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ABSTRACT: Lanthanide-doped nanoparticles are an emerg-
ing class of optical sensors, exhibiting sharp emission peaks,
high signal-to-noise ratio, photostability, and a ratiometric
color response to stress. The same centrosymmetric crystal
field environment that allows for high mechanosensitivity in
the cubic-phase (α), however, contributes to low upconver-
sion quantum yield (UCQY). In this work, we engineer
brighter mechanosensitive upconverters using a core−shell
geometry. Sub-25 nm α-NaYF4:Yb,Er cores are shelled with
an optically inert surface passivation layer of ∼4.5 nm
thickness. Using different shell materials, including NaGdF4,
NaYF4, and NaLuF4, we study how compressive to tensile strain influences the nanoparticles’ imaging and sensing properties.
All core−shell nanoparticles exhibit enhanced UCQY, up to 0.14% at 150 W/cm2, which rivals the efficiency of unshelled
hexagonal-phase (β) nanoparticles. Additionally, strain at the core−shell interface can tune mechanosensitivity. In particular, the
compressive Gd shell results in the largest color response from yellow-green to orange or, quantitatively, a change in the red to
green ratio of 12.2 ± 1.2% per GPa. For all samples, the ratiometric readouts are consistent over three pressure cycles from
ambient to 5 GPa. Therefore, heteroepitaxial shelling significantly improves signal brightness without compromising the core’s
mechano-sensing capabilities and further, promotes core−shell cubic-phase nanoparticles as upcoming in vivo and in situ optical
sensors.

KEYWORDS: Heteroepitaxial, core−shell, upconversion, lanthanides, quantum yield, mechanosensitivity

Small optical probes are highly sought after for biological
imaging and sensing applications. Currently, most probes

rely on labeling with dyes and fluorescent proteins or inorganic
options like quantum dots.1 However, these probes typically
suffer from signal instability and high background noise from
excitation in the visible or ultraviolet wavelengths. Upconvert-
ing nanoparticles (UCNPs) are a promising class of optical
probes due to excitation in the near-infrared and subsequent
emission in the visible, tunability, and photostability.2 Typical
hosts are ceramic sodium rare-earth tetrafluoride materials,
which have two main crystal structures: the cubic-phase (α)
and hexagonal-phase (β). While hexagonal-phase nanoparticles
are generally brighter and therefore more well-studied in the
field, an emerging advantage of the cubic-phase nanoparticles is
their optical response to a variety of stimuli,3 including
mechanical forces,4,5 temperature,6−9 and magnetic fields.10

Our group previously demonstrated that UCNPs have a color

response to applied stress quantified by a linear change in the

red to green emission ratio
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zzz. The centrosymmetric crystal

field of the cubic-phase yields high mechanosensitivity that is at
least 2× that of optimized hexagonal-phase nanoparticles.4

Ironically, the high crystal symmetry also contributes to their
low quantum yield (QY), which remains a challenge for
implementing them in material and biological systems.
Shelling is a common technique used to improve the

efficiency of UCNPs by passivating the surface and reducing
surface quenching.11 Surface quenching processes include
nonradiative losses through defects, dangling bonds, ligands,
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and more.12,13 Shells above 4 nm in thickness provide
significant upconversion quantum yield (UCQY) enhancement
of up to 57× on ∼20 nm hexagonal-phase cores at 63 W/
cm2.14 Deciding which type of material to use as a shell is
critical because it directly influences the nanoparticles’ growth,
emission properties, and compatibility to external environ-
ments. Several groups, for example, have used alkaline earth
metal fluoride (e.g., CaF2),

15−17 metallic,18 and silica19 shells to
enhance upconversion efficiency and/or improve biocompat-
ibility. Shell layers can also introduce multimodal imaging
properties beyond luminescence, allowing for applications in
computed tomography (CT) and magnetic resonance imaging
(MRI).20 Meanwhile, Johnson and van Veggel identified the
effect of shelling with a lattice-mismatched material (i.e.,
heteroepitaxial growth) on morphology; they found that
tensile strain led to highly isotropic nanoparticles in contrast
to compressive strain.21 As growth is affected, it is likely that
optical and sensing properties are too. It has been shown that
compressive shells in quantum dots, for example, alter the
conduction and valence band energies, leading to shifts in
emission.22 To date, however, it has not been well-studied how
the range of compressive and tensile strain influences both the
optical and sensing properties in lanthanide core−shell
nanoparticles.
In this work, we investigate the effect of heteroepitaxial

shelling on upconversion emission properties, QY, and
sensitivity to mechanical stress. We synthesize a series of
nanoparticles with strain at the core−shell interface. Specifi-
cally, we utilize NaYF4 as the core’s host material and NaGdF4
and NaLuF4 as materials for compressive and tensile strain in
the shell, respectively. Through effective surface passivation,
the UCQY of sub-25 nm upconverting α-NaYF4:Yb,Er cores
are improved by nearly 2 orders of magnitude. This value is
comparable to those reported for similar-sized unshelled
hexagonal-phase nanoparticles.23 Minimal strain is optimal
for QY and does not alter the inherently high mechanosensi-
tivity of cubic-phase cores. On the other hand, nanoparticles
with compressive shells actually have improved mechanosensi-
tivity and yield a color response from yellow-green to orange
under applied stress. Our core−shell design therefore leverages
the mechano-sensing capabilities of the cubic-phase lattice and
optimizes upconversion efficiency for practical use as an in vivo
or in situ tool.
The schematic in Figure 1a summarizes our study, which

details the effects of an inert α-NaLnF4 (Ln = Gd, Y, or Lu)
shell on an upconverting α-NaYF4 core doped with 18% Yb3+

and 2% Er3+. NaGdF4 has a larger lattice constant and
therefore, must be compressed to fit the Y-based core, while
NaLuF4 experiences tension. Following one-pot colloidal
procedures for cubic-phase nanoparticles,24 we synthesize
∼30 nm core−shell nanoparticles. First, the cores are
synthesized in a large 250 mL flask with 1 mmol Ln3+, so
that all shells are grown on a common core and better
comparisons can be made across core−shell samples. The
cores have average diameters of 23.2 ± 3.5 nm. Transmission
electron micrographs (TEMs) in Figure 1b−d show the
monodispersity of our quasi-spherical core−shell nanoparticles,
which have average diameters of 29.6 ± 2.3 nm (Gd), 32.1 ±
2.3 nm (Y), and 32.2 ± 3.9 nm (Lu). Therefore, shell
thicknesses are ∼4.5 nm, though the inert Gd shell is slightly
smaller at ∼3.2 nm. Gd is typically a more difficult material to
grow on a Y host due to the negative lattice mismatch; even at
just a few nanometers thick, Gd-shelling can yield anisotropy

and polydispersity.21 Lastly, for a control we create a sample in
which the shell is of the same material composition as the core,
α-NaYF4:Yb,Er. This shell is considered optically active due to
the presence of sensitizer Yb3+ and emitter Er3+ ions in the
shell. Additional details on the syntheses, particle size analysis,
and chemical composition are located in the Supporting
Information (SI).
We characterize the structural properties of our nano-

particles using X-ray diffraction (XRD). Figure 2a shows that

Figure 1. Schematic and micrographs of core−shell nanoparticles. (a)
We shell upconverting cores with different materials to study the
effects of compressive and tensile strain at the core−shell interface. In
the presence of a lattice mismatch, we expect the shell to experience
strain in order to conform to the core much like heteroepitaxial thin
film growth. With varied lanthanide ionic radii, we can access
compressive to tensile strain, using an inert Gd shell (orange), an inert
Y shell (teal), and an inert Lu shell (purple). (b−d) TEMs show the
quasi-spherical morphology and monodispersity of synthesized
nanoparticles. Average sizes or diameters are listed in the top right
corner. The scale bar is 50 nm.

Figure 2. Structural characterization and induced strain. (a) X-ray
diffraction peaks for core and core−shell samples, acquired using a Cu
Kα1 source (λ = 1.54056 Å). α-Na0.39Y0.61F2.22 (ICDD 04-019-9099)
serves as the reference structure for shelled nanostructures. (b) A
zoom-in of the (111) diffraction peak shows a shift in the 2θ angle
position, broadening, and asymmetry for strained Gd-shelled (orange)
and Lu-shelled (purple) samples compared to the unstrained Y-
shelled (teal) and Y:Yb,Er-shelled (blue) samples. (c) Effective lattice
parameters of core−shell nanoparticles are consistent with the
differences between the lanthanides’ ionic radii. An inert Gd shell
expands the lattice by 0.7%, whereas a Lu inert shell decreases the
overall lattice by 0.4%. Below, we list the ionic radius of lanthanide
ions from Gd3+ to Lu3+. Per conventions in literature, the negative
(positive) sign indicates compressive (tensile) strain at the shell.
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the diffraction peaks for core and core−shell nanostructures
match cubic-phase materials of space group Fm-3̅m and zinc
blende crystal structure. Changes in the relative intensities of
those peaks indicate a stoichiometric change from core to all
core−shell nanostructures from α-Na0.29Y0.71F1.57 to α-
Na0.39Y0.61F2.22. As a result, we compare the samples relative
to the control sample with the active Y:Yb,Er shell (blue) and
match it to the α-Na0.39Y0.61F2.22 reference, ICDD 04-019-
9099, plotted in gray.
A closer look at individual diffraction peaks reveals evidence

for synthetically induced strain. In Figure 2b, for example, a
zoom-in of the (111) crystallite highlights a peak shift toward
smaller 2θ angles for the Gd-shelled nanoparticles and larger
2θ angles for the Lu-shelled nanoparticles. Smaller 2θ angles
are associated with larger d-spacings, corresponding to Gd3+

having a larger ionic radius compared to Y3+ by 2.9%. The
reverse is true for Lu3+ with a mismatch of 3.6%. In addition,
the asymmetric shape of diffraction peaks for the Gd- and Lu-
shelled nanoparticles likely result from a superposition of
lattice spacings and, therefore, a strain gradient. Such
inhomogeneous strain is not surprising. Analogous to epitaxial
growth in thin films or quantum dots, strain will be greatest in
magnitude at the core−shell interface then decay over at least a
few atomic layers.21,25 Hence, the Gd-shelled sample has a
longer tail toward lower angles, whereas the opposite is true for
the Lu-shelled sample. According to the Lennard-Jones
potential,26,27 there is a smaller energy barrier for tensile strain
to occur compared to compressive strain. Thus, the higher
degrees of asymmetry and broadening detected in Gd-shelled
nanoparticles likely result from the core lattice stretching in
response to the compressive shell. Finally, we Pawley-fit the
diffraction peaks to extract an effective lattice constant (Figure
2c). The inert Y shell, active shell, and core have similar lattice
constants of 5.52, 5.51, and 5.51 Å, respectively. In contrast, an
inert Gd shell increases the lattice constant by 0.7% to 5.55 Å,
whereas an inert Lu shell decreases the parameter by 0.4% to
5.49 Å. For reference, α-Na5Gd9F32 (ICDD 00-027-0698) has
a lattice constant of 5.59 Å, and α-Na5Lu9F32 (ICDD 00-027-
0725) has a lattice constant of 5.46 Å. Given that the shell
comprises ∼30% (Gd) or ∼40% (Lu) of the total volume, we
can estimate the lattice parameter of the core−shell composite
as 5.54 Å (Gd) or 5.49 Å (Lu). This calculation is consistent
with our experimental results.
Beyond structural changes, shelling has a prominent effect

on the nanoparticles’ optical properties. This change can be
qualitatively seen in spectral measurements and quantified
using QY measurements. First, we compare the spectra of
cores (black) and Y-shelled UCNPs (teal), as seen in Figure
3a. The inset demonstrates this enhancement qualitatively,
even though the core sample is 2× more concentrated than the
Y-shelled sample. In the pictures and spectral measurements,
nanoparticles are suspended in cyclohexane and illuminated
with a 980 nm diode laser at ∼10 W/cm2 and 150 W/cm2,
respectively. Quite noticeably, the color from core to core−
shell changes from red to yellow. This is due to the relative
enhancement of the green emission peaks (520 and 545 nm)
compared to the red emission peak (660 nm). Because our

eyes are more sensitive to green light, a red to green ratio
I
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r

g
> 1

can have a perceived yellow-green emission color. The change
in color is not so much a consequence of the surface
passivation, but rather size and a stoichiometric shift during the
shelling procedure (Figure 2a). In Figure 3b, for example, the

Figure 3. Upconversion emission properties. (a) Comparison of UC
spectra from core to core−shell nanoparticles show significant
enhancement in intensity at 150 W/cm2 despite 2× more
concentrated cores. Inset: nanoparticles suspended in cyclohexane
under 980 nm illumination at ∼10 W/cm2. (b) Red to green emission
ratio, I

I
r

g
, of core−shell samples over two magnitudes of irradiance

values. In the inset, the Gd- and Lu-shelled samples appear redder
than the Y-shelled sample at low powers. (c) Quantum yield of
samples over two magnitudes of irradiance values. Here, guides-to-
the-eye and average particle sizes (diameters) are added to highlight
trends. (d) Lifetime curves showing the rise and total (τtot = rise +
decay) time of red emission (654 nm) under 980 nm excitation.
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active Y:Yb,Er shell (blue) does not benefit from surface
passivation and yields a similar red to green ratio as the Y inert

shell,
I
I

r

g
≈ 4 at 150 W/cm2. Within the shelled series, we see

that the red to green ratios across two orders of irradiance
values are 1.25−2× higher for the strained inert Gd (orange)
and Lu (purple) shells versus the unstrained Y and Y:Yb,Er
shells. The inset shows those qualitative color differences of
UCNPs at equal concentrations, suspended and illuminated in
solution. We explain these color differences in the context of
lifetime measurements in the SI. Briefly, strained shells increase
the probability of nonradiative decay, which impact the green
and red emission unequally.
We measure the QY of these colloidally suspended

nanoparticles over a wide range of irradiance. In the SI, we
provide details on the integrating sphere setup and down-
shifting process (i.e., NIR QY). Here, we focus on UCQY,
defined as the ratio of emitted red and green photons over the
number of absorbed photons. In Figure 3c, we record 24-fold
enhancement in UCQY or efficiencies of 0.14 ± 0.01% using
an inert Y shell compared to the core (6.1 ± 0.5 × 10−3%) at
150 W/cm2. Interestingly, the samples undergoing synthetic
strain have slightly lower UCQY efficiencies of 0.11 ± 0.01%
(Gd) and 0.10 ± 0.01% (Lu). While this decrease could
partially be explained by the smaller average size of Gd-shelled

UCNPs, the same explanation is not applicable to the Lu-
shelled UCNPs. In fact, we expect strained shells to have more
nonradiative decay pathways. We compare the inert shells to
our active Y:Yb,Er-shelled sample, which has an average
diameter of 33.6 ± 1.9 nm and provides only 6× improvement
over the cores. In addition, we investigate the dependence of
core size on UCQY; larger cores of ∼27 nm provide only 2×
enhancement (further details in SI). Hence, the enhancements
from an inert shell layer cannot be merely explained by
increased size and differences introduced by the shelling
procedure.
Figure 3d provides insight into the mechanism by which the

inert shell improves efficiency. NIR to visible upconversion is a
nonlinear multiphoton process that relies on long-lived
lifetimes for population of higher energetic states.11 We excite
the nanoparticle system with 980 nm and track the population
(rise time) and depopulation (decay time) of key Er3+

energetic states. Specifically, the plot shows normalized lifetime
curves for red emission (4F9/2 → 4I15/2) under nanosecond
pulsed 980 nm excitation. Note that measured lifetimes
encompass both radiative and nonradiative (e.g., phononic)
pathways. Surface passivation increases nonradiative lifetimes
by making it less likely for fast decay processes to occur,
thereby increasing total lifetimes in both the population and
depopulation of states. As seen in the inset, rise times increase

Figure 4. Mechanosensitivity or color response of core−shell UCNPs. UC spectra at the loading (black), maximum (color), and full release
(dashed color) pressures for (a) Gd-, (b) Y-, and (c) Lu-shelled UCNPs. Each spectrum is normalized to its green emission peak to see the relative
change in red emission. Arrows indicate the increase in red emission upon compression. Side-by-side optical images of the DAC sample chamber
(∼295 μm in diameter) qualitatively show the corresponding UC intensity and color changes. (d) DAC measurements spanning 3 complete
compression and release cycles for the three core−shell nanoparticle types. Error bars represent the standard deviation of I

I
r

g
values, derived from

three spectra collected at each pressure point. Note that the error bars may lie within markers. Error-weighted linear fits of each pressure cycle are

graphed. Their slopes are labeled and represent the mechanosensitivity or quantitative color change,
I
I

r

g
Δ (% per GPa).
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from 41 μs up to 290 μs with an additional inert shell.
Meanwhile, decay times, which are calculated by finding the
time it takes after states are fully populated to decrease to 1/e
of maximum intensity values, also increase from 101 μs for the
core up to 983 μs for Y-shelled UCNPs. The combined
lifetime and UCQY measurements suggest that surface
quenching is sufficiently reduced in nanoparticles with an
inert shell. Interestingly, Gd-shelled samples have shorter
decay lifetimes than Lu-shelled samples (643 μs versus 729 μs)
despite being more efficient. Opposing QY and lifetime trends
suggest that a compressive shell reduces radiative lifetimes and
increases the probability for radiative emission. This result
supports our hypothesis that the cores in Gd-shelled
nanoparticles experience counteracting tensile strain and
therefore, local crystal field modifications that alter radiative
probabilities. In the SI, we include lifetime curves for other
emission states under 980 nm and direct excitation wave-
lengths, which highlight similar trends.
To probe the mechano-optical properties of the core−shell

nanoparticles, we use a laser-coupled diamond anvil cell
(DAC) to simultaneously exert pressures from ambient up to
∼5 GPa and monitor upconversion emission under stress.
Nanoparticles are loaded in a 295 μm diameter sample
chamber with silicone oil as the hydrostatic pressure medium.
A bulk ruby sphere is also loaded to provide pressure
calibration.28 For each pressure increment, we collect spectra

to calculate the red to green ratio
I
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zzz and digital images to

visualize the corresponding color and intensity changes
(further details in SI). In this way, we investigate how
synthetically strained nanoparticles react optically to external
stress. Consistent with our previous study,4 cubic-phase
nanoparticles have enhanced red emission relative to green
at higher pressures, because the green intensity decreases more
rapidly than red intensity. This effect is seen in the spectra,
each normalized to the green peaks, as well as the images of the
DAC sample chamber under 980 nm illumination. Figure 4a−c
plot representative spectra for the three core−shell types and
their corresponding images from the loading (black),
maximum (color), and full release (dashed color) pressures.
Most evident is the difference in the initial color, which follows
the same trend as those in the optical experiments (Figure 3).
In particular, the fitted ambient I

I
r

g
values for Gd-, Y-, and Lu-

shelled UCNPs are 3.98 ± 0.01, 3.49 ± 0.06, and 4.47 ± 0.04,
respectively. For nanoparticles with inert Gd and Lu shells,
upconversion emission turns from yellow-green or yellow to
orange at higher pressures. Meanwhile, nanoparticles with an
inert Y shell turn from green to yellow-brown.
In Figure 4d, we track the percent change in the red to green

ratio from ambient values
I
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g
Δi

k
jjj

y
{
zzz for three complete cycles of

compression and release. Data collected at incremental
pressure points follow a positive linear trend. For each cycle,

we graph the linear error-weighted least-squares fit of
I
I

r

g
Δ . The

slopes (% per GPa) measure mechanosensitivity, with higher
values representing a larger color response to stress. Across
three cycles, mechanosensitivity values show no significant
decline, highlighting the structural and optical robustness of
this system for multiple pressure measurements. Of the three
types of core−shell nanoparticles, Gd-shelled UCNPs are the
most responsive to external stress with a slope of 12.2 ± 1.2%
per GPa. This enhanced response once again suggests that
compressive strain in the shell influences the mechanosensi-
tivity of the core by way of a counteracting tensile strain that
extends into the core. With external compression that
inhomogeneous strain could propagate further into the core
and distort the crystal field of active lanthanide ions.
Interestingly, the Y- and Lu-shelled samples have similar
sensitivity metrics: 9.2 ± 1.0% per GPa and 9.4 ± 1.2% per
GPa. Given XRD results in Figure 2 that indicate both a
smaller magnitude of strain on the lattice and peak asymmetry,
active ions in the cores of Lu-shelled samples are not
significantly affected by tensile strain in the shell layer. Most
of the strain seems isolated within the shell because stretching
is energetically favored over contracting. In fact, we find that
these sensitivity values are similar to those of smaller, unshelled
cubic-phase nanoparticles at 10.5 ± 1.1% per GPa.4 Therefore,

sensing capabilities, as we have defined them in terms of
I
I

r

g
Δ ,

are independent of surface quenching effects. Not only does
our shelling strategy successfully mitigate surface quenching
and improves QY efficiency, but it also maintains or, in some
cases, improves the color response of these upconverters.
In conclusion, we systematically study how strain induced by

heteroepitaxial growth modifies optical and mechanical sensing
capabilities of core−shell nanoparticles. For reference,
characterization measurements are summarized in Table 1.
In general, an inert shell of ∼4.5 nm thickness improves the
UCQY of sub-25 nm α-NaYF4:Yb,Er cores to >0.1%, a value
on par with 30 nm hexagonal-phase cores at the same 150 W/
cm2 irradiance.23 Of the inert shells, one with minimal lattice
mismatch (i.e., NaYF4) yields the largest UCQY enhancement
by effectively reducing surface quenching. An unstrained shell
does not alter the intrinsic mechanosensitivity of the
centrosymmetric cubic-phase lattice, while a compressively
strained shell (i.e., NaGdF4) increases the color response to
stress. Shelling thus provides a complementary synthetic
strategy to expand the upconverting toolkit we presented in
earlier work. In that study, we implemented d-metal dopants to
tune the mechanosensitivity of cubic- and hexagonal-phase
upconverting cores.4 Adding inert shells to d-metal doped
cores could therefore maximize the sensitivity, signal
collection, and resolution for measuring forces. Furthermore,

Table 1. Summary of Structural, Optical, and Sensing Properties for Core−Shell UCNPs

sample
diameter
(nm)

stoichiometry
from XRD

lattice
constant
(Å)

red to green ratio at
150 W/cm2

UCQY at 150
W/cm2 (%)

980 nm → 654 nm
decay lifetime (μs)

mechanosensitivity
I
I

r

g
Δ (%/GPa)

core 23.2 ± 3.5 Na0.29Y0.71F1.57 5.51 23.87 ± 1.01 6.1 ± 0.5 × 10−3 101
Y:Yb,Er-shelled 33.6 ± 1.9 Na0.39Y0.61F2.22 5.51 3.86 ± 0.16 2.5 ± 0.2 × 10−2 88
Y-shelled 32.1 ± 2.3 Na0.39Y0.61F2.22 5.52 3.68 ± 0.16 0.14 ± 0.01 983 9.2 ± 1.0
Gd-shelled 29.6 ± 2.3 Na0.39Y0.61F2.22 5.55 4.92 ± 0.21 0.11 ± 0.01 643 12.2 ± 1.2
Lu-shelled 32.2 ± 3.9 Na0.39Y0.61F2.22 5.49 4.82 ± 0.20 0.10 ± 0.01 729 9.4 ± 1.2
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heteroepitaxial shelling provides modalities beyond lumines-
cence and mechanical sensing. He et al., for example, utilized
NaLuF4 and NaGdF4 as contrast agents in CT and MRI,
respectively.20 NaGdF4 has also been reported to have high
stability under an electron beam,21 providing a protective layer
for electron microscopy and cathodoluminescence studies.
Ultimately, our results have positive implications for using
cubic-phase UCNPs as in vivo and in situ optical sensors and
guides future work toward multimodal architectures.
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