/(σ2

q )(pt)2 + ev
2/σ2

q (pt)
2
+ 3(1− pt)2

3(1− pt)2

]
=
σ2
q

v
log(1) = 0

Therefore, the prior at t+ 1 is given by

pt+1 = P
(
θtA(q, σ

t
q(θ)) = 0

)

= P
(
q ∈ [Lt(σt

q(θ), p
t), U t(σt

q(θ), p
t)]
)

= E[Φ
(
U t(σt

q(θ), p
t)
)
− Φ

(
Lt(σt

q(θ), p
t)
)
]

=
(1− p0)

2

[
Φ

(
U t(σt

q(−v), pt) + v

σt
q(−v)

)
− Φ

(
Lt(σt

q(−v), pt) + v

σt
q(−v)

)]

+ p0

[
Φ

(
U t(σt

q(0), p
t)

σt
q(0)

)
− Φ

(
Lt(σt

q(0), p
t)

σt
q(0)

)]

+
(1− p0)

2

[
Φ

(
U t(σt

q(v), p
t)− v

σt
q(v)

)
− Φ

(
Lt(σt

q(v), p
t)− v

σt
q(v)

)]
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A.2.2.2 Proof of the results.

Proof. Proof of Lemma 1. If σq = ∞, πt
A(θ|q, σq) = πt

A(θ), so I(θ, σq) = 0. In addition,

suppose πt
A(−v) = πt

A(v) for some t. If σq = ∞, θtA = argminθ̂∈Θ
∑

θ∈Θ(θ̂ − θ)2πt
A(θ|q, σq) =

argminθ̂∈Θ
∑

θ∈Θ(θ̂−θ)2πt
A(θ) = 0, so et(0,∞) = 0. This means that any user with θ = 0 can

achieve zero utility loss if they share no information. Thus, σ⋆t
q (0) = ∞. On the other hand,

∀σq, lt(−v, σq) = lt(v, σq) because et(−v, σq) = et(v, σq). This implies θ⋆t(−v) = θ⋆t(v),

which further implies πt+1
A (−v) = πt+1

A (v) and σ⋆t
q (0) = ∞. Hence, ∀t, σ⋆t

q (0) = ∞ and

πt
A(−v) = πt

A(v).

Proof. Proof of Corollary 1. By definition, V ar(θ⋆t) = E[(θ⋆t − E[θ⋆t])2] and E[θ⋆t] = 0

because of Lemma 1. This means V ar(θ⋆t) = E[θ⋆t2] = v2(1 − πt+1
A (0)). And we know

V ar(θ) = v2(1 − p0), so we only need to show πt+1
A (0) ≥ p0. However, this is always true

because πt+1
A (0) = P(θ⋆t = 0) ≥ P(θ⋆t = 0|θ = 0)P(θ = 0) = 1 · P(θ = 0) = p0 by Lemma 1.

Therefore, ∀t, V ar(θ⋆t) ≤ V ar(θ).

Second,

V ar(θ⋆t) = V ar(θ) ⇐⇒ P(θ⋆t = 0) = p0 ⇐⇒ P(θ⋆t = 0|θ = −v) = P(θ⋆t = 0|θ = v) = 0

⇐⇒ P(θ⋆tA = 0|θ = −v) = P(θ⋆tA = 0|θ = v) = 0 ⇐⇒ σ⋆t
q (−v) = σ⋆t

q (v) = 0

Proof. Proof of Proposition 3. Because πt
A(−v) = πt

A(v) and σt
q(−v) = σt

q(v), we have

E[θt+1
A ] = 0 and V ar(θt+1

A ) = v2(1 − πt+1
A (0)). Let pt(σq) ≜ πt

A(0). Thus, what we want to

show is

1. pt+1 strictly increases in pt.

2. pt+1 strictly increases in σq.
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1. For the first statement, by Lemma 11, we only need to show U t(σq, p
t) strictly increases

in pt. In fact, because

U t(σq, p
t) =

v

2
+
σ2
q

v
· log


 pt

(1− pt)
+

√(
pt

(1− pt)

)2

+ 3e−v2/σ2
q




as shown in Lemma 11, it is clear that U t(σq, p
t) strictly increases in pt.

2. For the second statement, we want to show ∂pt+1/∂σq > 0. Because σt
q(−v) = σt

q(v) =

σq, we can simplify the expression of pt+1 in Lemma 11:

pt+1 = p0

[
Φ

(
U t(σt

q(0), p
t)

σt
q(0)

)
− Φ

(
Lt(σt

q(0), p
t)

σt
q(0)

)]

+ (1− p0)

[
Φ

(
U t(σq, p

t)− v

σq

)
− Φ

(−U t(σq, p
t)− v

σq

)]

Thus,

∂pt+1

∂σq
∝ ϕ

(
U t − v

σq

)
·

∂Ut

∂σq
σq − U t + v

σ2
q

− ϕ

(−U t − v

σq

)
·
−∂Ut

∂σq
σq + U t + v

σ2
q

∝ exp

(
−(U t − v)2

2σ2
q

)
·

∂Ut

∂σq
σq − U t + v

σ2
q

+ exp

(−(U t + v)2

2σ2
q

)
·

∂Ut

∂σq
σq − U t − v

σ2
q

∝ exp

(
vU t

σ2
q

)(
∂U t

∂σq
σq − U t + v

)
+ exp

(
−vU

t

σ2
q

)(
∂U t

∂σq
σq − U t − v

)

∝ exp

(
2vU t

σ2
q

)(
∂U t

∂σq
σq − U t + v

)
+

(
∂U t

∂σq
σq − U t − v

)
≜ f

We want to show f > 0.

Let x ≜ exp(v2/(2σ2
q )) and y ≜ pt/(1− pt). With some algebra, we can get

∂U t

∂σq
σq − U t = U t − v

xy(
√
x2y2 + 3 + xy)

xy(
√
x2y2 + 3 + xy) + 3

= U t − v
1

1 + 3/[xy(
√
x2y2 + 3 + xy)]

> −v

where the last inequality is given by U t ≥ 0, x ≥ 0 and y ≥ 0. Therefore,

f > exp

(
2vU t

σ2
q

)(
∂U t

∂σq
σq − U t + v

)
− 2v
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We want to show exp

(
2vU t

σ2
q

)(
∂U t

∂σq
σq − U t + v

)
> 2v.

With some algebra, we can get

exp

(
2vU t

σ2
q

)
= (xy+

√
x2y2 + 3)2 and

∂U t

∂σq
σq−U t+v = U t+

3v

xy(xy +
√
x2y2 + 3) + 3

Because U t ≥ 0,

exp

(
2vU t

σ2
q

)(
∂U t

∂σq
σq − U t + v

)
≥ v · 3(xy +

√
x2y2 + 3)2

xy(xy +
√
x2y2 + 3) + 3

Because x ≥ 0 and y ≥ 0,

(xy +
√
x2y2 + 3)2 = x2y2 + 2xy

√
x2y2 + 3 + x2y2 + 3 > xy(xy +

√
x2y2 + 3) + 3

Thus,

exp

(
2vU t

σ2
q

)(
∂U t

∂σq
σq − U t + v

)
≥ 3v > 2v

Hence, we have ∂pt+1/∂σq > 0.

Proof. Proof of Theorem 2. In Lemma 1, we have seen σ⋆t
q (0) = ∞ and σ⋆t

q (−v) = σ⋆t
q (v).

Clearly, these still hold if there is another constraint such that every user cannot share more

information than the previous iteration). That is, if there is another constraint σt+1
q (θ) ≥

σt
q(θ) for any θ, we still have ∀t, σ⋆t

q (0) = ∞ and σ⋆t
q (−v) = σ⋆t

q (v). To simplify the

notation, let σt
q = σt

q(−v) = σt
q(v) for some σt

q. By Proposition 3, V ar(θt+1
A |σt+1

q > σ⋆t
q ) <

V ar(θt+1
A |σt+1

q = σ⋆t
q ). Therefore, to show V ar(θ⋆(t+1)) < V ar(θ⋆t), we only need to show

V ar(θt+1
A |σt+1

q = σ⋆t
q ) ≤ V ar(θ⋆t) = V ar(θtA|σ⋆t

q ), as we assume Γ = ∞. That is, we want to

show the variance of outputs will not increase if the user with θ ̸= 0 shares the same amount

of information as in the previous iteration.

By Proposition 3, we have V ar(θt+1
A |σt+1

q = σ⋆t
q ) ≤ V ar(θtA|σ⋆t

q ) is true if V ar(θ⋆t) ≤
V ar(θ⋆(t−1)). This implies that V ar(θ⋆(t+1)) < V ar(θ⋆t) if V ar(θ⋆t) ≤ V ar(θ⋆(t−1)). Further-

more, by Corollary 1, we have V ar(θ⋆0) ≤ V ar(θ). Hence, we must have ∀t, V ar(θ⋆(t+1)) <
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V ar(θ⋆t) by mathematical induction. This concludes that there exists a homogenization

death spiral if Γ = ∞ and users cannot share more information than in the previous itera-

tion.

Next, we want to show the existence of a counter-example when either Γ is small enough

or users can share more information than in the previous iteration.

First, let l̂t denote the optimal utility loss of using the AI for the unique user with θ ̸= 0

at time t when Γ = ∞. Let l̂⋆t = sup{l̂⋆t}∞t=0 be the supremum of the utility loss over time.

Suppose Γ reduces to some value strictly less than l̂⋆t, then there exists a period t̂ such that

the utility loss of using the AI is higher than Γ (i.e., l̂t̂ > Γ). Thus, at time t̂, we must have

V ar(θ⋆t̂A ) = V ar(θ) ≥ V ar(θ
⋆(t̂−1)
A ). We conclude that the homogenization death spiral is

broken if Γ < l̂⋆t.

On the other hand, suppose Γ = ∞. By Proposition 3, we know V ar(θt+1
A ) strictly

decreases in σq whenever V ar(θt+1
A ) > 0. And by Corollary 1, V ar(θt+1

A ) = V ar(θ) ≥
V ar(θtA) if σ

⋆t
q (−v) = σ⋆t

q (v) = 0. Because of continuity, there exists a threshold σ̂q > 0 such

that V ar(θt+1
A ) ≥ V ar(θtA) if σ

⋆t
q (−v) = σ⋆t

q (v) ≤ σ̂q.

A.2.3 Proof of the Results in Section 2.6.

A.2.3.1 Auxiliary lemmas

Lemma 12. For any θ, σ2
q ,

e(θ, σq) =
σ2
q (σ

4
A + σ2

q (µA − θ)2)

(σ2
A + σ2

q )
2

(A.20)

In addition,

• Both l(θ, σ2
q ) and e(θ, σq) strictly increase in (µA − θ)2.

• Both l(θ, σ2
q ) and e(θ, σq) strictly decrease in σ2

A for σ2
A < (µA − θ)2 and increase in σ2

A

for σ2
A ≥ (µA − θ)2.

165



Proof. Proof of Lemma 12. By Equation (2.1), θA =
σ2
A

σ2
A + σ2

q

q +
σ2
q

σ2
A + σ2

q

µA. Then,

e(θ, σq) = E

[(
σ2
A

σ2
A + σ2

q

(θ + ϵq) +
σ2
q

σ2
A + σ2

q

µA − θ

)2

|θ
]

= E

[(
σ2
A

σ2
A + σ2

q

ϵq +
σ2
q

σ2
A + σ2

q

(µA − θ)

)2

|θ
]

=

(
σ2
A

σ2
A + σ2

q

)2

E[ϵ2q] +

(
σ2
q

σ2
A + σ2

q

(µA − θ)

)2

=

(
σ2
A

σ2
A + σ2

q

)2

σ2
q +

(
σ2
q

σ2
A + σ2

q

(µA − θ)

)2

=
σ2
q (σ

4
A + σ2

q (µA − θ)2)

(σ2
A + σ2

q )
2

It is clear that e(θ, σq) strictly increases in (µA − θ)2, and l(θ, σ2
q ) strictly increases in

(µA − θ)2 (Note that I(σ2
q ) does not depend on either µA or σA).

Take the derivative of e(θ, σq) with respect to σ2
A:

∂e(θ, σq)

∂σ2
A

=
2σ2

qσ
2
A(σ

2
A + σ2

q )
2 − 2(σ2

A + σ2
q )σ

2
q (σ

4
A + σ2

q (µA − θ)2)

(σ2
A + σ2

q )
4

=
2σ2

qσ
2
A(σ

2
A + σ2

q )− 2σ2
q (σ

4
A + σ2

q (µA − θ)2)

(σ2
A + σ2

q )
3

=
2σ4

q (σ
2
A − (µA − θ)2)

(σ2
A + σ2

q )
3

Thus,
∂e(θ, σq)

∂σ2
A

< 0 if σ2
A < (µA − θ)2, and

∂e(θ, σq)

∂σ2
A

≥ 0 if σ2
A ≥ (µA − θ)2. This implies

that both l(θ, σ2
q ) and e(θ, σq) strictly decrease in σ2

A for σ2
A < (µA − θ)2 and increase in σ2

A

for σ2
A ≥ (µA − θ)2.

Lemma 13. Let w⋆(θ, λ) =
σ⋆2
q (θ, λ)

σ2
A + σ⋆2

q (θ, λ)
. ∀θ, µA, σA, λ1 > λ2, w

⋆(θ, λ1) ≥ w⋆(θ, λ2).

Proof. Proof of Lemma 13. Firstly, by Equation (A.20), we can write the objective function
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as:

l(θ, w, λ) = w(1− w)σ2
A + w2(µA − θ)2 − λ

2
lnw

where w = σ2
q/(σ

2
A + σ2

q ) ∈ [0, 1].

For the sake of contradiction, assume w⋆(θ, λ1) < w⋆(θ, λ2) for some θ. Since I(w) =

− ln(w)/2 strictly decreases in w, we have δI ≜ I(w⋆(θ, λ1)) − I(w⋆(θ, λ2)) > 0. Let δe ≜

e(θ, w⋆(θ, λ1)) − e(θ, w⋆(θ, λ2)). Because w⋆(θ, λ1) is optimal when λ = λ1, we must have

l(θ, w⋆(θ, λ1), λ1) − l(θ, w⋆(θ, λ2), λ1) < 0. This implies δe < 0 and δe + λ1δI < 0. However,

because λ1 > λ2 and δI > 0, we must have δe + λ2δI < δe + λ1δI < 0, meaning that

l(θ, w⋆(θ, λ1), λ2)− l(θ, w⋆(θ, λ2), λ2) < 0. This contradicts the assumption that w⋆(θ, λ2) is

optimal when λ = λ2. Therefore ∀θ, w⋆(θ, λ1) ≥ w⋆(θ, λ2) whenever λ1 > λ2.

A.2.3.2 Proofs of the results

Proof. Proof of Proposition 4.

• Suppose |µA1 − θ| > |µA2 − θ| for some µA1 , µA2 , θ. Let σ
⋆
q1

and σ⋆
q2

denote the optimal

decision for user θ in Problem (2.4) when µA = µA1 and µA = µA2 , respectively. By

definition of l in Equation (2.3), let l⋆1 = l(θ, σ⋆
q1
, µA1) and l

⋆
2 = l(θ, σ⋆

q2
, µA2).

We want to show l⋆1 > l⋆2. For the sake of contradiction, suppose l
⋆
1 ≤ l⋆2. By Lemma 12,

l⋆1 = l(θ, σ⋆
q1
, µA1) > l(θ, σ⋆

q1
, µA2). This implies l(θ, σ⋆

q1
, µA2) < l⋆2 = l(θ, σ⋆

q2
, µA2). This

contradicts the assumption that σ⋆
q2

minimizes l(θ, σq, µA2). Therefore, l⋆1 > l⋆2. We

conclude that l⋆ strictly increases in |µA − θ|.

• Suppose σA1 < σA2 < |µA − θ| for some σA1 , σA2 , µA, θ. Let σ⋆
q1

and σ⋆
q2

denote the

optimal decision for user θ in Problem (2.4) when σA = σA1 and σA = σA2 , respectively.

By definition of l in Equation (2.3), let l⋆1 = l(θ, σ⋆
q1
, σA1) and l

⋆
2 = l(θ, σ⋆

q2
, σA2).

We want to show l⋆1 > l⋆2. For the sake of contradiction, suppose l
⋆
1 ≤ l⋆2. By Lemma 12,
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l⋆1 = l(θ, σ⋆
q1
, σA1) > l(θ, σ⋆

q1
, σA2). This implies l(θ, σ⋆

q1
, σA2) < l⋆2 = l(θ, σ⋆

q2
, σA2). This

contradicts the assumption that σ⋆
q2

minimizes l(θ, σq, σA2). Therefore, l⋆1 > l⋆2. We

conclude that l⋆ strictly decreases in σA when σA < |µA − θ|.

Similarly, when |µA − θ| ≤ σA1 < σA2 , we want to show l⋆1 ≤ l⋆2. For the sake of

contradiction, suppose l⋆1 > l⋆2. By Lemma 12, l⋆2 = l(θ, σ⋆
q2
, σA2) > l(θ, σ⋆

q2
, σA1). This

implies l(θ, σ⋆
q2
, σA1) < l⋆1 = l(θ, σ⋆

q1
, σA1). This contradicts the assumption that σ⋆

q1

minimizes l(θ, σq, σA1). Therefore, l
⋆
1 ≤ l⋆2. We conclude that l⋆ strictly increases in σA

when σA ≥ |µA − θ|.

Proof. Proof of Proposition 5. Let ϕ(·) denote the probability density function of N(0, 1).

And let w = σ2
q/(σ

2
A + σ2

q ).

• Let us first show E[l⋆(θ, µA)] is minimized at µA = µθ. That is, ∀µA1 ̸= µθ, we want to

show E[l⋆(θ, µA1)] > E[l⋆(θ, µθ)]. Without loss of generality, suppose µA1 > µθ.

By definition,

E[l⋆(θ, µA)] =

∫ ∞

−∞
l⋆(θ, µA)ϕ

(
θ − µθ

σθ

)
dθ

So we want to show

∫ ∞

−∞
[l⋆(θ, µA1)− l⋆(θ, µθ)]ϕ

(
θ − µθ

σθ

)
dθ > 0

By Equation (A.20), ∀σq, θ1, θ2, θ1 − µA = µA − θ2 =⇒ e(θ1, σq) = e(θ2, σq), so w
⋆(θ1) =

w⋆(θ2), meaning that w⋆(θ) and l⋆(θ, µA) are axisymmetric with respect to θ = µA. Also,

∀θ, µA, w
⋆(θ) and l⋆(θ, µA) are constant as long as |µA − θ| is constant. This implies

[l⋆(θ, µA1)− l⋆(θ, µθ)] is centrosymmetric with respect to the point ((µA1 + µθ)/2, 0). That

is, ∀θ1 > θ2, θ1 − (µA1 + µθ)/2 = (µA1 + µθ)/2 − θ2 =⇒ [l⋆(θ1, µA1) − l⋆(θ1, µθ)] =

−[l⋆(θ2, µA1) − l⋆(θ2, µθ)] > 0, which is positive because l⋆(θ, µA) strictly increases in

|µA − θ| by Proposition 4.
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Let µ̄ denote (µA1 + µθ)/2. Because µA > µθ =⇒ µ̄ > µθ, we have Pr(θ ≤ µ̄) > Pr(θ >

µ̄), and ∀θ1 > θ2, θ1 − µ̄ = µ̄ − θ2 =⇒ ϕ ((θ1 − µθ)/σθ) < ϕ ((θ2 − µθ)/σθ). Because

[l⋆(θ, µA1) − l⋆(θ, µθ)] is centrosymmetric with respect to the point (µ̄, 0), these imply

0 < [l⋆(θ1, µA1)− l⋆(θ1, µθ)]ϕ ((θ1 − µθ)/σθ) < −[l⋆(θ2, µA1)− l⋆(θ2, µθ)]ϕ((θ2 − µθ)/σθ.

This means that ∀θ1 > θ2, θ1 − µ̄ = µ̄− θ2, we have

[l⋆(θ1, µA1)− l⋆(θ1, µθ)]ϕ ((θ1 − µθ)/σθ) + [l⋆(θ2, µA1)− l⋆(θ2, µθ)]ϕ((θ2 − µθ)/σθ > 0

Hence,
∫ ∞

−∞
[l⋆(θ, µA1)− l⋆(θ, µθ)]ϕ

(
θ − µθ

σθ

)
dθ

=

∫ µ̄

−∞
[l⋆(θ, µA1)− l⋆(θ, µθ)]ϕ

(
θ − µθ

σθ

)
dθ +

∫ ∞

µ̄

[l⋆(θ, µA1)− l⋆(θ, µθ)]ϕ

(
θ − µθ

σθ

)
dθ > 0

This implies E[l⋆(θ, µA)] is minimized at µA = µθ.

And because
∂l⋆(θ, µA)

∂µA

is continuous at µA = µθ and σA = σθ, E[l
⋆(θ, µA)] is differentiable

at µA = µθ and σA = σθ. Thus, we have
∂E[l⋆]

∂µA

∣∣∣
µA=µθ,σA=σθ

= 0.

• By Equation (2.3) and Equation (A.20),

l⋆(θ) =
σ⋆2
q (θ)(σ4

A + σ⋆2
q (θ)(µA − θ)2)

(σ2
A + σ⋆2

q (θ))2
− λ

2
ln

(
σ⋆2
q (θ)

σ⋆2
q (θ) + σ2

θ

)

By the chain rule,
∂l⋆

∂σ2
A

=
dl⋆

dσ⋆2
q

· dσ
⋆2
q

dσ2
A

+
dl⋆

dσ2
A

. Because σ⋆2
q is optimal,

dl⋆

dσ⋆2
q

= 0. This

implies
∂l⋆

∂σ2
A

=
dl⋆

dσ2
A

. With some algebra, we can get

dl⋆

dσ2
A

∣∣∣
µA=µθ,σA=σθ

=
2σ⋆4

q (σ2
θ − (µθ − θ)2)

(σ⋆2
q + σ2

θ)
3

Since w(θ) = σ2
q (θ)/[σ

2
A + σ2

q (θ)], we can rewrite it as

dl⋆

dσ2
A

∣∣∣
µA=µθ,σA=σθ

=
dl⋆(θ)

dσ2
A

∣∣∣
µA=µθ,σA=σθ

=
2

σ2
θ

w⋆(θ)2(1− w⋆(θ))(σ2
A − (µθ − θ)2)

where w⋆(θ) =
−σ2

θ +
√
∆

4((µθ − θ)2 − σ2
θ)

and ∆ = σ4
θ + 4λ((µθ − θ)2 − σ2

θ) by Lemma 6.
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And, by definition,

E[l⋆]
∣∣∣
µA=µθ,σA=σθ

=

∫ ∞

−∞
l⋆(θ)ϕ

(
θ − µθ

σθ

)
dθ

=

∫

|µθ−θ|≥τd

l⋆(θ)ϕ

(
θ − µθ

σθ

)
dθ +

∫

|µθ−θ|<τd

l⋆(θ)ϕ

(
θ − µθ

σθ

)
dθ

where τd is defined in Lemma 6.

When µA = µθ, l(θ) is symmetric with respect to θ = µθ, so

E[l⋆]
∣∣∣
µA=µθ,σA=σθ

= 2

[∫ ∞

µθ+τd

l⋆(θ)ϕ

(
θ − µθ

σθ

)
dθ +

∫ µθ+τd

0

l⋆(θ)ϕ

(
θ − µθ

σθ

)
dθ

]

And when w = 1 we know l = (µθ − θ)2, so

E[l⋆]
∣∣∣
µA=µθ,σA=σθ

= 2

[∫ ∞

µθ+τd

l⋆(θ)ϕ

(
θ − µθ

σθ

)
dθ +

∫ µθ+τd

0

(µθ − θ)2ϕ

(
θ − µθ

σθ

)
dθ

]

Thus, by the Leibniz integral rule,

∂E[l⋆]

∂σ2
A

∣∣∣
µA=µθ,σA=σθ

= 2

[∫ ∞

µθ+τd

∂l⋆(θ)

∂σ2
A

ϕ

(
θ − µθ

σθ

)
dθ − (µθ − τd)

2 · ∂τd
σ2
A

+ (µθ − τd)
2 · ∂τd

σ2
A

]

= 2

[∫ ∞

µθ+τd

∂l⋆(θ)

∂σ2
A

ϕ

(
θ − µθ

σθ

)
dθ

]

= 2

[∫ ∞

µθ+τd

2

σ2
θ

w⋆(θ)2(1− w⋆(θ))(σ2
A − (µθ − θ)2)ϕ

(
θ − µθ

σθ

)
dθ

]

=
1

σ2
θ

[∫ ∞

µθ+τd

w⋆(θ)2(1− w⋆(θ))(σ2
A − (µθ − θ)2)ϕ

(
θ − µθ

σθ

)
dθ

]

Let g(θ) ≜ w⋆(θ)2(1− w⋆(θ))(σ2
θ − (µθ − θ)2)

When λ ≥ 2σ2
θ , by the proof of Lemma 6 (see the summary at the end of the proof),

λ > 2σ2
θ ≥ σ2

θ =⇒ τd =
√
σ2
θ/2 + λ/4 >

√
σ2
θ/2 + 2σ2

θ/4 = σθ. So g(θ) is always negative

for any θ > µθ + τd. Thus,

∫ ∞

µθ+τd

g(θ)ϕ

(
θ − µθ

σθ

)
dθ < 0
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Proof. Proof of Theorem 3. Let w = σ2
q/(σ

2
A+σ

2
q ). By Equation (2.1), θA = (1−w)q+wµA,

where q = θ + ϵq, ϵq ∼ N(0, σ2
q ) and θ ∼ N(µθ, σ

2
θ). We further define w⋆(θ) = σ⋆2

q (θ)/[σ2
A +

σ⋆2
q (θ)]. Let ϕ(·) denote the probability density function of N(0, 1).

E[θ⋆] =

∫

|µA−θ|≤τa

∫ ∞

−∞
θ⋆Aϕ

(
ϵq

σ⋆
q (θ)

)
dϵqϕ

(
θ − µθ

σθ

)
dθ +

∫

|µA−θ|>τa

θϕ

(
θ − µθ

σθ

)
dθ

=

∫

|µA−θ|≤τa

∫ ∞

−∞
[(1− w⋆(θ))q + w⋆(θ)µA]ϕ

(
ϵq

σ⋆
q (θ)

)
dϵqϕ

(
θ − µθ

σθ

)
dθ

+

∫

|µA−θ|>τa

θϕ

(
θ − µθ

σθ

)
dθ

=

∫

|µA−θ|≤τa

[(1− w⋆(θ))θ + w⋆(θ)µA]ϕ

(
θ − µθ

σθ

)
dθ +

∫

|µA−θ|>τa

θϕ

(
θ − µθ

σθ

)
dθ

=

∫

|µA−θ|≤τa

[(1− w⋆(θ))(θ − µA) + µA]ϕ

(
θ − µθ

σθ

)
dθ +

∫

|µA−θ|>τa

θϕ

(
θ − µθ

σθ

)
dθ

=

∫

|µA−θ|≤τa

[(1− w⋆(θ))(θ − µA) + µA]ϕ

(
θ − µθ

σθ

)
dθ + µθ −

∫

|µA−θ|≤τa

θϕ

(
θ − µθ

σθ

)
dθ

=

∫

|µA−θ|≤τa

w⋆(θ)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ + µθ

This implies that

|E[θ⋆]− µθ| =
∣∣∣∣
∫

|µA−θ|≤τa

w⋆(θ)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ

∣∣∣∣ (A.21)

1. (a) First, we want to show

|E[θ⋆]− µθ| ≤
∣∣∣∣
∫ ∞

−∞
w⋆(θ)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ

∣∣∣∣

Without loss of generality, suppose µA ≥ µθ. Then, Pr(θ ≤ µA) ≥ Pr(θ > µA), and

∀θ1 > θ2, θ1 − µA = µA − θ2 =⇒ ϕ ((θ1 − µθ)/σθ) < ϕ ((θ2 − µθ)/σθ). Because w⋆(θ) is

symmetric with respect to θ = µA, we have w⋆(θ1) = w⋆(θ2). These imply

0 < −w⋆(θ1)(µA − θ1)ϕ ((θ1 − µθ)/σθ) < w⋆(θ2)(µA − θ2)ϕ ((θ2 − µθ)/σθ)

which means that ∀θ1 > θ2, if θ1 − µA = µA − θ2, then

w⋆(θ2)(µA − θ2)ϕ ((θ2 − µθ)/σθ) + w⋆(θ1)(µA − θ1)ϕ ((θ1 − µθ)/σθ) > 0
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Since τa > 0, we can get

∫ µA+τa

µA−τa

w⋆(θ)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ > 0

and

∫ ∞

µA+τa

w⋆(θ)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ +

∫ µA−τa

−∞
w⋆(θ)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ ≥ 0

Thus,

∫ ∞

−∞
w⋆(θ)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ =

∫ µA+τa

µA−τa

w⋆(θ)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ

+

∫ ∞

µA+τa

w⋆(θ)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ

+

∫ µA−τa

−∞
w⋆(θ)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ

> 0

and

|E[θ⋆]−µθ| =
∣∣∣∣
∫

|µA−θ|≤τa

w⋆(θ)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ

∣∣∣∣ ≤
∣∣∣∣
∫ ∞

−∞
w⋆(θ)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ

∣∣∣∣

Let λ1 > λ2. By Lemma 13, ∀θ, w⋆(θ, λ1) ≥ w⋆(θ, λ2). Because w
⋆(θ) is symmetric with

respect to θ = µA, ∀θ1 > θ2, θ1 − µA = µA − θ2, then

(w⋆(θ2, λ1)− w⋆(θ2, λ2))(µA − θ2)ϕ ((θ2 − µθ)/σθ)

≥ − (w⋆(θ1, λ1)− w⋆(θ1, λ2))(µA − θ1)ϕ ((θ1 − µθ)/σθ) ≥ 0

This implies
∫

θ≤µA

w⋆(θ, λ1)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ −

∫

θ≤µA

w⋆(θ, λ2)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ

≥ −
[∫

θ>µA

w⋆(θ, λ1)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ −

∫

θ>µA

w⋆(θ, λ2)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ

]
≥ 0

Rearrange the inequality, we can get

∫ ∞

−∞
w⋆(θ, λ1)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ ≥

∫ ∞

−∞
w⋆(θ, λ2)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ
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Thus, ∫ ∞

−∞
w⋆(θ)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ

increases in λ.

And because w⋆(θ, λ) → 1 as λ → ∞, by the monotone convergence theorem (Pugh,

2015), we get the upper bound

∫ ∞

−∞
w⋆(θ)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ ≤ µA − µθ

Hence, |E[θ⋆]− µθ| ≤ |µA − µθ|.

2. When λ = 0, for any θ, w⋆(θ) = 0, by Equation (A.21), we have |E[θ⋆] − µθ| = 0. And

when Γ = 0, τa = 0, |E[θ⋆]− µθ| =
∣∣∣∣
∫

|µA−θ|=0

w⋆(θ)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ

∣∣∣∣ = 0

3. When Γ → ∞, by Equation (A.21),

|E[θ⋆]− µθ| =
∣∣∣∣
∫ ∞

−∞
w⋆(θ)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ

∣∣∣∣

And when λ→ ∞, ∀θ, w⋆(θ) → 1.

Without loss of generality, suppose µA ≥ µθ. In part 1, we have shown that

∫ ∞

−∞
w⋆(θ)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ

is non-negative and increases in λ. By the monotone convergence theorem (Pugh, 2015),

we have

lim
λ→∞

∣∣∣∣
∫ ∞

−∞
w⋆(θ)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ

∣∣∣∣ =
∣∣∣∣
∫ ∞

−∞
(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ

∣∣∣∣ = |µA − µθ|

Thus, when Γ → ∞ and λ→ ∞, |E[θ⋆]− µθ| = |µA − µθ|.

4. When Γ → ∞, by Equation (A.21),

|E[θ⋆]− µθ| =
∣∣∣∣
∫ ∞

−∞
w⋆(θ)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ

∣∣∣∣
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Without loss of generality, suppose µA ≥ µθ. In part 1, we have shown

∫ ∞

−∞
w⋆(θ)(µA − θ)ϕ

(
θ − µθ

σθ

)
dθ

is non-negative and increases in λ. Hence, when Γ → ∞, |E[θ⋆A]− µθ| increases in λ.

A.3 The description of the simulation for the self-training loop.

In this section, we describe the numerical experiment for the self-training loop outlined in

Section 2.5. Detailed pseudo code is provided in Algorithm 1, Algorithm 2, Algorithm 3,

and Algorithm 4.

Algorithm 1 is the primary algorithm that runs the experiment. There are three key

points to highlight: First, for computational tractability, we use a quantization method to

discretize all continuous distributions. Specifically, we quantize the population distribution of

θ by using the Lloyd-Max algorithm (Gallager et al., 2008), so that we can get a discrete sup-

port, Θ = {θ1, . . . , θM} where M is the support size, along with a corresponding probability

mass function P(θ), ∀θ ∈ Θ. However, the Lloyd-Max algorithm is not suitable for quantizing

the distribution of queries q, because we have to make sure the support of q remains consis-

tent regardless of the mean θ (recall that we define q = θ+ϵq where ϵq ∼ N(0, σ2
q ). To address

this, we evenly select Mq points from the range [θ−∆q, θ+∆q], where θ and θ are the mini-

mum and maximum values in Θ, respectively. ∆q > 0 should be large enough to cover most

of the support of N(θA, σ
2
q ) for any θ ∈ Θ and any σq that is close to the optimal solution.

These points constitute the support of q, denoted by Q = {q1, . . . , qMq}. The probability

mass function is given by P(qi) = P((qi−1 + qi)/2 < q ≥ (qi + qi+1)/2), ∀i ∈ {2, . . . ,Mq − 1},
P(q1) = P(q ≤ (q1+q2)/2), and P(qMq) = P(q > (qMq−1+qMq)/2) (see Gallager et al. (2008)).

Second, we consider only a finite number of σq candidates. In other words, we minimize

the utility loss by finding the best σq from Mσq candidates of σq rather than by searching
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for the optimal σq from any non-negative value. This approach maintains computational

tractability and stability. Let Σq = {σ1, . . . , σMσq
} denote the candidate set of q, which

should be large enough to yield a solution that is close to the true optimal solution for any

θ ∈ Θ.

Third, at the end of each iteration, the AI’s prior is updated based on the AI outputs.

Specifically, the AI’s prior is replaced by the distribution of θ⋆: πt+1
A (θi) = P(θ⋆t = θi), ∀θi ∈

Θ. This corresponds to the self-training loop in which the AI learns completely from the AI-

generated content in the previous iteration, thereby overriding its prior with the distribution

of AI outputs.

Let ϕ(·) denote the probability density function of N(0, 1). In the base setting, we use

µθ = 0, σθ = 1,M = 1001, T = 100, where T is the total number of iterations.

Algorithm 2 is used to produce the AI output given the information sent by a user, as

depicted in Section 2.3.

Algorithm 3 is used to compute the posterior distribution with respect to the popula-

tion distribution, πθ, given q. It helps us to compute the mutual information e(θ, σq) in

Algorithm 4.

Algorithm 4 is used to compute the utility loss l(θ, σq). Note that we compute I(θ, σq)

by its definition I(θ, σq) = H(θ)− Eq[H(θ|q)].
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Algorithm 1 The steps of the numerical experiment

1: Input: µθ, σθ, T , M , Mq, Σq, Γ, λ.

2: Output: πt
A(θi), ∀i ∈ {1, 2, . . . ,M}, ∀t ∈ {1, 2, . . . , T}.

3: Discretize the population distribution of θ: Apply the Lloyd-Max algorithm to get

Θ and P(θi), ∀θi ∈ Θ.

4: Discretize the distribution of q: Evenly select Mq points from [θ−∆q, θ+∆q] as Q.

Then we compute P(qk|µ = θi, σ = σj) for any qk ∈ Q, θi ∈ Θ and σj ∈ Σq.

5: Initialize the AI’s prior: π0
A(θi) = πθ(θi), ∀θi ∈ Θ

6: for t = 0, 2, . . . , T do

7: for i = 1, 2, . . . ,M do

8: Find the optimal σ⋆t
q,i = argminσq∈Σq

lt(θi, σq) (Algorithm 4)

9: Find the mapping from qk to θtA: θ
t
A(qk) (Algorithm 2)

10: Compute the Likelihood: P(qk|µ = θi, σ = σ⋆t
q,i), ∀qk ∈ Q

11: Compute the conditional distribution of θ⋆t given θ:

12: if lt(θi, σ
⋆t
q,i) > Γ then

13: P(θ⋆t = θi|θ = θi) = 1,P(θ⋆t ̸= θi|θ = θi) = 0.

14: else

15: P(θ⋆t = θj|θ = θi) =
∑Mq

k=1 P(qk|µ = θi, σ = σ⋆t
q,i)1θtA(qk)=θj , ∀θj ∈ Θ.

16: end if

17: end for

18: Compute the distribution of θ⋆t and use it as the new AI prior to the next iteration:

19: P(θ⋆t = θj) =
∑M

j=1 P(θ⋆t = θj|θ = θi)P(θi), ∀θj ∈ Θ

20: end for
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Algorithm 2 Output θA

1: Input: πA, q, σq, Θ

2: Output: θA

3: Compute the likelihood: P(q|µ = θ, σ = σq), ∀θ ∈ Θ

4: Compute the posterior given q: ∀θ ∈ Θ, πA(θ|q, σq) =
P(q|µ = θ, σ = σq)πA(θ)∑
θ̂∈Θ P(q|µ = θ̂, σ = σq)πA(θ̂)

.

5: Compute θA minimizing the mean squared error: θA = argminθ̂∈Θ
∑

θ∈Θ(θ̂ − θ)2 ·
πA(θ|q, σq)

Algorithm 3 Posterior with respect to πθ

1: Input: q, πθ, σq, Θ

2: Output: π(·|q, σq)
3: Compute the likelihood: P(q|µ = θ, σ = σq), ∀θ ∈ Θ

4: Compute the posterior given q: ∀θ ∈ Θ, π(θ|q, σq) =
P(q|µ = θ, σ = σq)πθ(θ)∑
θ̂∈Θ P(q|µ = θ̂, σ = σq)πθ(θ̂)

.

Algorithm 4 Compute the utility loss l

1: Input: σq, θ, πA, πθ, S, λ

2: Output: l

3: Find the mapping from q to θA: θA(q) (Algorithm 2)

4: Compute the likelihood: P(q|µ = θ, σ = σq), ∀θ ∈ Θ

5: Compute the fidelity error e(θ, σq) =
∑

q∈Q[θA(q)− θ]2P(q|µ = θ, σ = σq).

6: Compute the mutual information where π(·|q, σq) is given by Algorithm 3

I(θ, σq) = −
∑

θ∈Θ
πθ(θ) log(πθ(θ)) +

∑

q∈Q

∑

θ̂∈Θ

π(θ̂|q, σq) log(π(θ̂|q, σq))P(q|µ = θ, σ = σq)

7: Compute l(θ, σq) = e(θ, σq) + λI(θ, σq)
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A.4 Extensive explanation of Proposition 1: Decomposition of the

fidelity error

−5 −4 −3 −2 −1 0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

user preference θ

fidelity error e⋆

fidelity bias error e⋆b
fidelity uncertainty error e⋆u

Figure A.2: The black dashed vertical lines are at d(θ) = τd, and the black dotted vertical

lines are at d(θ) = τa. The white region indicates the users who simply accept the default

output; the yellow region indicates the users interacting with the AI by sending information;

the red region indicates the users without using AI. We use µθ = 0, σθ = 1, λ = 1,Γ = 1.4.

To further understand the variation of fidelity error shown in Proposition 1 for the users

with d(θ) < τa, we decompose their the fidelity error into a bias and a variance term,

e⋆ = V ar(θ⋆|θ) + [E(θ⋆|θ) − θ]2, as introduced in Section 2.3. Again, we call V ar(θ⋆|θ) the
fidelity uncertainty error denoted by e⋆u, and [E(θ⋆|θ) − θ]2 the fidelity bias error denoted

by e⋆b . This decomposition is depicted in Figure A.2. We can see that for the users with

d(θ) < τd, the fidelity bias error eb largely contributes to the fidelity error since they accept

the AI’s default output without sending any informative signal. At the point of d(θ) = τd,

the user starts providing information, leading to a decrease in eb but an increase in eu. As

the uniqueness further grows, they share more information, resulting in lower fidelity errors.

This reduction is primarily driven by the decrease in eu, since providing more information

effectively reduces the noise of the communication but hardly eliminates the inherent differ-

ence between the mean and their actual preferences. We formalize this observation in the

following Proposition 18.
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Proposition 18. For users with d(θ) < τa,

1. The fidelity uncertainty error e⋆u is zero when d(θ) ≤ τd, then increases, and finally

decreases in d(θ).

2. The fidelity bias error e⋆b increases when d(θ) ≤ τd, then decreases and finally increases

in d(θ).

Proof. Proof of Proposition 18. For users with d(θ) < τa, by definition, eu(θ, σq) = V ar(θA|θ)
and eb(θ, σ

2
q ) = [E(θA|θ)− θ]2. As what we did in the proof of Proposition 17 and Lemma 8,

we can show eu(θ, σq) = w(1 − w)σ2
θ and eb(θ, σ

2
q ) = w2(µθ − θ)2, where w =

σ2
q

σ2
θ + σ2

q

.

Thus, eu(θ, σ
⋆
q (θ)) = w⋆(θ)(1 − w⋆(θ))σ2

θ and eb(θ, σ
⋆
q (θ)) = w⋆2(θ)(µθ − θ)2, where w⋆(θ) =

−σ2
θ +

√
σ4
θ + 4λ((µθ − θ)2 − σ2

θ)

4((µθ − θ)2 − σ2
θ)

given by Lemma 6.

Then,

1. Fidelity uncertainty error:

We know that w⋆(θ) = 1 for |µθ− θ| < τd(λ, σθ), and w
⋆(θ) < 1 for |µθ− θ| ≥ τd(λ, σθ).

Thus, eu(θ, σ
⋆
q (θ)) = 0 for |µθ − θ| < τd(λ, σθ), and eu(θ, σ

⋆
q (θ)) > 0 for |µθ − θ| ≥

τd(λ, σθ).

When |µθ − θ| ≥ τd(λ, σθ),

∂eu(θ, σ
⋆
q (θ))

∂(µθ − θ)2
=
∂[w⋆(θ)(1− w⋆(θ))σ2

θ ]

∂(µθ − θ)2
= σ2

θ(1− 2w⋆(θ))
∂w⋆(θ)

∂(µθ − θ)2

We know
∂I⋆

∂(µθ − θ)2
≥ 0 by Proposition 1 and I⋆ = −λ

2
lnw⋆(θ) by Lemma 9. These

imply
∂w⋆(θ)

∂(µθ − θ)2
≤ 0. Thus, when |µθ − θ| ≥ τd(λ, σθ), the sign of

∂eu(θ, σ
⋆
q (θ))

∂(µθ − θ)2

depends on (1 − 2w⋆(θ)). If (1 − 2w⋆(θ)) < 0 for small |µθ − θ|, then eu(θ, σ
⋆
q (θ))

first increases and then decreases in |µθ − θ|; if (1 − 2w⋆(θ)) ≥ 0 for any |µθ − θ|,
monotonically decreases in |µθ − θ|. (Notice that (1 − 2w⋆(θ)) is always positive for

sufficiently large |µθ − θ|, because w⋆(θ) → 0 as |µθ − θ| → ∞.)
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Hence, we either have eu(θ, σ
⋆
q (θ)) = 0 for |µθ − θ| < τd(λ, σθ), first increases and then

decreases in |µθ − θ| for |µθ − θ| ≥ τd(λ, σθ); or eu(θ, σ
⋆
q (θ)) = 0 for |µθ − θ| < τd(λ, σθ),

then there is a jump at |µθ − θ| = τd(λ, σθ) (eu(θ, σ
⋆
q (θ)) jumps to a positive value),

and then eu(θ, σ
⋆
q (θ)) monotonically decreases in |µθ − θ|.

2. Fidelity bias error:

We know that w⋆(θ) = 1 for |µθ − θ| < τd(λ, σθ), so eb(θ, σ
⋆
q (θ)) = (µθ − θ)2 for

|µθ − θ| < τd(λ, σθ), which is increasing in |µθ − θ|.

At |µθ−θ| = τd(λ, σθ), since w
⋆(θ) < 1 is optimal, we have eb(θ, σ

⋆
q (θ)) = e(θ, σ⋆2

q (θ))−
eu(θ, σ

⋆
q (θ)) < e(θ, σ⋆2

q (θ)) < (µθ − θ)2. Thus, eb(θ, σ
⋆
q (θ)) decreases at |µθ − θ| =

τd(λ, σθ).

When |µθ − θ| > τd(λ, σθ),

∂eb(θ, σ
⋆
q (θ))

∂(µθ − θ)2
=
∂[w⋆2(θ)(µθ − θ)2]

∂(µθ − θ)2

= 2(µθ − θ)2w⋆(θ)
∂w⋆(θ)

∂(µθ − θ)2
+ w⋆2(θ)

= w⋆(θ)

[
2(µθ − θ)2

∂w⋆(θ)

∂(µθ − θ)2
+ w⋆(θ)

]

Substitute Equation (A.4) into the above equation

= w⋆(θ)

[
2(µθ − θ)2 · σ

2
θ

√
∆− σ4

θ − 2λ((µθ − θ)2 − σ2
θ)

4
√
∆((µθ − θ)2 − σ2

θ)
2

+ w⋆(θ)

]

where ∆ = σ4
θ + 4λ((µθ − θ)2 − σ2

θ)

With some simplifications

= w⋆(θ) · σ
2
θ [((µθ − θ)2 + σ2

θ)(
√
∆− σ2

θ)− 4λ((µθ − θ)2 − σ2
θ)]

4
√
∆((µθ − θ)2 − σ2

θ)
2

Let d(θ) = |µθ − θ|. Then,

∂eb(θ, σ
⋆
q (θ))

∂d(θ)2
= w⋆(θ) · σ

2
θ [(d(θ)

2 + σ2
θ)(

√
∆− σ2

θ)− 4λ(d(θ)2 − σ2
θ)]

4
√
∆(d(θ)2 − σ2

θ)
2
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Now, we want to show that when d(θ) ≥ τd(λ, σθ) and d(θ) is finite,
∂eb(θ, σ

⋆
q (θ))

∂d(θ)2
has

at most one zero point with respect to d(θ). This is equivalent to showing

(d(θ)2 + σ2
θ)(

√
∆− σ2

θ)− 4λ(d(θ)2 − σ2
θ)√

∆(d(θ)2 − σ2
θ)

2

has at most one zero point with respect to d(θ). Let d̂(θ) denote a solution of d(θ)

such that
(d(θ)2 + σ2

θ)(
√
∆− σ2

θ)− 4λ(d(θ)2 − σ2
θ)√

∆(d(θ)2 − σ2
θ)

2
= 0

First, let the nominator (d(θ)2 + σ2
θ)(

√
∆− σ2

θ)− 4λ(d(θ)2 − σ2
θ) = 0, we get:

(d(θ)2 + σ2
θ)(

√
∆− σ2

θ) = 4λ(d(θ)2 − σ2
θ)

=⇒ (d(θ)2 + σ2
θ)
√
∆ = 4λ(d(θ)2 − σ2

θ) + σ2
θ(d(θ)

2 + σ2
θ)

=⇒
√
∆ =

4λ(d(θ)2 − σ2
θ) + σ2

θ(d(θ)
2 + σ2

θ)

d(θ)2 + σ2
θ

=⇒ 1 =
4λ(d(θ)2 − σ2

θ)

(d(θ)2 + σ2
θ)

2
+

2σ2
θ

d(θ)2 + σ2
θ

=⇒ (d(θ)2 + σ2
θ)

2 = 4λ(d(θ)2 − σ2
θ) + 2σ2

θ(d(θ)
2 + σ2

θ)

=⇒ (d(θ)2 − σ2
θ)(d(θ)

2 + σ2
θ − 4λ) = 0

So the candidates of d̂(θ) are d̂(θ) = σθ, and d̂(θ) =
√
4λ− σ2

θ if 4λ ≥ σ2
θ

Furthermore, by using L’Hôpital’s rule, one can get

lim
d̂(θ)→σθ

(d(θ)2 + σ2
θ)(

√
∆− σ2

θ)− 4λ(d(θ)2 − σ2
θ)√

∆(d(θ)2 − σ2
θ)

2
=

2σ2
θλ− 4λ2

σ6
θ

which is zero if and only if σ2
θ = 2λ. This means when σ2

θ ̸= 2λ, there is no real d̂(θ) if

4λ < σ2
θ or d̂(θ) =

√
4λ− σ2

θ if 4λ ≥ σ2
θ .

And when σ2
θ = 2λ, d̂(θ) =

√
4λ− σ2

θ = σθ, so we also only have one solution for d̂(θ).

Thus,
∂eb(θ, σ

⋆
q (θ))

∂d(θ)2
has at most one zero point with respect to d(θ).

In addition, if d(θ) > σθ, (d(θ)
2+σ2

θ)(
√
∆−σ2

θ)− 4λ(d(θ)2−σ2
θ) > (d(θ)2−σ2

θ)(
√
∆−

σ2
θ) − 4λ(d(θ)2 − σ2

θ) = (d(θ)2 − σ2
θ)(

√
∆ − σ2

θ − 4λ), which is positive if d(θ) >
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max{σθ,
√

|4λ− σ2
θ |}. This means that for any d(θ) > max{σθ,

√
|4λ− σ2

θ |},
∂eb(θ, σ

⋆
q (θ))

∂d(θ)2

is positive. Because we have shown
∂eb(θ, σ

⋆
q (θ))

∂d(θ)2
has at most one zero point with re-

spect to d(θ), the intermediate value theorem implies that when |µθ − θ| > τd(λ, σθ),
∂eb(θ, σ

⋆
q (θ))

∂d(θ)2
is either always positive, or negative for small |µθ − θ| and then positive

for large |µθ − θ|.

Hence, we either have eb(θ, σ
⋆
q (θ)) first increases in |µθ−θ| for |µθ−θ| < τd(λ, σθ), then

decreases and finally increases in |µθ − θ| for |µθ − θ| ≥ τd(λ, σθ); or eb(θ, σ
⋆
q (θ)) first

increases in |µθ − θ| for |µθ − θ| < τd(λ, σθ), then there is a jump at |µθ − θ| = τd(λ, σθ)

(eb(θ, σ
⋆
q (θ)) jumps to a smaller value), and then eb(θ, σ

⋆
q (θ)) monotonically increases

in |µθ − θ|.

A.5 More Detailed Version of Theorem 1.

In this section, we present a more detailed description of Theorem 1 :

Theorem 12 (Full version of Theorem 1). When Γ → +∞, the variance of the population

output is lower than the variance of the population preferences, V ar(θ⋆) < V ar(θ), and

strictly decreases in the cost of human-AI interactions λ. When Γ < +∞, limλ→0 V ar(θ
⋆) =

V ar(θ) and limλ→+∞ V ar(θ⋆) < V ar(θ). In addition, V ar(θ⋆) < V ar(θ) if λ ≥ σ2
q/2 or

Γ ≤ Γ̂ or Γ ≥ Γ̃ for some Γ̂ > 0, Γ̃ > 0.

The full proof is provided in Appendix A.2.1. The last sentence in this detailed version

is the additional part compared with the version that we presented in the main text. In

particular, we show that the population variance of the output is strictly less than the

population variance of the preferences if λ is sufficiently large or Γ is outside an interval

(Γ̂, Γ̃).

182



Figure A.3: We use µθ = 0, σθ = 1, λ = 0.1. The black dashed vertical lines are at d(θ) = τd.

The orange curve is above the blue curve for some θ with d(θ) > τd but close to τd, showing

that E[(θ⋆ − µθ)
2|θ] ≥ (θ − µθ)

2 for these user θ.

In Figure A.3, we show why it is possible that the population variance of the output can

be larger than the population variance of the preferences when λ < σ2
q/2 and Γ ∈ (Γ̂, Γ̃). By

the tower property of conditional expectation, we know V ar(θ⋆) = E[E[(θ⋆−µθ)
2|θ]] (Notice

that E[θ⋆] = µθ is shown in the proof of Theorem 1). So if E[(θ⋆ − µθ)
2|θ] < (θ − µθ)

2, we

must have V ar(θ⋆) < V ar(θ). However, it is possible that E[(θ⋆ − µθ)
2|θ] ≥ (θ − µθ)

2 for

some θ whose d(θ) are close to τd. Since τd is the root of a transcendental equation, it is

complicated to find the closed form of this region. Despite this possibility, it is actually hard

to find a scenario such that V ar(θ⋆) > V ar(θ) in our numerical tests.

Intuitively, the users with d(θ) > τd but close to τd will send a small amount of informa-

tion. Since the information is always noisy, it will also add more randomness and uncertainty

to the outputs. So these users have a higher E[(θ⋆−µθ)
2|θ] and can “contribute” more to the

population variance of outputs. However, there are also many users who simply accept the

default outputs (i.e., d(θ) < τd) and users with preferences that are far from the mean. They

have a lower E[(θ⋆ − µθ)
2|θ], thereby reducing the population variance of outputs. These

two counter-forces interact with each other, leading to a change in the variance.
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APPENDIX B

Autonomous Vehicles in Ride-Hailing and the Threat

of Spatial Inequalities

B.1 Proof of the Main Results

B.1.1 Proof of Lemma 2.

Proof. Proof of Lemma 2. First, we want to show that givenNA andNH , for any idling policy,

there is a non-idling policy that can produce a higher profit. To prove this, let’s suppose

some AVs may be idled (the case of idling HVs is exactly the same). Let Nπ
A(λA,λH) be the

average number of AVs in a system with two types of vehicles under a policy π which may

idle AVs at some location j, where the arrival rate of vehicles is λA,λH . We call π as an

idling AV policy.

Let π⋆ denote a non-idling AV policy. We argue that Nπ
A(λA,λH) > Nπ⋆

A (λA,λH) for any

idling policy π. Indeed, given arrival rates to the system, λA, λH , when AVs are available,

π⋆ never rejects a request while π might reject requests at location j. The rejection in π

increases the queue size. This implies that the average number of AVs in the system under

π is larger than under π⋆. Moreover, for any idling policy π, Nπ
A(λA,λH) increases with λA,j

of λA.

Given the constraints Nπ
A(λA,λH) = NA, there must exist λ⋆A,j > λA,j, λ

⋆
H,j ⩾ λH,j

such that Nπ⋆

A (λ⋆
A,λ

⋆
H) = NA, because N

π⋆

A (λA,λH) < Nπ
A(λA,λH) = NA and Nπ

A(λA,λH)

increase with λA,j. Therefore, we can find a non-idling policy π⋆ such that Nπ⋆

A (λA,λH) =
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Nπ
A(λA,λH) = NA and producing a higher profit. That is,

(PA − cA)
L∑

j=1

τjλ
⋆
A,j + (1− γ)PH

L∑

j=1

τjλ
⋆
H,j

⩾(PA − cA)
L∑

j=1

τjλA,j + (1− γ)PH

L∑

j=1

τjλH,j

The analysis is the same for the case of idling HVs.

The above analysis means that given NA and NH , for any idling policy π which satisfies

the wage equilibrium with λA,λH , there exists a non-idling policy π⋆ which has a higher

profit than π with λ⋆
A,λ

⋆
H .

Second, assume π is feasible in Problem (M) so that the wage equilibrium is satisfied (i.e.

γ
∑L

j=1 PHτjλH,j = rNH , where NH is the average number of HVs under π.), then we want

to show that there exists an equilibrium number of HVs, N⋆
H , under the above non-idling

policy π⋆, such that N⋆
H ⩾ NH . First notice that if λH,j = λ⋆H,j for all j, the wage equilibrium

must be satisfied, since π is feasible in Problem (M). That is, N⋆
H = NH if λH,j = λ⋆H,j for

all j.

If λH,j < λ⋆H,j at some location j, then we have:

γPH

L∑

j=1

τjλ
⋆
H,j > γPH

L∑

j=1

τjλH,j = rNH (B.1)

This means that more HVs will enter the market. And by Little’s law:

L∑

j=1

(τj +Wj(λA,j, λH,j))(λ
⋆
A,j + λ⋆H,j) = NA +NH

We know that for any non-idling policy, the expected waiting function at location j is

Wj(λA,j, λH,j) = 1/(µj − λA,j − λH,j), so the above equation becomes:
∑L

j=1(τj + 1/(µj −
λ⋆A,j − λ⋆H,j))(λ

⋆
A,j + λ⋆H,j) = NA + NH . Substitute Equation (B.1) with NH in the above

equation, we have
∑L

j=1(τj +1/(µj −λ⋆A,j −λ⋆H,j))(λ
⋆
A,j +λ

⋆
H,j)− (γPH/r)

∑L
j=1 τjλ

⋆
H,j < NA.

The left-hand side of the above inequality is continuous and converges to ∞ as we increase

185



λ⋆H,j up to µj−λ⋆A,j, so we must be able to find λ̃H,j > λ⋆H,j and N
⋆
H > NH such that

∑L
j=1(τj+

1/(µj−λ⋆A,j− λ̃H,j))(λ
⋆
A,j+ λ̃H,j)−(γPH/r)

∑L
j=1 τjλ̃H,j = NA, and γ

∑L
j=1 PHτjλ̃H,j = rN⋆

H .

In this case, both Little’s law and the wage equilibrium are satisfied, and the profit under

π⋆ is higher than that under π.

B.1.2 Proof of Proposition 6 and Proposition 7.

By proving Proposition 6, we will show that any optimal solution to Problem (M) is feasible

in Problem (M′). Then, to prove Proposition 7, we also need to demonstrate any optimal

solution to Problem (M′) is feasible in Problem (M). That is, we will first show that the

arrival rates implied by any optimal solution to Problem (M) are bounded by the arrival

rates under the full prioritization policies. Then, we will show that the arrival rates implied

by any optimal solution to Problem (M′) can be achieved by an implementable policy π in

Problem (M). To this end, let us begin with some auxiliary reformulations and definitions.

According to Lemma 2, Problem (M) can be rewritten as

sup
π,NH ,λi,j≥0,λA,j+λH,j<µj

L∑

j=1

(PA − cA)τj · λA,j + (1− γ)
L∑

j=1

PHτj · λH,j

s.t.
L∑

j=1

(τj +Wi,j(π, λA,j, λH,j))λi,j = Ni, i ∈ {A,H}

γPH

L∑

j=1

τjλH,j = rNH

L∑

j=1

(τj +
1

µj − (λA,j + λH,j)
)(λA,j + λH,j) = NH +NA

The extra constraint indicates any optimal solution must be non-idling.
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Let λj = λA,j + λH,j, j ∈ {1, . . . , L}, and replace λH,j by λj − λA,j:

sup
π,NH⩾0,µj>λj⩾λA,j≥0

L∑

j=1

(PA − cA − (1− γ)PH)τj · λA,j + (1− γ)
L∑

j=1

PHτj · λj (B.2)

s.t.
L∑

j=1

(τj +W π
A,j(λA,j, λj))λA,j = NA (B.2a)

L∑

j=1

(τj +W π
H,j(λA,j, λj))(λj − λA,j) = NH (B.2b)

γPH

L∑

j=1

τj(λj − λA,j) = rNH (B.2c)

L∑

j=1

(τj +
1

µj − λj
)λj = NH +NA (B.2d)

It is unclear how to solve the above problem due to the existence of the unknown waiting

time functions. However, we can use the achievable region approach to transform the original

problem into a problem in terms of the performance metric that we choose. That is, we want

to show that the above Problem (B.2) is equivalent to the following Problem (B.3), and then

show that Problem (M′) is equivalent to Problem (B.3).

max
µj>λj⩾λA,j⩾0,NH⩾0

L∑

j=1

(PA − cA − (1− γ)PH)τj · λA,j + (1− γ)
L∑

j=1

PHτj · λj (B.3)

s.t. γPH

L∑

j=1

τj(λj − λA,j) = rNH (B.3a)

L∑

j=1

(τj +
1

µj − λj
)λj = NH +NA (B.3b)

L∑

j=1

τjλj ⩾
L∑

j=1

τjλ
†
j (B.3c)

L∑

j=1

τjλj ⩽
L∑

j=1

τjλ
‡
j (B.3d)

where {λ†j}Lj=1 is the optimal arrival rates when AVs are fully prioritized, and {λ‡j}Lj=1 is the

optimal arrival rates when HVs are fully prioritized. Specifically, they are derived by the
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following steps:

1. Fully prioritize AVs

(a) By fully prioritizing AVs, AVs are not affected by HVs at all, and are distributed

with the objective of maximizing
∑L

j=1 τjλA,j. Thus, the waiting time of AVs is

1/(µj − λA,j) at each location j. To find the optimal solution to AVs, we solve

the following optimization problem:

max
λA,j∈[0,µj)

g(λA) =
L∑

j=1

τjλA,j

s.t.
L∑

j=1

(τj +
1

µj − λA,j

)λA,j = NA

(B.4)

Let λ†
A = {λ†A,j}Lj=1 denote the optimal solution to the above problem.

(b) Given λ†
A, we use the remaining capacity to dispatch HVs. In order to maximize

the profit, we should maximize the arrival rate of HVs, since the arrival rate of

AVs is fixed now. Given the fixed arrival rate of AVs, maximizing the arrival rate

of HVs is equivalent to maximizing the overall arrival rates. That is, to find the

optimal policy for HVs, we maximize the arrival rates of HVs, which is equivalent

to maximizing the overall arrival rates given λ†
A:

max
λj∈[0,µj),NH⩾0

z(λ) =
L∑

j=1

τjλj

s.t.
L∑

j=1

(τj +
1

µj − λj
)λj = NA +NH

rNH = γPH

L∑

j=1

τj(λj − λ†A,j)

(B.5)

Let λ† = {λ†j}Lj=1, N
†
H = γPH

∑L
j=1 τj(λ

†
j − λ†A,j)/r denote the optimal solution

to Problem (B.5).

2. Fully prioritize HVs
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(a) By fully prioritizing HVs, HVs are not affected by AVs at all, and are distributed

with the objective of maximizing
∑L

j=1 τjλH,j. Thus, the waiting time of HVs is

1
µj−λH,j

at each location j. And to find the optimal allocation of HVs, we need to

solve the following maximization problem:

max
λH,j∈[0,µj),NH⩾0

g(λH) =
L∑

j=1

τjλH,j

s.t.
L∑

j=1

(τj +
1

µj − λH,j

)λH,j = NH

rNH = γPH

L∑

j=1

τjλH,j

(B.6)

Let λ‡
H = {λ‡H,j}Lj=1 to denote the optimal solution to HVs derived from the above

problem, and let N ‡
H = γPH

∑L
j=1 τjλ

‡
H,j/r to denote the optimal number of HVs

that is implied by the wage equilibrium.

(b) Given λ‡
H , we use the remaining capacity to dispatch AVs. Again, to find the op-

timal allocation for AVs, we maximize the arrival rate of AVs, which is equivalent

to maximizing the overall arrival rates given the arrival rates of HVs λ‡
H :

max
λj∈[0,µj)

z(λ) =
L∑

j=1

τjλj

s.t.
L∑

j=1

(τj +
1

µj − λj
)λj = NA +N ‡

H

(B.7)

Let λ‡ = {λ‡j}Lj=1 denote the optimal solution to Problem (B.7). Note that it

is not necessary to impose λj ⩾ λ‡H,j because λ‡ = λ‡
H is a feasible solution to

Problem (B.7) with NA = 0, and the optimal λ‡j must increase in NA as shown in

the proof of Lemma 15.

The following steps require some auxiliary lemmas to complete. Please refer to Ap-

pendix B.2.1 and Appendix B.2.2 for the details.
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Now, we are ready to complete the proof of Proposition 7. First, we will show that any

optimal solution in Problem (B.2) is feasible in Problem (B.3), which implies Proposition 6,

and then show that Problem (B.3) is equivalent to Problem (M′). And finally, we will show

that any optimal solution to Problem (M′) is feasible in Problem (B.2). Since Problem

(B.2) is another formulation of Problem (M), these steps will prove that Problem (M) is

equivalent to Problem (M′).

Proof. Proof of Proposition 6. Now let us show that any optimal solution in Problem (B.2)

is feasible in Problem (B.3).

First, we want to show any optimal solution in Problem (B.2) is feasible in Problem

(B.3). It is sufficient to show any optimal solution in Problem (B.2) satisfies the inequality

constraints (B.3c) and (B.3d). Let (λ⋆ = {λ⋆j}Lj=1, λ
⋆
A = {λ⋆A,j}Lj=1, N

⋆
H) denote an optimal

solution to Problem (B.2).

1.
∑L

j=1 τjλ
⋆
j ⩾

∑L
j=1 τjλ

†
j:

Since (λ⋆ = {λ⋆j}Lj=1, λ⋆
A = {λ⋆A,j}Lj=1, N

⋆
H) is an optimal solution without the con-

straint of fully prioritizing AVs, its objective value must be not less than that of any

other solutions:

(1− γ)PH

L∑

j=1

τjλ
⋆
j + (PA − cA − (1− γ)PH)

L∑

j=1

τjλ
⋆
A,j

⩾ (1− γ)PH

L∑

j=1

τjλ
†
j + (PA − cA − (1− γ)PH)

L∑

j=1

τjλ
†
A,j

=⇒ (1− γ)PH

L∑

j=1

τj(λ
⋆
j − λ†j) ⩾ (PA − cA − (1− γ)PH)

L∑

j=1

τj(λ
†
A,j − λ⋆A,j)

Because of Lemma 16, the maximum arrival rate of AVs can be achieved only if

we fully prioritize AVs. And since λ†
A is the optimal arrival rate of AVs when we

fully prioritize AVs, (PA − cA)
∑L

j=1 τjλ
†
A,j is the maximum revenue of AVs. Thus,

∑L
j=1 τj(λ

†
A,j − λ⋆A,j) ⩾ 0. This implies

∑L
j=1 τj(λ

⋆
j − λ†j) ⩾ 0.
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2.
∑L

j=1 τjλ
⋆
j ⩽

∑L
j=1 τjλ

‡
j:

First, because of Lemma 16,
∑L

j=1 τjλ
‡
H,j is the maximum arrival rate of HVs that can

be achieved in equilibrium and feasible in Problem (M); and its implied number of

HVs N ‡
H = γPH

∑L
j=1 τjλ

‡
H,j/r is the maximum number of HVs that can be achieved

at equilibrium and feasible in Problem (M).

In addition, note that Problem (B.7) is equivalent to Problem (B.11) with N = NA +

N ‡
H , and any optimal arrival rates λ⋆ = {λ⋆j}Lj=1 in Problem (B.2) are feasible in

Problem (B.11) with N = NA +N⋆
H . Since N ‡

H is the maximum number of HVs that

can be achieved in equilibrium, we have N ‡
H ⩾ N⋆

H and h(NA+N ‡
H) ⩾ h(NA+N⋆

H) by

Lemma 15. Therefore, we must have
∑L

j=1 τjλ
⋆
j ⩽

∑L
j=1 τjλ

‡
j.

Hence, any optimal solution in Problem (B.2) is feasible in Problem (B.3). Since Problem

(B.2) is another formulation of Problem (M), this means any optimal solution in Problem

(M) is feasible in Problem (B.3), which implies Proposition 6.

Proof. Proof of Proposition 7.

To complete the proof of Proposition 7, we continue to show the equivalence between

Problem (B.3) and Problem (M′), and then show that any optimal solution to Problem

(M′) is feasible in Problem (B.2).

Equivalence between Problem (B.3) and Problem (M′). Notice that since λA,j, λj

and NH in Problem (B.3) are all decision variables, we can combine Constraint (B.3a) and

(B.3b):

NA +
γPH

∑L
j=1 τj(λj − λA,j)

r
=

L∑

j=1

(τj +
1

µj − λj
)λj
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which implies

L∑

j=1

τjλA,j =

rNA + (γPH − r)
∑L

j=1 τjλj − r
∑L

j=1

λj
µj − λj

γPH

(B.8)

Replace
∑L

j=1 τjλA,j with the above equation, Problem (B.3) is transformed into Problem

(M′):

max
π,λj∈[0,µj)

L∑

j=1

(p− r̂)τjλj + r̂NA − r̂

L∑

j=1

λj
µj − λj

s.t.
L∑

j=1

τjλj ⩾
L∑

j=1

τjλ
†
j

L∑

j=1

τjλj ⩽
L∑

j=1

τjλ
‡
j

(M′)

where p ≜ PA − cA, r̂ ≜ r[PA − cA − (1− γ)PH ]/(γPH). Note that it is unnecessary to add

a constraint of λj ⩾ λA,j, because we will show that for any optimal solution to Problem

(M′), there exists an implementable policy in Problem (B.2).

The above equivalence implies that any optimal solution to Problem (B.2) is feasible in

Problem (M′). To complete this proof, we also need to show that any optimal solution to

Problem (M′) is feasible in Problem (B.2). In fact, since Problem (M′) is a convex problem

with a strictly concave objective, it must have a unique optimal solution. With a slight

abuse of notation, we use λ⋆ = {λ⋆j}Lj=1 to denote the optimal solution to Problem (M′).

The optimal solution to Problem (M′) is feasible in Problem (B.2). By Lemma 18,

if the boundary conditions are binding (i.e.,
∑L

j=1 τλ
⋆
j =

∑L
j=1 τjλ

†
j or

∑L
j=1 τλ

⋆
j =

∑L
j=1 τjλ

‡
j),

the optimal solution to Problem (M′) is given by a full prioritization policy. Thus, the op-

timal boundary solutions must be feasible in Problem (B.2).

Second, we want to show that if the boundary conditions are not binding, the optimal

solution to Problem (M′) is feasible in Problem (B.2). That is, we want to show that if
∑L

j=1 τλ
⋆
j >

∑L
j=1 τjλ

†
j and

∑L
j=1 τλ

⋆
j <

∑L
j=1 τjλ

‡
j, then λ⋆ is feasible in Problem (B.2).
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Without loss of generality, for any j ∈ {1, . . . , L}, we assume that µjτj ⩾ µj+1τj+1. By

setting the gradient to be zero and taking the domain [0, µj) into account, the optimal

interior solution to Problem (M′) is:

λintj = [µj −
√
µj

τj

√
r̂

p− r̂
]1µjτj⩾r̂/(p−r̂) ∀j ∈ {1, . . . , L} (B.9)

Suppose λ⋆ = λint. Note that in this case, p must be larger than r̂ and µ1τ1 > r̂/(p − r̂),

otherwise the constraint
∑L

j=1 τλ
⋆
j ⩾

∑L
j=1 τjλ

†
j must bind.

Notice the similarity between Equation (B.9) and Equation (B.12). In the proof of

Lemma 15, we know that
−dk(N)+

√
∆k(N)

2(
∑k(N)

j=1
√
µjτj)

is continuous in N . Also, by the definition in

Equation (B.12),
−dk(N)+

√
∆k(N)

2(
∑k(N)

j=1
√
µjτj)

converges to 0 as N → ∞; and because of Equation (B.20),

−dk(0)+
√

∆k(0)

2(
∑k(0)

j=1
√
µjτj)

=
√
µ1τ1 . Thus, by the intermediate value theorem, there exists N such that

−dk(N) +
√
∆k(N)

2(
∑k(N)

j=1

√
µjτj)

=

√
r̂

p− r̂

And we have

r̂
L∑

j=1

τjλ
⋆
j = h(N), λ⋆j = λ⋆j(N)

where λ⋆j(·) and h(·) are given by Equation (B.12) and Equation (B.13), respectively.

Since we assume the boundary constraints are not binding,
∑L

j=1 τjλ
†
j = h(NA +N †

H) <

h(N) < h(NA+N
‡
H) =

∑L
j=1 τjλ

‡
j by Lemma 17. It means there existsN⋆

H = N−NA > 0 such

that h(N) = h(NA+N⋆
H) =

∑L
j=1 τjλ

⋆
j , where ∀j, λ⋆j = λ⋆j(NA+N⋆

H), and N
†
H < N⋆

H < N ‡
H .

The remaining step is to show that there exists an implementable policy such that λ⋆ and

N⋆
H can be achieved at equilibrium and feasible in Problem (B.2). Given λ⋆, by Little’s law,

we need the average number of vehicles at each location j to be N⋆
j = (τj +

1
µj−λ⋆

j
)λ⋆j . This

implies that we can achieve λj as long as the policy is non-idling and maintain N⋆
j vehicles

at location j in equilibrium. Notice that
∑L

j=1N
⋆
j = N⋆

H +NA because λ⋆j = λ⋆j(NA +N⋆
H).
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Now we need to find a non-idling policy that maintains N⋆
j vehicles at location j and

satisfies the wage equilibrium. Here, we propose a randomization approach with two fully-

prioritizing policies.

1. π1: We first fully prioritize AVs by solving Problem (B.4) (i.e. λπ1
A,j = λ†A,j and N

π1
A,j =

(τj +
1

µj−λ†
A,j

)λ†A,j). Then, we use the remaining capacity N⋆
j − Nπ1

A,j to allocate HVs.

That is, Nπ1
H,j = N⋆

j −Nπ1
A,j and λ

π1
H,j = λ⋆j − λπ1

A,j.

2. π2: Given N⋆
H , we first fully prioritize HVs with the max-arrival-rate allocation. (i.e.

λπ2
H,j = λ⋆j(N

⋆
H) and

∑L
j=1 τjλ

π2
H,j = h(N⋆

H), where λ
⋆
j(·) and h(·) are given by Equa-

tion (B.12) and Equation (B.13), respectively). Because N⋆
H < NA + N⋆

H , we have

λπ2
H,j < λ⋆j and Nπ2

H,j = (τj +
1

µj−λ
π2
H,j

)λπ2
H,j < N⋆

j . Then, we use the remaining capacity

N⋆
j −Nπ2

H,j to allocate AVs. That is, Nπ2
A,j = N⋆

j −Nπ2
H,j and λ

π2
A,j = λ⋆j − λπ2

H,j.

The above policies and their random combinations defined by Definition 5 are imple-

mentable and must satisfy the constraints of Problem (B.2) except the wage equilibrium

Equation (B.2c). Therefore, the last step is to show that N⋆
H is in equilibrium by adopting

π̄(θ) for some θ, which is a suitable randomization of π1 and π2 defined by Definition 5.

Because of Lemma 19, it is sufficient to show that there exists ω ∈ [0, 1] such that rN⋆
H =

γPH

∑L
j=1 τj(ωλ

π1
H,j + (1 − ω)λπ2

H,j). To see this, we only need to show γPH

∑L
j=1 τjλ

π1
H,j ⩽

rN⋆
H ⩽ γPH

∑L
j=1 τjλ

π2
H,j.

1. γPH

∑L
j=1 τjλ

π1
H,j ⩽ rN⋆

H :

By definition of π1,
∑L

j=1 τjλ
π1
H,j =

∑L
j=1 τj(λ

⋆
j − λ†A,j) = (h(NA +N⋆

H)− h(NA)). And

by Problem (B.5) and Lemma 17, γPH(h(NA +N †
H)− h(NA)) = rN †

H .

Now there are two cases: N †
H = 0 or N †

H > 0. If N †
H = 0, by Lemma 20 and Lemma 15,

γPH(h(NA +NH)− h(NA)) ⩽ rNH for all NH > 0. If N †
H > 0 because N †

H < N⋆
H , let
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α = N †
H/N

⋆
H ∈ (0, 1). Since h(N) is strictly concave by Lemma 15, we must have:

αh(N⋆
H +NA) + (1− α)h(NA) < h(αN⋆

H +NA) = h(N †
H +NA)

=⇒ αh(N⋆
H +NA)− αh(NA) < h(N †

H +NA)− h(NA)

=⇒ αh(N⋆
H +NA)− αh(NA)

αN⋆
H

<
h(N †

H +NA)− h(NA)

αN⋆
H

=⇒ h(N⋆
H +NA)− h(NA)

N⋆
H

<
h(N †

H +NA)− h(NA)

N †
H

= r

Thus, γPH

∑L
j=1 τjλ

π1
H,j = γPH(h(NA +N⋆

H)− h(NA)) ⩽ rN⋆
H .

2. γPH

∑L
j=1 τjλ

π2
H,j ⩾ rN⋆

H :

Similarly, by definition of π2,
∑L

j=1 λ
π2
H,j = h(N⋆

H). And by Problem (B.6), γPHh(N
‡
H) =

rN ‡
H . Because N⋆

H < N ‡
H , let α = N⋆

H/N
‡
H ∈ (0, 1). Since h(N) is strictly concave by

Lemma 15, we must have:

αh(N ‡
H) + (1− α)h(0) < h(αN ‡

H) = h(N⋆
H)

=⇒ αh(N ‡
H) < h(N⋆

H) Since h(0) = 0

=⇒ N⋆
H

N ‡
H

h(N ‡
H) < h(N⋆

H)

=⇒ h(N⋆
H) >

rN⋆
H

γPH

Since γPHh(N
‡
H) = rN ‡

H

Thus, γPH

∑L
j=1 λ

π2
H,j = γPHh(N

⋆
H) ⩾ rN⋆

H .

Therefore, we are able to find ω ∈ (0, 1) such that

rN⋆
H = ωγp

L∑

j=1

τjλ
π1
H,j + (1− ω)γp

L∑

j=1

τjλ
π2
H,j

And we can get ω =
γp

∑L
j=1 τjλ

π2
H,j−rN⋆

H

γp(
∑L

j=1 τjλ
π2
H,j−

∑L
j=1 τjλ

π1
H,j)

∈ (0, 1). Also, according to Lemma 19, we

know that there exists a θ ∈ [0, 1] such that by implementing π̄(θ), we are able to achieve

the arrival rates ωλπ1
A,j + (1 − ω)λπ2

A,j and ωλπ1
H,j + (1 − ω)λπ2

H,j at each location j. In other

words, we can achieve λ⋆ and N⋆
H in equilibrium by implementing π̄(θ) for some θ ∈ [0, 1].
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Hence, the optimal solution to Problem (M′) is feasible in Problem (B.2). We conclude

that Problem (M) can be reformulated as Problem (M′).

B.1.3 Proof of the Main Results in Section 3.4 and Section 3.5.

In this section, we prove the main results in Section 3.4 and Section 3.5.
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Figure B.1: The derivation of service levels in Problem (M′). The left plot is an example

in which γ is large enough, and we fully prioritize AVs at the beginning; the right plot is an

example in which γ is small enough, and we fully prioritize HVs at the beginning.

To help readers understand the reasoning of Theorem 4 and Proposition 8, in Figure B.1,

we visualize the service levels with respect to NA under the different solutions. When Con-

straint (B.3c) or Constraint (B.3d) of Problem (M′) is binding, the service levels changes as

we fully prioritize either AVs or HVs; and when the constraints are not binding, the service

level is constant with respect to NA. Theorem 4 and Proposition 8 show the pattern of

service levels under the conditions where prioritizing AVs or prioritizing HVs is optimal at

the beginning of introducing AVs.

The following steps require some auxiliary lemmas to complete. Please refer to Ap-

pendix B.2.1, Appendix B.2.2 and Appendix B.2.3 for the details.
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Proof. Proof of Theorem 4.

By Lemma 25, Constraint (B.3c) is binding if NA is sufficiently large or if γ is sufficiently

large and NA is sufficiently small. And by Lemma 18, when Constraint (B.3c) is binding,

for all j ∈ {1, . . . , L}, λ⋆j (the optimal arrival rate in Problem (M′)) is equal to λ†j (the

optimal arrival rate given by Problem (B.5) where we fully prioritize AVs). By Lemma 15,

Lemma 17 and Lemma 20, when NA is sufficiently small, λ†j is strictly decreasing in NA,

whereas if NA is sufficiently large, N †
H = 0 and λ†j is strictly increasing in NA. In addition,

by Equation (B.26) and Equation (B.9), if γ ∈ (0, 1) and NA in a neighborhood of ÑA where

ÑA is defined in Lemma 21, then
∑L

j=1 τjλ
int
j ⩾

∑L
j=1 τjλ

†
j, so that Constraint (B.3c) is not

binding and λ⋆j = λintj which is constant with respect to NA as shown in Equation (B.9).

Proof. Proof of Proposition 8. By Lemma 25, Constraint (B.3d) is binding when γ and

NA are sufficiently small. And by Lemma 18, when Constraint (B.3d) is binding, for all

j ∈ {1, . . . , L}, λ⋆j (the optimal arrival rate of Problem (M′)) is equal to λ‡j (the optimal

arrival rate given by Problem (B.7) where we fully prioritize HVs). Thus, when γ and NA are

sufficiently small, it is optimal to prioritize HVs. In addition, when we fully prioritize HVs,

NA+N
‡
H (the total number of vehicles) is strictly increasing in NA, where N

‡
H is the optimal

solution to Problem (B.6). Thus, by Lemma 15 and Lemma 17, λ‡j is strictly increasing in

NA.

Proof. Proof of Proposition 9. The optimization problem in this case is:

max
NA⩾0




max
{λj}Lj=1

L∑

j=1

(p− r̂)τjλj + r̂NA − r̂

L∑

j=1

λj
µj − λj

s.t. {λj}Lj=1 ∈ A,

λj <∈ [0, µj), j ∈ {1, . . . , L}.




− CANA (M′
NA

)
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where A is the achievable region defined in Section 3.3 and depends on NA. The problem

inside the parenthesis is exactly Problem (M′).

If CA ⩽ r̂, let λ̌j > 0 and ŇA ⩾ 0 denote an optimal solution to Problem (M′
NA

). By

Little’s law, the average number of vehicles is
∑L

j=1(τj + 1/(µj − λ̌j))λ̌j, so the average

number of HVs is ŇH =
∑L

j=1(τj + 1/(µj − λ̌j))λ̌j − ŇA. For the sake of contradiction,

suppose ŇH > 0. Then, we can find another feasible solution with ÑA = ŇH + ŇA and

λ̃j = λ̌j ∀j such that the objective value of Problem (M′
NA

) is increased by (r̂ − CA)ŇH .

Thus, it is optimal to only operate AVs if CA ⩽ r.

Now suppose CA > r̂ and let N̂A denote the threshold of NA such that all the HVs leave

the market. When only AVs are operated, the profit is ph(NA)−CANA and we know h(·) is
strictly concave by Lemma 15. Thus, we only need to show ph′(N̂A) ⩽ r̂ so that the profit

will be higher if the number of AVs is lower than N̂A.

For the sake of contradiction, suppose ph′(N̂A) > r̂. By Lemma 20,

ph′(N̂A) = p · r

γPH

> r̂

⇐⇒ p · r

γPH

>
r(p− (1− γ)PH)

γPH

⇐⇒ p > p− (1− γ)PH

However, this is impossible since γ ∈ (0, 1) and PH > 0. Therefore, it is never optimal to

only operate AVs if CA > r.

Lastly, to show a case in which the platform operates both AVs and HVs when CA > r̂,

we only need to show a scenario where ph′(N ‡
H) > CA when NA = 0. by Lemma 24, we can

see that when NA = 0, the equilibrium number of HVs, N ‡
H , is constant in p, but ph

′(N ‡
H)

is increasing and unbounded with respect to p. Therefore, when CA > r̂, if p is sufficiently

large, it is optimal to operate both AVs and HVs.

Proof. Proof of Theorem 5. When the boundary constraint of Problem (M′) is binding, by
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Lemma 18, we fully prioritize AVs or fully prioritize HVs. And in this case, by Lemma 17

and Lemma 22, we must have ∀i, j ∈ {1, . . . , L}, if i < j, ρ⋆i ⩾ ρ⋆j . Additionally, when the

boundary constraints are not binding, by Equation (B.9), the corresponding service level is:

ρ⋆j = [1−
√

r̂

µjτj(p− r̂)
]1µjτj⩾r̂/(p−r̂) ∀j ∈ {1, . . . , L} (B.10)

It is easy to see that if i < j, ρ⋆i ⩾ ρ⋆jbecause µiτi ⩾ µjτj. Hence, the service level in

high-demand areas is always higher than the service level in low-demand areas.

Second, when the boundary constraints are not binding, by Equation (B.10), ∀i, j ∈
{1, . . . , L}, ∂ρ⋆i

∂NA
=

∂ρ⋆j
∂NA

= 0. Additionally, if the boundary constraint of Problem (M′)

is binding, by Lemma 18, we fully prioritize AVs or fully prioritize HVs. When we fully

prioritize HVs, since N ‡
H is irrelevant with NA,

∂NA+N‡
H

∂NA
= ∂NA

∂NA
= 1 > 0, where N ‡

H is the

optimal solution to Problem (B.6). Thus, by Lemma 17 and Lemma 22, ∀i < j,
∂ρ⋆i
∂NA

⩽ ∂ρ⋆j
∂NA

.

When we fully prioritize AVs, by Lemma 20,
∂NA+N†

H

∂NA
is either negative or positive, where

N †
H is the optimal solution to Problem (B.5). Thus, by Lemma 17 and Lemma 22, we have

∀i < j, | ∂ρ⋆i
∂NA

| ⩽ | ∂ρ⋆j
∂NA

|. Hence, | ∂ρ⋆j
∂NA

| ⩽ |∂ρ
⋆
j+1

∂NA
|.

Proof. Proof of Proposition 10.

In Theorem 4, we showed that it is optimal to fully prioritize AVs, when γ is high enough

and NA is low enough. In the following, let us suppose the platform is fully prioritizing AVs.

At location j, let NA,j(NA) denote the average number of AVs, NH,j(NA + N †
H) denote

the average number of HVs and Nj(NA + N †
H) = NA,j(NA) + NH,j(NA + N †

H) denote the

average number of vehicles, where N †
H is the optimal solution to Problem (B.5).

For the concentration of AVs, by Lemma 17 and Lemma 23,

∂NA,j−1(NA)

∂NA

⩾ ∂NA,j(NA)

∂NA

⩾ 0

Therefore, more AVs will concentrate in high-demand areas.
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Second, for the concentration of HVs, by Lemma 20, when we fully prioritize AVs and

there are HVs in equilibrium,
∂(NA+N†

H)

∂NA
< 0. Thus, by Lemma 17 and Lemma 23, we have:

∂Nj−1(NA +N †
H)

∂NA

⩽ ∂Nj(NA +N †
H)

∂NA

⩽ 0

Because Nj(NA +N †
H) = NH,j(NA +N †

H) +NA,j(NA),

∂Nj−1(NA +N †
H)

∂NA

⩽ ∂Nj(NA +N †
H)

∂NA

⩽ 0

=⇒ ∂NH,j−1(NA +N †
H)

∂NA

+
∂NA,j−1(NA)

∂NA

⩽ ∂NH,j(NA +N †
H)

∂NA

+
∂NA,j(NA)

∂NA

⩽ 0

=⇒ ∂NH,j−1(NA +N †
H)

∂NA

⩽ ∂NH,j(NA +N †
H)

∂NA

+
∂NA,j(NA)

∂NA

− ∂NA,j−1(NA)

∂NA

⩽ 0

=⇒ ∂NH,j−1(NA +N †
H)

∂NA

⩽ ∂NH,j(NA +N †
H)

∂NA

⩽ 0

Therefore, more HVs will leave high-demand areas.

Proof. Proof of Proposition 11. By Lemma 24, when NA = 0, the service level at j can be

expressed as

ρ‡j =

[
1−

√
1

µjτj
· −d+

√
∆

2(1− γPH/r)(
∑J

j=1

√
µjτj)

]
1j⩽J

where d =
∑J

j=1(1 − (1 − γPH/r)µjτj), ∆ = d2 + 4(1 − γPH/r)(
∑J

j=1

√
µjτj)

2, and J is

also defined in Lemma 24. By Theorem 4, the minimum service level can be derived by the

interior solution in Equation (B.9):

ρintj =

[
1−

√
1

µjτj

√
r̂

p− r̂

]
1µjτj⩾r/(p−r̂) ∀j ∈ {1, . . . , L}

It implies that the maximum loss of service level is

∆ρj = ρ‡j − ρintj =

√
1

µjτj

[√
r̂

p− r̂
− −d+

√
∆

2(1− γPH/r)(
∑J

j=1

√
µjτj)

]

Thus, ∆ρj > ∆ρi since µiτi > µjτj
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In particular,

−d+
√
∆

2(1− γPH/r)(
∑J

j=1

√
µjτj)

=
1

2(1− γPH/r)(
∑J

j=1

√
µjτj)

· ∆− d2√
∆+ d

=
1

2(1− γPH/r)(
∑J

j=1

√
µjτj)

·
4(1− γPH/r)(

∑J
j=1

√
µjτj)

2

√
∆+ d

=
2(
∑J

j=1

√
µjτj)√

∆+ d

⩽
2(
∑J

j=1

√
µjτj)

d

By L’Hôpital’s rule,

lim
µiτi→∞

2(
∑J

j=1

√
µjτj)

d
= lim

µiτi→∞
1

(γPH/r − 1)
√
µiτi

= 0

Because of the squeeze theorem,

lim
µiτi→∞

−d+
√
∆

2(1− γPH/r)(
∑J

j=1

√
µjτj)

= 0

Therefore,

lim
µiτi→∞

∆ρj =

√
1

µjτj

[√
r

p− r̂
− 0

]
=

√
r̂

µjτj(p− r̂)

lim
µiτi→∞

∆ρi = lim
µiτi→∞

√
1

µiτi

[√
r̂

p− r̂
− 0

]
= 0
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B.2 Supporting Material for Proofs

B.2.1 Supporting Material: the maximum arrival rate function in a single-type

system.

To facilitate the analysis for Problem (M), we define the single-type maximum arrival rate

function h(N) : R+ → R+ as the optimal value of

max
λj ,j∈{1,...,L}

L∑

j=1

·τj · λj

s.t.
L∑

j=1

(
τj +

1

µj − λj

)
· λj = N,

λj ∈ [0, µj), j ∈ {1, . . . , L},

(B.11)

where λj is the arrival rate of the single vehicle type at location j.

In the queueing model, the optimal solution, λ⋆j(N), and the optimal value, h(N), of

Problem (B.11) are important for helping us complete the analysis. In this subsection, we

solve Problem (B.11) and analyze the properties of h(N) as a preparation for the other

results. Without loss of generality, we assume for any j ∈ {1, . . . , L}, µjτj ⩾ µj+1τj+1.

The following Lemma 14 solves Problem (B.11) and illustrates that when we increase the

fleet size, locations with higher demand are served first. That is, for each location j, there

exists a threshold N j ⩾ 0 such that the average number of vehicles at location j is positive

if and only if N > N j. Also, N j ⩽ N j+1 because µjτj ⩾ µj+1τj+1.

Lemma 14 (Solution to Problem (B.11)). For any N > 0, let k(N) = max
k∈{1,...,L}

{k|N > Nk},
where {N j}Lj=1 is a non-decreasing sequence of constants that are irrelevant to N and derived

by the other parameters in Problem (B.11). Then we can express the optimal solution as:

λ⋆j(N) = [µj −
√
µj

τj

−dk(N) +
√
∆k(N)

2(
∑k(N)

j=1

√
µjτj)

]1j⩽k(N) (B.12)
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where dk(N) = N + k(N)−∑k(N)
j=1 µjτj, ∆k(N) = dk(N)2 + 4(

∑k(N)
j=1

√
µjτj)

2, and 1j⩽k(N) is

a binary indicator function.

And the optimal objective value h(N) can be expressed as:

h(N) =
L∑

j=1

τjλ
⋆
j(N) =

1

2
[N +

k(N)∑

j=1

τjµj + k(N)−
√
∆k(N)] (B.13)

Proof. Proof of Lemma 14. We can use the method of Lagrange multipliers to solve Problem

(B.11) and construct the Lagrangian function:

L({λj}Lj=1, θ, {ϕj}Lj=1) = −
L∑

j=1

τjλj + θ(
L∑

j=1

(τj +
1

µj − λj
)λj −N)−

L∑

j=1

ϕjλj

where θ and ϕj are Lagrange multipliers. The Kuhn-Tucker conditions are:

• Stationarity:

−τj + θ(τj +
µj

(µj − λ⋆j)
2
)− ϕj = 0

• Primal feasibility:
L∑

j=1

(
τj +

1

µj − λj

)
· λj = N

λj ⩾ 0, j ∈ {1, . . . , L}

• Dual feasibility:

ϕj ⩾ 0, j ∈ {1, . . . , L}

• Complementary slackness:

ϕjλj = 0, j ∈ {1, . . . , L}

In the following, let us use a superscript ⋆ to denote an optimal solution. Because of

the complementary slackness, we consider two cases: either λ⋆j > 0 or λ⋆j = 0. First, if λ⋆j is

positive at some location j, then ϕ⋆
j = 0, and the optimal λ⋆j and θ⋆ must satisfy:

τj − θ⋆(τj +
µj

(µj − λ⋆j)
2
) = 0
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And we have:

(µj − λ⋆j)
2 =

θ⋆µj

(1− θ⋆)τj

λ⋆j = µj −
√

θ⋆µj

(1− θ⋆)τj
because λ⋆j < µj

Notice that this implies that θ⋆ and 1− θ⋆ must be positive (i.e. θ⋆ ∈ (0, 1)).

Now by considering the equality constraint:

L∑

j=1,λ⋆
j>0

(τj +
1

µj − λ⋆j
)λ⋆j = N

=⇒
√

θ⋆

1− θ⋆
=

−d+
√
∆

2(
∑L

j=1,λ⋆
j>0

√
µjτj)

(B.14)

where d = N+
∑L

j=1,λ⋆
j>0(1−µjτj) and ∆ = d2+4(

∑L
j=1,λ⋆

j>0

√
µjτj)

2. Notice that
√

θ⋆

1−θ⋆
̸=

−d−
√
∆

2(
∑L

j=1,λ⋆
j
>0

√
µjτj)

, because d <
√
∆ and

√
θ⋆

1−θ⋆
> 0. Therefore, when λ⋆j > 0, we must have:

λ⋆j = µj −
√
µj

τj
· −d+

√
∆

2(
∑L

j=1,λ⋆
j>0

√
µjτj)

Second, if λ⋆j is zero at some location j, by the Kuhn-Tucker conditions, we have ϕ⋆ ⩾ 0

and:

τj − θ⋆(τj +
1

µj

) ⩽ 0

⇐⇒µjτj ⩽
θ⋆

1− θ⋆
(B.15)

This implies that for any i and j, if µjτj ⩾ µiτi and λ⋆j = 0, then λ⋆i must be also zero.

Additionally, because d <
√
∆:

∂(−d+
√
∆)

∂N
=

d√
∆

− 1 < 0 (B.16)

And we have:

lim
N→∞

(−d+
√
∆) = lim

N→∞

∆− d2

d+
√
∆

→ 0 (B.17)
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Thus,
√

θ⋆

1−θ⋆
decreases in N and converges to 0. This means that as we increase the value

of N , λ⋆j must change from zero to a positive value.

Recall that we assumed for any j ∈ {1, . . . , L − 1}, µjτj ⩾ µj+1τj+1. Then, the above

analysis implies that there exists a non-decreasing sequence {N j}Lj=1, N j ⩽ N j+1 such that

∀N ⩽ N j, λ
⋆
j = 0, and ∀N > N j, λ

⋆
j > 0. Specifically, by Equation (B.14) and Inequality

(B.15), ∀k ⩾ 1, Nk must be the solution to

−dk(Nk) +
√

∆k(Nk)

2(
∑k

j=1

√
µjτj)

=
√
µkτk (B.18)

where dk(Nk) = Nk + k−∑k
j=1 µjτj and ∆k(Nk) = dk(Nk)

2+4(
∑k

j=1

√
µjτj)

2. In addition,

we can see that

−d1(0) +
√
∆1(0)

2
√
µ1τ1

=
−(1− µ1τ1) +

√
(1− µ1τ1)2 + 4µ1τ1

2
√
µ1τ1

=
µ1τ1 − 1 +

√
(1 + µ1τ1)2

2
√
µ1τ1

=
2µ1τ1
2
√
µ1τ1

=
√
µ1τ1

Thus, N1 = 0. This corresponds to the fact that λ⋆1(N) has to be positive for any N > 0;

otherwise, all of λ⋆j(N) will be zero and Little’s law will be violated.

Then, for any N , let k(N) = max{k|N > Nk}, we can express the optimal solution as:

λ⋆j(N) =

[
µj −

√
µj

τj

−dk(N) +
√

∆k(N)

2(
∑k(N)

j=1

√
µjτj)

]
1j⩽k(N)

where dk(N) = N + k(N)−∑k(N)
j=1 µjτj and ∆k(N) = dk(N)2 + 4(

∑k(N)
j=1

√
µjτj)

2.

And the optimal objective value h(N) can be expressed as:

h(N) =
L∑

j=1

τjλ
⋆
j(N) =

1

2


N +

k(N)∑

j=1

τjµj + k(N)−
√
∆k(N)



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The following Lemma 15 analyzes the properties of h(N) given by Equation (B.13), which

helps us to derive the other results.

Lemma 15 (Properties of h(N)). h(N) in Equation (B.13) is continuous, strictly increasing,

differentiable, and strictly concave. In addition, ∀j ∈ {1, . . . , L}, λ⋆j(N) in Equation (B.12)

is continuous for N ⩾ 0 and strictly increasing for N ⩾ N j.

Proof. Proof of Lemma 15. Let us prove the properties of h(N) in order.

Continuity of h(N) First, we want to show h(N) is continuous at any N ⩾ 0. In fact, we

only need to show λ⋆j(N) is continuous at all N ∈ {N j}Lj=1, where {N j}Lj=1 can be derived by

Equation (B.18). Let k ∈ {1, . . . , L}, we want to show ∀j ∈ {1, . . . , L}, lim
N→N

−
k
λ⋆j(N) =

lim
N→N

+
k
λ⋆j(N).

If µjτj < µkτk, then it is clear that lim
N→N

−
k
λ⋆j(N) = lim

N→N
+
k
λ⋆j(N) = 0 by Equa-

tion (B.12).

If µjτj = µkτk, by Equation (B.18), we have

lim
N→N

+
k

λ⋆j(N) = µj −
√
µj

τj

−dk(Nk) +
√

∆k(Nk)

2(
∑k

j=1

√
µjτj)

= µj −
√
µj

τj

√
µkτk = 0

And it is clear that lim
N→N

−
k
λ⋆j(N) = 0 by Equation (B.12). Thus, we also have lim

N→N
−
k
λ⋆j(N) =

lim
N→N

+
k
λ⋆j(N) = 0.

If µjτj > µkτk, we have

lim
N→N

−
k

λ⋆j(N) = µj −
√
µj

τj

−dk−1(Nk) +
√

∆k−1(Nk)

2(
∑k−1

j=1

√
µjτj)

lim
N→N

+
k

λ⋆j(N) = µj −
√
µj

τj

−dk(Nk) +
√

∆k(Nk)

2(
∑k

j=1

√
µjτj)

We want to show
−dk−1(Nk)+

√
∆k−1(Nk)

2(
∑k−1

j=1
√
µjτj)

=
−dk(Nk)+

√
∆k(Nk)

2(
∑k

j=1
√
µjτj)

=
√
µkτk:
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Start with Equation (B.18):

−dk(Nk) +
√

∆k(Nk)

2(
∑k

j=1

√
µjτj)

=
√
µkτk

−dk(Nk) +

√
∆k(Nk) = 2(

k∑

j=1

√
µjτj)

√
µkτk

√
∆k(Nk) = dk(Nk) + 2(

k∑

j=1

√
µjτj)

√
µkτk (B.19a)

∆k(Nk) = dk(Nk)
2 + 4µkτk(

k∑

j=1

√
µjτj)

2 + 4
√
µkτkdk(Nk)(

k∑

j=1

√
µjτj)

k∑

j=1

√
µjτj = µkτk(

k∑

j=1

√
µjτj) + dk(Nk)

√
µkτk (B.19b)

k−1∑

j=1

√
µjτj +

√
µkτk = µkτk(

k−1∑

j=1

√
µjτj) + dk−1(Nk)

√
µkτk +

√
µkτk

k−1∑

j=1

√
µjτj = µkτk(

k−1∑

j=1

√
µjτj) + dk−1(Nk)

√
µkτk

k−1∑

j=1

√
µjτj = µkτk(

k−1∑

j=1

√
µjτj) + dk−1(Nk)

√
µkτk

∆k−1(Nk) = dk−1(Nk)
2 + 4µkτk(

k−1∑

j=1

√
µjτj)

2 + 4
√
µkτkdk−1(Nk)(

k−1∑

j=1

√
µjτj)

−dk−1(Nk) +

√
∆k−1(Nk) = 2(

k−1∑

j=1

√
µjτj)

√
µkτk

−dk−1(Nk) +
√

∆k−1(Nk)

2(
∑k−1

j=1

√
µjτj)

=
√
µkτk

Thus,

−dk(Nk) +
√

∆k(Nk)

2(
∑k−1

j=1

√
µjτj)

=
−dk−1(Nk) +

√
∆k−1(Nk)

2(
∑k

j=1

√
µjτj)

=
√
µkτk (B.20)

Hence, for any j ∈ {1, . . . , L}, λj(N) is continuous at any N ⩾ 0. This implies that h(N) is

continuous at any N ⩾ 0.
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Monotonicity of h(N) Because of Equation (B.12) and Equation (B.16),
∂λ⋆

j (N)

∂N
> 0 for

N ⩾ N j. And we know N1 = 0, so λ⋆1(N) is strictly increasing for all N ⩾ 0. Therefore,

h(N) is strictly increasing in N ⩾ 0.

Differentiability and Concavity We want to show that h′(N) ≜ ∂h(N)
∂N

is continuous

and strictly decreasing in N ⩾ 0. By Equation (B.13), we can get for any N ̸= Nk, ∀k ∈
{1, . . . , L}:

h′(N) =
1

2
(1− dk(N)√

∆k(N)
) (B.21)

And the second derivative h′′(N) is

h′′(N) =
dk(N)2 −∆k(N)√

∆k(N)∆k(N)
< 0

where the negativity is because of dk(N)2 < ∆k(N). Thus, h′(N) is strictly decreasing in

N ∈ (Nk, Nk+1) for any k ∈ {1, · · ·L − 1}, or any N ∈ (NL,∞). The remaining step

is to show h′(N) is continuous at {N j}Lj=1. Because lim
N→N

−
k
h′(N) = 1

2
(1 − dk−1(Nk)√

∆k−1(Nk)
)

and lim
N→N

+
k
h′(N) = 1

2
(1 − dk(Nk)√

∆k(Nk)
), we only need to show dk−1(Nk)√

∆k−1(Nk)
= dk(Nk)√

∆k(Nk)
. By

Equation (B.19b):

−dk(Nk) +
√

∆k(Nk)

2(
∑k

j=1

√
µjτj)

=
√
µkτk =⇒ dk(Nk) =

(1− µkτk)
∑k

j=1

√
µjτj√

µkτk

Substitute the above equation into Equation (B.19a), we get:

√
∆k(Nk) = dk(Nk) + 2(

k∑

j=1

√
µjτj)

√
µkτk

=
(1 + µkτk)

∑k
j=1

√
µjτj√

µkτk

Thus,
dk(Nk)√
∆k(Nk)

=
1− µkτk
1 + µkτk
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Similarly, because of Equation (B.20), we can repeat the above steps and obtain:

dk−1(Nk)√
∆k−1(Nk)

=
1− µkτk
1 + µkτk

Thus,
dk−1(Nk)√
∆k−1(Nk)

=
dk(Nk)√
∆k(Nk)

=
1− µkτk
1 + µkτk

This implies that h′(N) is continuous and strictly decreasing in N .

B.2.2 Supporting Material for Proposition 7.

Lemma 16 (Full prioritization maximizes arrival rates). With the constraints of Problem

(M),
∑L

j=1 τjλA,j is maximized only if we fully prioritize AVs, and
∑L

j=1 τjλH,j is maximized

only if we fully prioritize HVs.

Proof. Proof of Lemma 16. The proof is similar to the proof of Lemma 2. In fact, a policy

that does not fully prioritize AVs (or HVs) can be seen as an idling policy for AVs (or HVs).

For instance, in the view of human drivers, no matter whether a policy rejects a request or

matches a request with AVs, such a policy does not always match requests with HVs when

HVs are available, so this policy idles HVs sometimes. In this sense, the idea in the proof of

Lemma 2 also works in Lemma 16. Nonetheless, we formally present the proof of Lemma 16

as the following.

First, we want to show that given fixed NA (or NH) and a policy π which does not always

prioritize AVs (or HVs), we can always increase the arrival rate of AVs (or HVs) by using

a policy π⋆ which fully prioritizes AVs (or HVs). Here, we only present the case for AVs,

and the proof for HVs is exactly the same. Let Nπ
A(λA,λH) be the average number of AVs

in a system with two types of vehicles under a policy π, where the arrival rates of vehicles

are λA,λH for AVs and HVs respectively. Suppose π does not fully prioritize AVs, so there

exists some location j where AVs are not always prioritized. And let π⋆ denote a policy that

always prioritizes AVs at all the locations.
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We argue that Nπ
A(λA,λH) > Nπ⋆

A (λA,λH). Indeed, given arrival rates to the system,

λA,λH , π
⋆ always matches requests with AVs as long as there exist AVs available in the

queue, while π might match request with HVs at some location j even if AVs are available.

The matching with HVs in π increases the queue size of AVs in location j. This implies that

the average number of AVs in the system under π is larger than that under π⋆. Moreover,

for any policy π and location j, we know that Nπ
A,j(λA,λH) increases with λA,j.

Given the constraints Nπ
A(λA,λH) = NA, there must exist λ⋆A,j > λA,j at location j

such that Nπ⋆

A (λ⋆
A,λ

⋆
H) = NA, because N

π⋆

A (λA,λH) < Nπ
A(λA,λH) = NA and Nπ

A,j(λA,λH)

increases with λA,j. Thus, given a constant NA, RA = (PA − cA)
∑L

j=1 τjλA,j is maximized

only if AVs are fully prioritized. Similarly, given a constant NH , RH = PH

∑L
j=1 τjλH,j is

maximized only if HVs are fully prioritized.

Second, by the above analysis, we know that there exists a policy π⋆ which fully prioritizes

HVs and can produce a higher arrival rate of HVs than a policy π that does not fully

prioritize HVs, but π⋆ might not satisfy the wage equilibrium. In other words, assume π

does not always prioritize HVs and is feasible in Problem (M) so that the wage equilibrium

is satisfied (i.e. γ
∑L

j=1 PHτjλH,j = rNH , where NH is the average number of HVs under

π.), we need to show that there exists an equilibrium number of HVs, N⋆
H , under a policy

π⋆ that fully prioritizes HVs, such that N⋆
H ⩾ NH .

By the first part, we have:

γPH

L∑

j=1

τjλ
⋆
H,j > γPH

L∑

j=1

τjλH,j = rNH (B.22)

This means that more HVs will enter the market. And by Little’s law:

L∑

j=1

(τj +W π⋆

H,j(λ
⋆
A,j, λ

⋆
H,j))λ

⋆
H,j = NH

Because π⋆ fully prioritizes HVs, the expected waiting function of the HV queueing at each
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location j is W π⋆

H,j(λA,j, λH,j) = 1/(µj − λH,j), so the above Little’s law becomes:

L∑

j=1

(τj + 1/(µj − λ⋆H,j))λ
⋆
H,j = NH

Substitute NH in Equation (B.22) with the above equation, we have

L∑

j=1

(τj + 1/(µj − λ⋆H,j))λ
⋆
H,j −

γPH

r

L∑

j=1

τjλ
⋆
H,j < 0

The left-hand side of the above inequality is continuous in λ⋆H,j ∈ (0, µj) and converges to ∞
as λ⋆H,j → µj. Thus, by the intermediate value theorem, we must be able to find λ̃H,j ⩾ λ⋆H,j

and N⋆
H > NH such that

L∑

j=1

(τj + 1/(µj − λ̃H,j))λ̃H,j −
γPH

r

L∑

j=1

τjλ̃H,j = 0, γ
L∑

j=1

PHτjλ̃H,j = rN⋆
H

In this case, both Little’s law and the wage equilibrium are satisfied. Thus, with the wage

equilibrium, RH = PH

∑L
j=1 τjλH,j is maximized only if HVs are fully prioritized.

The next auxiliary lemma characterizes the optimal solution and objective value when

we fully prioritize AVs or HVs. We want to show that if we fully prioritize AVs or HVs, the

allocation of vehicles must maximize the overall arrival rates and be consistent with λ⋆j(·)
of Equation (B.12) and h(·) of Equation (B.13). Notice that the following λ†,λ†

A, N
†
H are

defined in Problem (B.4) and Problem (B.5), which represent the optimal solution when

we fully prioritize AVs; λ‡,λ‡
H , N

‡
H are defined in Problem (B.6) and Problem (B.7), which

represent the optimal solution when we fully prioritize HVs.

Lemma 17 (Optimal solution to the full prioritization problems). Let N †
H (or N ‡

H) denote

the optimal equilibrium number of HVs when we fully prioritize AVs (or HVs), then the

optimal overall arrival rate is λ⋆j(NA +N †
H) (or λ

⋆
j(NA +N ‡

H)) and the optimal total arrival

rate is h(NA + N †
H) (or h(NA + N ‡

H)), where λ
⋆(·) and h(·) are defined in Equation (B.12)

and Equation (B.13). That is, h(NA + N †
H) =

∑L
j=1 τjλ

†
j, h(NA + N ‡

H) =
∑L

j=1 τjλ
‡
j where

∀j ∈ {1, . . . , L}, λ†j = λ⋆j(NA +N †
H), λ

‡
j = λ⋆j(NA +N ‡

H).
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Proof. Proof of Lemma 17. We first want to find the expressions of λ† and λ‡. Let us start

with the case where we fully prioritize AVs.

Clearly, the optimal objective value of Problem (B.4) is h(NA) (i.e.
∑L

j=1 τjλ
†
A,j =

h(NA)), where h(·) defined by Equation (B.13), and its optimal solution λ†A,j is equal to

λ⋆j(NA) in Equation (B.12).

Then, by the wage equilibrium, let N †
H = γPH

∑L
j=1(λ

†
j − λ†A,j)/r, we want to show

the optimal value of Problem (B.5) must be equal to h(NA + N †
H) and its optimal solution

must be λ†j = λ⋆j(NA + N †
H). Given N †

H , if the overall arrival rate is not maximized (i.e.
∑L

j=1 τjλ
†
j < h(NA +N †

H)), this means:

rN †
H = γPH

L∑

j=1

τj(λ
†
j − λ†A,j) < γPH(h(NA +N †

H)− h(NA))

which implies (h(NA + N †
H) − h(NA))/N

†
H > r/(γPH). By Lemma 15, we know (h(NA +

N) − h(NA))/N is continuous in N > 0. And because h(N) is bounded by
∑L

j=1 τjµj,

(h(NA +N)− h(NA))/N converges to 0 as N → ∞. Thus, there exists a feasible NH > N †
H

such that (h(NA +NH) − h(NA))/NH = r/(γPH) and h(NA +NH) > h(NA +N †
H), which

contradicts the assumption that N †
H is optimal in Problem (B.5). Therefore, the optimal

value of Problem (B.5) must equal h(NA +N †
H). And since any solution to Problem (B.5) is

feasible in Problem (B.11) given NA +N †
H , the optimal λ†j of Problem (B.5) must be equal

to λ⋆j(NA +N †
H) in Equation (B.12).

Second, given N ‡
H as the optimal equilibrium number of HVs when we fully prioritize

HVs, Problem (B.7) is exactly the same with Problem (B.11), so the optimal objective value

of Problem (B.7) is h(NA +N ‡
H) , and its optimal solution λ‡j is equal to λ

⋆
j(NA +N ‡

H).

In the next lemma, we want to show that if one of the boundary constraints in Problem

(M′) is binding (i.e.
∑L

j=1 τjλj =
∑L

j=1 τjλ
†
j or

∑L
j=1 τjλj =

∑L
j=1 τjλ

‡
j), then for any

location j, the optimal arrival rate of Problem (M′) must be equal to λ†j given by Problem
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(B.5) or λ‡j given by Problem (B.7). With a slight abuse of notation, we use λ⋆ = {λ⋆j}Lj=1

to denote the optimal solution to Problem (M′).

Lemma 18. If the lower (or upper) boundary constraints in Problem (M′) is binding,

the optimal solution must be given by a full prioritization policy. That is, if
∑L

j=1 τjλ
⋆
j =

∑L
j=1 τjλ

†
j (or

∑L
j=1 τjλ

⋆
j =

∑L
j=1 τjλ

‡
j), then ∀j, λ⋆j = λ†j (or λ

⋆
j = λ‡j).

Proof. Proof of Lemma 18. Since Problem (M′) is a convex problem with a strictly concave

objective, it must have a unique optimal solution. Thus, if we are able to show that when

the lower (or upper) boundary constraint is binding, the objective value achieved by λ† (or

λ‡) is optimal, then we must have ∀j, λ⋆j = λ†j (or ∀j, λ⋆j = λ‡j).

Suppose
∑L

j=1 τjλ
⋆
j =

∑L
j=1 τjλ

†
j, and the objective value of Problem (M′) achieved by

λ⋆ is higher than the objective value achieved by λ†, then we must have
∑L

j=1 τjλ
⋆
A,j >

∑L
j=1 τjλ

†
A,j Because

∑L
j=1 τλ

⋆
j =

∑L
j=1 τjλ

†
j and

∑L
j=1 τjλ

⋆
A,j >

∑L
j=1 τjλ

†
A,j,

N⋆
H = γPH/r

L∑

j=1

τj(λ
⋆
j − λ⋆A,j) < γPH/r

L∑

j=1

τj(λ
†
j − λ†A,j) = N †

H

However, this means there exists a feasibleN⋆
H < N †

H in Problem (B.5) such that
∑L

j=1 τjλ
⋆
j =

∑L
j=1 τjλ

†
j = h(NA +N †

H) since
∑L

j=1 τjλ
†
j = h(NA +N †

H) by Lemma 17. And by definition,
∑L

j=1 τjλ
⋆
j ⩽ h(NA + N⋆

H), which implies h(NA + N †
H) ⩽ h(NA + N⋆

H) but N⋆
H < N †

H .

This contradicts the monotonicity of h(N) shown by Lemma 15. Therefore, if
∑L

j=1 τjλ
⋆
j =

∑L
j=1 τjλ

†
j, the objective value achieved by λ† is optimal for Problem (M′).

Similarly, suppose
∑L

j=1 τλ
⋆
j =

∑L
j=1 τjλ

‡
j, and the objective value achieved by λ⋆ is

higher than the objective value achieved by λ‡. We have
∑L

j=1 τjλ
⋆
H,j <

∑L
j=1 τjλ

‡
H,j, where

∑L
j=1 τjλ

⋆
H,j =

∑L
j=1 τj(λ

⋆
j − λ⋆A,j). Thus,

N⋆
H = γPH/r

L∑

j=1

τjλ
⋆
H,j < γPH/r

L∑

j=1

τjλ
‡
H,j = N ‡

H

However, this means there exists a feasible N⋆
H < N ‡

H in Problem (B.7) such that
∑L

j=1 τλ
⋆
j =

∑L
j=1 τjλ

‡
j = h(NA + N ‡

H) because
∑L

j=1 τjλ
‡
j = h(NA + N ‡

H) by Lemma 17. This contra-
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dicts the monotonicity of h(N) shown by Lemma 15. Hence, when one of the boundary

constraints is binding, the optimal solution must be given by a full prioritization policy. (i.e.

if
∑L

j=1 τjλ
⋆
j =

∑L
j=1 τjλ

†
j (or

∑L
j=1 τjλ

⋆
j =

∑L
j=1 τjλ

‡
j), then for any j, λ⋆j = λ†j (or λ

⋆
j = λ‡j).)

In the next auxiliary lemma, we want to show that it is implementable to randomize two

full prioritization policies and achieve a convex combination of their arrival rates. Before

presenting the lemma, let us first define a random-priority policy. Suppose we have two

non-idling policies with the same allocation of vehicles, NA,j, NH,j at each location j, and:

1. π1: fully prioritizes AVs and achieves the arrival rates λπ
1

A,j and λ
π1

H,j at each location j.

2. π2: fully prioritizes HVs and achieves the arrival rates λπ
2

A,j and λπ
2

H,j at each location

j.

For any ω ∈ [0, 1], we propose a policy π̄(θ) to randomize π1 and π2 and achieve the arrival

rates ωλπ
1

A,j + (1− ω)λπ
2

A,j and ωλ
π1

H,j + (1− ω)λπ
2

H,j for AVs and HVs respectively.

Definition 5 (Definition of random-priority policy π̄(θ)). Keep the allocation of vehicles

NA,j, NH,j the same with those in π1 and π2. At each location, there is a non-idling priority

queue and a non-idling non-priority queue. The vehicles in the priority queue are dispatched

before those in the non-priority queue. Given θ ∈ [0, 1], an incoming AV is allocated in

the priority queue with probability θ and in the non-priority queue with probability 1 − θ.

Accordingly, an incoming HV is allocated in the priority queue with probability 1 − θ and

in the non-priority queue with probability θ.

Let λ̄A,j, λ̄H,j denote the arrival rates of AVs and HVs induced by π̄(θ) at location j. The

following lemma shows that by choosing θ ∈ [0, 1] and implementing π̄(θ), we can randomize

π1 and π2 to obtain the arrival rates ωλπ
1

A,j + (1 − ω)λπ
2

A,j and ωλπ
1

H,j + (1 − ω)λπ
2

H,j for AVs

and HVs respectively.
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Lemma 19 (Randomization of two prioritization policies). For any ω ∈ [0, 1], there exists

θ ∈ [0, 1] such that we are able to achieve λ̄A,j = ωλπ
1

A,j + (1 − ω)λπ
2

A,j and λ̄H,j = ωλπ
1

H,j +

(1− ω)λπ
2

H,j by implementing π̄(θ).

Proof. Proof of Lemma 19 Since there are two variables λ̄A,j and λ̄H,j for each location j, we

first want to reduce the variable space into λ̄A,j only. That is, we want to show that if λ̄A,j is

determined and satisfies Little’s law, then λ̄H,j is also determined and satisfies Little’s law.

After that, we want to show the solution to λ̄A,j is continuous with respect to θ and apply

the intermediate value theorem to complete the proof.

Let λpj and λnpj denote the arrival rates of vehicles in the priority queue and non-priority

queue at each location j. By Definition 5, λpj = θλ̄A,j+(1−θ)λ̄H,j and λ
np
j = (1−θ)λ̄A,j+θλ̄H,j.

Because the arrival of requests is independent of vehicles, the mean residual service time

is equal to 1/µ. Then, by Haviv (2013), pp. 73-74, the mean waiting time of the vehicles in

the priority queue of location j equals

W π̄,p
j =

1/µj

1− λpj/µj

=
1/µj

1− λpj/µj

=
1

µj − λpj

And the mean waiting time of the vehicles in the non-priority queue of location j equals

W π̄,np
j =

1/µj

(1− λpj/µj)(1− (λpj + λnpj )/µj)
=

µj

(µj − λpj)(µj − (λpj + λnpj ))

Thus, the unconditional mean waiting time of AVs and HVs are:

W π̄
A,j = θW π̄,p

j + (1− θ)W π̄,np
j =

µj − θ(λpj + λnpj )

(µj − λpj)(µj − (λpj + λnpj ))

W π̄
H,j = (1− θ)W π̄,p

j + (θ)W π̄,np
j =

µj − (1− θ)(λpj + λnpj )

(µj − λpj)(µj − (λpj + λnpj ))

Substitute λpj = θλ̄A,j +(1− θ)λ̄H,j and λ
np
j = (1− θ)λ̄A,j +(θ)λ̄H,j into the above equations:

W π̄
A,j =

µj − θ(λ̄A,j + λ̄H,j)

(µj − (θλ̄A,j + (1− θ)λ̄H,j))(µj − (λ̄A,j + λ̄H,j))

W π̄
H,j =

µj − (1− θ)(λ̄A,j + λ̄H,j)

(µj − (θλ̄A,j + (1− θ)λ̄H,j))(µj − (λ̄A,j + λ̄H,j))
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In addition, since the policies are non-idling and the number of vehicles at each location

is fixed, the total arrival rate of vehicles must be the same. By Little’s law, we must have

a constant λj ∈ [0, µj) such that (τj +
1

µj−λj
)λj = NA,j + NH,j = Nj, and λπ

1

A,j + λπ
1

H,j =

λπ
2

A,j + λπ
2

H,j = λpj + λnpj = λ̄A,j + λ̄H,j = λj. Then, we can rewrite the mean waiting time as:

W π̄
A,j =

µj − θλj
(µj − ((2θ − 1)λ̄A,j + (1− θ)λj))(µj − λj)

W π̄
H,j =

µj − (1− θ)λj
(µj − ((2θ − 1)λ̄A,j + (1− θ)λj))(µj − λj)

By Little’s law,

(τj +
µj − θλj

(µj − ((2θ − 1)λ̄A,j + (1− θ)λj))(µj − λj)
)λ̄A,j = NA,j (B.23a)

(τj +
µj − (1− θ)λj

(µj − ((2θ − 1)λ̄A,j + (1− θ)λj))(µj − λj)
)(λj − λ̄A,j) = Nj −NA,j (B.23b)

In Equation (B.23b), if we substitute Nj with (τj+
1

µj−λj
)λj and NA,j with Equation (B.23a),

we can see Equation (B.23a) and Equation (B.23b) are dependent:

Nj −NA,j = (τj +
1

µj − λj
)λj − (τj +

µj − θλj
(µj − ((2θ − 1)λ̄A,j + (1− θ)λj))(µj − λj)

)λ̄A,j

= τj(λj − λ̄A,j) +
λj(µj − ((2θ − 1)λ̄A,j + (1− θ)λj))− (µj − θλj)λ̄A,j

(µj − λj)(µj − ((2θ − 1)λ̄A,j + (1− θ)λj))

= τj(λj − λ̄A,j) +
µj(λj − λ̄A,j)− λj((1− θ)λj + (θ − 1)λ̄A,j))

(µj − λj)(µj − ((2θ − 1)λ̄A,j + (1− θ)λj))

= τj(λj − λ̄A,j) +
(µj − (1− θ)λj)(λj − λ̄A,j)

(µj − λj)(µj − ((2θ − 1)λ̄A,j + (1− θ)λj))

= (τj +
µj − (1− θ)λj

(µj − ((2θ − 1)λ̄A,j + (1− θ)λj))(µj − λj)
)(λj − λ̄A,j)

Thus, we only need λ̄A,j to be a solution to Equation (B.23a), and it must be a solution

to Equation (B.23b) as well. In other words, if λ̄A,j is determined and satisfies Little’s law,

then λ̄H,j equals λj − λ̄A,j and also satisfies Little’s law.

Second, we want to show that λ̄A,j of Equation (B.23a) is continuous with respect to θ so

that we can apply the intermediate value theorem to demonstrate our main argument. For
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any θ ∈ [0, 1], let λ̄A,j(θ) denote a solution to Equation (B.23a). Notice that when θ = 0,

λ̄A,j(0) is a solution to

(τj +
µj

µj − λ̄A,j

)λ̄A,j = NA,j

Thus, λ̄A,j(0) = λπ
1

A,j. Similarly, λ̄A,j(1) = λπ
2

A,j. Because ωλ
π1

A,j + (1−ω)λπ
2

A,j ∈ [λπ
1

A,j, λ
π2

A,j] for

some ω ∈ [0, 1], if we are able to show λ̄A,j(θ) is continuous, then there must be a θ ∈ [0, 1]

such that λ̄A,j(θ) = ωλπ
1

A,j + (1− ω)λπ
2

A,j by the intermediate value theorem.

Define

F (θ, λ̄A,j) = (τj +
µj − θλj

(µj − ((2θ − 1)λ̄A,j + (1− θ)λj))(µj − λj)
)λ̄A,j −NA,j

on the domain [0, 1] × [0, λj]. Because λj < µj, F (θ, λ̄A,j) is continuously differentiable on

the domain. And for each fixed θ, F (θ, 0) = −NA,j ⩽ 0, F (θ, λj) = (τj+
1

µj − λj
)λj−NA,j =

NH,j ⩾ 0. Also, by taking the gradient,
∂F (θ,λ̄A,j)

∂λ̄A,j
= τj +

µj−(1−θ)λj

(µj−((2θ−1)λ̄A,j+(1−θ)λj))2
· µj−θλj

µj−λj
> 0.

Consequently, for each fixed θ ∈ [0, 1], there is a unique solution λ̄A,j(θ) ∈ [0, λj) such that

F (θ, λ̄A,j(θ)) = 0. Because of the implicit function theorem and
∂F (θ,λ̄A,j(θ))

∂λ̄A,j
> 0, λ̄A,j(θ) is a

continuous function of θ.

Hence, by the intermediate value theorem, there must be a θ ∈ [0, 1] such that λ̄A,j(θ) =

ωλπ
1

A,j + (1 − ω)λπ
2

A,j. In addition, because λπ
1

A,j + λπ
1

H,j = λπ
2

A,j + λπ
2

H,j = λ̄A,j + λ̄H,j = λj, we

must have λ̄H,j(θ) = λj − λ̄A,j(θ) = ωλπ
1

H,j + (1− ω)λπ
2

H,j.

Given the above auxiliary lemmas, now we can continue to complete the proof of Propo-

sition 7.

B.2.3 Supporting Material of the Main Results in Section 3.4 and Section 3.5.

In this section, we prove several auxiliary lemmas for our main results in Section 3.4 and

Section 3.5. We first discuss the impact of fully prioritizing AVs on the total number of

vehicles. To help readers better understand it, we visualize the reasoning in Figure B.2.
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Figure B.2: Visualization of Lemma 20. The left plot is an example of h(N), and the right

plot shows the change in the total number of vehicles with respect to NA.

Given NA, when we fully prioritize AVs, the optimal arrival rate of AVs is equal to

h(NA) and the optimal arrival rate of HVs is equal to h(NA + N †
H) − h(NA). With the

wage equilibrium, we have
h(NA+N†

H)−h(NA)

N†
H

= r/(γPH), so the slope of the line connecting

(NA, h(NA)) and (NA +N †
H , h(NA +N †

H)) must be equal to r/(γPH). Thus, as shown in the

left plot of Figure B.2, when we increase the number of AVs fromNA1 toNA2 , due to the strict

concavity of h(N), the line connecting (NA2 , h(NA2)) and (NA2 +N †
H2
, h(NA2 +N †

H2
)) must

be above the line connecting (NA1 , h(NA1)) and (NA1 + N †
H1
, h(NA1 + N †

H1
)). Accordingly,

the total number of vehicles will decrease from NA1 +N
†
H1

to NA2 +N
†
H2

as shown in the left

plot.

In addition, let ÑA > 0 such that h′(ÑA) = r/(γPH). Because h(·) is strictly concave, for

any NA ⩾ ÑA, h
′(NA) < r/(γPH), meaning that it is impossible to have a positive NH such

that the line connecting (NA, h(NA)) and (NA +NH , h(NA +NH)) has a slope of r/(γPH).

Thus, HVs completely disappear after the number of AVs reaches ÑA, and an increase of

NA will lead to a higher total number of vehicles.

Now let us verify the idea in a formal way. The following lemma shows the property

of the optimal solution to NH when we fully prioritize AVs. To emphasize the relationship
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with NA and γ, we use N †
H(NA, γ) instead of N †

H to denote the optimal number of HVs in

Problem (B.5) given NA and γ.

Lemma 20 (Optimal NH when we fully prioritize AVs). When we fully prioritize AVs, the

optimal arrival rate of AVs is h(NA). And N †
H(NA, γ) has the following properties with

respect to NA and γ:

(a) N †
H(NA, γ) is positive and unique if and only if h′(NA) > r/(γPH). In addition, if

N †
H(NA, γ) > 0, then h′(NA +N †

H(NA, γ)) < r/(γPH).

(b) Let γ̃ > 0 and ÑA > 0 such that h′(ÑA) = r/(γ̃PH). Then, given any γ > γ̃,

∂N†
H(NA,γ)

∂NA
< −1 if NA ∈ [0, ÑA) and N †

H(NA, γ) = 0 if NA ∈ [ÑA,∞). In addition,

given any NA ∈ (0, ÑA),
∂N†

H(NA,γ)

∂γ
> 0 if γ > γ̃, and N †

H(NA, γ) → ∞ as γ → ∞.

Proof. Proof of Lemma 20.

(a) To see this, we first notice that Problem (B.4) is equivalent to Problem (B.11) with

N = NA, so the results in the Lemma 14 and Lemma 15 are applicable, and the optimal

value of Problem (B.4) can be written as h(NA), where h(·) is given by Equation (B.13).

Also, Problem (B.5) can be rewritten as:

max
NH⩾0

(
max

λj∈[0,µj)

L∑

j=1

τjλj s.t.
L∑

j=1

(τj +
1

µj − λj
)λj = NA +NH

)

s.t. rNH = γPH

L∑

j=1

τj(λj − λ†A,j)

We can see that Problem (B.11) is actually a subproblem of Problem (B.5) with N =

NA +NH . Therefore, by Lemma 17, Problem (B.5) is equivalent to:

max
NH⩾0

h(NA +NH)

s.t. rNH = γPH [h(NA +NH)− h(NA)]

(B.24)

It is easy to see that NH = 0 is always feasible in Problem (B.24), but any feasible

positive NH will produce a higher objective value, since h(N) strictly increases by
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Lemma 15. Now we want to obtain the sufficient and necessary conditions such that

there exists a unique non-trivial optimal NH .

• N †(NA, γ) > 0 =⇒ h′(NA) > r/(γPH) and h
′(NA +N †

H(NA, γ)) < r/(γPH).

By the mean value theorem, if there exists NH > 0 such that rNH = γPH [h(NA+

NH)− h(NA)], we must have ∃n ∈ (NA, NA +NH) such that

h′(n) =
h(NA +NH)− h(NA)

NH

=
r

γPH

However, because h(N) is strictly concave by Lemma 15, if h′(NA) ⩽ r/(γPH),

then ∀n > NA, h
′(n) < r/(γPH), which means it is impossible to have a NH > 0

such that rNH = γPH [h(NA+NH)−h(NA)]. Similarly, if h′(NA+NH) ⩾ r/(γPH),

then ∀n < NA + NH , h
′(n) > r/(γPH), which means it is impossible to have a

NH > 0 such that rNH = γPH [h(NA +NH)− h(NA)]. Thus, N
†(NA, γ) > 0 =⇒

h′(NA) > r/(γPH) and h
′(NA +N †

H(NA, γ)) < r/(γPH).

• h′(NA) > r/(γPH) =⇒ N †(NA, γ) > 0

Suppose h′(NA) > r/(γPH), then limNH→0
h(NA+NH)−h(NA)

NH
= h′(NA) > r/(γPH).

Thus, it is sufficient to show h(NA+NH)−h(NA)
NH

strictly decreases inNH and converges

to 0 as N → ∞. Let n1 > n2 > 0, because h(N) is strictly concave,

h(NA + n2) >
n1 − n2

n1

h(NA) +
n2

n1

h(NA + n1)

=⇒ h(NA + n2)− h(NA) >
n2

n1

(h(NA + n1)− h(NA))

=⇒ h(NA + n2)− h(NA)

n2

>
h(NA + n1)− h(NA)

n1

(B.25)

And by Equation (B.17), limN→∞ h(N) =
∑L

j=1 τjµj, so limNH→∞
h(NA+NH)−h(NA)

NH
=

0. Therefore, by the intermediate value theorem, there exists a uniqueN †
H(NA, γ) >

0 such that
h(NA +N †

H(NA, γ))− h(NA)

N †
H(NA, γ)

=
r

γPH
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(b) Now, suppose γ̃ > 0 and ÑA > 0 such that h′(ÑA) = r/(γ̃PH). For any NA ⩾ ÑA,

because h(N) is stictly concave, h′(NA) ⩽ r/(γ̃PH), so N †
H(NA, γ) = 0 and NA +

N †
H(NA, γ) = NA.

The remaining step is to show that NA + N †
H(NA, γ) is strictly decreasing in NA ∈

[0, ÑA) and strictly increasing in γ ∈ (γ̃,∞).

First, given γ > γ̃, let NA ∈ [0, ÑA), by the wage equilibrium:

h(NA +N †
H(NA, γ))− h(NA)− r/(γPH)N

†
H(NA, γ) = 0

=⇒ h′(NA +N †
H(NA, γ))(1 +

∂N †
H(NA, γ)

∂NA

)− h′(NA)− r/(γPH)
∂N †

H(NA, γ)

∂NA

= 0

Because h′(NA) > r/( ˜γPH) > r/(γPH) and h
′(NA +N †

H(NA, γ)) < r/(γPH),

=⇒ ∂N †
H(NA, γ)

∂NA

=
h′(NA)− h′(NA +N †

H(NA, γ))

h′(NA +N †
H(NA, γ))− r/(γPH)

< −1

=⇒ ∂N †
H(NA, γ)

∂NA

< −1

Second, given NA ∈ (0, ÑA), let γ > γ̃, by the wage equilibrium:

h(NA +N †
H(NA, γ))− h(NA)− r/(γPH)N

†
H(NA, γ) = 0

=⇒ h′(NA +N †
H(NA, γ))

∂N †
H(NA, γ)

∂γ

− [−r/(γ2PH)N
†
H(NA, γ) + r/(γPH)

∂N †
H(NA, γ)

∂γ
] = 0

Because h′(NA +N †
H(NA, γ)) < r/(γPH),

=⇒ ∂N †
H(NA, γ)

∂γ
=

r/(γ2PH)N
†
H(NA, γ)

r/(γPH)− h′(NA +N †
H(NA, γ))

> 0

=⇒ ∂N †
H(NA, γ)

∂γ
> 0

Additionally, in part (a), we have seen that h(NA+NH)−h(NA)
NH

strictly decreases in NH

and h(NA+NH)−h(NA)
NH

→ 0 as NH → ∞. Thus, with
h(NA+N†

H(NA,γ))−h(NA)

N†
H(NA,γ)

= r/(γPH),

the increase of N †
H(NA, γ) must be unbounded as γ → ∞. That is, N †

H(NA, γ) → ∞
as γ → ∞.
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The following lemma shows the service levels when AVs are fully prioritized, and NA

reaches the threshold such that all HVs leave the market.

Lemma 21. When AVs are fully prioritized, let ÑA > 0 as the treshold such thatN †
H(NA, γ) =

0 for any NA ⩾ ÑA , then

λ⋆j(ÑA) = [µj −
√
µj

τj

√
r

γPH − r
]1µjτj⩾r/(γPH−r) ∀j ∈ {1, . . . , L} (B.26)

Proof. Proof of Lemma 21. By Lemma 20, h′(ÑA) = r/(γPH). Using Equation (B.21),

1

2
(1− dk(ÑA)√

∆k(ÑA)
) = r/(γPH)

=⇒ dk(ÑA)√
∆k(ÑA)

= 1− 2r

γPH

(B.27)

And with Equation (B.12),

λ⋆j(ÑA) = [µj −
√
µj

τj

−dk(ÑA) +

√
∆k(ÑA)

2(
∑k(ÑA)

j=1

√
µjτj)

]1j⩽k(ÑA)

where dk(ÑA) = ÑA + k(ÑA)−
∑k(ÑA)

j=1 µjτj, ∆k(ÑA) = dk(ÑA)
2 + 4(

∑k(ÑA)
j=1

√
µjτj)

2. Using

the definitions of dk(ÑA) and ∆k(ÑA),

−dk(ÑA) +

√
∆k(ÑA)

2(
∑k(ÑA)

j=1

√
µjτj)

=
−dk(ÑA) +

√
∆k(ÑA)√

∆k(ÑA)− dk(ÑA)2

=

√√√√√

√
∆k(ÑA)− dk(ÑA)√
∆k(ÑA) + dk(ÑA)

=

√√√√√
1− dk(ÑA)/

√
∆k(ÑA)

1 + dk(ÑA)/

√
∆k(ÑA)

=

√
r

γPH − r
substitute dk(ÑA)/

√
∆k(ÑA) with Equation (B.27)
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Therefore,

λ⋆j(ÑA) = [µj −
√
µj

τj

√
r

γPH − r
]1µjτj⩾r/(γp−r) ∀j ∈ {1, . . . , L}

Notice that we are able to replace 1j⩽k(ÑA) with 1µjτj⩾r/(γPH−r) because of the definition of

k(N) in Equation (B.18) and
−dk(ÑA)+

√
∆k(ÑA)

2(
∑k(ÑA)

j=1
√
µjτj)

=

√
r

γPH − r
above.

In the next lemma, we discuss the properties of the service levels induced by Equa-

tion (B.12). Let ρ⋆j(N) denote the service level at location j implied by Equation (B.12):

ρ⋆j(N) =
λ⋆j(N)

µj

= [1−
√

1

µjτj

−dk(N) +
√

∆k(N)

2(
∑k(N)

j=1

√
µjτj)

]1j⩽k(N) (B.28)

where k(N), dk(N) and ∆k(N) are defined in Lemma 14.

For the service levels induced by Equation (B.12), Lemma 22 illustrates that high-demand

areas have a higher service level than low-demand areas. Also, for locations where vehicles

exist, the change in service level in a low-demand area with respect to the number of vehicles

is larger than the change in a high-demand area. Recall that we assumed ∀j ∈ {1, . . . , L −
1}, µjτj ⩾ µj+1τj+1.

Lemma 22. ∀N ⩾ 0, ρ⋆j(N) ⩾ ρ⋆j+1(N), and if j + 1 ⩽ k(N),
∂ρ⋆j (N)

∂N
⩽ ∂ρ⋆j+1(N)

∂N
.

Proof. Proof of Lemma 22. Recall that Lemma 14 showed that there exists a non-decreasing

sequence {N j}Lj=1 such that ∀N ⩽ N j, λ
⋆
j(N) = 0, and ∀N > N j, λ

⋆
j(N) > 0. In addition,

we defined k(N) = max{k|N > Nk}, then:

ρ⋆j(N)− ρ⋆j+1(N)

= 1j⩽k(N) − 1j+1⩽k(N) + [

√
1

µj+1τj+1

1j+1⩽k(N) −
√

1

µjτj
1j⩽k(N)]

−dk(N) +
√

∆k(N)

2(
∑k(N)

j=1

√
µjτj)

Now there are three cases:
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1. If j > k(N), ρ⋆j(N) = ρ⋆j+1(N) = 0

2. If j + 1 > k(N) but j ⩽ k(N), ρ⋆j(N)− ρ⋆j+1(N) = ρ⋆j(N) ⩾ 0.

3. If j + 1 ⩽ k(N),

ρ⋆j(N)− ρ⋆j+1(N) = [

√
1

µj+1τj+1

−
√

1

µjτj
]
−dk(N) +

√
∆k(N)

2(
∑k(N)

j=1

√
µjτj)

⩾ 0

The non-negativity is because µjτj ⩾ µj+1τj+1.

Thus, we have ρ⋆j(N) ⩾ ρ⋆j+1(N).

Second, by taking the derivative of ρ⋆j(N),

∂ρ⋆j(N)

∂N
= (

√
1

µjτj
· 1

2(
∑k(N)

j=1

√
µjτj)

)(1− dk(N)√
∆k(N)

)1j⩽k(N)

Note that there is a point of N where ρ⋆j(N) is not differentiable (i.e. when j = k(N)), but

this does not affect our analysis, or we can consider the right-hand derivative at this point.

Recall that, in Equation (B.16), we have seen (1− dk(N)√
∆k(N)

) > 0. Again, there are three

cases:

1. If j > k(N),
∂ρ⋆j (N)

∂N
=

∂ρ⋆j+1(N)

∂N
= 0

2. If j + 1 > k(N) but j ⩽ k(N),
∂ρ⋆j (N)

∂N
− ∂ρ⋆j+1(N)

∂N
=

∂ρ⋆j (N)

∂N
⩾ 0.

3. If j + 1 ⩽ k(N),

∂ρ⋆j(N)

∂N
− ∂ρ⋆j+1(N)

∂N

= (

√
1

µjτj
−
√

1

µj+1τj+1

) · 1

2(
∑k(N)

j=1

√
µjτj)

(1− dk(N)√
∆k(N)

)

⩽ 0

The non-positivity is because µjτj ⩾ µj+1τj+1.
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Thus, when j + 1 ⩽ k(N),
∂ρ⋆j (N)

∂N
⩽ ∂ρ⋆j+1(N)

∂N
.

In the next lemma, we discuss the number of vehicles induced by Equation (B.12). Let

N⋆
j (N) denote the number of vehicles at location j implied by Equation (B.12). By Lemma 2

and Little’s law, it must satisfy:

N⋆
j (N) = (τj +

1

µj − λ⋆j(N)
)λ⋆j(N) (B.29)

For the number of vehicles induced by Equation (B.12), Lemma 23 illustrates that high-

demand areas can acquire more vehicles than low-demand areas.

Lemma 23. ∀j ∈ {2, . . . , L}, ∂N
⋆
j−1(N)

∂N
⩾ ∂N⋆

j (N)

∂N
⩾ 0.

Proof. Proof of Lemma 23. Recall we assumed that for any j ∈ {2, . . . , L}, µj−1τj−1 ⩾ µjτj.

And recall that Lemma 14 showed that there exists a non-decreasing sequence {N j}Lj=1

such that ∀N ⩽ N j, λ
⋆
j(N) = 0, and ∀N > N j, λ

⋆
j(N) > 0. In addition, we defined

k(N) = max{k|N > Nk}.

By Equation (B.12):

λ⋆j(N) = [µj −
√
µj

τj

−dk(N) +
√
∆k(N)

2(
∑k(N)

j=1

√
µjτj)

]1j⩽k(N)

where dk(N) = N + k(N)−∑k(N)
j=1 µjτj and ∆k(N) = dk(N)2 + 4(

∑k(N)
j=1

√
µjτj)

2.

Clearly, if j > k(N), λ⋆j(N) = 0 and
∂N⋆

j (N)

∂N
= 0, so we have

∂N⋆
j−1(N)

∂N
⩾ ∂N⋆

j (N)

∂N
= 0.

Suppose j ⩽ k(N), let ck(N) =
−dk(N)+

√
∆k(N)

2(
∑k(N)

j=1
√
µjτj)

, then

λ⋆j(N) = µj − ck(N)

√
µj

τj

Substitute the above equation into Equation (B.29):

N⋆
j (N) = (τj +

1

µj − λ⋆j(N)
)λ⋆j(N)

= (τj +
1

ck(N)

√
τj
µj

)(µj − ck(N)

√
µj

τj
)
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Taking the derivative of N⋆
j (N) with respect to N :

∂N⋆
j (N)

∂N
=

√
µjτj(ck(N)−2 + 1)(−∂ck(N)

∂N
)

Note that there is a point of N where N⋆
j (N) is not differentiable (i.e. when j = k(N)), but

this does not affect our analysis, or we can consider the right-hand derivative at this point.

We can get ck(N)−2 > 0, and by Equation (B.16), ∂ck(N)
∂N

< 0. Because
√
µj−1τj−1 ⩾

√
µjτj,

∂N⋆
j−1(N)

∂N
⩾
∂N⋆

j (N)

∂N
⩾ 0

The following lemma solves Problem (B.6) where there are only HVs.

Lemma 24. The optimal solution to Problem (B.6) can be expressed as:

λ‡H,j =

[
µj −

√
µj

τj
· −d+

√
∆

2(1− γPH/r)(
∑J

j=1

√
µjτj)

]
1j⩽J (B.30)

where d =
∑J

j=1(1− (1− γPH/r)µjτj), ∆ = d2 + 4(1− γPH/r)(
∑J

j=1

√
µjτj)

2, and J is also

derived from Problem (B.6).

Proof. Proof of Lemma 24. Recall that Problem (B.6) is

max
λH,j∈[0,µj),NH⩾0

L∑

j=1

τjλH,j

s.t.
L∑

j=1

(τj +
1

µj − λH,j

)λH,j = NH

γPH

L∑

j=1

τjλH,j = rNH

(24)

which is equivalent to

max
λH,j∈[0,µj)

L∑

j=1

τjλH,j

s.t.
L∑

j=1

(τj +
1

µj − λH,j

)λH,j =
γPH

∑L
j=1 τjλH,j

r

(B.31)
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Notice that we must have γPH > r; otherwise, there are no feasible solutions.

We can use the method of Lagrange multipliers to solve Problem (B.31) and construct

the Lagrangian function:

L({λH,j}Lj=1, θ) = −
L∑

j=1

τjλH,j+θ

(
L∑

j=1

(τj +
1

µj − λH,j

)λH,j −
γPH

∑L
j=1 τjλH,j

r

)
−

L∑

j=1

ϕjλH,j

where θ and ϕj are Lagrange multipliers. The Kuhn-Tucker conditions are:

• Stationarity:

−τj + θ(τj +
µj

(µj − λH,j)2
− γPHτj

r
)− ϕj = 0

• Primal feasibility:

L∑

j=1

(
τj +

1

µj − λH,j

)
· λH,j =

γPH

∑L
j=1 τjλH,j

r

λH,j ⩾ 0, j ∈ {1, . . . , L}

• Dual feasibility:

ϕj ⩾ 0, j ∈ {1, . . . , L}

• Complementary slackness:

ϕjλH,j = 0, j ∈ {1, . . . , L}

We use a superscript ‡ to denote an optimal solution to Problem (B.31). Because of the

complementary slackness, we consider two cases: either λ‡H,j > 0 or λ‡H,j = 0. First, if λ‡H,j

is positive at some location j, then ϕ‡
j = 0, and the optimal λ‡H,j and θ

‡ must satisfy:

τj − θ‡(τj +
µj

(µj − λ‡H,j)
2
− γPHτj

r
) = 0

And we have:

(µj − λ‡H,j)
2 =

θ‡µj

(1− θ‡ + θ‡γPH/r)τj

λ‡H,j = µj −
√

θ‡µj

(1− θ‡ + θ‡γPH/r)τj
because λ‡H,j < µj
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Now by considering the equality constraint:

L∑

j=1,λ‡
H,j>0

(τj +
1

µj − λ‡H,j

)λ‡H,j =
γPH

∑L
j=1 τjλ

‡
j

r

=⇒
√

θ‡

(1− θ‡ + θ‡γp/r)
=

−d+
√
∆

2(1− γPH/r)(
∑L

j=1,λ‡
H,j>0

√
µjτj)

(B.32)

where d =
∑L

j=1,λ‡
H,j>0

(1−(1−γPH/r)µjτj) and ∆ = d2+4(1−γPH/r)(
∑L

j=1,λ‡
H,j>0

√
µjτj)

2.

Notice that
√

θ‡

(1−θ‡+θ‡γPH/r)
̸= −d−

√
∆

2(1−γPH/r)(
∑L

j=1,λ
‡
H,j

>0

√
µjτj)

, because it is optimal to choose the

larger λ‡H,j. Therefore, when λ
‡
H,j > 0, we must have:

λ‡H,j = µj −
√
µj

τj
· −d+

√
∆

2(1− γPH/r)(
∑L

j=1,λ‡
H,j>0

√
µjτj)

Second, if λ‡H,j is zero at some location j, by the Kuhn-Tucker conditions, we have ϕ‡ ⩾ 0

and:

τj − θ‡(τj +
1

µj

− γPHτj
r

) ⩽ 0

⇐⇒µjτj ⩽
θ‡

1− θ‡ + θ‡γPH/r

meaning that λ‡H,j > 0 if and only if µjτj >
θ‡

1−θ‡+θ‡γPH/r
. Recall that we assumed that

µjτj ⩾ µj+1τj+1 for any j ∈ {1, . . . , L− 1}, so there exists J ∈ {1, . . . , L} such that λ‡H,j > 0

if and only if j ⩾ J . We then are able to express the optimal solution to Problem (B.6) as:

λ‡H,j =

[
µj −

√
µj

τj
· −d+

√
∆

2(1− γPH/r)(
∑J

j=1

√
µjτj)

]
1j⩽J

where d =
∑J

j=1(1 − (1 − γPH/r)µjτj), ∆ = d2 + 4(1 − γPH/r)(
∑J

j=1

√
µjτj)

2. And J can

be found by solving:

J = max{j|µjτj >

[
−d+

√
∆

2(1− γPH/r)(
∑J

j=1

√
µjτj)

]2
, j ∈ {1, . . . , L}} (B.33)
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The following lemma proves the sufficient conditions such that the lower bound (B.3c)

or the upper bound (B.3d) of Problem (M′) is binding.

Lemma 25. In Problem (M′), Constraint (B.3c) is binding if NA is sufficiently large (i.e.,

NA → ∞) or if NA is sufficiently small and γ is sufficiently large (i.e., NA → 0 and γ → 1−);

Constraint (B.3d) is binding when γ and NA are sufficiently small (i.e., NA → 0 and γ → 0).

Proof. Proof of Lemma 25. When neither of constraints (B.3c) and (B.3d) is binding. By

Equation (B.9), we know the interior solution is:

λintj = [µj −
√
µj

τj

√
r̂

p− r̂
]1µjτj⩾r̂/(p−r̂) ∀j ∈ {1, . . . , L}

We can see that the interior solution is irrelevant with NA.

Constraint (B.3c) is binding By Lemma 20 and Lemma 17, the optimal objective value of

Problem (B.5),
∑L

j=1 τjλ
†
j, strictly increases in γ ∈ (γ̃,∞), strictly decreases in NA ∈ [0, ÑA)

and strictly increases in NA ∈ [ÑA,∞), where γ̃ and ÑA are defined in Lemma 20. It is clear

that
∑L

j=1 τjλ
†
j → ∑L

j=1 τjµj as NA → ∞. Thus, we must have
∑L

j=1 τjλ
int
j ⩽

∑L
j=1 τjλ

†
j

when NA is sufficiently large.

In addition, suppose γ = 1 and NA = 0, then
∑L

j=1 τjλ
†
j can be derived from Problem

(B.6). By Lemma 24,

λ†j =

[
µj −

√
µj

τj
· −d+

√
∆

2(1− PH/r)(
∑J

j=1

√
µjτj)

]
1j⩽J

where d =
∑J

j=1(1− (1− PH/r)µjτj), ∆ = d2 + 4(1− PH/r)(
∑J

j=1

√
µjτj)

2.

Therefore,
∑L

j=1 τjλ
int
j <

∑L
j=1 τjλ

†
j if and only if

−d+
√
∆

2(1− PH/r)(
∑L

j=1,λ†
j>0

√
µjτj)

<

√
r̂

p− r̂
=

√
r(PA − cA)

(PH − r)(PA − cA)
=

√
r

PH − r
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Let us prove the above inequality backward:

−d+
√
∆

2(1− PH/r)(
∑L

j=1,λ†
j>0

√
µjτj)

<

√
r

PH − r

⇐⇒d−
√
∆ < 2

√
PH − r

r
(

L∑

j=1,λ†
j>0

√
µjτj)

⇐⇒d2 − 2
√
∆d+∆ <

4(PH − r)

r
(

L∑

j=1,λ†
j>0

√
µjτj)

2

⇐⇒2d2 + 4(1− PH/r)(
L∑

j=1,λ†
j>0

√
µjτj)

2 − 2
√
∆d <

4(PH − r)

r
(

L∑

j=1,λ†
j>0

√
µjτj)

2

⇐⇒d2 + 2(1− PH/r)(
L∑

j=1,λ†
j>0

√
µjτj)

2 −
√
∆d <

2(PH − r)

r
(

L∑

j=1,λ†
j>0

√
µjτj)

2

⇐⇒d2 −
√
∆d <

4(PH − r)

r
(

L∑

j=1,λ†
j>0

√
µjτj)

2

⇐⇒d2 −
√
∆d < d2 −∆

⇐⇒d >
√
∆

where the last inequality is true because PH > r and the definitions of d and ∆ in Equa-

tion (B.32).

Thus, if γ = 1 and NA = 0, Constraint (B.3c) is binding. And because λintj and λ†j are

continuous in γ, these imply that Constraint (B.3c) is binding if NA is sufficiently small and

γ is sufficiently large (i.e., NA → 0 and γ → 1−)

Hence, in Problem (M′), Constraint (B.3c) is binding if NA is sufficiently large (i.e.,

NA → ∞) or if NA is sufficiently small and γ is sufficiently large (i.e., NA → 0 and γ → 1−).

Constraint (B.3d) is binding Problem (B.6) can be considered as Problem (B.5) with

NA = 0, so by Lemma 20, N ‡
H strictly increases in γ ∈ (γ̃,∞), and for any γ ∈ [0, γ̃], N ‡

H = 0.

Also, since h(N) is strictly increasing in N , by Lemma 17,
∑L

j=1 τjλ
‡
j strictly increases in
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γ ∈ (γ̃,∞) and in NA. And clearly, when γ = 0 and NA = 0,
∑L

j=1 τjλ
‡
j = 0. And because

λintj and λ‡j are continuous, Constraint (B.3d) is binding if γ and NA are sufficiently small

and close to 0.

B.3 Simulation Study

This section describes how we process the dataset and design the simulation in detail. Please

refer to Appendix B.4 for other auxiliary simulation results such as the omitted detailed maps

in the robustness check in Section 3.6.3.

B.3.1 Data processing

To estimate the parameters in our model, we use the New York City Open Data platform to

access the historical record of High-Volume For-Hire Vehicle (HVFHV) data.1 For each trip

in NYC, this data contains the origin, destination, and request time stamp for Lyft, Uber, and

Via (the three leading ride-hailing platforms in NYC in 2020). For a more balanced demand

distribution across the city (inflow and outflow are similar within zones), we consider the

trip data between 11 AM and 1 PM during workdays in January 2020 (the month before the

coronavirus led to a significant drop in demand), which corresponds to a total of 1,093,431

recorded trips.

Locations, zones and travel time For privacy reasons, the exact origin and destination

of each trip are unavailable, but we have access to “taxi zones”. NYC is divided into 257 such

zones, which are chosen based on historical and demographic criteria. Examples of zones

include “Times Square” and “JFK Airport”, and the shape of the zones can be visualized in

1https://data.cityofnewyork.us/Transportation/2020-High-Volume-FHV-Trip-Records/yrt9-5

8g8, last accessed: 2024-05-29.

231



Figure 3.6. To generate exact locations and travel time, we use OpenStreetMap,2 to obtain

the road network of NYC, which can be visualized in Figure 3.6c and assume that each

trip starts and end in a uniformly random intersection from the origin and destination zone,

respectively. Specifically, in the origin zone of a request, we uniformly select one of the nodes

in the zone at random as the origin node of this request. Similarly, in the destination zone

of a request, we uniformly select one of the nodes in the zone at random as the destination

node of this request. In addition, the travel time between each pair of nodes is available in

the geospatial dataset, so we use the travel time between the origin node and the destination

node as the travel time of a request. Notice that because the travel time in the geospatial

dataset is computed by using the maximum speed, the travel time between each pair of

nodes is much shorter than that in practice. To remedy this bias, we scale up the travel time

between each pair of nodes by 3.

Demand density To obtain the demand density, we first calculated the hourly trips per

zone in our trip dataset (i.e., the NYC HVFHV dataset). The demand density in a zone is

then computed by dividing the hourly trips in that zone by its area,3 see Figure 3.6a. We

consider a zone with a higher demand density as a high-demand zone and a zone with a

lower demand density as a low-demand zone. Let µk denote the demand density in zone k.

Pay ratio and reserved earning. For the pay ratio, in line with practice, we assume

γ = 75%.

To set the HVs’ reserved earning, r, we consider NYC’s average High-Volume FHV

utilization rate and the average earning of fully-utilized HVs. The TLC reports that NYC’s

average citywide utilization rate is approximately 60%.4 And the average earning of fully-

2https://osmnx.readthedocs.io/en/stable/, last accessed: 2024-05-29.

3For the airports, we used an estimate of the “driving area” of 1km2 rather than counting the entire
airport area, because the driving area in an airport is usually much smaller than its actual area

4https://www1.nyc.gov/assets/tlc/downloads/pdf/fhv_congestion_study_report.pdf
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utilized HVs can be determined using vehicle pay regulations imposed by the Taxi and

Limousine Commission (TLC) of NYC.5 In NYC, the TLC requires that the combined vehicle

pay rates correspond to $1.161 per mile and $0.529 per minute as of March 2022. Assuming

an average vehicle speed of 20 miles per hour, we obtain that the average earning of fully-

utilized HVs is $1.161× 20 + $0.529× 60 = $54.96. We, therefore, set r = $33 per hour, so

that r = 60%× $54.96.

B.3.2 Simulation Description

We repeated the simulation five times and took the average of all the results. At each

repetition, the simulation is run as the following.

B.3.2.1 Data Sampling

At each iteration, we randomly sample one million requests from the trip data with re-

placement. This helps us to repeat the experiment, avoid cyclic demand imbalance, and

take the average without affecting the demand distribution. We assume that requests arrive

sequentially, and the inter-arrival time between two consecutive requests is generated from

an exponential distribution with a mean of 1/23, 770, which is equal to (2× 23)/1, 093, 431

since we only consider 2 hours (i.e., 11 AM — 1 PM) during each workday and there are

23 workdays in January 2020. Consequently, we have a sample {ti, oi, di, τoi,di}10
6

i=1, where

ti denotes the request time of request i, oi denotes the origin node of request i, di denotes

the destination node of request i, and τoi,di denotes the travel time from oi to di. Note that

ti < ti+1, ∀i ∈ {1, . . . , 106 − 1}. And let z(oi) and z(di) denote the origin zone and the

destination zone of request i.

5https://www1.nyc.gov/site/tlc/about/vehicle-pay.page lists the regulated vehicle pay rates.
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B.3.2.2 Core Steps

The core steps of the simulation describe how the platform, vehicles, and customers behave

during the simulation, and how to output the desired metrics, such as service levels, revenues,

profits, and ETA. In the core steps, the number of vehicles, NA and NH , and the price rates

are inputs. Let {lij}NA+NH
j=1 denote the location of vehicle j when request i arrives. Initially,

the vehicles’ locations are uniformly chosen from the nodes in the geospatial street network.

ETA We assume the platform processes the requests sequentially. When request i arrives

at time ti, the platform computes the ETA between each available vehicle and the origin

node of the request (i.e., the ETA is equal to τlij ,oi for an available vehicle j).

Customer utility We assume that a customer facing a decision to travel has three options:

selecting the nearest available HV, selecting the nearest available AV, or canceling the trip

altogether. This choice is determined by a utility model that takes into account the vehicle

type, hourly pricing, travel time from the origin to the destination, and the estimated time

of arrival (ETA). Specifically, for a customer i requesting a trip, the customer’s utility Ui,j

when assigned a vehicle j is given by:

Ui,j ≜ [a0 + θ1j is an AV − (PA,i1j is an AV + PH,i1j is an HV)]τoi,di + a1τlij ,oi

where a0 > 0 represents the base utility of choosing an HV and reaching the intended

destination, θ captures the difference in utility if opting for an AV, PA,i and PH,i are the

price rates (to be optimized) shown for customer i for AVs and HVs respectively, and a1 < 0

is the customer’s sensitivity to waiting time before pickup.

The utility Ui,j measures a consumer’s surplus from riding vehicle j in dollars. If Ui,j < 0

for all the available vehicles, the consumer will cancel the request and leave the market. If

at least one available vehicle j yields a positive Ui,j, the customer will choose the option

that maximizes her utility. That is, she will select an available vehicle Ji with the highest
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(non-negative) utility:

Ji = argmax
j is available and Ui,j ≥ 0

Ui,j

Note that this is equivalent to choosing the nearest available AV or HV depending on the

prices and the customer’s preference for the type of vehicle. And if a tie occurs, she will

randomly choose one of the vehicles with the same utility.

Pricing and Prioritization In contrast to the queuing model, in the simulation, cus-

tomers can choose the type of vehicle they want to take, and the platform can only influence

customers’ choices through a pricing policy. Due to the complexity of the system (mixed

fleet and large state space), we limit ourselves to a manageable set of pricing policies, that

allow us to potentially prioritize AVs or HVs, and to distribute AVs and HVs differently in

the city. For example, our set of policies allows the platform to potentially keep the AVs

in the high-demand areas (downtown) by preventing the use of AVs for rides that lead to

low-demand areas.

We let the price rate PA,i (or PH,i) offered to customer i to be equal to a base price that

is identical for all the trips, plus an adjustment depending on whether the destination of a

trip is Manhattan (i.e., the area with the highest demand). That is, for any customer i, the

price rates are

Ptype,i = Ptype,base + δtype(2× 1di is in Manhattan − 1) type ∈ {A,H}

where Ptype,base is the base price, δtype is the adjustment, and 1destination of i is in Manhattan is an

indicator function.

This four-parameter class of pricing policies is rich enough to give the platform the

flexibility to both prioritize and allocate (to a particular region) any specific type of vehicle.

For example, to increase the utilization of AVs, the platform can offer discounts on AV rides

compared to HVs by lowering PA,base and δA. Greater discounts lead to higher utilization

of AVs. Moreover, the adjustment part allows the platform to influence the allocation of
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vehicles by incentivizing customers to select different types of vehicles depending on their

destinations. For example, when δA < δH , there is an extra discount on AV rides for the

customers whose destination is in Manhattan, meaning that the platform is trying to allocate

more AVs in Manhattan.

Serve the requests If the customer decides to choose vehicle Ji, vehicle Ji will depart

to pick up the customer and transport her to the destination. Then the platform collects a

profit (PA,i − cA)τoi,di if Ji is an AV or (1− γ)PHτoi,di if Ji is an HV. During the pickup and

the service time, vehicle Ji is marked as unavailable. That is, from ti to ti + τliJi ,oi
+ τoi,di ,

vehicle Ji is unavailable and cannot be matched with any other requests. After completing

the service, vehicle Ji will become available and wait for the next requests at node di. Let si

denote whether request i is successfully served (i.e. si = 1 if request i is not canceled, and

si = 0 if request i is canceled or there are no vehicles available at time ti).

Relocation Without relocation, most drivers would end up in the same area given enough

simulation time, potentially leading to large driver imbalances in the city. To prevent this,

we consider a simple relocation policy that relocates vehicles after a period of time. Each

vehicle has an exponential clock (with a mean of 2 hours). Once the clock’s time is up,

and the vehicle is idle, the vehicle is (instantaneously) relocated to a zone that is sampled

according to the demand distribution. That is, the probability of choosing the zone is its

hourly trips divided by the total hourly trips in the city, and, therefore, vehicles are more

likely to reposition to high-demand locations (Afèche et al., 2023). Then the vehicle will be

relocated to one of the nodes within the zone which is uniformly selected at random. After

relocation, a new clock is generated, and the vehicle will restart its work.

Metrics Computation The above steps are summarized in Algorithm 5. The inputs are

the number of AVs, the number of HVs, the base price rates, and the adjustments. The

outputs may include any metrics we want to comprehend, such as profit, average ETA,
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service levels, and average earnings of HVs. In particular, the profit is the total revenue

from serving requests minus the earnings of HVs and the operational cost of AVs.

profit =
106∑

i=1

siτoi,di [(PA,i − cA)1Ji is an AV + (1− γ)PH,i1Ji is a HV]

where 1Ji is an AV and 1Ji is an HV are indicator functions. The other important metrics are

listed below:

overall average ETA = (
∑106

i=1 τliJi ,oi
)/106

average ETA in zone k = (
∑106

i=1 τliJi ,oi
1z(oi)=k)/(

∑106

i=1 1z(oi)=k)

overall service level = (
∑106

i=1 si)/10
6

service level in zone k = (
∑106

i=1 si1z(oi)=k)/(
∑106

i=1 1z(oi)=k)

average earning of HVs (per hour per vehicle) = (γ
∑106

i=1 siτoi,diPH,i1Ji is a HV)/(NHt106)

utilization rate of AVs (HVs) = (
∑106

i=1 siτoi,di1Ji is and AV (HV))/(t106)

B.3.2.3 Find the equilibrium ÑH

Recall that human vehicles are assumed to be strategic and join the market by gauging their

earning rate against a reserved earning. As a result, the average earning of HVs should be

equal to this reserved earning at equilibrium:

r =
γ
∑106

i=1 siτoi,diPH,i1Ji is a HV

ÑHt106
(B.34)

where ÑH is the number of HVs at equilibrium.

Given NA and the price rates, we need to find ÑH in the simulation. To this end, we select

several candidates of ÑH , run Algorithm 5 for each candidate, and record the average earning

of HVs. We then use a linear interpolation method to find ÑH such that Equation (B.34) is

satisfied. We summarize this step in Algorithm 6.

The candidates set of ÑH in this study is {100, 3000, 6000, 9000, 12000, 15000} whose

range is big enough to make sure there exists a valid ÑH satisfying the wage equilibrium.
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Algorithm 5 The core steps of the simulation model

1: Input: NA, NH , PA,base, PH,base, δA, δH

2: Output: Desired metrics such as profit, ETA, service levels, etc.

3: Initialization: Randomly select vehicles’ initial locations from the nodes, and generate each

vehicle’s working hours from an exponential distribution.

4: for i = 1, 2, . . . , 106 do

5: Compute the price rates: Pt,i = Pt,base + δt(2× 1di is in Manhattan − 1) t ∈ {A,H}.
6: for j = 1, 2, . . . , NA +NH do

7: if j is available then

8: Compute the utility:

Ui,j = [a0 + θ1j is an AV − (PA,i1j is an AV + PH,i1j is an HV)]τoi,di + a1τlij ,oi

9: end if

10: end for

11: if there are at least one vehicle j at time ti that is available and Ui,j ≥ 0 then

12: The customer chooses vehicle Ji with the highest utility Ji =

argmaxj is available and Ui,j ≥ 0 Ui,j .

13: Vehicle Ji is dispatched and unavailable from time ti to ti + τliJi ,oi
+ τoi,di .

14: The platform earns a profit and si = 1.

15: The location of vehicle Ji at time ti + τliJi ,oi
+ τoi,di becomes di.

16: else the customer cancels the trip and si = 0.

17: end if

18: for j = 1, 2, . . . , NA +NH do

19: if j is available and stays for more than its exponential clock then

20: Vehicle j is relocated. Its starting point is randomly selected according to the hourly

trips of each zone, and its new clock is generated from an exponential distribution.

21: end if

22: end for

23: end for
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Algorithm 6 Find the equilibrium

1: Input: NA, PA,base, PH,base, δA, δH , and a candidate set of ÑH

2: Output: ÑH

3: for each NH in the candidate set do

4: run Algorithm 5

5: record the average earning of HVs

6: end for

7: Construct a function that maps NH to the average earning of HVs by using linear inter-

polation.

8: Find ÑH by a root-finding algorithm (e.g. The bisection method) such that:

r =
γ
∑106

i=1 siτoi,diPH,i1Ji is a HV

ÑHt106

B.3.2.4 Find the best price parameters

The final step is to find the best price parameters (i.e., the best base price rates and the

best adjustments). As mentioned above, four parameters need to be optimized - the base

price rates PA,base and PH,base, and the adjustments δA and δH . To find the best parameters,

we compare the profits with different parameter candidates. This step is summarized in

Algorithm 7.

In the baseline setting described in Section 3.6.1.1 and Section 3.6.1.2, the candidate

set of PA,base and PH,base is {72, 73, 74, 75, 76, 77, 78}, and the candidate set of δA and δH is

{−1.0,−0.5, 0.0, 0.5, 1.0, 1.5, 2.0}. Note that the candidate sets are adjusted in the different

settings in Section 3.6.3 to make sure that we can observe the profit will be lower if the

parameters are too high or too low.

For different choices of NA, we repeated the entire experiment 5 times and took the

average of all the results. The values of NA we test in this study are {0, 2000, 4000, 6000,
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Algorithm 7 Find the best parameters

1: Input: NA and the candidate sets of price parameters.

2: Output: the best base price rates PA,base and PH,base, and the best adjustments δA and

δH .

3: for each PA,base, PH,base, δA, δH in the candidate sets do

4: run Algorithm 6 to find the corresponding equilibrium ÑH .

5: run Algorithm 5 with ÑH and record the profit at equilibrium.

6: end for

7: Find the best parameters with the highest profit at equilibrium.

8000, 10000, 12000}. Notice that in all the simulation results in this study, the zones with

average hourly trips less than 0.2 are removed as outliers. The data points in these zones

are so few that their noise is large. As a result, four zones are removed.

B.3.2.5 Alternative relocation method for HVs

In reality, HVs may be more strategic and have their own way to relocate themselves and

maximize their earnings. To test our results in such a situation, we apply the method

introduced by Braverman et al. (2019) and solve the linear programming (LP) problem in

their lemma 1 to find the relocation destinations of HVs. Notice that this method requires

much more computational time than our simple relocation method explained above since

there are multiple linear programming problems to be solved during the simulation. So we

only test it as a robustness check rather than apply it in the baseline model (see Section 3.6.3).

Similar to the original relocation method, each vehicle still has an exponential clock

(with a mean of 2 hours). Once the clock’s time is up, and the vehicle is idle, the vehicle is

(instantaneously) relocated to a zone. However, in this alternative relocation method, the

destination zone is not sampled according to the demand distribution. Specifically, instead

of sampling a zone according to the demand distribution, we sample a zone according to
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the solution of the LP problem (i.e., the empty-car routing policy Q defined in Braverman

et al. (2019)). This policy Q is a matrix where an element Qij represents the transition

probability for an HV in zone i to be relocated to zone j. In addition, to construct the LP

problem, we need to find the demand rates for HVs and the average travel time of demand

for HVs. This is challenging in our setting because the demand rates and the average travel

time of demand for HVs are exogenously given in Braverman et al. (2019), but these are

endogenously determined in our simulation. To this end, after every 2 hours (simulation

time), we count the number of trips served by HVs from zone i to zone j and compute the

average travel time of the trips served by HVs from zone i to zone j, for any i, j. We then

use them as the demand rates and the travel time to solve the LP problem. The solution

Q is used as the empty-HV relocation policy during the next two-hour time window. In

other words, at the beginning of each two-hour period, we use the simulated data from the

last period to solve the LP problem and update the relocation policy for HVs in the current

period. Whenever an HV needs to be relocated in the current period, we sample a zone

according to the relocation policy Q; and then the HV will be randomly relocated to one of

the nodes within this zone.

B.4 Auxiliary Simulation Results

This section discusses some auxiliary results from our simulation study.

B.4.1 More results in robustness check (see Section 3.6.3)

Figures B.3 to B.14 present more detailed curves and maps about service levels in different

settings, which are omitted in the robustness check in Section 3.6.3.
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(a) Service level. (b) Service level degradation if

8,000 AVs are introduced.

Figure B.3: Robustness check: θ = 60

(a) Service level. (b) Service level degradation if

8,000 AVs are introduced.

Figure B.4: Robustness check: θ = 10
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(a) Service level. (b) Service level degradation if

8,000 AVs are introduced.

Figure B.5: Robustness check: θ = −20

(a) Service level. (b) Service level degradation if

8,000 AVs are introduced.

Figure B.6: Robustness check: θ = −40
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(a) Service level. (b) Service level increases when

8,000 AVs are introduced.

Figure B.7: Robustness check: θ = −60

(a) Service level. (b) Service level degradation if

8,000 AVs are introduced.

Figure B.8: Robustness check: cA = 10
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(a) Service level. (b) Service level degradation if

8,000 AVs are introduced.

Figure B.9: Robustness check: cA = 40

(a) Service level. (b) Service level increases when

8,000 AVs are introduced.

Figure B.10: Robustness check: cA = 60
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(a) Service level. (b) Service level degradation if

8,000 AVs are introduced.

Figure B.11: Robustness check: γ = 60%

(a) Service level. (b) Service level increases when

8,000 AVs are introduced.

Figure B.12: Robustness check: γ = 50%
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(a) Service level. (b) Service level degradation if

8,000 AVs are introduced.

Figure B.13: Robustness check: Relocation of HVs by Braverman et al. (2019).

(a) Service level. (b) Service level degradation if

8,000 AVs are introduced.

Figure B.14: Robustness check: the degradation of service levels when we use the dataset

for the morning rush hour (7 AM - 9 AM) during the workdays in January 2020.
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B.4.2 Optimality of Prioritizing AVs

To show the optimality of prioritizing AVs, we report the utilization of vehicles (cf., Fig-

ure B.15) and the best price parameters (cf., Figure B.16 and Figure B.17) obtained from

our experiment with the baseline setting. As we can see the utilization of AV is much larger

than the utilization of HVs, meaning that it is optimal to prioritize AVs.6 The is consistent

with the implication from price rates, as we can see that the best price rates for AVs are

lower than the best price rates for HVs. In addition, Figure B.17 shows that the best price

adjustment of AVs is also lower than the best price adjustment of HVs. This means the

platform is encouraging customers to choose AVs when their destination is in Manhattan so

that more AVs can be allocated in high-demand areas.

(a) The utilization rate of AVs. (b) The utilization rate of HVs.

Figure B.15: The utilization rate of vehicles.

6Notice that the utilization of HVs when NA = 0 is close to 60% which aligns with our purpose when
setting the reserved earning of HVs, r. See Appendix B.3.1.
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(a) The best base price rate of AVs PA,base. (b) The best base price rate of HVs PH,base.

Figure B.16: The best base price rates in our experiment with the baseline setting.

(a) The best adjustment of AVs δA. (b) The best adjustment of HVs δH .

Figure B.17: The best price adjustments in our experiment with the baseline setting.
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APPENDIX C

Supply Prioritization in Hybrid Marketplaces

C.1 Proofs for Section 4.2

Proof. Proof of Lemma 3. We start from Problem (4.3):

max
RP ,RF ,NF

RP + (1− γ)RF − CPNP

s.t. rNF = γRF

(RP , RF ) ∈ AR(NP , NF )

Using the definition of AR(NP , NF ), this is equivalent to:

max
RP ,RF ,NF ,π∈Π

RP + (1− γ)RF − CPNP

s.t. rNF = γRF

RP = Rπ
P (NP , NF )

RF = Rπ
F (NP , NF )

We can simplify this problem as RF and RF are fixed given NF and π:

max
NF ,π∈Π

Rπ
P (NP , NF ) + (1− γ)Rπ

F (NP , NF )− CPNP

s.t. rNF = γRπ
F (NP , NF )

(C.1)

We can see that any solution π of Problem (2’) must be feasible in the above Problem

(C.1), since NF ∈ Eπ(NP , γ) =⇒ rNF = γRπ
F (NP , NF ). On the other hand, any solution
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π,NF of Problem (C.1) must be feasible in Problem (4.2), because rNF = γRπ
F (NP , NF ) =⇒

NF ∈ Eπ(NP , γ).

C.2 Proofs for Section 4.3

Proof. Proof of Lemma 4. Suppose there exists R̃F feasible for Problem (4.4) that satisfies

equal treatment and that leads to a positive number of flexible supply hours denoted by ÑF .

And because of feasibility, we have that rÑF = γR̃F . Because of equal treatment, we have

that there exists RP such that (RP , R̃F ) ∈ AR(NP , ÑF ) and RP ÑF = R̃FNP . The total

revenue associated to this equal treatment solution can be no more than the maximal revenue

of an equal treatment solution which by Assumption 1 and Assumption 2 is R(NP + ÑF ).

That is, we must have that RP + R̃F ⩽ R(NP + ÑF ). However, note that

RP + R̃F = R̃F
NP

ÑF

+ R̃F =
r

γ
ÑF

NP

ÑF

+
r

γ
ÑF =

r

γ
(ÑF +NP ).

Since ÑF > 0, we obtain the desired conclusion.

Conversely, suppose that there exists N > NP such that rN ⩽ γR(N). Because there

exists M > 0 such that ∀N ⩾ 0, R(N) ⩽ M , we have limN→∞R(N)/N = 0. Therefore,

with the continuity of R(·), we can always find N̂ ⩾ N such that rN̂ = γR(N̂) by the

intermediate value theorem. Then, since r
γ
N̂ = R(N̂) ∈ AR(N̂), we can use Assumption 2

for NP and ÑF = N̂ −NP > 0 to find (RP , R̃F ) ∈ AR(NP , ÑF ) such that

RP + R̃F =
r

γ
N̂ and RP ÑF = R̃FNP .

Replacing RP from the second expression into the first expression above, and using that

ÑF + NP = N̂ yields that R̃F = r
γ
ÑF . In turn, R̃F is feasible for Problem (4.10) and

compatible with an equal treatment policy with positive flexible supply hours.
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Proof. Proof of Proposition 12. In the following proof, we first show that when Ñ > NP ,

Problem (4.4) is equivalent to Problem (C.2), then derive the result from Problem (C.2).

By Definition 2, Lemma 4, and Ñ > NP , Problem (4.4) can be rewritten as:

max
NF>0,RP ,RF

RP + (1− γ)RF − CPNP

s.t. (RP , RF ) ∈ AR(NP , NF )

γRF = rNF

NPRF = NFRP

As NF > 0, the two last constraints are equivalent to RP = NPRF/NF and RF = rNF/γ.

The problem is therefore equivalent to:

max
NF>0

rNP/γ + (1− γ)rNF/γ − CPNP

s.t. r/γ(NP , NF ) ∈ AR(NP , NF )

Reorganizing the objective, this is the same as:

max
NF>0

rNP + (1− γ)r(NF +NP )/γ − CPNP

s.t. r/γ(NP , NF ) ∈ AR(NP , NF )

With the change of variable N = NP +NF and using Assumption 1 and Assumption 2, this

is equivalent to:

max
N>NP

rNP + (1− γ)rN/γ − CPNP

s.t. rN/γ ∈ AR(N)

Suppose N̂ is the optimal solution of the above problem. As γ < 1, the coefficient of N̂ in

the objective is positive, therefore it is optimal to have N̂ = max{N | rN/γ ∈ AR(N)}. This
implies that rN̂/γ ⩽ R(N̂). Suppose that rN̂/γ < R(N̂). Then, R(N̂) − rN̂/γ > 0 and

n→ R(n)−rn/γ is continuous in n, since R(·) is continuous. Also, R(n)−rn/γ goes to −∞
when n → +∞, as sup(R(N)) is bounded. Therefore, by the intermediate value theorem,
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there exists N ′ > N̂ such that R(N ′) − rN ′/γ = 0, which contradicts the definition of N̂ .

We conclude that we must have rN̂/γ = R(N̂) and therefore our problem is equivalent to:

max
N>NP

(1− γ)R(N) + (r − CP )NP

s.t. rN = γR(N)

(C.2)

Note that the constraint N > NP is not necessary since we already assumed Ñ > NP , and

Ñ is the optimal solution.

To conclude, when NP < Ñ , the solution of Problem (C.2) is always Ñ and independent

of NP . Therefore, NE
F = Ñ − NP > 0. By Definition 2 and the equilibrium, we must have

RE
P = rNP/γ and RE

F = rNE
F /γ = R(Ñ)−RE

P .

And when NP ⩾ Ñ , we know NE
F = 0 as a result of Lemma 4. This implies that

the optimal solution has to maximize the revenue of private supply given NP , so we have

RE
P = R(NP ). Notice that RE

P = R(NP ), N
E
F = 0 must be an equal treatment solution

(i.e. R(NP )/NP ⩽ r/γ). Otherwise, if R(NP )/NP > r/γ, since R(N) is continuous and

limN→∞R(N) < ∞, there exists N > NP such that R(N)/N = r/γ by the intermediate

value theorem, which contradicts the definition of Ñ .

Proof. Proof of Theorem 6. Let (NE
P , N

E
F , R

E
P , R

E
F ) denote an optimal solution of Problem

(4.5). Suppose this equal treatment solution has hybrid supply (i.e. NE
P > 0 and NE

F > 0).

Notice that NE
P has to be less than Ñ by Lemma 4. We want to show that there exists a

private-supply-only solution which has a higher or equal profit than this solution.

When γ ∈ [0, 1), the result follows from Proposition 12. By Proposition 12, we have

NE
P < Ñ , NE

F = Ñ − NE
P , and its profit must be equal to (1 − γ)R(Ñ) + (r − CP )N

E
P .

Thus, depending on the difference between r and CP , we have a single-type solution with a

profit that is not less than (1− γ)R(Ñ) + (r−CP )N
E
P . Specifically, if r ⩽ CP , we can reset

NE
P = 0, NE

F = Ñ , and the profit will be increased to (1 − γ)R(Ñ); and if r > CP , we can

reset NE
P = Ñ , NE

F = 0, and the profit will be increased to (1− γ)R(Ñ) + (r − CP )Ñ .
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When γ ⩾ 1, due to Definition 2, if NE
P > 0, NE

F > 0, we have RE
P = rNE

P /γ. Thus,

RE
P + (1− γ)RE

F − CPN
E
P

= (
r

γ
− CP )N

E
P + (1− γ)RE

F

⩽ (
r

γ
− CP )N

E
P because γ ⩾ 1

If r
γ
< CP , it means any profit of an equal treatment solution with hybrid supply is negative.

In this case, the firm could simply shut down and reset NE
P = NE

F = 0 to have a higher

profit.

Suppose r
γ
> CP , then because NE

P < Ñ ,

(
r

γ
− CP )N

E
P ⩽ (

r

γ
− CP )Ñ

This means that we only need to show (NP = Ñ , RP = rÑ/γ,RF = NF = 0) is a feasible

equal treatment solution. Because rÑ/γ = R(Ñ), (rÑ/γ, 0) ∈ AR(Ñ , 0) by Assump-

tion 1, it satisfies the definition of equal treatment in Definition 2. Thus, (NP = Ñ , RP =

rÑ/γ,RF = NF = 0) is an equal treatment solution with private supply only and leads to a

higher profit than (NE
P , N

E
F , R

E
P , R

E
F ).

Hence, there exists a single-supply solution whose profit is higher than or equal to any

equal treatment solution with hybrid supply.

Proof. Proof of Lemma 5.

Let (R′
P , R

′
F , γ

′, N ′
F ) be an optimal solution of Problem (4.6), there exists a feasible

solution of Problem (4.7):

R̂P = R′
P , R̂F = R′

F , N̂F = N ′
F

such that Problem (4.6) and Problem (4.7) have the same objective value.

On the other hand, let (R̂P , R̂F , N̂F ) to be an optimal solution of Problem (4.7).

If R̂F > 0 and N̂F > 0, or R̂F = N̂F = 0, then there exists a feasible solution of Problem
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(4.6):

R′
P = R̂P , R

′
F = R̂F , N

′
F = N̂F , γ

′ =





rN̂F

R̂F
N̂F > 0, R̂F > 0

0 N̂F = 0

such that Problem (4.7) and Problem (4.6) have the same objective value.

Suppose N̂F > 0 but R̂F = 0. we know that there exists R̂ ∈ AR(NP + NF ) such that

R̂ = R̂P due to Assumption 1. Also, by Assumption 2, there exists (R̃P , R̃F ) ∈ ET (NP , N̂F )

such that R̃P + R̃F = R̂ = R̂P . This means (R̃P , R̃F , N̂F ) is also an optimal solution of

Problem (4.7). By Definition 2, since N̂F > 0, (R̃P , R̃F ) ∈ ET (NP , N̂F ) implies either

NP = 0 or R̃P/NP = R̃F/N̂F , but only the latter case with R̃P > 0 is true. If NP = 0 or

R̃P = 0, then the optimal value of Problem (4.7) would be −rN̂F < 0, which is impossible

since N̂F = 0 is always feasible and the objective value can be increased to 0. Therefore, we

must have NP > 0 and R̃P > 0. This implies R̃F > 0. Thus, (R̃P , R̃F , N̂F ) is also optimal

with R̃F > 0 for Problem (4.7), then we can construct a feasible solution of Problem (4.6):

R′
P = R̂P , R

′
F = R̂F , N

′
F = N̂F , γ

′ =
rN̂F

R̃F

such that Problem (4.7) and Problem (4.6) have the same objective value. We conclude that

Problem (4.7) and Problem (4.6) are equivalent.

Proof. Proof of Theorem 7.

Let (N⋆
F , R

⋆
P , R

⋆
F ) be an optimal solution of Problem (4.7). Let N ′

F = N⋆
F . By As-

sumption 1 and Assumption 2, we know that there exists R′
P , R

′
F such that (R′

P , R
′
F ) ∈

ET (NP , N
′
F ) and R

′
P +R′

F = R⋆
P +R⋆

F . In addition, we can simply set

γ′ =





rN ′
F

R′
F

N ′
F > 0

0 N ′
F = 0

Note that if N ′
F > 0 we must have R′

F > 0, otherwise, we would have R′
P = 0 by Definition 2.

This means R⋆
P +R⋆

F = R′
P +R′

F = 0 and the objective value of (N⋆
F , R

⋆) in Problem (4.7) is
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negative and lower than the objective value of (NF = 0, RF = 0) which is 0. This contradicts

the optimality of (N⋆
F , R

⋆
P , R

⋆
F ) for Problem (4.7).

Thus, (R′
P , R

′
F , N

′
F , γ

′) is feasible in Problem (4.6), and its objective value is equal to the

optimal value of Problem (4.6) by Lemma 5. Hence, (R′
P , R

′
F , N

′
F , γ

′) is an optimal solution

of Problem (4.6).

Proof. Proof of Corollary 2. We prove the cases CP < r and CP > r separately. In fact,

the case with CP < r does not require γ to be variable, so we will relax this condition when

proving the first part with CP < r.

Suppose that CP < r. For any γ, let (R′
P , R

′
F , N

′
P , N

′
F ) be an optimal solution of Problem

(C.3) (by assuming γ is fixed):

max
RP ,RF ,NP ,NF

RP + (1− γ)RF − CPNP

s.t. rNF = γRF

(RP , RF ) ∈ AR(NP , NF )

(C.3)

We want to show N ′
F = 0. For the sake of contradiction, suppose N ′

F > 0 hence γR′
F > 0.

From this, we build another feasible solution (R⋆
P , R

⋆
F , N

⋆
P , N

⋆
F ) that yields a larger objective.

Let N⋆
P = N ′

P +N ′
F and N⋆

F = 0, note that since (R′
P , R

′
F ) ∈ AR(N ′

P , N
′
F ) by Assumption 1

we have that

R′
P +R′

F ∈ AR(N ′
P +N ′

F ) = AR(N⋆
P ),

and, therefore, using Assumption 1, we can find (R⋆
P , R

⋆
F ) ∈ AR(N⋆

P , 0) with R⋆
P + R⋆

F =

R′
P + R′

F and R⋆
F = 0. Note the solution (R⋆

P , R
⋆
F , N

⋆
P , N

⋆
F ) also satisfies the equilibrium

condition with N⋆
F = 0. For the objective we have the following:

R⋆
P +R⋆

F − CPN
⋆
P − γR⋆

F = R′
P +R′

F − CP (N
′
P + γR′

F/r)

> R′
P +R′

F − CPN
′
P − γR′

F ,
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where in the first equality we used that N ′
F = γR′

F and in the inequality we used that CP < r

and that γR′
F > 0. The latter contradicts the optimality of (R′

P , R
′
F , N

′
P , N

′
F ). Notice that

the above demonstration is valid for any possible value of γ including the case when γ is

optimally chosen.

For the second case suppose that CP > r. Additionally, assume that we can optimize

over γ. Let (R′
P , R

′
F , N

′
P , N

′
F , γ

′) to be an optimal solution to Problem (4.8), and let N ′
F be

such that rN ′
F = γ′R′

F . For the sake of contradiction, assume that N ′
P > 0. Define N⋆

P = 0

and N⋆
F = N ′

P + N ′
F . Since R′

P + R′
F ∈ AR(N ′

P + N ′
F ), then by Assumption 1, there exist

(R⋆
P , R

⋆
F ) ∈ AR(0, N⋆

F ) with R
⋆
F = R′

P +R′
F and R⋆

P = 0. Next we use (R⋆
P , R

⋆
F , N

⋆
P , N

⋆
F ) to

build a feasible solution. Let γ⋆ be defined by

γ⋆ =
rN⋆

F

R⋆
F

. (C.4)

Note that R′
P + R′

F > 0, otherwise, the objective value of (R′
P , R

′
F , N

′
P , N

′
F , γ

′) would be

−CPN
′
P < 0, which is not optimal since we can always choose N ′

P = N ′
F = 0. Also,

N⋆
F satisfies the equilibrium condition because γ⋆R⋆

F = r(N ′
P + N ′

F ) = rN⋆
F . Hence,

(R⋆
P , R

⋆
F , N

⋆
P , N

⋆
F , γ

⋆) is a feasible solution to Problem (4.8). This solution also achieves

a higher objective value:

R⋆
P + (1− γ⋆)R⋆

F − CPN
⋆
P = R′

P +R′
F − r(N ′

P +N ′
F )

> R′
P +R′

F − CPN
′
P − rN ′

F

= R′
P +R′

F − CPN
′
P − γ′R′

F

= R′
P + (1− γ′)R′

F − CPN
′
P ,

where the strict inequality comes from CP > r and N ′
P > 0. This contradicts the assumption

that (R′
P , R

′
F , N

′
P , N

′
F , γ

′) is optimal. Hence, we should have N ′
P = 0 in this case.
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C.3 Proofs for Section 4.4.

Proof. Proof of Proposition 13. Let (R⋆
P , R

⋆
F , N

⋆
F ) be an optimal solution of Problem (4.3).

Since γR⋆
F = rN⋆

F and (R⋆
P , R

⋆
F ) ∈ AR(NP , N

⋆
F ), we have (R⋆

P , R
⋆
F ) ∈ AR(NP , γR

⋆
F/r).

Thus, (γR⋆
F/r,R

⋆
F ) ∈ D and R⋆

F is feasible in Problem (4.10). In addition, we must have

R⋆
P = RP (N

⋆
F , R

⋆
F ), otherwise, we can always find another RP > R⋆

P such that RP , N
⋆
F , R

⋆
F

is feasible in Problem (4.3) and produces an strictly higher objective value.

On the other hand, suppose R′
F is an optimal solution of Problem (4.10). Let N ′

F =

γR′
F/r, R

′
P = RP (γR

′
F/r,R

′
F ). Clearly, rN ′

F = γR′
F and (R′

P , R
′
F ) ∈ AR(NP , N

′
F ), so

(R′
F , N

′
F , R

′
P ) is feasible in Problem (4.3). Therefore, Problem (4.3) is equivalent to Problem

(4.10).

The other results in this section require the following auxiliary lemma.

Lemma 26 (Properties of the optimal equal treatment solution). Suppose Assumption 1

and Assumption 2 hold. Then, the private supply revenue of the optimal equal treatment

solution is the maximum private supply revenue given the flexible supply hours and the

flexible supply revenue:

RE
P = RP (N

E
F , R

E
F ).

This identity implies that the optimal equal treatment profit is Profit(RE
F ).

Proof. Proof of Lemma 26.

1. If NP ⩾ Ñ : Proposition 12 implies RE
P = R(NP ) = RP (0, 0).
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2. If NP < Ñ : consider the following sequence of equivalent definitions of R(NP +NF )

R(NP +NF ) = maxAR(NP +NF )

= max
(RP ,RF )∈AR(NP ,NF )

RP +RF by Assumption 1

= max
RF | (NF ,RF )∈D

RF +

(
max

RP | (RP ,RF )∈AR(NP ,NF )
RP

)

= max
RF | (NF ,RF )∈D

RF +RP (NF , RF )

(C.5)

From Proposition 12, we know that RE
P +RE

F = R(Ñ) = R(NP +NE
F ). Therefore, the

equivalence above implies that we must have RE
P = RP (NF , R

E
F ).

Proof. Proof of Proposition 14. Suppose (RP , RF , NF ) is an optimal solution of Problem

(4.3).

• If RF < RE
F : because the optimal equal treatment solution is feasible in Problem (4.10),

Profit(RF ) must be not less than Profit(RE
F ). Since Profit(RF ) = RP + (1 − γ)RF −

CPNP ,

RP + (1− γ)RF − CPNP ⩾ RE
P + (1− γ)RE

F − CPNP

=⇒ RP + (1− γ)RF ⩾ RE
P + (1− γ)RE

F

=⇒ RP −RE
P ⩾ (1− γ)(RE

F −RF ) > 0 since γ ∈ (0, 1) and RF < RE
F

this implies RP > RE
P and NP > 0.

By Proposition 12, RE
P = rNP/γ if NP < Ñ , and RE

P = R(NP ) if NP ⩾ Ñ . This

means RP > rNP/γ or RP > R(NP ), but the latter is impossible by the definition of

R(·). Thus, we must have RP > rNP/γ. And because NF = γRF/r, we either have

NF = RF = 0, or NF > 0 and RF/NF = r/γ. Therefore, (RP , RF , NF ) must be a

private supply prioritization solution.
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• If RF > RE
F : then NF > NE

F ⩾ 0 and NF +NP > NP +NE
F = Ñ .

For the sake of contradiction, suppose RPNF ⩾ RFNP . Because of the equilibrium,

R(NP +NF )/(NP +NF ) ⩾ (RP +RF )/(NP +NF ) ⩾ r/γ

Since R(N) is continuous, and ∃M > 0, limN→∞R(N) ⩽M , by the intermediate value

theorem, there exists N ′ ⩾ (NP +NF ) > (NP +NE
F ) = Ñ such that R(N ′)/N ′ = r/γ.

However, this contradicts the definition of Ñ . Thus, we must have RPNF < RFNP .

And this implies that (RP , RF , NF ) is a flexible supply prioritization solution.

• If RF = RE
F : then NF = NE

F = γRE
F /r. And, by Lemma 26, we have RP (N

E
F , R

E
F ) =

RE
P . Thus, Proposition 13 implies that the optimal solution must satisfy RF =

RE
F , NF = NE

F and RP = RE
P , which is exactly the optimal equal treatment solu-

tion.

Proof. Proof of Theorem 8. Step 1. [differentiating the profit]:

Because RP is differentiable at (NE
F , R

E
F ), we can compute the following derivative:

dprofit

dRF

(RE
F ) =

d
(
RF → RP (γRF/r,RF )

)

dRF

(RE
F ) + (1− γ)

=
γ

r

∂RP

∂NF

(γRE
F /r,R

E
F ) +

∂RP

∂RF

(γRE
F /r,R

E
F ) + (1− γ)

=
γ

r

∂RP

∂NF

(NE
F , R

E
F ) +

∂RP

∂RF

(NE
F , R

E
F ) + (1− γ) since γRE

F = rNE
F

where profit(RF ) is defined in Proposition 13.

Step 2. [Small Prioritization is without loss of revenue]:

Because NE
F > 0 by Assumption 3, we have NP < Ñ . Proposition 12 gives us RE

P +RE
F =

R(NP + NE
F ) = R(Ñ). And using the optimization problem equivalency at the end of the

proof of Lemma 26 (i.e. Equation (C.5)), we have:

RE
F ∈ argmax

RF | (NE
F ,RF )∈D

RF +RP (N
E
F , RF )
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Therefore, as (NE
F , R

E
F ) is in the interior of D and as RP (·, ·) is differentiable on this point,

the derivative in RF of the above optimization problem must be 0 on RF = RE
F :

d
(
RF → RF +RP (N

E
F , RF )

)

dRF

(RE
F ) = 0

⇐⇒ 1 +
∂RP

∂RF

(NE
F , R

E
F ) = 0

Therefore, we have ∂RP

∂RF
(NE

F , R
E
F ) = −1. Intuitively, this means that with constant total

supply, we can slightly prioritize private agents or flexible agents without modifying the

total revenue. Indeed, adding one dollar of revenue to flexible agents would remove one

dollar of revenue to private agents.

Step 3. [an interpretable expression for ∂RP

∂NF
(NE

F , R
E
F )]:

We define the following function γ(·):

γ(NF ) =
r · (NP +NF )

R(NP +NF )

Intuitively, γ(NF ) represents the commission rate that would be needed to have NF flexibly

supply hours in a revenue-maximizing (equal treatment) solution. Indeed, R(NP + NF ) is

the maximum revenue achievable with NF flexibly supply hours, and we have the flexible

supply equilibrium γ(NF )R(NP +NF ) = r(NP +NF ).

As R(·) is differentiable in Ñ , γ(·) is also differentiable at NF = NE
F (Recall Ñ = NP+N

E
F

by Proposition 12). We also have γ(NE
F ) = γ, as R(Ñ) = r

γ
Ñ .

Following the identity (C.5) from the proof of Lemma 26, we know that if RF (NF ) is the

revenue of flexible supply corresponding to the total revenue R(NP + NF ), then we must

have:

R(NP +NF ) = RF (NF ) +RP (NF , RF (NF )) (C.6)

That is, the corresponding private agent revenue will be given by RP (NF , RF (NF )).

Now, using Assumption 2, we know that R(NP +NF ) is always achievable with an equal

treatment policy for any NF , which means that for any NF > 0, there exists RF (NF ) such
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that:
RF (NF )

NF

=
RP (NF , RF (NF ))

NP

=
RF (NF ) +RP (NF , RF (NF ))

NF +NP

=
R(NP +NF )

NF +NP

=
r

γ(NF )

Therefore, we can use the identity RF (NF ) = rNF/γ(NF ) in Equation (C.6) and we obtain:

R(NP +NF ) =
rNF

γ(NF )
+RP

(
NF ,

rNF

γ(NF )

)

Therefore, we can take the derivative with respect to NF and we obtain:

dR

dN
(Ñ) =

dR

dN
(NP +NE

F )

= r ·
d
(
NF → NF

γ(NF )

)

dNF

(NE
F ) +

∂RP

∂NF

(NE
F , R

E
F ) + r ·

d
(
NF → NF

γ(NF )

)

dNF

(NE
F )
∂RP

∂RF

(NE
F , R

E
F )

=
∂RP

∂NF

(NE
F , R

E
F ) because

∂RP

∂RF

(NE
F , R

E
F ) = −1 by step 2.

Step 4. [Combining the previous results]

Using the previous results, we obtain immediately:

dprofit

dRF

(RE
F ) =

γ

r

∂RP

∂NF

(NE
F , R

E
F ) +

∂RP

∂RF

(NE
F , R

E
F ) + (1− γ)

=
γ

r

∂RP

∂NF

(NE
F , R

E
F )− 1 + (1− γ) since

∂RP

∂RF

(NE
F , R

E
F ) = −1 by step 2.

=
γ

r

dR

dN
(Ñ)− γ since

dR

dN
(Ñ) =

∂RP

∂NF

(NE
F , R

E
F ) by step 3.

= γ

(
1

r

dR

dN
(Ñ)− 1

)

Step 5. [Prioritization]

• Suppose that dR
dN

(Ñ) < r and therefore we implement a policy with RF = RE
F + dRF

with dRF < 0 to increase profit. We also use the notation NF + dNF to denote the
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new number of available hours of flexible supply, and RE
P + dRP for the new private

agent revenue. Then, we can apply Definition 2 and the flexible supply equilibrium,

so private agents are prioritized if and only if NP r/γ < RE
P + dRP . And because

RE
P = NP r/γ

NP
r

γ
< RE

P + dRP ⇐⇒ dRP > 0

Note that the profit increase is dRP + (1− γ)dRF , therefore if dRF < 0 and the profit

is increased, we must have dRP > 0, which implies that private agents are prioritized.

• Now suppose that dR
dN

(Ñ) > r and the firm increases RF to increase profit, i.e. RF =

RE
F + dRF with dRF > 0. Following the same reasoning as the previous point, we need

to prove that dRP < 0 to show that flexible agents are prioritized.

For the sake of contradiction, suppose dRP ⩾ 0. Then, since RE
P = NP r/γ,

RE
P + dRP ⩾ NP

r

γ

And because of the flexible supply equilibrium, RE
F+dRF = r(NE

F +dNF )/γ. Therefore,

R(NP +NE
F + dNF ) ⩾ RE

P + dRP +RE
F + dRF ⩾ r

γ
(NP +NE

F + dNF )

=⇒ R(NP +NE
F + dNF )

NP +NE
F + dNF

⩾ r

γ

=⇒ R(Ñ + dNF )

Ñ + dNF

⩾ r

γ
since NP +NE

F = Ñ

To conclude, note that N → R(N)/N is continuous and goes to 0 when N → ∞.

Thus, by the intermediate value theorem, there exists N ′ ⩾ Ñ + dNF > Ñ such that

R(N ′) = rN ′/γ. This contradicts the definition of Ñ . Hence, we must have dRP < 0

and therefore flexible agents are prioritized.

Proof. Proof of Theorem 9. Let ∆N ⩾ −Ñ , because R(N) is strictly concave, we have

R(Ñ +∆N) < R(Ñ) +R
′
(Ñ)∆N
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For any ∆N > 0, if R
′
(Ñ) ⩽ r, we have

R(Ñ +∆N)−R(Ñ) < R
′
(Ñ)∆N ⩽ r∆N (C.7)

This means if we increase the supply from Ñ to Ñ + ∆N , the addition in the maximum

revenue is less than r∆N .

Similarly, for any −Ñ ⩽ ∆N < 0, if R
′
(Ñ) ⩾ r,

R(Ñ)−R(Ñ +∆N) > −R′
(Ñ)∆N ⩾ −r∆N (C.8)

This means if we decrease the supply from Ñ to Ñ +∆N , the loss in the maximum revenue

is more than −r∆N .

Now, consider (RP , RF , N
E
F + ∆N) as an optimal solution of Problem (4.3). Compared

with the optimal equal treatment solution, the difference in profit should be

∆Profit = RP −RE
P + (1− γ)(RF −RE

F ) = RP +RF − (RE
P +RE

F )− r∆N

Because we assume NE
F > 0 by Assumption 3 and Proposition 12 shows RE

P + RE
F = R(Ñ),

then we have

∆Profit = RP +RF −R(Ñ)− r∆N ⩽ R(Ñ +∆N)−R(Ñ)− r∆N

Combined with the conclusion in the beginning, if R
′
(Ñ) ⩽ r and ∆N > 0, then

∆Profit < 0 by Inequality (C.7). And if R
′
(Ñ) ⩾ r and −Ñ ⩽ ∆N < 0, then ∆Profit < 0

by Inequality (C.8). Since we assume (RP , RF , N
E
F + ∆N) is optimal, this means that if

R
′
(Ñ) < r, we must have ∆N ⩽ 0; and if R

′
(Ñ) > r, we must have ∆N ⩾ 0; and if

R
′
(Ñ) = r, we must have ∆N = 0.

Hence, if R
′
(Ñ) = r, then ∆N = 0 and RF = RE

F . And by Proposition 14, any optimal

policy must be an equal treatment policy.

If R
′
(Ñ) < r, then ∆N ⩽ 0. And by Theorem 8, there exists a private supply prioriti-

zation policy that has a higher profit than any equal treatment solution, so we must have
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∆N < 0 and RF < RE
F . Thus, by Proposition 14, any optimal policy must be a private

supply prioritization policy.

If R
′
(Ñ) > r, then ∆N ⩾ 0. And by Theorem 8, there exists a flexible supply prioriti-

zation policy that has a higher profit than any equal treatment solution, so we must have

∆N > 0 and RF > RE
F . Thus, by Proposition 14, any optimal policy must be a flexible

supply prioritization policy.

Proof. Proof of Proposition 15. As shown in Lemma 5, (R⋆
P , R

⋆
F , N

⋆
F ) is also an optimal

solution of Problem (4.7). And in Problem (4.7), we can see that given N⋆
F , it is optimal to

maximize the revenue, so Ñ⋆ = NP +N⋆
F must be also an optimal solution of

max
N⩾NP

R(N)− r(N −NP )

where we change the variable N = NP +NF .

Suppose that N⋆
F > 0, and R(·) is strictly concave. Therefore, 0 must belong to the

subderivative of this objective at N = Ñ⋆, and the derivative of the objective at N = Ñ is

dR
dN

(Ñ)− r. Thus, the strict concavity implies that:

N⋆
F < NE

F ⇐⇒ dR

dN
(Ñ) < r

and

N⋆
F > NE

F ⇐⇒ dR

dN
(Ñ) > r

Notice that dR
dN

(Ñ) = dR
dN

(NP +NE
F ) by Assumption 3 and Proposition 12.

In addition, if N⋆
F = 0, it means any increase in N from NP will lead to a lower profit,

so we must have N⋆
F < NE

F and

dR

dN
(NP +NE

F ) =
dR

dN
(Ñ) < r

Moreover, in the proof Theorem 8 and Theorem 9, we have seen that if R
′
(Ñ) < r, then

the profit can be improved by a negative deviation of total supply (i.e. ∆N < 0) from Ñ ;
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and if R
′
(Ñ) > r, then the profit can be improved a positive deviation of total supply (i.e.

∆N > 0) from Ñ .

In the following, we look into the consequences of the prioritization on revenue. To this

end, we introduce the notation

revenue(RF ) ≜ RP (γRF/r,RF ) +RF ,

which corresponds to the revenue of the profit-maximizing policy given RF . We combine

Proposition 19 and Theorem 8 to determine the effect of prioritization.

Proposition 19 (Change in Revenue). We have,

drevenue

dRF

(RE
F ) =

γ

r
R

′
(Ñ).

And therefore,

drevenue

dProfit
(RE

F ) =

(
1− r

R
′
(Ñ)

)−1

.

Proof. Proof of Proposition 19. Because revenue(RF ) = RP (γRF/r,RF ) + RF , we have

revenue(RF ) = profit(RF )+γRF . Thus, by step 1 in the proof of Theorem 8, we can obtain:

drevenue

dRF

(RE
F ) =

γ

r

∂RP

∂NF

(NE
F , R

E
F ) +

∂RP

∂RF

(NE
F , R

E
F ) + 1

And from step 4 in the proof of Theorem 8, we can get:

drevenue

dRF

(RE
F ) =

γ

r

dR

dN
(Ñ)

Thus, we have:

drevenue

dprofit
(RE

F ) =
drevenue
dRF

(RE
F )

dprofit
dRF

(RE
F )

=
1

1− r
dR
dN

(Ñ)
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C.4 Proofs for Section 4.5.

Proof. Proof of Proposition 16 Notice that in the proof of Corollary 2, we show that for

any γ, if the optimal solution has NF > 0, we can always find another feasible solution that

produces a higher objective value with NF = 0. Thus, the proof here is exactly the same

with the proof in Corollary 2.

To prove Theorem 10, we need the following auxiliary lemma. Given α and NP , let

Nα
F (NP ) to denote the optimal number of available hours of flexible supply that maximizes

the profit in equilibrium. In other words, Nα
F (NP ) is the optimal solution of the following

Problem (C.9):

max
RF ,NF

(1− γ)RF

s.t. rNF = γRF ,

RP = αrNP/γ

(RP , RF ) ∈ AR(NP , NF ).

(C.9)

Notice that Nα
F (0) = Ñ .

Lemma 27 (Change of Flexible Supply). Suppose Assumption 1 holds. Given a well-defined

α and βα at NP = 0, the gradient of the optimal solution of Problem (C.9) with respect to

NP can be expressed as:

∂Nα
F

∂NP

(0) = −
(
1 +

(α− 1) + γβα
0

1− γR
′
(Ñ)/r

)
(C.10)

Proof. Proof of Lemma 27 Given a well-defined α verifying Definition 4, the maximum

revenue which flexible supply may receive is:

R(NP +NF )− αrNP/γ − βα(NP , NF )rNP
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With the flexible supply equilibrium, we define:

Fα(NP , NF ) ≜ R(NP +NF )− αrNP/γ − βα(NP , NF )rNP − rNF/γ

Basically, Fα(NP , NF ) is the difference between the maximum revenue of flexibly supply and

the in-equilibrium revenue of flexibly supply, given NP , NF and α. Now, in order to use

the implicit differentiation and derive
∂Nα

F

∂NP
at NP = 0, we need to show Nα

F (NP ) satisfies

Fα(NP , N
α
F (NP )) = 0 in a neighborhood of NP = 0. First, by Definition 4, let U ×V denote

a neighborhood of point (0, Ñ) in which βα(NP , NF ) is continuous, so Fα(NP , NF ) is also

continuous in U × V . Then, the rest of the proof is in the following steps.

Step 1. [∀N > Ñ, Fα(0, N) < 0]

By definition, βα(NP , N)rNP = ∆Rα(NP , NF ) and ∆Rα(0, N) = 0 by Assumption 1, so

we have

Fα(0, N) = R(N)− rN/γ

For the sake of contradiction, if N > Ñ but Fα(0, N) ⩾ 0, it means R(N) − rN/γ ⩾ 0 so

that R(N)/N ⩾ r/γ. However, because R(N) is continuous and limN→∞R(N) < ∞, there

would exist N ′ ⩾ N > Ñ such that R(N)/N = r/γ. This contradicts the definition of Ñ .

Therefore, we must have ∀N > Ñ, Fα(0, N) < 0.

Step 2. [∃N < Ñ and N ∈ V, Fα(0, N) > 0]

Since we assume R
′
(Ñ) < r/γ, by the definition of derivative, we can pick an ϵ ∈

(0, r/γ −R
′
(Ñ)), there exists δ > 0 such that

−δ < h < 0 =⇒ R(Ñ + h)−R(Ñ)

h
−R

′
(Ñ) < ϵ
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This implies

R(Ñ + h)−R(Ñ)

h
< ϵ+R

′
(Ñ)

=⇒ R(Ñ + h)−R(Ñ)

h
<
r

γ
because ϵ < r/γ −R

′
(Ñ)

=⇒ R(Ñ + h)−R(Ñ) >
r

γ
h because h < 0

=⇒ R(Ñ + h) >
r

γ
(Ñ + h) because γR(Ñ) = rÑ

=⇒ R(N) >
r

γ
N let N = Ñ + h

Hence, we can choose N ∈ (Ñ−δ, Ñ)∩V such that R(N) > rN/γ and therefore, Fα(0, N) >

0.

Step 3. [Construct a neighborhood of NP = 0 such that Fα(NP , N
α
F (NP )) = 0]

In the following, we want to construct a neighborhood Ũ × Ṽ ⊂ U × V of point (0, Ñ)

such that for any NP ∈ Ũ , Nα
F (NP ) must reside in Ṽ and justify Fα(NP , N

α
F (NP )) = 0 by

the intermediate value theorem.

1. Because Ñ is an interior point of V , there exists ξ > 0 such that (0, Ñ + ξ) ∈ U × V .

By Step 1, we know Fα(0, Ñ + ξ) < 0. Because Fα(NP , NF ) is continuous at point

(0, Ñ + ξ), then ∀ϵ > 0, there exists δ > 0 such that NP < δ =⇒ |Fα(NP , Ñ + ξ) −
Fα(0, Ñ + ξ)| < ϵ. Pick an ϵ ∈ (0,−Fα(0, Ñ + ξ)), there exists δ > 0 such that

NP < δ =⇒ Fα(0, Ñ + ξ)− ϵ < F α(NP , Ñ + ξ) < Fα(0, Ñ + ξ) + ϵ < 0

Notice that Fα(0, Ñ + ξ) + ϵ < 0 is due to ϵ < −Fα(0, Ñ + ξ). Thus, this means

NP < δ =⇒ Fα(NP , Ñ + ξ) < 0

2. By Step 2, we can choose a ν > 0 such that Ñ − ν ∈ V and Fα(0, Ñ − ν) > 0. Then,

we can repeat a similar logic as the above. Because Fα(NP , NF ) is continuous at point

(0, Ñ − ν), then ∀ϵ > 0, there exists θ > 0 such that NP < θ =⇒ |Fα(NP , Ñ − ν)−
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Fα(0, Ñ − ν)| < ϵ. Pick an ϵ ∈ (0, Fα(0, Ñ − ν)), there exists θ > 0 such that

NP < θ =⇒ 0 < Fα(0, Ñ − ν)− ϵ < Fα(NP , Ñ − ν) < Fα(0, Ñ − ν) + ϵ

Notice that Fα(0, Ñ − ν)− ϵ > 0 is due to ϵ < Fα(0, Ñ − ν). Thus, this means

NP < θ =⇒ Fα(NP , Ñ − ν) > 0

3. Let µ = supN⩾Ñ+ξ F
α(0, N). We first show µ < 0. Because we assumed ∃M > 0

such that limN→∞R(N) < M , this means Fα(0, N) → −∞ as N → ∞. That is, for

K < 0, there exists N ′ > 0 such that ∀N > N ′, Fα(0, N) < K. If N ′ < Ñ + ξ, then

µ ⩽ K < 0. If N ′ ⩾ Ñ + ξ, then [Ñ + ξ,N ′] is compact, and we know Fα(0, N) is

continuous, so there exists k ∈ [Ñ + ξ,N ′] such that ∀N ∈ [Ñ + ξ,N ′], Fα(0, N) ⩽

Fα(0, k). And because ∀N > Ñ, Fα(0, N) < 0 by Step 1, Fα(0, k) < 0. This implies

µ ⩽ max{K,Fα(0, k)} < 0. Therefore, µ < 0.

Then we want to show R(N) is uniformly continuous. Let L ≜ limN→∞R(N) which

is finite by our assumption. For any ϵ > 0, there exists N ′ > 0 such that ∀N > N ′,

|R(N) − L| < ϵ/2. Because R(N) is continuous and [0, N ′ + 1] is compact, R(N)

is uniformly continuous on [0, N ′ + 1]. This implies that there exists δ > 0 such

that ∀n,m ∈ [0, N ′ + 1], |n − m| < min{δ, 1} =⇒ |R(n) − R(m)| < ϵ. Now,

for any n,m ⩾ 0, |n − m| < min{δ, 1}, they are either in [0, N ′ + 1] or (N ′,∞), if

n,m ∈ [0, N ′ + 1], we know |R(n) − R(m)| < ϵ; whereas if n,m ∈ (N ′,∞), we have

|R(n)−R(m)| ⩽ |R(n)−L|+|L−R(m)| < ϵ/2+ϵ/2 = ϵ. Therefore, R(N) is uniformly

continuous on [0,∞).

The uniform continuity of R(N) implies that we can choose ϕ ∈ (0,−µ), there exists

ψ > 0 such that NP < ψ =⇒ ∀NF ⩾ 0, |R(NF +NP )−R(NF )| < ϕ. Therefore,

Fα(NP , NF )− Fα(0, NF ) = R(NP +NF )− αrNP/γ − βα(NP , NF )rNP −R(NF )

⩽ R(NP +NF )−R(NF ) < ϕ
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This follows that NP < ψ =⇒ ∀N ⩾ Ñ+ξ, Fα(NP , N) < Fα(0, N)+ϕ. And because

ϕ ∈ (0,−µ), we finally get

NP < ψ =⇒ ∀N ⩾ Ñ + ξ, Fα(NP , N) < 0

4. Let ω ≜ min{δ, θ, ψ}, Ũ ≜ [0, ω) ∩ U and Ṽ ≜ [Ñ − ν, Ñ + ξ] ∩ V . And because

Ñ − ν, Ñ + ξ ∈ V , the final neighborhood of (0, Ñ) that we want to construct is

Ũ = [0, ω) ∩ U, Ṽ = [Ñ − ν, Ñ + ξ]

Notice that (0, Ñ) ∈ Ũ × Ṽ .

Step 4. [Verify Fα(NP , N
α
F (NP )) = 0 for NP ∈ Ũ .]

Let NP ∈ Ũ , we first want to show there exists N ′
F ∈ Ṽ such that Fα(NP , N

′
F ) = 0. It

follows showing Nα
F (NP ) ∈ Ṽ . And we will finally get Fα(NP , N

α
F (NP )) = 0.

First, because Fα(NP , Ñ + ξ) < 0, Fα(NP , Ñ − ν) > 0, and Fα(NP , NF ) is continuous in

Ũ × Ṽ , by the intermediate value theorem, there exists N ′
F ∈ Ṽ such that Fα(NP , N

′
F ) = 0.

This means N ′
F is a feasible solution of Problem (C.9) and N ′

F ⩽ Nα
F (NP ).

Second, to see Nα
F (NP ) ∈ Ṽ , we first notice that any N < Ñ − ν cannot be Nα

F (NP ),

because we have shown there exists a feasible solution for N ∈ Ṽ in the above. Therefore,

we only need to check whether the point NF > Ñ + ξ may be feasible in Problem (C.9). In

fact, because ∀N ⩾ Ñ + ξ, Fα(NP , N) < 0, it means that the maximum revenue of flexible

supply is always less than the equilibrium. That is, if N ⩾ Ñ+ξ, then ∀RF , (αrNP/γ,RF ) ∈
AR(NP , N), RF < rN/γ. Thus, any NF > Ñ + ξ cannot be feasible in Problem (C.9).

The above two points indicate Nα
F (NP ) ∈ Ṽ . Now, for the sake of contradiction, sup-

pose Fα(NP , N
α
F (NP )) ̸= 0. Since we know there exists an achievable RF such that RF =

rNα
F (NP )/γ, it implies Fα(NP , N

α
F (NP )) > 0. Because Fα(NP , Ñ + ξ) < 0 and Fα(NP , NF )

is continuous in Ũ×Ṽ , by the intermediate value theorem, there exists N ′
F ∈ (Nα

F (NP ), Ñ+ξ)

such that Fα(NP , N
′
F ) = 0. This means N ′

F is feasible in Problem (C.9) and N ′
F > Nα

F (NP ),

which contradicts the assumption that Nα
F (NP ) is the optimal solution of Problem (C.9).
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Hence, we conclude that Fα(NP , N
α
F (NP )) = 0 for NP ∈ Ũ .

Step 5. [Compute
∂Nα

F

∂NP
(NP = 0).]

Now we are able to apply the implicit differentiation, by Definition 4, we can compute

the partial derivative of Fα(NP , NF ) at (0, Ñ):

∂Fα

∂NP

(NP , NF ) = R
′
(NP +NF )− α

r

γ
− βα(NP , NF )r −

∂βα

∂NP

(NP , NF )rNP

∂Fα

∂NF

(NP , NF ) = R
′
(NP +NF )−

r

γ
− ∂βα

∂NF

(NP , NF )rNP

At NP = 0, because Nα
F (0) = Ñ for any feasible α,

∂Fα

∂NP

(0, Nα
F (0)) =

∂Fα

∂NP

(0, Ñ) = R
′
(Ñ)− α

r

γ
− βα

0 r

∂Fα

∂NF

(0, Nα
F (0)) =

∂Fα

∂NF

(0, Ñ) = R
′
(Ñ)− r

γ

Notice that ∂Fα

∂NF
(0, Ñ) ̸= 0, since R

′
(Ñ) ̸= r/γ by Definition 4.

Then, the derivative
∂Nα

F

∂NP
(0) can be computed as:

∂Nα
F

∂NP

(0) = −∂F
α/∂NP

∂Fα/∂NF

(0, Ñ)

Hence, we can finally get:

∂Nα
F

∂NP

(0) =
αr/γ + βα

0 r −R
′
(Ñ)

R
′
(Ñ)− r/γ

=
(α− 1)r/γ + rβα

0

R
′
(Ñ)− r/γ

− 1 = −
(
1 +

(α− 1) + γβα
0

1− γR
′
(Ñ)/r

)

Proof. Proof of Theorem 10 We know the profit is RP + (1 − γ)RF − CPNP . Given NP

and α, RP = αrNP/γ, and with the flexible supply equilibrium, the optimal RF is equal to

rNα
F (NP )/γ, where N

α
F (NP ) is defined in Problem (C.9). Therefore, the optimal profit in

equilibrium can be expressed as:

profit(NP ) = α
r

γ
NP + (1− γ)

r

γ
Nα

F (NP )− CPNP
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By taking the derivative with respect to NP and applying Lemma 27, we have:

dprofit

dNP

(NP = 0) = α
r

γ
− (1− γ)

r

γ
·
(
1 +

(α− 1) + γβα
0

1− γR
′
(Ñ)/r

)
− CP

=

(
α
r

γ
− CP

)
− (1− γ)

r

γ
·
(
1 +

(α− 1) + γβα
0

1− γR
′
(Ñ)/r

)

Notice that it is optimal to introduce private supply into the market with the level of prior-

itization α if and only if the above derivative is non-negative,

dprofit

dNP

(NP = 0) =

(
α
r

γ
− CP

)
− (1− γ)

r

γ
·
(
1 +

(α− 1) + γβα
0

1− γR
′
(Ñ)/r

)
⩾ 0

Rearrange the above inequality to get Inequality (4.15),:

(
α
r

γ
− CP

)
− (1− γ)

r

γ
·
(
1 +

(α− 1) + γβα
0

1− γR
′
(Ñ)/r

)
⩾ 0

⇐⇒ α

γ
− 1− γ

γ
·
(
1 +

(α− 1) + γβα
0

1− γR
′
(Ñ)/r

)
⩾ CP

r

⇐⇒ α− 1

γ
− 1− γ

γ
· (α− 1) + γβα

0

1− γR
′
(Ñ)/r

⩾ CP

r
− 1

⇐⇒ (α− 1)(1− γR
′
(Ñ)/r)− (1− γ)[(α− 1) + γβα

0 ]

γ(1− γR
′
(Ñ)/r)

⩾ CP

r
− 1

⇐⇒ (α− 1)(1− γR
′
(Ñ)/r − 1 + γ) + (1− γ)γβα

0

γ(1− γR
′
(Ñ)/r)

⩾ CP

r
− 1

⇐⇒ (α− 1)(1−R
′
(Ñ)/r)− (1− γ)βα

0

1− γR
′
(Ñ)/r

⩾ CP

r
− 1

⇐⇒ (α− 1)(1−R
′
(Ñ)/r)

1− γR
′
(Ñ)/r

⩾ (1− γ)βα
0

1− γR
′
(Ñ)/r

+
CP

r
− 1

Proof. Proof of Theorem 11 In this proof, we present an example to show the possibility

that a prioritization policy with hybrid is optimal when CP > r. Suppose R(·) is increasing,
strictly concave and differentiable, then the optimal number of available hours in a private-
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supply-only market can be given by:

N⋆
P = argmax

NP⩾0
R(NP )− CPNP

And assume CP is not larger than R
′
(0), so N⋆

P verifies the first order condition: R
′
(N⋆

P ) =

CP .

Let γ =
rN⋆

P

R(N⋆
P )
. Since R(N⋆

P )− CPN
⋆
P ⩾ 0 and CP > r, we must have γ ∈ (0, 1).

We want to show that in this case, (1) the optimal flexible-supply-only solution has a

higher profit than any private-supply-only solution; (2) it is possible that a hybrid-supply

solution has a higher profit than the optimal flexible-supply-only solution.

1. Recall that the optimal profit with flexible supply only is given by:

max
NF⩾0

R(NF )− rNF s.t. γR(NF ) = rNF

Since γ =
rN⋆

P

R(N⋆
P )
, NF = N⋆

P is a feasible solution of the above problem with the objective

equal to R(N⋆
P ) − rN⋆

P , which is larger than R(N⋆
P ) − CPN

⋆
P . Therefore, the optimal

profit with flexible supply only is larger than the optimal profit with private supply

only.

2. Now suppose that βα
0 = 0 for any feasible α (e.g. in a queueing model), by Inequality

(4.16), we need

(α− 1)
1−R

′
(Ñ)/r

1− γR
′
(Ñ)/r

⩾ CP

r
− 1

And because R(N) is strictly concave and R(N⋆
P )/N

⋆
P = r/γ, then for any N > N⋆

P ,
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R(N)/N < r/γ. This implies Ñ = N⋆
P . And we know R

′
(N⋆

P ) = CP , so

(α− 1)
1−R

′
(Ñ)/r

1− γR
′
(Ñ)/r

⩾ CP

r
− 1

⇐⇒ (α− 1)
1−R

′
(N⋆

P )/r

1− γR
′
(N⋆

P )/r
⩾ CP

r
− 1

⇐⇒ (α− 1)
1− CP/r

1− γCP/r
⩾ CP

r
− 1

⇐⇒ (α− 1)(1− CP/r) ⩾ (
CP

r
− 1)(1− γCP/r)

Notice that since R(·) is strictly concave, CP = R
′
(N⋆

P ) = R
′
(Ñ) < R(Ñ)/Ñ = r/γ,

which implies 1− γCP/r > 0.

Additionally, because CP > r,

(α− 1)(1− CP/r) ⩾ (
CP

r
− 1)(1− γCP )/r) ⇐⇒ α ⩽ γCP

r

Note that since CP < r/γ, we have α < 1, which is consistent with what we conclude

in Section 4.5

Hence, in this case, a hybrid-supply prioritization policy is optimal if we are able to set the

level of prioritization to be less than γCP/r. By the definition of α, this means we need to

set the average revenue of private supply to be less than or equal to CP (i.e. RP < CPNP ).

An example of α ⩽ CP is to fully prioritize flexible supply such that the revenue of flexible

supply is not reduced (i.e. RF ⩾ R(Ñ)). Then, the revenue of private supply must satisfy

RP ⩽ R(Ñ +NP )−R(Ñ). Because R
′
(Ñ) = CP and R(·) is strictly concave, we have

R(Ñ +NP )−R(Ñ) < CPNP =⇒ RP < CPNP

To complete the proof, we provide a more concrete example with a queueing model to

explain how the above specifications are achievable. Consider a queue of servers waiting

for the requests. The arrivals of servers and requests are independent and follow some

distribution (e.g. an M/M/1 queque). Once a request arrives, it will be matched with the
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first available server in the queue (i.e. on a first-come-first-serve basis). If there are no servers

available, the request is lost. Once a server is successfully matched with a request, they will

leave the system, and a reward will be given. Therefore, the total maximum revenue (i.e.

R(·)) depends on the departure rate, which further relies on the average number of servers

in the system. In addition, because the more servers are in the system, the longer expected

waiting time we have, so the marginal revenue is diminishing with respect to the total number

of servers. Thus, R(·) is increasing, strictly concave, and differentiable in this scenario.

Now, suppose there are two types of servers: private servers and flexible servers, which act

as private agents and flexible agents (i.e. there exists CP , r, γ and the equilibrium constraint

in the system). The average number of servers of each type (i.e. NP and NF ) is constant.

The requests are indifferent between the types of servers, and the reward is independent of

the type of the matched server, so Assumption 1 and Assumption 2 hold in this case.

For simplicity, the firm is only able to choose to either equally treat two types of the

servers or prioritize some servers. If the firm chooses to equally treat them, then the queue

is running as the above, whereas if the firm chooses to prioritize some servers, it can move

one of the servers in the queue to the first position. The prioritization may be random (e.g.

only select a part of private servers randomly), so the level of prioritization relies on how

often we prioritize a server. For instance, if we always move all the private servers in the

queue to the front of the line, α is maximized, whereas if we always move all the flexible

servers in the queue to the front of the line, α is minimized. Because the arrival of the

requests is independent of the servers, any prioritization will not affect the total revenue (i.e.

βα
0 = 0).

Hence, we can see that this concrete example satisfies all the assumptions. Moreover,

when we fully prioritize the flexible servers, the revenue of the flexible servers will be unaf-

fected by any introduction of the private servers (i.e. RF = R(Ñ)), and the private servers

will take the remaining revenue (i.e. RP = R(Ñ + NP ) − R(Ñ)), so it is feasible to set

RP/NP ⩽ CP when R
′
(Ñ) = CP as what we discuss above.
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C.5 A Geometrical View

We provide a geometrical interpretation of the achievable revenues set and how the symmetry

and the equal treatment assumptions (Assumption 1 and Assumption 2) shape its structure.

This geometrical interpretation will lead us to a natural reformulation of Problem (4.3) in

Proposition 13.

To fix ideas, let us consider AR(N) = [0,
√
N ], that is, in a single-type setting with

N supply hours available a firm can garner at most
√
N total revenue. We now see the

implications of this for the geometry of the achievable revenues set AR(NP , NF ) in a two-

type setting. Consider Figure C.1 (a), when NF = 0 (there is only private supply) the firm’s

achievable revenues coincide with what can be achieved in a single-type setting with NP

supply hours available. This is shown by the red-thick line in Figure C.1 (a). Consider next

the more general case when NF > 0. By our symmetry assumption (c.f., Assumption 1),

the achievable revenue pairs must be such that their total revenue coincides with what can

be achieved in a single-type system with NP + NF supply hours. In the latter system, the

achievable total revenue varies from 0 to
√
NP +NF . The blue region in Figure C.1 (a),

corresponds to the achievable revenues in a two-type system. In accordance with symmetry,

this region includes pairs (RP , RF ) that add up to any total revenue in [0,
√
NP +NF ]. For

example, AR(NP , NF ) is tangent to the line RP −√
NP +NF (dashed line (1) in the figure),

that is,
√
NP +NF is achieved once; additionally, this set intersect at several points with

the line RP −√
NP (dashed line (2) in the figure) so that there are various ways of achieving

a total revenue of
√
NP . Consequently, our symmetry assumption can be interpreted as

AR(NP , NF ) having non-empty intersection (only) with all lines such that RP + RF ⩽
√
NP +NF .

Let us consider now Assumption 2 about equal treatment policies. We depict pairs of
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revenue that satisfy equal treatment revenue in Figure C.1 (a) by the black line with slope

NF/NP (for the case NF > 0). The assumption requires that any revenue in [0,
√
NP +NF ]

that is achievable in a single-type setting can also be achieved by an equal treatment policy

in the two-type setting. In Figure C.1 (a), this means that the intersection of the equal

treatment line with any line of the form RP + RF = R for R ⩽
√
NP +NF lies inside the

blue region, AR(NP , NF ). Additionally, note that a pair (RP , RF ) that lies below the equal

treatment line prioritizes private supply, while a pair that lies above the equal treatment line

prioritizes flexible supply.

RP

RF

(1)

(2)

√
NP +NF

Equal treatment line

RF = RP
NF

NP

√
NP

√
NF

AR(NP , NF )

AR(NP , 0)

F is prioritized

P is prioritized

RP

RF

√
NP

√
NP +NF

√
NP +N ′

F

√
N ′

F

√
NF

RP

AR(NP , NF )

AR(NP , N
′
F )

NF ⩽ N ′
F

(a) (b)

Figure C.1: Geometrical representation of achievable revenues set. We consider AR(N) =

[0,
√
N ] and a quadratic boundary for the sets AR(NP , NF ).

We can use this representation to gain a better understating of Problem (4.3). In Fig-

ure C.1 (b), we can see that for different flexible supply hours (different values of NF ) there

is a corresponding set of achievable revenues. Once we fix the flexible supply hours, it is

possible to identify the optimal private supply revenue for a given flexible supply revenue.

In the example of Figure C.1 (b), given flexible supply NF (blue set) and for a fixed flexible

supply revenue RF =
√
NF , we define RP to be the largest possible achievable private sup-

ply revenue, as shown in the figure. This provides insights on how to solve Problem (4.3):

for every pair (NF , RF ) we can find an optimal private supply revenue by moving horizon-
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tally until we hit the boundary of AR(NP , NF ). However, we cannot do this for every pair

(NF , RF ). Consider again Figure C.1 (b), for the pair (NF ,
√
NF ) there exists at least one

RP (e.g., RP ) such that (RP , RF ) ∈ AR(NP , NF ). But for the pair (NF ,
√
N ′

F ) there is no

such RP because RF =
√
N ′

F is too large for the supply NF and cannot be achieved with

the the total supply hours available, NP + NF . We could, nevertheless, increase NF to N ′
F

to be able to find a value of RP such that (RP , RF ) is achievable.

At an intuitive level, when solving Problem (4.3), the firm will always want the highest

possible value of RP given NF , RF and, therefore, will always choose a policy that guarantees

RP = RP (NF , RF ). Once this choice is made, the firm must optimize over the feasible pairs

of (NF , RF ) in D. However, the firm must also take into account the equilibrium condition.

In Figure C.2 (a), we depict the domain of the maximal private supply revenue function,

D, together with the equilibrium condition. For a given flexible supply revenue R̃F the

firm can choose a single value of flexible supply hours ÑF which is consistent with the

equilibrium condition. That is, the intersection of the domain, D, with the equilibrium

condition, γRF = rNF , represent the space where the firm optimizes. In turn, we have

transformed the firm’s problem into a one-dimensional optimization problem in which we

can optimize over the flexible supply revenue (the y-axis in Figure C.2 (a)). This discussion

motivates Proposition 13.

Proposition 13 provides a simple characterization of the firm’s problem as a one dimen-

sional optimization problem. We can simply analyze changes in RF which translate into

movement along the equilibrium line. The latter also yields a change in NF and, in turn,

implies a change in the maximal private supply revenue function, RP (NF , RF ). This ulti-

mately changes the firm’s total profit, Profit(·). If there is profitable deviation around the

optimal equal treatment policy that leads to a solution above or below the equal treatment

line (see Figure C.2 (b)), then prioritization will naturally emerge.
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NF

RF
Equilibrium line

RF = NF
r
γ

ÑF

R̃F

D

RP

RF

R(NP + ÑF )

Equal treatment line

RF = RP
ÑF

NP

R̃F
(A) optimal equal

treatment

AR(NP , ÑF )

(a) (b)

Figure C.2: (a) Domain of the maximal private supply revenue function and equilibrium

line. (b) Achievable revenue set of (ÑF , R̃F ).

C.6 Asymmetric supply

In Assumption 1, we assume supply agents are symmetric and have a similar performance in

terms of the capability of acquiring revenues. For instance, a worker in a factory may have

a similar work efficiency no matter whether it is a contractor or an employee. On the other

hand, the symmetry assumption is also a simplification due to the fact of the complexity of

comparing efficiencies. For the example of ride-hailing, riders may indeed be reluctant to use

autonomous vehicles (AVs), and autonomous vehicles may be limited in some areas of a city

so that the efficiency of AVs is negatively impacted on the demand side. However, on the

supply side, it is also possible that the operation of AVs may be more efficient than human-

driven vehicles (HVs) because of their automation. Mart́ınez-Dı́az and Soriguera (2018)

point out AVs would lead to efficient traffic if a cooperative environment is built. Compared

with human-driven vehicles, AVs may react faster and communicate more smoothly with

the infrastructure, the cloud servers, and other vehicles. These different influences might

cancel each other out, so the net effect on their efficiency is uncertain. Nevertheless, in this

section, we discuss a method to extend our results to the case in which the supply agents
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are asymmetric and have different efficiencies.

If the flexible supply and private supply are asymmetric, it means that they have different

capabilities to achieve revenues, and the achievable revenues depend on the composition of

the supply. With the same available hours, private supply may be able to earn higher or

lower revenue than flexible supply. In other words, if private supply is more efficient than

flexible supply, it means private supply can earn more revenue per unit of time. For example,

ceteris paribus, an AV may earn more revenue per hour than an HV, because it is able to

react faster and serves more customers per hour without needing any break. If we compare

an AV with 10 HVs, however, the AV might be defeated as the revenue earned by these 10

HVs would be higher; and if we compare an AV with 5 HVs, the result might be a tie. In this

sense, we can say the efficiency of an AV is equal to the efficiency of 5 HVs. This provides

another way to build the relationship of the revenues between different mixes of supply. In

Assumption 1, we assume the two types of supply are interchangeable and have the same

efficiency so that a private agent is equivalent to a flexible agent. If the two types of supply

are not interchangeable, we can consider that a private agent is equivalent to η > 0 number

of flexible agents. In other words, the revenue that can be achieved by a private agent also

can be achieved by η flexible agents. This motivates us to extend Assumption 1 as:

Assumption 4 (Asymmetry of supply types). With a ratio η > 0, the feasible total revenues

which can be achieved by a two-type policy can also be achieved by a single-type policy with

private supply only, and vice versa:

∀NP , NF ⩾ 0, {RP +RF |(RP , RF ) ∈ AR(NP , NF )} = AR(ηNP +NF )

Note that AR(N) now specifically refers to the set of revenues that is achievable by

flexible supply only.

Here, η can be interpreted as an efficiency ratio between two types of supply agents.

We suppose this η is independent of all other factors, such as the mix of supply and specific

policies. In other words, we assume that each private agent is, ceteris paribus, able to acquire
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the revenue that η flexible agents can make. In particular, if η > 1, private agents are more

efficient and can obtain more per-hour revenue than the same number of flexible agents; if

η < 1, private agents are less efficient and obtain less per-hour revenue than the same number

of flexible agents. Notice that Assumption 1 is a special case of Assumption 4 with η = 1.

We understand that Assumption 4 is still limited and cannot cover all the situations. And in

practice, this efficiency ratio might also vary when the mix of supply is different. For example,

the per-hour revenue earned by an independent AV may be equivalent to what earned by

5 HVs, but the per-hour revenue earned by an AV in a group of AVs may be equivalent to

what earned by 10 HVs, as AVs can communicate with each other and cooperate without

any internal conflict. Nonetheless, Assumption 4 greatly extends Assumption 1 to consider

a possible asymmetry between the types by using a linear comparison for the revenues. The

other forms of asymmetric effects such as a nonlinear relationship (e.g. η is a function of the

mix.) are application specific and vary from case to case. And this limitation does not affect

the insights which we illustrate behind the optimal prioritization and staffing strategy.

Now that Assumption 1 is extended to Assumption 4, we also need to modify the def-

inition of equal treatment and prioritization. Due to the asymmetry, it is not appropriate

to use average hourly revenue to define equal treatment and prioritization. Equal treatment

should mean that the firm is agnostic to the types of supply and treats each agent by the

exactly same policy. In the above paragraph, when we define η, we say that each private

agent is, ceteris paribus, able to acquire the revenue that η flexible agents can make. This

means that with the same policy, the average hourly revenue of each private agent should

be equal to the average hourly revenue of η flexible agents. This motivates us to extend

Definition 2 to the following Definition 6.

Definition 6 (Prioritization and Equal treatment for Asymmetric Supply). With a ratio

η > 0, for NP > 0, we say that (RP , RF ) ∈ AR(NP , NF )
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1. (Prioritizing Flexible Supply.) prioritizes flexible supply if and only if

NF > 0 and
RP

ηNP

<
RF

NF

,

2. (Prioritizing Private Supply.) and that it prioritizes private supply if and only if

NF > 0 and
RP

ηNP

>
RF

NF

, or NF = 0 and
RP

ηNP

>
r

γ
.

In any other case, we say that (RP , RF ) satisfies equal treatment and we use ET (NP , NF ) ⊆
AR(NP , NF ) to denote the set of equal treatment revenue pairs.

When we equally treat the two types of supply agents, the hourly revenues of private

supply is proportional to flexible supply with the ratio η. For instance, a private agent may

complete a request and become available faster than flexible agents, so they are able to obtain

a higher revenue even if we ignore the types of supply. Notice that an equal treatment policy

means the ignorance of types instead of fairness or equal revenue. Accordingly, Assumption 2

also needs to be adapted to Assumption 4 and Definition 6. That is, Assumption 2 becomes:

Assumption 5 (Equal-treatment policies can achieve any feasible revenue). Given any

supply NP ⩾ 0, NF ⩾ 0, any achievable revenue R ∈ AR(ηNP + NF ) is achievable by an

equal treatment policy.

∃ (RP , RF ) ∈ ET (NP , NF ), RP +RF = R.

Validation of all the results with the new assumptions and definition. To see all the results

still hold, we can consider these modifications from another view. The new assumptions and

definition is equivalent to defining N̂P = ηNP and ĈP = CP/η and replacing the original

NP , CP with N̂P , ĈP . Here, we can call N̂P as the equivalent available hour of private supply

and ĈP as the equivalent operation cost of private supply, in the sense that the available

hours of a private agent is computed as how long a flexible agent needs to complete the

same amount of work which can be done by a private agent in NP hours. For instance, in
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an eight-hour working day system, if a private worker can produce 2 products per hour and

a flexible worker can only produce 1 product per hour, the production of a private worker is

equivalent to the production of a flexible worker who works for 16 hours per day. Also, ĈP

is how much we need to pay for a private worker for the amount of work that can be done by

a flexible worker per hour. For example, if the salary for a private worker (i.e. CP ) is $ 10

dollars per hour, and the reserve earning of a flexible worker (i.e. r) is $ 8 dollars per hour,

the operation cost of private supply is actually lower because they have double productivity

than flexible supply. Therefore, we can see that all the results will still be valid, if we replace

NP , CP with N̂P , ĈP everywhere.

Overall, the focus is to extend Assumption 1 and Definition 2 simultaneously and find

a way to describe a relationship of the revenues between the two types of supply. As we

explain above, we know these adjustments are still limited and the efficiency of supply might

not be always comparable by a linear relationship. Nonetheless, we believe the insights we

deliver are valid in most cases. A more complex asymmetric situation is another option for

future study.
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