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Abstract 29 

According to classic stomatal optimization theory, plant stomata are regulated to 30 

maximize carbon assimilation for a given water loss. A key component of stomatal optimization 31 

models is marginal water-use efficiency (mWUE), the ratio of the change of transpiration to the 32 

change in carbon assimilation. Although the mWUE is often assumed to be constant, variability 33 

of mWUE under changing hydrologic conditions has been reported. However, there has yet to be 34 

a consensus on the patterns of mWUE variabilities and their relations with atmospheric aridity. 35 

We investigate the dynamics of mWUE in response to vapor pressure deficit (VPD) and aridity 36 

index using carbon and water fluxes from 115 eddy covariance towers available from the global 37 

database FLUXNET. We demonstrate a non-linear mWUE-VPD relationship at a sub-daily scale 38 

in general; mWUE varies substantially at both low and high VPD levels. However, mWUE 39 

remains relatively constant within the mid-range of VPD. Despite the highly non-linear 40 

relationship between mWUE and VPD, the relationship can be informed by the strong linear 41 

relationship between ecosystem-level inherent water-use efficiency (IWUE) and mWUE using 42 

the slope, m*. We further identify site-specific m* and its variability with changing site-level 43 

aridity across six vegetation types. We suggest accurately representing the relationship between 44 

IWUE and VPD using Michaelis-Menten or quadratic functions to ensure precise estimation of 45 

mWUE variability for individual sites.  46 
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 47 

Plain Language Summary 48 

Plants use diverse strategies for water utilization during growth. Marginal water-use efficiency 49 

(mWUE) quantifies how effectively plants gain carbon relative to the water they lose through 50 

their leaves. A scientific debate exists regarding how mWUE responds to dry conditions. To 51 

investigate this, we analyze data from various vegetation types worldwide, observing changes in 52 

mWUE under dry conditions. Contrary to common assumptions, mWUE is not a constant; it 53 

varies substantially based on moisture levels. Additionally, we show that a simpler measure 54 

called inherent water-use efficiency (IWUE) can help explain this complicated relationship, 55 

which is useful for predicting plant growth under different moisture conditions. 56 

 57 

Keywords 58 

Climate change, drought, eddy covariance, stomatal optimization theory, vapor pressure deficit, 59 

water-use efficiency 60 

 61 

Running title 62 

Response of mWUE and IWUE to changing aridity	  63 
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1. Introduction 64 

Terrestrial plants mitigate global warming by sequestering atmospheric carbon dioxide 65 

(CO2) through photosynthesis (Beer et al., 2010). However, photosynthesis is inherently linked 66 

with plant water loss via transpiration, as CO2 and water vapor share the same stomatal pathway. 67 

Plants risk hydraulic damage during droughts if they maintain high stomatal conductance as soil 68 

water availability decreases and atmospheric demand increases, resulting in low leaf water 69 

potential and xylem cavitation. Therefore, plants must balance stomatal function to optimize 70 

carbon uptake while minimizing transpirational water loss and hydraulic stress (Cowan & 71 

Farquhar, 1977; Katul et al., 2010; Sperry et al., 2017; Wang et al., 2020). To predict plant 72 

ecophysiological responses to projected changes in atmospheric CO2 concentration, elevated 73 

atmospheric water demand, and more severe and frequent drought events, we need a mechanistic 74 

understanding of how different ecosystems regulate the trade-off between photosynthetic carbon 75 

assimilation and transpirational water loss. 76 

Although carbon uptake is usually represented through mechanistic models of 77 

photosynthesis (e.g., the Michaelis-Menten equation (Marshall & Biscoe, 1980; Michaelis & 78 

Menten, 1913; Thornley, 1976);  the Farquhar model (Von Caemmerer, 2000; Farquhar et al., 79 

1980a)), water use (i.e., transpiration) is often described based on empirical relationships that 80 

prescribe how stomatal conductance responds to environmental drivers and carbon uptakes. For 81 

example, the Ball-Berry model (Ball et al., 1987) is one of the most widely used empirical 82 

stomatal conductance models (Anderegg et al., 2017; Buckley, 2017; Katul et al., 2010), and has 83 

been readily incorporated into many climate models (Bonan et al., 2014). It takes the form: 84 

𝑔! = 𝑔" + 𝑔#
𝐴
𝑐$
RH										(1)	85 
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where gs is stomatal conductance (mol m-2 s-1), A is carbon assimilation rate (𝜇mol m-2 s-1), ca is 86 

atmospheric CO2 concentration (ppm), RH is relative humidity at the leaf surface, and g0 and g1 87 

are empirically fitted parameters. To simulate the non-linear variation in gs with changing 88 

humidity, Leuning (1995) modified the Ball-Berry model by replacing relative humidity with a 89 

vapor pressure deficit (VPD) response function as follows: 90 

𝑔! = 𝑔" + 𝑔# ∙
𝐴

(𝑐$ − 𝛤∗) /1 +
VPD
VPD"

3
										(2)	91 

where 𝛤∗ is CO2 compensation point for photosynthesis (ppm) and VPD0 is the empirically 92 

determined coefficient, representing the slope of the relationship between gs and VPD. These 93 

empirical models are relatively simple, easy to use, and work well for well-watered conditions 94 

(Bonan et al., 2014). However, they have an incomplete grounding in physiological theory, 95 

leading to uncertainty when they are extrapolated to predict plant function under unprecedented 96 

climate conditions (Franks et al., 2018; Knauer et al., 2015, 2018; Medlyn et al., 2012; Sabot et 97 

al., 2022). 98 

An alternative way to enable the theoretical interpretation of leaf-level stomatal 99 

conductance models is to adopt the principle of stomatal optimization theory (Anderegg et al., 100 

2018; Bonan et al., 2014; Katul et al., 2009; Katul et al., 2010; Medlyn et al., 2012; Novick et al., 101 

2016b; Sperry et al., 2017; Wolf et al., 2016). Stomatal optimization theory was originally based 102 

on a hypothesis that stomata are regulated to maximize carbon assimilation (A) for a given water 103 

loss (transpiration, E). A key parameter in this class of models is the so-called “marginal water-104 

use efficiency (mWUE),” here defined as the ratio of a change in E to a change in A (𝜕𝐸/𝜕𝐴) 105 

following Cowan and Farquhar (1977), although it is sometimes defined as the inverse form 106 

(𝜕𝐴/𝜕𝐸) (Katul et al., 2010; Manzoni et al., 2011). The optimality models often maintain the 107 

mWUE constant over arbitrary time steps (e.g., daily), assuming abundant water at the canopy 108 
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(Buckley, 2017; Cowan & Farquhar, 1977; Makela et al., 1996). However, this may not hold true 109 

at sub-daily timescales, where high atmospheric demand (i.e., VPD) during midday can decrease 110 

water potential at the canopy level even when soil moisture is abundant (Anderegg et al., 2017; 111 

Grossiord et al., 2020). 112 

Understanding how mWUE changes under hydrologic stress is necessary for the 113 

optimization models in a prognostic sense, yet no consensus on the magnitude or even direction 114 

of these changes exists. For instance, Manzoni et al. (2011) and Zhou et al. (2013, 2014) 115 

performed meta-analyses of leaf gas exchange measurements from previous studies that spanned 116 

wide ranges of species and moisture conditions. A major difference in their approaches was the 117 

proxy for plant water status; Manzoni et al. (2011) used mid-day leaf water potential, whereas 118 

Zhou et al. (2013, 2014) used pre-dawn leaf water potential as a proxy for soil moisture 119 

availability. Similarly, Lin et al. (2015) compiled a global database of leaf gas exchange 120 

measurements spanning diverse plant functional types and estimated a slope parameter (g1) 121 

(Medlyn et al., 2012), which is analogous to the slope parameter from empirical models (Eqs. 1 122 

& 2) and proportional to 8𝜕𝐸/𝜕𝐴	 (Medlyn et al., 2012). They further evaluated the relationship 123 

between g1 and a moisture index, defined as the ratio of mean annual precipitation to the 124 

equilibrium evapotranspiration. Mäkelä et al. (1996) and Lu et al. (2016) took a theoretical 125 

approach to examine short- and long-term optimal stomatal behavior, respectively, in response to 126 

the soil moisture availability assuming that plants are adapted to the stochastic rainfall patterns of 127 

their environments. More recently, alternative stomatal optimization perspectives have been 128 

proposed, which presume stomata function to maximize carbon uptake while minimizing water 129 

costs, including those linked to hydraulic damage during droughts (Anderegg et al., 2018; Sperry 130 

et al., 2017; Wolf et al., 2016). Although promising, in contrast to the Medlyn et al. (2012) 131 
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model, these newer formulations have yet to be integrated into land surface model schemes (but 132 

refer to Kennedy et al., 2019, for a study implementing plant hydraulics in the Community Land 133 

Model). Although theoretical expectation and many studies indicate decreasing mWUE as water 134 

stress drives reductions to gs, there is some evidence of increasing mWUE under water stress 135 

(Farquhar et al., 1980b; Grieu et al., 1988; Zhou et al., 2013), although reasons for this needed to 136 

be clarified. 137 

It is also important to note that canopy water status and water potential are not 138 

determined solely by the availability of water supply but by the balance between water supply 139 

and demand, with VPD as a major force exerted on the canopy by the atmosphere (Manzoni et 140 

al., 2011, 2013; Novick et al., 2019). Thus, it is reasonable to expect that mWUE needs to be 141 

adjusted with changing atmospheric water demand unless other factors limit the plant response 142 

(e.g., compromised hydraulic conductivity under water stress, limited soil moisture availability 143 

to plants) (Brodribb et al., 2005; Medlyn et al., 2012). Different plants or ecosystems may adjust 144 

differently, resulting in divergent responses of mWUE to changing VPD. Understanding the 145 

relationship between mWUE and VPD is important given that VPD is expected to keep 146 

increasing in the future, which will exert further water stress on plants (Ficklin & Novick, 2017; 147 

Grossiord et al., 2020; Novick et al., 2016a; Zhang et al., 2019). Furthermore, while soil 148 

moisture is a stochastic variable due to its dependency on intermittent rainfall, VPD is smoother 149 

in time and easier to monitor through various meteorological or gas exchange measurement 150 

techniques. Although VPD and soil moisture limit plants’ carbon uptake and water use 151 

independently (Yi et al., 2019), VPD can be used as a proxy of water stress at a sub-daily scale 152 

where VPD plays a primary role in regulating stomatal regulation unless severe soil moisture 153 

deficiency, as indicated by the models with sub-daily timesteps (e.g., Ball-Berry model and its 154 
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variations), and in turn influencing the balance between carbon uptake and water loss (i.e., water-155 

use efficiency) at a sub-daily scale (Baldocchi et al., 2022; Grossiord et al., 2020; Novick et al., 156 

2016a). Therefore, examining the association between mWUE and VPD would add insight into 157 

the predictability of soil moisture alone. 158 

The objectives of this study are (1) to investigate the variation of mWUE at an hourly 159 

timescale in response to changing VPD and (2) to explore approaches for estimating mWUE 160 

explicitly from the modeled relationship between intrinsic water-use efficiency (iWUE, carbon 161 

assimilation per unit stomatal conductance, representing water-use efficiency at leaf level) and 162 

VPD. The Ball-Berry model (Eq. 1) reveals that the parameter g1, which is proportional to 163 

8𝜕𝐸/𝜕𝐴	 (Medlyn et al., 2012), is related to A/gs (= iWUE at leaf level). The iWUE can be more 164 

straightforwardly estimated from field measurements across various spatiotemporal scales, 165 

including leaf gas exchange (daily to weekly at the leaf level), dendrochronology 166 

(seasonal/annual at the tree level), and eddy covariance (hourly at the stand level) (more 167 

discussion on iWUE at different scales is available from Beer et al., 2009 and Yi et al., 2019). 168 

Notably, the inference of iWUE from tree-ring analyses provides an avenue for understanding 169 

historical variations in iWUE and, potentially, mWUE. While iWUE has a mathematically 170 

simpler form and thus facilitates modeling its response to water stress, the complex mathematical 171 

expression of mWUE poses challenges in generalizing its variability at a sub-daily timescale. By 172 

elucidating the correlation between iWUE and mWUE, we can gain insights into the response of 173 

mWUE to water stress. Additionally, through site comparisons, we further explore whether there 174 

is an emerging pattern in the correlation between iWUE and mWUE across different vegetation 175 

types and aridity levels. 176 

 177 
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Table 1. A glossary of terms related to water-use efficiency. 178 

Term or 
symbol Definition 

A Carbon assimilation rate 

AI Aridity index: the ratio of annual precipitation to annual potential 
evapotranspiration 

ca Atmospheric CO2 concentration 

E Transpiration rate 

ET Evapotranspiration rate 

g0 Intercept parameter in Ball-Berry model (represents minimum leaf conductance) 

g1 Slope parameter in Ball-Berry model (represents marginal water-use efficiency, 
mWUE) 

gs Stomatal conductance 

Gs Surface conductance 

GPP Gross primary productivity 

iWUE Intrinsic water-use efficiency; leaf-level water-use efficiency (= A / gs) 

IWUE Inherent water-use efficiency; a proxy of intrinsic water-use efficiency at the 
ecosystem level (= GPP / ET × VPD / Pa, Beer et al., 2009) 

m* The slope of the linear relationship between IWUE-1 and mWUE 

mWUE Marginal water-use efficiency, the ratio of a change in E to a change in A (=
𝜕𝐸/𝜕𝐴) 

Pa Atmospheric pressure 

VPD Vapor pressure deficit 

 179 

2. Materials and Methods 180 

2.1. FLUXNET data 181 

We obtained half-hourly measurements of carbon and energy fluxes, along with ancillary 182 

environmental data, from 115 flux towers across FLUXNET sites. These data were collected 183 

using the FLUXNET 2015 Tier 1 database (Table S1) (Pastorello et al., 2020). Eddy covariance 184 

records, which have the benefit of providing continuous meteorological and gas exchange data at 185 
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the high temporal resolution, are very well suited for investigating the relationship between gas 186 

exchange dynamics, mWUE, and VPD at the ecosystem scale.  187 

We selected the study sites from six vegetation types (grassland, cropland, shrubland, 188 

savanna, broadleaf forest, and needleleaf forest, based on the International Geosphere-Biosphere 189 

Programme (IGBP) land cover classification system; Loveland & Belward, 1997) based on the 190 

data availability for the variables required for the analysis. For reliable and clear mWUE 191 

analysis, we only included the sites that had at least three years of data and a strong iWUE-VPD 192 

correlation. Specifically, we selected the sites that had a coefficient of determination (R2) > 0.8 193 

with any of the three model fits—linear, quadratic, or Michaelis-Menten, which was the case for 194 

more than 70% of the sites over three years of data (refer to section 2.4 for more information 195 

about the model fits). In addition, we only used the data where net ecosystem exchange (NEE), 196 

latent heat flux (LE), and sensible heat flux (H) were either original measurements (quality 197 

control flag = 0) or gap-filled data of good quality (quality control flag = 1) to ensure data 198 

quality and make the most of the data. We only used daytime data when net radiation was greater 199 

than 0 W m-2 without precipitation. While we acknowledge the potential benefits of excluding 200 

more days after rainfall (e.g., Lin et al., 2015), we believe that omitting only the precipitation 201 

days is sufficient for our analysis. This is because iWUE had low variability under humid 202 

conditions, as evidenced by the low standard deviations of IWUE under low VPD levels in 203 

Figure 2. Additionally, we implemented a procedure to remove outliers in soil water content and 204 

relative humidity as described in the following paragraph, which would help mitigate the impact 205 

of periods after rainy days on our analysis.  206 

We limited our analysis to the growing season, where daily GPP was larger than 10% of 207 

the 95th percentiles of daily GPP for each site with > 5°C air temperature. We used the GPP 208 
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partitioned based on the standard daytime method (variable name: GPP_DT_VUT_REF, Lasslop 209 

et al., 2010). Additional filtering criteria were applied for some key variables: atmospheric CO2 210 

concentration between 350 ppm and 420 ppm, friction velocity (u*) greater than 0.1 m s-1, and 211 

canopy conductance calculated by Penman-Monteith equation (Monteith, 1965) greater than 0.05 212 

mol m-2 s-1. Lastly, we removed outliers of the environmental drivers and biological variables 213 

(i.e., air temperature, relative humidity, atmospheric CO2 concentration, latent heat flux, wind 214 

speed, VPD, atmospheric pressure, friction velocity, net radiation, soil water content, canopy 215 

conductance, iWUE, and mWUE) by excluding data that were below the 5th or above the 95th 216 

percentiles of each variable. Note that the purpose of data filtering was to remove exceptionally 217 

low or high values of the variables, which we consider outliers. Our goal was to ensure that the 218 

results, especially the variability of mWUE, were not unduly influenced by these outliers. We 219 

carefully examined the histograms for the variables for each site to minimize data reduction 220 

while retaining useful information. 221 

 222 

2.2. Two different approaches describing mWUE 223 

We used two different approaches for describing the mWUE: two optimization-theory-224 

driven mWUE, the solution of “𝜕𝐸/𝜕𝐴” suggested by Katul et al. (2010) and the “g1” parameter 225 

proposed by Medlyn et al. (2012). The difference between the optimization-theory-driven 226 

mWUE is based on their interpretation of stomatal optimization. Katul et al. (2010) assumed that 227 

stomata are optimizing for photosynthesis limited by Rubisco activity (i.e., carbon-limited), and 228 

plant stomatal optimality is subject to change (i.e., mWUE is not constant). On the other hand, 229 

Medlyn et al. (2012) assumed that stomata are optimized for photosynthesis limited by Ribulose-230 

1,5-bisphosphate (RuBP) regeneration (i.e., light-limited). In either case, the optimization 231 
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objective should result in constant mWUE values at short timescales—Katul et al. (2010) 232 

suggested approximately 10 minutes, whereas Medlyn et al. (2012) suggested daily or longer—233 

although it may change at longer timescales as hydrologic conditions evolve. 234 

Following Katul et al. (2010), the 𝜕𝐸/𝜕𝐴 emerges from an optimality condition 235 

determined with a linearized variant of the Farquhar et al. (1980b) photosynthesis model, defined 236 

as: 237 

𝜕𝐸
𝜕𝐴 = 1.6	VPD	𝑐$ <

𝐴
𝑔!
=
&'

=
1.6	VPD	𝑐$
iWUE' 								(3)	238 

where iWUE is defined as a ratio of A to gs at the leaf-scale (Beer et al., 2009). 239 

The other perspective on optimality proposed by Medlyn et al. (2012) takes an analogous 240 

form to an empirical model proposed by Leuning (1995) (Eq. 2): 241 

𝑔! ≈ 𝑔" + 1.6 <1 +
𝑔#

√VPD
=
𝐴
𝑐$
										(4)	242 

This approach indicates that the parameter g1 represents a slope between gs and 𝐴/𝑐$√VPD and 243 

is proportional to 8𝜕𝐸/𝜕𝐴 (Lin et al., 2015; Medlyn et al., 2012). Therefore, to facilitate 244 

comparison between the two approaches, we compare 𝜕𝐸/𝜕𝐴 with squared g1 (i.e., g12) 245 

throughout the results. Eq. 4 was rearranged with an assumption that g0, which represents 246 

cuticular conductance to water vapor, is negligible (but refer to Manzoni et al. (2011) and 247 

Lanning et al. (2020) for discussion of the role of cuticle conductance under drier conditions): 248 

𝑔# = /
𝑔!	𝑐$
1.6	𝐴 − 13√VPD = /

𝑐$
1.6	iWUE − 13√VPD									(5)	249 

Consequently, two different mWUE parameters, 𝜕𝐸/𝜕𝐴 (mol H2O ∙ kPa ∙ mol-1 of dry air) and g1 250 

(mol H2O ∙ kPa0.5 ∙ mol-1 of dry air), were expressed as functions of iWUE, ca, and VPD. 251 

Assuming ca is relatively stable over a short period, we focus on how iWUE (as a biological 252 

factor) and VPD (as an indicator of water stress governing plant response at a short temporal 253 

scale, e.g., sub-daily) affect both mWUE parameters (more details discussed in section 2.5). We 254 
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applied an approximation of iWUE at the ecosystem level, inherent WUE (IWUE), defined by 255 

Beer et al. (2009). IWUE (𝜇mol C mol-1 H2O) was particularly suitable for our study because 256 

IWUE can be calculated from the measurements of carbon and water fluxes by eddy covariance 257 

technique and ancillary meteorological data, i.e., gross primary productivity (GPP; 𝜇mol m-2 s-1) 258 

from net ecosystem exchange representing canopy-level carbon assimilation, evapotranspiration 259 

rate (ET, mol m-2 s-1) from latent heat flux, VPD under the assumption of equal temperatures of 260 

leaves and atmosphere, and atmospheric pressure (Pa, kPa): 261 

IWUE = 	
GPP ∙ VPD
ET ∙ 𝑃$

										(6)	262 

 263 

Several important assumptions for the definition of IWUE include (1) small and invariant soil 264 

evaporation (E) compared to plant transpiration (T) over the course of the day (hence ∆ET ~ ∆T) 265 

especially during days without rainfall (conditions we used for our analysis), (2) thermal 266 

equilibrium between leaf and air, which influences VPD, and (3) disregarding of aerodynamic 267 

resistance through the boundary layer that can change depending on the vegetation structure 268 

(refer to Beer et al. (2009) for more discussion about IWUE as a proxy of ecosystem-level 269 

iWUE). We confirmed the robustness of IWUE as a proxy of iWUE at the ecosystem level by 270 

comparing it with a few other definitions of iWUE (the comparison results are available in the 271 

Supporting Information; Figs. S1 & S2). Note that IWUE and mWUE were computed using half-272 

hourly FLUXNET data; hence, their variabilities discussed here represent plant physiological 273 

response at a sub-hourly scale. 274 

 275 

2.3. Sensitivity of mWUE parameters to moisture condition 276 
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Variations of mWUE parameters in response to moisture conditions (i.e., atmospheric 277 

water demand and site-level aridity) were evaluated at the individual site level and across sites. 278 

For the individual sites, mWUE parameters were partitioned into discrete bins spanning a range 279 

of VPD. To avoid biases from unevenly distributed data points across the range of VPD (i.e., 280 

sample sizes at low and high VPD are smaller than those for the intermediate level of VPD), data 281 

binning was performed in a way that the sample sizes were evenly distributed into 30 bins across 282 

the range of VPD at each site. Then, mWUE-VPD relationships were produced based on the 283 

mean mWUE values generated for the different VPD bins. 284 

To compare across the sites, the relationships between site-specific mWUE and aridity 285 

index (AI) were evaluated (refer to Fig. S3 in the Supporting Information for AI at all the study 286 

sites). AI was defined as the ratio of annual precipitation (P) to annual potential 287 

evapotranspiration (PET) and averaged over the observation period for each site (UNEP, 1992): 288 

AI = 	
𝑃
PET										(7)	289 

The annual PET was determined by summing up the half-hourly PET values over the course of a 290 

year, using the United Nations Food and Agriculture Organization (FAO) Penman-Monteith 291 

method as outlined by Allen et al. (1998): 292 

PET =
0.408𝛥(𝑅( − 𝐺) + 𝛾

900
𝑇$ + 273

𝑢(𝑒! − 𝑒$)

𝛥 + 𝛾(1 + 0.34𝑢) 										(8)	293 

where 𝛥 is the slope of vapor pressure curve (kPa ℃&#), Rn is the net radiation (MJ m-2 hr-1), G is 294 

the soil heat flux density (MJ m-2 hr-1), 𝛾 is the psychrometric constant (kPa ℃&#), Ta is the air 295 

temperature (℃), u is the wind speed (m s-1), es is the saturation vapor pressure (kPa), and ea is 296 

the actual vapor pressure (kPa). The estimation of AI is sensitive to gaps in precipitation data. 297 

Therefore, we used long-term mean annual precipitation provided on the site information page at 298 
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the FLUXNET website (https://fluxnet.org/sites/site-list-and-pages/) rather than calculating mean 299 

annual precipitation from the FLUXNET2015 dataset. For the sites where annual precipitation 300 

records were not provided, the high-frequency precipitation record in the FLUXNET2015 dataset 301 

was used. 302 

 303 

2.4. Assessing the relationship between mWUE and IWUE 304 

 As a first step to conceptually understand the relationship between mWUE and IWUE, 305 

the relationship between IWUE and VPD was modeled by three hypothetical functions—linear, 306 

quadratic, and the Michaelis-Menten functions—based on the observations across the sites. The 307 

quadratic model of IWUE-VPD (hereafter IWUEQ) depicts the case where IWUE increases with 308 

VPD until it reaches a maximum and then decreases afterward. In other words, when VPD is 309 

low, increasing IWUE with increasing VPD reflects a faster decrease of gs than A (due to the 310 

high intercellular CO2 concentration, ci), whereas decreasing IWUE with increasing VPD at high 311 

VPD reflects a faster decrease of A than gs (low gs at high VPD reduces ci and eventually causes 312 

the steep decline of A). The linear model (hereafter IWUEL), on the other hand, represents a 313 

simplified IWUE-VPD relationship where IWUE would keep increasing with rising VPD 314 

assuming IWUE is only limited by gs but not by photosynthetic capacity. The Michaelis-Menten 315 

function (hereafter IWUEM) represents the saturating IWUE under high VPD but does not 316 

account for IWUE reduction. Thus, the linear and quadratic functions are considered plausible 317 

“end members” describing the actual response of IWUE to VPD, while the Michaelis-Menten 318 

function is a more intermediate case. Mathematically, the IWUEL, IWUEM, and IWUEQ take the 319 

forms: 320 

𝐼𝑊𝑈𝐸) = 𝑚	𝑉𝑃𝐷 + 𝑛									(9)	321 
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𝐼𝑊𝑈𝐸* =
𝐼𝑊𝑈𝐸+$, ∙ 𝑉𝑃𝐷

𝑘 + 𝑉𝑃𝐷 									(10)	322 

𝐼𝑊𝑈𝐸- = −𝑎	(𝑉𝑃𝐷 − 𝑏)' + 𝑐									(11)	323 

where m is the slope of IWUEL, n is IWUEL at VPD = 0, IWUEmax is the maximum potential 324 

IWUE, k is the VPD at which IWUE proceeds at half IWUEmax, a represents the curvature of 325 

IWUEQ, b is the vertex, c is the maximum IWUEQ at the vertex. 326 

The expected dynamics of mWUE across the FLUXNET sites in response to changing 327 

VPD were simulated based on an empirically driven IWUE-VPD model to understand how the 328 

mWUE metrics would respond to changing VPD and IWUE. To generate possible patterns of 329 

mWUE-VPD, the range of coefficients in the IWUE models was determined empirically from 330 

the data across the sites. To facilitate interpretation, the patterns were simulated by changing the 331 

curvature of the quadratic equation (Eq. 11), assuming the intercept is equal to zero. For the 332 

simulation of mWUE, a constant ca was applied by calculating its average across the sites to 333 

focus on the interactions among VPD, IWUE, and mWUE (Eqs. 3 & 5). 334 

Lastly, we investigated how IWUE (as a biological factor) and aridity index (as an 335 

environmental driver) influence the variability of mWUE. Based on the Eqs. 3 and 5, we 336 

hypothesized that a simple relationship between mWUE and the inverse of IWUE (IWUE-1) 337 

might emerge and would be affected by changing moisture conditions. Therefore, we identified a 338 

relationship between mWUE and IWUE-1 for each study site and examined whether the 339 

relationship can be generalized across the sites based on the site-specific aridity index. 340 

 341 

3. Results 342 

3.1. Empirical response of IWUE to changing VPD or AI 343 
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To test the robustness of IWUE as a proxy of intrinsic water-use efficiency at the 344 

ecosystem level, we first compared the two different definitions of intrinsic water-use 345 

efficiencies at stand level, GPP divided by surface conductance (Gs) (i.e., iWUE = GPP/Gs) and 346 

inherent WUE (i.e., IWUE = GPP/ET×VPD/Pa). The two WUE definitions were linearly 347 

correlated across the study sites (Fig. 1), and most sites had R2 values larger than 0.95 (Fig. 1b), 348 

indicating the robustness of IWUE as a proxy of intrinsic water-use efficiency at the ecosystem 349 

level (refer to the Supporting Information for an additional comparison of multiple definitions of 350 

intrinsic water-use efficiency; Figs. S1 & S2). We also performed the entire analysis using these 351 

two WUE definitions and observed similar results, which led to the same conclusion. Therefore, 352 

we only show the results from using IWUE hereafter. 353 

 354 

 355 
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Figure 1. Comparison of two different definitions of water-use efficiencies at all sites (a) and at 356 

three sample sites (c, d, e): inherent water-use efficiency at the ecosystem level, IWUE (= 357 

GPP/ET×VPD/Pa), and intrinsic water-use efficiency at the ecosystem level, iWUE (= GPP/Gs). 358 

Refer to Beer et al. (2009) for the comparison of different definitions of water-use efficiencies at 359 

leaf and ecosystem-level. Individual dots in panels a, c, d, and e indicate WUE partitioned into 360 

discrete bins spanning a range of VPD. Solid red lines indicate significant linear regressions (P < 361 

0.05), and dashed red lines indicate 95% confidence interval. Dashed gray lines represent 1:1 362 

lines. Panel b shows the histogram of coefficients of determination (R2) of the linear fits between 363 

IWUE and iWUE across the study sites.  364 

 365 

In most cases, the Michaelis-Menten model and the quadratic model explained empirical 366 

IWUE patterns across the range of VPD better than the linear model (Fig. 2 and Fig. S3 in the 367 

Supporting Information). Specifically, the Michaelis-Menten model worked better for the sites 368 

where the increase of IWUE plateaued at high VPD, and the quadratic model worked better for 369 

the sites where IWUE started decreasing at very high VPD. On the other hand, the linear model 370 

often overestimated IWUE at low and high VPD, except the sites where IWUE-VPD was highly 371 

linear.  372 

 373 
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 374 

Figure 2. Examples of empirical (black dots) and modeled (linear: blue, Michaelis-Menten: 375 

green, quadratic: red) responses of inherent water-use efficiency (IWUE) to changing vapor 376 

pressure deficit (VPD). The examples include three sites best represented by the linear model 377 

(IT-BCi, cropland), the Michaelis-Menten function (CA-NS2, needleleaf forest), and the 378 

quadratic model (US-Ton, savanna), respectively. Each error bar (light gray) represents the 379 

standard deviation of IWUE for each VPD bin (95% confidence). Refer to Fig. S4 in the 380 

Supporting Information for the IWUE-VPD relationships of all the study sites (n = 115). 381 

 382 

When the site-specific IWUE-VPD slope values derived from the linear model (i.e., m in 383 

Eq. 9) were combined, we found increasing m with rising aridity index (P < 0.001, Fig. 3a). 384 

However, site-level aridity did not influence the intercept of IWUE-VPD relationship (P > 0.05, 385 

not shown here). When the sites were divided by their vegetation types, m increased with a rising 386 

aridity index in all vegetation types. However, the trend was only significant in grasslands, 387 

croplands, and shrublands (P < 0.05, Fig. 3). 388 

 389 
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 390 

Figure 3. Relationship between the site-level aridity index and the regression slope of IWUE-391 

VPD from individual sites (i.e., m in Eq. 9). Panel a shows the relationship when all sites were 392 

consolidated. The relationship is also illustrated separately for six different vegetation types in 393 

panels b to g (GRA: grassland, CRO: cropland, SH: shrubland, SAV: savanna, BF: broadleaf 394 

forest, NF: needleleaf forest). Each circle represents m from an individual site. Error bars 395 

represent standard errors of linear regressions. Solid lines indicate significant linear relationships 396 

(P < 0.05) and dashed lines indicate 95% confidence intervals. 397 

 398 

3.2. Response of mWUE to changing VPD 399 

Both of the mWUE indices, 𝜕𝐸/𝜕𝐴 and squared g1 (g12), showed a very similar response 400 

to changing VPD and indicated that the directional change of mWUE can be interpreted 401 

differently depending on the pattern of IWUE-VPD (Fig. 4). When the iWUE-VPD relationship 402 

is strongly linear, mWUE decreased exponentially and became less variable as VPD increased 403 

(Brighter curves in Figs. 4b & 4c). However, as the iWUE-VPD relationship became more non-404 
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linear, mWUE declined at lower VPD and then increased at higher VPD (i.e., concave-up), 405 

rendering the mWUE-VPD relationship non-monotonic (darker curves in Figs. 4b & 4c). 406 

 407 

 408 

Figure 4. Hypothetical models of IWUE-VPD relationship (a), simulated 𝜕𝐸/𝜕𝐴-VPD (b) and 409 

g12-VPD (c) relationships based on typical cases, and their corresponding patterns illustrated 410 

using observations from all study sites (d, e, and f). The mWUE curves are the results of using 411 

the IWUE-VPD relationships of the corresponding colors. Note that IWUE-VPD relationships 412 

become more linear with lighter colors. 413 

 414 

The simulated patterns of mWUE-VPD agreed well with the patterns from the empirical 415 

observation when the appropriate function for the IWUE-VPD relationship was applied. We 416 

show mWUE-VPD relationships from three study sites as examples (Fig. 5), of which IWUE-417 
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VPD was represented best by linear, the Michaelis-Menten, and quadratic functions, respectively 418 

(refer to Fig. 2 for their corresponding IWUE-VPD relationships. Also, refer to Fig. S5 in the 419 

Supporting Information for the results of all study sites). As indicated by the simulation, the site 420 

with highly linear IWUE-VPD (IT-BCi) showed exponentially decreasing mWUE with rising 421 

VPD. In contrast, the other two sites with highly non-linear IWUE-VPD relationships had a 422 

concave-up pattern of mWUE-VPD. Notably, the mWUE-VPD relationship generated using a 423 

less optimal IWUE-VPD model can differ substantially from the empirical pattern. For example, 424 

application of linear IWUE-VPD function to the CA-NS2 and US-Ton, the sites represented best 425 

by the Michaelis-Menten and quadratic functions, respectively, generated concave-down 426 

mWUE-VPD pattern that is opposite to the actual pattern (Fig. 5). The disagreements between 427 

models and observations increased as VPD approached very high and very low extremes. 428 

 429 

 430 
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Figure 5. Examples of empirical (black dots) and modeled (linear: blue, Michaelis-Menten: 431 

green, quadratic: red) relationships between 𝜕𝐸/𝜕𝐴 (analytical solution by Katul et al., 2010) 432 

and vapor pressure deficit (VPD), and between g12 (Medlyn et al., 2012) and VPD. The examples 433 

include three sites best represented by the linear IWUE-VPD model (IT-BCi, cropland), the 434 

Michaelis-Menten function (CA-NS2, needleleaf forest), and the quadratic model (US-Ton, 435 

savanna), respectively. Note that the terms ‘linear’, ‘Michaelis-Menten’, and ‘quadratic’ denote 436 

the regression fits for the IWUE-VPD relationships (Refer to Fig. 2 for the IWUE-VPD 437 

relationships at the corresponding sites). Each error bar (light gray) represents the standard error 438 

of the mean IWUE for each VPD bin (95% confidence). Refer to Fig. S5 in the Supporting 439 

Information for the 𝜕𝐸/𝜕𝐴 -VPD relationships at the 115 study sites. 440 

 441 

The variability of mWUE to changing VPD was substantial in most cases (Fig. 6). Out of 442 

the total of 115 study sites, the percent increase of 𝜕𝐸/𝜕𝐴 (i.e., growth in 𝜕𝐸/𝜕𝐴 from the 443 

lowest to the largest value at a site) was larger than 50% in 43 sites, and larger than 100% in 22 444 

sites. Note that the reported percent increase was determined by excluding the upper and lower 445 

10% of values. This step was taken to prevent exaggeration caused by extremely high 𝜕𝐸/𝜕𝐴 at 446 

low VPD, which is commonly observed across the study sites (refer to Figure S5 in the 447 

Supporting Information for the variability of 𝜕𝐸/𝜕𝐴	with VPD at all the study sites). As a result, 448 

the reported percent increase represents a conservative estimate overall. 449 

 450 
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 451 

Figure 6. Sorted percent increase of 𝜕𝐸/𝜕𝐴 (from the lowest 𝜕𝐸/𝜕𝐴) (GRA: grassland, CRO: 452 

cropland, SH: shrubland, SAV: savanna, BF: broadleaf forest, NF: needleleaf forest). Embedded 453 

plots in GRA and SH are zoomed in for those sites where percent increases are lower than 100%. 454 

Note that the percent increases were calculated after removing values of the highest 10% and 455 

lowest 10% to avoid exaggeration due to very high 𝜕𝐸/𝜕𝐴 at low VPD at some sites. Therefore, 456 

the reported percent increase values are conservative estimates for most sites. 457 

 458 

3.3. Correlation between mWUE and IWUE 459 

Although the trend of mWUE-VPD seems hard to generalize, the simulated mWUE had a 460 

clear linear relationship with IWUE-1 for the majority of IWUE's range regardless of the linearity 461 
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of the IWUE-VPD relationship except when IWUE is very high (i.e., under high VPD, Fig. 7). 462 

Although limited to a small portion of the entire range, a sharp directional change in the variation 463 

of mWUE was near a point where IWUE-1 was smallest, and strong linearities between mWUE 464 

and IWUE-1 were found before and after the transitional point. Substantial hysteresis became 465 

more evident as the IWUE-VPD pattern became more curved (darker curves in Fig. 4). 466 

 467 

 468 

Figure 7. Simulated relationship between mWUE metrics (𝜕𝐸/𝜕𝐴 and g12) and IWUE-1 (based 469 

on the hypothetical IWUE-VPD model in Fig. 4). The colors of the curves correspond to those 470 

used in Fig. 4: IWUE-VPD relationships become more linear with lighter colors. Dashed arrows 471 

in panel a represent the directional change of VPD from low to high VPD.  472 

 473 

As predicted by the simulated mWUE-IWUE-1 relationships (Fig. 7), the empirical 474 

mWUE-IWUE-1 relationship was strongly linear (P < 0.001 at all sites, Fig. 8). A sign of 475 

hysteresis was noticeable for the site that showed decreasing iWUE under very high VPD (US-476 
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Ton, refer to Fig. 2 for its IWUE-VPD relationship). In contrast, hysteresis was less evident at 477 

the other sites. When the relationship was drawn by grouping data by different levels of IWUE 478 

(black dots in Fig. 8), hysteresis was not observed, and the mWUE-IWUE-1 relationship was 479 

strongly linear. 480 

 481 

 482 
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Figure 8. Examples of empirical relationship between mWUE metrics (𝜕𝐸/𝜕𝐴 and g12) and 483 

IWUE-1. The examples include three sites best represented by the linear IWUE-VPD model (IT-484 

BCi, cropland), the Michaelis-Menten function (CA-NS2, needleleaf forest), and the quadratic 485 

model (US-Ton, savanna), respectively. Refer to Fig. 2 for the IWUE-VPD relationships at the 486 

corresponding sites. Colorful dots represent hourly data points shaded based on the level of VPD 487 

(refer to color bars for the scale of VPD). Black dots represent data binned by IWUE-1: Data 488 

binning was performed to distribute sample sizes evenly across bins (~30 samples per bin). Error 489 

bars represent standard deviations. The red and black solid lines indicate linear fits for hourly 490 

and binned data, respectively. Dashed red lines represent confidence intervals for the slopes of 491 

linear regressions. Note that red and black linear regressions and their confidence intervals 492 

overlap. Refer to Fig. S6 in the Supporting Information for the 𝜕𝐸/𝜕𝐴 - IWUE-1 relationships at 493 

the 115 study sites. 494 

 495 

We investigated whether the relationship between mWUE and IWUE-1 could be 496 

generalized across the sites based on the site-specific AI. Specifically, the linear IWUE-1-mWUE 497 

slopes (hereafter m*) from all study sites were merged, and their variability in response to 498 

changing AI was evaluated. We found a significant linear relationship between m* and AI when 499 

both are scaled by log10 (P < 0.001, Fig. 9). The m* was larger at the drier sites (i.e., sites of 500 

lower AI) than at the wetter sites (i.e., sites of larger AI). However, we did not find a significant 501 

relationship between the IWUE-1 – mWUE intercept and AI (P > 0.05, not shown here). 502 

 503 
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 504 

Figure 9. Relationships between IWUE-1-mWUE slope and aridity index (= P/PET) derived 505 

from all the study sites (n = 115). Each circle represents the slope obtained from an individual 506 

site. Both the x and y axes are scaled by log10. The numbers in parentheses next to the x-axis tick 507 

labels represent the aridity indices before the log transformation. The solid lines indicate linear 508 

regressions, and the dashed lines indicate confidence intervals (95% confidence interval). 509 

 510 

We further tested whether we could find the similar relationship when the sites were grouped by 511 

the vegetation type. We found decreasing m* with rising AI in grasslands, croplands, and 512 

shrublands (P < 0.01, Fig. 10). On the other hand, m* was relatively constant across the range of 513 

AI in savannas, deciduous broadleaf forests, and evergreen needleleaf forests (P > 0.05, Fig. 10). 514 

 515 

 516 
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 517 

Figure 10. Relationships between log-transformed IWUE-1-mWUE slope and aridity index in 518 

different vegetation types (GRA: grassland, CRO: cropland, SH: shrubland, SAV: savanna, BF: 519 

broadleaf forest, NF: needleleaf forest). Each circle represents the log-transformed slope 520 

obtained from an individual site. The numbers in parentheses next to the x-axis tick labels 521 

represent the aridity indices before the log transformation. Solid lines indicate significant linear 522 

relationships (P < 0.05), and dashed lines indicate 95% confidence intervals. 523 

 524 

4. Discussion 525 

Stomatal optimization theory, which originated with the work of Cowan and Farquhar 526 

(1977), has experienced a recent surge in popularity as the vegetation modeling community 527 

continually seeks ways to inject more theoretical rigor into Earth system models (Anderegg et 528 

al., 2018; Bassiouni & Vico, 2021; Bonan et al., 2014; Feng et al., 2022; Katul et al., 2010; Katul 529 

et al., 2009; Lin et al., 2018; Lin et al., 2015; Lu et al., 2020; Lu et al., 2016; Medlyn et al., 2012, 530 

2017; Novick et al., 2016b; Sabot et al., 2022; Sperry et al., 2017; Wolf et al., 2016). The 531 

marginal water-use efficiency (mWUE) is a key parameter in this type of model, but we still 532 

need a clear understanding of how mWUE is regulated biologically and environmentally. Lin et 533 
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al. (2018) previously suggested suboptimal mWUE in response to VPD at a sub-daily scale by 534 

estimating site-specific, best-fitted exponent for VPD based on the variation model of optimality 535 

theory (Medlyn model), which inspired our study. In comparison, our study is unique in 536 

analyzing the dynamics of mWUE observed at the half-hourly timescale in response to changing 537 

VPD owing to the long-term continuous carbon and water flux data from the network of eddy 538 

covariance towers.  539 

Another motivation for our study was the conflicting arguments over the dynamics of 540 

mWUE in response to water stress. Although mWUE is in general considered to be nearly 541 

constant during a day under stable soil moisture conditions (Berninger & Hari, 1993; Fites & 542 

Teskey, 1988; Hall & Schulze, 1980; Hari et al., 2000), several studies showed that mWUE 543 

changed with different levels of water stress. For example, theoretical considerations indicate a 544 

monotonic decrease of mWUE with higher water stress when the stochasticity of rainfall depths 545 

is neglected (Cowan, 1982; Makela et al., 1996), although some empirical estimates showed that 546 

mWUE increases under severe water stress (Farquhar et al., 1980b; Grieu et al., 1988). On the 547 

other hand, Manzoni et al. (2011) performed a meta-analysis of 50 species to estimate mWUE 548 

from gas exchange observations along gradients of soil moisture and showed that mWUE 549 

decreases under mild water stress but increases under severe water stress (note that they defined 550 

𝜆 = 𝜕𝐴/𝜕𝐸, which is inverse of the definition used by Cowan & Farquhar (1977) and this 551 

study). 552 

 553 

4.1. Relationship between IWUE and VPD 554 

Based on the two equations of stomatal optimization theory (Eqs. 3 & 5), we first 555 

characterized the variability of mWUE based on the relationship between IWUE and VPD, 556 
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representing biological and environmental factors, respectively. We show that the variability of 557 

IWUE needs to be modeled accurately to emulate the variability of mWUE in response to water 558 

stress correctly. For example, as demonstrated in Fig. 5 (CA-NS2 & US-Ton), oversimplifying 559 

the IWUE-VPD relationship by modeling it with a linear function can incorrectly interpret 560 

mWUE variability.   561 

The non-linear IWUE-VPD relationship is presumably driven by different rates of carbon 562 

assimilation and water loss in response to changing VPD at an hourly scale, reflecting the 563 

balance between stomatal and non-stomatal limitations to photosynthesis at the leaf level 564 

(Farquhar, 1978; Jones, 2014). Under low to moderate VPD conditions, photosynthesis is less 565 

sensitive to changing intercellular CO2 concentration because stomatal conductance is high 566 

enough to maintain the high intercellular CO2 when VPD is low to moderate. Therefore, the 567 

quantity of reduced water loss by stomatal closure (ET at an ecosystem level) outweighs the 568 

quantity of reduced carbon assimilation (GPP at an ecosystem level) when VPD rises (i.e., 569 

|∆𝐺𝑃𝑃| < |∆𝐸𝑇|), resulting in the increasing phase of IWUE. As VPD keeps increasing, 570 

photosynthesis can be limited when the reduction of stomatal conductance under high VPD 571 

conditions substantially reduces intercellular CO2 concentration (i.e., |∆𝐺𝑃𝑃| ≈ |∆𝐸𝑇|), 572 

resulting in the steady phase of IWUE. As VPD becomes excessively high, photosynthesis will 573 

be further suppressed by high temperature (Yamori et al., 2014) and low leaf water potential 574 

(Lawlor & Tezara, 2009) that are associated with dry conditions (i.e., |∆𝐴| > |∆𝑔!|), leading to 575 

the decreasing phase of IWUE.  576 

Therefore, assuming a linear IWUE-VPD relationship may not only fail to emulate 577 

observations but also oversimplify the physiological responses to water stress. Our analysis 578 

recommends using the Michaelis-Menten function for most sites while utilizing a quadratic 579 
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function for sites exhibiting extreme cases where IWUE declines under high VPD conditions. 580 

The Michaelis-Menten function can be beneficial to characterize the IWUE-VPD relationship 581 

because the maximum potential IWUE and the rate of IWUE increase can be identified during 582 

parameterization (Eq. 10). Although the quadratic function can emulate IWUE-VPD 583 

relationships very well or performs even better than the Michaelis-Menten function in some 584 

cases where IWUE decreases at high VPD, it is parameterized empirically and as a result, lacks 585 

mechanistic information. Nevertheless, the quadratic function is preferable to the linear function. 586 

It is also important to consider the definition of water-use efficiency for accuracy. We 587 

used inherent water-use efficiency (IWUE) as a proxy of intrinsic water-use efficiency (iWUE) 588 

at the ecosystem level as suggested by Beer et al. (2009), which can be estimated by GPP and ET 589 

inferred from the flux tower observations. This approximation is particularly useful over a more 590 

common ecosystem-level iWUE = GPP/Gs because IWUE requires fewer variables and is easier 591 

to extrapolate to a larger scale. However, it is important to note that ET/VPD in the equation of 592 

IWUE (Eq. 6) is a proxy of canopy conductance, assuming the canopy is well coupled to the 593 

atmosphere, boundary layer resistance is small, and thermal equilibrium between leaf and air is 594 

achieved (Beer et al., 2009). In other words, IWUE under non-equilibrium between canopies and 595 

atmosphere can be overestimated due to the higher VPD than the vapor pressure gradient near 596 

the canopy surface (i.e., the difference between intercellular vapor pressure (ei) and atmospheric 597 

vapor pressure (ea), ei – ea). Difference between leaf and air temperature can also influence the ei 598 

– ea; if leaf temperature is higher than air temperature (as it often is, e.g., Novick & Barnes, 599 

2023; Yi et al., 2020), ei will increase while ea remains constant, resulting in larger ei – ea than 600 

measured VPD and consequently underestimate IWUE. Therefore, it is important to address this 601 

potential bias to quantify iWUE accurately. According to our results, the correlation between the 602 
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two ecosystem-level iWUE proxies was strong at the site level (Fig. 1), implying that the choice 603 

of ecosystem-level iWUE definition is unlikely to influence our interpretation of the iWUE and 604 

mWUE variabilities substantially. Furthermore, our comparison of multiple definitions of iWUE 605 

using a mechanistic model, CANVEG (refer to the Supporting Information for more details), 606 

indicated that IWUE is a good proxy of leaf-level iWUE and meets the general assumptions to 607 

address scaling issues. Thus, we conclude that eddy covariance observation of carbon and water 608 

fluxes is suitable to model the variability of intrinsic water-use efficiency in response to 609 

changing VPD. 610 

Of note, the linear relationship between the slope of IWUE-VPD and aridity index (Fig. 611 

4) was stronger in the ecosystems characterized by lower vegetation types (e.g., grasslands, 612 

croplands, and shrubland). In contrast, ecosystems with higher vegetation (e.g., savannas, 613 

broadleaf forests, and needleleaf forests) exhibited a weaker relationship. This observation 614 

implies a potential link between water-use efficiency and the vertical structure of vegetation, 615 

although the exact underlying mechanism remains uncertain. 616 

 617 

4.2. Modeling the variability of mWUE 618 

We compared two solutions of mWUE by Katul et al. (2010) (𝜕𝐸/𝜕𝐴) and Medlyn et al. 619 

(2012) (g1) developed based on different assumptions on stomatal optimality (carbon-limited 620 

versus light-limited) for more robust conclusion. Despite the difference in the assumption, both 621 

solutions yielded very similar results throughout our analysis, confirming that the optimality 622 

assumption had little effect on evaluating the variability of mWUE in response to changing 623 

moisture conditions. 624 



34 
 

We characterized the trend of mWUE by using VPD as an environmental driver (Figs. 4 625 

& 5), where its variability in response to VPD was unique and not necessarily unidirectional, 626 

thus making it hard to generalize with commonly available functions. Specifically, the variability 627 

of mWUE was simpler and decreased exponentially with rising VPD when the IWUE-VPD 628 

relationship was more linear, making it easy to model the mWUE-VPD relationship (Figs. 4 & 629 

5). However, the variability of mWUE was not unidirectional when the IWUE-VPD relationship 630 

was non-linear, as observed in most cases (Fig. S5 in the Supporting Information); high 631 

variability in mWUE is usually observed at low- and high-ends of VPD. On the other hand, when 632 

mWUE was calculated under conditions of moderate VPD level only, the variability of mWUE 633 

can be overlooked and considered constant. This complex pattern signifies the importance of a 634 

comprehensive view of IWUE and mWUE across the full potential range of VPD. Observation 635 

under conditions of a partial range of environmental factors is common in many types of field 636 

measurements that have coarser time resolution (hourly versus daily to weekly, e.g., eddy 637 

covariance versus leaf gas exchange measurements) unless they are performed frequently over a 638 

long period to cover non-typical conditions. We were able to estimate precise variability of 639 

mWUE matching with the hypothetical models owing to the large amount of data 640 

(FLUXNET2015) collected every half-hour over the long period throughout the network of flux 641 

towers (total 1,036 site years with many sites offering data collected over more than a decade), 642 

highlighting the value of long-term, continuous measurements. Overall, our result of the mWUE-643 

VPD relationship supports the results of Manzoni et al. (2011) among the various conflicting 644 

results over the response of mWUE in response to water stress, which found decreasing mWUE 645 

under mild water stress and increasing mWUE under severe water stress from a meta-analysis of 646 

gas exchange observations.  647 
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As a solution to model unique patterns of mWUE, we attempt to address its variability 648 

with information that can be obtained easily from various types of field measurements (e.g., eddy 649 

covariance, gas exchange, and tree-ring cores) and modeled empirically—IWUE. The 650 

relationship between mWUE and IWUE was inferred from the two equations of the optimization 651 

theory (Eqs. 3 & 5). We found a strong linear correlation between IWUE-1 and mWUE from both 652 

empirical data (Fig. 8) and modeling exercise (Fig. 7). In other words, the variability of mWUE 653 

in response to changing VPD can be characterized by (1) the function of IWUE-VPD 654 

relationship and (2) the slope between IWUE-1 and mWUE. The relationship between IWUE-655 

VPD is relatively simple and can be identified with various field measurements. This raises the 656 

question of whether a simple way exists to identify the slope between IWUE-1 and mWUE. By 657 

synthesizing the IWUE-1-mWUE slopes across the sites, we found that the IWUE-mWUE slope 658 

is highly correlated with the site-specific AI that can be characterized for different vegetation 659 

types (Fig. 9). The correlation is conceivable from the equations of mWUE (Eqs. 3 & 5). If, for 660 

instance, Eq. 3 is rearranged, 661 

𝜕𝐸/𝜕𝐴
IWUE&' ∝ VPD								(12)	662 

indicating that the slope between mWUE and the inverse of IWUE is proportional to VPD, 663 

which is commensurate with AI at a site-level. The correlation between the IWUE-1-mWUE 664 

slope and the AI at a site level implies that the aridity index is a good surrogate for the site-665 

specific IWUE-1-mWUE slope.  666 

 We further illustrated how the correlations between the IWUE-1-mWUE slope (m*) and 667 

AI vary across vegetation types (Fig. 10). Among the vegetation types, GRA, CRO, and SH had 668 

strong correlations between m* and AI, which indicated that using different m* depending on the 669 

site-level dryness would be appropriate. On the other hand, the low variability of m* observed in 670 



36 
 

SAV, BF, and NF indicates that constant m* can generate a reasonably accurate mWUE-VPD 671 

relationship regardless of the site-level dryness. Although the reasons for this difference are not 672 

entirely clear, this empirical relationship can help more accurately model the variability of 673 

mWUE in response to changing VPD across the sites and biomes. Growth in data availability 674 

across the flux tower network helps ensure the coverage of the full potential range of 675 

environmental factors. More data availability can be achieved by consistently collecting good-676 

quality data from existing study sites and establishing new sites in underrepresented areas. 677 

Furthermore, additional data would also help the development of m* in detail, for instance, based 678 

on the plant water-use strategies, with the aid of conjoined field measurements such as water 679 

potential (𝛹) of soil and plant. 680 

 681 

4.3. Implications for future research 682 

It is important to note that plant response to water stress is not only determined by the 683 

water demand (i.e., atmospheric dryness or VPD) but also by the availability of water sources 684 

(i.e., soil moisture). Although volumetric soil moisture content (𝜃) is often considered as a metric 685 

of soil water available to plants, soil water potential (𝛹.) is the driving force of water flows that 686 

becomes available to plants by moving along gradients of water potential through the plant (stem 687 

and leaf) and eventually to the air. Moreover, 𝛹. is not only determined by the 𝜃 but also by soil 688 

physical properties, and thus can differ even under conditions of the same 𝜃 (Campbell, 1974; 689 

van Genuchten, 1980). Unlike 𝛹., 𝜃 is widely measured and usually available with flux data, and 690 

carbon and water fluxes are often explained as a function of 𝜃 (Green et al., 2019; Novick et al., 691 

2016a). However, 𝜃 may not characterize soil moisture availability to plants properly, and its 692 

relationship with carbon and water fluxes is usually nonlinear and threshold-driven (Feldman et 693 
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al., 2019; Novick et al., 2022; Stocker et al., 2018), making the modeling of the relationship 694 

between IWUE and soil moisture availability challenging. Therefore, enhanced accessibility to 695 

𝛹. data by improving the ease and reliability of 𝛹. observations, for example, by building a 696 

centralized and standardized network of 𝛹 (Novick et al., 2022) would be a necessary step to 697 

better characterize the effect of soil moisture availability on plant responses such as IWUE and 698 

mWUE. 699 

In this study, we tested the two stomatal optimization models (Katul et al., 2010; Medlyn 700 

et al., 2012) that are elaborations of the original Cowan & Farquhar (1977) model with few 701 

modifications because our goal was to characterize variability of mWUE in response to dryness 702 

(VPD and aridity index) using IWUE that can be calculated from the extensive, long-term 703 

continuous data from the network of eddy covariance. Meanwhile, more recent optimization 704 

models are incorporating additional physiological penalties than the water loss, for instance, 705 

damage to the vascular system induced by water stress (Anderegg et al., 2018; Sperry et al., 706 

2017; Wolf et al., 2016), which may enhance prediction of long-term plant responses to climate 707 

change. Although monitoring the integrity of the vascular system, which can be informed by the 708 

dynamics of hydraulic conductivity, has not been widely conducted, recent advances in 709 

psychrometric approaches allowing continuous measurements of plant 𝛹 (e.g., PSY1 710 

manufactured by ICT International) and 𝛹. (e.g., TEROS 21 manufactured by Meter Group) are 711 

now enabling the monitoring the dynamics of hydraulic conductivity. Moreover, the relationship 712 

between plant and soil 𝛹 can be used to identify plant water-use strategies (e.g., isohydry 713 

framework; Martinez-Vilalta et al., 2014), which can help develop m* based on plant water-use 714 

strategies. The measurements of carbon and water fluxes using the eddy covariance technique 715 

with the aid of the centralized and standardized deployment of 𝛹 sensors (Novick et al., 2022) 716 
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will have a great potential to test models and theories of stomatal optimization and advance our 717 

knowledge of it.  718 
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